Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-5wvtr Total loading time: 0 Render date: 2024-07-16T15:58:42.995Z Has data issue: false hasContentIssue false

11 - Enterotoxins: Adjuvants and immune inhibitors

from Part III - Evasion of cellular immunity

Published online by Cambridge University Press:  13 August 2009

Jan-Michael A. Klapproth
Affiliation:
Division of Infectious Diseases, Department of Medicine, University of Maryland, Baltimore, Maryland 21201, USA
Michael S. Donnenberg
Affiliation:
Division of Infectious Diseases, Department of Medicine, University of Maryland, Baltimore, Maryland 21201, USA
Brian Henderson
Affiliation:
University College London
Petra C. F. Oyston
Affiliation:
Defence Science and Technology Laboratory, Salisbury
Get access

Summary

INTRODUCTION

Toxins are defined as “soluble substances that alter the normal metabolism of host cells with deleterious effects on the host” (Schlessinger and Schaechter, 1993). Enterotoxins in particular elicit their primary effect in the intestinal tract, initiating a metabolic cascade that results in excessive fluid and electrolyte secretion. The uniform host response is the development of diarrhoea. However, at a cellular and subcellular level, certain enterotoxins induce sophisticated and fascinating metabolic alterations, which can also affect the local immune system in a characteristic fashion. Occasionally, enterotoxins induce disease even outside the gastrointestinal tract, affecting other organ systems. Enterotoxins can be stimulatory and inhibitory at the same time, depending on the encountered cell type. Further, the same toxin can have more than one effect, either inducing or suppressing the immune cascade. Modulation of the immune cascade with either induction or suppression of local and systemic immunocompetent cell populations is initiated at the level of the mucosal immune systems of the lungs, urogenital tract, cornea, and gut. Gut-associated lymphoid tissue (GALT) is a mixture of immunocompetent cells in the intestinal lining, constantly exposed to foreign antigens and tightly regulated to prevent continuous activation. However, even the massive, continuous exposure to foreign antigens in the intestinal lumen does not, under normal circumstances, lead to a measurable immune response. This lack of response to antigens is known as oral tolerance.

How exactly do antigens and enterotoxins gain access to the host immune system and what are the tolerance-defining cell populations in the GALT?

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, D. and Tsoukas, C. (1989). Cholera toxin inhibits resting human T cell activation via a cAMP-independent pathway. Journal of Immunology 143, 3647–3652Google Scholar
Bastiaens, P. I., Majoul, I. V., Verveer, P. J., Soling, H. D., and Jovin, T. M. (1996). Imaging the intracellular trafficking and state of the AB5 quaternary structure of cholera toxin. European Molecular Biology Organisation Journal 15, 4246–4253Google ScholarPubMed
Beignon, A. S., Briand, J. P., Muller, S., and Partidos, C. D. (2001). Immunization onto bare skin with heat-labile enterotoxin of Escherichia coli enhances immune responses to coadministered protein and peptide antigens and protects mice against lethal toxin challenge. Immunology 102, 344–351CrossRefGoogle ScholarPubMed
Benedetti, R., Lev, P., Massouh, E., and Flo, J. (1998). Oral administration of one dose of cholera toxin induces a systemic immune response prior to a mucosal immune response by a direct presentation in the spleen. Immunology Letters 60, 149–156CrossRefGoogle ScholarPubMed
Bergquist, C., Johansson, E. L., Lagergard, T., Holmgren, J., and Rudin, A. (1997). Intranasal vaccination of humans with recombinant cholera toxin B subunit induces systemic and local antibody responses in the upper respiratory tract and the vagina. Infection and Immunity 65, 2676–2684Google ScholarPubMed
Bost, K. L., Holton, R. H., Cain, T. K., and Clements, J. D. (1996). In vivo treatment with anti-interleukin-13 antibodies significantly reduces the humoral immune response against an oral immunogen in mice. Immunology 87, 633–641CrossRefGoogle ScholarPubMed
Bowen, J. C., Nair, S. K., Reddy, R., and Rouse, B. T. (1994). Cholera toxin acts as a potent adjuvant for the induction of cytotoxic T-lymphocyte responses with non-replicating antigens. Immunology 81, 338–342Google ScholarPubMed
Branka, J. E., Vallette, G., Jarry, A., Bou-Hanna, C., Lemarre, P., Van, P. N., and Laboisse, C. L. (1997). Early functional effects of Clostridium difficile toxin A on human colonocytes. Gastroenterology 112, 1887–1894CrossRefGoogle ScholarPubMed
Braun, M. C., He, J., Wu, C. Y., and Kelsall, B. L. (1999). Cholera toxin suppresses interleukin (IL)-12 production and IL-12 receptor beta1 and beta2 chain expression. Journal of Experimental Medicine 189, 541–552CrossRefGoogle ScholarPubMed
Bromander, A., Holmgren, J., and Lycke, N. (1991). Cholera toxin stimulates IL-1 production and enhances antigen presentation by macrophages in vitro. Journal of Immunology 146, 2908–2914Google ScholarPubMed
