Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-06-17T02:57:42.505Z Has data issue: false hasContentIssue false

5 - Numerical integration of the wave equations

Published online by Cambridge University Press:  05 January 2012

C. J. Joachain
Affiliation:
Université Libre de Bruxelles
N. J. Kylstra
Affiliation:
Université Libre de Bruxelles
R. M. Potvliege
Affiliation:
University of Durham
Get access

Summary

One of the major non-perturbative methods used to study atoms in intense laser fields is the direct numerical integration of the wave equations describing atoms interacting with laser fields [1]. This is an attractive alternative to the methods discussed in the two preceding chapters, since solutions of the wave equations can be obtained by numerical integration for a wide range of laser intensities and frequencies. In addition, no restrictions need to be imposed on the type of laser pulses which are used, making the numerical integration of wave equations particularly useful for the study of interaction of atoms with short laser pulses.

However, the numerical integration of the wave equations is computationally very intensive, for the following reasons. Firstly, at high laser intensities, and especially for low frequencies, the ionized electrons can acquire quite high velocities and their quiver motion becomes much larger than the size of the initial atomic orbit. The corresponding wave packets can therefore travel large distances in short time intervals. As a result, the spatial grids used to follow the motion of these wave packets must be large and have small spatial separations. Secondly, the discretization of time, used in all numerical integration schemes, requires a large number of small steps in order to obtain accurate results. Thirdly, the direct numerical integration of the wave equations becomes extremely demanding for atoms with more than one active electron.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Schafer, K. J., Numerical methods in strong field physics. In Brabec, T., ed., Strong Field Laser Physics, Springer Series in Optical Sciences 134 (New York: Springer, 2009), p. 111.Google Scholar
[2] Press, W. H., Teukolsky, S. A., Vetterling, W. T. and Flannery, B. P., Numerical Recipes (Cambridge: Cambridge University Press, 2007).Google Scholar
[3] Kulander, K. C., Schafer, K. J. and Krause, J. C., Adv. At. Mol. Opt. Phys. Suppl. 1, 247 (1992).
[4] Flocard, H., Koonin, S. E. and Weiss, M. S., Phys. Rev. C 17, 1682 (1978).CrossRef
[5] Boor, C., A Practical Guide to Splines (New York: Springer-Verlag, 1978).CrossRefGoogle Scholar
[6] Lambropoulos, P., Maragakis, P. and Zhang, J., Phys. Rep. 305, 203 (1998).CrossRef
[7] Cormier, E. and Lambropoulos, P., J. Phys. B 29, 1667 (1996).CrossRef
[8] Muller, H. G., Phys. Rev. A 60, 1341 (1999).CrossRef
[9] Javanainen, J., Eberly, J. and Su, Q., Phys. Rev. A 38, 3430 (1988).CrossRef
[10] Gattuta, K. J. La, Phys. Rev. A 41, 5110 (1990).CrossRef
[11] Feit, M. D., Fleck, J. A. and Steiger, A., J. Comp. Phys. 47, 412 (1982).CrossRef
