Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-19T18:37:25.102Z Has data issue: false hasContentIssue false

6 - Growth Disruption in Children

Linear Enamel Hypoplasias

Published online by Cambridge University Press:  29 October 2018

Richard H. Steckel
Affiliation:
Ohio State University
Clark Spencer Larsen
Affiliation:
Ohio State University
Charlotte A. Roberts
Affiliation:
University of Durham
Joerg Baten
Affiliation:
Eberhard-Karls-Universität Tübingen, Germany
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
The Backbone of Europe
Health, Diet, Work and Violence over Two Millennia
, pp. 175 - 197
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Armelagos, G. J. (1990). Disease in prehistoric populations in transition. In: Swedlund, A.C.; Armelagos, G.J. (eds.), Disease in Human Population in Transition, South Hadley: Bergin and Garvey, pp. 124142.Google Scholar
Aufderheide, A. C.; Rodríguez-Martín, C. (1998). The Cambridge Encyclopedia of Human Paleopathology, Cambridge: Cambridge University Press.Google Scholar
Baten, J. (1999). Ernährung und wirtschaftliche Entwicklung in Bayern, 1730–1880, Beiträge zur Wirtschafts- und Sozialgeschichte Band 82, Stuttgart: Steiner.Google Scholar
Baten, J. (2002). Climate, grain production and nutritional status in 18th century southern Germany, Journal of European Economic History, 30(1): 947.Google Scholar
Baten, J. (2016). A History of the Global Economy: 1500 to the Present, Cambridge: Cambridge University Press.Google Scholar
Baten, J.; Blum, M. (2012a). Growing taller, but unequal: biological well-being in world regions and its determinants, 1810–1989, Economic History of Developing World Regions, 27: 6685.CrossRefGoogle Scholar
Baten, J.; Blum, M. (2012b). An anthropometric history of the world, 1810–1980: did migration and globalization influence country trends? Journal of Anthropological Sciences, 90: 221224, DOI: 10.4436/jass.90011.Google Scholar
Baten, J.; Blum, M. (2014). Why are you tall while others are short? Agricultural production and other proximate determinants of global heights, European Review of Economic History, 18: 144165.Google Scholar
Blakey, M. L.; Leslie, T. E.; Reidy, J. P. (1994). Frequency and chronological distribution of dental enamel hypoplasia in enslaved Americans: a test of the weaning hypothesis, American Journal of Physical Anthropology, 95: 371383, DOI: 10.1002/ajpa.1330950402.Google Scholar
Boldsen, J. L. (2007). Early childhood stress and adult age mortality: a study of dental enamel hypoplasia in the Medieval Danish village of Tirup, American Journal of Physical Anthropology, 132: 5966, DOI: 10.1002/ajpa.20467.Google Scholar
Broadberry, S. (2016). The great divergence in the world economy: long-run trends of real income. In: Baten, J. (ed.), History of the Global Economy, Cambridge: Cambridge University Press, pp. 4853.Google Scholar
Büntgen, U.; Myglan, V. S.; Ljungqvist, F. C.; et al. (2016). Cooling and societal change during the Late Antique Little Ice Age from 536 to around 660 AD. Nature Geoscience, 9: 231236.Google Scholar
Bynum, W. (2008). The History of Medicine: A Very Short Introduction, Oxford: Oxford University Press.Google Scholar
Cassidy, C. M. (1980). Nutrition and health in agriculturalists and hunter-gatherers: a case study of the prehistoric populations. In: Jerome, N.; Kandel, R.; Pelto, G. (eds.), Nutritional Anthropology, Pleasantville: Redgrave, pp. 117146.Google Scholar
Cassidy, C. M. (1984). Skeletal evidence for prehistoric subsistence adaptation in the central Ohio River valley, In: Cohen, M.; Armelagos, G. J. (eds.), Paleopathology at the Origins of Agriculture, London: Academic Press, pp. 307338.Google Scholar
Cinnirella, F. (2008). Optimists or pessimists? A reconsideration of nutritional status in Britain, 1740–1865, European Review of Economic History, 12(3): 325354.Google Scholar
Clark, G. (2007). A Farewell to Alms: A Brief Economic History of the World, Princeton: Princeton University Press.Google Scholar