Bromander, A. K., Kjerrulf, M., Holmgren, J., and Lycke, N. (1993). Cholera toxin enhances alloantigen presentation by cultured intestinal epithelial cells. Scandinavian Journal of Immunology 37, 452–458CrossRefGoogle ScholarPubMed
Burkart, V., Kim, Y., Kauer, M., and Kolb, H. (1999). Induction of tolerance in macrophages by cholera toxin B chain. Pathobiology 67, 314–317CrossRefGoogle ScholarPubMed
Castagliuolo, I., Keates, A. C., Wang, C. C., Pasha, A., Valenick, L., Kelly, C. P., Nikulasson, S. T., LaMont, J. T., and Pothoulakis, C. (1998a). Clostridium difficile toxin A stimulates macrophage-inflammatory protein-2 production in rat intestinal epithelial cells. Infection and Immunity 160, 6039–6045Google Scholar
Castagliuolo, I., Riegler, M., Pasha, A., Nikulasson, S., Lu, B., Gerard, C., Gerard, N. P., and Pothoulakis, C. (1998b). Neurokinin-1 (NK-1) receptor is required in Clostridium difficile-induced enteritis. Journal of Clinical Investigation 101, 1547–1550CrossRefGoogle Scholar
Cheng, E., Cardenas-Freytag, L., and Clements, J. (1999). The role of cAMP in mucosal adjuvanticity of Escherichia coli heat-labile enterotoxin (LT). Vaccine 18, 38–49CrossRefGoogle Scholar
Chisari, F. and Northrup, R. (1978). Pathophysiologic effects of lethal and immunoregulatory doses of cholera enterotoxin in the mouse. Journal of Immunology 113, 740–749Google Scholar
Chong, C., Friberg, M., and Clements, J. (1998). LT(R192G), a non-toxic mutant of the heat-labile enterotoxin of Escherichia coli, elicits enhanced humoral and cellular immune responses associated with protection against lethal oral challenge with Salmonella spp. Vaccine 16, 732–740CrossRefGoogle Scholar
Christopher-Hennings, J., Willgohs, J. A., Francis, D. H., Raman, U. A., Moxley, R. A., and Hurley, D. J. (1993). Immunocompromise in gnotobiotic pigs induced by verotoxin-producing Escherichia coli (O111:NM). Infection and Immunity 61, 2304–2308Google Scholar
Cong, Y., Weaver, C., and Elson, C. (1997). The mucosal adjuvanticity of cholera toxin involves enhancement of costimulatory activity by selective up-regulation of B7.2 expression. Journal of Immunology 159, 5301–5308Google ScholarPubMed
Connell, T. D., Metzger, D., Sfintescu, C., and Evans, R. T. (1998). Immunostimulatory activity of LT-IIa, a type II heat-labile enterotoxin of Escherichia coli. Immunology Letters 62, 117–120CrossRefGoogle ScholarPubMed
Cushing, A. and Smart, J. (1985). Gastrointestinal carriage of toxigenic bacteria: relation to diarrhea and to serum immune response. Journal of Infectious Disease 151, 114–123CrossRefGoogle ScholarPubMed
Dallas, W. and Falkow, S. (1980). Amino acid sequence homology between cholera toxin and Escherichia coli heat-labile toxin. Nature 288, 499–501CrossRefGoogle ScholarPubMed
Daubener, W., Leiser, E., Eichel-Streiber, C., and Hadding, U. (1988). Clostridium difficile toxins A and B inhibit human immune response in vitro. Infection and Immunity 56, 1107–1112Google Scholar
Haan, L., Feil, I. K., Verweij, W. R., Holtrop, M., Hol, W. G., Agsteribbe, E., and Wilschut, J. (1998). Mutational analysis of the role of ADP-ribosylation activity and GM1-binding activity in the adjuvant properties of the Escherichia coli heat-labile enterotoxin towards intranasally administered keyhole limpet hemocyanin. European Journal of Immunology 28, 1243–12503.0.CO;2-E>CrossRefGoogle ScholarPubMed
Haan, L., Holtrop, M., Verweij, W. R., Agsteribbe, E., and Wilschut, J. (1999). Mucosal immunogenicity and adjuvant activity of the recombinant A subunit of the Escherichia coli heat-labile enterotoxin. Immunology 97, 706–713CrossRefGoogle ScholarPubMed
DiTommaso, A., Saletti, G., Pizza, M., Rappuoli, R., Dougan, G., Abrignani, S., Douce, G., and Magistris, M. T. (1996). Induction of antigen-specific antibodies in vaginal secretions by using a nontoxic mutant of heat-labile enterotoxin as a mucosal adjuvant. Infection and Immunity 64, 974–979Google Scholar
Donta, S., Sullivan, N., and Wilkins, T. (1982). Differential effects of Clostridium difficile toxins on tissue-cultured cells. Journal of Clinical Microbiology 15, 1157–1158Google ScholarPubMed
Douce, G., Turcotte, C., Cropley, I., Roberts, M., Pizza, M., Domenghini, M., Rappuoli, R., and Dougan, G. (1995). Mutants of Escherichia coli heat-labile toxin lacking ADP-ribosyltransferase activity act as nontoxic, mucosal adjuvants. Proceedings of the National Academy of Sciences USA 92, 1644–1648CrossRefGoogle ScholarPubMed
Douce, G., Giannelli, V., Pizza, M., Lewis, D., Everest, P., Rappuoli, R., and Dougan, G. (1999). Genetically detoxified mutants of heat-labile toxin from Escherichia coli are able to act as oral adjuvants. Infection and Immunity 67, 4400–4406Google ScholarPubMed
Dove, C. H., Wang, S. Z., Price, S. B., Phelps, C. J., Lyerly, D. M., Wilkins, T. D., and Johnson, J. L. (1990). Molecular characterization of the Clostridium difficile toxin A gene. Infection and Immunity 58, 480–488Google ScholarPubMed
Elson, C. and Ealding, W. (1984a). Cholera toxin feeding did not induce oral tolerance in mice and abrogated oral tolerance to an unrelated protein antigen. Journal of Immunology 133, 2892–2897Google Scholar
