Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-19T09:31:48.776Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 February 2016

Peter van der Straten
Affiliation:
Universiteit Utrecht, The Netherlands
Harold Metcalf
Affiliation:
State University of New York, Stony Brook
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Atoms and Molecules Interacting with Light
Atomic Physics for the Laser Era
, pp. 490 - 507
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] H., Metcalf and P., van der Straten. Laser Cooling and Trapping. New York: Springer (1999).Google Scholar
[2] N., Bohr. On the Constitution of Atoms and Molecules. Philos. Mag. 26, 1–25 (1913).Google Scholar
[3] N., Bohr. The Structure of the Atom. In Nobel Lectures, Physics 1922–1941. Elsevier (1965). Also available from Nobelprize.org.Google Scholar
[4] Louis de, Broglie. Recherches sur la Théorie des Quanta. Ph.D. thesis, Faculté des Sciences de Paris (1924).
[5] John David, Jackson. Classical Electrodynamics. New York: John Wiley and Sons (1975).Google Scholar
[6] L., Allen and J. H., Eberly. Optical Resonance and Two-Level Atoms. New York: Dover (1975).Google Scholar
[7] C., Cohen-Tannoudji, B., Diu, and F., Laloë. Quantum Mechanics. New York: Wiley (1977).Google Scholar
[8] B. R., Mollow. Power Spectrum of Light Scattered by Two-Level Systems. Phys. Rev. 188, 1969–1975 (1969).Google Scholar
[9] E. T., Jaynes and F. W., Cummings. Comparison of Quantum and Semiclassical Radiation Theories with Application to the Beam Maser. Proc. IEEE 51, 89–109 (1963).Google Scholar
[10] R., Feynman, F., Vernon, and R., Hellwarth. Geometrical Representation of the Schrödinger Equation for Solving Maser Problems. J. Appl. Phys. 28, 49 (1957).Google Scholar
[11] Norman F., Ramsey. A Molecular Beam Resonance Method with Separated Oscillating Fields. Phys. Rev. 78, 695–699 (1950).Google Scholar
[12] R., Wynands and S., Weyers. Atomic Fountain Clocks. Metrologia 42, S64 (2005).Google Scholar
[13] Steven, Chu. Cold Atoms and Quantum Control. Nature 416, 206–210 (2002).Google Scholar
[14] I. D., Abella, N. A., Kurnit, and S. R., Hartmann. Photon Echoes. Phys. Rev. 141, 391–406 (1966).Google Scholar
[15] E. L., Hahn. Spin Echoes. Phys. Rev. 80, 580–594 (1950).Google Scholar
[16] S., Guérin, R. G., Unanyan, L. P., Yatsenko, and H. R., Jauslin. Adiabatic Creation of Entangled States by a Bichromatic Field Designed from the Topology of the Dressed Eigenenergies. Phys. Rev. A 66, 032311 (2002).Google Scholar
[17] A., Einstein, B., Podolsky, and N., Rosen. Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? Phys. Rev. 47, 777–780 (1935).Google Scholar
[18] N. F., Ramsey. Molecular Beams. Oxford: Clarendon Press (1956).Google Scholar
[19] Leonard, Mandel and Emil, Wolf. Optical Coherence and Quantum Optics. Cambridge: Cambridge University Press (1995). 490Google Scholar
[20] A., Einstein. On the Quantum Theory of Radiation. Phys. Z. 18, 121 (1917).Google Scholar
[21] D. J., Griffiths. Introduction to Quantum Mechanics. New Jersey: Prentice Hall (1994).Google Scholar
[22] Peter W., Milonni and Joseph H., Eberly. Lasers. New York: Wiley & Sons (1988).Google Scholar
[23] C., Cohen-Tannoudji, J., Dupont-Roc, and G., Grynberg. Photons and Atoms, Introduction to Quantum Electrodynamics. New York: Wiley & Sons (1989).Google Scholar
[24] P. A., Franken. Interference Effects in the Resonance Fluorescence of “Crossed” Excited Atomic States. Phys. Rev. 121, 508–512 (1961).Google Scholar
[25] M. E., Rose and R. L., Carovillano. Coherence Effects in Resonance Fluorescence. Phys. Rev. 122, 1185–1194 (1961).Google Scholar
[26] Peter, Schenck, Robert C., Hilborn, and Harold, Metcalf. Time-Resolved Fluorescence from Ba and Ca Excited by a Pulsed Tunable Dye Laser. Phys. Rev. Lett. 31, 189–192 (1973).Google Scholar
[27] J. C., Baird, John, Brandenberger, Ken-Ichiro, Gondaira, and Harold, Metcalf. Determination of the Atomic-Hydrogen Fine Structure by Level Crossing in the 2P States of Hydrogen, a Measurement of the Fine-Structure Constant. Phys. Rev. A 5, 564–587 (1972).Google Scholar
[28] W. C., Martin and W. L., Wiese. Atomic Spectroscopy. In G. W. F., Drake, editor, Atomic, Molecular, and Optical Physics Handbook, chapter 10.Woodbury, NY: AIP Press (1996).Google Scholar
[29] A., Gold. Proc. Fermi Summer School XLII. New York: Academic Press (1969).Google Scholar
[30] Maria, Göppert-Mayer. Über Elementarakte mit Zwei Quantensprüngen. Ann. Phys. 9, 273 (1930).Google Scholar
[31] G., Breit and E., Teller. Metastability of Hydrogen and Helium Levels. Astrophys. J. 91, 215 (1940).Google Scholar
[32] F., Biraben, B., Cagnac, and G., Grynberg. Experimental Evidence of Two-Photon Transition without Doppler Broadening. Phys. Rev. Lett. 32, 643–645 (1974).Google Scholar
[33] M. D., Levenson and N., Bloembergen. Observation of Two-Photon Absorption without Doppler Broadening on the 3S–5S Transition in Sodium Vapor. Phys. Rev. Lett. 32, 645–648 (1974).Google Scholar
[34] P. A., Franken, A. E., Hill, C. W., Peters, and G., Weinreich. Generation of Optical Harmonics. Phys. Rev. Lett. 7, 118–119 (1961).Google Scholar
[35] D., Pritchard, J., Apt, and T. W., Ducas. Fine Structure of Na 4d2D2 Using High- Resolution Two-Photon Spectroscopy. Phys. Rev. Lett. 32, 641–642 (1974).Google Scholar
[36] Y. R., Shen. The Principles of Non-Linear Optics. Hoboken NJ: Wiley Classics (2002).
[37] Robert W., Boyd. Nonlinear Optics, Third Edition. Amsterdam: Academic Press (Elsevier) (2008).Google Scholar
[38] Marc D., Levenson. Introduction to Nonlinear Laser Spectroscopy. Amsterdam: Elsevier (1982).Google Scholar
[39] Shaul, Mukamel. Principles of Nonlinear Optical Spectroscopy. Oxford: Oxford University Press (1999).
[40] V., Weisskopf and E., Wigner. Berechnung der natürlichen Linienbreite auf Grund der Diracschen Lichttheorie. Z. Phys. 63, 54 (1930).Google Scholar
[41] E. M., Purcell. Spontaneous Emission Probabilities at Radio Frequencies. Phys. Rev. 69, 681 (1946).Google Scholar
[42] Daniel, Kleppner. Inhibited Spontaneous Emission. Phys. Rev. Lett. 47, 233–236 (1981).Google Scholar
[43] Serge, Haroche and Jean-Michel, Raimond. Exploring the Quantum: Atoms, Cavities, and Photons. Oxford: Oxford University Press (2006).Google Scholar
[44] R., Loudon. The Quantum Theory of Light. Oxford: Clarendon Press (1973).Google Scholar
[45] Gilbert, Grynberg, Alain, Aspect, and Claude, Fabre. Introduction to Quantum Optics: From the Semi-classical Approach to Quantized Light. Cambridge: Cambridge University Press (2010).Google Scholar
[46] Paul, Berman and Vladimir, Malinovsky. Principles of Laser Spectroscopy and Quantum Optics. Princeton: Princeton University Press (2011).Google Scholar
[47] Marlan O., Scully and M. Suhail, Zubairy. Quantum Optics. Cambridge: Cambridge University Press (1997).
[48] Ulf, Leonhardt. Essential Quantum Optics: From Quantum Measurements to Black Holes. Cambridge: Cambridge University Press (2010).Google Scholar
[49] Pierre, Meystre and Murray, Sargent. Elements of Quantum Optics. Springer (1990).Google Scholar
[50] Timothy H., Boyer. Random Electrodynamics: The Theory of Classical Electrodynamics With Classical Electromagnetic Zero-Point Radiation. Phys. Rev. D 11, 790–808 (1975).Google Scholar
[51] M. D., Crisp and E. T., Jaynes. Radiative Effects in Semiclassical Theory. Phys. Rev. 179, 1253–1261 (1969).Google Scholar
[52] C. R., Stroud and E. T., Jaynes. Long-Term Solutions in Semiclassical Radiation Theory. Phys. Rev. A 1, 106–121 (1970).Google Scholar
[53] D., Bouwmeester, R. J. C., Spreeuw, G., Nienhuis, and J. P., Woerdman. Neoclassical Radiation Theory as an Integral Part of the Monte Carlo Wave-Function Method. Phys. Rev. A 49, 4170–4175 (1994).Google Scholar
[54] D. ter, Haar. Theory and Applications of the Density Matrix. Rep. Prog. Phys. 24, 304 (1961).Google Scholar
[55] U., Fano. Description of States in Quantum Mechanics by Density Matrix and Operator Techniques. Rev. Mod. Phys. 29, 74–93 (1957).Google Scholar
[56] C., Cohen-Tannoudji. Atoms in Strong Resonant Fields. In R., Balian et al., editor, Proceedings of Les Houches XXVII, page 3 (1977). North Holland: Amsterdam.Google Scholar
[57] S., Stenholm. Foundations of Laser Spectroscopy. New York: Wiley & Sons (1984).Google Scholar
[58] A. R., Edmonds. Angular Momentum in Quantum Mechanics. Princeton: Princeton University Press (1957).Google Scholar
[59] H. A., Bethe and E. E., Salpeter. Quantum Mechanics of One- and Two-Electron Atoms. Berlin: Springer-Verlag (1957). Also published by Plenum, New York, 1977 (paperback).Google Scholar
[60] B. H., Bransden and C. J., Joachain. Introduction to Quantum Mechanics. NewYork: Longman (1989).Google Scholar
[61] E., Merzbacher. Quantum Mechanics. New York: Wiley & Sons (1961).Google Scholar
[62] D. J., Griffiths. Introduction to Quantum Mechanics. New Jersey: Prentice Hall (1995).Google Scholar
[63] Charles, Burkhardt and Jacob, Leventhal. Foundations of Quantum Physics. New York: Springer (2008).Google Scholar
[64] H., Hellmann. Einfuhrüng in die Quantumchemie. Leipzig: Deuticke (1937).Google Scholar
[65] R. P., Feynman. Forces in Molecules. Phys. Rev. 56, 340–343 (1939).
