Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-22T14:23:10.874Z Has data issue: false hasContentIssue false

7 - Control of Spark Timing

Published online by Cambridge University Press:  05 June 2012

A. Galip Ulsoy
Affiliation:
University of Michigan, Ann Arbor
Huei Peng
Affiliation:
University of Michigan, Ann Arbor
Melih Çakmakci
Affiliation:
Bilkent University, Ankara
Get access

Summary

The focus of this chapter is the control of spark timing. As discussed in Chapter 3, the spark is ignited in advance of TDC during the compression stroke. The exact timing can influence performance, fuel economy, emissions, and knock. As discussed in Chapter 1, advancing the spark timing can improve performance and reduce fuel consumption. However, advanced spark timing also can lead to engine knocking and potential engine damage. Spark-timing control can be used, for example, in idle-speed control (see Chapter 8) with throttle control. In this chapter, we focus on the occurrence of engine knock and the control of knock by adjustment of spark timing.

Knock Control

Knock occurs when an unburned part of the air–fuel mixture within the combustion chamber explodes prematurely. This is called knocking because it generates resonating gas-pressure oscillations, which are heard as a knocking sound. Knocking can lead to serious engine damage (Heywood 1989). Historically, a low-compression ratio or conservative spark timing was used to ensure that knocking did not occur; however, this approach sacrifices performance and fuel economy. Knock control can be used when a feedback sensor becomes available, which adjusts the spark timing based on a measured variable that indicates knock. Suitable measurements include the cylinder pressure (e.g., the 5- to 15-kHz region was found to be a good knock indicator), engine-block vibrations, light emission within the combustion chamber, and ion current through the gas mixture.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Entenmann, R.Unland, S.Torno, O.Haeming, W. 1997 Method for the Adaptive Knock Control of an Internal Combustion EngineU.S. Patent 5 645Google Scholar
Heywood, J. B. 1989 Internal Combustion Engine FundamentalsMcGraw-HillNew YorkGoogle Scholar
Morita, S.Fukui, W.Wada, S. 1997 Knock Control System for an Internal Combustion EngineU.S. Patent 5Google Scholar
Sawamoto, K.Kawamura, Y.Kita, T.Matsushita, K. 1987 Individual Cylinder Knock Control of Detecting Cylinder PressurePassenger Car Meeting and ExpositionDearborn, MIGoogle Scholar
Schmillen, K. P. 1991 Different Methods of Knock Detection and Knock ControlSAE International Congress and ExpositionDearborn, MIGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×