Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-swr86 Total loading time: 0 Render date: 2024-07-20T07:29:27.507Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  01 February 2017

Thomas H. Burbine
Affiliation:
Mount Holyoke College, Massachusetts
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Asteroids
Astronomical and Geological Bodies
, pp. 307 - 355
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abe, M., Takagi, Y., Kitazato, K., et al. (2006) Near-infrared spectral results of asteroid Itokawa from the Hayabusa spacecraft. Science, 312, 13341338.CrossRefGoogle ScholarPubMed
Abell, P. A. and Gaffey, M. J. (2000) Probable geologic composition, thermal history, and meteorite affinities for mainbelt asteroid 349 Dembowska. Lunar and Planetary Science Conference, XXXI, 1291. www.lpi.usra.edu/meetings/lpsc2000/pdf/1291.pdf.Google Scholar
Abell, P. A., Vilas, F., Jarvis, K. S., Gaffey, M. J. and Kelley, M. S. (2007) Mineralogical composition of (25143) Itokawa 1998 SF36 from visible and near-infrared reflectance spectroscopy: Evidence for partial melting. Meteoritics & Planetary Science, 42, 21652177.CrossRefGoogle Scholar
Agee, C. B., Wilson, N. V., McCubbin, F. M., et al. (2013) Unique meteorite from early Amazonian Mars: Water-rich basaltic breccia Northwest Africa 7034. Science, 339, 780785.CrossRefGoogle ScholarPubMed
A’Hearn, M. F., Belton, M. J. S., Delamere, W. A., et al. (2005) Deep Impact: Excavating comet Tempel 1. Science, 310, 258264.CrossRefGoogle ScholarPubMed
Albarède, F. (2011) Oxygen fugacity. In Encyclopedia of Astrobiology, eds. Gargaud, M., Amils, R., Quintanilla, J. C., Cleaves, H. J. II, Irvine, W. M., Pinti, D. L. and Viso, M. Berlin: Springer Berlin Heidelberg, p. 1196.CrossRefGoogle Scholar
Alexandersen, M., Gladman, B., Greenstreet, S., Kavelaars, J. J., Petit, J.-M. and Gwyn, S. (2013) A Uranian Trojan and the frequency of temporary giant-planet co-orbitals. Science, 341, 994997.CrossRefGoogle ScholarPubMed
Altshuler, D. R. (2002) The National Astronomy and Ionosphere Center’s (NAIC) Arecibo Observatory in Puerto Rico. In Single–Dish Radio Astronomy: Techniques and Applications, ASP Conference Series 278, eds. Stanimirović, S., Altschuler, D. R., Goldsmith, P. F. and Salter, C. J. San Francisco: Astronomical Society of the Pacific, pp. 124.Google Scholar
Alvarez, L. W., Alvarez, W., Asaro, F. and Michel, H. V. (1980) Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science, 208, 10951108.CrossRefGoogle ScholarPubMed
Alvarez-Candal, A., Duffard, R., Lazzaro, D. and Michtchenko, T. (2006) The inner region of the asteroid main belt: A spectroscopic and dynamic analysis. Astronomy & Astrophysics, 459, 969976.CrossRefGoogle Scholar
Amelin, Y. and Krot, A. (2007) Pb isotopic age of the Allende chondrules. Meteoritics & Planetary Science, 42, 13211335.CrossRefGoogle Scholar
Amelin, Y., Krot, A. N., Hutcheon, I. D. and Ulyanov, A. A. (2002) Lead isotopic ages of chondrules and calcium–aluminum-rich inclusions. Science, 297, 16781683.CrossRefGoogle ScholarPubMed
Amelin, Y., Kaltenbach, A., Iizuka, T., Stirling, C. H, Ireland, T. R., Petaev, M. and Jacobsen, S. B. (2010) U–Pb chronology of the Solar System’s oldest solids with variable 238U/235U. Earth and Planetary Science Letters, 300, 343350.CrossRefGoogle Scholar
American Meteor Society (2016) Meteor shower calendar.www.amsmeteors.org/meteor-showers/meteor-shower-calendar/.Google Scholar
Ammannito, E., De Sanctis, M. C., Capaccioni, F., et al. (2013) Vestan lithologies mapped by the visual and infrared spectrometer on Dawn. Meteoritics & Planetary Science, 48, 21852198.CrossRefGoogle Scholar
Anders, E. and Grevesse, N. (1989) Abundances of the elements: Meteoritic and solar. Geochimica et Cosmochimica Acta, 53, 197214.CrossRefGoogle Scholar
Appenzeller, I. (2012) Introduction to Astronomical Spectroscopy (Cambridge Observing Handbooks for Research Astronomers). New York: Cambridge University Press, 268 pp.CrossRefGoogle Scholar
Asher, D. J., Bailey, M. E., Hahn, G. and Steel, D. I. (1994) Asteroid 5335 Damocles and its implications for cometary dynamics. Monthly Notices of the Royal Astronomical Society, 267, 2642.CrossRefGoogle Scholar
Ashley, J. W. (2015) The study of exogenic rocks on Mars – An evolving subdiscipline in meteoritics. Elements, 11, 1011.Google Scholar
Baer, J., Chesley, S. R. and Matson, R. D. (2011) Astrometric masses of 26 asteroids and observations on asteroid porosity. Astronomical Journal, 141, 143.CrossRefGoogle Scholar
Baker, D. (2015) NASA Hubble Space Telescope – 1990 Onwards (Including All Upgrades): An Insight into the History, Development, Collaboration, Construction and Role of the Earth-Orbiting Space Telescope (Owners’ Workshop Manual). Newbury Park: Haynes Publishing UK, 181 pp.Google Scholar
Barkume, K. M., Brown, M. E. and Schaller, E. L. (2006) Water ice on the satellite of Kuiper belt object 2003 EL61. Astrophysical Journal, 640, L87–L89.CrossRefGoogle Scholar
Barkume, K. M., Brown, M. E. and Schaller, E. L. (2008) Near-infrared spectra of centaurs and Kuiper belt objects. Astronomical Journal, 135, 5567.CrossRefGoogle Scholar
Barrios, M. A., George, J. V. and Marschall, L. A. (2004) Photometry and astrometry of asteroids by Gettysburg College students at NURO. Bulletin of the American Astronomical Society, 36, 1348.Google Scholar
Barucci, M. A., Cruikshank, D. P., Dotto, E., et al. (2005) Is Sedna another Triton? Astronomy & Astrophysics, 439, L1–L4.CrossRefGoogle Scholar
Barucci, M. A., Dalle Ore, C. M., Alvarez-Candal, A., et al. (2010) (90377) Sedna: Investigation of surface compositional variation. Astronomical Journal, 140, 20952100.CrossRefGoogle Scholar
Barucci, M. A., Dalle Ore, C. M., Perna, D., et al. (2015) (50000) Quaoar: Surface composition variability. Astronomy & Astrophysics, 584, A107.Google Scholar
Basilevsky, A. T. and Keller, H. U. (2006) Comet nuclei: Morphology and implied processes of surface modification. Planetary and Space Science, 54, 808829.CrossRefGoogle Scholar
Batygin, K. and Brown, M. E. (2016) Evidence for a distant giant planet in the Solar System. Astronomical Journal, 151, 22.CrossRefGoogle Scholar
Beck, P., Quirico, E., Montes-Hernandez, G., et al. (2010) Hydrous mineralogy of CM and CI chondrites from infrared spectroscopy and their relationship with low albedo asteroids. Geochimica Cosmochimica Acta, 74, 48814892.Google Scholar
Beck, P., Barrat, J.-A., Grisolle, F., et al. (2011a) NIR spectral trends of HED meteorites: Can we discriminate between the magmatic evolution, mechanical mixing and observation geometry effects? Icarus, 216, 560571.CrossRefGoogle Scholar
Beck, P., Quirico, E., Sevestre, D., Montes-Hernandez, G., Pommerol, A. and Schmitt, B. (2011b) Goethite as an alternative origin of the 3.1 μm band on dark asteroids. Astronomy & Astrophysics, 526, A85.CrossRefGoogle Scholar
Beech, M. (2013) Towards an understanding of the fall circumstances of the Hoba meteorite. Earth, Moon, and Planets, 111, 1530.CrossRefGoogle Scholar
Beekman, G. (2006) I. O. Yarkovsky and the discovery of ‘his’ effect. Journal for the History of Astronomy, 37, 7186.Google Scholar
Bell, J. F. (1986) Mineralogical evolution of meteorite parent bodies. Lunar and Planetary Science Conference, XVII, 985986.Google Scholar
Bell, J. F. (1988) A probable asteroidal parent body for the CO or CV chondrites. Meteoritics, 23, 256257.Google Scholar
Bell, J. F., Davis, D. R., Hartmann, W. K. and Gaffey, M. J. (1989) Asteroids: The big picture. In Asteroids II, eds. Binzel, R. P., Gehrels, T. and Matthews, M. S. Tucson: University of Arizona Press, pp. 921945.Google Scholar
Belton, M. J. S., Klaasen, K. P., Clary, M. C., et al. (1992a) The Galileo Solid-State Imaging experiment. Space Science Reviews, 60, 413455.CrossRefGoogle Scholar
Belton, M. J. S., Veverka, J., Thomas, P., Helfenstein, P., et al. (1992b) Galileo encounter with 951 Gaspra: First pictures of an asteroid. Science, 257, 16471652.Google Scholar
Belton, M. J. S., Chapman, C. R., Thomas, P. C., et al. (1994) Bulk density of asteroid 243 Ida from the orbit of its satellite Dactyl. Nature, 374, 785788.Google Scholar
Belton, M. J. S., Chapman, C. R., Klaasen, K. P., et al. (1996) Galileo’s encounter with 243 Ida: An overview of the imaging experiment. Icarus, 120, 119.CrossRefGoogle Scholar
Belton, M. J. S., Chapman, C. R., Veverka, J., et al. (2004) First images of asteroid 243 Ida. Science, 265, 15431547.CrossRefGoogle Scholar
Bendjoya, Ph. and Zappalà, V. (2002) Asteroid family identification. In Asteroids III, eds. Bottke, W. F. Jr., Cellino, A., Paolicchi, P. and Binzel, R. P. Tucson: University of Arizona Press, pp. 613618.CrossRefGoogle Scholar
Benishek, V. and Pilcher, F. (2016) Rotation period and H-G parameters of (57868) 2001 YD. Minor Planet Bulletin, 43, 100101.Google Scholar
Benner, L. A. M., Ostro, S. J., Magri, C., et al. (2008) Near-Earth asteroid surface roughness depends on compositional class. Icarus, 198, 294304.Google Scholar
Bennett, C. J., Pirim, C. and Orlando, T. M. (2013) Space-weathering of Solar System bodies: A laboratory perspective. Chemical Reviews, 113, 90869150.Google Scholar
Bessell, M. S. (1990) UBVRI passbands. Publications of the Astronomical Society of the Pacific, 102, 11811199.CrossRefGoogle Scholar
Bessell, M. S. (2005) Standard photometric systems. Annual Review of Astronomy and Astrophysics, 43, 293336.CrossRefGoogle Scholar
Binzel, R. P. (1988) Hemispherical color differences on Pluto and Charon. Science, 241, 10701072.CrossRefGoogle ScholarPubMed
Binzel, R. P. (1997) A near-Earth object hazard index. Annals of the New York Academy of Sciences, 822, 545551.CrossRefGoogle Scholar
Bessell, M. S. (2000) The Torino Impact Hazard Scale. Planetary and Space Science, 48, 297303.Google Scholar
Bessell, M. S. (2003) Spin control for asteroids. Nature, 425, 131132.Google Scholar
Binzel, R. P. and van Flandern, T. C. (1979) Minor planets: The discovery of minor satellites. Science, 203, 903905.Google Scholar
Binzel, R. P. and Xu, S. (1993) Chips off of asteroid 4 Vesta: Evidence for the parent body of basaltic achondrite meteorites. Science, 260, 186191.CrossRefGoogle ScholarPubMed
Binzel, R. P., Gehrels, T. and Matthews, M. S., eds. (1989) Asteroids II. Tucson: University of Arizona Press, 1258 pp.Google Scholar
Binzel, R. P., Xu, S., Bus, S. J., et al. (1993) Discovery of a main-belt asteroid resembling ordinary chondrite meteorites. Science, 262, 15411543.CrossRefGoogle ScholarPubMed
Binzel, R. P., Bus, S. J., Xu, S., et al. (1995) Rotationally resolved spectra of asteroid 16 Psyche. Icarus, 117, 443445.CrossRefGoogle Scholar
Binzel, R. P., Gaffey, M. J., Thomas, P. C., Zellner, B. H., Storrs, A. D. and Wells, E. N. (1997) Geologic mapping of Vesta from 1994 Hubble Space Telescope images. Icarus, 128, 95103.CrossRefGoogle Scholar
Binzel, R. P., Harris, A. W., Bus, S. J. and Burbine, T. H. (2001a) Spectral properties of Near-Earth objects: Palomar and IRTF results for 48 objects including spacecraft targets (9969) Braille and (10302) 1989 ML. Icarus, 151, 139149.CrossRefGoogle Scholar
Binzel, R. P., Rivkin, A. S., Bus, S. J., Sunshine, J. M. and Burbine, T. H. (2001b) MUSES-C target asteroid (25143) 1998 SF36: A reddened ordinary chondrite. Meteoritics & Planetary Science, 36, 11671172.CrossRefGoogle Scholar
Binzel, R. P., Rivkin, A. S., Stuart, J. S., Harris, A. W., Bus, S. J. and Burbine, T. H. (2004) Observed spectral properties of near-Earth objects: Results for population distribution, source regions, and space weathering processes. Icarus, 170, 259294.CrossRefGoogle Scholar
Binzel, R. P., Thomas, C. A., DeMeo, F. E., Tokunaga, A., Rivkin, A. S. and Bus, S. J. (2006) The MIT-Hawaii-IRTF joint campaign for NEO spectral reconnaissance. Lunar and Planetary Science Conference, XXXVII, 1491. www.lpi.usra.edu/meetings/lpsc2006/pdf/1491.pdf.Google Scholar
Binzel, R. P., Rivkin, A. S., Thomas, C. A., et al. (2009) Spectral properties and composition of potentially hazardous asteroid (99942) Apophis. Icarus, 200, 480485.CrossRefGoogle Scholar
Binzel, R. P., Morbidelli, A., Merouane, S., et al. (2010) Earth encounters as the origin of fresh surfaces on near-Earth asteroids. Nature, 463, 331334.CrossRefGoogle ScholarPubMed
Binzel, R. P., Reddy, V. and Dunn, T. (2015) The near-Earth object population: Connections to comets, main-belt asteroids, and meteorites. In Asteroids IV, eds. Michel, P., DeMeo, F. E. and Bottke, W. F. Tucson: University of Arizona Press, pp. 243256.Google Scholar
Birck, J. L. and Allegre, C. J. (1979) 87Rb-87Sr chronology of the Binda howardite. Nature, 282, 288289.CrossRefGoogle Scholar
Birlan, M., Vernazza, P. and Nedelcu, D. A. (2007) Spectral properties of nine M-type asteroids. Astronomy & Astrophysics, 475, 747754.CrossRefGoogle Scholar
Bland, P. A., Cressey, G. and Menzies, O. N. (2004) Modal mineralogy of carbonaceous chondrites by X-ray diffraction and Mössbauer spectroscopy. Meteoritics & Planetary Science, 39, 316.CrossRefGoogle Scholar
Bland, P. A., Zolensky, M. E., Benedix, G. K. and Sephton, M. A. (2006) Weathering of chondritic meteorites. In Meteorites and the Early Solar System, eds. Lauretta, D. S. and McSween, H. Y. Jr. Tucson: University of Arizona Press, pp. 853867.CrossRefGoogle Scholar
Bland, P. A., Spurný, P., Towner, M. C., et al. (2009) An anomalous basaltic meteorites from the innermost main belt. Science, 325, 15251527.CrossRefGoogle ScholarPubMed
Blewett, D. T., Denevi, B. W., Le Corre, L., et al. (2016) Optical space weathering on Vesta: Radiative-transfer models and Dawn observations. Icarus, 265, 161174.Google Scholar
Bockelée-Morvan, D., Lis, D. C., Wink, J. E., et al. (2000) New molecules found in comet C/1995 O1 (Hale-Bopp). Investigating the link between cometary and interstellar material. Astronomy and Astrophysics, 353, 11011114.Google Scholar
Boesenberg, J. S., Delaney, J. S. and Hewins, R. H. (2012) A petrological and chemical reexamination of Main Group pallasite formation. Geochimica et Cosmochimica Acta, 89, 134158.CrossRefGoogle Scholar
Bogard, D. D. (1995) Impact ages of meteorites. A synthesis. Meteoritics, 30, 244268.CrossRefGoogle Scholar
Bogard, D. D. and Johnson, P. (1983) Martian gases in an Antarctic meteorite. Science, 221, 651654.CrossRefGoogle Scholar
Boice, D. C., Soderblom, L. A., Britt, D. T., et al. (2002) The Deep Space 1 encounter with comet 19P/Borrelly. Earth, Moon, and Planets, 89, 301324.Google Scholar
Borovička, J., Spurný, P., Brown, P., et al. (2013) The trajectory, structure and origin of the Chelyabinsk asteroidal impactor. Nature, 503, 235237.CrossRefGoogle ScholarPubMed
Borovička, J., Shrbený, L., Kalenda, P., et al. (2016) A catalog of video records of the 2013 Chelyabinsk superbolide. Astronomy & Astrophysics, 585, A90.CrossRefGoogle Scholar
Boslough, M. B. and Harris, A. W. (2008) Global catastrophes in perspective: Asteroid impacts vs climate change. American Geophysical Union, Fall Meeting 2008, U41D-0034.Google Scholar
Bottke, W. F. Jr., Rubincam, D. P. and Burns, J. A. (2000) Dynamical evolution of main belt meteoroids: Numerical simulations incorporating planetary perturbations and Yarkovsky thermal forces. Icarus, 145, 301331.CrossRefGoogle Scholar
Bottke, W. F. Jr., Cellino, A., Paolicchi, P. and Binzel, R. P., eds. (2002) Asteroids III. Tucson: University of Arizona Press, 785 pp.Google Scholar
Bottke, W. F. Jr., Vokrouhlický, D., Rubincam, D. P. and Nesvorný, D. (2006) The Yarkovsky and YORP effects: Implications for asteroid dynamics. Annual Review of Earth and Planetary Sciences, 34, 157191.CrossRefGoogle Scholar
Bottke, W. F., Vokrouhlický, D. and Nesvorný, D. (2007) An asteroid breakup 160 Myr ago as the probable source of the K/T impactor. Nature, 449, 4853.CrossRefGoogle Scholar
Bottke, W., Vokrouhlický, D., Nesvorný, D. and Shrbeny, L. (2010) (6) Hebe really is the H chondrite parent body. Bulletin of the American Astronomical Society, 42, 1051.Google Scholar
Bouvier, A. and Wadhwa, M. (2010) The age of the Solar System redefined by the oldest Pb-Pb age of a meteoritic inclusion. Nature Geoscience, 3, 637641.Google Scholar
Bouvier, A., Blichert-Toft, J., Moynier, F., Vervoort, J. D. and Albarède, F. (2007) Pb-Pb dating constraints on the accretion and cooling history of chondrites. Geochimica et Cosmochimica Acta, 71, 15831604.CrossRefGoogle Scholar
Bowell, E. and Lumme, K. (1979) Colorimetry and magnitudes of asteroids. In Asteroids, ed. Gehrels, T. Tucson: University of Arizona Press, pp. 132169.Google Scholar
Bowell, E., Hapke, B., Domingue, D., Lumme, K., Peltoniemi, J. and Harris, A. W. (1989) Application of photometric models to asteroids. In Asteroids II, eds. Binzel, R. P., Gehrels, T. and Matthews, M. S. Tucson: University of Arizona Press, pp. 524556.Google Scholar
Braga-Ribas, F., Sicardy, B., Ortiz, J. L., et al. (2013) The size, shape, albedo, density, and atmospheric limit of transneptunian object (50000) Quaoar from multi-chord stellar occultations. Astrophysical Journal, 773, 26.CrossRefGoogle Scholar
Braga-Ribas, F., Sicardy, B., Ortiz, J. L., et al. (2014) A ring system detected around the centaur (10199) Chariklo. Nature, 508, 7275.CrossRefGoogle Scholar
Brasil, P. I. O., Roig, F., Nesvorný, D., Carruba, V., Aljbaae, S. and Huaman, M. E. (2016) Dynamical dispersal of primordial asteroid families. Icarus, 266, 142151.CrossRefGoogle Scholar
Brearley, A. J. and Jones, R. H. (1998) Chondritic meteorites. In Reviews in Mineralogy, Vol. 36: Planetary Materials, ed. Papike, J. J. Washington, DC: Mineralogical Society of America, pp. 3-0013-398.Google Scholar
Brennecka, G. A. and Wadhwa, M. (2012) Uranium isotope compositions of the basaltic angrite meteorites and the chronological implications for the early Solar System. Proceedings of the National Academy of Sciences, 109, 92999303.Google Scholar
Britt, D. T., Bell, J. F., Haack, H. and Scott, E. R. D. (1992) The reflectance spectrum of troilite and the T-type asteroids. Meteoritics, 27, 207.Google Scholar
Britt, D. T., Yeomans, D., Housen, K. and Consolmagno, G. (2002) Asteroid density, porosity, and structure. In Asteroids III, eds. Bottke, W. F. Jr., Cellino, A., Paolicchi, P. and Binzel, R. P. Tucson: University of Arizona Press, pp. 485500.CrossRefGoogle Scholar
Britt, D. T., Boice, D. C., Buratti, B. J., et al. (2004) The morphology and surface processes of comet 19/P Borrelly. Icarus, 167, 4553.CrossRefGoogle Scholar
Brown, M. (2010) How I Killed Pluto and Why it had it Coming. New York: Spiegel & Grau, 288 pp.Google Scholar
Brown, M. E. (2013) On the size, shape, and density of dwarf planet Makemake. Astrophysical Journal Letters, 767, L7.Google Scholar
Brown, M. E. and Calvin, W. M. (2000) Evidence for crystalline water and ammonia ices on Pluto’s satellite Charon. Science, 287, 107109.CrossRefGoogle ScholarPubMed
Brown, M. E. and Schaller, E. L. (2007) The mass of dwarf planet Eris. Science, 316, 1585.Google Scholar
Brown, M. E., Trujillo, C. and Rabinowitz, D. (2004) Discovery of a candidate inner Oort Cloud planetoid. Astrophysical Journal, 617, 645649.CrossRefGoogle Scholar
Brown, M. E., van Dam, M. A., Bouchez, A. H., et al. (2006) Satellites of the largest Kuiper belt objects. Astrophysical Journal, 639, L43–L46.Google Scholar
Brown, M. E., Barkume, K. M., Ragozzine, D. and Schaller, E. L. (2007) A collisional family of icy objects in the Kuiper belt. Nature, 446, 294296.CrossRefGoogle ScholarPubMed
Brown, M. E., Ragozzine, D., Stansberry, J. and Fraser, W. C. (2010) The size, density, and formation of the Orcus-Vanth system in the Kuiper belt. Astronomical Journal, 139, 27002705.CrossRefGoogle Scholar
Brown, P. G., Hildebrand, A. R., Zolensky, M. E., et al. (2000) The fall, recovery, orbit, and composition of the Tagish Lake meteorite: A new type of carbonaceous chondrite. Science, 290, 320–325.Google Scholar
Brown, P. G., Assink, J. D., Astiz, L., et al. (2013) A 500-kiloton airburst over Chelyabinsk and an enhanced hazard from small impactors. Nature, 503, 238241.CrossRefGoogle Scholar
Brownlee, D. E. (2012) The Stardust comet mission: Studying sediments from the Solar System’s frozen attic. Elements, 8, 327328.Google Scholar
Brownlee, D. E., Horz, F., Newburn, R. L., et al. (2004) Surface of young Jupiter family comet 81P/Wild 2: View from the Stardust spacecraft. Science, 304, 17641769.Google Scholar
Brownlee, D., Joswiak, D. and Matrajt, G. (2012) Overview of the rocky component of Wild 2 comet samples: Insight into the early Solar System, relationship with meteoritic materials and the differences between comets and asteroids. Meteoritics & Planetary Science, 47, 453470.Google Scholar
Brozović, M., Showalter, M. R., Jacobson, R. A. and Buie, M. W. (2015) The orbits and masses of satellites of Pluto. Icarus, 246, 317329.CrossRefGoogle Scholar
Bruck, S. M., Owen, J. M. and Miller, P. L. (2016) Deflection by kinetic impact: Sensitivity to asteroid properties. Icarus, 269, 5061.Google Scholar
Brunetto, R. (2009) Space weathering of Small Solar system bodies. Earth, Moon, and Planets, 105, 249255.CrossRefGoogle Scholar
Brunetto, R., Barucci, M. A., Dotto, E. and Strazzulla, G. (2006) Ion irradiation of frozen methanol, methane, and benzene: Linking to the colors of centaurs and trans-Neptunian objects. Astrophysical Journal, 644, 646650.CrossRefGoogle Scholar
Bryson, J. F. J., Nichols, C. I. O., Herrero-Albillos, J., et al. (2015) Long-lived magnetism from solidification-driven convection on the pallasite parent body. Nature, 517, 472475.CrossRefGoogle ScholarPubMed
Buchanan, P. C., Zolensky, M. E. and Reid, A. M. (1993) Carbonaceous chondrite clasts in the howardites Bholghati and EET87513. Meteoritics, 28, 659669.CrossRefGoogle Scholar
Buchheim, R. K. (2010) Methods and lessons learned determining the H-G parameters of asteroid phase curves. In The Society for Astronomical Science 29th Annual Symposium on Telescope Science. pp. 101115. www.socastrosci.org/images/SAS_2010_Proceedings.pdf.Google Scholar
Buchner, E., Schwarz, W. H., Schmieder, M. and Trieloff, M. (2010) Establishing a 14.6 ± 0.2 Ma age for the Nördlinger Rie impact (Germany) – A prime example for concordant isotopic ages from various dating materials. Meteoritics & Planetary Science, 45, 662674.CrossRefGoogle Scholar
Buie, M. W., Grundy, W. M., Young, E. F., Young, L. A. and Stern, S. A. (2010a) Pluto and Charon with the Hubble Space Telescope. I. Monitoring global change and improved surface properties from light curves. Astronomical Journal, 139, 11171127.Google Scholar
Barkume, K. M., Brown, M. E. and Schaller, E. L. (2010b) Pluto and Charon with the Hubble Space Telescope. II. Resolving changes on Pluto’s surface and a map for Charon. Astronomical Journal, 139, 11281143.Google Scholar
Bullock, E. S., Gounelle, M., Lauretta, D. S., Grady, M. M. and Russell, S. S. (2005) Mineralogy and texture of Fe-Ni sulfides in CI1 chondrites: Clues to the extent of aqueous alteration on the CI1 parent body. Geochimica et Cosmochimica Acta, 69, 26872700.Google Scholar
Buratti, B. J., Britt, D. T., Soderblom, L. A., et al. (2004) 9969 Braille: Deep Space 1 infrared spectroscopy, geometric albedo, and classification. Icarus, 167, 129135.Google Scholar
Burbine, T. H. (1998) Could G-class asteroids be the parent bodies of the CM chondrites? Meteoritics & Planetary Science, 33, 253258.CrossRefGoogle Scholar
Burbine, T. H. and Binzel, R. P. (2002) Small Main-belt Asteroid Spectroscopic Survey in the near-infrared. Icarus, 159, 468499.Google Scholar