[66] A., Einstein and W. J. de, Haas. Experimenteller Nachweis der Ampereschen Molekularstörme. Deutsche Physikalische Gesellschaft, Verhandlungen 17, 152–170 (1915).Google Scholar
[67] Abraham, Pais. Subtle Is the Lord: The Science and the Life of Albert Einstein. Oxford: Oxford University Press (1982).
[68] L. H., Thomas. I. The Kinematics of an Electron with an Axis. Philos. Mag. Series 7 3, 1–22 (1927).Google Scholar
[69] B. H., Bransden and C. J., Joachain. Physics of Atoms and Molecules. New York: Wiley & Sons (1983).Google Scholar
[70] Willis E., Lamb and Robert, C. Retherford. Fine Structure of the Hydrogen Atom by a Microwave Method. Phys. Rev. 72, 241–243 (1947).Google Scholar
[71] H. A., Bethe. The Electromagnetic Shift of Energy Levels. Phys. Rev. 72, 339–341 (1947).Google Scholar
[72] Sol, Triebwasser, Edward S., Dayhoff, and Willis E., Lamb. Fine Structure of the Hydrogen Atom. V. Phys. Rev. 89, 98 (1953).Google Scholar
[73] E. E., Salpeter. The Lamb Shift for Hydrogen and Deuterium. Phys. Rev. 89, 92–97 (1953).Google Scholar
[74] Theodore A., Welton. Some Observable Effects of the Quantum-Mechanical Fluctuations of the Electromagnetic Field. Phys. Rev. 74, 1157–1167 (1948).Google Scholar
[75] H., Bethe and E., Salpeter. Quantum Mechanics of One and Two Electron Atoms. New York: Academic Press (1957). Also published by Dover, New York, 2008 (paperback).Google Scholar
[76] Boris M., Smirnov. Reference Data on Atomic Physics and Atomic Processes, volume 51 of Springer Series on Atomic, Optical, and Plasma Physics. Berlin, Heidelberg: Springer (2008).Google Scholar
[77] A. E., Kramida. A Critical Compilation of Experimental Data on Spectral Lines and Energy Levels of Hydrogen, Deuterium, and Tritium. At. Data Nucl. Data Tables 96, 586–644 (2010).Google Scholar
[78] Robley C., Williams. The Fine Structures of Ha and Da Under Varying Discharge Conditions. Phys. Rev. 54, 558–567 (1938).Google Scholar
[79] G. W., Series, editor. The Spectrum of Atomic Hydrogen: Advances. Singapore: World Scientific (1988).Google Scholar
[80] T. W., Hänsch, M. H., Nayfeh, S. A., Lee, S. M., Curry, and I. S., Shahin. Precision Measurement of the Rydberg Constant by Laser Saturation Spectroscopy of the Balmer a Line in Hydrogen and Deuterium. Phys. Rev. Lett. 32, 1336–1340 (1974).Google Scholar
[81] C., Wieman and T. W., Hänsch. Precision Measurement of the 1S Lamb Shift and of the 1S–2S Isotope Shift of Hydrogen and Deuterium. Phys. Rev. A 22, 192–205 (1980).Google Scholar
[82] Arthur, Matveev, Christian G., Parthey, Katharina, Predehl, Janis, Alnis, Axel, Beyer, Ronald, Holzwarth, Thomas, Udem, Tobias, Wilken, Nikolai, Kolachevsky, Michel, Abgrall, Daniele, Rovera, Christophe, Salomon, Philippe, Laurent, Gesine, Grosche, Osama, Terra, Thomas, Legero, Harald, Schnatz, Stefan, Weyers, Brett, Altschul, and Theodor, W. Hänsch. Precision Measurement of the Hydrogen 1S-2S Frequency via a 920-km Fiber Link. Phys. Rev. Lett. 110, 230801 (2013).Google Scholar
[83] T. van der, Veldt, W., Vassen, and W., Hogervorst. Mass-Polarization Effects in the 1s2s 1S and 3S States of Helium. Phys. Rev. A 41, 4099–4101 (1990).Google Scholar
[84] H. De, Witte, A. N., Andreyev, N., Barre, M., Bender, T. E., Cocolios, S., Dean, D., Fedorov, V. N., Fedoseyev, L. M., Fraile, S., Franchoo, V., Hellemans, P. H., Heenen, K., Heyde, G., Huber, M., Huyse, H., Jeppessen, U., Koster, P., Kunz, S. R., Lesher, B. A., Marsh, I., Mukha, B., Roussiere, J., Sauvage, M., Seliverstov, I., Stefanescu, E., Tengborn, K. Van de, Vel, J. Van de, Walle, P. Van, Duppen, and Yu., Volkov. Nuclear Charge Radii of Neutron-Deficient Lead Isotopes Beyond N = 104 Midshell Investigated by In-Source Laser Spectroscopy. Phys. Rev. Lett. 98, 112502 (2007).Google Scholar
[85] C., Townes and A., Schawlow. Microwave Spectroscopy. New York: McGraw Hill, NY (1955).Google Scholar
[86] L.-B., Wang, P., Mueller, K., Bailey, G. W. F., Drake, J. P., Greene, D., Henderson, R. J., Holt, R. V. F., Janssens, C. L., Jiang, Z.-T., Lu, T. P., O'Connor, R. C., Pardo, K. E., Rehm, J. P., Schiffer, and X. D., Tang. Laser Spectroscopic Determination of the 6He Nuclear Charge Radius. Phys. Rev. Lett. 93, 142501 (2004).
[87] L., Essen, R. W., Donaldson, M. J., Bangham, and E. G., Hope. Frequency of the Hydrogen Maser. Nature 229, 110–111 (1971).Google Scholar
[88] N., Ramsey. Nuclear Moments. Wiley and Sons (1953).Google Scholar
[89] E., Arimondo, M., Inguscio, and P., Violino. Experimental Determinations of the Hyperfine Structure in the Alkali Atoms. Rev. Mod. Phys. 49, 31 (1977).Google Scholar
[90] David J., Griffiths. Hyperfine Splitting in the Ground State of Hydrogen. Am. J. Phys. 50, 698–703 (1982).Google Scholar
[91] H. M., Goldenberg, D., Kleppner, and N. F., Ramsey. Atomic Hydrogen Maser. Phys. Rev. Lett. 5, 361–362 (1960).Google Scholar
[92] Yu., Ralchenko, A. E., Kramida, J., Reader, and NIST ASD Team. NIST Atomic Spectra Database (2014).
[93] R., Freeman and D., Kleppner. Core Polarization and Quantum Defects in High- Angular-Momentum States of Alkali Atoms. Phys. Rev. A 14, 1614 (1976).Google Scholar
[94] C., Bottcher. An Iterative Perturbation Solution of the Inverse Potential Problem. J. Phys. B 4, 1140 (1971).Google Scholar
[95] Jon C., Weisheit. Photoabsorption by Ground-State Alkali-Metal Atoms. Phys. Rev. A 5, 1621–1630 (1972).Google Scholar
[96] C., Bottcher. An Iterative Perturbation Solution of the Inverse Potential Problem. J. Phys. B 4, 1140 (1971).Google Scholar
[97] M., Marinescu, H. R., Sadeghpour, and A., Dalgarno. Dispersion Coefficients for Alkali-Metal Dimers. Phys. Rev. A 49, 982–988 (1994).Google Scholar
[98] Enrico, Clementi and Carla, Roetti. Roothaan–Hartree–Fock AtomicWavefunctions: Basis Functions and their Coefficients for Ground and Certain Excited States of Neutral and Ionized Atoms, Z = 54. At. Data Nucl. Data Tables 14, 177–478 (1974).Google Scholar
[99] D. R., Bates and A., Damgaard. The Calculation of the Absolute Strenghts of Spectral Lines. Phil. Trans. R. Soc. A 242, 101 (1949).Google Scholar
[100] R. N., Zare. Angular Momentum. New York: Wiley (1988).