Cohen, M.; Armelagos, G. J. (eds.) (1984). Paleopathology at the Origins of Agriculture, London: Academic Press. (Reprinted 2014, University Presses of Florida.)Google Scholar
Cutress, T. W.; Suckling, G. W. (1982). The assessment of non-carious defects of enamel. International Dental Journal, 32: 117122.Google Scholar
Davidson, J. M.; Rose, J. C.; Gutmann, M. P.; et al. (2002). The quality of African-American life in the Southwest near the turn of the twentieth century. In: Steckel, R.H.; Rose, J.C. (eds.), The Backbone of History: Health and Nutrition in the Western Hemisphere, Cambridge: Cambridge University Press, pp. 226280.CrossRefGoogle Scholar
De Beer, H. (2012). Dairy products and physical stature: a systematic review and meta-analysis of controlled trials, Economics and Human Biology, 10: 299309.CrossRefGoogle ScholarPubMed
Denys, C. (2002). Taphonomy and experimentation, Archaeometry, 44 : 469.Google Scholar
Dirkmaat, D. C.; Passalacqua, N. (2012). Forensic taphonomy, In: Dirkmaat, D. C. (ed.). A Companion to Forensic Anthropology, Oxford: Wiley-Blackwell Publishing, pp. 472476.Google Scholar
Efremov, I. A. (1940). Taphonomy: a new branch of paleontology. Pan-American Geology, 74: 8193.Google Scholar
El-Najjar, M. Y.; DeSanti, M. V.; Ozebek, L. (1978). Prevalence and possible etiology of dental enamel hypoplasia, American Journal of Physical Anthropology, 48(2): 185192.Google Scholar
Fogel, R. W.; Engerman, S. L.; Trussell, J. (1982). Exploring the uses of data on height: the analysis of long‑term trends in nutrition, labor welfare, and labor productivity, Social Science History, 6: 401421.Google Scholar
Freudenberg, N. (2000). Time for a national agenda to improve the health of urban populations, American Journal of Public Health, 90: 837840.Google ScholarPubMed
Fuchs, R. G. (1984). Abandoned Children: Foundlings and Child Welfare in Nineteenth-Century France. Albany: New York Press.Google Scholar
Geronimus, A. T. (2000). To mitigate, resist, or undo: addressing structural influences on the health of urban populations, American Journal of Public Health, 90: 867872.Google Scholar
Goodman, A. H.; Allen, L. H.; Hernandez, G. P.; et al. (1987). Prevalence and age at development of enamel hypoplasias in Mexican children, American Journal of Physical Anthropology, 72(1):719.Google Scholar
Goodman, A. H.; Armelagos, G. J.; Rose, J. C. (1980). Enamel hypoplasias as indicators of stress in three prehistoric populations from Illinois, Human Biology, 52: 515528.Google ScholarPubMed
Goodman, A. H.; Martin, D. (2002). Reconstructing health profiles from skeletal remains. In: Steckel, R.H.; Rose, J.C. (eds.), The Backbone of History: Health and Nutrition in the Western Hemisphere, Cambridge: Cambridge University Press, pp. 1160.Google Scholar
Goodman, A. H.; Martinez, C.; Chavez, A. (1991). Nutritional supplementation and the development of linear enamel hypoplasias in children from Tezonteopan, Mexico, American Journal of Clinical Nutrition, 53: 773781.Google Scholar
Goodman, A. H.; Rose, J. C. (1990). Assessment of systemic physiological perturbations from dental enamel hypoplasias and associated histological structures. American Journal of Physical Anthropology, 33 (Suppl. 11): 59110.Google Scholar
Gunn, J. D. (2000). The Years Without Summer: Tracing A.D. 536 and its Aftermath, Oxford: Archaeopress.CrossRefGoogle Scholar
Haines, M. R. (2001). The urban mortality transition in the United States, 1800–1940, National Bureau of Economic Research, Historical Working Paper No. 134. DOI: 10.3386/h0134.Google Scholar
Halsall, G. (2007). Barbarian Migrations and the Roman West, 376–568, Cambridge: Cambridge University Press.Google Scholar
Hammond, C.; O’Connor, T. (2013). Pig diet in medieval York: carbon and nitrogen stable isotopes, Archaeological and Anthropological Science, 5: 123127.Google Scholar
Hartley, D. A. (2004). Rural health disparities, population health, and rural culture, American Journal of Public Health, 94: 16751678.Google Scholar
