Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-06T21:46:07.299Z Has data issue: false hasContentIssue false

3 - Metapopulation dynamics in marine parasites

from Part I - Nonequilibrium and Equilibrium in Populations and Metapopulations

Published online by Cambridge University Press:  05 March 2013

Klaus Rohde
Affiliation:
University of New England, Australia
Get access

Summary

Introduction

The metapopulation framework stemming from Levins’s (1969, 1970) seminal concept and which evolved into a modern ecological theory (Hanski & Gilpin, 1997; Hanski, 1999a, 1999b; Hanski & Gaggiotti, 2004; Kritzer & Sale, 2006) is based on the development of ideas from, and applications to, terrestrial systems. However, key environmental differences exist between marine and terrestrial ecosystems, such as the larger scale of chemical, material and organism transport resulting in the greater “openness” of local marine environments (Carr et al., 2003; Sale et al., 2006) and higher marine population connectivity. There are relatively few barriers that might delineate dispersal and migration in the ocean compared with those in terrestrial or freshwater environments that are physically fragmented into discrete patches of habitat supporting discrete local populations (Waples, 1998). Further terrestrial-marine differences with relevance for the application of metapopulation theory in marine systems are the high per capita fecundity and dispersal potential of many marine species, leading to a more open spatial structure of the populations (via decoupling of local offspring production from recruitment to a parental population; see, e.g., Roughgarden et al., 1988; Carr et al., 2003; Kinlan & Gaines, 2003; Sale et al., 2006).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, R. M., & Gordon, D. M. (1982). Processes influencing the distribution of parasite numbers within host populations with special emphasis on parasite-induced host mortalities. Parasitology, 85, 373–398.CrossRefGoogle ScholarPubMed
Anderson, R. M., & May, R. M. (1978). Regulation and stability of host-parasite population interactions. I. Regulatory processes. Journal of Animal Ecology, 47, 219–247.CrossRefGoogle Scholar
Arneberg, P., Skorping, A., & Read, A. F. (1997). Is population density a species character? Comparative analyses of the nematode parasites of mammals. Oikos, 80, 289–300.CrossRefGoogle Scholar
Brown, J. H. (1984). On the relationship between abundance and distribution of species. American Naturalist, 124, 255–279.CrossRefGoogle Scholar
Bush, A. O., Lafferty, K. D., Lotz, J. M., & Shostak, A. W. (1997). Parasitology meets ecology on its own terms: Margolis et al. revisited. Journal of Parasitology, 84, 575–583.CrossRefGoogle Scholar
Carr, M. H., Neigel, J. E., Estes, J. A., Andelman, S., Warner, R. R., & Largier, J. (2003). Comparing marine and terrestrial ecosystems: implications for the design of coastal marine reserves. Ecological Applications, 13 (Suppl.), S90–S107.CrossRefGoogle Scholar
Criscione, C. D., & Blouin, M. S. (2005). Effective sizes of macroparasite populations: a conceptual model. Trends in Parasitology, 21, 212–217.CrossRefGoogle ScholarPubMed
Criscione, C. D., Vilas, R. N., Paniagua, E., & Blouin, M. (2011). More than meets the eye: detecting cryptic microgeographic population structure in a parasite with a complex life cycle. Molecular Ecology, 20, 2510–2524.CrossRefGoogle Scholar
Crofton, H. D. (1971). A quantitative approach to parasitism. Parasitology, 62, 179–193.CrossRefGoogle Scholar
Dennis, B., & Patil, G. P. (1984). The Gamma-distribution and weighted multimodal Gamma-distribution as model of population abundance. Mathematical Biosciences, 68, 187–212.CrossRefGoogle Scholar
Dobson, A. (2003). Metalife! Science, 301, 1488–1490.CrossRefGoogle ScholarPubMed