Elson, C. and Ealding, W. (1984b). Generalized systemic and mucosal immunity in mice after mucosal stimulation with cholera toxin. Journal of Immunology 136, 2736–2741Google Scholar
Elson, C. and Ealding, W. (1985). Genetic control of the murine immune response to cholera toxin. Journal of Immunology 135, 930–932Google ScholarPubMed
Elson, C. and Ealding, W. (1987). Ir gene control of the murine secretory IgA response to cholera toxin. European Journal of Immunology 17, 425–428CrossRefGoogle ScholarPubMed
Elson, C. O., Holland, S. P., Dertzbaugh, M. T., Cuff, C. F., and Anderson, A. O. (1995). Morphologic and functional alterations of mucosal T cells by cholera toxin and its B subunit. Journal of Immunology 154, 1032–1040Google ScholarPubMed
Eriksson, K., Nordstrom, I., Czerkinsky, C., and Holmgren, J. (2000). Differential effect of cholera toxin on CD45RA+ and CD45RO+ T cells: specific inhibition of cytokine production but not proliferation of human naive T cells. Clinical Experimental Immunology 121, 283–288CrossRefGoogle Scholar
Field, M., Rao, M. C., and Chang, E. B. (1989). Intestinal electrolyte transport and diarrheal disease (1). New England Journal of Medicine 321, 800–806Google Scholar
Flegel, W. A., Mullerm, F., Daubenerm, W., Fischerm, H. G., Haddingm, U., and Northoff, H. (1991). Cytokine response by human monocytes to Clostridium difficile toxin A and toxin B. Infection and Immunity 59, 3659–3666Google ScholarPubMed
Fukuta, S., Magnani, J. L., Twiddy, E. M., Holmes, R. K., and Ginsburg, V. (1988). Comparison of the carbohydrate-binding specificities of cholera toxin and Escherichia coli heat-labile enterotoxins LTh-I, LT-IIa, and LT-IIb. Infection and Immunity 56, 1748–1753Google ScholarPubMed
Gagliardi, M. C., Sallusto, F., Marinaro, M., Langenkamp, A., Lanzavecchia, A., and Magistris, M. T. (2000). Cholera toxin induces maturation of human dendritic cells and licences them for Th2 priming. European Journal of Immunology 30, 2394–24033.0.CO;2-Y>CrossRefGoogle ScholarPubMed
Gill, D. and King, C. (1975). The mechanism of action of cholera toxin in pigeon erythrocyte lysates. Journal of Biological Chemistry 250, 6424–6432Google ScholarPubMed
Glenn, G. M., Rao, M., Matyas, G. R., and Alving, C. R. (1998a). Skin immunization made possible by cholera toxin. Nature 391, 851CrossRefGoogle Scholar
Glenn, G. M., Scharton-Kersten, T., Vassell, R., Mallett, C. P., Hale, T. L., and Alving, C. R. (1998b). Transcutaneous immunization with cholera toxin protects mice against lethal mucosal toxin challenge. Journal of Immunology 161, 3211–3214Google Scholar
Glenn, G. M., Scharton-Kersten, T., Vassell, R., Matyas, G. R., and Alving, C. R. (1999). Transcutaneous immunization with bacterial ADP-ribosylating exotoxins as antigens and adjuvants. Infection and Immunity 67, 1100–1106Google ScholarPubMed
Gluck, U., Gebbers, J., and Gluck, R. (1999). Phase 1 evaluation of intranasal virosomal influenza vaccine with and without Escherichia coli heat-labile toxin in adult volunteers. Journal of Virology 73, 7770–7776Google ScholarPubMed
Gorbach, S. L., Banwell, J. G., Chatterjee, B. D., Jacobs, B., and Sack, R. B. (1971). Acute undifferentiated human diarrhea in the tropics. I. Alterations in intestinal microflora. Journal of Clinical Investigation 50, 881–889CrossRefGoogle Scholar
Grdic, D., Smith, R., Donachie, A., Kjerrulf, M., Hornquist, E., Mowat, A., and Lycke, N. (1999). The mucosal adjuvant effects of cholera toxin and immune-stimulating complexes differ in their requirement for IL-12, indicating different pathways of action. European Journal of Immunology 29, 1774–17843.0.CO;2-1>CrossRefGoogle Scholar
Guidry, J. J., Cardenas, L., Cheng, E., and Clements, J. D. (1997). Role of receptor binding in toxicity, immunogenicity, and adjuvanticity of Escherichia coli heat-labile enterotoxin. Infection and Immunity 65, 4943–4950Google ScholarPubMed
Hammond, SA., Walwender, D., Alving, C. R., and Glenn, G. M. (2001). Transcutaneous immunization: T cell responses and boosting of existing immunity. Vaccine 19, 2701–2707CrossRefGoogle ScholarPubMed
Hartman, A., Verg, L. V. D., and Venkatesan, M. (1999). Native and mutant forms of cholera toxin and heat-labile enterotoxin effectively enhance protective efficacy of live attenuated and heat-killed Shigella vaccines. Infection and Immunity 67, 5841–5847Google ScholarPubMed
Hashigucci, K., Ogawa, H., Ishidate, T., Yamashita, R., Kamiya, H., Watanabe, K., Hattori, N., Sato, T., Suzuki, Y., Nagamine, T., Aizawa, C., Tamura, S., Kurata, T., and Oya, A. (1996). Antibody responses in volunteers induced by nasal influenza vaccine combined with Escherichia coli heat-labile enterotoxin B subunit containing a trace amount of the holotoxin. Vaccine 14, 113–119CrossRefGoogle ScholarPubMed
Hazama, M., Mayumi-Aono, A., Miyazaki, T., Hinuma, S., and Fujisawa, Y. (1993). Intranasal immunization against herpes simplex virus infection by using a recombinant glycoprotein D fused with immunomodulating proteins, the B subunit of Escherichia coli heat-labile enterotoxin and interleukin-2. Immunology 78, 643–649Google Scholar