Burbine, T. H., Gaffey, M. J. and Bell, J. F. (1992) S-asteroids 387 Aquitania and 980 Anacostia: Possible fragments of the breakup of a spinel-bearing parent body with CO3/CV3 affinities. Meteoritics, 27, 424434.Google Scholar
Burbine, T. H., Meibom, A. and Binzel, R. P. (1996) Mantle material in the main belt: Battered to bits? Meteoritics & Planetary Science, 31, 607620.CrossRefGoogle Scholar
Burbine, T. H., Buchanan, P. C., Binzel, R. P., et al. (2001) Vesta, Vestoids, and the howardite, eucrite, diogenite group: Relationships and the origin of spectral differences. Meteoritics & Planetary Science, 36, 761781.CrossRefGoogle Scholar
Burbine, T. H., McCoy, T. J., Nittler, L. R., Benedix, G. K., Cloutis, E. A. and Dickinson, T. L. (2002) Spectra of extremely reduced assemblages: Implications for Mercury. Meteoritics & Planetary Science, 37, 12331244.Google Scholar
Burbine, T. H., McCoy, T. J., Jarosewich, E. and Sunshine, J. M. (2003) Deriving asteroid mineralogies from reflectance spectra: Implications for the MUSES-C target asteroid. Antarctic Meteorite Research, 16, 185195.Google Scholar
Burbine, T. H., McCoy, T. J., Hinrichs, J. L. and Lucey, P. G. (2006) Spectral properties of angrites. Meteoritics & Planetary Science, 41, 11391145.Google Scholar
Burbine, T. H., Buchanan, P. C., Dolkar, T. and Binzel, R. P. (2009) Pyroxene mineralogies of near-Earth Vestoids. Meteoritics & Planetary Science, 44, 13311341.Google Scholar
Burbine, T. H., Duffard, R., Buchanan, P. C., Cloutis, E. A. and Binzel, R. P. (2011) Spectroscopy of O-type asteroids. Lunar and Planetary Science Conference, 42, 2483. www.lpi.usra.edu/meetings/lpsc2011/pdf/2483.pdf.Google Scholar
Burchell, M. J. and Leliwa-Kopystynski, J. (2010) The large crater on the small asteroid (2867) Steins. Icarus, 210, 707712.CrossRefGoogle Scholar
Burns, R. G. (1993) Mineralogical Applications of Crystal Field Theory (2nd Edition). Cambridge: Cambridge University Press, 576 pp.Google Scholar
Burton, A. S., Glavin, D. P., Callahan, M. P., Dworkin, J. P., Jenniskens, P. and Shaddad, M. H. (2011) Heterogeneous distributions of amino acids provide evidence of multiple sources within the Almahata Sitta parent body, asteroid 2008 TC3. Meteoritics & Planetary Science, 46, 17031712.Google Scholar
Burton, A. S., Elsila, J. E., Hein, J. E., Glavin, D. P. and Dworkin, J. P. (2013) Extraterrestrial amino acids identified in metal-rich CH and CB carbonaceous chondrites from Antarctica. Meteoritics & Planetary Science, 48, 390402.Google Scholar
Burton, A. S., McLain, H., Glavin, D. P., et al. (2015) Amino acid analyses of R and CK chondrites. Meteoritics & Planetary Science, 50, 470482.Google Scholar
Bus, S. J. (1999) Compositional structure in the asteroid belt: Results of a spectroscopic survey. PhD Thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts, 367 pp.Google Scholar
Bus, S. J. and Binzel, R. P. (2002a) Phase II of the Small Main-belt Asteroid Spectroscopic Survey: The observations. Icarus, 158, 106145.CrossRefGoogle Scholar
Bus, S. J. and Binzel, R. P. (2002b) Phase II of the Small Main-belt Asteroid Spectroscopic Survey: A feature-based taxonomy. Icarus, 158, 146177.Google Scholar
Buseck, P. R. (1977) Pallasite meteorites – Mineralogy, petrology and geochemistry. Geochmica et Cosmochimica Acta, 41, 711740.Google Scholar
Busfield, A., Turner, G. and Gilmour, J. D. (2008) Testing an integrated chronology: I-Xe analysis of enstatite meteorites and a eucrite. Meteoritics & Planetary Science, 43, 883897.Google Scholar
Caldicott, H. (1994) Nuclear Madness: What You Can Do (Revised Edition). New York: W. W. Norton & Company, 240 pp.Google Scholar
Campins, H. and Swindle, T. D. (1998) Expected characteristics of cometary meteorites. Meteoritics & Planetary Science, 33, 12011211.Google Scholar
Campins, H., Hargrove, K., Pinilla-Alonso, N., et al. (2010) Water ice and organics on the surface of the asteroid 24 Themis. Nature, 464, 13201321.Google Scholar
Canup, R. M. (2005) A giant impact origin of Pluto-Charon. Science, 307, 546550.Google Scholar
Carporzen, L., Weiss, B. P., Elkins-Tanton, L. T., Shuster, D. L., Ebel, D. and Gattacceca, J. (2011) Magnetic evidence for a partially differentiated carbonaceous chondrite parent body. Proceedings of the National Academy of Sciences, 108, 63866389.CrossRefGoogle Scholar
Carlson, R. W., Weissman, P. R., Smythe, W. D., Mahoney, J. C. and the NIMS Science and Engineering Teams (1992) Near-infrared mapping spectrometer experiment on Galileo. Space Science Reviews, 60, 457502.Google Scholar
Carruba, V., Michtchenko, T. A., Roig, F., Ferraz-Mello, S. and Nesvorný, D. (2005) On the V-type asteroids outside the Vesta family. I. Interplay of nonlinear secular resonances and the Yarkovsky effect: The cases of 956 Elisa and 809 Lundia. Astronomy & Astrophysics, 441, 819829.CrossRefGoogle Scholar
Carruba, V., Michtchenko, T. A. and Lazzaro, D. (2007) On the V-type asteroids outside the Vesta family. II. Is (21238) 1995 WV7 a fragment of the long-lost basaltic crust of (15) Eunomia? Astronomy & Astrophysics, 473, 967978.CrossRefGoogle Scholar
Carry, B. (2012) Density of asteroids. Planetary and Space Science, 73, 98118.Google Scholar
Carry, B., Vernazza, P., Dumas, C. and Fulchignoni, M. (2010) First disk-resolved spectroscopy of (4) Vesta. Icarus, 205, 473482.CrossRefGoogle Scholar
Carry, B., Vernazza, P., Dumas, C., et al. (2012) The remarkable surface homogeneity of the Dawn mission target (1) Ceres. Icarus, 217, 2026.CrossRefGoogle Scholar
Carusi, A., Kresák, L. and Valsecchi, G. B. (1995) Conservation of the Tisserand parameter at close encounters of interplanetary objects with Jupiter. Earth, Moon, and Planets, 68, 7194.CrossRefGoogle Scholar
Carvano, J. M., Hasselmann, P. H., Lazzaro, D. and Mothé-Diniz, T. (2010) SDSS-based taxonomic classification and orbital distribution of main belt asteroids. Astronomy & Astrophysics, 510, A43.CrossRefGoogle Scholar
Casanova, I., Graf, T. and Marti, K. (1995) Discovery of an unmelted H-chondrite inclusion in an iron meteorite. Science, 268, 540542.Google Scholar
Cassidy, W. A. (2003) Meteorites, Ice, and Antarctica: A Personal Account. New York: Cambridge University Press, 364 pp.CrossRefGoogle Scholar
Castillo-Rogez, J. C. (2011) Ceres – Neither a porous nor salty ball. Icarus, 215, 599602.Google Scholar
Chabot, N. L. and Haack, H. (2006) Evolution of asteroidal cores. In Meteorites and the Early Solar System, eds. Lauretta, D. S. and McSween, H. Y. Jr. Tucson: University of Arizona Press, pp. 747771.Google Scholar
Chambers, J. and Mitton, J. (2013) From Dust to Life: The Origin and Evolution of our Solar System. Princeton: Princeton University Press, 320 pp.Google Scholar
Chan, Q. H. S., Chikaraishi, Y., Takano, Y., Ogawa, N. O. and Ohkouchi, N. (2016) Amino acid compositions in heated carbonaceous chondrites and their compound-specific nitrogen isotopic ratios. Earth, Planets and Space, 68, 7.CrossRefGoogle Scholar
Chandrasekhar, S. (1960) Radiative Transfer. New York: Dover Publications, 416 pp.Google Scholar
Chandler, D. (1998) Planetary science: The burger bar that saved the world. Nature, 453, 11641168.CrossRefGoogle Scholar
Chang, K. (2016) You could actually snooze your way through an asteroid belt. www .nytimes.com/2016/04/05/science/you-could-actually-snooze-your-way-through-an-asteroid-belt.html.Google Scholar
Chao, E. C. T., Shoemaker, E. M. and Madsen, B. M. (1960) First natural occurrence of coesite. Science, 132, 220222.Google Scholar
Chao, E. C. T., Fahey, J. J., Littler, J. and Milton, D. J. (1962) Stishovite, SiO2, a very high pressure new mineral from Meteor Crater, Arizona. Journal of Geophysical Research, 67, 419421.CrossRefGoogle Scholar
Chapman, C. R. (1986) Implications of the inferred compositions of asteroids for their collisional evolution. Memorie della Società Astronomica Italiana, 57, 103112.Google Scholar
Chapman, C. R. (1996) S-type asteroids, ordinary chondrites, and space weathering: The evidence from Galileo’s fly-bys of Gaspra and Ida. Meteoritics, 31, 699725.CrossRefGoogle Scholar
Chapman, C. R. (2004) Space weathering of asteroid surfaces. Annual Review of Earth and Planetary Sciences, 32, 539567.Google Scholar
Chapman, C. R. (2008) Meteoroids, meteors, and the near-Earth object impact hazard. Earth, Moon, and Planets, 102, 417424.Google Scholar
Chapman, C. R. and Morrison, D. (1994) Impacts on the Earth by asteroids and comets: Assessing the hazard. Nature, 367, 3340.Google Scholar
Chapman, C. R. and Salisbury, J. W. (1973) Comparisons of meteorite and asteroid spectral reflectivities. Icarus, 19, 507522.Google Scholar
Chapman, C. R., Morrison, D. and Zellner, B. (1975) Surface properties of asteroids: A synthesis of polarimetry, radiometry, and spectrophotometry. Icarus, 25, 104130.CrossRefGoogle Scholar
Chapman, C. R., Ryan, E. V., Merline, W. J., et al. (1996a) Cratering on Ida. Icarus, 120, 7786.Google Scholar
Chapman, C. R., Veverka, J., Belton, M. J. S., Neukum, G. and Morrison, D. (1996b) Cratering on Gaspra. Icarus, 120, 231245.Google Scholar
Chapman, C. R., Merline, W. J., Thomas, P. C., Joseph, J., Cheng, A. F. and Izenberg, N. (2002) Impact history of Eros: Craters and boulders. Icarus, 155, 104118.Google Scholar
Chapman, C. R., Enke, B., Merline, W. J., Nesvorný, D., Tamblyn, P. and Young, E. F. (2009) Reflectance spectra of members of very young asteroid families. Lunar and Planetary Science Conference, 40, 2258. www.lpi.usra.edu/meetings/lpsc2009/pdf/2258.pdf.Google Scholar
Chen, M. and El Goresy, A. (2000) The nature of maskelynite in shocked meteorites: Not diaplectic glass but a glass quenched from shock-induced dense melt at high pressures. Earth and Planetary Science Letters, 179, 489502.Google Scholar
Cheng, A. F. and Barnouin-Jha, O. S. (1999) Giant craters on Mathilde. Icarus, 140, 3448.Google Scholar
Chesley, S. R., Chodas, P. W., Milani, A., Valsecchi, G. B. and Yeomans, D. K. (2002) Quantifying the risk posed by potential Earth impacts. Icarus, 159, 423432.Google Scholar
Chesley, S. R., Ostro, S. J., Vokrouhlický, D., et al. (2003) Direct detection of the Yarkovsky effect by radar ranging to asteroid 6489 Golevka. Science, 302, 17391742.Google Scholar
Chesley, S. R., Farnocchia, D., Nolan, M. C., et al. (2014) Orbit and bulk density of the OSIRIS-REx target asteroid (101955) Bennu. Icarus, 235, 522.Google Scholar
Chodas, P. and Chesley, S. R. (2014) The trajectory of the Chelyabinsk impactor. American Astronomical Society, DDA meeting, 45, 103.01.Google Scholar
Chodas, P., Chesley, S. and Yeomans, D. (2010) The trajectory and impact circumstances of asteroid 2008 TC3. Bulletin of the American Astronomical Society, 42, 931.Google Scholar
Choe, W. H., Huber, H., Rubin, A. E., Kallemeyn, G. W. and Wasson, J. T. (2010) Compositions and taxonomy of 15 unusual carbonaceous chondrites. Meteoritics and Planetary Science, 45, 531554.Google Scholar
Christou, A. A. (2013) Orbital clustering of Martian Trojans: An asteroid family in the inner Solar System? Icarus, 224 , 144153.Google Scholar
Ciarniello, M., Capaccioni, F. and Filacchione, G. (2014) A test of Hapke’s model by means of Monte Carlo ray-tracing. Icarus, 237, 293305.Google Scholar
Ciesla, F. J. (2005) Chondrule-forming processes–An overview. In Chondrites and the Protoplanetary Disk, ASP Conference Series, Volume 341, eds. Krot, A. N., Scott, E. R. D. and Reipurth, B. San Francisco: Astronomical Society of the Pacific, pp. 811820.Google Scholar
Ciesla, F. J. (2010) The distributions and ages of refractory objects in the solar nebula. Icarus, 208, 455467.Google Scholar
Clark, B. E. (1995) Spectral mixing models of S-type asteroids. Journal of Geophysical Research, 100, 1444314456.Google Scholar
Clark, B. E., Bus, S. J., Rivkin, A. S., et al. (2004) E-type asteroid spectroscopy and compositional modeling. Journal of Geophysical Research, 109, E02001.Google Scholar
Clark, B. E., Ockert-Bell, M. E., Cloutis, E. A., Nesvorný, D., Mothé-Diniz, T. and Bus, S. J. (2009) Spectroscopy of K-complex asteroids: Parent bodies of carbonaceous meteorites? Icarus, 202, 119133.Google Scholar
Clark, B. E., Ziffer, J., Nesvorný, D., et al. (2010) Spectroscopy of B-type asteroids: Subgroups and meteorite analogs. Journal of Geophysical Research, 115, E06005.Google Scholar
Clark, B. E., Binzel, R. P., Howell, E., et al. (2011) Asteroid (101955) 1999 RQ36: Spectroscopy from 0.4 to 2.4 μm and meteorite analogs. Icarus, 216, 462475.Google Scholar
Clark, R. N. (1999) Spectroscopy of rocks and minerals, and principles of spectroscopy. In Remote Sensing for the Earth Sciences: Manual of Remote Sensing (3rd Edition), Volume 3, ed. Rencz, A. N. New York: John Wiley & Sons, Inc., pp. 352.Google Scholar
Clark, R. N. and Roush, T. L. (1984) Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications. Journal of Geophysical Research, 89, 63296340.Google Scholar
Clark, R. N., Swayze, G. A., Wise, R., et al. (2007) USGS Digital Spectral Library splib06a, U.S. Geological Survey Data Series 231. Tucson: U.S. Geological Survey.Google Scholar
Clayton, R. N. and Mayeda, T. K. (1978) Genetic relations between iron and stony meteorites. Earth and Planetary Science Letters, 40, 168174.Google Scholar
Clayton, R. N. and Mayeda, T. K. (1988) Formation of ureilites by nebular processes. Geochimica et Cosmochimica Acta, 52, 13131318.CrossRefGoogle Scholar
Clayton, R. N., Onuma, N., Grossman, L. and Mayeda, T. K. (1977) Distribution of the pre-solar component in Allende and other carbonaceous chondrites. Earth and Planetary Science Letters, 34, 209224.Google Scholar
Cloutis, E. A. (2001) H2O/OH-associated absorption band depth relationships in mineral reflectance spectra. Lunar and Planetary Science Conference, XXXII, 1146. www.lpi.usra.edu/meetings/lpsc2001/pdf/1146.pdf.Google Scholar
Cloutis, E. A. and Gaffey, M. J. (1993) Accessory phases in aubrites: Spectral properties and implications for asteroid 44 Nysa. Earth, Moon, and Planets, 63, 227243.Google Scholar
Cloutis, E. A., Gaffey, M. J., Jackowski, T. L. and Reed, K. L. (1986) Calibrations of phase abundance, composition, and particle size distribution for olivine-orthopyroxene mixtures from reflectance spectra. Journal of Geophysical Research, 91, 1164111653.Google Scholar
Cloutis, E. A., Gaffey, M. J., Smith, D. G. W. and Lambert, R. St. J. (1990) Reflectance spectra of “featureless” materials and the surface mineralogies of M- and E-class asteroids. Journal of Geophysical Reseearch, 95, 281293.Google Scholar
Cloutis, E. A., Binzel, R. P., Burbine, T. H., Gaffey, M. J. and McCoy, T. J. (2006) Asteroid 3628 Božněmcová: Covered with angrite-like basalts? Meteoritics & Planetary Science, 41, 11471161.Google Scholar
Cloutis, E. A., Hardersen, P. S., Bish, D. L., Bailey, D. T., Gaffey, M. J. and Craig, M. A. (2010a) Reflectance spectra of iron meteorites: Implications for spectral identification of their parent bodies. Meteoritics and Planetary Science, 45, 304332.CrossRefGoogle Scholar
Cloutis, E. A., Hudon, P., Romanek, C. S., et al. (2010b) Spectral reflectance properties of ureilites. Meteoritics & Planetary Science, 45, 16681694.Google Scholar
Cloutis, E. A., Klima, R. L., Kaletzke, L., et al. (2010c) The 506 nm absorption feature in pyroxene spectra: Nature and implications for spectroscopy-based studies of pyroxene-bearing targets. Icarus, 207, 295313.Google Scholar
Cloutis, E. A., Hiroi, T., Gaffey, M. J., Alexander, C. M. O’D. and Mann, P. (2011a) Spectral reflectance properties of carbonaceous chondrites: 1. CI chondrites. Icarus, 212, 180209.Google Scholar
Cloutis, E. A., Hudon, P., Hiroi, T., Gaffey, M. J. and Mann, P. (2011b) Spectral reflectance properties of carbonaceous chondrites: 2. CM chondrites. Icarus, 216, 309346.Google Scholar
Cloutis, E. A., Hudon, P., Hiroi, T. and Gaffey, M. J. (2012a) Spectral reflectance properties of carbonaceous chondrites: 3. CR chondrites. Icarus, 217, 389407.Google Scholar
Cloutis, E. A., Hudon, P., Hiroi, T. and Gaffey, M. J. (2012b) Spectral reflectance properties of carbonaceous chondrites. 4: Aqueously altered and thermally metamorphosed meteorites. Icarus, 220, 586617.Google Scholar
Cloutis, E. A., Hudon, P., Hiroi, T., Gaffey, M. J. and Mann, P. (2012c) Spectral reflectance properties of carbonaceous chondrites – 5: CO chondrites. Icarus, 220, 466486.Google Scholar
Cloutis, E. A., Hudon, P., Hiroi, T., Gaffey, M. J., Mann, P. and Bell, J. F. (2012d) Spectral reflectance properties of carbonaceous chondrites: 6. CV chondrites. Icarus, 221, 328358.Google Scholar
Cloutis, E. A., Hudon, P., Hiroi, T. and Gaffey, M. J. (2012e) Spectral reflectance properties of carbonaceous chondrites: 7. CK chondrites. Icarus, 221, 911924.CrossRefGoogle Scholar
Cloutis, E. A., Hudon, P., Hiroi, T., Gaffey, M. J. and Mann, P. (2012f) Spectral reflectance properties of carbonaceous chondrites: 8. “Other” carbonaceous chondrites: CH, ungrouped, polymict, xenolithic inclusions, and R chondrites. Icarus, 221, 9841001.Google Scholar
Colwell, J. E. (1993) Power-law confusion: You say incremental, I say differential. Lunar and Planetary Science Conference, XXIV, 325326.Google Scholar
Comelli, D,D’orazio, M., Folco, L., et al. (2016) The meteoritic origin of Tutankhamun’s iron dagger blade. Meteoritics & Planetary Science, 51, 13011309.Google Scholar
Committee to Review Near-Earth Object Surveys and Hazard Mitigation Strategies, Space Studies Board, Aeronautics and Space Engineering Board, Division on Engineering and Physical Sciences and National Research Council (2010) Defending Planet Earth: Near-Earth Object Surveys and Hazard Mitigation Strategies. Washington, DC: National Academies Press, 134 pp.Google Scholar
Condon, D. J., McLean, N., Noble, S. R. and Bowring, S. A. (2010) Isotopic composition (238U/235U) of some commonly used uranium reference materials. Geochimica et Cosmochimica Acta, 74, 71277143.Google Scholar
Connelly, J. N., Bizzarro, M., Krot, A. N., Nordlund, Å., Wielandt, D. and Ivanova, M. A. (2012) The absolute chronology and thermal processing of solids in the solar protoplanetary disk. Science, 338, 651655.Google Scholar
Connolly, H. C. Jr. (2005) Refractory inclusions and chondrules: Insights into a protoplanetary disk and planet formation. In Chondrites and the Protoplanetary Disk, ASP Conference Series, Volume 341, eds. Krot, A. N., Scott, E. R. D. and Reipurth, B. San Francisco: Astronomical Society of the Pacific, pp. 215224.Google Scholar
Consolmagno, G. J. and Drake, M. J. (1977) Composition and evolution of the eucrite parent body: Evidence from rare earth elements. Geochimica et Cosmochimica Acta, 41, 12711282.Google Scholar
Consolmagno, G. J., Britt, D. T. and Macke, R. J. (2008) The significance of meteorite density and porosity. Chemie der Erde, 68, 129.Google Scholar
Consolmagno, G. J., Schaefer, M. W., Schaefer, B. E., et al. (2013) The measurement of meteorite heat capacity at low temperatures using liquid nitrogen vaporization. Planetary and Space Science, 87, 146156.Google Scholar
Connors, M., Wiegert, P. and Veillet, C. (2011) Earth’s Trojan asteroid. Nature, 475, 481483.Google Scholar
Coradini, A., Capaccioni, F., Erard, S., et al. (2011) The surface composition and temperature of asteroid 21 Lutetia as observed by Rosetta/VIRTIS. Science, 334, 492494.Google Scholar
Cournede, C., Gattacceca, J., Gounelle, M., Rochette, P., Weiss, B. P. and Zanda, B. (2015) An early Solar System magnetic field recorded in CM chondrites. Earth and Planetary Science Letters, 410, 6274.Google Scholar
Cruikshank, D. P. and Brown, R. H. (1987) Organic matter on asteroid 130 Elektra. Science, 238, 183184.Google Scholar
Cruikshank, D. P. and Hartmann, W. K. (1984) The meteorite-asteroid connection: Two olivine-rich asteroids. Science, 223, 281283.Google Scholar
Cruikshank, D. P., Tholen, D. J., Bell, J. F., Hartmann, W. K. and Brown, R. H. (1991) Three basaltic earth-approaching asteroids and the source of the basaltic meteorites. Icarus, 89, 113.Google Scholar
Cruikshank, D. P., Roush, T. L., Bartholomew, M. J., et al. (1998) The composition of centaur 5145 Pholus. Icarus, 135, 389407.Google Scholar
Cruikshank, D. P., Geballe, T. R., Owen, T. C., et al. (2002) Search for the 3.4-μm C-H spectral bands on low-albedo asteroids. Icarus, 156, 434441.Google Scholar
Ćuk, M. and Burns, J. A. (2005) Effects of thermal radiation on the dynamics of binary NEAs. Icarus, 176, 418431.Google Scholar
Cunningham, C. J. (1988) Introduction to Asteroids: The Next Frontier. Richmond: Willmann-Bell. 208 pp.Google Scholar
Cunningham, C. J. (2016) Discovery of the First Asteroid, Ceres: Historical Studies in Asteroid Research. New York: Spring International Publishing, 333 pp.Google Scholar
Cunningham, C. J. and Orchiston, W. (2011) Who invented the word asteroid: William Herschel or Stephen Weston? Journal of Astronomical History and Heritage, 14, 230234.Google Scholar
Curtis, H. D. (2014) Orbital Mechanics for Engineering Students (Third Edition). Waltham: Butterworth-Heinemann, 768 pp.Google Scholar
Dalrymple, G. B. (1991) The Age of the Earth. Stanford: Stanford University Press, 474 pp.Google Scholar
Davies, J. (1984) Asteroids-the comet connection. New Scientist, 1435/1436, 4648.Google Scholar
Davis, A. M. (2011) Stardust in meteorites. Proceeding of the National Academy of Sciences, 108, 1914219146.Google Scholar
Davis, A. M., Richter, F. M., Mendybaev, R. A., Janney, P. E., Wadhwa, M. and McKeegan, K. D. (2015) Isotopic mass fractionation laws for magnesium and their effects on 26Al–26Mg systematics in Solar System materials. Geochimica et Cosmochimica Acta, 158, 245261.Google Scholar
De Fourestier, J. (2002) The naming of mineral species approved by the commission on new minerals and mineral names of the International Mineralogical Association: A brief history. Canadian Mineralogist, 40, 17211735.Google Scholar
de la Fuente Marcos, C. and de la Fuente Marcos, R. (2014) Asteroid 2013 ND15: Trojan companion to Venus, PHA to the Earth. Monthly Notices of the Royal Astronomical Society, 439, 29702977.Google Scholar
Delaney, J. S., Takeda, H., Prinz, M., Nehru, C. E. and Harlow, G. E. (1983) The nomenclature of polymict basaltic achondrites. Meteoritics, 18, 103111.Google Scholar
Delbó, M. (2004) The nature of near-Earth asteroids from the study of their thermal emission. PhD thesis. Free University of Berlin, Berlin, Germany, 210 pp.Google Scholar
Delbó, M. and Harris, A. W. (2002) Physical properties of near-Earth asteroids from thermal infrared observations and thermal modeling. Meteoritics & Planetary Science, 37, 19291936.Google Scholar
Delbó, M. and Tanga, P. (2009) Thermal inertia of main belt asteroids smaller than 100 km from IRAS data. Planetary and Space Science, 57, 259265.CrossRefGoogle Scholar
Delbó, M., Gai, M., Lattanzi, M. G., et al. (2006) MIDI observations of 1459 Magnya: First attempt of interferometric observations of asteroids with the VLTI. Icarus, 181, 618622.Google Scholar
Delbó, M., Cellino, A. and Tedesco, E. F. (2007a) Albedo and size determination of potentially hazardous asteroids: (99942) Apophis. Icarus, 188, 266269.Google Scholar
Delbó, M., dell’Oro, A., Harris, A. W., Mottola, S. and Mueller, M. (2007b) Thermal inertia of near-Earth asteroids and implications for the magnitude of the Yarkovsky effect. Icarus, 190, 236249.Google Scholar
DeMeo, F. E. and Carry, B. (2013) The taxonomic distribution of asteroids from multi-filter all-sky photometric surveys. Icarus, 226, 723741.Google Scholar