Hillson, S. (1996). Dental Anthropology, Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Hillson, S.; Bond, S. (1997). Relationship of enamel hypoplasia to the pattern of tooth crown growth: a discussion, American Journal of Physical Anthropology, 104(1): 89103.Google Scholar
Holmes, G. (2001). The Oxford History of Medieval Europe, Oxford: Oxford University Press.Google Scholar
Hu, J. C.; Chun, Y. H.; Al Hazzazzi, T.; et al. (2007). Enamel formation and amelogenesis imperfecta, Cells Tissues Organs, 186: 7885.Google Scholar
Hubbard, W. H. (2000). The urban penalty: towns and mortality in nineteenth-century Norway, Continuity and Change 15(2): 331350.Google Scholar
Hutchinson, D. L.; Larsen, C. S. (1988). Determination of stress episode duration from linear enamel hypoplasias: a case study from St. Catherines Island, Georgia, Human Biology, 60(1): 93110.Google Scholar
Hutchinson, D. L.; Larsen, C. S. (1990). Stress and lifeway changes: the evidence from enamel hypoplasias. In: Larsen, C. S. (ed.), The Archaeology of Mission: Santa Catalina de Guale: 2. Biocultural Interpretations of a Population in Transition, New York: American Museum of Natural History, pp. 5065.Google Scholar
Kearns, G. (2012). The Urban Penalty: Mortality and Public Health in the Cities of the West, Cambridge: Cambridge University Press.Google Scholar
King, T.; Humphrey, L. T.; Hillson, S. (2005). Linear enamel hypoplasias as indicators of systemic physiological stress: evidence from two known age-at-death and sex populations from postmedieval London, American Journal of Physical Anthropology, 128: 547559. DOI:10.1002/ajpa.20232.Google Scholar
Klein, H. (1945). Etiology of enamel hypoplasia in rickets as determined by studies on rats and swine, Journal of the American Dental Association, 18: 866884.Google Scholar
Koepke, N. (2016). The biological standard of living in Europe from the Late Iron Age to the Little Ice Age. In: Komlos, J.; Kelly, I.R. (eds.), Oxford Handbook of Economics and Human Biology, Oxford: Oxford University Press, pp. 70109.Google Scholar
Koepke, N.; Baten, J. (2005). The biological standard of living in Europe during the last two millennia, European Review of Economic History, 9(1): 6195.Google Scholar
Koepke, N.; Baten, J. (2008). Agricultural specialization and height in ancient and medieval Europe, Explorations in Economic History, 45(2): 127146.Google Scholar
Kreshover, S. J. (1944). The pathogenesis of enamel hypoplasia: an experimental study. Journal of Dental Research, 23: 231238.Google Scholar
Kreshover, S. J. (1960). Metabolic disturbances in tooth formation. Annals of the New York Academy of Sciences, 85: 161167.Google Scholar
Kreshover, S. J.; Clough, O. W. (1953). Prenatal influences on tooth development: Part II. Artificially induced fever in rats. Journal of Dental Research, 32: 565572.Google Scholar
Kreshover, S. J.; Clough, O. W.; Bear, D. M. (1953). Prenatal influences on tooth development: Part I. Alloxan diabetes in rats, Journal of Dental Research, 32: 246261.CrossRefGoogle Scholar
Kreshover, S. J.; Hancock, J. A. (1956). The effect of lymphocytic choriomeningitis on pregnancy and dental tissues in mice. Journal of Dental Research, 35: 467483.CrossRefGoogle ScholarPubMed
Larsen, C. S. (1995). Biological changes in human populations with agriculture, Annual Review of Anthropology, 24: 185213.Google Scholar
Larsen, C. S. (2015). Bioarchaeology: Interpreting Behavior from the Human Skeleton, 2nd edition, Cambridge: Cambridge University Press.Google Scholar
Larsen, C. S.; Crosby, A. W.; Griffin, M. C.; et al. (2002). A biohistory of health and behavior in the Georgia Bight. In: Steckel, R. H.; Rose, J. C. (eds.), The Backbone of History: Health and Nutrition in the Western Hemisphere, Cambridge: Cambridge University Press, pp. 406439.Google Scholar
Lyman, R. L. (2010). What taphonomy is, what it isn’t, and why taphonomists should care about the difference, Journal of Taphonomy, 8(1): 116.Google Scholar