Hecht, G., Pothoulakis, C., LaMont, J. T., and Madara, J. L. (1988). Clostridium difficile toxin A perturbs cytoskeletal structure and tight junction permeability of cultured human intestinal epithelial monolayers. Journal of Clinical Investigation 82, 1516–1524CrossRefGoogle ScholarPubMed
Holmes, R., Twiddy, E., and Pickett, C. (1986). Purification and characterization of type II heat-labile enterotoxin of Escherichia coli. Infection and Immunity 53, 464–473Google ScholarPubMed
Holmgren, J., Lindholm, L., and Lonnroth, I. (1974). Interaction of cholera toxin and toxin derivatives with lymphocytes. I. Binding properties and interference with lectin-induced cellular stimulation. Journal of Experimental Medicine 139, 801–819CrossRefGoogle ScholarPubMed
Holmgren, J., Fredman, P., Lindblad, M., Svennerholm, A. M., and Svennerholm, L. (1982). Rabbit intestinal glycoprotein receptor for Escherichia coli heat-labile enterotoxin lacking affinity for cholera toxin. Infection and Immunity 38, 424–433Google ScholarPubMed
Hornqvist, E., Goldschmidt, T. J., Holmdahl, R., and Lycke, N. (1991). Host defense against cholera toxin is strongly CD4+ T cell dependent. Infection and Immunity 59, 3630–3638Google ScholarPubMed
Imboden, J. B., Shoback, D. M., Pattison, G., and Stobo, J. D. (1986). Cholera toxin inhibits the T-cell antigen receptor-mediated increases in inositol trisphosphate and cytoplasmic free calcium. Proceedings of the National Academy of Sciences, USA 83, 5673–5677CrossRefGoogle ScholarPubMed
Inward, C. D., Varagunam, M., Adu, D., Milford, D. V., and Taylor, C. M. (1997). Cytokines in haemolytic uraemic syndrome associated with verocytotoxin-producing Escherichia coli infection. Archives of Diseases of Children 77, 145–147CrossRefGoogle ScholarPubMed
Jackson, M. P., Newland, J. W., Holmes, R. K., and O'Brien, A. D. (1987). Nucleotide sequence analysis and comparison of the structural genes for Shiga-like toxin I and Shiga-like toxin II encoded by bacteriophages from Escherichia coli 933. FEMS Microbiology Letter 44, 109–114CrossRefGoogle Scholar
Jackson, R. J., Fujihashi, K., Xu-Amano, J., Kiyono, H., Elson, C. O., and McGhee, J. R. (1993). Optimizing oral vaccines: induction of systemic and mucosal B-cell and antibody responses to tetanus toxoid by use of cholera toxin as an adjuvant. Infection and Immunity 61, 4272–4279Google ScholarPubMed
James, S. and Kiyono, H. (1999). Gastrointestinal lamina propria cells. In Mucosal Immunology, ed. P. Ogra, pp. 381–396. San Diego: Academic Press
Jefferson, K., Smith, M., and Bobak, D. (1999). Roles of intracellular calcium and NF-kappa B in the Clostridium difficile toxin A-induced up-regulation and secretion of IL-8 from human monocytes. Journal of Immunology 160, 6039–6045Google Scholar
Jertborn, M., Svennerholm, A., and Holmgren, J. (1988). Five-year immunologic memory in Swedish volunteers after oral cholera vaccination. Journal of Infectious Disease 157, 374–377CrossRefGoogle ScholarPubMed
Just, I., Wilm, M., Selzer, J., Rex, G., Eichel-Streiber, C., Mann, M., and Aktories, K. (1995a). The enterotoxin from Clostridium difficile (ToxA) monoglucosylates the Rho proteins. Journal of Biological Chemistry 270, 13,932–13,936CrossRefGoogle Scholar
Just, I., Selzer, J., Wilm, M., Eichel-Streiber, C., Mann, M., and Aktories, K. (1995b). Glucosylation of Rho proteins by Clostridium difficile toxin B. Nature 375, 500–503CrossRefGoogle Scholar
Karmali, M. A., Petric, M., Lim, C., Fleming, P. C., Arbus, G. S., and Lior, H. (1985). The association between idiopathic hemolytic uremic syndrome and infection by verotoxin-producing Escherichia coli. Journal of Infectious Disease 151, 775–782CrossRefGoogle ScholarPubMed
Karmali, M. (1989). Infection by verocytotoxin-producing Escherichia coli. Clinical Microbiological Review 2, 15–38CrossRefGoogle ScholarPubMed
Katz, J. M., Lu, X., Young, S. A., and Galphin, J. C. (1997). Adjuvant activity of the heat-labile enterotoxin from enterotoxigenic Escherichia coli for oral administration of inactivated influenza virus vaccine. Journal of Infectious Disease 175, 352–363CrossRefGoogle ScholarPubMed
Kelly, C., Pothoulakis, C., and LaMont, J. (1994). Clostridium difficile colitis. New England Journal of Medicine 330, 257–262CrossRefGoogle ScholarPubMed
Kim, P. H., Eckmann, L., Lee, W. J., Han, W., and Kagnoff, M. F. (1998). Cholera toxin and cholera toxin B subunit induce IgA switching through the action of TGF-beta 1. Journal of Immunology 160, 1198–1203Google ScholarPubMed
Klapproth, J. M., Donnenberg, M. S., Abraham, J. M., Mobley, H. L., and James, S. P. (1995). Products of enteropathogenic Escherichia coli inhibit lymphocyte activation and lymphokine production. Infection and Immunity 63, 2248–2254Google ScholarPubMed
Klapproth, J. M., Donnenberg, M. S., Abraham, J. M., and James, S. P. (1996). Products of enteropathogenic E. coli inhibit lymphokine production by gastrointestinal lymphocytes. American Journal of Physiology 271, G841–G848Google ScholarPubMed
Klapproth, J. M., Scaletsky, I. C., McNamara, B. P., Lai, L. C., Malstrom, C., James, S. P., and Donnenberg, M. S. (2000). A large toxin from pathogenic Escherichia coli strains that inhibits lymphocyte activation. Infection and Immunity 68, 2148–2155CrossRefGoogle ScholarPubMed