[101] M. E., Rose. Elementary Theory of Angular Momentum. New York: Wiley and Sons (1957).Google Scholar
[102] M., Rotenberg, N., Metropolis, R., Birins, and J. Wooten|Jr. The 3 j and 6 j Symbols. Cambridge: Technology Press (1959).Google Scholar
[103] E., Fermi. Notes on Quantum Mechanics. Chicago: University of Chicago Press (1961).Google Scholar
[104] R., Parsons and V., Weisskopf. The Spectrum of the Alkali Atoms. Z. Phys. 202, 492 (1967).Google Scholar
[105] Steven, Chu, Allen P., Mills, and John L., Hall. Measurement of the Positronium 1S 13 - 2S 13 Interval by Doppler-Free Two-Photon Spectroscopy. Phys. Rev. Lett. 52, 1689–1692 (1984).Google Scholar
[106] Willis E., Lamb. Fine Structure of the Hydrogen Atom. III. Phys. Rev. 85, 259–276 (1952).Google Scholar
[107] J. von, Neumann and E., Wigner. Über das Verhalten von Eigenwerten bei adiabatischen Prozessen. Phys. Z. 30, 467–470 (1929).Google Scholar
[108] R. S., Knox and A., Gold. Symmetry in the Solid State. New York: W. A. Benjamin NY (1964).Google Scholar
[109] Jan R., Rubbmark, Michael M., Kash, Michael G., Littman, and Daniel, Kleppner. Dynamical Effects at Avoided Level Crossings: A Study of the Landau–Zener Effect Using Rydberg Atoms. Phys. Rev. A 23, 3107 (1981).Google Scholar
[110] T., Lu, X., Miao, and H., Metcalf. Nonadiabatic Transitions in Finite-Time Adiabatic Rapid Passage. Phys. Rev. A 75, 063422 (2007).Google Scholar
[111] Tianshi, Lu. Population Inversion by Chirped Pulses. Phys. Rev. A 84, 033411 (2011).Google Scholar
[112] Matteo, Leone, Alessandro, Paoletti, and Nadia, Robotti. A Simultaneous Discovery: The Case of Johannes Stark and Antonino Lo Surdo. Phys. Persp. 6, 271 (2004).Google Scholar
[113] J., Stark. Observation of the Separation of Spectral Lines by an Electric Field. Nature 92, 401 (1913).Google Scholar
[114] N., Bohr. On the Effect of Electric and Magnetic Fields on Spectral Lines. Philos. Mag. 27, 506 (1914).Google Scholar
[115] Myron L., Zimmerman, Michael G., Littman, Michael M., Kash, and Daniel, Kleppner. Stark Structure of the Rydberg states of Alkali-Metal Atoms. Phys. Rev. A 20, 2251–2275 (1979).Google Scholar
[116] E., Luc-Koenig and A., Bachelier. Systematic Theoretical Study of the Stark Spectrum of Atomic Hydrogen I. J. Phys. B 13, 1743 (1980).Google Scholar
[117] E., Luc-Koenig and A., Bachelier. Systematic Theoretical Study of the Stark Spectrum of Atomic Hydrogen II. J. Phys. B 13, 1769 (1980).Google Scholar
[118] David A., Harmin. Theory of the Stark Effect. Phys. Rev. A 26, 2656–2681 (1982).Google Scholar
[119] Harris J., Silverstone. Perturbation Theory of the Stark Effect in Hydrogen to Arbitrarily High Order. Phys. Rev. A 18, 1853–1864 (1978).Google Scholar
[120] Thomas, Gallagher. Rydberg Atoms. Cambridge: Cambridge University Press (1994).Google Scholar
[121] Serge, Haroche. Nobel Lecture: Controlling Photons in a Box and Exploring the Quantum to Classical Boundary. Rev. Mod. Phys. 85, 1083–1102 (2013).Google Scholar
[122] Harold, Metcalf. Highly Excited Atoms. Nature 284, 127 (1980).Google Scholar
[123] C., Fabre, S., Haroche, and P., Goy. Millimeter Spectroscopy in Sodium Rydberg States: Quantum-Defect, Fine-Structure, and Polarizability Measurements. Phys. Rev. A 18, 229–237 (1978).Google Scholar
[124] E. A., Hessels, W. G., Sturrus, and S. R., Lundeen. Microwave Spectroscopy of High- L Helium Rydberg States: 10H–10I, 10I–10K, and 10K–10L Intervals. Phys. Rev. A 38, 4574–4584 (1988).Google Scholar
[125] C., Deutsch. Rydberg States of HeI using the Polarization Model. Phys. Rev. A 13, 2311–2313 (1976).Google Scholar
[126] K. T., Lu and U., Fano. Graphic Analysis of Perturbed Rydberg Series. Phys. Rev. A 2, 81–86 (1970).Google Scholar
[127] R. H., Garstang. Atoms in High Magnetic Fields (White Dwarfs). Rep. Prog. Phys. 40, 105 (1977).Google Scholar
[128] Myron L., Zimmerman, Jarbas C., Castro, and Daniel, Kleppner. Diamagnetic Structure of Na Rydberg States. Phys. Rev. Lett. 40, 1083–1086 (1978).Google Scholar
[129] R. J., Fonck, F. L., Roesler, D. H., Tracy, K. T., Lu, F. S., Tomkins, and W. R. S., Garton. Atomic Diamagnetism and Diamagnetically Induced Configuration Mixing in Laser-Excited Barium. Phys. Rev. Lett. 39, 1513–1516 (1977).Google Scholar
[130] K. T., Lu, F. S., Tomkins, H. M., Crosswhite, and H., Crosswhite. Absorption Spectrum of Atomic Lithium in High Magnetic Fields. Phys. Rev. Lett. 41, 1034–1036 (1978).Google Scholar
[131] Michael G., Littman, Myron L., Zimmerman, Theodore W., Ducas, Richard R., Freeman, and Daniel, Kleppner. Structure of Sodium Rydberg States in Weak to Strong Electric Fields. Phys. Rev. Lett. 36, 788–791 (1976).Google Scholar
[132] Michael G., Littman, Michael M., Kash, and Daniel, Kleppner. Field-Ionization Processes in Excited Atoms. Phys. Rev. Lett. 41, 103–107 (1978).Google Scholar
[133] Joel, Gersten and Marvin H., Mittleman. Atomic Transitions in Ultrastrong Laser Fields. Phys. Rev. A 10, 74–80 (1974).Google Scholar
[134] T. F., Gallagher and W. E., Cooke. Fine-structure Intervals and Polarizabilities of Highly Excited D States of K. Phys. Rev. A 18, 2510–2516 (1978).Google Scholar
[135] Keith B., MacAdam and William H., Wing. Fine Structure of Rydberg States. III. New Measurements in D, F, and G States of 4He. Phys. Rev. A 15, 678–688 (1977).Google Scholar
[136] E. A., Hessels, F. J., Deck, P. W., Arcuni, and S. R., Lundeen. Precision Spectroscopy of High-L, n=10 Rydberg Helium: An Improved Test of Relativistic, Radiative, and Retardation Effects. Phys. Rev. Lett. 65, 2765–2768 (1990).Google Scholar
[137] P. L., Jacobson, R. D., Labelle, W. G., Sturrus, R. F., Ward, and S. R., Lundeen. Optical Spectroscopy of High-L, n=10 Rydberg States of Nitrogen. Phys. Rev. A 54, 314–322 (1996).Google Scholar
[138] R. F., Ward, W. G., Sturrus, and S. R., Lundeen. Microwave Spectroscopy of High-L Rydberg States of Neon. Phys. Rev. A 53, 113–121 (1996).Google Scholar
[139] P. L., Jacobson, D. S., Fisher, C. W., Fehrenbach, W. G., Sturrus, and S. R.|Lundeen. Determination of the Dipole Polarizabilities of H+2 (0, 0) and D+2 (0, 0) by Microwave Spectroscopy of High-L Rydberg States of H2 and D2. Phys. Rev. A 56, R4361–R4364 (1997).Google Scholar
[140] Julie A., Keele, S. R., Lundeen, and C. W., Fehrenbach. Polarizabilities of Rn-like Th4+ from RF Spectroscopy of Th3+ Rydberg Levels. Phys. Rev. A 83, 062509 (2011).Google Scholar
[141] G. D., Stevens, C.-H., Iu, T. H., Bergeman, H. J., Metcalf, I., Seipp, K., Taylor, and D., Delande. Precision Measurements of Lithium Atoms in an Electric Field Compared with R-Matrix and Other Stark Theories. Phys. Rev A 53, 1349 (1996).Google Scholar
[142] P., Nussenzveig, F., Bernardot, M., Brune, J., Hare, J. M., Raimond, S., Haroche, and W., Gawlik. Preparation of High-Principal-Quantum-Number “Circular” States of Rubidium. Phys. Rev. A 48, 3991–3994 (1993).Google Scholar
[143] M., Brune, F., Schmidt-Kaler, A., Maali, J., Dreyer, E., Hagley, J. M., Raimond, and S., Haroche. Quantum Rabi Oscillation: A Direct Test of Field Quantization in a Cavity. Phys. Rev. Lett. 76, 1800–1803 (1996).Google Scholar
[144] M., Brune, P., Nussenzveig, F., Schmidt-Kaler, F., Bernardot, A., Maali, J. M., Raimond, and S., Haroche. From Lamb Shift to Light Shifts: Vacuum and Subphoton Cavity Fields Measured by Atomic Phase Sensitive Detection. Phys. Rev. Lett. 72, 3339–3342 (1994).Google Scholar
[145] M., Saffman, T. G., Walker, and K., Mølmer. Quantum Information with Rydberg Atoms. Rev. Mod. Phys. 82, 2313–2363 (2010).Google Scholar
[146] T., Wilk, A., Gaëtan, C., Evellin, J., Wolters, Y., Miroshnychenko, P., Grangier, and A., Browaeys. Entanglement of Two Individual Neutral Atoms Using Rydberg Blockade. Phys. Rev. Lett. 104, 010502 (2010).Google Scholar
[147] L., Isenhower, E., Urban, X. L., Zhang, A. T., Gill, T., Henage, T. A., Johnson, T. G., Walker, and M., Saffman. Demonstration of a Neutral Atom Controlled-NOT Quantum Gate. Phys. Rev. Lett. 104, 010503 (2010).Google Scholar
[148] L. I., Schiff. Quantum Mechanics. New York: McGraw-Hill (1968).Google Scholar
[149] P. van der, Straten and R., Morgenstern. Shapes of Excited Atoms and Charge Motions Induced by Ion–Atom Collisions. Comments At. Mol. Phys. 17, 243–260 (1986).Google Scholar
[150] D. R., Hartree. TheWaveMechanics of an Atom with a Non-Coulomb Central Field. Part II. Some Results and Discussion. Math. Proc. Cambr. Phil. Soc. 24, 111–132 (1928).Google Scholar
[151] B. H., Bransden. Atomic Collision Theory. Reading: Benjamin/Cummings, (1983).
