Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-24T18:12:03.590Z Has data issue: false hasContentIssue false

3 - Atmospheric Boundary Layer Chemistry

from Part II - The Uncoupled System

Published online by Cambridge University Press:  05 July 2015

Jordi Vilà-Guerau de Arellano
Affiliation:
Wageningen Universiteit, The Netherlands
Chiel C. van Heerwaarden
Affiliation:
Max-Planck-Institut für Meteorologie, Hamburg
Bart J. H. van Stratum
Affiliation:
Max-Planck-Institut für Meteorologie, Hamburg
Kees van den Dries
Affiliation:
Wageningen Universiteit, The Netherlands
Get access

Summary

We introduce the main characteristics of the chemistry system in the ABL. As with the dynamics, we explain the equations that govern the evolution of chemical species, emphasizing in particular their physical and chemical contributions to the diurnal variability of the reactive species, and providing a framework to understand and quantify how dynamic processes interact with the atmospheric reactivity.

Chemical Description

Several hundreds of species and reactions characterize the chemistry of the atmospheric boundary layer. As a buffer layer between the surface and the free troposphere, the ABL integrates the emission of chemically active species driven by soil processes or vegetation dynamics as well as their removal by dry and wet deposition processes. Within the dynamically evolving ABL upper region, air entrainment introduces air masses that may either enrich or dilute the chemically reactive species. The presence of ultraviolet radiation and turbulent mixing produces the right conditions for chemical transformations, turning the ABL into a dynamic reaction chamber in which secondary compounds are produced.

A useful method to classify the reactants is to relate them to the dynamic processes by defining the characteristic time-scales of reactions. Figure 3.1 shows some of the most relevant atmospheric components that are active in the lower troposphere. The diagram classifies them as a function of their characteristic reaction speeds and their horizontal spatial variability. This enables us to identify very rapid reactive species (radicals) whose time-scales are similar to those of the fast turbulent motions (<100 s). Particular attention should be paid to the hydroxyl radical (OH) because of its prominent role in oxidizing important hydrocarbon compounds such as methane (CH4), carbon monoxide (CO), and isoprene (C5H8). OH is therefore called the ‘atmospheric cleansing’ agent.

Important species such as O3 and isoprene react on a chemistry time-scale that is similar to the turbulent mixing under diurnal conditions (τ ≈ 15–30 minutes).

Type
Chapter
Information
Atmospheric Boundary Layer
Integrating Air Chemistry and Land Interactions
, pp. 33 - 41
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×