DeMeo, F. E. and Carry, B. (2014) Solar System evolution from compositional mapping of the asteroid belt. Nature, 505, 629634.Google Scholar
DeMeo, F. E., Binzel, R. P., Slivan, S. M. and Bus, S. J. (2009) An extension of the Bus asteroid taxonomy into the near-infrared. Icarus, 202, 160180.Google Scholar
DeMeo, F. E., Binzel, R. P., Carry, B., Polishook, D. and Moskovitz, N. A. (2014) Unexpected D-type interlopers in the inner main belt. Icarus, 229, 392399.Google Scholar
De Sanctis, M. C., Ammannito, E., Migliorini, A., Lazzaro, D., Capria, M. T. and McFadden, L. (2011) Mineralogical characterization of some V-type asteroids, in support of the NASA Dawn mission. Monthly Notices of the Royal Astronomical Society, 412, 23182332.Google Scholar
De Sanctis, M. C., Ammannito, E., Capria, M. T., et al. (2012a) Spectroscopic characterization of mineralogy and its diversity across Vesta. Science, 336, 697700.Google Scholar
De Sanctis, M. C., Combe, J.-Ph., Ammannito, E., et al. (2012b) Detection of widespread hydrated materials on Vesta by the VIR imaging spectrometer on board the Dawn mission. Astrophysical Journal Letters, 758, L36.Google Scholar
De Sanctis, M. C., Ammannito, E., Capria, M. T., et al. (2013) Vesta’s mineralogical composition as revealed by the visible and infrared spectrometer on Dawn. Meteoritics & Planetary Science, 48, 21662184.Google Scholar
De Sanctis, M. C., Ammannito, E., Raponi, A., et al. (2015) Ammoniated phyllosilicates with a likely outer Solar System origin on (1) Ceres. Nature, 528, 241244.Google Scholar
De Sanctis, M. C., Raponi, A., Ammannito, E., et al. (2016) Bright carbonate deposits as evidence of aqueous alteration on (1) Ceres. Nature, 536, 54–57.CrossRefGoogle Scholar
Despois, D., Biver, N., Bockelée-Morvan, D. and Crovisier, J. (2005) Observations of molecules in comets. In Astrochemistry – Recent Successes and Current Challenges, eds. Lis, D. C., Blake, G. A. and Herbst, E. Cambridge: Cambridge University Press, pp. 119128.Google Scholar
Di Cicco, D. (1996) Hunting asteroids from your backyard. CCD Astronomy, Spring, 813.Google Scholar
Dickin, A. P. (2005) Radiogenic Isotope Geology. Cambridge: Cambridge University Press, 512 pp.Google Scholar
Dombard, A. J., Barnouin, O. S., Prockter, L. M. and Thomas, P. C. (2010) Boulders and ponds on the asteroid 433 Eros. Icarus, 210, 713721.Google Scholar
Dones, L., Brasser, R., Kaib, N. and Rickman, H. (2015) Origin and evolution of the cometary reservoirs. Space Science Reviews, 197, 191269.Google Scholar
Doressoundiram, A., Boehnhardt, H., Tegler, S. C. and Trujillo, C. (2008) Color properties and trends of the transneptunian objects. In The Solar System Beyond Neptune, eds. Barucci, M. A., Boehnhardt, H., Cruikshank, D. P. and Morbidelli, A. Tucson: University of Arizona Press, pp. 91104.Google Scholar
Drummond, J. D., Carry, B., Merline, W. J., et al. (2014) Dwarf planet Ceres: Ellipsoid dimensions and rotational pole from Keck and VLT adaptive optics images. Icarus, 236, 2837.Google Scholar
Duerbeck, H. W. (2009) Principles of photometry. In Handbook of Practical Astronomy, ed. Roth, G. D. New York: Springer-Verlag, pp. 205238.CrossRefGoogle Scholar
Duffard, R. and Roig, F. (2009) Two new V-type asteroids in the outer main belt? Planetary and Space Science, 57, 229234.Google Scholar
Duffard, R., Pinilla-Alonso, N., Ortiz, J. L., et al. (2014) Photometric and spectroscopic evidence for a dense ring system around centaur Chariklo. Astronomy & Astrophysics, 568, A79.Google Scholar
Dunham, D. W. (1978) Satellite of minor planet 532 Herculina discovered during occultation. Minor Planet Bulletin, 6, 13–14.Google Scholar
Dunn, T. L., McCoy, T. J., Sunshine, J. M. and McSween, H. Y. (2010) A coordinated spectral, mineralogical, and compositional study of ordinary chondrites. Icarus, 208, 789797.Google Scholar
Dykhuis, M. J. and Greenberg, R. (2015) Collisional family structure within the Nysa-Polana complex. Icarus, 252, 199211.Google Scholar
Dymock, R. (2007) The H and G magnitude system for asteroids. Journal of the British Astronomical System, 117, 342343.Google Scholar
Duxbury, T. C., Newburn, R. L., Acton, C. H., et al. (2004) Asteroid 5535 Annefrank size, shape, and orientation: Stardust first results. Journal of Geophysical Research, 109, E02002.Google Scholar
Ebel, D. S. (2006) Condensation of rocky material in astrophysical environments. In Meteorites and the Early Solar System, eds. Lauretta, D. S. and McSween, H. Y. Jr. Tucson: University of Arizona Press, pp. 253277.Google Scholar
Edgeworth, K. E. (1943) The evolution of our planetary system. Journal of the British Astronomical Association, 53, 181188.Google Scholar
Elisa, J. E., de Leon, N. P., Buseck, P. R. and Zare, R. N. (2005) Alkylation of polycyclic aromatic hydrocarbons in carbonaceous chondrites. Geochimica et Cosmochimica Acta, 69, 13491357.Google Scholar
Elkins-Tanton, L. T. (2010) Asteroids, Meteorites, and Comets (Revised Edition). New York: Facts on File, Inc., 270 pp.Google Scholar
El Moutamid, M., Kral, Q., Sicardy, B., et al. (2014) How can we explain the presence of rings around the centaur Chariklo? American Astronomical Society, DDA meeting, 45, 402.05.Google Scholar
Emery, J. P. and Brown, R. H. (2003) Constraints on the surface composition of Trojan asteroids from near-infrared (0.8–4.0 μm) spectroscopy. Icarus, 164, 104121.Google Scholar
Emery, J. P. and Brown, R. H. (2004) The surface composition of Trojan asteroids: Constraints set by scattering theory. Icarus, 170, 131152.Google Scholar
Emery, J. P., Cruikshank, D. P. and van Cleve, J. (2006) Thermal emission spectroscopy (5.2–38 μm) of three Trojan asteroids with the Spitzer Space Telescope: Detection of fine-grained silicates. Icarus, 182, 496512.Google Scholar
Emery, J. P., Burr, D. M. and Cruikshank, D. P. (2011) Near-infrared spectroscopy of Trojan asteroids: Evidence for two compositional groups. Astronomical Journal, 141, 25.Google Scholar
Emery, J. P., Fernández, Y. R., Kelley, M. S. P., et al. (2014) Thermal infrared observations and thermophysical characterization of OSIRIS-REx target asteroid (101955) Bennu. Icarus, 234, 1735.Google Scholar
Emery, J. P., Marzari, F., Morbidelli, A., French, L. M. and Grav, T. (2015) The complex history of Trojan asteroids. In Asteroids IV, eds. Michel, P., DeMeo, F. E. and Bottke, W. F. Tucson: University of Arizona Press, pp. 203220.Google Scholar
Eugster, O., Herzog, G. F., Marti, K. and Caffee, M. W. (2006) Irradiation records, cosmic-ray exposure ages, and transfer times of meteorites. In Meteorites and the Early Solar System, eds. Lauretta, D. S. and McSween, H. Y. Jr. Tucson: University of Arizona Press, pp. 829851.Google Scholar
Evans, J. B., Shelly, F. C. and Stokes, G. H. (2003) Detection and discovery of near-Earth asteroids by the LINEAR program. Lincoln Laboratory Journal, 14, 199220.Google Scholar
Evans, L. G., Starr, R. D., Brückner, J., et al. (2001) Elemental composition from gamma-ray spectroscopy of the NEAR-Shoemaker landing site on 433 Eros. Meteoritics & Planetary Science, 36, 16391660.Google Scholar
Evatt, G. W., Coughlan, M. J., Joy, K. H., Smedley, A. R. D., Connolly, P. J. and Abrahams, I. D. (2016) A potential hidden layer of meteorites below the ice surface of Antarctica. Nature Communications, 7, 10679.Google Scholar
Farinella, P., Gonczi, R., Froeschlé, Ch. and Froeschlé, C. (1993a) The injection of asteroid fragments into resonances. Icarus, 101, 174187.Google Scholar
Farinella, P., Froeschlé, C. and Gonczi, R. (1993b) Meteorites from the asteroid 6 Hebe. Celestial Mechanics and Dynamical Astronomy, 56, 287305.Google Scholar
Farnocchia, D. and Chesley, S. R. (2014) Assessment of the 2880 impact threat from asteroid (29075) 1950 DA. Icarus, 229, 321327.Google Scholar
Farquhar, R., Kawaguchi, J., Russell, C., Schwehm, G., Veverka, J. and Yeomans, D. (2002) Spacecraft exploration of asteroids: The 2001 perspective. In Asteroids II, eds. Binzel, R. P., Gehrels, T. and Matthews, M. S. Tucson: University of Arizona Press, pp. 367376.Google Scholar
Feierberg, M. A., Lebofsky, L. A. and Larson, H. P. (1981) Spectroscopic evidence for aqueous alteration products on the surfaces of low-albedo asteroids. Geochimica et Cosmochimica Acta, 45, 971981.Google Scholar
Feierberg, M. A., Larson, H. P. and Chapman, C. R. (1982) Spectroscopic evidence for undifferentiated S-type asteroids. Astrophysical Journal, 257, 361372.Google Scholar
Feierberg, M. A., Lebofsky, L. A. and Tholen, D. J. (1985) The nature of C-class asteroids from 3-micron spectrophotometry. Icarus, 63, 183191.Google Scholar
Fernández, J. A. (1980) On the existence of a comet belt beyond Neptune. Monthly Notices of the Royal Astronomical Society, 192, 481491.Google Scholar
Fernández, J. A. and Ip, W.-H. (1984) Some dynamical aspects of the accretion of Uranus and Neptune: The exchange of orbital angular momentum with planetesimals. Icarus, 58, 109120.Google Scholar
Fernández, Y. R., Jewitt, D. C. and Sheppard, S. S. (2005) Albedos of asteroids in comet-like orbits. Astronomical Journal, 130, 308318.Google Scholar
Florczak, M., Lazzaro, D. and Duffard, R. (2002) Discovering new V-type asteroids in the vicinity of 4 Vesta. Icarus, 159, 178182.Google Scholar
Foderà Serio, G., Manara, A. and Sicoli, P. (2002) Giuseppe Piazzi and the discovery of Ceres. In Asteroids III, eds. Bottke, W. F. Jr., Cellino, A., Paolicchi, P. and Binzel, R. P. Tucson: University of Arizona Press, pp. 1724.Google Scholar
Foley, C. N., Nittler, L. R., McCoy, T. J., et al. (2006) Minor element evidence that asteroid 433 Eros is a space-weathered ordinary chondrite parent body. Icarus, 184, 338343.Google Scholar
Foote, A. E. (1891) A new locality for meteoric iron with a preliminary notice of the discovery of diamonds in the iron. American Journal of Science, 42, 413417.Google Scholar
Fornasier, S., Dotto, E., Hainaut, O., et al. (2007) Visible spectroscopic and photometric survey of Jupiter Trojans: Final results on dynamical families. Icarus, 190, 622642.Google Scholar
Fornasier, S., Clark, B. E., Dotto, E., Migliorini, A., Ockert-Bell, M. and Barucci, M. A. (2010) Spectroscopic survey of M-type asteroids. Icarus, 210, 655673.Google Scholar
Fornasier, S., Clark, B. E. and Dotto, E. (2011) Spectroscopic survey of X-type asteroids. Icarus, 214, 131146.Google Scholar
Fornasier, S., Lellouch, E., Müller, T., et al. (2013) TNOs are cool: A survey of the trans-Neptunian region. VIII. Combined Herschel PACS and SPIRE observations of nine bright targets at 70–500 μm. Astronomy & Astrophysics, 555, A15.Google Scholar
Fowler, J. W. and Chillemi, J. R. (1992) IRAS asteroid data processing. In The IRAS Minor Planet Survey, eds. Tedesco, E. F., Veeder, G. J., Fowler, J. W. and Chillemi, J. R. Bedford: Hanscom Air Force Base, pp. 1743.Google Scholar
Franchi, I. A., Wright, I. P., Sexton, A. S. and Pillinger, C. T. (1999) The oxygen-isotopic composition of Earth and Mars. Meteoritics & Planetary Science, 34, 657661.Google Scholar
French, B. (1998) Traces of Catastrophe: A Handbook of Shock-Metamorphic Effects in Terrestrial Meteorite Impact Structures. Houston: Lunar and Planetary Institute, 120 pp.Google Scholar
Friedrich, J. M., Weisberg, M. K., Ebel, D. S., et al. (2015) Chondrule size and related physical properties: A compilation and evaluation of current data across all meteorite groups. Chemie der Erde, 75, 419443.Google Scholar
Fries, M., Le Corre, L., Hankey, M., et al. (2014) Detection and rapid recovery of the Sutter’s Mill meteorite fall as a model for future recoveries worldwide. Meteoritics & Planetary Science, 49, 19891996.Google Scholar
Froeschlé, Ch. and Scholl, H. (1987) Orbital evolution of asteroids near the secular resonance ν6. Astronomy and Astrophysics, 179, 294303.Google Scholar
Fu, R. R., Weiss, B. P., Shuster, D. L., et al. (2012) An ancient core dynamo in asteroid Vesta. Science, 338, 238241.Google Scholar
Fu, R. R., Weiss, B. P., Lima, E. A., et al. (2014) Solar nebula magnetic fields recorded in the Semarkona meteorite. Science, 346, 10891092.Google Scholar
Fujiwara, A., Kawaguchi, J., Yeomans, D. K., et al. (2006) The rubble-pile asteroid Itokawa as observed by Hayabusa. Science, 312, 13301334.Google Scholar
Gaffey, M. J. (1974) A systematic study of the spectral reflectivity characteristics of the meteorite classes with applications to the interpretation of asteroid spectra for mineralogical and petrological information. PhD thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts, 355 pp.Google Scholar
Gaffey, M. J. (1976) Spectral reflectance characteristics of the meteorite classes. Journal of Geophysical Research, 81, 905920.CrossRefGoogle Scholar
Gaffey, M. J. (1980) Mineralogically diagnostic features in the visible and near-infrared reflectance spectra of carbonaceous chondrite assemblages. Lunar and Planetary Science Conference, XI, 312313.Google Scholar
Gaffey, M. J. (1984) Rotational spectral variations of asteroid (8) Flora: Implications for the nature of the S-type asteroids and for the parent bodies of the ordinary chondrites. Icarus, 60, 83114.Google Scholar
Gaffey, M. J. (1995) The S(IV)-type asteroids as ordinary chondrite parent body candidates: Implications for the completeness of the meteorite sample of asteroids. Meteoritics, 30, 507508.Google Scholar
Gaffey, M. J. (1997) Surface lithologic heterogeneity of asteroid 4 Vesta. Icarus, 127, 130157.Google Scholar
Gaffey, M. J. and Gilbert, S. L. (1998) Asteroid 6 Hebe: The probable parent body of the H-type ordinary chondrites and the IIE iron meteorites. Meteoritics and Planetary Science, 33, 12811295.Google Scholar
Gaffey, M. J. and McCord, T. B. (1978) Asteroid surface materials: Mineralogical characterizations from reflectance spectra. Space Science Reviews, 21, 555628.Google Scholar
Gaffey, M. J., Bell, J. F. and Cruikshank, D. P. (1989) Reflectance spectroscopy and asteroid surface mineralogy. In Asteroids II, eds. Binzel, R. P., Gehrels, T. and Matthews, M. S. Tucson: University of Arizona Press, pp. 98127.Google Scholar
Gaffey, M. J., Reed, K. L. and Kelley, M. S. (1992) Relationship of E-type Apollo asteroid 3103 (1982 BB) to the enstatite achondrite meteorites and the Hungaria asteroids. Icarus, 100, 95109.Google Scholar
Gaffey, M. J., Bell, J. F., Brown, (1993) Mineralogic variations within the S-type asteroid class. Icarus, 106, 573602.Google Scholar
Gaffey, M. J., Cloutis, E. A., Kelley, M. S. and Reed, K. L. (2002) Mineralogy of asteroids. In Asteroids III, eds. Bottke, W. F. Jr., Cellino, A., Paolicchi, P. and Binzel, R. P. Tucson: University of Arizona Press, pp. 183204.Google Scholar
Gastineau-Lyons, H. K., McSween, H. Y. Jr. and Gaffey, M. J. (2002) A critical evaluation of oxidation versus reduction during metamorphism of L and LL group chondrites, and implications for asteroid spectroscopy. Meteoritics & Planetary Science, 37, 7589Google Scholar
Gehrels, T., ed. (1979) Asteroids. Tucson: University of Arizona Press, 1182 pp.Google Scholar
Genge, M. J. (2008) Koronis asteroid dust within Antarctic ice. Geology, 36, 687690.Google Scholar
Ghosh, A., Weidenschilling, S. J., McSween, H. Y. Jr. and Rubin, A. (2002) Asteroidal heating and thermal stratification of the asteroid belt. In Asteroids III, eds. Bottke, W. F. Jr., Cellino, A., Paolicchi, P. and Binzel, R. P. Tucson: University of Arizona Press, pp. 555566.Google Scholar
Giacomini, L., Massironi, M., Marchi, S., Fassett, C. I., Di Achille, G. and Cremonese, G. (2015) Age dating of an extensive thrust system on Mercury: Implications for the planet’s thermal evolution. Geological Society, London, Special Publications, 401, 291311.Google Scholar
Gielas, H. L. (2000) The 13-inch Pluto Discovery Telescope. Flagstaff: Lowell Observatory, 17 pp.Google Scholar
Gil-Hutton, R. and Brunini, A. (2008) Surface composition of Hilda asteroids from the analysis of the Sloan Digital Sky Survey colors. Icarus, 93, 567571.Google Scholar
Gil-Hutton, R. and Licandro, J. (2010) Taxonomy of asteroids in the Cybele region from the analysis of the Sloan Digital Sky Survey colors. Icarus, 206, 729734.Google Scholar
Gingerich, O. (2006) The inside story of Pluto’s demotion. Sky and Telescope, 112, 3439.Google Scholar
Giorgini, J. D., Benner, L. A. M., Ostro, S. J., Nolan, M. C. and Busch, M. W. (2008) Predicting the Earth encounters of (99942) Apophis. Icarus, 193, 119.Google Scholar
Gladman, B. and Coffey, J. (2009) Mercurian impact ejecta: Meteorites and mantle. Meteoritics & Planetary Science, 44, 285291.Google Scholar
Gladman, B. J., Burns, J. A., Duncan, M., Lee, P. and Levison, H. F. (1996) The exchange of impact ejecta between terrestrial planets. Science, 271, 13871392.Google Scholar
Gladstone, G. R., Stern, S. A., Ennico, K., et al. (2016) The atmosphere of Pluto as observed by New Horizons. Science, 351, aad8866-1–aad8866-6.Google Scholar
Goesmann, F., Rosenbauer, H., Bredehöft, J. H., et al. (2015) Organic compounds on comet 67P/Churyumov-Gerasimenko revealed by COSAC mass spectrometry. Science, 349, aab0689-1–aab0689-3.Google Scholar
Goldberg, E., Uchiyama, A. and Brown, H. (1951) The distribution of nickel, cobalt, gallium, palladium, and gold in iron meteorites. Geochimica et Cosmochimica Acta, 2, 1–25.Google Scholar
Goldreich, P. and Tremaine, S. (1980) Disk-satellite interactions. Astrophysical Journal, 241 , 425441.Google Scholar
Goldstein, J. I., Scott, E. R. D. and Chabot, N. L. (2009) Iron meteorites: Crystallization, thermal histories, parent bodies, and origin. Chemie der Erde, 69, 293325.Google Scholar
Gomes, R., Levison, H. F., Tsiganis, K. and Morbidelli, M. (2005). Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets. Nature, 435, 466469.Google Scholar
Gomes, R. S., Fernández, J. A., Gallardo, T. and Brunini, A. (2008) The scattered disk: Origins, dynamics, and end states. In The Solar System Beyond Neptune, eds. Barucci, M. A., Boehnhardt, H., Cruikshank, D. P. and Morbidelli, A. Tucson: University of Arizona Press, pp. 259273.Google Scholar
Gould, B. A. (1852) On the symbolic notation of the asteroids. Astronomical Journal, 2, 80.Google Scholar
Gounelle, M., Morbidelli, A., Bland, P. A., Spurný, P., Young, E. D. and Sephton, M. (2008) Meteorites from the outer Solar System? In The Solar System Beyond Neptune, eds. Barucci, M. A., Boehnhardt, H., Cruikshank, D. P. and Morbidelli, A. Tucson: University of Arizona Press, pp. 525541.Google Scholar
Gounelle, M., Chaussidon, M., Morbidelli, A., et al. (2009) A unique basaltic micrometeorite expands the inventory of Solar System planetary crusts. Proceedings of the National Academy of Sciences, 106, 69046909.Google Scholar
Gradie, J. and Tedesco, E. (1982) Compositional structure of the asteroid belt. Science, 216, 14051407.Google Scholar
Gradie, J. and Veverka, J. (1980) The composition of the Trojan asteroids. Nature, 283, 840842.Google Scholar
Grady, M. M., Pratesi, G. andCecchi, V. M. (2014) Atlas of Meteorites. Cambridge: Cambridge University Press, 384 pp.Google Scholar
Granahan, J. C. (1993) Investigations of asteroid family geology. PhD thesis, University of Hawaii, Honolulu, Hawaii, 187 pp.Google Scholar
Granahan, J. (2002) A compositional study of asteroid 243 Ida and Dactyl from Galileo NIMS and SSI observations. Journal of Geophysical Research, 107, 201-1–201-10.Google Scholar
Granahan, J. C. (2011) Spatially resolved spectral observations of asteroid 951 Gaspra. Icarus, 213, 265272.Google Scholar
Granahan, J. C. (2013) A comparison of ordinary chondrites with 243 Ida and Dactyl. Lunar and Planetary Science Conference, 44, 1045. www.lpi.usra.edu/meetings/lpsc2013/pdf/1045.pdf.Google Scholar
Granahan, J. C. and Bell, J. F. (1991) On the geologic reality of asteroid families. Lunar and Planetary Science Conference, XXII, 477478.Google Scholar
Granahan, J. C., Fanale, F. P., Robinson, M. S., et al. (1994) A Galileo multi-instrument spectral analysis of 951 Gaspra. Lunar and Planetary Science Conference, XXV, 453454.Google Scholar
Granahan, J. C., Fanale, F. P., Carlson, R., et al. (1995) Galileo multi-instrument spectral observations of 243 Ida and Dactyl. Lunar and Planetary Science Conference, XXVI, 489490.Google Scholar
Granvik, M., Virtanen, J., Oszkiewicz, D. and Muinonen, K. (2009) OpenOrb: Open-source asteroid orbit computation software including statistical ranging. Meteoritics & Planetary Science, 44, 18531861.Google Scholar
Granvik, M., Morbidelli, A., Jedicke, R., et al. (2016) Super-catastrophic disruption of asteroids at small perihelion distances. Nature, 530, 303306.Google Scholar
Grav, T., Mainzer, A. K., Bauer, J., et al. (2011) WISE/NEOWISE observations of the Jovian Trojans: Preliminary results. Astrophysical Journal, 742, 40Google Scholar
Grav, T., Mainzer, A. K., Bauer, J., et al. (2012a) WISE/NEOWISE observations of the Hilda population: Preliminary results. Astrophysics Journal, 744, 197.Google Scholar
Grav, T., Mainzer, A. K., Bauer, J., Masiero, J. and Nugent, C. R. (2012b) WISE/NEOWISE observations of the Jovian Trojan population: Taxonomy. Astrophysics Journal, 759, 49.Google Scholar
Green, D. W. E. (2010) (596) Scheila. International Astronomical Union Circular, 9188.Google Scholar
Greenberg, R., Nolan, M. C., Bottke, W. F., Kolvoord, R. A. and Veverka, J. (1994) Collisional history of Gaspra. Icarus, 107, 8497.Google Scholar
Greenberg, R., Bottke, W. F., Nolan, M., et al. (1996) Collisional and dynamical history of Ida. Icarus, 120, 106118.Google Scholar
Greenstreet, S., Ngo, H. and Gladman, B. (2012) The orbital distribution of near-Earth objects inside Earth's orbit. Icarus, 217, 355366.Google Scholar
Greenwood, R. C., Franchi, I. A., Kearsley, A. T. and Alard, O. (2010) The relationship between CK and CV chondrites. Geochimica et Cosmochimica Acta, 74, 16841705.Google Scholar
Grossman, J. N. and Brearley, A. J. (2005) The onset of metamorphism in ordinary and carbonaceous chondrites. Meteoritics & Planetary Science, 40, 87122,Google Scholar
Grossman, J. N. and Wasson, J. T. (1981) Compositional study of chondrules from the highly unequilibrated (LL3.0) Semarkona chondrite. Lunar and Planetary Science Conference, XII, 371373.Google Scholar
Grossman, L. (1972) Condensation in the primitive solar nebula. Geochimica et Cosmochimica Acta, 36, 597619.Google Scholar
Grundy, W. M., Binzel, R. P., Buratti, B. J., et al. (2016) Surface compositions across Pluto and Charon. Science, 351, aad9189-1–aad9189-8.Google Scholar
Guinot, B. (2011) Solar time, legal time, time in use. Metrologia, 48, S181–S185.Google Scholar
Gulbis, A. A. S., Elliot, J. L., Person, M. J., et al. (2006) Charon’s radius and atmospheric constraints from observations of a stellar occultation. Nature, 439, 4851.Google Scholar
Gupta, R. P. (2003) Remote Sensing Geology (Second Edition). Berlin: Springer-Verlag, 656 pp.Google Scholar
Güttler, C., Hirata, N. and Nakamura, A. M. (2012) Cratering experiments on the self armoring of coarse-grained granular targets. Icarus, 220, 10401049.Google Scholar
Halliday, A. N. (2000) Hf-W chronometry and inner Solar System accretion rates. Space Science Reviews, 92, 355370.Google Scholar
Hapke, B. (1981) Bidirectional reflectance spectroscopy. 1. Theory. Journal of Geophysical Research, 86, 30393054.Google Scholar
Hapke, B. (1984) Bidirectional reflectance spectroscopy. 3. Correction for macroscopic roughness. Icarus, 59, 4159.Google Scholar