[152] V., Fock. Näherungsmethode zur Lösung des Quantenmechanischen Mehrkörperproblems. Z. Phys. 61, 126–148 (1930).Google Scholar
[153] C. E., Moore and P.W., Merrill. Partial Grotrian Diagrams of Astrophysical Interest, volume 23. Gaithersburg, MD: NSRDS N.B.S. (1968).Google Scholar
[154] P., Langevin. Sur la Théorie du Magnétisme. J. Phys. (Paris) 4, 678 (1905).Google Scholar
[155] P., Langevin. Magnetism et Theory des Electrons. Ann. Chim. Phys. 5, 70 (1905).Google Scholar
[156] J. H., Weaver and H. P. R., Frederikse. Optical Properties of Selected Elements. In D. R., Lide, editor, CRC Handbook of Chemistry and Physics, pages 12.133–12.156. Boca Raton, FL CRC Press Inc. (2002).Google Scholar
[157] J. P., Desclaux. Relativistic Dirac–Fock Expectation Values for Atoms with Z = 1 to Z = 120. At. Data Nucl. Data Tables 12, 311–406 (1973).Google Scholar
[158] Herzberg, . Spectra of Diatomic Molecules. New York: D. van Nostrand Company, Inc. (1950).Google Scholar
[159] N., Bohr. On the Constitution of Atoms and Molecules. Part II Systems Containing Only a Single Nucleus. Philos. Mag. 26, 476–502 (1913).Google Scholar
[160] N., Bohr. On the Constitution of Atoms and Molecules. Part III Systems Containing Several Nuclei. Philos. Mag. 26, 857–875 (1913).Google Scholar
[161] Krzysztof, Pachucki. Born–Oppenheimer Potential for H2. Phys. Rev. A 82, 032509 (2010).Google Scholar
[162] Anatoly A., Svidzinsky, Marlan O., Scully, and Dudley R., Herschbach. Bohr's 1913 Molecular Model Revisited. Proc. Nat. Acad. Sci. U.S.A. 102, 11985–11988 (2005).Google Scholar
[163] Anatoly A., Svidzinsky, Marlan O., Scully, and Dudley R., Herschbach. Simple and Surprisingly Accurate Approach to the Chemical Bond Obtained from Dimensional Scaling. Phys. Rev. Lett. 95, 080401 (2005).Google Scholar
[164] Anatoly, Svidzinsky, Marlan, Scully, and Dudley, Herschbach. Bohr's Molecular Model, a Century Later. Phys. Today 67, 33–39 (2014).Google Scholar
[165] John M., Brown and Alan, Carrington. Rotational Spectroscopy of Diatomic Molecules. Cambridge University Press (2003).Google Scholar
[166] Philip M., Morse. Diatomic Molecules According to the Wave Mechanics. II. Vibrational Levels. Phys. Rev. 34, 57–64 (1929).Google Scholar
[167] F., London. Zur Theorie und Systematik der Molekularkräfte. Z. Phys. 63, 245–279 (1930).Google Scholar
[168] M., Karplus and R. N., Porter. Atoms and Molecules. Benjamin/Cummings (1970).
[169] Edmund S., Rittner. Binding Energy and Dipole Moment of Alkali Halide Molecules. J. Chem. Phys. 19, 1030–1035 (1951).Google Scholar
[170] P., Atkins and R., Friedman. Molecular Quantum Mechanics. Oxford: Oxford University Press (2005).Google Scholar
[171] F., Hund. Zur Deutung einiger Erscheinungen in den Molekelspektren. Z. Phys. 36, 657–674 (1926).Google Scholar
[172] J., Franck and E. G., Dymond. Elementary Processes of Photochemical Reactions. Trans. Faraday Soc. 21, 536–542 (1926).Google Scholar
[173] Edward, Condon. A Theory of Intensity Distribution in Band Systems. Phys. Rev. 28, 1182–1201 (1926).Google Scholar
[174] W. T., Hill and C. H., Lee. Light–Matter Interaction. Weinheim: Wiley (2007).Google Scholar
[175] W., Heitler and F., London. Wechselwirkung neutraler Atome und homöopolare Bindung nach der Quantenmechanik. Z. Phys. 44, 455–472 (1927).Google Scholar
[176] Y., Sugiura. Über die Eigenschaften des Wasserstoffmoleküls im Grundzustande. Z. Phys. A 45, 484–492 (1927).Google Scholar
[177] Clarence, Zener and Victor, Guillemin. The B-State of the Hydrogen Molecule. Phys. Rev. 34, 999 (1929).Google Scholar
[178] N., Rosen. Calculation of Interaction between Atoms with s-Electrons. Phys. Rev. 38, 255–276 (1931).Google Scholar
[179] N., Rosen. The Normal State of the Hydrogen Molecule. Phys. Rev. 38, 2099–2114 (1931).Google Scholar
[180] Hubert M., James and Albert Sprague, Coolidge. The Ground State of the Hydrogen Molecule. J. Chem. Phys. 1, 825 (1933).Google Scholar
[181] J. O., Hirschfelder and J. W., Linnett. The Energy of Interaction between Two Hydrogen Atoms. J. Chem. Phys. 18, 130 (1950).Google Scholar
[182] W., Kolos and L., Wolniewicz. Potential-Energy Curves for the X 1Σg+, b 3Σu+, and C 1Πu States of the Hydrogen Molecule. J. Chem. Phys. 43, 2429 (1965).Google Scholar
[183] W., Kolos and L., Wolniewicz. Potential-Energy Curve for the B 1Σu+ State of the Hydrogen Molecule. J. Chem. Phys. 45, 509 (1966).Google Scholar
[184] W., Kolos and L., Wolniewicz. Improved Theoretical Ground-State Energy of the Hydrogen Molecule. J. Chem. Phys. 49, 404 (1968).Google Scholar
[185] Krzysztof, Pachucki. Two-Center Two-Electron Integrals with Exponential Functions. Phys. Rev. A 80, 032520 (2009).Google Scholar
[186] J. C., Slater. The Virial and Molecular Structure. J. Chem. Phys. 1, 687–691 (1933).Google Scholar
[187] M., Marinescu and A., Dalgarno. Dispersion Forces and Long-Range Electronic Transition Dipole Moments of Alkali-Metal Dimer Excited States. Phys. Rev. A 52, 311–328 (1995).Google Scholar
[188] M., Marinescu. Dispersion Coefficients for the nP-nP Asymptote of Homonuclear Alkali-Metal Dimers. Phys. Rev. A 56, 4764–4773 (1997).Google Scholar
[189] M. E., Rose. The Electrostatic Interaction of Two Arbitrary Charge Distributions. J. Math. Phys. 37, 215 (1958).Google Scholar
[190] A., Amelink and P. van der, Straten. Photoassociation of Ultra-Cold Atoms. Phys. Scr. 68, C82-89 (2003).Google Scholar
[191] K. M., Jones, P. S., Julienne, P. D., Lett, W. D., Phillips, E., Tiesinga, and C. J., Williams. Measurement of the Atomic Na(3P) Lifetime and of Retardation in the Interaction between Two Atoms Bound in a Molecule. Europhys. Lett. 35, 85 (1996).Google Scholar
[192] E., Tiesinga, C. J., Williams, P. S., Julienne, K. M., Jones, P. D., Lett, and W. D., Phillips. A Spectroscopic Determination of Scattering Lengths for Sodium Atom Collisions. J. Res. Nat. Inst. Stand. Technol. 101, 505 (1996).Google Scholar
[193] W. C., Stwalley, Y., Uang, and G., Pichler. Pure Long-Range Molecules. Phys. Rev. Lett. 41, 1164 (1978).Google Scholar
[194] Robert J., LeRoy and Richard B., Bernstein. Dissociation Energy and Long-Range Potential of Diatomic Molecules from Vibrational Spacings of Higher Levels. J. Chem. Phys. 52, 3869–3879 (1970).Google Scholar
[195] P., Molenaar. Photoassociative Reactions of Laser-Cooled Sodium. Ph.D. thesis, Utrecht University (1995).Google Scholar
[196] Thorsten, Köhler, Krzysztof, Góral, and Paul S., Julienne. Production of Cold Molecules via Magnetically Tunable Feshbach Resonances. Rev. Mod. Phys. 78, 1311–1361 (2006).Google Scholar
[197] Paul S., Julienne. Cold Binary|Atomic Collisions in a Light Field. J. Res. Nat. Inst. Stand. Technol. 101, 487 (1996).Google Scholar
[198] Cheng, Chin, Rudolf, Grimm, Paul, Julienne, and Eite, Tiesinga. Feshbach Resonances in Ultracold Gases. Rev. Mod. Phys. 82, 1225–1286 (2010).Google Scholar
[199] P., Ehrenfest. Bemerkung über die angenäherte Gültigkeit der klassischen Mechanik innerhalb der Quantummechanik. Z. Phys. 45, 455 (1927).Google Scholar
[200] W., Phillips and H., Metcalf. Laser Deceleration of an Atomic Beam. Phys. Rev. Lett. 48, 596 (1982).Google Scholar
[201] J., Prodan, W., Phillips, and H., Metcalf. Laser Production of a Very Slow Monoenergetic Atomic Beam. Phys. Rev. Lett. 49, 1149 (1982).Google Scholar
[202] J., Gordon and A., Ashkin. Motion of Atoms in a Radiation Trap. Phys. Rev. A 21, 1606 (1980).Google Scholar
[203] J., Dalibard and W., Phillips. Stability and Damping of Radiation Pressure Traps. Bull. Am. Phys. Soc. 30, 748 (1985).Google Scholar
[204] S., Chu, L., Hollberg, J., Bjorkholm, A., Cable, and A., Ashkin. Three-Dimensional Viscous Confinement and Cooling of Atoms by Resonance Radiation Pressure. Phys. Rev. Lett. 55, 48 (1985).Google Scholar
[205] S., Chu and C., Wieman (Eds.). Laser Cooling and Trapping of Atoms. J. Opt. Soc. Am. B 6, 1961–2288 (1989).Google Scholar
[206] P., Gould, P., Lett, and W. D., Phillips. New Measurement with Optical Molasses. In W., Persson and S., Svanberg, editors, Laser Spectroscopy VIII, page 64, Berlin: Springer (1987).Google Scholar
[207] T., Hodapp, C., Gerz, C., Westbrook, C., Furtlehner, and W., Phillips. Diffusion in Optical Molasses. Bull. Am. Phys. Soc. 37, 1139 (1992).Google Scholar
[208] C., Cohen-Tannoudji and W. D., Phillips. New Mechanisms for Laser Cooling. Phys. Today 43, October, 33–40 (1990).Google Scholar
[209] P., Lett, R., Watts, C., Westbrook, W., Phillips, P., Gould, and H., Metcalf. Observation of Atoms Laser Cooled below the Doppler Limit. Phys. Rev. Lett. 61, 169 (1988).Google Scholar
[210] P. D., Lett, R. N., Watts, C. E., Tanner, S. L., Rolston, W.D.|Phillips, and C.I.|Westbrook Optical Molasses. J. Opt. Soc. Am. B 6, 2084–2107 (1989).