[12] Schafer, K. J. and Kulander, K. C., Phys. Rev. A 42, 5794 (1990).CrossRef
[13] Guyétand, O., Gisselbrecht, M., Huetz, A., et al., J. Phys. B 38, L357 (2005).CrossRef
[14] Guyétand, O., Gisselbrecht, M., Huetz, A., et al., J Phys. B 41, 051002 (2008).
[15] Geltman, S., J. Phys. B 10, 831 (1977).CrossRef
[16] Goldberg, A. and Shore, B. W., J. Phys. B 11, 3339 (1978).CrossRef
[17] Austin, E. J., J. Phys. B 12, 4045 (1979).CrossRef
[18] Eberly, J. H., Hyperfine Int. 37, 33 (1987).CrossRef
[19] Cerjan, C. and Kosloff, R., J. Phys. B 20, 4441 (1987).CrossRef
[20] Pindzola, M. S. and Bottcher, C., J. Opt. Soc. Am. B 4, 752 (1987).CrossRef
[21] Susskind, S. M. and Jensen, R. V., Phys. Rev. A 38, 711 (1988).CrossRef
[22] Sundaram, B. and Armstrong, L., Phys. Rev. A 38, 152 (1988).CrossRef
[23] Dörr, M. and Shakeshaft, R., Phys. Rev. A 38, 543 (1988).CrossRef
[24] Bardsley, J. N. and Comella, M. J., Phys. Rev. A 39, 2252 (1989).CrossRef
[25] Eberly, J. H., Su, Q. and Javanainen, J., Phys. Rev. Lett. 62, 881 (1989).CrossRef
[26] Eberly, J. H., Su, Q. and Javanainen, J., J. Opt. Soc. Am. B 6, 1289 (1989).CrossRef
[27] Eberly, J. H., Su, Q., Javanainen, J., Kulander, K. C., Shore, B. W. and Roso-Franco, L., J. Mod. Opt. 36, 829 (1989).CrossRef
[28] Sacks, R. A. and Szüke, A., Phys. Rev. A 40, 5614 (1989).CrossRef
[29] Ritchie, B., Bowden, C. M., Sung, C. C. and Li, Y. Q., Phys. Rev. A 41, 6114 (1990).CrossRef
[30] Reed, V. C. and Burnett, K., Phys. Rev. A 42, 3152 (1990).CrossRef
[31] Reed, V. C., Knight, P. L. and Burnett, K., Phys. Rev. Lett. 67, 1415 (1991).CrossRef
[32] Reed, V. C. and Burnett, K., Phys. Rev. A 46, 424 (1992).CrossRef
[33] Bloomfield, L. A., J. Opt. Soc. Am. B 7, 472 (1990).CrossRef
[34] Blümel, R. and Smilansky, U., J. Opt. Soc. Am. B 7, 664 (1990).CrossRef
[35] Eberly, J. H., Javanainen, J. and Rzażewski, K., Phys. Rep. 204, 331 (1991).CrossRef
[36] Eberly, J. H., Grobe, R., Law, C. K. and Su, Q., Adv. At. Mol. Opt. Phys. Suppl. 1, 301 (1992).
[37] Liu, W. C. and Clark, C. W., J. Phys. B 25, L517 (1992).CrossRef
[38] Eberly, J. H., Phys. Rev. A 42, 5750 (1990).CrossRef
[39] Potvliege, R. M., Kylstra, N. J. and Joachain, C. J., J. Phys. B 33, L743 (2000).CrossRef
[40] Patel, A., Kylstra, N. J. and Knight, P. L., J. Phys. B 32, 5759 (1999).CrossRef
[41] Burke, P. G. and Burke, V. M., J. Phys. B 30, L383 (1997).CrossRef
[42] Burke, P. G., Francken, P. and Joachain, C. J., Europhys. Lett. 13, 617 (1990).CrossRef
[43] Burke, P. G., Francken, P. and Joachain, C. J., J. Phys. B 24, 761 (1991).CrossRef
[44] Protopapas, M., Lappas, D. G. and Knight, P. L., Phys. Rev. Lett. 79, 4550 (1997).CrossRef
[45] Patel, A., Protopapas, M., Lappas, D. G. and Knight, P. L., Phys. Rev. A 58, R2652 (1998).CrossRef
[46] Kulander, K. C., Schafer, K. J. and Krause, J. L., Phys. Rev. Lett. 66, 2601 (1991).CrossRef
[47] Edmonds, A. R., Angular Momentum in Quantum Mechanics (Princeton, N.J.: Princeton University Press, 1957).CrossRefGoogle Scholar
[48] Pindzola, M. S. and Dörr, M., Phys. Rev. A 43, 439 (1991).CrossRef