Hapke, B. (1986) Bidirectional reflectance spectroscopy. 4. The extinction coefficient and the opposition effect. Icarus, 67, 264280.Google Scholar
Hapke, B. (1993) Theory of Reflectance and Emittance Spectroscopy. Cambridge: Cambridge University Press, 469 pp.Google Scholar
Hapke, B. (1999) Scattering and diffraction of light by particles in planetary regoliths. Journal of Quantitative Spectroscopy and Radiative Transfer, 61, 565581.Google Scholar
Hapke, B. (2001) Space weathering from Mercury to the asteroid belt. Journal of Geophysical Research, 106, 1003910073.Google Scholar
Hapke, B. (2002) Bidirectional reflectance spectroscopy. 5. The coherent backscatter opposition effect and anisotropic scattering. Icarus, 157, 523534.Google Scholar
Hapke, B. (2008) Bidirectional reflectance spectroscopy. 6. Effects of porosity. Icarus, 195, 918926.Google Scholar
Hapke, B. (2012a) Bidirectional reflectance spectroscopy. 7. The single particle phase function hockey stick relation. Icarus, 221, 10791083.Google Scholar
Hapke, B. (2012b) Theory of Reflectance and Emittance Spectroscopy (2nd Edition). Cambridge: Cambridge University Press, 528 pp.Google Scholar
Hapke, B. (2013) Comment on “A critical assessment of the Hapke photometric model” by Y. Shkuratov et al. Journal of Quantitative Spectroscopy & Radiative Transfer, 116, 184190.Google Scholar
Hapke, B. and Wells, E. (1981) Bidirectional reflectance spectroscopy 2. – Experiments and observations. Journal of Geophysical Research, 86, 30553060.Google Scholar
Hapke, B., Cassidy, W. and Wells, E. (1975) Effects of vapor-phase deposition processes on the optical, chemical, and magnetic properties of the lunar regolith. Moon, 13, 339353.Google Scholar
Hardersen, P. S., Gaffey, M. J. and Abell, P. A. (2004) Mineralogy of asteroid 1459 Magnya and implications for its origin. Icarus, 167, 170177.Google Scholar
Hardersen, P. S., Gaffey, M. J. and Abell, P. A. (2005) Near-IR spectral evidence for the presence of iron-poor orthopyroxenes on the surfaces of six M-type asteroids. Icarus, 175, 141158.Google Scholar
Hardersen, P. S., Cloutis, E. A., Reddy, V., Mothé-Diniz, T. and Emery, J. P. (2011) The M-/X-asteroid menagerie: Results of an NIR spectral survey of 45 main-belt asteroids. Meteoritics & Planetary Science, 46, 19101938.CrossRefGoogle Scholar
Hardersen, P. S., Reddy, V., Roberts, R. and Mainzer, A. (2014) More chips off of asteroid (4) Vesta: Characterization of eight Vestoids and their HED meteorite analogs. Icarus, 242, 269282.Google Scholar
Hardersen, P. S., Reddy, V. and Roberts, R. (2015) Vestoids, part II: The basaltic nature and HED meteorite analogs for eight Vp-type asteroids and their associations with (4) Vesta. Astrophysical Journal Supplement Series, 221, 19.Google Scholar
Harrington, J., de Pater, I., Brecht, S. H., et al. (2004) Lessons from Shoemaker-Levy 9 about Jupiter and planetary impacts. In Jupiter. The Planet, Satellites and Magnetosphere, eds. Bagenal, F., Dowling, T. E. and McKinnon, W. B. Cambridge: Cambridge University Press, 159184.Google Scholar
Harris, A. W. (1998) A thermal model for near-Earth asteroids. Icarus, 131, 291301.Google Scholar
Harris, A. (2008) What Spaceguard did. Nature, 453, 11781179.Google Scholar
Harris, A. W. and D’Abramo, G. (2015) The population of near-Earth asteroids. Icarus, 257, 302312.Google Scholar
Harris, A. W. and Lagerros, J. S. V. (2002) Asteroids in the thermal infrared. In Asteroids III, eds. Bottke, W. F. Jr., Cellino, A., Paolicchi, P. and Binzel, R. P. Tucson: University of Arizona Press, pp. 205–218.Google Scholar
Hartmann, W. K. and Neukum, G. (2001) Cratering chronology and the evolution of Mars. Space Science Reviews, 96, 165194.Google Scholar
Hartmann, W. K., Farinella, P., Vokrouhlický, D., et al. (1999) Reviewing the Yarkovsky effect: New light on the delivery of stone and iron meteorites from the asteroid belt. Meteoritics & Planetary Science, 34, A161–A167.Google Scholar
Hasegawa, S., Murakawa, K., Ishiguro, M., et al. (2003) Evidence of hydrated and/or hydroxylated minerals on the surface of asteroid 4 Vesta. Geophysical Research Letters, 30, 2123.Google Scholar
Hayatsu, R., Anders, E., Studier, M. H. and Moore, L. P. (1975) Purines and triazines in the Murchison meteorite. Geochimica et Cosmochimica Acta, 39, 471488.Google Scholar
Hayatsu, R., Winans, R. E., Scott, R. G., McBeth, R. L., Moore, L. P. and Studier, M. H. (1980) Phenolic ethers in the organic polymer of the Murchison meteorite. Science, 207, 12021204.Google Scholar
Head, J. W., Fassett, C. I., Kadish, S. J., et al. (2010) Global distribution of large lunar craters: Implications for resurfacing and impactor populations. Science, 329, 15041507.Google Scholar
Hedman, M. M. (2015) Why are dense planetary rings only found between 8 AU and 20 AU? Astrophysical Journal Letters, 801, L33.Google Scholar
Helfenstein, P., Veverka, J., Thomas, P. C., et al. (1994) Galileo photometry of asteroid 951 Gaspra. Icarus, 107, 3760.Google Scholar
Helin, E. F., Pravdo, S. H., Rabinowitz, D. L. and Lawrence, K. J. (1997) Near-Earth Asteroid Tracking (NEAT) Program. Annals of the New York Academy of Sciences, 822, 625.Google Scholar
Henning, T. (2010) Cosmic silicates. Annual Review of Astronomy and Astrophysics, 48, 2146.Google Scholar
Hergarten, S. and Kenkmann, T. (2015) The number of impact craters on Earth: Any room for further discoveries? Earth and Planetary Science Letters, 425, 187192.Google Scholar
Herschel, W. (1802) Observations on the two lately discovered celestial bodies. Philosophical Transactions of the Royal Society of London, 92, 213232.Google Scholar
Herzog, G. F., Caffee, M. W. and Jull, A. J. T. (2015) Cosmogenic nuclides in Antarctic meteorites. In 35 Seasons of U.S. Antarctic Meteorites: A Pictorial Guide To The Collection, eds. Righter, K., Corrigan, C., McCoy, T. and Harvey, R. Washington, DC: American Geophysical Union, pp. 153172.Google Scholar
Hevey, P. J. and Sanders, I. S. (2006) A model for planetesimal meltdown by 26Al and its implications for meteorite parent bodies. Meteoritics & Planetary Science, 41, 95106.Google Scholar
Hewins, R. H. (1997) Chondrules. Annual Review of Earth and Planetary Sciences, 25, 6183.Google Scholar
Hezel, D. C. and Russell, S. S. (2008) Comment on “Ancient asteroids enriched in refractory inclusions.” Science, 322, 1050.Google Scholar
Hiesinger, H., van der Bogert, C. H., Pasckert, J. H., et al. (2012) How old are young lunar craters? Journal of Geophysical Research, 117, E00H10.Google Scholar
Hillier, J. K., Bauer, J. M. and Buratti, B. J. (2011) Photometric modeling of asteroid 5535 Annefrank from Stardust observations. Icarus, 211, 546552.Google Scholar
Hilton, J. L. (2006) When did the asteroids become minor planets? http://aa.usno.navy.mil/faq/docs/minorplanets.php.Google Scholar
Hinrichs, J. L., Lucey, P. G., Robinson, M. S., Meibom, A. and Krot, A. N. (1999) Implications of temperature-dependent near-IR spectral properties of common minerals and meteorites for the remote sensing of asteroids. Geophysical Research Letters, 26, 16611664.Google Scholar
Hirata, N., Barnouin-Jha, O. S., Honda, C., et al. (2009) A survey of possible impact structures on 25143 Itokawa. Icarus, 200, 486502.Google Scholar
Hirayama, K. (1918) Groups of asteroids probably of common origin. Astronomical Journal, 31, 185188.Google Scholar
Hirayama, K. (1928) Families of asteroids. Japanese Journal of Astrononomy and Geophysics, 5, 137162.Google Scholar
Hirayama, K. (1933) Present state of the families of asteroids. Proceedings of the Imperial Academy of Japan, 9, 482485.Google Scholar
Hiroi, T. and Hasegawa, S. (2003) Revisiting the search for the parent body of the Tagish Lake meteorite – Case of a T/D asteroid 308 Polyxo. Antarctic Meteorite Research, 16, 176184.Google Scholar
Hiroi, T. and Pieters, C. M. (1994) Estimation of grain sizes and mixing ratios of fine powder mixtures of common geologic minerals. Journal of Geophysical Research, 99, 1086710879.Google Scholar
Hiroi, T. and Sasaki, S. (2001) Importance of space weathering simulation products in compositional modeling of asteroids: 349 Dembowska and 446 Aeternitas as examples. Meteoritics & Planetary Science, 36, 15871596.Google Scholar
Hiroi, T., Pieters, C. M., Zolensky, M. E. and Lipschutz, M. E. (1993) Evidence of thermal metamorphism on the C, G, B, and F asteroids. Science, 261, 10161018.Google Scholar
Hiroi, T., Pieters, C. M. and Takeda, H. (1994) Grain size of the surface regolith of asteroid 4 Vesta estimated from its reflectance spectrum in comparison with HED meteorites. Meteoritics, 29, 394396.Google Scholar
Hiroi, T., Binzel, R. P., Sunshine, J. M., Pieters, C. M. and Takeda, H. (1995) Grain sizes and mineral compositions of surface regoliths of Vesta-like asteroids. Icarus, 115, 374386.Google Scholar
Hiroi, T., Zolensky, M. E., Pieters, C. M. and Lipschutz, M. E. (1996) Thermal metamorphism of the C, G, B, and F asteroids seen from the 0.7μm, 3μm and UV absorption strengths in comparison with carbonaceous chondrites. Meteoritics & Planetary Science, 31, 321327.Google Scholar
Hiroi, T., Pieters, C. M., Vilas, F., Sasaki, S., Hamabe, Y. and Kurahashi, E. (2001a) The mystery of 506.5 nm feature of reflectance spectra of Vesta and Vestoids: Evidence for space weathering? Earth, Planets and Space, 53, 10711075.Google Scholar
Hiroi, T., Zolensky, M. E. and Pieters, C. M. (2001b) The Tagish Lake meteorite: A possible sample from a D-type asteroid. Science, 293, 22342236.Google Scholar
Hiroi, T., Pieters, C. M., Rutherford, (2004) What are the P-type asteroids made of? Lunar and Planetary Science Conference, XXXV, 1616. www.lpi.usra.edu/meetings/lpsc2004/pdf/1616.pdf.Google Scholar
Hollis, A. J. (1994) Classifying asteroids. Journal of the British Astronomical Association, 104, 112122.Google Scholar
Hood, L. L. (1995) Frozen fields. Earth, Moon, and Planets, 67, 131142.Google Scholar
Horner, J. and Lykawka, P. S. (2011) The Neptune Trojans: A window on the birth of the Solar System. Astronomy & Geophysics, 52, 4.24–4.30.Google Scholar
Horstmann, M. and Bischoff, A. (2014) The Almahata Sitta polymict breccia and the late accretion of asteroid 2008 TC3. Chemie der Erdie, 74, 149183.Google Scholar
Housen, K. R., Holsapple, K. A. and Voss, M. E. (1999) Compaction as the origin of the unusual craters on the asteroid Mathilde. Nature, 402, 155157.Google Scholar
Howard, K. T., Alexander, C. M. O’D. and Dyl, K. A. (2014) PSD-XRD modal mineralogy of type 3.0 CO chondrites: Initial asteroidal water mass fractions and implications for CM chondrites. Lunar and Planetary Science Conference, 45, 1830. www.hou .usra.edu/meetings/lpsc2014/pdf/1830.pdf.Google Scholar
Howell, E. S., Britt, D. T., Bell, J. F., Binzel, R. P. and Lebofsky, L. A. (1994a) Visible and near-infrared spectral observations of 4179 Toutatis. Icarus, 111, 468474.Google Scholar
Howell, E. S., Merényi, E. and Lebofsky, L. A. (1994b) Classification of asteroid spectra using a neural network. Journal of Geophysical Research, 99, 10847–10865.Google Scholar
Howell, E. S., Rivkin, A. S., Vilas, F. and Soderberg, A. M. (2001) Aqueous alteration in low albedo asteroids. Lunar and Planetary Science Conference, XXXII, 2058. www.lpi.usra.edu/meetings/lpsc2001/pdf/2058.pdf.Google Scholar
Howell, S. B. (2006) Handbook of CCD Astronomy (Second Edition). Cambridge: Cambridge University Press, 220 pp.Google Scholar
Hsieh, H. H., Jewitt, D. C. and Fernández, Y. R. (2004) The strange case of 133P/Elst-Pizarro: A comet among the asteroids. Astronomical Journal, 127, 29973017.Google Scholar
Huang, J., Ji., J., Ye, P., et al. (2013) The ginger-shaped asteroid 4179 Toutatis: New observations from a successful flyby of Chang’e-2. Scientific Reports, 3, 3411.Google Scholar
Hubbard, A. and Ebel, D. S. (2015) Semarkona: Lessons for chondrule and chondrite formation. Icarus, 245, 3237.Google Scholar
Hubbard, W. B., Hunten, D. M., Dieters, S. W., Hill, K. M. and Watson, R. D. (1988) Occultation evidence for an atmosphere on Pluto. Nature, 336, 452454.Google Scholar
Huber, H., Rubin, A. E., Kallemeyn, G. W. and Wasson, J. T. (2006) Siderophile-element anomalies in CK carbonaceous chondrites: Implications for parent-body aqueous alteration and terrestrial weathering of sulfides. Geochimica et Cosmochimica Acta, 70, 40194037.Google Scholar
Hughes, D. W. (1994) The historical unravelling of the diameters of the first four asteroids. Quarterly Journal of the Royal Astronomical Society, 35, 331344.Google Scholar
Hughes, D. W. and Green, D. W. E. (2007) Halley’s first name: Edmond or Edmund. International Comet Quarterly, 29, 714.Google Scholar
Huss, G. R., Rubin, A. E. and Grossman, J. N. (2006) Thermal metamorphism in chondrites. In Meteorites and the Early Solar System, eds. Lauretta, D. S. and McSween, H. Y. Jr. Tucson: University of Arizona Press, pp. 567586.Google Scholar
Husson, D., Galbrun, B., Laskar, J., et al. (2011) Astronomical calibration of the Maastrichtian (Late Cretaceous). Earth and Planetary Science Letters, 305, 328340.Google Scholar
Hutchison, R. (2004) Meteorites: A Petrologic, Chemical and Isotopic Synthesis. Cambridge: Cambridge University Press, 524 pp.Google Scholar
Irwin, M. J. (1997) Detectors and data analysis techniques for wide field optical imaging. In Instrumentation for Large Telescopes, eds. Rodriquez Espinosa, J. M., Herrero, A. and Sánchez, F. Cambridge: Cambridge University Press, pp. 3574.Google Scholar
Isa, J., Ma, C. and Rubin, A. E. (2015) Joegoldsteinite: A new sulfide mineral (MnCr2S4) from the IVA iron meteorite, Social Circle. Lunar and Planetary Science Conference, 47, 1813. www.hou.usra.edu/meetings/lpsc2016/pdf/1813.pdf.Google Scholar
Isaacson, P. J. and Pieters, C. M. (2009) Northern Imbrium noritic anomaly. Journal of Geophysical Research, 114, E09007.Google Scholar
Ishiguro, M., Kuroda, D., Hasegawa, S., et al. (2014) Optical properties of (162173) 1999 JU3: In preparation for the JAXA Hayabusa 2 sample return mission. Astrophysical Journal, 792, 74.Google Scholar
Ivanov, B. A. (2001) Mars/Moon cratering rate ratio estimates. Space Science Reviews, 96, 87104.Google Scholar
Ivanov, B. A. and Hartmann, W. K. (2009) Exogenic dynamics, cratering and surface ages. In Treatise on Geophysics, Volume 10: Planets and Moons, ed. Schubert, G. Amsterdam: Elsevier, pp. 207242.Google Scholar
Ivanov, B. A., Neukum, G., Bottke, W. F. Jr. and Hartmann, W. K. (2002) The comparison of size-frequency distributions of impact craters and asteroids and the planetary cratering rate. In Asteroids III, eds. Bottke, W. F. Jr., Cellino, A., Paolicchi, P. and Binzel, R. P. Tucson: University of Arizona Press, pp. 89101.Google Scholar
Ivezić, Ž., Tabachnik, S., Rafikov, R., et al. (2001) Solar System objects observed in the Sloan Digital Sky Survey commissioning data. Astronomical Journal, 122, 27492784.Google Scholar
Ivezić, Ž., Lupton, R. H., Jurić, M., et al. (2002) Color confirmation of asteroid families. Astronomical Journal, 124, 29432948.Google Scholar
Jacobsen, B., Yin, Q.-z., Moynier, F., et al. (2008) 26Al-26Mg and 207Pb-206Pb systematics of Allende CAIs: Canonical solar initial 26Al/27Al ratio reinstated. Earth and Planetary Science Letters, 272, 353364.Google Scholar
Jacobsen, S. B. (2005) The Hf-W isotopic system and the origin of the Earth and Moon. Annual Review of Earth and Planetary Sciences, 33, 531570.Google Scholar
Jansen, W. and Slaughter, M. (1982). Elemental mapping of minerals by electron microprobe. American Mineralogist, 67, 521533.Google Scholar
Jarosewich, E. (1990) Chemical analyses of meteorites: A compilation of stony and iron meteorite analyses. Meteoritics, 25, 323337.Google Scholar
Jedicke, R., Gravnik, M., Micheli, M., Ryan, E., Spahr, T. and Yeomans, D. K. (2015) Surveys, astrometric follow-up and population statistics. In Asteroids IV, eds. Michel, P., DeMeo, F. E. and Bottke, W. F. Tucson: University of Arizona Press, pp. 795813.Google Scholar
Jenniskens, P. (2004) 2003 EH1 is the Quadrantid shower parent comet. Astronomical Journal, 127, 30183022.Google Scholar
Jenniskens, P. (2006) Meteor Showers and their Parent Comets. Cambridge: Cambridge University Press, 804 pp.Google Scholar
Jenniskens, P., Betlem, H., Betlem, J., et al. (1994) The Mbale meteorite shower. Meteoritics, 29, 246254.Google Scholar
Jenniskens, P., Shaddad, M. H., Numan, D., et al. (2009) The impact and recovery of asteroid 2008 TC3. Nature, 458, 485488.Google Scholar
Jenniskens, P., Vaubaillon, J., Binzel, R. P., et al. (2010) Almahata Sitta (=asteroid 2008 TC3) and the search for the ureilite parent body. Meteoritics & Planetary Science, 45, 15901617.Google Scholar
Jewitt, D. (1999) The Kuiper belt. Physics World, 12, 3741.Google Scholar
Jewitt, D. (2005) A first look at the damocloids. Astronomical Journal, 129, 530538.Google Scholar
Jewitt, D. (2010) The discovery of the Kuiper belt. Astronomy Beat, 48, 15.Google Scholar
Jewitt, D. (2012) The active asteroids. Astronomical Journal, 143, 66.Google Scholar
Jewitt, D. (2015) Color systematics of comets and related bodies. Astronomical Journal, 150, 201.Google Scholar
Jewitt, D. C. and Luu, J. X. (1990) CCD spectra of asteroids. II. The Trojans as spectral analogs of cometary nuclei. Astronomical Journal, 100, 933944.Google Scholar
Jewitt, D. and Luu, J. (1993) Discovery of the candidate Kuiper belt object 1992 QB1. Nature, 362, 730732.Google Scholar
Jewitt, D. C. and Luu, J. (2004) Crystalline water ice on the Kuiper belt object (50000) Quaoar. Nature, 432, 731733.Google Scholar
Jewitt, D. and Guilbert-Lepoutre, A. (2012) Limits to ice on asteroids (24) Themis and (65) Cybele. Astronomical Journal, 143, 21.Google Scholar
Jewitt, D., Aussel, H. and Evans, A. (2001) The size and albedo of the Kuiper-belt object (20000) Varuna. Nature, 411, 446447.Google Scholar
Jewitt, D., Hsieh, H. and Agarwal, J. (2015) The active asteroids. In Asteroids IV, eds. Michel, P., DeMeo, F. E. and Bottke, W. F. Tucson: University of Arizona Press, pp. 221241.Google Scholar
Jiang, Y., Ji, J., Huang, J., Marchi, S., Li, Y. and Ip, W.-H. (2015) Boulders on asteroid Toutatis as observed by Chang’e-2. Scientific Reports, 5, 16029.Google Scholar
Jilly, C. E., Huss, G. R., Krot, A. N., Nagashima, K., Yin, Q.-z. and Sugiura, N. (2014) 53Mn-53Cr dating of aqueously formed carbonates in the CM2 lithology of the Sutter’s Mill carbonaceous chondrite. Meteoritics & Planetary Science, 49, 21042117.Google Scholar
Johnson, B. C., Minton, D. A., Melosh, H. J. and Zuber, M. T. (2015) Impact jetting as the origin of chondrules. Nature, 517, 339341.Google Scholar
Johnson, H. L. and Morgan, W. W. (1953) Fundamental stellar photometry for standards of spectral type on the revised system of the Yerkes spectral atlas. Astrophysical Journal, 117, 313352.Google Scholar
Johnson, J. A., Christensen, E. J., Gibbs, A. R., et al. (2014) The Catalina Sky Survey: Status, discoveries and the future. American Astronomical Society, DPS meeting, 46, 414.09.Google Scholar
Johnson, T. V. and Fanale, F. P. (1973) Optical properties of carbonaceous chondrites and their relationship to asteroids. Journal of Geophysical Research, 78, 85078518.Google Scholar
Jones, T. D., Lebofsky, L.A., Lewis, J. S. and Marley, M. S. (1990) The composition and origin of the C, P, and D asteroids: Water as a tracer of thermal evolution in the outer belt. Icarus, 88, 172192.Google Scholar
Jourdan, F., Timms, N., Eroglu, E., et al. (2015) Collisional history of asteroid Itokawa. Goldschmidt Abstracts, 2015, 1479.Google Scholar
Jull, A. J. T. (2006) Terrestrial ages of meteorites. In Meteorites and the Early Solar System, eds. Lauretta, D. S. and McSween, H. Y. Jr. Tucson: University of Arizona Press, pp. 889–905.Google Scholar
Jura, M. (2008) Pollution of single white dwarfs by accretion of many small asteroids. Astronomical Journal, 135, 1785–1792.Google Scholar
Jura, M. (2014) The elemental compositions of extrasolar planetesimals. In Formation, Detection and Characterization of Extrasolar Habitable Planets, ed. Haghighipour, N. Cambridge: Cambridge University Press, pp. 219228.Google Scholar
Jura, M. and Young, E. D. (2014) Extrasolar cosmochemistry. Annual Review of Earth and Planetary Sciences, 42, 4567.Google Scholar
Jurewicz, A. J. G., Mittlefehldt, D. W. and Jones, J. H. (1991) Partial melting of the Allende (CV3) meteorite: Implications for origins of basaltic meteorites. Science, 252, 695698.Google Scholar
Jurewicz, A. J. G., Mittlefehldt, D. W. and Jones, J. H. (1993) Experimental partial melting of the Allende (CV) and Murchison (CM) chondrites and the origin of asteroidal basalt. Geochimica et Cosmochimica Acta, 57, 21232139.Google Scholar
Jurić, M., Ivezić, Ž., Lupton, R. H., et al. (2002) Comparison of positions and magnitudes of asteroids observed in the Sloan Digital Sky Survey with those predicted for known asteroids. Astronomical Journal, 124, 17761787.Google Scholar
Kallemeyn, G. W., Rubin, A. E. and Wasson, J. T. (1991) The compositional classification of chondrites: V. The Karoonda (CK) group of carbonaceous chondrites. Geochimica et Cosmochimica Acta, 55, 881892.Google Scholar
Karczemska, A. T. (2010) Diamonds in meteorites – Raman mapping and cathodoluminescence studies. Journal of Achievements in Materials and Manufacturing Engineering, 43, 94107.Google Scholar
Kargel, J. S. (1994) Metalliferous asteroids as potential sources of precious metals. Journal of Geophysical Research, 99, 2112921141.Google Scholar
Kaasalainen, M., Mottola, S. and Fulchignoni, M. (2002) Asteroid models from disk-integrated data. In Asteroids III, eds. Bottke, W. F. Jr., Cellino, A., Paolicchi, P. and Binzel, R. P. Tucson: University of Arizona Press, pp. 139150.Google Scholar
Kebukawa, Y., Zolensky, M. E., Kilcoyne, A. L. D., Rahman, Z., Jenniskens, P. and Cody, G. D. (2014) Diamond xenolith and matrix organic matter in the Sutter’s Mill meteorite measured by C-XANES. Meteoritics & Planetary Science, 49, 20952103.Google Scholar
Keil, K. (1989) Enstatite meteorites and their parent bodies. Meteoritics, 24, 195208.Google Scholar
Keil, K. (2014) Brachinite meteorites: Partial melt residues from an FeO-rich asteroid. Chemie der Erde, 74, 311329.Google Scholar
Keller, H. U., Barbieri, C., Lamy, P., et al. (2007) OSIRIS the scientific camera system onboard Rosetta. Space Science Reviews, 128, 433506.Google Scholar
Keller, H. U., Barbieri, C., Koschny, D., et al. (2010) E-type asteroid (2867) Steins as imaged by OSIRIS on board Rosetta. Science, 327, 190193.Google Scholar
Kelley, M. S. and Gaffey, M. J. (2002) High-albedo asteroid 434 Hungaria: Spectrum, composition and genetic connections. Meteoritics & Planetary Science, 37, 18151827.Google Scholar
Kelley, M. S., Vilas, F., Gaffey, M. J. and Abell, P. A. (2003) Quantified mineralogical evidence for a common origin of 1929 Kollaa with 4 Vesta and the HED meteorites. Icarus, 165, 215218.Google Scholar
Kerr, R. A. (1996) New source proposed for most common meteorites. Science, 273, 1337.Google Scholar
Kim, S, Lee, H. M., Nakagawa, T. and Hasegawa, S. (2003) Thermal models and far infrared emission of asteroids. Journal of the Korean Astronomical Society, 36, 2131.Google Scholar
King, T. V. V., Clark, R. N., Calvin, W. M., Sherman, D. M. and Brown, R. H. (1992) Evidence for ammonium-bearing minerals on Ceres. Science, 255, 15511553.Google Scholar
Kirkwood, D. (1867) Meteoric Astronomy: A Treatise on Shooting-Stars, Fire-Balls and Aerolites. Philadelphia: J.B. Lippincott & Co., 129 pp.Google Scholar