[211] J., Dalibard and C., Cohen-Tannoudji. Laser Cooling Below the Doppler Limit by Polarization Gradients — Simple Theoretical-Models. J. Opt. Soc. Am. B 6, 2023–2045 (1989).Google Scholar
[212] P. J., Ungar, D. S., Weiss, S., Chu, and E., Riis. Optical Molasses and Multilevel Atoms — Theory. J. Opt. Soc. Am. B 6, 2058–2071 (1989).Google Scholar
[213] B., Sheehy, S. Q., Shang, P. van der, Straten, S., Hatamian, and H., Metcalf. Magnetic- Field-Induced Laser Cooling Below the Doppler Limit. Phys. Rev. Lett. 64, 858–861 (1990).Google Scholar
[214] A., Ashkin. Acceleration and Trapping of Particles by Radiation Pressure. Phys. Rev. Lett. 24, 156 (1970).Google Scholar
[215] S., Chu, J., Bjorkholm, A., Ashkin, and A., Cable. Experimental Observation of Optically Trapped Atoms. Phys. Rev. Lett. 57, 314 (1986).Google Scholar
[216] A., Ashkin. Application of Laser Radiation Pressure. Science 210, 1081–1088 (1980).Google Scholar
[217] A., Ashkin and J. M., Dziedzic. Observation of Radiation-Pressure Trapping of Particles by Alternating Light Beams. Phys. Rev. Lett. 54, 1245 (1985).Google Scholar
[218] A., Ashkin and J. M., Dziedzic. Optical Trapping and Manipulation of Viruses and Bacteria. Science 235, 1517 (1987).Google Scholar
[219] C. S., Adams, H. J., Lee, N., Davidson, M., Kasevich, and S., Chu. Evaporative Cooling in a Crossed Dipole Trap. Phys. Rev. Lett. 74, 3577–3580 (1995).Google Scholar
[220] T., Takekoshi and R. J., Knize. CO2-Laser Trap for Cesium Atoms. Opt. Lett. 21, 77–79 (1996).Google Scholar
[221] H., Metcalf and W., Phillips. Electromagnetic Trapping of Neutral Atoms. Metrologia 22, 271 (1986).Google Scholar
[222] N., Davidson, H. J., Lee, C. S., Adams, M., Kasevich, and S., Chu. Long Atomic Coherence Times in an Optical Dipole Trap. Phys. Rev. Lett. 74, 1311–1314 (1995).Google Scholar
[223] A., Siegman. Lasers. Mill Valley: University Sciences (1986).Google Scholar
[224] N., Simpson, K., Dholakia, L., Allen, and M., Padgett. The Mechanical Equivalence of Spin and Orbital Angular Momentum of Light: an Optical Spanner. Opt. Lett. 22, 52 (1997).Google Scholar
[225] D., McGloin, N., Simpson, and M., Padgett. Transfer of Orbital Angular Momentum from a Stressed Fiber OpticWaveguide to a Light Beam. Appl. Opt. 37, 469 (1998).Google Scholar
[226] M., Beijersbergen. Phase Singularities in Optical Beams. Ph.D. thesis, University Leiden (1996).Google Scholar
[227] D., Wineland, W., Itano, J., Bergquist, and J., Bollinger. Trapped Ions and Laser Cooling. Technical Report 1086, NIST (1985).
[228] A., Migdall, J., Prodan, W., Phillips, T., Bergeman, and H., Metcalf. First Observation of Magnetically Trapped Neutral Atoms. Phys. Rev. Lett. 54, 2596 (1985).Google Scholar
[229] T., Bergeman, G., Erez, and H., Metcalf. Magnetostatic Trapping Fields for Neutral Atoms. Phys. Rev. A 35, 1535 (1987).Google Scholar
[230] T. H., Bergeman, N. L., Balazs, H., Metcalf, P., Mcnicholl, and J., Kycia. Quantized Motion of Atoms in a Quadrupole Magnetostatic Trap. J. Opt. Soc. Am. B 6, 2249–2256 (1989).Google Scholar
[231] E., Raab, M., Prentiss, A., Cable, S., Chu, and D., Pritchard. Trapping of Neutral- Sodium Atoms with Radiation Pressure. Phys. Rev. Lett. 59, 2631 (1987).Google Scholar
[232] H., Metcalf. Magneto-Optical Trapping and Its Application to Helium Metastables. J. Opt. Soc. Am. B 6, 2206–2210 (1989).Google Scholar
[233] V. S., Lethokov. Narrowing of the Doppler Width in a Standing Light Wave. JETP Lett. 7, 272 (1968).Google Scholar
[234] C., Salomon, J., Dalibard, A., Aspect, H., Metcalf, and C., Cohen-Tannoudji. Channeling Atoms in a Laser Standing Wave. Phys. Rev. Lett. 59, 1659 (1987).Google Scholar
[235] Y., Castin and J., Dalibard. Quantization of Atomic Motion in Optical Molasses. Europhys. Lett. 14, 761–766 (1991).Google Scholar
[236] P., Verkerk, B., Lounis, C., Salomon, C., Cohen-Tannoudji, J. Y., Courtois, and G., Grynberg. Dynamics and Spatial Order of Cold Cesium Atoms in a Periodic Optical-Potential. Phys. Rev. Lett. 68, 3861–3864 (1992).Google Scholar
[237] P. S., Jessen, C., Gerz, P. D., Lett, W. D., Phillips, S. L., Rolston, R. J. C., Spreeuw, and C. I., Westbrook. Observation of Quantized Motion of Rb Atoms in an Optical-Field. Phys. Rev. Lett. 69, 49–52 (1992).Google Scholar
[238] B., Lounis, P., Verkerk, J. Y., Courtois, C., Salomon, and G., Grynberg. Quantized Atomic Motion in 1D Cesium Molasses with Magnetic-Field. Europhys. Lett. 21, 13–17 (1993).Google Scholar
[239] R., Gupta, S., Padua, C., Xie, H., Batelaan, T., Bergeman, and H., Metcalf. Motional Quantization of Laser Cooled Atoms. Bull. Am. Phys. Soc. 37, 1139 (1992).Google Scholar
[240] R., Gupta, S., Padua, T., Bergeman, and H., Metcalf. Search forMotional Quantization of Laser-Cooled Atoms. In E., Arimondo, W., Phillips, and F., Strumia, editors, Laser Manipulation of Atoms and Ions, Proceedings of Fermi School CXVIII, Varenna. Amsterdam: North Holland (1993).Google Scholar
[241] B. P., Anderson and M. A., Kasevich. Macroscopic Quantum Interference from Atomic Tunnel Arrays. Nature 282, 1686–1689 (1998).Google Scholar
[242] M., Greiner, O., Mandel, T., Esslinger, T. W., Hänsch, and I., Bloch. Quantum Phase Transition from a Superfluid to a Mott Insulator in a Gas of Ultracold Atoms. Nature 415, 39–44 (2002).Google Scholar
[243] G., Birkl, M., Gatzke, I. H., Deutsch, S. L., Rolston, and W. D., Phillips. Bragg Scattering from Atoms in Optical Lattices. Phys. Rev. Lett. 75, 2823–2826 (1995).Google Scholar
[244] C. I., Westbrook, R. N., Watts, C. E., Tanner, S. L., Rolston, W. D., Phillips, P. D., Lett, and P. L., Gould. Localization of Atoms in a 3-Dimensional Standing Wave. Phys. Rev. Lett. 65, 33–36 (1990).Google Scholar
[245] M., Bendahan, E., Peik, J., Reichel, Y., Castin, and C., Salomon. Bloch Oscillations of Atoms in an Optical-Potential. Phys. Rev. Lett. 76, 4508–4511 (1996).Google Scholar
[246] Charles E., Hecht. The Possible Superfluid Behaviour of Hydrogen Atom Gases and Liquids. Physica 25, 1159–1161 (1959).Google Scholar
[247] Willian C., Stwalley and L. H., Nosanow. Possible “New” Quantum Systems. Phys. Rev. Lett. 36, 910–913 (1976).Google Scholar
[248] Isaac F., Silvera and J. T. M., Walraven. Stabilization of Atomic Hydrogen at Low Temperature. Phys. Rev. Lett. 44, 164–168 (1980).Google Scholar
[249] Harald F., Hess, Greg P., Kochanski, John M., Doyle, Naoto, Masuhara, Daniel, Kleppner, and Thomas J., Greytak. Magnetic Trapping of Spin-Polarized Atomic Hydrogen. Phys. Rev. Lett. 59, 672–675 (1987).Google Scholar
[250] Naoto, Masuhara, John M., Doyle, Jon C., Sandberg, Daniel, Kleppner, Thomas J., Greytak, Harald F., Hess, and Greg P., Kochanski. Evaporative Cooling of Spin- Polarized Atomic Hydrogen. Phys. Rev. Lett. 61, 935–938 (1988).Google Scholar
[251] Yu, Kagan, I. A., Vartanyantz, and G. V., Shlyapnikov. Kinetics of Decay of Metastable Gas Phase of Polarized Atomic Hydrogen at Low Temperatures. Sov. Phys. JETP 54, 590 (1980).Google Scholar
[252] D., Fried, T., Killian, L., Willmann, D., Landhuis, S., Moss, D., Kleppner, and T., Greytak. Bose Einstein Condensation of Atomic Hydrogen. Phys. Rev. Lett. 81, 3811 (1998).Google Scholar