Donald, K. M., Kennedy, M., & Spenser, H. (2005). Cladogenesis as the result of long-distance rafting events in South Pacific topshells (Gastropoda, Trochidae). Evolution, 59, 1701–1717.CrossRefGoogle Scholar
Elliott, J. M. (1977). Some Methods for the Statistical Analysis of Samples of Benthic Invertebrates (2nd edn). Ambleside: Freshwater Biological Association.Google Scholar
Engen, S., & Lande, R. (1996). Population dynamic models generating the lognormal species abundance distribution. Mathematical Biosciences, 132, 169–183.CrossRefGoogle ScholarPubMed
Esch, G. W., & Fernández, J. G. (1993). A Functional Biology of Parasitism: Ecological and Evolutionary Implications. London: Chapman and Hall.CrossRefGoogle Scholar
Esch, G. W., Barger, M. A., & Fellis, K. J. (2002). The transmission of digenetic trematodes: style, elegance, complexity. Integrative and Comparative Biology, 42, 304–312.CrossRefGoogle ScholarPubMed
Fingerut, J. T., Zimmer, C. A., & Zimmer, R. K. (2003a). Patterns and processes of larval emergence in an estuarine parasite system. Biological Bulletin, 205, 110–120.CrossRefGoogle Scholar
Fingerut, J. T., Zimmer, C. A., & Zimmer, R. K. (2003b). Larval swimming overpowers turbulent mixing and facilitates transmission of a marine parasite. Ecology, 84, 2502–2515.CrossRefGoogle Scholar
Gaston, K. J. (1996). The multiple forms of the interspecific abundance-distribution relationship. Oikos, 75, 211–220.CrossRefGoogle Scholar
Gaston, K. J. (2003).The Structure and Dynamics of Geographic Ranges. Oxford: Oxford University Press.Google Scholar
Gaston, K. J., Blackburn, T. M., Greenwood, J. J. D., et al. (2000). Abundance-occupancy relationships. Journal of Applied Ecology, 37 (Suppl. 1), 39–59.CrossRefGoogle Scholar
Gaston, K. J., Borges, P. A. V, He, F., & Gaspar, C. (2006). Abundance, spatial variance and occupancy: arthropod species distribution in the Azores. Journal of Animal Ecology, 75, 646–656.CrossRefGoogle ScholarPubMed
Granovitch, A. I. (1999). Parasitic systems and the structure of parasite populations. Helgoland Marine Research, 53, 9–18.CrossRefGoogle Scholar
Grenfell, B., & Harwood, J. (1997). (Meta)population dynamics of infectious diseases. Trends in Ecology and Evolution, 12, 395–399.CrossRefGoogle ScholarPubMed
Hanski, I. (1982). Dynamics of regional distribution: the core and satellite species hypothesis. Oikos, 38, 210–221.CrossRefGoogle Scholar
Hanski, I. (1999a). Habitat connectivity, habitat continuity, and metapopulations in dynamic landscapes. Oikos, 87, 209–219CrossRefGoogle Scholar
Hanski, I. (1999b). Metapopulation Ecology. Oxford: Oxford University Press.Google Scholar
Hanski, I., & Gaggiotti, O. E. (2004). Ecology, Genetics and Evolution of Metapopulations. London: Elsevier Academic Press.Google Scholar
Hanski, I., & Gilpin, M. E. (1997). Metapopulation Biology: Ecology, Genetics and Evolution. New York: Academic Press.Google Scholar
He, F., & Gaston, K. J. (2003). Occupancy, spatial variance, and the abundance of species. The American Naturalist, 162, 366–375.CrossRefGoogle ScholarPubMed
Holt, A. R., Gaston, K. J., & He, F. (2002). Occupancy-abundance relationships and spatial distribution. Basic and Applied Ecology, 3, 1–13.CrossRefGoogle Scholar
Kinlan, B. P., & Gaines, S. D. (2003). Propagule dispersal in marine and terrestrial environments: a community perspective. Ecology, 84, 2007–2020.CrossRefGoogle Scholar
Krasnov, B. R., Shenbrot, G. I., Khokhlova, I. S., & Poulin, R. (2006). Is abundance a species attribute? An example with haematophagous ectoparasites. Oecologia, 150, 132–140.CrossRefGoogle ScholarPubMed
Krasnov, B. R., Stanko, M., Miklisova, D., & Morand, S. (2005). Distribution of fleas (Siphonaptera) among small mammals: mean abundance predicts prevalence via simple epidemiological model. International Journal for Parasitology, 35, 1097–1101.CrossRefGoogle ScholarPubMed