Kita, N. T. and Ushikubo, T. (2012) Evolution of protoplanetary disk inferred from 26Al chronology of individual chondrules. Meteoritics & Planetary Science, 47, 11081119.Google Scholar
Kita, N. T., Nagahara, H., Togashi, S. and Morishita, Y. (2000) A short duration of chondrule formation in the solar nebula: Evidence from 26Al in Semarkona ferromagnesian chondrules. Geochimica et Cosmochimica Acta, 64, 39133922.Google Scholar
Kita, N. T., Huss, G. R., Tachibana, S., Amelin, Y., Nyquist, L. E. and Hutcheon, I. D. (2005) Constraints on the origin of chondrules and CAIs from short-lived and long-Lived radionuclides chondrites and the protoplanetary disk. In Chondrites and the Protoplanetary Disk, ASP Conference Series, Volume 341, eds. Krot, A. N., Scott, E. R. D. and Reipurth, B. San Francisco: Astronomical Society of the Pacific, pp. 558587.Google Scholar
Kita, N. T., Yin, Q.-z., MacPherson, G. J., et al. (2013) 26Al-26Mg isotope systematics of the first solids in the early Solar System. Meteoritics & Planetary Science, 48, 13831400.Google Scholar
Kivelson, M. G., Khurana, K. K., Means, J. D., Russell, C. T. and Snare, R. C. (1992) The Galileo magnetic field investigation. Space Science Reviews, 60, 357383.Google Scholar
Kivelson, M. G., Bargatze, L. F., Khurana, K. K., Southwood, D. J., Walker, R. J. and Coleman, P. J. (1993) Magnetic field signatures near Galileo’s closest approach to Gaspra. Science, 261, 331334.Google Scholar
Kleine, T. and Rudge, J. F. (2011) Chronometry of meteorites and the formation of the Earth and Moon. Elements, 7, 4146.Google Scholar
Kleine, T., Touboul, M., Bourdon, B., et al. (2009) Hf-W chronology of the accretion and early evolution of asteroids and terrestrial planets. Geochimica et Cosmochimica Acta, 73, 51505188.Google Scholar
Klima, R. L., Pieters, C. M. and Dyar, M. D. (2007) Spectroscopy of synthetic Mg-Fe pyroxenes I: Spin-allowed and spin-forbidden crystal field bands in the visible and near-infrared. Meteoritics & Planetary Science, 42, 235253.Google Scholar
Klima, R. L., Dyar, M. D. and Pieters, C. M. (2011) Near-infrared spectra of clinopyroxenes: Effects of calcium content and crystal structure. Meteoritics & Planetary Science, 46, 379395.Google Scholar
Kminek, G., Botta, O., Glavin, D. P. and Bada, J. L. (2002) Amino acids in the Tagish Lake meteorite. Meteoritics & Planetary Science, 37, 697701.Google Scholar
Knežević, Z., Lemaître, A. and Milani, A. (2002) The determination of asteroid proper elements. In Asteroids III, eds. Bottke, W. F. Jr., Cellino, A., Paolicchi, P. and Binzel, R. P. Tucson: University of Arizona Press, pp. 603612.Google Scholar
Koeberl, C. (1986) Geochemistry of tektites and impact glasses. Annual Review of Earth and Planetary Sciences, 14, 323350.Google Scholar
Kojima, H. (2006) The history of Japanese Antarctic meteorites. In The History of Meteoritics and Key Meteorite Collections: Fireballs, Falls & Finds, Geological Society Special Publication, no. 256, eds. McCall, G. J. H., Bowden, A. J. and Bowden, A. J. Bath: Geological Society Publishing House, pp. 291303.Google Scholar
Komatsu, M., Krot, A. N., Petaev, M. I., Ulyanov, A. A., Keil, K. and Miyamoto, M. (2001) Mineralogy and petrography of amoeboid olivine aggregates from the reduced CV3 chondrites Efremovka, Leoville and Vigarano: Products of nebular condensation, accretion and annealing. Meteoritics & Planetary Science, 36, 629641.Google Scholar
Kornacki, A. S. and Cohen, R. E. (1983) The nature of coarse-grained CAI’s. Lunar and Planetary Science, XIV, 395396.Google Scholar
Korochantseva, E. V., Trieloff, M., Lorenz, C. A., et al. (2007) L-chondrite asteroid breakup tied to Ordovician meteorite shower by multiple isochron 40Ar–39Ar dating. Meteoritics & Planetary Science, 42, 113130.Google Scholar
Kring, D. A. (2007) Guidebook to the Geology of Barringer Meteorite Crater, Arizona (a.k.a. Meteor Crater). Houston: Lunar and Planetary Institute, 150 pp.Google Scholar
Krot, A. N., Meibom, A. and Keil, K. (2000) A clast of Bali-like oxidized CV material in the reduced CV chondrite breccia Vigarano. Meteoritics & Planetary Science, 35, 817825.Google Scholar
Krot, A. N., Meibom, A., Weisberg, M. K. and Keil, K. (2002) The CR chondrite clan: Implications for early Solar System processes. Meteoritics & Planetary Science, 37, 14511490.Google Scholar
Krot, A. N., Amelin, Y., Cassen, P. and Meibom, A. (2005) Young chondrules in CB chondrites from a giant impact in the early Solar System. Nature, 436, 989992.Google Scholar
Krot, A. N., Hutcheon, I. D., Brearley, A. J., Pravdivtseva, O. V., Petaev, M. I. and Hohenberg, C. M. (2006) Timescales and settings for alteration of chondritic meteorites. In Meteorites and the Early Solar System, eds. Lauretta, D. S. and McSween, H. Y. Jr. Tucson: University of Arizona Press, pp. 525553.Google Scholar
Krot, A. N., Amelin, Y., Bland, P., et al. (2009) Origin and chronology of chondritic components: A review. Geochimica et Cosmochimica Acta, 73, 49634997.Google Scholar
Krot, A. N., Nagashima, K., Ciesla, F. J., et al. (2010) Oxygen isotopic composition of the Sun and mean oxygen isotopic composition of the protosolar silicate dust: Evidence from refractory inclusions. Astrophysical Journal, 713, 11591166.Google Scholar
Kryszczyńska, K. (2013) Do Slivan states exist in the Flora family? II. Fingerprints of the Yarkovsky and YORP effects. Astronomy & Astrophysics, 551, A102.Google Scholar
Kuchynka, P. and Folkner, W. M. (2013) A new approach to determining asteroid masses from planetary range measurements. Icarus, 222, 243–253.Google Scholar
Kuiper, G. P. (1951) On the origin of the Solar System. In Astrophysics: A Topical Symposium, ed. Hynek, J. A. New York: McGraw-Hill, pp. 357424.Google Scholar
Kuiper, Y. D. (2002) The interpretation of inverse isochron diagrams in 40Ar/ 39Ar geochronology. Earth and Planetary Science Letters, 203, 499506.Google Scholar
Kumar, A., Gopalan, K. and Bhandari, N. (1999) 147Sm–143Nd and 87Rb–87Sr ages of the eucrite Piplia Kalan. Geochimica et Cosmochimica Acta, 63, 39974001.Google Scholar
Kunz, G. F. (1888) Diamonds in meteorites. Science, 266, 118119.Google Scholar
Kurahashi, E., Yamanaka, C., Nakamura, K. and Sasaki, S. (2002) Laboratory simulation of space weathering: ESR measurements of nanophase metallic iron in laser-irradiated materials. Earth, Planets and Space, 54, e5–e7.Google Scholar
Kvenvolden, K., Lawless, J., Pering, K., et al. (1970) Evidence for extraterrestrial amino-acids and hydrocarbons in the Murchison meteorite. Nature, 228, 923926.Google Scholar
Kyte, F. T. (1998) A meteorite from the Cretaceous/Tertiary boundary. Nature, 396, 237239.Google Scholar
Lagerkvist, C.-I. and Magnusson, P. (1990) Analysis of asteroid lightcurves. II. Phase curves in a generalized HG-system. Astronomy & Astrophysics Supplement Series, 86, 119165.Google Scholar
Lamy, P. L., Toth, I. and Weaver, H. A. (1998) Hubble Space Telescope observations of the nucleus and inner coma of comet 19P/1904 Y2 (Borrelly). Astronomy & Astrophysics, 337, 945954.Google Scholar
Larson, H. P. and Fink, U. (1975) Infrared spectral observations of asteroid 4 Vesta. Icarus, 26, 420427.Google Scholar
Larson, H. P., Feierberg, M. A., Fink, U. and Smith, H. A. (1979) Remote spectroscopic identification of carbonaceous chondrite mineralogies: Applications to Ceres and Pallas. Icarus, 39, 257271.Google Scholar
Larson, H. P., Feierberg, M. A. and Lebofsky, L. A. (1983) The composition of asteroid 2 Pallas and its relation to primitive meteorites. Icarus, 56, 398408.Google Scholar
Lawrence, D. J., Peplowski, P. N., Prettyman, T. H., et al. (2013) Constraints on Vesta’s elemental composition: Fast neutron measurements by Dawn’s gamma ray and neutron detector. Meteoritics & Planetary Science, 48, 22712288.Google Scholar
Lawrence, S. J. and Lucey, P. G. (2007) Radiative transfer mixing models of meteoritic assemblages. Journal of Geophysical Research, 112, E07005.Google Scholar
Lazzarin, M., Fornasier, S., Barucci, M. A. and Birlan, M. (2001) Groundbased investigation of asteroid 9969 Braille, target of the spacecraft mission Deep Space 1. Astronomy & Astrophysics, 375, 281284.Google Scholar
Lazzaro, D., Michtchenko, T., Carvano, J. M., et al. (2000) Discovery of a basaltic asteroid in the outer main belt. Science, 288, 20332035.Google Scholar
Lebofsky, L. and Spencer, J. (1989) Radiometry and a thermal modeling of asteroids. In Asteroids II, eds. Binzel, R. P., Gehrels, T. and Matthews, M. S. Tucson: University of Arizona Press, pp. 128147.Google Scholar
Lebofsky, L. A., Sykes, M. V., Tedesco, E. F., et al. (1986) A refined “standard” thermal model for asteroids based on observations of 1 Ceres and 2 Pallas. Icarus, 68, 239251.Google Scholar
Lederer, S. M., Domingue, D. L., Vilas, F., et al. (2005) Physical characteristics of Hayabusa target asteroid 25143 Itokawa. Icarus, 173, 153165.Google Scholar
Lee, D.-C. and Halliday, A. (1995) Hafnium-tungsten chronometry and the timing of terrestrial core formation. Nature, 378, 771774.Google Scholar
Lee, T., Papanastassiou, D. A. and Wasserburg, G. J. (1976) Demonstration of 26Mg excess in Allende and evidence for 26Al. Geophysical Research Letters, 3, 4144.Google Scholar
Lellouch, E. (2011) Pluto. In Encyclopedia of Astrobiology, eds. Gargaud, M., Amils, R., Quintanilla, J. C., Cleaves, H. J. II, Irvine, W. M., Pinti, D. L. and Viso, M. Berlin: Springer Berlin Heidelberg, pp. 13011303.Google Scholar
Lellouch, E., Sicardy, B., de Bergh, C., Käufl, H.-U., Kassi, S. and Campargue, A. (2009) Pluto’s lower atmosphere structure and methane abundance from high-resolution spectroscopy and stellar occultations. Astronomy & Astrophysics, 495, L17-L21.Google Scholar
Lellouch, E., Kiss, C., Santos-Sanz, P., et al. (2010) “TNOs are cool”: A survey of the trans-Neptunian region. II. The thermal lightcurve of (136108) Haumea. Astronomy & Astrophysics, 518, L147.Google Scholar
Lemaitre, A. (1993) Proper elements: What are they? Celestial Mechanics and Dynamical Astronomy, 56, 103119.Google Scholar
Leonard, F. C. (1930) The new planet Pluto. Astronomical Society of the Pacific Leaflets, 30, 121124.Google Scholar
Leverington, D. (2007) Babylon to Voyager and Beyond: A History of Planetary Astronomy. Cambridge: Cambridge University Press, 572 pp.Google Scholar
Lewis, J. S. (2004) Physics and Chemistry of the Solar System (2nd Edition). Burlington: Elsevier Academic Press, 655 pp.Google Scholar
Li, J., A’Hearn, M. F. and McFadden, L. (2004) A photometric analysis of Eros from NEAR data. Icarus, 172, 415431.Google Scholar
Li, J. Y., McFadden, L. A., Parker, J. Wm., et al. (2006) Photometric analysis of 1 Ceres and surface mapping from HST observations. Icarus, 182, 143160.Google Scholar
Li, J.-Y., Bodewits, D., Feaga, L. M., et al. (2011) Ultraviolet spectroscopy of asteroid (4) Vesta. Icarus, 216, 640649.Google Scholar
Li, J.-Y., Le Corre, L., Schröder, S. E., Reddy, V., Denevi, B. W., Buratti, B. J., Mottola, S., Hoffmann, M., Gutierrez-Marques, P., Nathues, A., Russell, C. T. and Raymond, C. A. (2013) Global photometric properties of asteroid (4) Vesta observed with Dawn framing camera. Icarus, 226, 12521274.Google Scholar
Li, J.-Y., Helfenstein, P., Buratti, B. J., Takir, D. and Clark, B. E. (2015) Asteroid photometry. In Asteroids IV, eds. Michel, P., DeMeo, F. E. and Bottke, W. F. Tucson: University of Arizona Press, pp. 129150.Google Scholar
Licandro, J., Pinilla-Alonso, N., Pedani, M., Oliva, E., Tozzi, G. P. and Grundy, W. M. (2006) The methane ice rich surface of large TNO 2005 FY9: A Pluto-twin in the trans-Neptunian belt? Astronomy & Astrophysics, 445, L35–L38.Google Scholar
Licandro, J., Campins, H., Kelley, M., et al. (2011) (65) Cybele: Detection of small silicate grains, water-ice, and organics. Astronomy & Astrophysics, 525, A34.Google Scholar
Lim, L. F. and Nittler, L. R. (2009) Elemental composition of 433 Eros: New calibration of the NEAR-Shoemaker XRS data. Icarus, 200, 129146.Google Scholar
Lim, L. F., Emery, J. P. and Moskovitz, N. A. (2011) Mineralogy and thermal properties of V-type asteroid 956 Elisa: Evidence for diogenitic material from the Spitzer IRS (5–35 μm) spectrum. Icarus, 213, 510523.Google Scholar
Lindsay, S. S., Dunn, T. L., Emery, J. P. and Bowles, N. E. (2016) The Red Edge Problem in asteroid band parameter analysis. Meteoritics & Planetary Science, 51 , 806817.Google Scholar
Lockwood, A. C., Brown, M. E. and Stansberry, J. (2014) The size and shape of the oblong dwarf planet Haumea. Earth, Moon, and Planets, 111, 127137.Google Scholar
Lodders, K. (2003) Solar System abundances and condensation temperatures of the elements. Astrophysical Journal, 591, 12201247.Google Scholar
Lodders, K. and Fegley, B. Jr. (2010) Chemistry of the Solar System. Cambridge: Royal Society of Chemistry, 496 pp.Google Scholar
Loeffler, M. J., Dukes, C. A., Chang, W. Y., McFadden, L. A. and Baragiola, R. A. (2008) Laboratory simulations of sulfur depletion at Eros. Icarus, 195, 622629.Google Scholar
Loeffler, M., Dukes, C. and Baragiola, R. (2009) Irradiation of olivine by 4 keV He+: Simulation of space weathering by the solar wind. Journal of Geophysical Research, 114, E03003.Google Scholar
Loeffler, M. J., Dukes, C. A., Christoffersen, R. and Baragiola, R. A. (2016) Space weathering of silicates simulated by successive laser irradiation: In situ reflectance measurements of Fo90, Fo99+, and SiO2. Meteoritics & Planetary Science, 51 , 261–275.Google Scholar
Lorenzi, V., Pinilla-Alonso, N. and Licandro, J. (2015) Rotationally resolved spectroscopy of dwarf planet (136472) Makemake. Astronomy & Astrophysics, 577, A86.Google Scholar
Lovering, J. F., Nichiporuk, W., Chodos, A. and Brown, H. (1957) The distribution of gallium, germanium, cobalt, chromium, and copper in iron and stony-iron meteorites in relation to nickel content and structure. Geochimica et Cosmochimica Acta, 11, 263278.Google Scholar
Lowry, S. C., Fitzsimmons, A., Pravec, P., et al. (2007) Direct detection of the asteroidal YORP effect. Science, 316, 272274.Google Scholar
Lowry, S., Fitzsimmons, A., Lamy, P. and Weissman, P. (2008) Kuiper belt objects in the planetary region: The Jupiter-family comets. In The Solar System Beyond Neptune, eds. Barucci, M. A., Boehnhardt, H., Cruikshank, D. P. and Morbidelli, A. Tucson: University of Arizona Press, pp. 397410.Google Scholar
Lucey, P. G. (1998) Model near-infrared optical constants of olivine and pyroxene as a function of iron content. Journal of Geophysical Research, 103, 17031713.Google Scholar
Lucey, P. G., Keil, K. and Whitely, R. (1998) The influence of temperature on the spectra of the A-asteroids and implications for their silicate chemistry. Journal of Geophysical Research, 103, 58655871.Google Scholar
Lugmair, G. W. and Shukolyukov, A. (1998) Early Solar System timescales according to 53Mn– 53Cr systematics. Geochimica et Cosmochimica Acta, 62, 28632886.Google Scholar
Lugmair, G. W. and Shukolyukov, A. (2001) Early Solar System events and timescale. Meteoritics & Planetary Science, 36, 10171026.Google Scholar
Luu, J. X. and Jewitt, D. (1988) A two-part search for slow-moving objects. Astronomical Journal, 95, 12561262.Google Scholar
Macke, R. J. (2010) Survey of meteorite physical properties: Density, porosity, and magnetic susceptibility. PhD thesis, University of Central Florida, Orlando, Florida, 311 pp.Google Scholar
Mackinnon, I. D. R. and Zolensky, M. E. (1984) Proposed structures for poorly characterized phases in C2M carbonaceous chondrite meteorites. Nature, 309, 240242.Google Scholar
MacPherson, G. J., Davis, A. M. and Zinner, E. K. (1995) The distribution of aluminum-26 in the early Solar System – A reappraisal. Meteoritics, 30, 365386.Google Scholar
MacPherson, G. J., Simon, S. B., Davis, A. M., Grossman, L. and Krot, A. N. (2005) Calcium-aluminum-rich Inclusions: Major unanswered questions. In Chondrites and the Protoplanetary Disk, ASP Conference Series, Volume 341, eds. Krot, A. N., Scott, E. R. D. and Reipurth, B. San Francisco: Astronomical Society of the Pacific, pp. 225250.Google Scholar
Magri, C., Ostro, S. J., Rosema, K. D., et al. (1999) Mainbelt asteroids: Results of Arecibo and Goldstone radar observations of 37 objects during 1980–1995. Icarus, 140, 379–407.Google Scholar
Magri, C., Nolan, M. C., Ostro, S. J. and Giorgini, J. D. (2007) A radar survey of main-belt asteroids: Arecibo observations of 55 objects during 1999–2003. Icarus, 186, 126151.Google Scholar
Mainzer, A., Grav, T., Masiero, J., et al. (2011) NEOWISE studies of spectrophotometrically classified asteroids: Preliminary results. Astrophysical Journal, 741, 90.Google Scholar
Mainzer, A., Usui, F. and Trilling, D. E. (2015) Space-based thermal infrared studies of asteroids. In Asteroids IV, eds. Michel, P., DeMeo, F. E. and Bottke, W. F. Tucson: University of Arizona Press, pp. 89106.Google Scholar
Mallama, A. (2011) Planetary magnitudes. Sky and Telescope, 121, 5156.Google Scholar
Mamajek, E. E., Barenfeld, S. A., Ivanov, V. D., et al. (2015) The closest known flyby of a star to the Solar System. Astrophysical Journal Letters, 800, L17.Google Scholar
Marchi, S., Barbieri, C., Küppers, M., et al. (2010) The cratering history of asteroid (2867) Steins. Planetary and Space Science, 58, 11161123.Google Scholar
Marchi, S., Massironi, M., Vincent, J.-B., et al. (2012) The cratering history of asteroid 21 Lutetia. Planetary and Space Science, 66, 8795.Google Scholar
Marchi, S., O’Brien, D. P., Schenk, P., et al. (2016) Cratering on Ceres: The puzzle of the missing large craters. Lunar and Planetary Science Conference, 47, 1281. www.hou.usra.edu/meetings/lpsc2016/pdf/1281.pdf.Google Scholar
Margot, J.-L. (2015) A quantitative criterion for defining planets. Astronomical Journal, 150, 185.Google Scholar
Marsden, B. G. (1973) The next return of the comet of the Perseid meteors. Astronomical Journal, 78, 654662.Google Scholar
Marsden, B. G. (1977) Carl Friedrich Gauss, Astronomer. Journal of the Royal Astronomical Society of Canada, 71, 309323.Google Scholar
Marsden, B. G. (1982) How to reduce plate measurements. Sky and Telescope, 64, 284.Google Scholar
Marsden, B. G. (1992) (4015) 1979 VA = Comet Wilson-Harrington (1949 III). International Astronomical Union Circular, 5585.Google Scholar
Marsden, B. G. (1993a) Comet Shoemaker-Levy (1993e). International Astronomical Union Circular, 5725.Google Scholar
Marsden, B. G. (1993b) Comet Shoemaker-Levy (1993e). International Astronomical Union Circular, 5730.Google Scholar
Marsden, B. G. (1993c) Comet Shoemaker-Levy (1993e). International Astronomical Union Circular, 5744.Google Scholar
Marsden, B. G. (1993d) Periodic comet Shoemaker-Levy 9 (1993e). International Astronomical Union Circular, 5800.Google Scholar
Marsden, B. G. (1993e) Periodic comet Shoemaker-Levy 9 (1993e). International Astronomical Union Circular, 5801.Google Scholar
Marsden, B. G. (1996) Comet P/1996 N2 (Elst-Pizarro). International Astronomical Union Circular, 6456.Google Scholar
Marsden, B. G. (1998a) 1997 XF11. International Astronomical Union Circular, 6837.Google Scholar
Marsden, B. G. (1998b) 1997 XF11. International Astronomical Union Circular, 6839.Google Scholar
Marsden, B. G. (2003) Editorial Notice. Minor Planet Circular, 49221.Google Scholar
Marti, K. and Graf, T. (1992) Cosmic-ray exposure history of ordinary chondrite meteorites. Annual Review of Earth and Planetary Sciences, 20, 221243.Google Scholar
Martins, Z. (2011) Organic chemistry of carbonaceous meteorites. Elements, 7, 3540.Google Scholar
Martins, Z., Botta, O., Fogel, M. L., et al. (2008) Extraterrestrial nucleobases in the Murchison meteorite. Earth & Planetary Science Letters, 270, 130136.Google Scholar
Marvin, U. B. (1983) The discovery and initial characterization of Allan Hills 81005: The first lunar meteorite. Geophysical Research Letters, 10, 775778.Google Scholar
Marvin, U. B. (1992) The meteorite of Ensisheim: 1492 to 1992. Meteoritics, 27, 2872.Google Scholar
Marvin, U. B. (1996) Ernst Florens Friedrich Chladni (1756–1827) and the origins of modern meteorite research. Meteoritics & Planetary Science, 31, 545588.Google Scholar
Marvin, U. B. (2015) The origin and early history of the U.S. Antarctic search for meteorites program (ANSMET). In 35 Seasons of U.S. Antarctic Meteorites: A Pictorial Guide To The Collection, eds. Righter, K., Corrigan, C., McCoy, T. and Harvey, R. Washington, DC: American Geophysical Union, pp. 122.Google Scholar
Marzari, F., Davis, D. and Vanzani, V. (1995) Collisional evolution of asteroid families. Icarus, 113, 168187.Google Scholar
Masiero, J. R., Mainzer, A. K., Bauer, J. M., Grav, T., Nugent, C. R. and Stevenson, R. (2013) Asteroid family identification using the hierarchical clustering method and WISE/NEOWISE physical properties. Astrophysical Journal, 770, 7.Google Scholar
Mason, B. and Taylor, S. R. (1982) Inclusions in the Allende meteorite. Smithsonian Contributions to the Earth Science, 25, 30 pp.Google Scholar
Massironi, M., Marchi, S., Pajola, M., et al. (2012) Geological map and stratigraphy of asteroid 21 Lutetia. Planetary and Space Science, 66, 125136.Google Scholar
Mayne, R. G., Sunshine, J. M., McSween, H. Y., Bus, S. J. and McCoy, T. J. (2011) The origin of Vesta’s crust: Insights from spectroscopy of the Vestoids. Icarus, 214, 147160.Google Scholar
McCanta, M. C., Treiman, A. H., Dyar, M. D., Alexander, C. M. O’D., Rumble, D. III and Essene, E. J. (2008) The LaPaz Icefield 04840 meteorite: Mineralogy, metamorphism, and origin of an amphibole- and biotite-bearing R chondrite. Geochimica et Cosmochimica Acta, 72, 57575780.Google Scholar
McCord, T. B., Adams, J. B. and Johnson, T. V. (1970) Asteroid Vesta: Spectral reflectivity and compositional implications. Science, 168, 14451447.Google Scholar
McCord, T. B., Castillo-Rogez, J. and Rivkin, A. (2011) Ceres: Its origin, evolution and structure and Dawn’s potential contribution. Space Science Reviews, 163, 6376.Google Scholar
McCord, T. B., Li, J.-Y., Combe, J.-P., et al. (2012) Dark material on Vesta from the infall of carbonaceous volatile-rich material. Nature, 491, 8386.Google Scholar
McCoy, T. J. (1994) Partial melting on the acapulocite-lodranite meteorite parent body. PhD thesis, University of Hawaii, Honolulu, Hawaii, 146 pp.Google Scholar
McCoy, T. J., Keil, K., Clayton, R. N., et al. (1996) A petrologic, chemical, and isotopic study of Monument Draw and comparison with other acapulcoites: Evidence for formation by incipient partial melting. Geochimica et Cosmochimica Acta, 60, 26812708.Google Scholar
McCoy, T. J., Keil, K., Clayton, R. N., et al. (1997) A petrologic and isotopic study of lodranites: Evidence for early formation as partial melt residues from heterogeneous precursors. Geochimica et Cosmochimica Acta, 61, 623637.Google Scholar
McCoy, T. J., Nittler, L. R., Burbine, T. H., Trombka, J. I., Clark, P. E. and Murphy, M. E. (2000) Anatomy of a partially differentiated asteroid: A “NEAR”-sighted view of acapulcoites and lodranites. Icarus, 148, 2936.Google Scholar
McCoy, T. J., Burbine, T. H., McFadden, L. A., et al. (2001) The composition of 433 Eros: A mineralogical-chemical synthesis. Meteoritics & Planetary Science, 36, 16611672.Google Scholar
McCoy, T. J., Beck, A. W., Prettyman, T. H. and Mittlefehldt, D. W. (2015) Asteroid (4) Vesta II: Exploring a geologically and geochemically complex world with the Dawn mission. Chemie der Erde, 75, 273285.Google Scholar