[253] Lincoln D., Carr, David, DeMille, Roman V., Krems, and Jun, Ye. Cold and Ultracold Molecules: Science, Technology and Applications. New J. Phys. 11, 055049 (2009).Google Scholar
[254] Dallin, Durfee and Wolfgang, Ketterle. Experimental Studies of Bose–Einstein Condensation. Opt. Express 2, 299–313 (1998).Google Scholar
[255] M. R., Andrews, C. G., Townsend, H.-J., Miesner, D. S., Durfee, D. M., Kurn, and W., Ketterle. Observation of Interference between Two Bose Condensates. Science 275, 637–641 (1997).Google Scholar
[256] Yvan, Castin and Jean, Dalibard. Relative Phase of Two Bose–Einstein Condensates. Phys. Rev. A 55, 4330–4337 (1997).Google Scholar
[257] L. D., Landau. The Theory of Superfluidity of Helium II. J.Phys. V, 71–90 (1941).Google Scholar
[258] Laszlo, Tisza. The Theory of Liquid Helium. Phys. Rev. 72, 838–854 (1947).Google Scholar
[259] D. M., Stamper-Kurn, H.-J., Miesner, S., Inouye, M. R., Andrews, and W., Ketterle. Collisionless and Hydrodynamic Excitations of a Bose–Einstein Condensate. Phys. Rev. Lett. 81, 500–503 (1998).Google Scholar
[260] R., Meppelink S. B.|Koller, and P. van, Straten: Sound Propagation in a Bose– Einstein Condensate at Finite Temperatures. Phys. Rev. A 80, 043605 (2009).Google Scholar
[261] Russell J., Donnelly. The Two-Fluid Theory and Second Sound in Liquid Helium. Phys. Today 62, 34–39 (2009).Google Scholar
[262] K. I., Petsas, A. B., Coates, and G., Grynberg. Crystallography of Optical Lattices. Phys. Rev. A 50, 5173–5189 (1994).Google Scholar
[263] P., Nozi`eres and D., Pines. The Theory of Quantum Liquids, volume II. Redwood City: Addison-Wesley (1989).Google Scholar
[264] E., Taylor, H., Hu, X.-J., Liu, L. P., Pitaevskii, A., Griffin, and S., Stringari. First and second sound in a strongly interacting Fermi gas. Phys. Rev. A 80, 053601 (2009).Google Scholar
[265] D., Jaksch, C., Bruder, J. I., Cirac, C.W., Gardiner, and P., Zoller. Cold Bosonic Atoms in Optical Lattices. Phys. Rev. Lett. 81, 3108–3111 (1998).Google Scholar
[266] Matthew P. A., Fisher, Peter B., Weichman, G., Grinstein, and Daniel S., Fisher. Boson Localization and the Superfluid–Insulator Transition. Phys. Rev. B 40, 546–570 (1989).Google Scholar
[267] Henk T. C., Stoof. Bose–Einstein Condensation: Breaking up a Superfluid. Nature 415, 25–26 (2002).Google Scholar
[268] D. van, Oosten, P. van der, Straten, and H. T. C., Stoof. Quantum Phases in an Optical Lattice. Phys. Rev. A 63, 053601 (2001).Google Scholar
[269] Markus, Greiner, Olaf, Mandel, Tilman, Esslinger, Theodor W., Hansch, and Immanuel, Bloch. Quantum Phase Transition from a Superfluid to a Mott Insulator in a Gas of Ultracold Atoms. Nature 415, 39–44 (2002).Google Scholar
[270] L. E., Reichl. A Modern Course in Statistical Physics. Edward Arnold (1980).Google Scholar
[271] William C., Stwalley, Roman V., Krems, and Bretislav, Friedrich, editors. Cold Molecules, Theory, Experiment, Applications. Boca Raton: CRC Press (2009).Google Scholar
[272] E. S., Shuman, J. F., Barry, and D., DeMille. Laser Cooling of a Diatomic Molecule. Nature 467, 820–823 (2010).Google Scholar
[273] M. D., Di Rosa. Laser-cooling Molecules. Eur. Phys. J. D 31, 395–402 (2004).Google Scholar
[274] M. A., Baranov, M., Dalmonte, G., Pupillo, and P., Zoller. Condensed Matter Theory of Dipolar Quantum Gases. Chem. Rev. 112, 5012–5061 (2012).Google Scholar
[275] T., Breeden and H., Metcalf. Stark Acceleration of Rydberg Atoms in Inhomogeneous Electric Fields. Phys. Rev. Lett. 47, 1726 (1981).Google Scholar
[276] Hendrick L., Bethlem, Giel, Berden, and Gerard, Meijer. Decelerating Neutral Dipolar Molecules. Phys. Rev. Lett. 83, 1558–1561 (1999).Google Scholar
[277] Hendrick L., Bethlem, Giel, Berden, Floris M. H., Crompvoets, Rienk T., Jongma, Andre J. A. van, Roij, and Gerard, Meijer. Electrostatic Trapping of Ammonia Molecules. Nature 406, 491–494 (2000).Google Scholar
[278] W., Wing. On Neutral Particle Trapping in Quasistatic Electromagnetic Fields. Prog. Quant. Elect. 8, 181 (1984).Google Scholar
[279] Wesley C., Campbell and John M., Doyle. Cooling, Trap Loading, and Beam Production Using a Cryogenic Helium Buffer Gas. In William C., Stwalley, Roman V., Krems, and Bretislav, Friedrich, editors, Cold Molecules: Theory, Experiment, Applications, chapter 13. Boca Raton: CRC Press (2009).Google Scholar
[280] Jonathan D., Weinstein, Robert, deCarvalho, Thierry, Guillet, Bretislav, Friedrich, and John M., Doyle. Magnetic Trapping of Calcium Monohydride Molecules at Millikelvin Temperatures. Nature 395, 148–150 (1998).Google Scholar
[281] Nicholas R., Hutzler, Hsin-I, Lu, and John M., Doyle. The Buffer Gas Beam: An Intense, Cold, and Slow Source for Atoms and Molecules. Chem. Rev. 112, 4803–4827 (2012).Google Scholar
[282] Kevin M., Jones, Eite, Tiesinga, Paul D., Lett, and Paul S., Julienne. Ultracold Photoassociation Spectroscopy: Long-Range Molecules and Atomic Scattering. Rev. Mod. Phys. 78, 483–535 (2006).Google Scholar
[283] C. M., Dion, C., Drag, O., Dulieu, B. Laburthe, Tolra, F., Masnou-Seeuws, and P., Pillet. Resonant Coupling in the Formation of Ultracold Ground State Molecules via Photoassociation. Phys. Rev. Lett. 86, 2253–2256 (2001).Google Scholar
[284] Andrew J., Kerman, Jeremy M., Sage, Sunil, Sainis, Thomas, Bergeman, and David, DeMille. Production of Ultracold, Polar RbCs* Molecules via Photoassociation. Phys. Rev. Lett. 92, 033004 (2004).Google Scholar
[285] Jeremy M., Sage, Sunil, Sainis, Thomas, Bergeman, and David, DeMille. Optical Production of Ultracold Polar Molecules. Phys. Rev. Lett. 94, 203001 (2005).Google Scholar
[286] J., Deiglmayr, A., Grochola, M., Repp, K., Mörtlbauer, C., Glück, J., Lange, O., Dulieu, R., Wester, and M., Weidemüller. Formation of Ultracold Polar Molecules in the Rovibrational Ground State. Phys. Rev. Lett. 101, 133004 (2008).Google Scholar
[287] Matthieu, Viteau, Amodsen, Chotia, Maria, Allegrini, Nadia, Bouloufa, Olivier, Dulieu, Daniel, Comparat, and Pierre, Pillet. Optical Pumping and Vibrational Cooling of Molecules. Science 321, 232–234 (2008).Google Scholar
[288] Juris, Ulmanis, Johannes, Deiglmayr, Marc, Repp, Roland, Wester, and Matthias, Weidem üller. UltracoldMolecules Formed by Photoassociation: Heteronuclear Dimers, Inelastic Collisions, and Interactions with Ultrashort Laser Pulses. Chem. Rev. 112, 4890–4927 (2012).Google Scholar
[289] Jens, Herbig, Tobias, Kraemer, Michael, Mark, Tino, Weber, Cheng, Chin, Hanns- Christoph, Nägerl, and Rudolf, Grimm. Preparation of a Pure Molecular Quantum Gas. Science 301, 1510–1513 (2003).Google Scholar
[290] S., Inouye, M. R., Andrews, J., Stenger, H.-J., Miesner, D. M., Stamper-Kurn, and W., Ketterle. Observation of Feshbach Resonances in a Bose–Einstein Condensate. Nature 392, 151–154 (1998).Google Scholar
[291] Cindy A., Regal, Christopher, Ticknor, John L., Bohn, and Deborah S., Jin. Creation of Ultracold Molecules from a Fermi Gas of Atoms. Nature 424, 47–50 (2003).Google Scholar