Klipstein, F., Engert, R., and Clements, J. (1982). Arousal of mucosal secretory immunoglobulin A antitoxin in rats immunized with Escherichia coli heat-labile enterotoxin. Infection and Immunity 37, 1086–1092Google ScholarPubMed
Kunkel, S. and Robertson, D. (1979). Purification and chemical characterization of the heat-labile enterotoxin produced by enterotoxigenic Escherichia coli. Infection and Immunity 25, 586–596Google ScholarPubMed
Kuziemko, G., Stroh, M., and Stevens, R. (1996). Cholera toxin binding affinity and specificity for gangliosides determined by surface plasmon resonance. Biochemistry 35, 6375–6384CrossRefGoogle ScholarPubMed
Linevsky, J. K., Pothoulakis, C., Keates, S., Warny, M., Keates, A. C., Lamont, J. T., and Kelly, C. P. (1997). IL-8 release and neutrophil activation by Clostridium difficile toxin-exposed human monocytes. American Journal of Physiology 273, G1333–G1340Google ScholarPubMed
Lycke, N. (1992). Cholera toxin promotes B cell isotype switching by two different mechanisms. cAMP induction augments germ-line Ig H-chain RNA transcripts whereas membrane ganglioside GM1-receptor binding enhances later events in differentiation. Journal of Immunology 150, 4810–4821Google Scholar
Lycke, N., Lindholm, L., and Holmgren, J. (1985). Cholera antibody production in vitro by peripheral blood lymphocytes following oral immunization of humans and mice. Clinical Experimental Immunology 62, 39–47Google ScholarPubMed
Lycke, N. and Strober, W. (1989). Cholera toxin promotes B cell isotype differentiation. Journal of Immunology 142, 3781–3787Google ScholarPubMed
Lycke, N., Severinson, E., and Strober, W. (1990). Cholera toxin acts synergistically with IL-4 to promote IgG1 switch differentiation. Journal of Immunology 145, 3316–3324Google ScholarPubMed
Lycke, N. and Holmgren, J. (1986). Intestinal mucosal memory and presence of memory cells in lamina propria and Peyer's patches of mice 2 years after oral immunization with cholera toxin. Scandinavian Journal of Immunology 23, 611–615CrossRefGoogle ScholarPubMed
Lycke, N., Hellstrom, U., and Holmgren, J. (1987). Circulating cholera antitoxin memory cells in the blood one year after oral cholera vaccination in humans. Scandinavian Journal of Immunology 26, 207–211CrossRefGoogle ScholarPubMed
Mahida, Y. R., Galvin, A., Makh, S., Hyde, S., Sanfilippo, L., Borriello, S. P., and Sewell, H. F. (1998). Effect of Clostridium difficile toxin A on human colonic lamina propria cells: early loss of macrophages followed by T-cell apoptosis. Infection and Immunity 66, 5462–5469Google ScholarPubMed
Majoul, I., Bastiaens, P., and Soling, H. (1996). Transport of an external Lys-Asp-Glu-Leu (KDEL) protein from the plasma membrane to the endoplasmic reticulum: studies with cholera toxin in Vero cells. Journal of Cellular Biology 133, 777–789CrossRefGoogle ScholarPubMed
Malstrom, C. and James, S. (1998). Inhibition of murine splenic and mucosal lymphocyte function by enteric bacterial products. Infection and Immunity 66, 3120–3127Google ScholarPubMed
Mangeney, M., Richard, Y., Coulaud, D., Tursz, T., and Wiels, J. (1991). CD77: an antigen of germinal center B cells entering apoptosis. European Journal of Immunology 21, 1131–1140CrossRefGoogle ScholarPubMed
Marinaro, M., Staats, H. F., Hiroi, T., Jackson, R. J., Coste, M., Boyaka, P. N., Okahashi, N., Yamamoto, M., Kiyono, H., and Bluethmann, H. (1995). Mucosal adjuvant effect of cholera toxin in mice results from induction of T helper 2 (Th2) cells and IL-4. Journal of Immunology 155, 4621–4629Google Scholar
Matousek, M., Nedrud, J., and Harding, C. (1996). Distinct effects of recombinant cholera toxin B subunit and holotoxin on different stages of class II MHC antigen processing and presentation by macrophages. Journal of Immunology 156, 4137–4145Google ScholarPubMed
Matousek, M. P., Nedrud, J. G., Cieplak, W., and Harding, C. V. (1998). Inhibition of class II major histocompatibility complex antigen processing by Escherichia coli heat-labile enterotoxin requires an enzymatically active A subunit. Infection and Immunity 66, 3480–3484Google ScholarPubMed
McGhee, J., Lamm, M., and Strober, W. (1999). Mucosal immune response: an overview. In Mucosal Immunology, ed. P. Ogra, pp. 485–506. San Diego: Academic Press
McKenzie, S. and Halsey, J. (1984). Cholera toxin B subunit as a carrier protein to stimulate a mucosal immune response. Journal of Immunology 133, 1818–1824Google ScholarPubMed
Menge, C., Wieler, L. H., Schlapp, T., and Baljer, G. (1999). Shiga toxin 1 from Escherichia coli blocks activation and proliferation of bovine lymphocyte subpopulations in vitro. Infection and Immunity 67, 2209–2217Google ScholarPubMed
Millar, D., Hirst, T., and Snider, D. (2001). Escherichia coli heat-labile enterotoxin B subunit is a more potent mucosal adjuvant than its closely related homologue, the B subunit of cholera toxin. Infection and Immunity 69, 3476–3482CrossRefGoogle Scholar