McDermott, K., Greenwood, R. C., Franchi, I. A., Anand, M. and Scott, E. R. D. (2011) Oxygen isotopic and petrological constraints on the origin and relationship of IIE iron meteorites and H chondrites. Lunar and Planetary Science, 42, 2763. http://www.lpi.usra.edu/meetings/lpsc2011/pdf/2763.pdf.Google Scholar
McFadden, L. A. (1999) The importance of comet Hale-Bopp: An astronomical perspective. Bulletin of the American Astronomical Society, 31, 1523.Google Scholar
McFadden, L. A., Gaffey, M. J. and McCord, T. B. (1985) Near-Earth asteroids: Possible sources from reflectance spectroscopy. Science, 229, 160163.Google Scholar
McFadden, L. A., Skillman, D. R, Memarsadeghi, N., et al. (2015) Vesta’s missing moons: Comprehensive search for natural satellites of Vesta by the Dawn spacecraft. Icarus, 257, 207216.Google Scholar
McKay, D. S., Gibson, E. K. Jr., Thomas-Keptra, K. L., et al. (1996) Search for past life on Mars: Possible relic biogenic activity in Martian meteorite ALH84001. Science, 273, 924930.Google Scholar
McKeegan, K. D., Aléon, J., Bradley, J., et al. (2006) Isotopic compositions of cometary matter returned by Stardust. Science, 314, 17241728.Google Scholar
McMahon, J. H. (1978) The discovery of a satellite of an asteroid. Minor Planet Bulletin, 6, 1417.Google Scholar
McSween, H. Y. Jr. and Huss, G. R. (2010) Cosmochemistry. Cambridge: Cambridge University Press. 549 pp.Google Scholar
McSween, H. Y, Castillo-Rogez, J, Emery, J. P., De Sanctis, M. C. and the Dawn Science Team (2016) Rationalizing the composition and alteration of Ceres. Lunar and Planetary Science Conference, 47, 1258. www.hou.usra.edu/meetings/lpsc2016/pdf/1258.pdf.Google Scholar
Meech, K. J. and Svoreň, J. (2004) Using cometary activity to trace the physical and chemical evolution of cometary nuclei. In Comets II, eds. Festou, M., Keller, H. U. and Weaver, H. A. Tucson: University of Arizona Press, pp. 317335.Google Scholar
Melosh, H. J. (1989) Impact Catering: A Geologic Process. Oxford: Oxford University Press, 245 pp.Google Scholar
Marsden, B. G. (2011) Planetary Surface Processes. Cambridge: Cambridge University Press, 534 pp.Google Scholar
Melosh, H. J. and Ivanov, B. A. (1999) Impact crater collapse. Annual Review of Earth and Planetary Sciences, 27 , 385415.Google Scholar
Merényi, E., Földy, L., Szegő, K., Tóth, I. and Kondor, A. (1990) The landscape of comet Halley. Icarus, 86, 920.Google Scholar
Merlin, F. (2015) New constraints on the surface of Pluto. Astronomy & Astrophysics, 582, A39.Google Scholar
Merlin, F., Barucci, M. A., de Bergh, C., et al. (2010) Chemical and physical properties of the variegated Pluto and Charon surfaces. Icarus, 210, 930943.Google Scholar
Michalak, G. (2000) Determination of asteroid masses I. (1) Ceres, (2) Pallas and (4) Vesta. Astronomy and Astrophysics, 360, 363–374.Google Scholar
Michel, P., Tanga, P., Benz, W. and Richardson, D. C. (2002) Formation of asteroid families by catastrophic disruption: Simulations with fragmentation and gravitational reaccumulation. Icarus, 160, 1023.Google Scholar
Michel, P., Benz, W. and Richardson, D. (2003) Disruption of fragmented parent bodies as the origin of asteroid families. Nature, 421, 608611.Google Scholar
Michel, P., O’Brien, D. P., Abe, S. and Hirata, N. (2009) Itokawa’s cratering record as observed by Hayabusa: Implications and collisional history. Icarus, 200, 503513.Google Scholar
Mickel, P., DeMeo, F. E. and Bottke, W. F. Jr., eds. (2015) Asteroids IV. Tucson: University of Arizona Press, 952 pp.Google Scholar
Michtchenko, T. A., Lazzaro, D., Ferraz-Mello, S. and Roig, F. (2002) Origin of the basaltic asteroid 1459 Magnya: A dynamical and mineralogical study of the outer main belt. Icarus, 158, 343359.Google Scholar
Michtchenko, T. A., Lazzaro, D., Carvano, J. M. and Ferraz-Mello, S. (2010) Dynamic picture of the inner asteroid belt: Implications for the density, size and taxonomic distributions of real objects. Monthly Notices of the Royal Astronomical Society, 401, 24992516.Google Scholar
Mikouchi, T., Komatsu, M., Hagiya, K., et al. (2014) Mineralogy and crystallography of some Itokawa particles returned by the Hayabusa asteroidal sample return mission. Earth, Planets and Space, 66, 82.Google Scholar
Milliken, R. E. and Rivkin, A. S. (2009) Brucite and carbonate assemblages from altered olivine-rich materials on Ceres. Nature Geosciences, 2, 258261.Google Scholar
Millis, R. L. and Elliot, J. L. (1979) Direct determination of asteroid diameters from occultation observations. In Asteroids, ed. Gehrels, T. Tucson: University of Arizona Press, pp. 98118.Google Scholar
Minton, D. A., Richardson, J. E. and Fassett, C. I. (2015) Re-examining the main asteroid belt as the primary source of ancient lunar craters. Icarus, 247, 172190.Google Scholar
Misawa, K., Yamaguchi, A. and Kaiden, H. (2005) U-Pb and 207Pb-206Pb ages of zircons from basaltic eucrites: Implications for early basaltic volcanism on the eucrite parent body. Geochimica Cosmochimica Acta, 69, 58475861.Google Scholar
Mittlefehldt, D. W. (2015) Asteroid (4) Vesta: I. The howardite-eucrite-diogenite (HED) clan of meteorites. Chemie der Erde, 75, 155183.Google Scholar
Mittlefehldt, D. W., McCoy, T. J., Goodrich, C. A. and Kracher, A. (1998) Non-chondritic meteorites from asteroidal bodies. In Reviews in Mineralogy, Vol. 36: Planetary Materials, ed. Papike, J. J. Washington D.C.: Mineralogical Society of America, pp. 4-14-195.Google Scholar
Mittlefehldt, D. W., Killgore, M. and Lee, M. T. (2002) Petrology and geochemistry of D’Orbigny, geochemistry of Sahara 99555, and the origin of angrites. Meteoritics & Planetary Science, 37, 345369.Google Scholar
Moore, J. M., Howard, A. D., Schenk, P. M., et al. (2015) Geology before Pluto: Pre-encounter considerations. Icarus, 246, 6581.Google Scholar
Moore, J. M., McKinnon, W. B., Spencer, J. R., et al. (2016) The geology of Pluto and Charon through the eyes of New Horizons. Science, 351, 12841293.Google Scholar
Morbidelli, A. and Gladman, B. (1998) Orbital and temporal distributions of meteorites originating in the asteroid belt. Meteoritics & Planetary Science, 33, 9991016.Google Scholar
Morbidelli, A., Levison, H. F., Tsiganis, K. and Gomes, R. (2005) Chaotic capture of Jupiter’s Trojan asteroids in the early Solar System. Nature, 435, 462465.Google Scholar
Moroz, L. V., Arnold, G., Korochantsev, A. V. and Wäsch, R. (1998) Natural solid bitumens as possible analogs for cometary and asteroid organics: 1. Reflectance spectroscopy of pure bitumens. Icarus, 134, 253268.Google Scholar
Moroz, L., Schade, U. and Wäsch, R. (2000) Reflectance spectra of olivine–orthopyroxene-bearing assemblages at decreased temperatures: Implications for remote sensing of asteroids. Icarus, 147, 7993.Google Scholar
Moroz, L. V., Baratta, G., Distefano, E., et al. (2003) Ion irradiation of asphaltite: Optical effects and implications for trans-Neptunian objects and centaurs. Earth, Moon, and Planets, 92, 279289.Google Scholar
Moroz, L. V., Baratta, G., et al. (2004) Optical alteration of complex organics induced by ion irradiation: 1. Laboratory experiments. Icarus, 170, 214228.Google Scholar
Morrison, D., Chapman, C. R., Steel, D. and Binzel, R. P. (2004) Impacts and the public: Communicating the nature of the impact hazard. In Mitigation of Hazardous Comets and Asteroids, eds. Belton, M. J. S., Morgan, T. H., Samarasinha, N.H. and Yeomans, D.K. Cambridge: Cambridge University Press, pp. 353390.Google Scholar
Moskovitz, N. A., Jedicke, R., Gaidos, E., et al. (2008a) The distribution of basaltic asteroids in the main belt. Icarus, 198, 7790.Google Scholar
Moskovitz, N. A., Lawrence, S., Jedicke, R., et al. (2008b) A spectroscopically unique main-belt asteroid: 10537 (1991 RY16). Astrophysical Journal, 682, L57–L60.Google Scholar
Moskovitz, N. A., Willman, M., Burbine, T. H., Binzel, R. P. and Bus, S. J. (2010) A spectroscopic comparison of HED meteorites and V-type asteroids in the inner main belt. Icarus, 208, 773788.Google Scholar
Moskovitz, N. A., Abe, S., Pan, K.-S., et al. (2013) Rotational characterization of Hayabusa II target asteroid (162173) 1999 JU3. Icarus, 224, 2431.Google Scholar
Mothé-Diniz, T. and Carvano, J. M. (2005) 221 Eos: A remnant of a partially differentiated parent body? Astronomy & Astrophysics, 442, 727729.Google Scholar
Mothé-Diniz, T. and Nesvorný, D. (2008) Visible spectroscopy of extremely young asteroid families. Astrononomy & Astrophysics, 486, L9–L12.Google Scholar
Mothé-Diniz, T., Carvano, J. M. and Lazzaro, D. (2003) Distribution of taxonomic classes in the main belt of asteroids. Icarus, 162, 1021.Google Scholar
Mothé-Diniz, T., Roig, F. and Carvano, J. M. (2005) Reanalysis of asteroid families structure through visible spectroscopy. Icarus, 174, 5480.Google Scholar
Mothé-Diniz, T., Carvano, J. M., Bus, S. J., Duffard, R. and Burbine, T. H. (2008) Mineralogical analysis of the Eos family from near-infrared spectra. Icarus, 195, 277294.Google Scholar
Mothé-Diniz, T., Jasmin, F. L., Carvano, J. M., Lazzaro, D., Nesvorný, D. and Ramirez, A. C. (2010) Re-assessing the ordinary chondrites paradox. Astronomy & Astrophysics, 514, A86.Google Scholar
Muinonen, K., Belskaya, I. N., Cellino, A., et al. (2010) A three-parameter magnitude phase function for asteroids. Icarus, 209, 542555.Google Scholar
Müller, T. G. and Blommaert, J. A. D. L. (2004) 65 Cybele in the thermal infrared: Multiple observations and thermophysical analysis. Astronomy & Astrophysics, 418, 347356.Google Scholar
Murchie, S. L. and Pieters, C. M. (1996) Spectral properties and rotational spectral heterogeneity of 433 Eros. Journal of Geophysical Research, 101, 22012214.Google Scholar
Mustard, J. F. and Pieters, C. M. (1989) Photometric phase functions of common geologic minerals and applications to quantitative analysis of mineral mixture reflectance spectra. Journal of Geophysical Research, 94, 1361913634.Google Scholar
Nagao, K., Okazaki, R., Nakamura, T., et al. (2011) Irradiation history of Itokawa regolith material deduced from noble gases in the Hayabusa samples. Science, 333, 11281131.Google Scholar
Nagashima, K., Nara, M. and Matsuda, J.-i. (2012) Raman spectroscopic study of diamond and graphite in ureilites and the origin of diamonds. Meteoritics & Planetary Science, 47, 17281737.Google Scholar
Naidu, S. P., Margot, J. L., Taylor, P. A., et al. (2015) Radar imaging and characterization of the binary near-Earth asteroid (185851) 2000 DP107. Astronomical Journal, 150, 54.Google Scholar
Nakamura, T., Noguchi, T., Tanaka, M., et al. (2011) Itokawa dust particles: A direct link between S-type asteroids and ordinary chondrites. Science, 333, 11131116.Google Scholar
Napier, B., Asher, D., Bailey, M. and Steel, D. (2015) Centaurs as a hazard to civilization. Astronomy & Geophysics, 56, 6.24–6.30.Google Scholar
NASA (2007) Near-Earth Object Survey and Deflection Analysis of Alternatives. Report to Congress. 27 pp. www.nasa.gov/pdf/171331main_NEO_report_march07.pdf.Google Scholar
NASA/JPL/Cassini Imaging Team (2004) Asteroid Masursky imaged by Cassini. http://sci.esa.int/cassini-huygens/12080-asteroid-masursky/.Google Scholar
Nathues, A., Hoffmann, M., Cloutis, E. A., et al. (2014) Detection of serpentine in exogenic carbonaceous chondrite material on Vesta from Dawn FC data. Icarus, 239, 222237.Google Scholar
Nathues, A., Hoffmann, M., Schäfer, M., et al. (2015a) Exogenic olivine on Vesta from Dawn framing camera color data. Icarus, 258, 467482.Google Scholar
Nathues, A., Hoffmann, M., Schaefer, M., et al. (2015b) Sublimation in bright spots on (1) Ceres. Nature, 528, 237240.Google Scholar
Ness, R. G. and Emery, J. P. (2014) Thermal inertia estimates of four near-Earth asteroids from Spitzer Space Telescope spectral observations. Lunar and Planetary Science Conference, 45, 1430. www.hou.usra.edu/meetings/lpsc2014/pdf/1430.pdf.Google Scholar
Nesse, W. (2012) Introduction to Optical Mineralogy (Fourth Edition). Oxford: Oxford University Press, 384 pp.Google Scholar
Nesvorný, D. (2015) Nesvorný HCM Asteroid Families V3.0. EAR-A-VARGBDET-5-NESVORNYFAM-V3.0. NASA Planetary Data System.Google Scholar
Nesvorný, D., Vokrouhlický, D., Morbidelli, A. and Bottke, W. F. (2009) Asteroidal source of L chondrite meteorites. Icarus, 200, 698701.Google Scholar
Nesvorný, D., Brož, M. and Carruba, V. (2015) Identification and dynamical properties of asteroid families. In Asteroids IV, eds. Michel, P., DeMeo, F. E. and Bottke, W. F. Tucson: University of Arizona Press, pp. 297321.Google Scholar
Neukum, G., Ivanov, B. A. and Hartmann, W. K. (2001) Cratering records in the early Solar System in relation to the lunar reference system. Space Science Reviews, 96, 5586.Google Scholar
Newburn, R. L. Jr. and Yeomans, D. K. (1982) Halley’s comet. Annual Review of Earth and Planetary Sciences, 10 , 297326.Google Scholar
Newburn, R. L. Jr. Duxbury, T. C., Hanner, M., Semenov, B. V., Hirst, E. E., Bhat, R. S., Bhaskaran, S., Wang, T.-C. M., Tsou, P., Brownlee, D. E., Cheuvront, A. R., Gingerich, D. E., Bollendonk, G. R., Vellinga, J. M., Parham, K. A. and Mumaw, S. J. (2003) Phase curve and albedo of asteroid 5535 Annefrank. Journal of Geophysical Research, 108, 3-1–3-7.Google Scholar
Newcott, W. R. (1997) Age of comets. National Geographic, 192, 94109.Google Scholar
Nguyen, A. N. and Messenger, S. (2011) Presolar history recorded in extraterrestrial materials. Elements, 7, 1722.Google Scholar
Nieto, M. M. (1972) The Titius-Bode’s Law of Planetary Distances. New York: Pergamon Press. 186 pp.Google Scholar
Nishiizumi, K., Elmore, D. and Kubik, P. W. (1989) Update on terrestrial ages of Antarctic meteorites. Earth and Planetary Science Letters, 93, 299313.Google Scholar
Nittler, L. R., Starr, R. D., Lim, L., et al. (2001) X-ray fluorescence measurements of the surface elemental composition of asteroid 433 Eros. Meteoritics & Planetary Science, 36, 16731695.Google Scholar
Nittler, L. R., McCoy, T. J., Clark, P. E., Murphy, M. E., Trombka, J. I. and Jarosewich, E. (2004) Bulk element compositions of meteorites: A guide for interpreting remote-sensing geochemical measurements of planets and asteroids. Antarctic Meteorite Research, 17, 231251.Google Scholar
Noguchi, T., Nakamura, T., Kimura, M., et al. (2011) Incipient space weathering observed on the surface of Itokawa dust particles. Science, 333, 11211125.Google Scholar
Nozette, S. and Shoemaker, E. M. (1994) Clementine goes exploring. Sky and Telescope, 87, 3839.Google Scholar
Nugent, C. R., Margot, J. L., Chesley, S. R. and Vokrouhlický, D. (2012a) detection of semimajor axis drifts in 54 near-Earth asteroids: New measurements of the Yarkovsky effect. Astronomical Journal, 144, 60.Google Scholar
Nugent, C. R., Mainzer, A., Masiero, J., Grav, T. and Bauer, J. (2012b) The Yarkovsky drift’s influence on NEAs: Trends and predictions with NEOWISE measurements. Astronomical Journal, 144, 75.Google Scholar
Nyquist, L. E., Bogard, D. D., Shih, C.-Y., Greshake, A., Stöffler, D. and Eugster, O. (2001) Ages and geologic histories of Martian meteorites. Space Science Reviews, 96, 105164.Google Scholar
Nyquist, L. E., Kleine, T., Shih, C.-Y. and Reese, Y. D. (2009) The distribution of short-lived radioisotopes in the early Solar System and the chronology of asteroid accretion, differentiation, and secondary mineralization. Geochimica et Cosmochimica Acta, 73, 51155136.Google Scholar
Oberc, P. (1996) Disintegration of dust aggregates as origin of the boundaries in Halley’s coma: Derivation of the sublimation parameters. Icarus, 124, 195208.Google Scholar
Oberst, J., Mottola, S., Di Martino, M., et al. (2001) A model for rotation and shape of asteroid 9969 Braille from ground-based observations and images obtained during the Deep Space 1 (DS1) flyby. Icarus, 153, 1623.Google Scholar
O’Brien, D. P., Greenberg, R. and Richardson, J. E. (2006) Craters on asteroids: Reconciling diverse impact records with a common impacting population. Icarus, 183, 7992.Google Scholar
Ockert-Bell, M. E., Clark, B. E., Shepard, M. K., et al. (2010) The composition of M-type asteroids: Synthesis of spectroscopic and radar observations. Icarus, 210, 674692.Google Scholar
Okada, A., Keil, K. and Taylor, G. J. (1981) Unusual weathering products of oldhamite parentage in the Norton County enstatite achondrite. Meteoritics, 16, 141152.Google Scholar
Okada, T., Shirai, K., Yamamoto, Y., et al. (2006) X-ray fluorescence spectrometry of asteroid Itokawa by Hayabusa. Science, 312, 13381341.Google Scholar
Olkin, C. B., Reuter, D., Lunsford, A., Binzel, R. P. and Stern, S. A. (2006) The New Horizons distant flyby of asteroid 2002 JF56. Bulletin of the American Astronomical Society, 38, 597.Google Scholar
Oort, J. H. (1950) The structure of the cloud of comets surrounding the Solar System and a hypothesis concerning its origin. Bulletin of the Astronomical Institutes of the Netherlands, 11, 91110.Google Scholar
Opeil, C. P., Consolmagno, G. J. and Britt, D. T. (2010) The thermal conductivity of meteorites: New measurements and analysis. Icarus, 208, 449454.Google Scholar
Opeil, C. P., Consolmagno, G. J., Safarik, D. J. and Britt, D. T. (2012) Stony meteorite thermal properties and their relationship with meteorite chemical and physical states. Meteoritics & Planetary Science, 47, 319329.Google Scholar
Ortiz, J. L., Moreno, F., Molina, A., Sanz, P. S. and Gutiérrez, P. J. (2007) Possible patterns in the distribution of planetary formation regions. Monthly Notices of the Royal Astronomical Society, 379, 12221226.Google Scholar
Ortiz, J. L., Sicardy, B., Braga-Ribas, F., et al. (2012) Albedo and atmospheric constraints of dwarf planet Makemake from a stellar occultation. Nature, 491, 566569.Google Scholar
Ortiz, J. L., Duffard, R., Pinilla-Alonso, N., et al. (2015) Possible ring material around centaur (2060) Chiron. Astronomy & Astrophysics, 576, A18.Google Scholar
Ostro, S. J. (1993) Planetary radar astronomy. Reviews of Modern Physics, 65, 12351279.Google Scholar
Ostro, S. J., Campbell, D. B. and Shapiro, I. I. (1985) Mainbelt asteroids: Dual-polarization radar observations. Science, 229, 442446.Google Scholar
Ostro, S. J., Hudson, R. S., Jurgens, R. F., et al. (1995) Radar images of asteroid 4179 Toutatis. Science, 270, 8083.Google Scholar
Ostrowski, D. R., Gietzen, K., Lacy, C. and Sears, D. W. G. (2010) An investigation of the presence and nature of phyllosilicates on the surfaces of C asteroids by an analysis of the continuum slopes in their near-infrared spectra. Meteoritics & Planetary Science, 45, 615637.Google Scholar
Ostrowski, D. R., Lacy, C. H. S., Gietzen, K. M. and Sears, D. W. G. (2011) IRTF spectra for 17 asteroids from the C and X complexes: A discussion of continuum slopes and their relationships to C chondrites and phyllosilicates. Icarus, 212, 682696.Google Scholar
Palmer, J. and Davenhall, A. C. (2001) The CCD Photometric Calibration Cookbook. Oxfordshire: Council for the Central Laboratory of the Research Councils, 63 pp.Google Scholar
Park, R. S., Konopliv, A. S., Asmar, S. W., et al. (2014) Gravity field expansion in ellipsoidal harmonic and polyhedral internal representations applied to Vesta. Icarus, 240, 118132.Google Scholar
Park, R., Konopliv, A., Bills, B.,Vaughan, A., Raymond, C. and Russell, C. (2015) Physical properties of Ceres from the Dawn mission. American Astronomical Society, DPS meeting, 47, 212.10.Google Scholar
Parker, A., Ivezić, Ž., Jurić, M., Lupton, R., Sekora, M. D. and Kowalski, A. (2008) The size distributions of asteroid families in the SDSS Moving Object Catalog 4. Icarus, 198, 138155.Google Scholar
Parker, A. S, Buie, M. W., Grundy, W. M. and Noll, K. S., (2016) S/2015 (136472) 1. Minor Planet Electronic Circular, 2016-H46.Google Scholar
Pätzold, M., Andert, T. P., Asmar, S. W., et al. (2011) Asteroid 21 Lutetia: Low mass, high density. Science, 334, 491492.Google Scholar
Pätzold, M., Andert, T., Hahn, M., et al. (2016) A homogeneous nucleus for comet 67P/Churyumov– Gerasimenko from its gravity field. Nature, 530, 6365.Google Scholar
Peplowski, P. N., Lawrence, D. J., Prettyman, T. H., et al. (2013) Compositional variability on the surface of 4 Vesta revealed through GRaND measurements of high-energy gamma rays. Meteoritics & Planetary Science, 48, 22522270.Google Scholar
Peplowski, P. N., Bazell, D., Evans, L. G., Goldsten, J. O., Lawrence, D. J. and Nittler, L. R. (2015) Hydrogen and major element concentrations on asteroid 433 Eros: Evidence for an L and LL chondrite-like surface composition. Meteoritics & Planetary Science, 50, 353367.Google Scholar
Perna, D., Dotto, E., Ieva, S., et al. (2016) Grasping the nature of potentially hazardous asteroids. Astronomical Journal, 151, 11.Google Scholar
Pesonen, L. J., Terho, M. and Kukkonen, I. (1993) Physical properties of 368 meteorites: Implications for meteorite magnetism and planetary geophysics. Proceedings of the NIPR Symposium, 6, 401416.Google Scholar
Pieters, C. M., Taylor, L. A., Noble, S. K., et al. (2000) Space weathering on airless bodies: Resolving a mystery with lunar samples. Meteoritics & Planetary Science, 35, 11011107.Google Scholar
Pilger, C., Ceranna, L., Ross, J. O., Le Pinchon, A., Mialle, P. and Garcés, M. A. (2015) CBT infrasound network performance to detect the 2013 Russian fireball event. Geophysical Research Letters, 42, 25232531.Google Scholar
Pizzarello, S. and Shock, E. (2010) The organic composition of carbonaceous meteorites: The evolutionary story ahead of biochemistry. Cold Spring Harbor Perspectives in Biology, 2, a002105.Google Scholar
Pizzarello, S., Huang, Y., Becker, L., et al. (2001) The organic content of the Tagish Lake meteorite. Science, 293, 22362239.Google Scholar
Pizzarello, S., Cooper, G. W. and Flynn, G. J. (2006) The nature and distribution of the organic material in carbonaceous chondrites and interplanetary dust particles. In Meteorites and the Early Solar System, eds. Lauretta, D. S. and McSween, H. Y. Jr. Tucson: University of Arizona Press, pp. 625651.Google Scholar
Plotkin, H., Clarke, R. S., McCoy, T. J. and Corrigan, C. M. (2012) The Old Woman, California, IIAB iron meteorite. Meteoritics & Planetary Science, 47, 929946.Google Scholar
Polishook, D. (2012) Lightcurves and spin periods from the Wise Observatory – October 2011. Minor Planet Bulletin, 39, 8889.Google Scholar
Polishook, D., Moskovitz, N., Binzel, R. P., et al. (2016) A 2 km-size asteroid challenging the rubble-pile spin barrier – A case for cohesion. Icarus, 267, 243254.Google Scholar
Popova, O. P., Jenniskens, P., Emel’yanenko, V., et al. (2013) Chelyabinsk airburst, damage assessment, meteorite recovery, and characterization. Science, 342, 10691073.Google Scholar
Pravec, P., Harris, A. W. and Michałowski, T. (2002) Asteroid rotations. In Asteroids III, eds. Bottke, W. F. Jr., Cellino, A., Paolicchi, P. and Binzel, R. P. Tucson: University of Arizona Press, pp. 113122.Google Scholar
Prettyman, T. H. (2007) Remote chemical sensing using nuclear spectroscopy. In Encyclopedia of the Solar System (Second Edition), eds. McFadden, L.-A., Weissman, P. R. and Johnson, T. V. San Diego: Elsevier, pp. 765786.Google Scholar
Prettyman, T. H., Feldman, W. C., McSween, H. Y., et al. (2011) Dawn’s gamma ray and neutron detector. Space Science Reviews, 163, 371459.Google Scholar
Prettyman, T. H., Mittlefehldt, D. W., Yamashita, N., et al. (2012) Elemental mapping by Dawn reveals exogenic H in Vesta’s regolith. Science, 338, 242246.Google Scholar