[292] S., Jochim, M., Bartenstein, A., Altmeyer, G., Hendl, C., Chin, J. Hecker, Denschlag, and R., Grimm. Pure Gas of Optically Trapped Molecules Created from Fermionic Atoms. Phys. Rev. Lett. 91, 240402 (2003).Google Scholar
[293] M. W., Zwierlein, C. A., Stan, C. H., Schunck, S. M. F., Raupach, S., Gupta, Z., Hadzibabic, and W., Ketterle. Observation of Bose–Einstein Condensation of Molecules. Phys. Rev. Lett. 91, 250401 (2003).Google Scholar
[294] Markus, Greiner, Cindy A., Regal, and Deborah S., Jin. Emergence of a Molecular Bose–Einstein Condensate from a Fermi Gas. Nature 426, 537–540 (2003).Google Scholar
[295] K., Winkler, F., Lang, G., Thalhammer, P. v. d., Straten, R., Grimm, and J. Hecker, Denschlag. Coherent Optical Transfer of Feshbach Molecules to a Lower Vibrational State. Phys. Rev. Lett. 98, 043201 (2007).Google Scholar
[296] Johann G., Danzl, Elmar, Haller, Mattias, Gustavsson, Manfred J., Mark, Russell, Hart, Nadia, Bouloufa, Olivier, Dulieu, Helmut, Ritsch, and Hanns-Christoph, Nägerl. Quantum Gas of Deeply Bound Ground State Molecules. Science 321, 1062–1066 (2008).Google Scholar
[297] K.-K., Ni, S., Ospelkaus, M. H. G. de, Miranda, A., Pe'er, B., Neyenhuis, J. J., Zirbel, S., Kotochigova, P. S., Julienne, D. S., Jin, and J., Ye. A High Phase-Space-Density Gas of Polar Molecules. Science 322, 231–235 (2008).Google Scholar
[298] F., Lang, K., Winkler, C., Strauss, R., Grimm, and J. Hecker, Denschlag. Ultracold Triplet Molecules in the Rovibrational Ground State. Phys. Rev. Lett. 101, 133005 (2008).Google Scholar
[299] D. J., Heinzen. Collisions of Ultracold Atoms in Optical Fields. In, D., Wineland, C., Wieman, and S., Smith, editors. Atomic Physics 14, page 369. New York: AIP Press (1995).Google Scholar
[300] P. D., Lett, P. S., Julienne, and W. D., Phillips. Photoassociative Spectroscopy of Laser Cooled Atoms. Annu. Rev. Phys. Chem. 46, 423 (1995).Google Scholar
[301] P. A., Molenaar, P. van der, Straten, and H. G. M., Heideman. Long-Range Predissociation in Two-Color Photoassociation of Ultracold Na Atoms. Phys. Rev. Lett. 77, 1460 (1996).Google Scholar
[302] P. D., Lett, K., Helmerson, W. D., Phillips, L. P., Ratliff, S. L., Rolston, and M. E., Wagshul. Spectroscopy of Na2 by Photoassociation of Laser-Cooled Na. Phys. Rev. Lett. 71, 2200 (1993).Google Scholar
[303] L. P., Ratliff, M. E., Wagshul, P. D., Lett, S. L., Rolston, and W. D., Phillips. Photoassociative Spectroscopy of 1g, 0+u and 0-g States of Na2. J. Chem. Phys. 101, 2638 (1994).Google Scholar
[304] J., Weiner, F., Masnou-Seeuws, and A., Giusti-Suzor. Associative Ionization: Experiments, Potentials and Dynamics. Adv. At. Mol. Phys. 26, 209 (1989).Google Scholar
[305] O., Dulieu, S., Magnier, and F., Masnou-Seeuws. Doubly-excited States for the Na2 Molecule: Application to the Dynamics of the Associative Ionization Reaction. Z. Phys. D 32, 229–240 (1994).Google Scholar
[306] Boichanh, Huynh, Olivier, Dulieu, and Françoise, Masnou-Seeuws. Associative Ionization between Two Laser-Excited Sodium Atoms: Theory Compared To Experiment. Phys. Rev. A 57, 958–975 (1998).Google Scholar
[307] A., Amelink, K. M., Jones, P. D., Lett, P. van der, Straten, and H. G. M., Heideman. Spectroscopy of Autoionizing Doubly Excited States in Ultracold Na2 molecules produced by photoassociation. Phys. Rev. A 61, 042707 (2000).Google Scholar
[308] Bruce, Shore. The Theory of Coherent Atomic Excitation, volume 2. New York: Wiley and Sons (1990).Google Scholar
[309] Bruce W., Shore. Manipulating Quantum Structures Using Laser Pulses. Cambridge: Cambridge University Press (2011).Google Scholar
[310] G., Alzetta, A., Gozzini, L., Moi, and G., Orriols. An Experimental Method for the Observation of R. F. Transitions and Laser Beat Resonances in Oriented Na Vapour. Il Nuovo Cimento B Series 11 36, 5–20 (1976).Google Scholar
[311] E., Arimondo and G., Orriols. Nonabsorbing Atomic Coherences by Coherent Two- Photon Transitions in a Three-Level Optical Pumping. Nuovo Cimento Lett. 17, 333–338 (1976).Google Scholar
[312] William A., Davis, Harold J., Metcalf, and William D., Phillips. Vanishing Electric Dipole Transition Moment. Phys. Rev. A 19, 700–703 (1979).Google Scholar
[313] Petr M., Anisimov, Jonathan P., Dowling, and Barry C., Sanders. Objectively Discerning Autler–Townes Splitting from Electromagnetically Induced Transparency. Phys. Rev. Lett. 107, 163604 (2011).Google Scholar
[314] U., Fano. Effects of Configuration Interaction on Intensities and Phase Shifts. Phys. Rev. 124, 1866–1878 (1961).Google Scholar
[315] U., Gaubatz, P., Rudecki, M., Becker, S., Schiemann, M., Kulz, and K., Bergmann. Population Switching between Vibrational Levels in Molecular Beams. Chem. Phys. Lett. 149, 463 (1988).Google Scholar
[316] J. R., Kuklinski, U., Gaubatz, F. T., Hioe, and K., Bergmann. Adiabatic Population Transfer in a Three-Level System Driven by Delayed Laser Pulses. Phys. Rev. A 40, 6741 (1989).Google Scholar
[317] K., Bergmann, H., Theuer, and B. W., Shore. Coherent Population Transfer Among Quantum States of Atoms and Molecules. Rev. Mod. Phys. 70, 1003–1025 (1998).Google Scholar
[318] Yuan, Sun and Harold, Metcalf. Nonadiabaticity in Stimulated Raman Adiabatic Passage. Phys. Rev. A 90, 033408 (2014).Google Scholar
[319] M. P., Fewell, B. W., Shore, and K., Bergmann. Coherent Population Transfer among Three States: Full Algebraic Solutions and the Relevance of Non Adiabatic Processes to Transfer by Delayed Pulses. Aust. J. Phys. 50, 281–308 (1997).Google Scholar
[320] A., Aspect, E., Arimondo, R., Kaiser, N., Vansteenkiste, and C., Cohen-Tannoudji. Laser Cooling Below the One-Photon Recoil Energy by Velocity-Selective Coherent Population Trapping. Phys. Rev. Lett. 61, 826 (1988).Google Scholar
[321] J., Hack, L., Liu, M., Olshanii, and H., Metcalf. Velocity-Selective Coherent Population Trapping of Two-Level Atoms. Phys. Rev. A 62, 013405 (2000).Google Scholar
[322] Stanley J., Brodsky, Carl E., Carlson, John R., Hiller, and Dae Sung, Hwang. Constraints on Proton Structure from Precision Atomic-Physics Measurements. Phys. Rev. Lett. 94, 022001 (2005).Google Scholar
[323] John E., Nafe and Edward B., Nelson. The Hyperfine Structure of Hydrogen and Deuterium. Phys. Rev. 73, 718–728 (1948).Google Scholar
[324] H. M., Foley and P., Kusch. On the Intrinsic Moment of the Electron. Phys. Rev. 73, 412–412 (1948).Google Scholar
[325] D. T., Wilkinson and H. R., Crane. Precision Measurement of the g Factor of the Free Electron. Phys. Rev. 130, 852–863 (1963).Google Scholar
[326] D., Hanneke, S., Fogwell, and G., Gabrielse. New Measurement of the Electron Magnetic Moment and the Fine Structure Constant. Phys. Rev. Lett. 100, 120801 (2008).Google Scholar
[327] Michael, Lombardi, Thomas, Heavner, and Steven R., Jefferts. NIST Primary Frequency Standards and the Realization of the SI Second. NCSL Intern. Meas. 2, 74 (2007).Google Scholar
[328] Norman, Ramsey. History of Atomic Clocks. J. Res. Nat. Bur. Stand. 88, 301 (1983).Google Scholar
[329] J. R., Zacharias. Precision Measurements with Molecular Beams. Phys. Rev. 94, 751 (1954).
[330] R., Weiss. Contribution to “Festschrift for Jerrold R. Zacharias”. Private communication.