Maddison, A. (2001). The World Economy: A Millennial Perspective, Paris: Development Centre of the OECD.Google Scholar
Martin, R. E. (1999). Taphonomy: A Process Approach, Cambridge: Cambridge University Press.Google Scholar
Mays, S. A. (1997). Carbon stable isotope ratios in mediaeval and later human skeletons from Northern England, Journal of Archaeological Science 24: 561567.Google Scholar
Meinzer, N.; Baten, J. (2016). Global perspectives on economics and biology. In: Komlos, J.; Kelly, I. R. (eds.), Oxford Handbook of Economics and Human Biology, Oxford: Oxford University Press, pp. 276295.Google Scholar
Mellanby, M. (1934). Diet and Teeth: an Experimental Study. Part III. The Effect of Diet on the Dental Structure and Disease in Man, London: His Majesty’s Stationery Office.Google Scholar
Miles, A. E. W.; Grigson, C. (1990). Colyer’s Variations and Diseases of the Teeth of Animals, revised edition, Cambridge: Cambridge University Press.Google Scholar
Miszkiewicz, U. J. (2015). Linear enamel hypoplasia and age-at-death at medieval (11th–16th centuries) St. Gregory’s Priory and Cemetery, Canterbury, International Journal of Osteoarchaeology, 25: 7987, DOI: 10.1002/oa.2265.Google Scholar
Molnar, S.; Molnar, I. (1985). Observations of dental diseases among prehistoric populations of Hungary. American Journal of Physical Anthropology, 67(1): 5163.Google Scholar
Morris, I. (2010). Why the West Rules – For Now: The Patterns of History, and What They Reveal About the Future, New York: Farrar, Straus and Giroux.Google Scholar
Müldner, G.; Richards, M. P. (2007). Stable isotope evidence for 1500 years of human diet at the city of York, UK. American Journal of Physical Anthropology, 133: 682697.Google Scholar
Mumford, L. (1961). The City in History: Its Origins, Its Transformations, and Its Prospects, New York: Harcourt, Brace and Company.Google Scholar
Mummert, A.; Esche, E.; Robinson, J.; Armelagos, G. J. (2011). Stature and robusticity during the agricultural transition: evidence from the bio archeological record, Economics and Human Biology, 9(3): 284301.Google Scholar
Nikiforuk, G.; Fraser, D. (1981). The etiology of enamel hypoplasia: a unifying concept. The Journal of Pediatrics, 98(6): 888893.Google Scholar
O’Connell, T. C.; Kneale, C. J.; Tasevska, N.; Kuhnle, G. G. C. (2012). The diet–body offset in human nitrogen isotopic values: a controlled dietary study, American Journal of Physical Anthropology, 149(3): 426434.CrossRefGoogle ScholarPubMed
Ogilvie, M. D.; Curran, B. K.; Trinkaus, E. (1989). Incidence and patterning of dental enamel hypoplasia among the Neandertals, American Journal of Physical Anthropology, 79(1): 2541.Google Scholar
Ortner, D. J. (2003). Identification of Pathological Conditions in Human Skeletal Remains, San Diego: Academic Press.Google Scholar
Phillips, D. R. (1993). Urbanization and human health, Parasitology 106(Suppl): 93107.Google Scholar
Phillips, C. D.; McLeroy, K. R. (2004). Health in rural America: remembering the importance of place. Editorial. American Journal of Public Health, 94(10): 16611663.Google Scholar
Pindborg, J. J. (1982). Aetiology of developmental enamel defects not related to fluorosis. International Dental Journal, 32(2): 123134.Google Scholar
Polet, C.; Katzenberg, M. A. (2003). Reconstruction of the diet in a mediaeval monastic community from the coast of Belgium, Journal of Archaeological Science, 30: 525533.Google Scholar
Reid, D. J.; Dean, M. C. (2000). Brief communication: the timing of linear hypoplasias on human anterior teeth, American Journal of Physical Anthropology, 113(1): 135139.Google Scholar
Robert, M.; Steckel, R. H. (1983). Heights of native born northern whites during the Antebellum Period, Journal of Economic History, 43: 167174.Google Scholar
Roberts, C. A.; Manchester, K. (2005). The Archaeology of Disease, Stroud: Sutton Publishing.Google Scholar
Robinson, J. T. (1956). The Dentition of the Australopithecinae, Pretoria: Transvaal Museum.Google Scholar