[49] Pont, M., Proulx, D. and Shakeshaft, R., Phys. Rev. A 44, 4486 (1991).CrossRef
[50] LaGattuta, K. J., Phys. Rev. A 43, 5157 (1991).CrossRef
[51] Horbatsch, M., J. Phys. B 24, 4149 (1991).CrossRef
[52] Latinne, O., Joachain, C. J. and Dörr, M., Europhys. Lett. 26, 333 (1994).CrossRef
[53] Antoine, P., Piraux, B. and Maquet, A., Phys. Rev. A 51, R1750 (1995).CrossRef
[54] Dörr, M., Latinne, O. and Joachain, C. J., Phys. Rev. A 52, 4289 (1995).CrossRef
[55] Dörr, M., Latinne, O. and Joachain, C. J., Phys. Rev. A 55, 3697 (1997).CrossRef
[56] Cormier, E. and Lambropoulos, P., J. Phys. B 30, 77 (1997).CrossRef
[57] Paulus, G. G., Nicklich, W., Xu, H., Lambropoulos, P. and Walther, H., Phys. Rev. Lett. 72, 2851 (1994).CrossRef
[58] Paulus, G. G., Nicklich, W., Zacher, F., Lambropoulos, P. and Walther, H., J. Phys. B 29, L249 (1996).CrossRef
[59] Bransden, B. H. and Joachain, C. J., Physics of Atoms and Molecules, 2nd edn (Harlow, UK: Prentice Hall-Pearson, 2003).Google Scholar
[60] Kulander, K. C., Phys. Rev. A 36, 2726 (1987).CrossRef
[61] Kulander, K. C., Phys. Rev. A 38, 778 (1988).CrossRef
[62] Herman, F. and Skillman, S., Atomic Structure Calculations (Englewood Cliffs, N.J.: Prentice Hall, 1963).Google Scholar
[63] Pindzola, M. S., Gavras, P. and Gorczyca, T. W., Phys. Rev. A 51, 3999 (1995).CrossRef
[64] Hohenberg, P. and Kohn, W., Phys. Rev. 136, B864 (1964).CrossRef
[65] Kohn, W. and Sham, L. J., Phys. Rev. A 140, 1133 (1965).CrossRef
[66] Parr, R. G. and Yang, W., Density Functional Theory of Atoms and Molecules (New York: Oxford University Press, 1989).Google Scholar
[67] Dreizler, R. M. and Gross, E. K. U., Density Functional Theory (Berlin: Springer-Verlag, 1990).CrossRefGoogle Scholar
[68] Runge, E. and Gross, E. K. U., Phys. Rev. Lett 52, 997 (1984).CrossRef
[69] Gross, E. K. U., Dobson, J. F. and Petersilka, M., Density Functional Theory II (Berlin: Springer-Verlag, 1996), p. 81.CrossRefGoogle Scholar
[70] Ullrich, C. A., Gossmann, U. J. and Gross, E. K. U., Phys. Rev. Lett 74, 872 (1995).CrossRef
[71] Krause, J. L., Schafer, K. J. and Kulander, K. C., Phys. Rev. A 45, 4998 (1992).CrossRef
[72] Cowan, R. D., The Theory of Atomic Structure and Spectra (Berkeley, Calif.: University of California Press, 1981).Google Scholar
[73] Hertlein, M. P., Bucksbaum, P. H. and Muller, H. G., J. Phys. B 30, L197 (1997).CrossRef
[74] Muller, H. G. and Kooiman, F. C., Phys. Rev. Lett. 81, 1207 (1998).CrossRef
[75] Nandor, M. J., Walker, M. A., Woerkom, L. D. and Muller, H. G., Phys. Rev. A 60, R1771 (1999).CrossRef
[76] Tang, X., Rudolph, H. and Lambropoulos, P., Phys. Rev. A 44, R6994 (1991).CrossRef
[77] Bachau, H., Lambropoulos, P. and Tang, X., Phys. Rev. A 42, R5801 (1997).CrossRef
[78] Zhang, J. and Lambropoulos, P., J. Phys. B 28, L101 (1995).CrossRef
[79] Zhang, J. and Lambropoulos, P., Phys. Rev. Lett. 77, 2186 (1996).CrossRef
[80] Scrinzi, A. and Piraux, B., Phys. Rev. A 56, R13 (1997).CrossRef
[81] Scrinzi, A. and Piraux, B., Phys. Rev. A 58, 1310 (1998).CrossRef