[331] C. W., Chou, D. B., Hume, J. C. J., Koelemeij, D. J., Wineland, and T., Rosenband. Frequency Comparison of Two High-Accuracy Al+ Optical Clocks. Phys. Rev. Lett. 104, 070802 (2010).Google Scholar
[332] Jeremy, Darling. Methods for Constraining Fine Structure Constant Evolution with OH Microwave Transitions. Phys. Rev. Lett. 91, 011301 (2003).Google Scholar
[333] Eric R., Hudson, H. J., Lewandowski, Brian C., Sawyer, and Jun, Ye.Cold Molecule Spectroscopy for Constraining the Evolution of the Fine Structure Constant. Phys. Rev. Lett. 96, 143004 (2006).Google Scholar
[334] D., DeMille, S., Sainis, J., Sage, T., Bergeman, S., Kotochigova, and E., Tiesinga. Enhanced Sensitivity to Variation of me/mp in Molecular Spectra. Phys. Rev. Lett. 100 043202 (2008).Google Scholar
[335] A., Cingöz, A., Lapierre, A.-T., Nguyen, N., Leefer, D., Budker, S. K., Lamoreaux, and J. R., Torgerson. Limit on the Temporal Variation of the Fine-Structure Constant Using Atomic Dysprosium. Phys. Rev. Lett. 98, 040801 (2007).Google Scholar
[336] N., Leefer, C. T. M., Weber, A., Cingöz, J. R., Torgerson, and D., Budker. New Limits on Variation of the Fine-Structure Constant Using Atomic Dysprosium. Phys. Rev. Lett. 111, 060801 (2013).Google Scholar
[337] T., Rosenband, D., Hume, P. O., Schmidt, C. W., Chow, L., Lorini, W. H., Oksay, R., Drullinger, T., Fortier, E., Stalneker, S., Diddams, W., Swann, N. R., Newbury, D., Wineland, and J., Bergquist. Frequency Ratio of Al+ and Hg+ Single-Ion Optical Clocks; Metrology at the 17th Decimal Place. Science 319, 1808 (2008).Google Scholar
[338] L., Lorini, N., Ashby, A., Brusch, S., Diddams, R., Drullinger, E., Eason, T., Fortier, P., Hastings, T., Heavner, D., Hume, W., Itano, S., Jefferts, N., Newbury, T., Parker, T., Rosenband, J., Stalnaker, W., Swann, D., Wineland, and J., Bergquist. Recent Atomic Clock Comparisons at NIST. Eur. Phys. J. Special Topics 163, 19 (2008).Google Scholar
[339] R. M., Godun, P. B. R., Nisbet-Jones, J. M., Jones, S. A., King, L. A. M., Johnson, H. S., Margolis, K., Szymaniec, S. N., Lea, K., Bongs, and P., Gill. Frequency Ratio of Two Optical Clock Transitions in 171Yb+ and Constraints on the Time Variation of Fundamental Constants. Phys. Rev. Lett. 113, 210801 (2014).Google Scholar
[340] N., Huntemann, B., Lipphardt, Chr., Tamm, V., Gerginov, S., Weyers, and E., Peik. Improved Limit on a Temporal Variation of mp/me from Comparisons of Yb+ and Cs Atomic Clocks. Phys. Rev. Lett. 113, 210802 (2014).Google Scholar
[341] Martin, Deutsch. Evidence for the Formation of Positronium in Gases. Phys. Rev. 82, 455–456 (1951).Google Scholar
[342] K. F., Canter, A. P., Mills, and S., Berko. Observations of Positronium Lyman-a Radiation. Phys. Rev. Lett. 34, 177–180 (1975).Google Scholar
[343] D., Hagena, R., Ley, D., Weil, G., Werth, W., Arnold, and H., Schneider. Precise Measurement of n = 2 Positronium Fine-Structure Intervals. Phys. Rev. Lett. 71, 2887–2890 (1993).Google Scholar
[344] M. S., Fee, A. P., Mills, S., Chu, E. D., Shaw, K., Danzmann, R. J., Chichester, and D. M., Zuckerman. Measurement of the Positronium 13S1–23S1 Interval by Continuous-Wave Two-Photon Excitation. Phys. Rev. Lett. 70, 1397–1400 (1993).Google Scholar
[345] D. B., Cassidy and A. P. Mills., Jr.The Production of Molecular Positronium. Nature 449, 195–197 (2007).Google Scholar
[346] M.W., Ritter, P. O., Egan, V.W., Hughes, and K. A., Woodle. Precision Determination of the Hyperfine-Structure Interval in the Ground State of Positronium. V. Phys. Rev. A 30, 1331–1338 (1984).Google Scholar
[347] V., Hughes. Muonium. Phys. Today 20, 29–40 (1967).Google Scholar
[348] D. S., Covita, D. F., Anagnostopoulos, H., Gorke, D., Gotta, A., Gruber, A., Hirtl, T., Ishiwatari, P., Indelicato, E.-O. Le, Bigot, M., Nekipelov, J. M. F., dos Santos, Ph., Schmid, L. M., Simons, M., Trassinelli, J. F. C. A., Veloso, and J., Zmeskal. Line Shape of the µH (3p–1s) Hyperfine Transitions. Phys. Rev. Lett. 102, 023401 (2009).Google Scholar
[349] Randolf, Pohl, Aldo, Antognini, François, Nez, Fernando D., Amaro, François, Biraben, João M. R., Cardoso, Daniel S., Covita, Andreas, Dax, Satish, Dhawan, Luis M. P., Fernandes, Adolf, Giesen, Thomas, Graf, Theodor W., Hänsch, Paul, Indelicato, Lucile, Julien, Cheng-Yang, Kao, Paul, Knowles, Eric-Olivier Le, Bigot, Yi-Wei, Liu, José A. M., Lopes, Livia, Ludhova, Cristina M. B., Monteiro, Françoise, Mulhauser, Tobias, Nebel, Paul, Rabinowitz, Joaquim M. F., dos Santos, Lukas A., Schaller, Karsten, Schuhmann, Catherine, Schwob, David, Taqqu, João F. C. A., Veloso, and Franz, Kottmann. The Size of the Proton. Nature 466, 213–216 (2010).Google Scholar
[350] Detlev, Gotta, F., Amaro, D., Anagnostopoulos, P., Bühler, H., Gorke, D., Covita, H., Fuhrmann, A., Gruber, M., Hennebach, A., Hirtl, T., Ishiwatari, P., Indelicato, E.-O., Le Bigot, J., Marton, M., Nekipelov, J. dos, Santos, S., Schlesser, Ph., Schmid, L., Simons, Th., Strauch, M., Trassinelli, J., Veloso, and J., Zmeskal. Muonium. Hyp. Int. 209, 57–62 (2012).Google Scholar
[351] G., Gabrielse, R., Kalra,W. S., Kolthammer, R., McConnell, P., Richerme, D., Grzonka, W., Oelert, T., Sefzick, M., Zielinski, D.W., Fitzakerley, M. C., George, E. A., Hessels, C. H., Storry, M., Weel, A., Müllers, and J., Walz. Trapped Antihydrogen in its Ground State. Phys. Rev. Lett. 108, 113002 (2012).Google Scholar
[352] Alpha, Collaboration. A Source of Antihydrogen for In-flight Hyperfine Spectroscopy. Nat. Commun. 5 doi: 10.1038/ncomms4089 (2014).Google Scholar
[353] E., Schrödinger. Discussion of Probability Relations between Separated Systems. Math. Proc. Cambr. Phil. Soc. 31, 555–563 (1935).Google Scholar
[354] John, Clauser and Abner, Shimony. Bell's Theorem : Experimental Tests and Implications. Rep. Prog. Phys. 38, 1881–1927 (1978).Google Scholar
[355] J. S., Bell. On the Einstein–Podolsky–Rosen Paradox. Physics 1, 195 (1964).Google Scholar
[356] John S., Bell. On the Problem of Hidden Variables in Quantum Mechanics. Rev. Mod. Phys. 38, 447–452 (1966).Google Scholar
[357] J. S., Bell. Bertlmann's Socks and the Nature of Reality. J. Phys. Coll. 42, C2-41– C2-62 (1981).Google Scholar
[358] Alain, Aspect, Philippe, Grangier, and Gérard, Roger. Experimental Realization of Einstein–Podolsky–Rosen–Bohm Gedankenexperiment: A New Violation of Bell's Inequalities. Phys. Rev. Lett. 49, 91–94 (1982).Google Scholar
[359] Alain, Aspect, Jean, Dalibard, and Gérard, Roger. Experimental Test of Bell's Inequalities Using Time-Varying Analyzers. Phys. Rev. Lett. 49, 1804–1807 (1982).Google Scholar
[360] Marie-Anne, Bouchiat and Claude, Bouchiat. Parity Violation in Atoms. Rep. Prog. Phys. 60, 1351–1396 (1997).Google Scholar
[361] C. S., Wood, S. C., Bennett, D., Cho, B. P., Masterson, J. L., Roberts, C. E., Tanner, and C. E., Wieman. Measurement of Parity Nonconservation and an Anapole Moment in Cesium. Science 275, 1759–1763 (1997).Google Scholar
[362] E., Gomez, S., Aubin, G. D., Sprouse, L. A., Orozco, and D. P., DeMille. Measurement Method for the Nuclear Anapole Moment of Laser-Trapped Alkali-Metal Atoms. Phys. Rev. A 75, 033418 (2007).Google Scholar
[363] Jocelyne, Guéna, Michel, Lintz, and Marie-Anne, Bouchiat. Proposal for High- Precision Atomic-Parity-Violation Measurements by Amplification of the Asymmetry by Stimulated Emission in a Transverse Electric and Magnetic Field Pump-Probe Experiment.J. Opt. Soc. Am. B 22, 21–28 (2005).Google Scholar
[364] L., Bougas, G. E., Katsoprinakis, W. von, Klitzing, J., Sapirstein, and T. P., Rakitzis. Cavity-Enhanced Parity-Nonconserving Optical Rotation in Metastable Xe and Hg. Phys. Rev. Lett. 108, 210801 (2012).Google Scholar
[365] S., Schlamminger, K.-Y., Choi, T. A., Wagner, J. H., Gundlach, and E. G., Adelberger. Test of the Equivalence Principle Using a Rotating Torsion Balance. Phys. Rev. Lett. 100, 041101 (2008).Google Scholar
[366] E. R., Williams, J. E., Faller, and H. A., Hill. New Experimental Test of Coulomb's Law: A Laboratory Upper Limit on the Photon Rest Mass. Phys. Rev. Lett. 26, 721–724 (1971).Google Scholar
[367] J. H., Smith, E. M., Purcell, and N. F., Ramsey. Experimental Limit to the Electric Dipole Moment of the Neutron. Phys. Rev. 108, 120–122 (1957).Google Scholar
[368] P. G., Harris, C. A., Baker, K., Green, P., Iaydjiev, S., Ivanov, D. J. R., May, J. M., Pendlebury, D., Shiers, K. F., Smith, M. van der, Grinten, and P., Geltenbort. New Experimental Limit on the Electric Dipole Moment of the Neutron. Phys. Rev. Lett. 82, 904–907 (1999).Google Scholar
[369] Norval, Fortson, Patrick, Sandars, and Stephen, Barr. The Search for a Permanent Electric Dipole Moment. Phys. Today 56, 33 (2003).Google Scholar
[370] J. J., Hudson, D. M., Kara, I. J., Smallman, B. E., Sauer, M. R., Tarbutt, and E. A., Hinds. Improved Measurement of the Shape of the Electron. Nature 473, 493–496 (2011).Google Scholar
[371] J., Baron (The ACME Collaboration), W. C., Campbell, D., DeMille, J. M., Doyle, G., Gabrielse, Y. V., Gurevich, P. W., Hess, N. R., Hutzler, E., Kirilov, I., Kozyryev, B. R., O'Leary, C. D., Panda, M. F., Parsons, E. S., Petrik, B., Spaun, A. C., Vutha, and A. D., West. Order of Magnitude Smaller Limit on the Electric Dipole Moment of the Electron. Science 343, 269–272 (2014).Google Scholar
[372] Clebsch–Gordan Coefficients, Spherical Harmonics, and D Functions. Eur. Phys. J. C 15, 208 (2000).CrossRef

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Peter van der Straten, Universiteit Utrecht, The Netherlands, Harold Metcalf, State University of New York, Stony Brook
  • Book: Atoms and Molecules Interacting with Light
  • Online publication: 05 February 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781316106242.030
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Peter van der Straten, Universiteit Utrecht, The Netherlands, Harold Metcalf, State University of New York, Stony Brook
  • Book: Atoms and Molecules Interacting with Light
  • Online publication: 05 February 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781316106242.030
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Peter van der Straten, Universiteit Utrecht, The Netherlands, Harold Metcalf, State University of New York, Stony Brook
  • Book: Atoms and Molecules Interacting with Light
  • Online publication: 05 February 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781316106242.030
Available formats
×