Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-7nlkj Total loading time: 0 Render date: 2024-07-28T22:24:46.791Z Has data issue: false hasContentIssue false

4 - Band structure of crystals

Published online by Cambridge University Press:  06 July 2010

Efthimios Kaxiras
Affiliation:
Harvard University, Massachusetts
Get access

Summary

In the previous two chapters we examined in detail the effects of crystal periodicity and crystal symmetry on the eigenvalues and wavefunctions of the single-particle equations. The models we used to illustrate these effects were artificial free-electron models, where the only effect of the presence of the lattice is to impose the symmetry restrictions on the eigenvalues and eigenfunctions. We also saw how a weak periodic potential can split the degeneracies of certain eigenvalues at the Bragg planes (the BZ edges). In realistic situations the potential is certainly not zero, as in the free-electron model, nor is it necessarily weak. Our task here is to develop methods for determining the solutions to the single-particle equations for realistic systems. We will do this by discussing first the so called tight-binding approximation, which takes us in the most natural way from electronic states that are characteristic of atoms (atomic orbitals) to states that correspond to crystalline solids. We will then discuss briefly more general methods for obtaining the band structure of solids, whose application typically involves a large computational effort. Finally, we will conclude the chapter by discussing the electronic structure of several representative crystals, as obtained by elaborate computational methods; we will also attempt to interpret these results in the context of the tight-binding approximation.

The tight-binding approximation

The simplest method for calculating band structures, both conceptually and computationally, is the so called Tight-Binding Approximation (TBA), also referred to as Linear Combination of Atomic Orbitals (LCAO). The latter term is actually used in a wider sense, as we will explain below.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Band structure of crystals
  • Efthimios Kaxiras, Harvard University, Massachusetts
  • Book: Atomic and Electronic Structure of Solids
  • Online publication: 06 July 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511755545.006
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Band structure of crystals
  • Efthimios Kaxiras, Harvard University, Massachusetts
  • Book: Atomic and Electronic Structure of Solids
  • Online publication: 06 July 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511755545.006
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Band structure of crystals
  • Efthimios Kaxiras, Harvard University, Massachusetts
  • Book: Atomic and Electronic Structure of Solids
  • Online publication: 06 July 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511755545.006
Available formats
×