Munoz, E., Zubiaga, A. M., Merrow, M., Sauter, N. P., and Huber, B. T. (1990). Cholera toxin discriminates between T helper 1 and 2 cells in T cell receptor-mediated activation: role of cAMP in T cell proliferation. Journal of Experimental Medicine 172, 95–103CrossRefGoogle Scholar
Nahar, T., Williams, N., and Hirst, T. R. (1996). Cross-linking of cell surface ganglioside GM1 induces the selective apoptosis of mature CD8+ T lymphocytes. International Immunology 8, 731–736CrossRefGoogle Scholar
Nashar, T. O., Webb, H. M., Eaglestone, S., Williams, N. A., and Hirst, T. R. (1996). Potent immunogenicity of the B subunits of Escherichia coli heat-labile enterotoxin: receptor binding is essential and induces differential modulation of lymphocyte subsets. Proceedings of the National Academy of Sciences USA 93, 226–230CrossRefGoogle Scholar
Nashar, T., Hirst, T., and Williams, N. (1997). Modulation of B-cell activation by the B subunit of Escherichia coli enterotoxin: receptor interaction up-regulates MHC class II, B7, CD40, CD25 and ICAM-1. Immunology 91, 572–578CrossRefGoogle Scholar
Neidleman, J. A., Vajdy, M., Ugozzoli, M., Ott, G., and O'Hagan, D. (2000). Genetically detoxified mutants of heat-labile enterotoxin from Escherichia coli are effective adjuvants for induction of cytotoxic T-cell responses against HIV-1 gag-p55. Immunology 101, 154–160CrossRefGoogle ScholarPubMed
Nicholls, L., Grant, T., and Robins-Browne, R. (2000). Identification of a novel genetic locus that is required for in vitro adhesion of a clinical isolate of enterohaemorrhagic Escherichia coli to epithelial cells. Molecular Microbiology 35, 275–288CrossRefGoogle ScholarPubMed
Niemialtowski, M., Klucinski, W., Malicki, K., and Faundez, I. S. (1993). Cholera toxin (choleragen)-polymorphonuclear leukocyte interactions: effect on migration in vitro and Fc gamma R-dependent phagocytic and bactericidal activity. Microbiology and Immunology 37, 55–62CrossRefGoogle ScholarPubMed
Nunes, J., Bagnasco, M., Lopez, M., Olive, D., and Mawas, C. (1989). Cholera toxin inhibits the increase in cytoplasmic free calcium induced via the CD2 pathway of human T-lymphocyte activation. Journal of Cellular Biology 39, 391–400Google ScholarPubMed
O'Brien, A. D., Tesh, V. L., Donohue-Rolfe, A., Jackson, M. P., Olsnes, S., Sandvig, K., Lindberg, A. A., and Keusch, G. T. (1992). Shiga toxin: biochemistry, genetics, mode of action, and role in pathogenesis. Current Topics in Microbiology and Immunology 180, 65–94Google ScholarPubMed
Ogasawara, T., Ito, K., Igarashi, K., Yutsudo, T., Nakabayashi, N., and Takeda, Y. (1988). Inhibition of protein synthesis by a Vero toxin (VT2 or Shiga-like toxin II) produced by Escherichia coli O157:H7 at the level of elongation factor 1-dependent aminoacyl-tRNA binding to ribosomes. Microbial Pathogenesis 4, 127–135CrossRefGoogle ScholarPubMed
Orlandi, P. and Fishman, P. (1993). Orientation of cholera toxin bound to target cells. Journal of Biological Chemistry 268, 17,038–17,044Google ScholarPubMed
Owen, R. (1999). Uptake and transport of intestinal macromolecules and microorganisms by M cells in Peyer's patches – a personal and historical perspective. Seminars in Immunology 11, 157–163CrossRefGoogle Scholar
Partidos, C. D., Salani, B. F., Pizza., M., and Rappuoli, R. (1999). Heat-labile enterotoxin of Escherichia coli and its site-directed mutant LTK63 enhance the proliferative and cytotoxic T-cell responses to intranasally co-immunized synthetic peptides. Immunology Letters 67, 209–216CrossRefGoogle ScholarPubMed
Perna, N. T., Plunkett, G., Burland, V., Mau, B., Glasner, J. D., Rose, D. J., Mayhew, G. F., Evans, P. S., Gregor, J., Kirkpatrick, H. A., Posfai, G., Hackett, J., Klink, S., Boutin, A., Shao, Y., Miller, L., Grotbeck, E. J., Davis, N. W., Lim, A., Dimalanta, E. T., Potamousis, K. D., Apodaca, J., Anantharaman, T. S., Lin, J., Yen, G., Schwartz, D. C., Welch, R. A., and Blattner, F. R. (2001). Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature 409, 529–533CrossRefGoogle ScholarPubMed
Pothoulakis, C., Gilbert, R. J., Cladaras, C., Castagliuolo, I., Semenza, G., Hitti, Y., Montcrief, J. S., Linevsky, J., Kelly, C. P., Nikulasson, S., Desai, H. P., Wilkins, T. D., and LaMont, J. T. (1996). Rabbit sucrase-isomaltase contains a functional intestinal receptor for Clostridium difficile toxin A. Journal of Clinical Investigation 98, 641–649CrossRefGoogle ScholarPubMed
Ramegowada, B. and Tesh, V. (1996). Differentiation-associated toxin receptor modulation, cytokine production, and sensitivity to Shiga-like toxins in human monocytes and monocytic cell lines. Infection and Immunity 64, 1173–1180Google Scholar
Renshaw, B. R., Fanslow, W. C., Armitage, R. J., Campbell, K. A., Liggitt, D., Wright, B., Davison, B. L., and Maliszewski, C. R. (1994). Humoral immune responses in CD40 ligand-deficient mice. Journal of Experimental Medicine 180, 1889–1900CrossRefGoogle ScholarPubMed
Richards, C. M., Aman, A. T., Hirst, T. R., Hill, T. J., and Williams, NA. (2001). Protective mucosal immunity to ocular herpes simplex virus type 1 infection in mice by using Escherichia coli heat-labile enterotoxin B subunit as an adjuvant. Journal of Virology 75, 1664–1671CrossRefGoogle ScholarPubMed