[82] Mercouris, T., Dionissopoulou, S. and Nicolaides, C. A., J. Phys. B 30, 4751 (1997).CrossRef
[83] Charalambidis, D., Xenakis, D., Uiterwaal, C. J. G. J.et al., J. Phys. B 30, 1467 (1997).CrossRef
[84] Nicolaides, C. A., Dionissopoulou, S. and Mercouris, T., J. Phys. B 29, 231 (1996).CrossRef
[85] Parker, J., Taylor, K. T., Clark, C. W. and Blodgett-Ford, S., J. Phys. B 29, L33 (1996).CrossRef
[86] Taylor, K. T., Parker, J. S., Dundas, D., Smyth, E. and Vivirito, S.. In Lambropoulos, P. and Walther, H., eds., Multiphoton Processes 1996 (Bristol: Institute of Physics, 1997), p. 56.Google Scholar
[87] Parker, J. S., Smyth, E. S. and Taylor, K. T., J. Phys. B 31, L571 (1998).CrossRef
[88] Smyth, E., Parker, J. S. and Taylor, K. T., Comp. Phys. Commun. 114, 1 (1998).CrossRef
[89] Taylor, K. T., Parker, J. S., Dundas, D., Smyth, E. and Vivirito, S., Laser Phys. 9, 98 (1999).
[90] Parker, J. S., Moore, L. R., Smyth, E. and Taylor, K. T., J. Phys. B 33, 1057 (2000).CrossRef
[91] Hart, H. W., Doherty, B. J. S., Parker, J. S. and Taylor, K. T., J. Phys. B 38, L207 (2005).CrossRef
[92] Hart, H. W., Lysaght, M. A. and Burke, P. G., Phys. Rev. A 76, 0430405 (2007).
[93] Hart, H. W., Phys. Rev. A 73, 023417 (2006).
[94] Ammosov, M. V., Delone, N. B. and Krainov, V. P., Sov. Phys. JETP 64, 1191 (1986).
[95] Bugacov, A., Pont, M. and Shakeshaft, R., Phys. Rev. A 48, R4027 (1993).CrossRef
[96] Meharg, K. J., Parker, J. S. and Taylor, K. T., J. Phys. B 38, 237 (2005).CrossRef
[97] Kim, A. V., Ryabikin, M. Y. and Sergeev, A. M., Sov. Phys.-Usp. 42, 54 (1999).CrossRef
[98] Aldana, J. R. Vázquez and Roso, L., Opt. Exp. 5, 144 (1999).CrossRef
[99] Kylstra, N. J., Worthington, R. A., Patel, A., Knight, P. L., Aldana, J. R. Vázquez and Roso, L., Phys. Rev. Lett. 85, 1835 (2000).CrossRef
[100] Aldana, J. R. Vázquez, Kylstra, N. J., Roso, L., Knight, P. L., Patel, A. S., and Worthington, R. A., Phys. Rev. A 64, 013411 (2001).
[101] Kylstra, N. J., Potvliege, R. M., Worthington, R.A.et al., In Piraux, B. and Rzażewski, K., eds., Super-Intense Laser-Atom Physics (Dordrecht: Kluwer Academic, 2001), p. 345.CrossRefGoogle Scholar
[102] Kylstra, N. J., Potvliege, R. M. and Joachain, C. J., J. Phys. B 34, L55 (2001).CrossRef
[103] Joachain, C. J. and Kylstra, N. J., Laser Phys. 11, 212 (2001).
[104] Protopapas, M., Keitel, C. H. and Knight, P. L., J. Phys. B 29, L591 (1996).CrossRef
[105] Taïeb, R., Véniard, V. and Maquet, A., Phys. Rev. Lett. 81, 2882 (1998).CrossRef
[106] Kylstra, N. J., Ermolaev, A. M. and Joachain, C. J., J. Phys. B 30, L449 (1997).CrossRef
[107] Bottcher, C. and Strayer, M. R., Ann. Phys. NY 175, 64 (1987).CrossRef
[108] Wells, J. C., Oberacker, V. E., Umar, A. S., Bottcher, C., Strayer, M. R., Wu, J. S. and Plunien, G., Phys. Rev. A 45, 6296 (1992).CrossRef
[109] Lenz, E., Dörr, M. and Sandner, W., Laser Phys. 11, 216 (2001).
[110] Rathe, U. W., Keitel, C. H., Protopapas, M. and Knight, P. L., J. Phys. B 30, L531 (1997).CrossRef

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×