Prettyman, T. H., Yamashita, N., Castillo-Rogez, J. C., et al. (2016) Elemental composition of Ceres by Dawn’s gamma ray and neutron detector. Lunar and Planetary Science Conference, 47, 2228. www.hou.usra.edu/meetings/lpsc2016/pdf/2228.pdf.Google Scholar
Prinz, M., Keil, K., Hlava, P. F., Berkley, J. L., Gomes, C. B. and Curvello, W. S. (1977) Studies of Brazilian meteorites., III – Origin and history of the Angra Dos Reis achondrite. Earth and Planetary Science Letters, 35, 317330.Google Scholar
Prior, G. (1916) On the genetic relationship and classification of meteorites. Mineralogical Magazine, 18, 2644.Google Scholar
Prior, G. T. (1920) The classification of meteorites. Mineralogical Magazine, 19, 5163.Google Scholar
Probst, L. W., Desch, S. J. and Thirumalai, A. (2015) The internal structure of Haumea. Lunar and Planetary Science Conference, 46, 2183. www.hou.usra.edu/meetings/lpsc2015/pdf/2183.pdf.Google Scholar
Puckett, A. W., Rector, T. A., Baalke, R. and Ajiki, O. (2016) OrbitMaster: An online tool for investigating Solar System dynamics and visualizing orbital uncertainties in the undergraduate classroom. American Astronomical Society Meeting, 227, 328.09.Google Scholar
Putnis, A. (1992) An Introduction to Mineral Sciences. Cambridge: Cambridge University Press, 480 pp.Google Scholar
Qin, L., Dauphas, N., Wadhwa, M., Masarik, J. and Janney, P. E. (2008) Rapid accretion and differentiation of iron meteorite parent bodies inferred from 182Hf-182W chronometry and thermal modeling. Earth and Planetary Science Letters, 273, 94104.Google Scholar
Rabinowitz, D., Tourtellotte, S., Brown, M. and Trujillo, C. (2005) Photometric observations of a very bright TNO with an extraordinary lightcurve. Bulletin of the American Astronomical Society, 37, 746.Google Scholar
Rabinowitz, D. L., Barkume, K., Brown, M. E., et al. (2006) Photometric observations constraining the size, shape, and albedo of 2003 EL61, a rapidly rotating, Pluto-sized object in the Kuiper belt. Astrophysical Journal, 639, 12381251.Google Scholar
Ragozzine, D. and Brown, M. E. (2009) Orbits and masses of the satellites of the dwarf planet Haumea (2003 EL61). Astronomical Journal, 137, 47664776.Google Scholar
Rayman, M. D., Varghese, P., Lehman, D. H. and Livesay, L. L. (2000) Results from the Deep Space 1 technology validation mission. Acta Astronautica, 47, 475487.Google Scholar
Raymond, S. N., O’Brien, D. P., Morbidelli, A. and Kaib, N. A. (2009) Building the terrestrial planets: Constrained accretion in the inner Solar System. Icarus, 203, 644662.Google Scholar
Reddy, V., Emery, J. P., Gaffey, M. J., Bottke, W. F., Cramer, A. and Kelley, M. S. (2009) Composition of 298 Baptistina: Implications for the K/T impactor link. Meteoritics & Planetary Science, 44, 19171927.Google Scholar
Reddy, V., Gaffey, M. J., Kelley, M. S., Nathues, A., Li, J.-Y. and Yarbrough, R. (2010) Compositional heterogeneity of asteroid 4 Vesta’s southern hemisphere: Implications for the Dawn mission. Icarus, 210, 693706.Google Scholar
Reddy, V., Carvano, J. M., Lazzaro, D., et al. (2011) Mineralogical characterization of Baptistina asteroid family: Implications for K/T impactor source. Icarus, 216, 184197.Google Scholar
Reddy, V., Nathues, A., Le Corre, L., et al. (2012a) Color and albedo heterogeneity of Vesta from Dawn. Science, 336, 700704.Google Scholar
Reddy, V., Le Corre, L., O’Brien, D. P., et al. (2012b) Delivery of dark material to Vesta via carbonaceous chondritic impacts. Icarus, 221, 544559.Google Scholar
Reddy, V., Sanchez, J. A., Nathues, A., et al. (2012c) Photometric, spectral phase and temperature effects on 4 Vesta and HED meteorites: Implications for the Dawn mission. Icarus, 217, 153168.Google Scholar
Reddy, V., Li, J.-Y., Le Corre, L., et al. (2013) Comparing Dawn, Hubble Space Telescope, and ground-based interpretations of (4) Vesta. Icarus, 226, 11031114.Google Scholar
Reddy, V., Gary, B. L., Sanchez, J. A., et al. (2015) The physical characterization of the potentially hazardous asteroid 2004 BL86: A fragment of a differentiated asteroid. Astrophysical Journal, 811, 65.Google Scholar
Reichhardt, T. (1998) Asteroid watchers debate false alarm. Nature, 392, 215.Google Scholar
Renne, P. R., Deino, A. L., Hilgen, F. J., et al. (2013) Time scales of critical events around the Cretaceous-Paleogene boundary. Science, 339, 684687.Google Scholar
Reuter, D. C., Stern, S. A., Scherrer, J., et al. (2008) Ralph: A visible/infrared imager for the New Horizons Pluto/Kuiper belt mission. Space Science Reviews, 140, 129154.Google Scholar
Richardson, J. E. and Bowling, T. J. (2014) Investigating the combined effects of shape, density, and rotation on small body surface slopes and erosion rates. Icarus, 234, 5365.Google Scholar
Richardson, J. E. and Melosh, H. J. (2013) An examination of the Deep Impact collision site on comet Tempel 1 via Stardust-NExT: Placing further constraints on cometary surface properties. Icarus, 222, 492501.Google Scholar
Richardson, J. E., Melosh, H. J. and Greenberg, R. (2004) Impact-induced seismic activity on asteroid 433 Eros: A surface modification process. Science, 306, 15261529.Google Scholar
Richter, S, Eykins, R., Kühn, H., Aregbe, Y., Verbruggen, A. and Weyer, S. (2010) New average values for the n(238U)/n(235U) isotope ratios of natural uranium standards. International Journal of Mass Spectrometry, 295, 9497.Google Scholar
Rieke, G. H. (2007) Infrared detector arrays for astronomy. Annual Review of Astronomy and Astrophysics, 45, 77115.Google Scholar
Righter, K. (2016) Curator’s comments. Antarctic Meteorite Newsletter, 39, 1.Google Scholar
Rivkin, A. S. (2012) The fraction of hydrated C-complex asteroids in the asteroid belt from SDSS data. Icarus, 221, 744752.Google Scholar
Rivkin, A. S. and Emery, J. P. (2010) Detection of ice and organics on an asteroidal surface. Nature, 464, 13221323.Google Scholar
Rivkin, A. S., Howell, E. S., Britt, D. T., Lebofsky, L. A., Nolan, M. C. and Branston, D. D. (1995) Three-micron spectrometric survey of M-and E-class asteroids. Icarus, 117, 90100.Google Scholar
Rivkin, A. S., Howell, E. S., Lebofsky, L. A., Clark, B. E. and Britt, D. T. (2000) The nature of M-class asteroids from 3-micron observations. Icarus, 145, 351368.Google Scholar
Rivkin, A. S., Davies, J. K., Clark, B. E., Trilling, D. E. and Brown, R. H. (2001) Aqueous alteration on S asteroid 6 Hebe? Lunar and Planetary Science Conference, XXXII, 1723. www.lpi.usra.edu/meetings/lpsc2001/pdf/1723.pdf.Google Scholar
Rivkin, A. S., Howell, E. S., Vilas, F. and Lebofsky, L. A. (2002) Hydrated minerals on asteroids: The astronomical record. In Asteroids III, eds. Bottke, W. F. Jr., Cellino, A., Paolicchi, P. and Binzel, R. P. Tucson: University of Arizona Press, pp. 235253.Google Scholar
Rivkin, A. S., Trilling, D. E., Thomas, C. A., DeMeo, F., Spahr, T. B. and Binzel, R. P. (2007) Composition of the L5 Mars Trojans: Neighbors, not siblings. Icarus, 192, 434441.Google Scholar
Rivkin, A. S., Li, J.-Y., Milliken, R. E., et al. (2011a) The surface composition of Ceres. Space Science Reviews, 163, 95116.Google Scholar
Rivkin, A. S., Thomas, C. A., Trilling, D. E., Enga, M.-t. and Grier, J. A. (2011b) Ordinary chondrite-like colors in small Koronis family members. Icarus, 211, 12941297.Google Scholar
Rivkin, A. S., Thomas, C. A., Howell, E. S. and Emery, J. P. (2015) The Ch-class asteroids: Connecting a visible taxonomic class to a 3 μm band shape. Astronomical Journal, 150, 198.Google Scholar
Robbins, S. J., Antonenko, I., Kirchoff, M. R., et al. (2014) The variability of crater identification among expert and community crater analysts. Icarus, 234, 109131.Google Scholar
Robertson, D. S., Lewis, W. M., Sheehan, P. M. and Toon, O. B. (2013) K-Pg extinction: Reevaluation of the heat-fire hypothesis. Journal of Geophysical Research: Biogeosciences, 118, 329336.Google Scholar
Robinson, M. S., Thomas, P. C., Veverka, J., Murchie, S. and Carcich, B. (2001) The nature of ponded deposits on Eros. Nature, 413, 396400.Google Scholar
Rogalski, A. (2002) Infrared detectors: An overview. Infrared Physics & Technology, 43, 187210.Google Scholar
Roig, F. and Gil-Hutton, R. (2006) Selecting candidate V-type asteroids from the analysis of the Sloan Digital Sky Survey colors. Icarus, 183, 411419.Google Scholar
Roig, F., Nesvorný, D., Gil-Hutton, R. and Lazzaro, D. (2008a) V-type asteroids in the middle main belt. Icarus, 194, 125136.Google Scholar
Roig, F., Ribeiro, A. O. and Gil-Hutton, R. (2008b) Taxonomy of asteroid families among the Jupiter Trojans: Comparison between spectroscopic data and the Sloan Digital Sky Survey colors. Astronomy & Astrophysics, 483, 911931.Google Scholar
Rose, A. and Weimer, P. K. (1989) Physical limits to the performance of imaging systems. Physics Today, 42, 2432.Google Scholar
Roush, T. L. and Singer, R. B. (1987) Possible temperature variation effects on the interpretation of spatially resolved reflectance observations of asteroid surfaces. Icarus, 69, 571574.Google Scholar
Rozitis, B., MacLennan, E. and Emery, J. P. (2014) Cohesive forces prevent the rotational breakup of rubble-pile asteroid (29075) 1950 DA. Nature, 512, 174176Google Scholar
Rubin, A. E. (1997a) Mineralogy of meteorite groups. Meteoritics, 32, 231247.Google Scholar
Rubin, A. E. (1997b) Mineralogy of meteorite groups: An update. Meteoritics, 32, 733734.Google Scholar
Rubin, A. E., Ulff-Moller, F., Wasson, J. T. and Carlson, W. D. (2001) The Portales Valley meteorite breccia: evidence for impact-induced melting and metamorphism of an ordinary chondrite. Geochimica et Cosmochimica Acta, 65, 323342.Google Scholar
Rubin, A. E., Zolensky, M. E. and Bodnar, R. J. (2002) The halite-bearing Zag and Monahans (1998) meteorite breccias: Shock metamorphism, thermal metamorphism and aqueous alteration on the H-chondrite parent body. Meteoritics & Planetary Science, 37, 125141.Google Scholar
Rubin, M., Altwegg, K., Balsiger, H., et al. (2015) Molecular nitrogen in comet 67P/Churyumov-Gerasimenko indicates a low formation temperature. Science, 348, 232235.Google Scholar
Rubincam, D. P. (1987) LAGEOS orbit decay due to infrared radiation from Earth. Journal of Geophysical Research, 92, 12871294.Google Scholar
Rubincam, D. P. (1990) Drag on the LAGEOS satellite. Journal of Geophysical Research, 95, 48814886.Google Scholar
Rubincam, D. P. (1993) The LAGEOS along-track acceleration: A review. In Relativistic Gravitational Experiments in Space, eds. Demianski, M. and Everitt, C. W. F. Singapore: World Scientific Publishing, pp. 195209.Google Scholar
Rubincam, D. P. (1998) Does sunlight change the spin of small asteroids? Bulletin of the American Astronomical Society, 30, 1035.Google Scholar
Rubincam, D. P. (2000) Radiative spin-up and spin-down of small asteroids. Icarus, 148, 211.Google Scholar
Rumpf, C., Lewis, H. G. and Atkinson, P. M. (2016) The global impact distribution of near-Earth objects. Icarus, 265, 209217.Google Scholar
Ruprecht, J. D., Bosh, A. S., Person, M. J., et al. (2015) 29 November 2011 occultation by 2060 Chiron: Symmetric jet-like features. Icarus, 252 , 271276.Google Scholar
Russell, C. T., Raymond, C. A., Coradini, A., et al. (2012) Dawn at Vesta: Testing the protoplanetary paradigm. Science, 336, 684686.Google Scholar
Russell, C. T., Raymond, C. A., Nathues, A., et al. (2015) Dawn explores Ceres: Results from the survey orbit. http://nesf2015.arc.nasa.gov/sites/default/files/downloads/pdf/05.pdf.Google Scholar
Russell, S. and Grady, M. M. (2006) A history of the meteorite collection at the Natural History Museum, London. In The History of Meteoritics and Key Meteorite Collections: Fireballs, Falls and Finds, Geological Society Special Publication, no. 256, eds. McCall, G. J. H., Bowden, A. J. and Bowden, A. J. Bath: Geological Society Publishing House, pp. 153162.Google Scholar
Ruzicka, A. (2014) Silicate-bearing iron meteorites and their implications for the evolution of asteroidal parent bodies. Chemie der Erde, 74, 348.Google Scholar
Sagan, C. and Khare, B. (1979) Tholins: Organic chemistry of interstellar grains and gas. Nature, 277, 102107.Google Scholar
Saito, J., Miyamoto, H., Nakamura, R., et al. (2006) Detailed images of asteroid 25143 Itokawa from Hayabusa. Science, 312, 13411344.Google Scholar
Salisbury, J. W. and Hunt, G. R. (1974) Meteorite spectra and weathering. Journal of Geophysical Research, 79, 44394441.Google Scholar
Salisbury, J. W., Hunt, G. R. and Lenhoff, C. J. (1975) Visible and near-infrared spectra: X. Stony meteorites. Modern Geology, 5, 115126.Google Scholar
Sanchez, J. A., Reddy, V., Nathues, A., Cloutis, E. A., Mann, P. and Hiesinger, H. (2012) Phase reddening on near-Earth asteroids: Implications for mineralogical analysis, space weathering and taxonomic classification. Icarus, 220, 3650.Google Scholar
Sasaki, S., Nakamura, K., Hamabe, Y., Kurahashi, E. and Hiroi, T. (2001) Production of iron nanoparticles by laser irradiation in a simulation of lunar-like space weathering. Nature, 410, 555557.Google Scholar
Sato, K., Miyamoto, M. and Zolensky, M. E. (1997) Absorption bands near 3 micrometers in diffuse reflectance spectra of carbonaceous chondrites: Comparison with asteroids. Meteoritics, 32, 503507.Google Scholar
Sawyer, S. R., Barker, E. S., Cochran, A. L. and Cochran, W. D. (1987) Spectrophotometry of Pluto-Charon mutual events: Individual spectra of Pluto and Charon. Science, 238, 15601563.Google Scholar
Schade, U. and Wäsch, R. (1999) NIR reflectance spectroscopy of mafic minerals in the temperature range between 80 and 473 K. Advances in Space Research, 23, 12531256.Google Scholar
Schaefer, M. W., Schaefer, B. E., Rabinowitz, D. L. and Tourtellotte, S. W. (2010) Phase curves of nine Trojan asteroids over a wide range of phase angles. Icarus, 207, 699713.Google Scholar
Schechner, S. (1999) Comets, Popular Culture, and the Birth of Modern Cosmology. Princeton: Princeton University Press, 384 pp.Google Scholar
Scheeres, D. J., Ostro, S. J., Hudson, R. S., DeJong, E. M. and Suzuki, S. (1998) Dynamics of orbits close to asteroid 4179 Toutatis. Icarus, 132, 5379.Google Scholar
Schmadel, L. (2003) Dictionary of Minor Planet Names (5th Revised and Enlarged Edition). Berlin: Springer-Verlag, 1008 pp.Google Scholar
Schmedemann, N., Kneissl, T., Ivanov, B. A., et al. (2014) The cratering record, chronology and surface ages of (4) Vesta in comparison to smaller asteroids and the ages of HED meteorites. Planetary and Space Science, 103, 104130.Google Scholar
Schmidt, B. E., Thomas, P. C., Bauer, J. M., et al. (2009) The shape and surface variation of 2 Pallas from the Hubble Space Telescope. Science, 326, 275278.Google Scholar
Schmitt, D. G. (2002) The law of ownership and control of meteorites. Meteoritics & Planetary Science, 37 (Supplement), B5–B11.Google Scholar
Schmitt-Kopplin, P., Gabelica, Z., Gougeon, R. D., et al. (2010) High molecular diversity of extraterrestrial organic matter in Murchison meteorite revealed 40 years after its fall. Proceedings of the National Academy of Sciences, 107, 27632768.Google Scholar
Schmitz, B., Tassinari, M. and Peucker-Ehrenbrink, B. (2001) A rain of ordinary chondritic meteorites in the early Ordovician. Earth and Planetary Science Letters, 194, 115.Google Scholar
Schmitz, B., Heck, P. R., Alwmark, C., et al. (2011) Determining the impactor of the Ordovician Lockne crater: Oxygen and neon isotopes in chromite versus sedimentary PGE signatures. Earth and Planetary Science Letters, 306, 149155.Google Scholar
Schoene, B. (2014) U–Th–Pb geochronology. Treatise on Geochemistry (Second Edition), Volume 4: The Crust, eds. Holland, H. D. and Turekian, K. K. Amsterdam: Elsevier, pp. 341378.Google Scholar
Score, R. and Mason, B. (1983) ALHA81005. Antarctic Meteorite Newsletter, 6, 3.Google Scholar
Scott, E. R. D. (1977) Pallasites – Metal composition, classification and relationships with iron meteorites. Geochimica et Cosmochimica Acta, 41, 349360.Google Scholar
Scott, E. R. D. and Krot, A. N. (2005) Chondritic meteorites and the high-temperature nebular origins of their components. In Chondrites and the Protoplanetary Disk, ASP Conference Series, Volume 341, eds. Krot, A. N., Scott, E. R. D. and Reipurth, B. San Francisco: Astronomical Society of the Pacific, pp. 1553.Google Scholar
Scott, E. R. D. and Krot, A. N. (2014) Chondrites and their components. In Treatise on Geochemistry (Second Edition), Volume 1: Meteorites and Cosmochemical Processes, eds. Holland, H. D. and Turekian, K. K. Amsterdam: Elsevier, pp. 65137.Google Scholar
Scott, E. R. D., Haack, H. and Love, S. J. (2001) Formation of mesosiderites by fragmentation and reaccretion of a large differentiated asteroid. Meteoritics & Planetary Science, 36, 869891.Google Scholar
Scott, E. R. D., Greenwood, R. C., Franchi, I. A. and Sanders, I. A. (2009) Oxygen isotopic constraints on the origin and parent bodies of eucrites, diogenites, and howardites. Geochimica et Cosmochimica Acta, 73, 58355853.Google Scholar
Scully, J. E. C., Russell, C. T., Yin, A., et al. (2015) Geomorphological evidence for transient water flow on Vesta. Earth and Planetary Science Letters, 411, 151163.Google Scholar
Seares, F. H. (1930) Address of the retiring president of the society in awarding the Bruce Medal to professor Max Wolf. Publications of the Astronomical Society of the Pacific, 42, 522.Google Scholar
Sears, D. W. G. (2004) The Origin of Chondrules and Chondrites. Cambridge: Cambridge University Press, 222 pp.Google Scholar
Sekanina, Z. (1991) Cometary activity, discrete outgassing areas, and dust-jet formation. In Comets in the Post-Halley Era, Volume 2, eds. Newburn, R. L., Neugebauer, M. and Rahe, J. H. Dordrecht: Kluwer Academic Publishers. pp. 769823.Google Scholar
Sephton, M. A. (2002) Organic compounds in carbonaceous meteorites. Natural Product Reports, 19, 292311.Google Scholar
Sephton, M. A., Love, G. D., Watson, J. S., et al. (2004) Hydropyrolysis of insoluble carbonaceous matter in the Murchison meteorite: new insights into its macromolecular structure. Geochimica et Cosmochimica Acta, 68, 13851393.Google Scholar
Sharp, T. G. and DeCarli, P. S. (2006) Shock effects in meteorites. In Meteorites and the Early Solar System, eds. Lauretta, D. S. and McSween, H. Y. Jr. Tucson: University of Arizona Press, pp. 653677.Google Scholar
Shepard, M. K. (2015) Asteroids: Relics of Ancient Time. Cambridge: Cambridge University Press, 368 pp.Google Scholar
Shepard, M. K., Clark, B. E., Ockert-Bell, M., et al. (2010) A radar survey of M- and X-class asteroids II. Summary and synthesis. Icarus, 208, 221237.Google Scholar
Shepard, M. K., Harris, A. W., Taylor, P. A., et al. (2011) Radar observations of asteroids 64 Angelina and 69 Hesperia. Icarus, 215, 547551.Google Scholar
Shepard, M. K., Taylor, P. A., Nolan, M. C., et al. (2015) A radar survey of M- and X-class asteroids. III. Insights into their composition, hydration state, & structure. Icarus, 245, 3855.Google Scholar
Sheppard, S. S. and Trujillo, C. A. (2010) The size distribution of the Neptune Trojans and the missing intermediate-sized planetesimals. Astrophysical Journal Letters, 723, L233–L237.Google Scholar
Shestopalov, D. I., Golubeva, L. F., McFadden, L. A., Fornasier, S. and Taran, M. N. (2010) Titanium-bearing pyroxenes of some E asteroids: Coexisting of igneous and hydrated rocks. Planetary and Space Science, 58, 14001403.Google Scholar
Shkuratov, Y., Kaydash, V., Korokhin, V., et al. (2012) A critical assessment of the Hapke photometric model. Journal of Quantitative Spectroscopy & Radiative Transfer, 113, 24312456.Google Scholar
Shu, F. H., Shang, H. and Lee, T. (1996) Toward an astrophysical theory of chondrites. Science, 271, 15451552.Google Scholar
Shu, F. H., Shang, H., Glassgold, A. E. and Lee, T. (1997) X-rays and fluctuating X-winds from protostars. Science, 277, 14751479.Google Scholar
Shukolyukov, A. and Lugmair, G. W. (1998) Isotopic evidence for the Cretaceous-Tertiary impactor and its type. Science, 282, 927930.Google Scholar
Sicardy, B., Ortiz, J. L., Assafin, M., et al. (2011) A Pluto-like radius and a high albedo for the dwarf planet Eris from an occultation. Nature, 478, 493496.Google Scholar
Sierks, H., Lamy, P., Barbieri, C., et al. (2011) Images of asteroid 21 Lutetia: A remnant planetesimal from the early Solar System. Science, 334, 487490.Google Scholar
Sierks, H., Barbieri, C., Lamy, P. L., et al. (2015) On the nucleus structure and activity of comet 67P/Churyumov-Gerasimenko. Science, 347, aaa104-1–aaa1044-5.Google Scholar
Singer, R. B. and Roush, T. L. (1985) Effects of temperature on remotely sensed mineral absorption features. Journal of Geophysical Research, 90, 1243412444.Google Scholar
Sklute, E. C. (2014) On the subject of analyzing iron and sulfur bearing minerals from three extreme environments: Geological carbon sequestration, acid mine drainage, and Mars. PhD thesis, Stony Brook University, Stony Brook, New York, 415 pp.Google Scholar
Slade, M. A., Benner, L. A. M. and Silva, A. (2011) Goldstone Solar System Radar Observatory: Earth-based planetary mission support and unique science results. Proceedings of the IEEE, 99, 757769.Google Scholar
Slivan, S. M. (2002) Spin vector alignment of Koronis family asteroids. Nature, 419, 4951.Google Scholar
Slivan, S. M., Binzel, R. P., Kaasalainen, M., et al. (2009) Spin vectors in the Koronis family. II. Additional clustered spins, and one stray. Icarus, 200, 514530.Google Scholar
Smith, R. C. (1995) Observational Astrophysics. Cambridge: Cambridge University Press, 468 pp.Google Scholar
Soter, S. (2006) What is a planet? Astronomical Journal, 132, 25132519.Google Scholar
Southwood, D. J. (1994) Recent magnetic field results from the Galileo and Ulysses spacecraft. Philosophical Transactions: Physical Sciences and Engineering, 349, 261270.Google Scholar
Stansberry, J., Grundy, W., Brown, M., et al. (2008) Physical properties of Kuiper belt and centaur objects: Constraints from Spitzer Space Telescope. In The Solar System Beyond Neptune, eds. Barucci, M. A., Boehnhardt, H., Cruikshank, D. P. and Morbidelli, A. Tucson: University of Arizona Press, pp. 161179.Google Scholar
Stephens, D. C. and Noll, K. S. (2006) Detection of six trans-Neptunian binaries with NICMOS: A high fraction of binaries in the cold classical disk. Astronomical Journal, 131, 11421148.Google Scholar
Stephenson, F. R., Yau, K. K. C. and Hunger, H. (1985) Records of Halley’s comet on Bablyonian tablets. Nature, 314, 587592.Google Scholar
Stern, S. A., Weaver, H. A., Steffl, A. J., et al. (2006) A giant impact origin for Pluto’s small moons and satellite multiplicity in the Kuiper belt. Nature, 439, 946–948.Google Scholar
Stern, S. A., Bagenal, F., Ennico, K., et al. (2015) The Pluto system: Initial results from its exploration by New Horizons. Science, 350, aad1815-1–aad1815-8.Google Scholar
Stöffler, D., Keil, K. and Scott, E. R. D. (1991) Shock metamorphism of ordinary chondrites. Geochimica et Cosmochimica Acta, 55, 38453867.Google Scholar
Stooke, P. J. and Ford, H. A. (2001) Gaspra: Revised crater counts. Lunar and Planetary Science Conference, XXXII, 1073. www.lpi.usra.edu/meetings/lpsc2001/pdf/1073.pdf.Google Scholar
Storrs, A., Weiss, B., Zellner, B., et al. (1999) Imaging observations of asteroids with Hubble Space Telescope. Icarus, 137, 260268.Google Scholar
Strom, R. G. and Neukum, G. (1988) The cratering record on Mercury and the origin of impacting objects. In Mercury, eds. Vilas, F., Chapman, C. R. and Shapley, M. S. Tucson: University of Arizona Press, pp. 336373.Google Scholar