Rocha, M. F., Maia, M. E., Bezerra, L. R., Lyerly, D. M., Guerrant, R. L., Ribeiro, R. A., and Lima, A. A. (1997). Clostridium difficile toxin A induces the release of neutrophil chemotactic factors from rat peritoneal macrophages: role of interleukin-1beta, tumor necrosis factor alpha, and leukotrienes. Infection and Immunity 65, 2740–2746Google ScholarPubMed
Rowe, B., Taylor, J., and Bettelheim, K. (1970). An investigation of traveller's diarrhoea. Lancet 1, 1–5CrossRefGoogle ScholarPubMed
Ruddock, L. W., Ruston, S. P., Kelly, S. M., Price, N. C., Freedman, R. B., and Hirst, T. R. (1995). Kinetics of acid-mediated disassembly of the B subunit pentamer of Escherichia coli heat-labile enterotoxin. Molecular basis of pH stability. Journal of Biological Chemistry 270, 29,953–29,958Google Scholar
Ryan, E. J., McNeela, E., Murphy, G. A., Stewart, H., O'Hagan, D., Pizza, M., Rappuoli, R., and Mills, K. H. (1999). Mutants of Escherichia coli heat-labile toxin act as effective mucosal adjuvants for nasal delivery of an acellular pertussis vaccine: differential effects of the nontoxic AB complex and enzyme activity on Th1 and Th2 cells. Infection and Immunity 67, 6270–6278Google ScholarPubMed
Ryan, E. J., McNeela, E., Pizza, M., Rappuoli, R., O'Neill, L., and Mills, K. H. (2000). Modulation of innate and acquired immune responses by Escherichia coli heat-labile toxin: distinct pro- and anti-inflammatory effects of the nontoxic AB complex and the enzyme activity. Journal of Immunology 165, 5750–5759CrossRefGoogle ScholarPubMed
Sack, R. B., Gorbach, S. L., Banwell, J. G., Jacobs, B., Chatterjee, B. D., and Mitra, R. C. (1971). Enterotoxigenic Escherichia coli isolated from patients with severe cholera-like disease. Journal of Infectious Disease 123, 378–385CrossRefGoogle ScholarPubMed
Schlessinger, D. and Schaechter, M. (1993). Bacterial toxins. In Mechanisms of Microbial Disease, ed. M. Schachter, G. Medoff, and B. Eisenstein, pp. 162–175. Baltimore: William and Wilkins
Simmons, C. P., Mastroeni, P., Fowler, R., Ghaem-maghami, M., Lycke, N., Pizza, M., Rappuoli, R., and Dougan, G. (1999). MHC class I-restricted cytotoxic lymphocyte responses induced by enterotoxin-based mucosal adjuvants. Journal of Immunology 163, 6502–6510Google ScholarPubMed
Simmons, C. P., Hussell, T., Sparer, T., Walzl, G., Openshaw, P., and Dougan, G. (2001). Mucosal delivery of a respiratory syncytial virus CTL peptide with enterotoxin-based adjuvants elicits protective, immunopathogenic, and immunoregulatory antiviral CD8+ T cell responses. Journal of Immunology 166, 1106–1113CrossRefGoogle ScholarPubMed
Sixma, T. K., Pronk, S. E., Kalk, K. H., Wartna, E. S., Zanten, B. A., Witholt, B., and Hol, W. G. (1991). Crystal structure of a cholera toxin-related heat-labile enterotoxin from E. coli. Nature 351, 371–377CrossRefGoogle ScholarPubMed
Smith, H., Green, P., and Parsell, Z. (1983). Vero cell toxins in Escherichia coli and related bacteria: transfer by phage and conjugation and toxic action in laboratory animals, chickens and pigs. Journal of General Microbiology 129, 3121–3137Google ScholarPubMed
Snider, D. P., Marshall, J. S., Perdue, M. H., and Liang, H. (1994). Production of IgE antibody and allergic sensitization of intestinal and peripheral tissues after oral immunization with protein Ag and cholera toxin. Journal of Immunology 153, 647–657Google ScholarPubMed
Sobel, D. O., Yankelevich, B., Goyal, D., Nelson, D., and Mazumder, A. (1998). The B-subunit of cholera toxin induces immunoregulatory cells and prevents diabetes in the NOD mouse. Diabetes 47, 186–191CrossRefGoogle ScholarPubMed
Spangler, B. (1992). Structure and function of cholera toxin and the related Escherichia coli heat-labile enterotoxin. Microbiological Reviews 56, 622–647Google ScholarPubMed
Sugatani, J., Igarashi, T., Shimura, M., Yamanaka, T., Takeda, T., and Miwa, M. (2000). Disorders in the immune responses of T- and B-cells in mice administered intravenous verotoxin 2. Life Sciences 2000 67, 1059–1072Google Scholar
Sun, J. B., Rask, C., Olsson, T., Holmgren, J., and Czerkinsky, C. (1996). Treatment of experimental autoimmune encephalomyelitis by feeding myelin basic protein conjugated to cholera toxin B subunit. Proceedings of the National Academy of Sciences USA 93, 7196–7201CrossRefGoogle ScholarPubMed
Svennerholm, A. M., Sack, D. A., Holmgren, J., and Bardhan, P. K. (1982). Intestinal antibody responses after immunization with cholera B subunit. Lancet 1, 305–308CrossRefGoogle ScholarPubMed
Szamel, M., Ebel, U., Uciechowski, P., Kaever, V., and Resch, K. (1997). T cell antigen receptor dependent signalling in human lymphocytes: cholera toxin inhibits interleukin-2 receptor expression but not interleukin-2 synthesis by preventing activation of a protein kinase C isotype, PKC-alpha. Biochimica et Biophysica Acta 1356, 237–248CrossRefGoogle Scholar
Takahashi, I., Marinaro, M., Kiyono, H., Jackson, R. J., Nakagawa, I., Fujihashi, K., Hamada, S., Clements., J. D., Bost, K. L., and McGhee, J. R. (1996). Mechanisms for mucosal immunogenicity and adjuvancy of Escherichia coli labile enterotoxin. Journal of Infectious Disease 173, 627–635CrossRefGoogle ScholarPubMed