Kritzer, J. P., & Sale, P. F. (2004). Metapopulation ecology in the sea: from Levins’ model to marine ecology and fisheries science. Fish and Fisheries, 5, 131–140.CrossRefGoogle Scholar
Kritzer, J. P., & Sale, P. F. (2006). Marine Metapopulations. Amsterdam: Elsevier Academic Press.Google Scholar
Levins, R. (1969). Some demographic and genetic consequences of environmental heterogeneity for biological control. Bulletin of the Entomological Society of America, 15, 237–240.CrossRefGoogle Scholar
Levins, R. (1970). Extinction. Some mathematical problems in biology. In Gesternhaber, M. (Ed.), Some Mathematical Problems in Biology (pp. 77–107). Providence, RI: American Mathematical Society.Google Scholar
Lo, C. M., Morand, S., & Calzin, R. (1999). Le parasitisme des poissons coralliens. Reflet de l’habitat? Comptes Rendus de l’Académie des Sciences Paris, Sciences de la vie, 322, 281–287.Google Scholar
Marcogliese, D. J. (2002). Food webs and the transmission of parasites to marine fish. Parasitology, 124 (Suppl.), S83–S99.CrossRefGoogle ScholarPubMed
Marcogliese, D. J. (2007). Evolution of parasitic life in the ocean: paratenic hosts enhance lateral incorporation. Trends in Parasitology, 23, 519–521.CrossRefGoogle ScholarPubMed
Margolis, L. G., Esch, G. W., Holmes, J. C., Kuris, A. M., & Schad, G. A. (1981). The use of ecological terms in parasitology (Report of an ad hoc committee of the American Society of Parasitologists). Journal of Parasitology, 68, 131–133.CrossRefGoogle Scholar
Matthee, S., & Krasnov, B. R. (2009). Searching for generality in the patterns of parasite abundance and distribution: ectoparasites of a South African rodent, Rhabdomys pumilio. International Journal for Parasitology, 39, 781–788.CrossRefGoogle ScholarPubMed
May, R. M., & Anderson, R. M. (1978). Regulation and stability of host-parasite population interactions. II. Destabilising processes. Journal of Animal Ecology, 47, 249–267.CrossRefGoogle Scholar
Morand, S., & Guégan, J.-F. (2000). Distribution and abundance of parasite nematodes: ecological specialization, phylogenetic constraints or simply epidemiology?Oikos, 88, 563–573.CrossRefGoogle Scholar
Morand, S., & Krasnov, B. R. (2008). Why apply ecological laws to epidemiology? Trends in Parasitology, 24, 304–309.CrossRefGoogle ScholarPubMed
Morand, S., Poulin, R., Rohde, K., & Hayward, C. (1999). Aggregation and species coexistence of ectoparasites of marine fishes. International Journal for Parasitology, 29, 663–672.CrossRefGoogle ScholarPubMed
Morand, S., Rohde, K., & Hayward, C. (2002). Order in ectoparasite communities of marine fish is explained by epidemiological processes. Parasitology, 124 (Suppl.), S57–S63.CrossRefGoogle ScholarPubMed
Nadler, S. A. (1995). Microevolution and the genetic structure of parasite populations. Journal of Parasitology, 81, 395–403.CrossRefGoogle ScholarPubMed
Nee, S., May, R. M., & Hassell, P. (1997). Two-species metapopulation models. In Hanski, I. & Gilpin, M. E. (Eds.), Metapopulation Biology: Ecology, Genetics and Evolution (pp. 123–147). San Diego, CA: Academic Press.CrossRefGoogle Scholar
Osset, E. A., Fernandez, M., Raga, J. A., & Kostadinova, A. (2005). Mediterranean Diplodus annularis (Teleostei: Sparidae) and its brain parasite: unforeseen outcome. Parasitology International, 54, 201–206.CrossRefGoogle ScholarPubMed
Pérez-del-Olmo, A., Fernández, M., Gibson, D. I., Raga, J. A., & Kostadinova, A. (2007). Descriptions of some unusual digeneans from Boops boops L. (Sparidae) and a complete checklist of its metazoan parasites. Systematic Parasitology, 66, 137–158.CrossRefGoogle Scholar
Pérez-del-Olmo, A., Fernández, M., Raga, J. A., Kostadinova, A., & Poulin, R. (2008). Halfway up the trophic chain: development of parasite communities in the sparid fishBoops boops. Parasitology, 135, 257–268.Google ScholarPubMed