Strom, R. G., Malhotra, R., Ito, T., Yoshida, F. and Kring, D. A. (2005) The origin of planetary impactors in the inner Solar System. Science, 309, 18471850.Google Scholar
Strom, R. G., Malhotra, R., Xiao, Z.-Y., Ito, T., Yoshida, F. and Ostrach, L. R. (2015) The inner Solar System cratering record and the evolution of impactor populations. Research in Astronomy and Astrophysics, 15, 407-434.Google Scholar
Sunshine, J. M., Pieters, C. M. and Pratt, S. F. (1990) Deconvolution of mineral absorption bands: An improved approach. Journal of Geophysical Research, 95, 69556966.Google Scholar
Sunshine, J. M., Bus, S. J., McCoy, T. J., Burbine, T. H., Corrigan, C. M. and Binzel, R. P. (2004) High-calcium pyroxene as an indicator of igneous differentiation in asteroids and meteorites. Meteoritics & Planetary Science, 39, 13431357.Google Scholar
Sunshine, J. M., Bus, S. J., Corrigan, C. M., McCoy, T. J. and Burbine, T. H. (2007) Olivine-dominated asteroids and meteorites: Distinguishing nebular and igneous histories. Meteoritics & Planetary Science, 42, 155170.Google Scholar
Sunshine, J. M., Connolly, H. C. Jr., McCoy, T. J., Bus, S. J. and La Croix, L. M. (2008) Ancient asteroids enriched in refractory inclusions. Science, 320, 514517.Google Scholar
Swamy, K. K. S. (2010) Physics of Comets (Third Edition). Singapore: World Scientific Publishing Co. Pte. Ltd., 460 pp.Google Scholar
Swisher, C. C., III, Grajales-Nishimura, J. M., Montanari, A., et al. (1992) Coeval 40Ar/39Ar ages of 65.0 million years ago from Chicxulub crater melt rock and Cretaceous-Tertiary boundary tektites. Science, 257, 954958.Google Scholar
Tachibana, S., Abe, M., Arakawa, M., et al. (2014) Hayabusa2: Scientific importance of samples returned from C-type near-Earth asteroid (162173) 1999 JU3. Geochemical Journal, 48, 571587.Google Scholar
Tait, A. W., Tomkins, A. G., Godel, B. M., Wilson, S. A. and Hasalova, P. (2014) Investigation of the H7 ordinary chondrite, Watson 012: Implications for recognition and classification of Type 7 meteorites. Geochimica et Cosmochimica Acta, 134, 175196.Google Scholar
Takir, D., Emery, J. P., McSween, H. Y., Hibbitts, C. A., Clark, R. N., Pearson, N. and Wang, A. (2013) Nature and degree of aqueous alteration in CM and CI carbonaceous chondrites. Meteoritics & Planetary Science, 48, 16181637.Google Scholar
Taylor, P. A., Margot, J.-L., Vokrouhlický, D., et al. (2007) Spin rate of asteroid (54509) 2000 PH5 increasing due to the YORP effect. Science, 316, 274277.Google Scholar
Tedesco, E. F., Tholen, D. J. and Zellner, B. (1982) The Eight-Color Asteroid Survey: Standard stars. Astronomical Journal, 87, 15851592.Google Scholar
Tedesco, E. F., Noah, P. V., Noah, M. and Price, S. D. (2002) The supplemental IRAS Minor Planet Survey. Astronomical Journal, 123, 10561085.Google Scholar
Teets, D. and Whitehead, K. (1999) The discovery of Ceres: How Gauss became famous. Mathematics Magazine, 72, 8393.Google Scholar
Tegler, S. C. (2014) Kuiper belt objects: Physical studies. In Encyclopedia of the Solar System (Third Edition), eds. Spohn, T., Breuer, D., Weissman, P. R. and Johnson, T. V. Amsterdam: Elsevier, pp. 941955.Google Scholar
Tegler, S. C. and Romanishin, W. (2000) Extremely red Kuiper-belt objects in near-circular orbits beyond 40 AU. Nature, 407, 979981.Google Scholar
Tegler, S. C., Grundy, W. M., Romanishin, W., Consolmagno, G. J., Mogren, K. and Vilas, F. (2007) Optical spectroscopy of the large Kuiper belt objects 136472 (2005 FY9) and 136108 (2003 EL61). Astronomical Journal, 133, 526530.Google Scholar
Thangjam, G., Reddy, V., Le Corre, L., et al. (2013) Lithologic mapping of HED terrains on Vesta using Dawn Framing Camera color data. Meteoritics & Planetary Science, 48, 2199–2210.Google Scholar
Thangjam, G., Nathues, A., Mengel, K., et al. (2014) Olivine-rich exposures at Bellicia and Arruntia craters on (4) Vesta from Dawn FC. Meteoritics & Planetary Science, 49, 18311850.Google Scholar
Tholen, D. J. (1984) Asteroid taxonomy from cluster analysis of photometry. PhD thesis, University of Arizona, Tucson, Arizona, 150 pp.Google Scholar
Thomas, C. A., Trilling, D. E. and Rivkin, A. S. (2012) Space weathering of small Koronis family asteroids in the SDSS Moving Object Catalog. Icarus, 219, 505507.Google Scholar
Thomas, N., Sierks, H., Barbieri, C., et al. (2015) The morphological diversity of comet 67P/Churyumov-Gerasimenko. Science, 347, aaa0440-1–aaa0440-6.Google Scholar
Thomas, P. C., Veverka, J., Simonelli, D., et al. (1994) The shape of Gaspra. Icarus, 107, 2336.Google Scholar
Thomas, P. C., Binzel, R. P., Gaffey, M. J., Zellner, B. H., Storrs, A. D. and Wells, E. (1997) Vesta: Spin pole, size, and shape from HST images. Icarus, 128, 8894.Google Scholar
Thomas, P. C., Joseph, J., Carcich, B., et al. (2002) Eros: Shape, topography, and slope processes. Icarus, 155, 1837.Google Scholar
Thomas, P. C., Parker, J. Wm., McFadden, L. A., et al. (2005) Differentiation of the asteroid Ceres as revealed by its shape. Nature, 437, 224226.Google Scholar
Thompson, M. S., Christoffersen, R., Zega, T. J. and Keller, L. P. (2014) Microchemical and structural evidence for space weathering in soils from asteroid Itokawa. Earth, Planets and Space, 66, 89.Google Scholar
Tissot, F. L. H., Dauphas, N. and Grossman, L. (2016) Origin of uranium isotope variations in early solar nebula condensates. Science Advances, 2, e1501400.Google Scholar
Tombaugh, C. W. and Moore, P. (1980) Out of the Darkness: The Planet Pluto. Guilford: Stackhole Books, 221 pp.Google Scholar
Tremain, A. H., Gleason, J. D. and Bogard, D. D. (2000) The SNC meteorites are from Mars. Planetary and Space Science, 48, 12131230.Google Scholar
Trigo-Rodriguez, J. M., Llorca, J., Borovička, J. and Fabregat, J. (2003) Chemical abundances determined from meteor spectra: I Ratios of the main chemical elements. Meteoritics & Planetary Science, 38, 1283–1294.Google Scholar
Trinquier, A., Birck, J.-L. and Allègre, J. C. (2006) The nature of the K/T impactor. A 54Cr reappraisal. Earth and Planetary Science Letters, 241, 780788.Google Scholar
Trinquier, A., Birck, J.-L., Allègre, C. J., Göpel, C. and Ulfbeck, D. (2008) 53Mn–53Cr systematics of the early Solar System revisited. Geochimica et Cosmochimica Acta, 72, 51465163.Google Scholar
Trombka, J. I., Squyres, S. W., Brückner, J., et al. (2000) The elemental composition of asteroid 433 Eros: Results of the NEAR Shoemaker X-ray spectrometer. Science, 289, 21012105.Google Scholar
Trombka, J. I., Nittler, L. R., Starr, R. D., et al. (2001) The NEAR-Shoemaker X-ray/gamma-ray spectrometer experiment: Overview and lessons learned. Meteoritics & Planetary Science, 36, 1605–1616.Google Scholar
Trujillo, C. A. and Sheppard, S. S. (2014) A Sedna-like body with a perihelion of 80 astronomical units. Nature, 507, 471474.Google Scholar
Trujillo, C. A., Brown, M. E., Rabinowitz, D. L. and Geballe, T. R. (2005) Near-infrared surface properties of the two intrinsically brightest minor planets: (90377) Sedna and (90482) Orcus. Astrophysical Journal, 627, 10571065.Google Scholar
Trujillo, C. A., Brown, M. E., Barkume, K. M., Schaller, E. L. and Rabinowitz, D. L. (2007) The surface of 2003 EL61 in the near-infrared. Astrophysical Journal, 655, 11721178.Google Scholar
Tsiganis, K., Gomes, R., Morbidelli, A. and Levison, H. F. (2005). Origin of the orbital architecture of the giant planets of the Solar System. Nature, 435, 459461.Google Scholar
Tubiana, C., Duffard, R., Barrera, L. and Boehnhardt, H. (2007) Photometric and spectroscopic observations of (132524) 2002 JF56: Fly-by target of the New Horizons mission. Astronomy & Astrophysics, 463, 11971199.Google Scholar
Urey, H. C. (1956) Diamonds, meteorites, and the origin of the Solar System. Astrophysical Journal, 124, 623637.Google Scholar
van Flandern, T. C., Tedesco, E. F. and Binzel, R. P. (1979) Satellites of asteroids. In Asteroids. Tucson: University of Arizona Press, pp. 443465.Google Scholar
Van Schmus, W. R. and Wood, J. A. (1967) A chemical-petrologic classification for the chondritic meteorites. Geochimica et Cosmochimica Acta, 31, 747765.Google Scholar
Vaughan, W. M. and Head, J. W. (2014) Criteria for identifying Mercurian meteorites. Lunar and Planetary Science Conference, 45, 2013. www.hou.usra.edu/meetings/lpsc2014/pdf/2013.pdf.Google Scholar
Veeder, G. J., Hanner, M. S., Matson, D. L., Tedesco, E. F., Lebofsky, L. A. and Tokunaga, A. T. (1989) Radiometry of near-Earth asteroids. Astronomical Journal, 97, 12111219.Google Scholar
Vereš, P., Jedicke, R., Fitzsimmons, A., et al. (2015) Absolute magnitudes and slope parameters for 250,000 asteroids observed by Pan-STARRS PS1 – preliminary results. Icarus, 261, 3447.Google Scholar
Vernazza, P., Mothé-Diniz, T., Barucci, M. A., et al. (2005) Analysis of near-IR spectra of 1 Ceres and 4 Vesta, targets of the Dawn mission. Astronomy & Astrophysics, 436, 11131121.Google Scholar
Vernazza, P., Birlan, M., Rossi, A., et al. (2006a) Physical characterization of the Karin family. Astronomy & Astrophysics, 460, 945951.Google Scholar
Vernazza, P., Brunetto, R., Strazzulla, G., et al. (2006b) Asteroid colors: A novel tool for magnetic field detection? The case of Vesta. Astronomy & Astrophysics, 451, L43–L46.Google Scholar
Vernazza, P., Binzel, R. P., Thomas, C. A., et al. (2008) Compositional differences between meteorites and near-Earth asteroids. Nature, 454, 858860.Google Scholar
Vernazza, P., Binzel, R. P., Rossi, A., Fulchignoni, M. and Birlan, M. (2009) Solar wind as the origin of rapid reddening of asteroid surfaces. Nature, 458, 993995.Google Scholar
Vernazza, P., Lamy, P., Groussin, O., et al. (2012) Asteroid (21) Lutetia as a remnant of Earth’s precursor planetesimals. Icarus, 216, 650659.Google Scholar
Vernazza, P., Zanda, B., Binzel, R. P., et al. (2014) Multiple and fast: The accretion of ordinary chondrite parent bodies. Astrophysical Journal, 791, 120.Google Scholar
Veverka, J., Thomas, P., Harch, A., et al. (1997) NEAR’s flyby of 253 Mathilde: Images of a C asteroid. Science, 278, 21092114.Google Scholar
Veverka, J., Thomas, P., Harch, A., et al. (1999) NEAR encounter with asteroid 253 Mathilde: Overview. Icarus, 140, 316.Google Scholar
Veverka, J., Farquhar, B., Robinson, M., et al. (2001) The landing of the NEAR-Shoemaker spacecraft on asteroid 433 Eros. Nature, 413, 390393.Google Scholar
Viateau, B. and Rapaport, M. (2001) Mass and density of asteroids (4) Vesta and (11) Parthenope. Astronomy & Astrophysics, 370, 602609.Google Scholar
Vilas, F. (1994) A cheaper, faster, better way to detect water of hydration on Solar System bodies. Icarus, 111, 456467.Google Scholar
Vilas, F. (2008) Spectral characteristics of Hayabusa 2 near-Earth asteroid targets 162173 1999 JU3 and 2001 QC34. Astronomical Journal, 135, 1101–1105.Google Scholar
Vilas, F. and Gaffey, M. J. (1989) Phyllosilicate absorption features in main-belt and outer-belt asteroid reflectance spectra. Science, 246, 790792.Google Scholar
Vilas, F. and Hendrix, A. R. (2015) The UV/blue effects of space weathering manifested in S-complex asteroids. I. Quantifying change with asteroid age. Astronomical Journal, 150, 64.Google Scholar
Vilas, F. and Smith, B. A. (1985) Reflectance spectrophotometry (about 0.5–1.0 micron) of outer-belt asteroids: Implications for primitive, organic Solar System material. Icarus, 64, 503516.Google Scholar
Vilas, F., Cochran, A. L. and Jarvis, K. S. (2000) Vesta and the Vestoids: A new rock group? Icarus, 147, 119128.Google Scholar
Vokrouhlický, D. and Farinella, P. (2000) Efficient delivery of meteorites to the Earth from a wide range of asteroid parent bodies. Nature, 407, 606608.Google Scholar
Vokrouhlický, D., Milani, A. and Chesley, S. R. (2000) Yarkovsky effect on small near-Earth asteroids: Mathematical formulation and examples. Icarus, 148, 118138.Google Scholar
Vokrouhlický, D., Nesvorný, D. and Bottke, W. F. (2003) The vector alignments of asteroid spins by thermal torques. Nature, 425, 147151.Google Scholar
Vokrouhlický, D., Bottke, W. F., Chesley, S. R., Scheeres, D. J. and Statler, T. S. (2015) The Yarkovsky and YORP effects. In Asteroids IV, eds. Michel, P., DeMeo, F. E. and Bottke, W. F. Tucson: University of Arizona Press, pp. 509531.Google Scholar
Vokrouhlický, D., Ďurech, J., Pravec, P., et al. (2016) The Schulhof family: Solving the age puzzle. Astronomical Journal, 151, 56.Google Scholar
Wall, M. (2014) Asteroid zoo asks public to find dangerous space rocks. www.space .com/26349-asteroid-zoo-zooniverse-planetary-resources.html.Google Scholar
Walsh, K. J., Morbidelli, A., Raymond, S. N., O’Brien, D. P. and Mandell, A. M. (2011) A low mass for Mars from Jupiter’s early gas-driven migration. Nature, 475, 206209.Google Scholar
Wang, Z., Kivelson, M. G., Joy, S., Khurana, K. K., Polanskey, C., Southwood, D. J. and Walker, R. J. (1995) Solar wind interaction with small bodies: 1: Whistler wing signatures near to Gaspra and Ida. Advances in Space Research, 16, 447457.Google Scholar
Warner, B. D. (2006) A Practical Guide to Lightcurve Photometry and Analysis. New York: Springer Science, 298 pp.Google Scholar
Whipple, F. L. (2011) MPO Canopus and PhotoRed. Colorado Springs: Bdw Publishing, 286 pp.Google Scholar
Warner, B. D., Harris, A. W. and Pravec, P. (2009) The asteroid lightcurve database. Icarus, 202, 134146.Google Scholar
Wasserburg, G. J., Wimpenny, J. and Yin, Q.-z. (2012) Mg isotopic heterogeneity, Al-Mg isochrons, and canonical 26Al/27Al in the early Solar System. Meteoritics & Planetary Science, 47, 19801997.Google Scholar
Wasson, J. T. (1995) Sampling the asteroid belt: How biases make it difficult to establish meteorite-asteroid connections. Meteoritics, 30, 595.Google Scholar
Wasson, J. T. and Wang, J. (1986) A nonmagmatic origin of group-IIE iron meteorites. Geochimica et Cosmochimica Acta, 50, 725732.Google Scholar
Watson, T. (2015) Falling junk has scientific value. Nature, 526: 621622.Google Scholar
Watson, T. (2016) Falling space debris traced to 1998 lunar mission. Nature, 10.1038/nature .2016.19162.Google Scholar
Watters, T. R. and Prinz, M. (1979) Aubrites: Their origin and relationship to enstatite chondrites. Proceedings of the Tenth Lunar and Planetary Science Conference, 10731093.Google Scholar
Weaver, H. A., Feldman, P. D., A’Hearn, M. F., et al. (1997) The activity and size of the nucleus of comet Hale-Bopp (C/1995 O1). Science, 275 , 19001904.Google Scholar
Weaver, H. A., Buie, M. W., Buratti, B., et al. (2016) The small satellites of Pluto as observed by New Horizons. Science, 351, aae0030-1–aae0030-5.Google Scholar
Weisberg, M. K., Prinz, M., Clayton, R. N., et al. (1996) The K (Kakangari) chondrite grouplet. Geochimica et Cosmochimica Acta, 60, 42534263.Google Scholar
Weisberg, M. K., Prinz, M., Clayton, R. N. and Mayeda, T. K. (1997) CV3 chondrites: Three subgroups, not two. Meteoritics & Planetary Science, 32, A138–A139.Google Scholar
Weisberg, M. K., Prinz, M., Clayton, R. N., et al. (2001) A new metal-rich chondrite grouplet. Meteoritics & Planetary Science, 36, 401418.Google Scholar
Weiss, B. P., Bryson, J. F. J., Harrison, R. J., et al. (2016) A core dynamo on an iron meteorite parent body and the magnetism of metallic asteroids. Lunar and Planetary Science Conference, 47, 1661. www.hou.usra.edu/meetings/lpsc2016/pdf/1661.pdf.Google Scholar
Weiss, R., Wünnemann, K. and Bahlburg, H. (2006) Numerical modelling of generation, propagation and run-up of tsunamis caused by oceanic impacts: Model strategy and technical solutions. Geophysical Journal International, 167, 7788.Google Scholar
Welten, K. C., Alderliesten, C., van der Borg, K., Lindner, L., Loeken, T. and Schultz, L. (1997a) Lewis Cliff 86360: An Antarctic L-chondrite with a terrestrial age of 2.35 million years. Meteoritics & Planetary Science, 32, 775780.Google Scholar
Welten, K. C., Lindner, L., van der Borg, K., Loeken, T., Scherer, P. and Schultz, L. (1997b) Cosmic-ray exposure ages of diogenites and the recent collisional history of the howardite, eucrite and diogenite parent body/bodies. Meteoritics & Planetary Science, 32, 891902.Google Scholar
Welten, K. C., Nishiizumi, K., Finkel, R. C., et al. (2004) Exposure history and terrestrial ages of ordinary chondrites from the Dar al Gani region, Libya. Meteoritics & Planetary Science, 39, 481498.Google Scholar
Welten, K. C., Folco, L., Nishiizumi, K., et al. (2008) Meteoritic and bedrock constraints on the glacial history of Frontier Mountain in northern Victoria Land, Antarctica. Earth and Planetary Science Letters, 270, 308315.Google Scholar
Werner, S. C. (2005) Major aspects of the chronostratigraphy and geologic evolutionary history of Mars. PhD thesis, Free University of Berlin, Berlin, Germany, 252 pp.Google Scholar
Wetherill, G. W. (1987) Dynamical relations between asteroids, meteorites and Apollo-Amor objects. Philosophical Transactions of the Royal Society A, 323, 323337.Google Scholar
Whipple, F. L. (1950) A comet model. I. The acceleration of comet Encke. Astrophysical Journal, 111, 375394.Google Scholar
Whipple, F. L. (1989) Comets in the space age. Astrophysical Journal, 341, 115.Google Scholar
Williams, D. A., Jaumann, R., McSween, H. Y. Jr., et al. (2014) The chronostratigraphy of protoplanet Vesta. Icarus, 244, 158165.Google Scholar
Wisdom, J. (1983) Chaotic behavior and the origin of the 3:1 Kirkwood gap. Icarus, 56, 5174.Google Scholar
Wlotzka, F. (1993) A weathering scale for the ordinary chondrites. Meteoritics, 28, 460.Google Scholar
Wood, C. A. and Ashwal, L. D. (1981) SNC meteorites: Igneous rocks from Mars? Proceedings of the Twelfth Lunar Planetary Science Conference, 13591375.Google Scholar
Wood, H. J. and Kuiper, G. P. (1963) Photometric studies of asteroids. Astrophysical Journal, 137, 12791285.Google Scholar
Wright, J. T., Marcy, G. W., Howard, A. W., Johnson, J. A., Morton, T. D. and Fischer, D. A. (2012) The frequency of hot Jupiters orbiting nearby solar-type stars. Astrophysical Journal, 753, 160.Google Scholar
Xu, S., Binzel, R. P., Burbine, T. H. and Bus, S. J. (1995) Small Main-belt Asteroid Spectroscopic Survey: Initial results. Icarus, 115, 135.Google Scholar
Yamaguchi, A., Clayton, R. N., Mayeda, T. K., et al. (2002) A new source of basaltic meteorites inferred from Northwest Africa 011. Science, 296, 334336.Google Scholar
Yang, B. and Jewitt, D. (2010) Identification of magnetite in B-type asteroids. Astronomical Journal, 140, 692698.Google Scholar
Yang, J., Goldstein, J. I. and Scott, E. R. D. (2010) Main-group pallasites: Thermal history, relationship to IIIAB irons, and origin. Geochimica et Cosmochimica Acta, 74, 44714492.Google Scholar
Yano, H., Kubota, T., Miyamoto, H., et al. (2006) Touchdown of the Hayabusa spacecraft at the Muses Sea on Itokawa. Science, 312, 13501353.Google Scholar
Yau, K., Yeomans, D. and Weissman, P. (1994) The past and future motion of Comet P/Swift–Tuttle. Monthly Notices of the Royal Astronomical Society, 266, 305316.Google Scholar
Yeomans, D. K., Barriot, J.-P., Dunham, D. W., et al. (1997) Estimating the mass of asteroid 253 Mathilde from tracking data during the NEAR flyby. Science, 278, 21062109.Google Scholar
Yeomans, D. K., Antreasian, P. G., Barriot, J.-P., et al. (2000) Radio science results during the NEAR-Shoemaker spacecraft rendezvous with Eros. Science, 289, 20852088.Google Scholar
Yoshida, F. and Nakamura, T. (2005) Size distribution of faint Jovian L4 Trojan asteroids. Astronomical Journal, 130, 29002911.Google Scholar
Young, E. D. and Russell, S. S. (1998) Oxygen reservoirs in the early solar nebula inferred from an Allende CAI. Science, 282, 452455.Google Scholar
Young, E. D., Kohl, I. E., Warren, P. H., Rubie, D. C., Jacobsen, S. A. and Morbidelli, A. (2016) Oxygen isotopic evidence for vigorous mixing during the Moon-forming giant impact. Science, 351, 493496.Google Scholar
Yurimoto, H., Abe, K.-i., Abe, M., et al. (2011) Oxygen isotopic compositions of asteroidal materials returned from Itokawa by the Hayabusa mission. Science, 333, 11161119.Google Scholar
Zambon, F., De Sanctis, M. C., Schröder, S., et al. (2014) Spectral analysis of the bright materials on the asteroid Vesta. Icarus, 240, 7385.Google Scholar
Zappalà, V., Cellino, A., Farinella, P. and Knežević, Z. (1990) Asteroid families. I. Identification by hierarchical clustering and reliability assessment. Astronomical Journal, 100, 20302046.Google Scholar
Zappalà, V., Cellino, A., Farinella, P. and Milani, A. (1994) Asteroid families. 2: Extension to unnumbered multiopposition asteroids. Astronomical Journal, 107, 772801.Google Scholar
Zappalà, V., Bendjoya, Ph., Cellino, A., Farinella, P. and Froeschlé, C. (1995) Asteroid families: Search of a 12,487-asteroid sample using two different clustering techniques. Icarus, 116, 291314.Google Scholar
Zeller, E. J. and Ronca, L. B. (1967) Space weathering of lunar and asteroidal surfaces. Icarus, 7, 372379.Google Scholar
Zellner, B. (1973) Polarimetric albedos of asteroids. Bulletin of the American Astronomical Society, 5, 388.Google Scholar
Zellner, B. (1975) 44 Nysa: An iron-depleted asteroid. Astrophysical Journal, 198, L45–L47.Google Scholar
Zellner, B. and Gradie, J. (1976) Minor planets and related objects. XX. Polarimetric evidence for the albedos and compositions of 94 asteroids. Astronomical Journal, 81, 262280.Google Scholar
Zellner, B., Leake, M., Williams, J. G. and Morrison, D. (1977) The E asteroids and the origin of the enstatite achondrites. Geochimica Cosmochimica Acta, 41, 17591767.Google Scholar
Zellner, B., Tholen, D. J. and Tedesco, E. F. (1985) The eight-color asteroid survey: Results for 589 minor planets. Icarus, 61, 355416.Google Scholar
Zielenbach, W. (2011) Mass determination studies of 104 large asteroids. Astronomical Journal, 142, 120.Google Scholar
Zolensky, M. E., Weisberg, M. K., Buchanan, P. C. and Mittlefehldt, D. W. (1996) Mineralogy of carbonaceous chondrite clasts in HED achondrites and the Moon. Meteoritics & Planetary Science, 31, 518537.Google Scholar
Zolensky, M. E., Bodnar, R. J., Gibson, E. K. Jr., et al. (1999) Asteroidal water within fluid inclusion-bearing halite in an H5 chondrite, Monahans (1998). Science, 285, 13771379.Google Scholar
Zolensky, M., Herrin, J., Mikouchi, T., et al. (2010) Mineralogy and petrography of the Almahata Sitta ureilite. Meteoritics & Planetary Science, 45, 16181637.Google Scholar
Zolensky, M., Mikouchi, T., Fries, M., et al. (2014) Mineralogy and petrography of C asteroid regolith: The Sutter’s Mill CM meteorite. Meteoritics & Planetary Science, 49, 19972016.Google Scholar
Zou, X., Li, C., Liu, J., Wang, W., Li, H. and Ping, J. (2014) The preliminary analysis of the 4179 Toutatis snapshots of the Chang’E-2 flyby. Icarus, 229, 348354.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Thomas H. Burbine, Mount Holyoke College, Massachusetts
  • Book: Asteroids
  • Online publication: 01 February 2017
  • Chapter DOI: https://doi.org/10.1017/9781316156582.010
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Thomas H. Burbine, Mount Holyoke College, Massachusetts
  • Book: Asteroids
  • Online publication: 01 February 2017
  • Chapter DOI: https://doi.org/10.1017/9781316156582.010
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Thomas H. Burbine, Mount Holyoke College, Massachusetts
  • Book: Asteroids
  • Online publication: 01 February 2017
  • Chapter DOI: https://doi.org/10.1017/9781316156582.010
Available formats
×