Sarnat, B. G.; Schour, I. (1941). Enamel hypoplasia (chronologic enamel aplasia) in relation to systemic disease: a chronologic morphologic and etiologic classification, Journal of the American Dental Association, 28: 19892000.Google Scholar
Sarnat, B. G.; Schour, I. (1942). Enamel hypoplasia (chronologic enamel aplasia) in relation to systemic disease: a chronologic morphologic and etiologic classification, Journal of the American Dental Association, 29: 397418.Google Scholar
Schulze, C. H. (1970). Developmental abnormalities of the teeth and jaws. In: Gorlin, R. J.; Goldman, H. M. (eds.), Thoma’s Oral Pathology, St. Louis: C.V. Mosby Company, pp. 112122.Google Scholar
Schuman, E. L.; Sognnaes, R. F. (1956). Developmental microscopic defects in the teeth of subhuman primates, American Journal of Physical Anthropology, 14(2): 193214.Google Scholar
Scott, G. R.; Turner., C. G. II (1997). The Anthropology of Modern Human Teeth, Cambridge: Cambridge University Press.Google Scholar
Singh, G. K.; Siahpush, M. (2014). Widening rural–urban disparities in life expectancy, U.S., 1969–2009, American Journal of Preventive Medicine, 46(2): 1929.Google Scholar
Smith, P.; Bar-Yosef, O.; Sillen, A. (1984). Archaeological and skeletal evidence of dietary change during the late Pleistocene/early Holocene in the Levant. In: Cohen, M.; Armelagos, G. J. (eds.), Paleopathology at the Origins of Agriculture, London: Academic Press, pp. 101136.Google Scholar
Steckel, R. H. (2004). New light on the “Dark Ages”: the remarkably tall stature of northern European men during the Medieval Era, Social Science History, 28(2): 211229.Google Scholar
Steckel, R. H.; Rose, J. C. (2002). The Backbone of History: Health and Nutrition in the Western Hemisphere, Cambridge: Cambridge University Press.Google Scholar
Steckel, R. H.; Sciulli, P. W.; Jerome, R. C. (2002). A health index from skeletal remains. In: Steckel, R. H.; Rose, J. C. (eds.), The Backbone of History: Health and Nutrition in the Western Hemisphere, Cambridge: Cambridge University Press, pp. 6193.Google Scholar
Storey, R.; Morfin, L. M.; Smith, V. (2002). Social disruption and the Maya civilization of Mesoamerica. In: Steckel, R. H.; Rose, J.C. (eds.), The Backbone of History: Health and Nutrition in the Western Hemisphere, Cambridge: Cambridge University Press, pp. 283306.Google Scholar
Swärdstedt, T. (1966). Odontological Aspects of a Medieval Population from the Province of Jamtland/Mid-Sweden, Stockholm: Tiden-Barnangen Tryckerier.Google Scholar
Sweeney, E. A.; Guzman, M. (1966). Oral conditions in children from three highland villages in Guatemala, Archives of Oral Biology, 11: 687698.Google Scholar
Sweeney, E. A.; Saffir, J. A.; de Leon, R. (1971). Linear enamel hypoplasias of deciduous incisor teeth in malnourished children, American Journal of Clinical Nutrition, 24: 2931.Google Scholar
Szreter, S. (2000). Social capital, the economy, and education in historical perspective. In: Baron, S.; Field, J.; Schuller, T. (eds.), Social Capital: Critical Perspectives, New York: Oxford University Press, pp. 5677.Google Scholar
Szreter, S.; Hardy, A. (2001). Urban mortality and fertility patterns. In: Daunton, M. (ed.), The Cambridge Urban History of Britain, Cambridge: Cambridge University Press, pp. 629672.Google Scholar
van Zanden, J. L. (1995). Tracing the beginning of the Kuznets curve: Western Europe during the Early Modern Period, Economic History Review, 48(4): 643664.Google Scholar
Vitzthum, V. J.; Wikander, R. (1988). Incidence and correlates of enamel hypoplasia in non-human primates. American Journal of Physical Anthropology, 75(Suppl.): 284.Google Scholar
Waldron, T. (2009). Palaeopathology, Cambridge: Cambridge University Press.Google Scholar
White, T. D. (1978). Early hominid enamel hypoplasia, American Journal of Physical Anthropology, 49(1): 7983.Google Scholar
Zhou, L. (1995). Dental Enamel Defect Related to Famine Stress in Contemporary Chinese Populations: Bioanthropological Study, PhD dissertation, Southern Illinois University.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×