Tamura, S., Shoji, Y., Hasiguchi, K., Aizawa, C., and Kurata, T. (1994). Effects of cholera toxin adjuvant on IgE antibody response to orally or nasally administered ovalbumin. Vaccine 12, 1238–1240CrossRefGoogle ScholarPubMed
Tesh, V., Ramegowda, B., and Samuel, J. (1994). Purified Shiga-like toxins induce expression of proinflammatory cytokines from murine peritoneal macrophages. Infection and Immunity 62, 5085–5094Google ScholarPubMed
Tucker, K. and Wilkins, T. (1988). Toxin A of Clostridium difficile binds to the human carbohydrate antigens I, X, and Y. Infection and Immunity 56, 1107–1112Google Scholar
Vajdy, M. and Lycke, N. (1992). Cholera toxin adjuvant promotes long-term immunological memory in the gut mucosa to unrelated immunogens after oral immunization. Immunology 75, 488–492Google ScholarPubMed
Vajdy, M., Kosco-Vilbois, M. H., Kopf, M., Kohler, G., and Lycke, N. (1995). Impaired mucosal immune responses in interleukin 4-targeted mice. Journal of Experimental Medicine 181, 41–53CrossRefGoogle ScholarPubMed
Kar, N. C., Monnens, L. A., Karmali, M. A., and Hinsbergh, V. W. (1992). Tumor necrosis factor and interleukin-1 induce expression of the verocytotoxin receptor globotriaosylceramide on human endothelial cells: implications for the pathogenesis of the hemolytic uremic syndrome. Blood 80, 2755–2764Google ScholarPubMed
Vedia, L. M., Reep, B., and Lapetina, E. (1988). Platelet cytosolic 44-kDa protein is a substrate of cholera toxin-induced ADP-ribosylation and is not recognized by antisera against the alpha subunit of the stimulatory guanine nucleotidebinding regulatory protein. Proceedings of the National Academy of Sciences USA 85, 5899–5902CrossRefGoogle Scholar
Verweij, W. R., Haan, L., Holtrop, M., Agsteribbe, E., Brands, R., Scharrenburg, G. J., and Wilschut, J. (1998). Mucosal immunoadjuvant activity of recombinant Escherichia coli heat-labile enterotoxin and its B subunit: induction of systemic IgG and secretory IgA responses in mice by intranasal immunization with influenza virus surface antigen. Vaccine 16, 2069–2076CrossRefGoogle ScholarPubMed
Warny, M., Keates, A. C., Keates, S., Castagliuolo, I., Zacks, J. K., Aboudola, S., Qamar, A., Pothoulakis, C., LaMont, J. T., and Kelly, C. P. (2000). p38 MAP kinase activation by Clostridium difficile toxin A mediates monocyte necrosis, IL-8 production, and enteritis. Journal of Clinical Investigation 105, 1147–1156CrossRefGoogle ScholarPubMed
Williams, N. A., Stasiuk, L. M., Nashar, T. O., Richards, C. M., Lang, A. K., Day, M. J., and Hirst, T. R. (1997). Prevention of autoimmune disease due to lymphocyte modulation by the B-subunit of Escherichia coli heat-labile enterotoxin. Proceedings of the National Academy of Sciences USA 94, 5290–5295CrossRefGoogle ScholarPubMed
Woogen, S., Ealding, W., and Elson, C. (1987). Inhibition of murine lymphocyte proliferation by the B subunit of cholera toxin. Journal of Immunology 139, 3764–3770Google ScholarPubMed
Xu-Amano, J., Kiyono, H., Jackson, R. J., Staats, H. F., Fujihashi, K., Burrows, P. D., Elson, C. O., Pillai, S., and McGhee, J. R. (1993). Helper T cell subsets for immunoglobulin A responses: oral immunization with tetanus toxoid and cholera toxin as adjuvant selectively induces Th2 cells in mucosa associated tissues. Journal of Experimental Medicine 178, 1309–1320CrossRefGoogle ScholarPubMed
Xu-Amano, J., Jackson, R. J., Fujihashi, K., Kiyono, H., Staats, H. F., and McGhee, J. R. (1994). Helper Th1 and Th2 cell responses following mucosal or systemic immunization with cholera toxin. Vaccine 12, 903–911CrossRefGoogle ScholarPubMed
Yamamoto, S., Takeda, Y., Yamamoto, M., Kurazono, H., Imaoka, K., Yamamoto, M., Fujihashi, K., Noda, M., Kiyono, H., and McGhee, J. R. (1997). Mutants in the ADP-ribosyltransferase cleft of cholera toxin lack diarrheagenicity but retain adjuvanticity. Journal of Experimental Medicine 185, 1203–1210CrossRefGoogle ScholarPubMed
Yamamoto, M., Briles, D. E., Yamamoto, S., Ohmura, M., Kiyono, H., and McGhee, J. R. (1998). A nontoxic adjuvant for mucosal immunity to pneumococcal surface protein A. Journal of Immunology 161, 4115–4121Google ScholarPubMed
Yamamoto, M., Kiyono, H., Yamamoto, S., Batanero, E., Kweon, M. N., Otake, S., Azuma, M., Takeda, Y., and McGhee, J. R. (1999). Direct effects on antigen-presenting cells and T lymphocytes explain the adjuvanticity of a nontoxic cholera toxin mutant. Journal of Immunology 162, 7015–7021Google Scholar
Yamamoto, M., Kiyono, H., Kweon, M. N., Yamamoto, S., Fujihashi, K., Kurazono, H., Imaoka, K., Bluethmann, H., Takahashi, I., Takeda, Y., Azuma, M., and McGhee, J. R. (2000). Enterotoxin adjuvants have direct effects on T cells and antigen-presenting cells that result in either interleukin-4-dependent or-independent immune responses. Journal of Infectious Disease 182, 180–190CrossRefGoogle Scholar
Zhang, R. G., Scott, D. L., Westbrook, M. L., Nance, S., Spangler, B. D., Shipley, G. G., and Westbrook, E. M. (1995). The three-dimensional crystal structure of cholera toxin. Journal of Molecular Biology 251, 563–573CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×