Pérez-del-Olmo, A., Fernández, M., Raga, J. A., Kostadinova, A., & Morand, S. (2009). Not everything is everywhere: similarity-decay relationship in a marine host-parasite system. Journal of Biogeography, 36, 200–209.CrossRefGoogle Scholar
Pérez-del-Olmo, A., Morand, S., Raga, J. A., & Kostadinova, A. (2011). Abundance–variance and abundance–occupancy relationships in a marine host–parasite system: the importance of taxonomy and ecology of transmission. International Journal for Parasitology, 41, 1361–1370.CrossRefGoogle Scholar
Poulin, R. (2006). Variation in infection parameters among populations within parasite species: intrinsic properties versus local factors. International Journal for Parasitology, 36, 877–885.CrossRefGoogle ScholarPubMed
Ritchie, G. (1997). The host transfer ability of Lepeophtheirus salmonis (Copepoda: Caligidae) from farmed Atlantic salmon, Salmo salar L. Journal of Fish Diseases, 20, 153–157.CrossRefGoogle Scholar
Rohde, K., Hayward, C., & Heap, M. (1995). Aspects of the ecology of metazoan ectoparasites of marine fishes. International Journal for Parasitology, 25, 945–970.CrossRefGoogle ScholarPubMed
Roughgarden, J., Gaines, S. D., & Possingham, H. P. (1988). Recruitment dynamics in complex life cycles. Science, 241, 1460–1466.CrossRefGoogle ScholarPubMed
Sale, P. F., Hanski, I., & Kritzer, J. P. (2006). The merging of metapopulation theory and marine ecology: establishing the historical context. In Kritzer, J. P. & Sale, P. F. (Eds.), Marine Metapopulations (pp. 3–28). Amsterdam: Elsevier Academic Press.CrossRefGoogle Scholar
Shaw, D. J., Grenfell, B. T., & Dobson, A. P. (1998). Patterns of macroparasite aggregation in wildlife host populations. Parasitology, 117, 597–610.CrossRefGoogle ScholarPubMed
Shaw, D. J., & Dobson, A. P. (1995). Patterns of macroparasite abundance and aggregation in wildlife populations: a quantitative review. Parasitology, 111 (Suppl.), S111–S133.CrossRefGoogle ScholarPubMed
Shorrocks, B. (1996). Local diversity: a problem with too many solutions. In Hochberg, M., Clobert, J. & Barbault, R. (Eds.), The Genesis and Maintenance of Biological Diversity (pp. 104–122). Oxford: Oxford University Press.Google Scholar
Šimková, A., & Morand, S. (2005). Metapopulation biology of marine parasites. In Rohde, K. (Ed.), Marine Parasitology (pp. 302–309). Melbourne and Wallingford: CSIRO and CAB International.Google Scholar
Taylor, L. R. (1961). Aggregation, variance and the mean. Nature, 189, 732–735.CrossRefGoogle Scholar
Taylor, L. R., & Taylor, R. A. J. (1977). Aggregation, migration and population dynamics. Nature, 265, 415–421.CrossRefGoogle Scholar
Thieltges, D. W., Fredensborg, B. L., & Poulin, R. (2009). Geographical variation in metacercarial infection levels in marine invertebrate hosts: parasite species character versus local factors. Marine Biology, 156, 983–990.CrossRefGoogle Scholar
Vignon, M., & Sasal, P. (2010). Multiscale determinants of parasite abundance: a quantitative hierarchical approach for coral reef fishes. International Journal for Parasitology, 40, 443–451.CrossRefGoogle ScholarPubMed
Waples, R. S. (1998). Separating the wheat from the chaff: patterns of genetic differentiation in high gene flow species. Journal of Heredity, 89, 438–450.CrossRefGoogle Scholar
Wilson, K., Bjørnstad, O. N., Dobson, A. P., et al. (2002). Heterogeneities in macroparasite infections: patterns and processes. In Hudson, P. J., Rizzoli, A., Grenfell, B. T., Heesterbeek, H. & Dobson, A. P. (Eds.), The Ecology of Wildlife Diseases (pp. 6–44). Oxford: Oxford University Press.Google Scholar
Zelmer, D. A., & Seed, J. R. (2004). A path hath smaller patches: delineating ecological neighbourhoods for parasites. Comparative Parasitology, 71, 93–103.CrossRefGoogle Scholar
Zimmer, R. K., Figerut, J. T., & Zimmer, C. A. (2009). Dispersal pathways, seed rains, and the dynamics of larval behavior. Ecology, 90, 1933–1947.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×