Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-21T23:18:59.410Z Has data issue: false hasContentIssue false

7 - Nonequilibrium dynamics

Published online by Cambridge University Press:  28 February 2011

D. C. Rapaport
Affiliation:
Bar-Ilan University, Israel
Get access

Summary

Introduction

In the study of equilibrium behavior, MD is used to probe systems that, at least in principle, are amenable to treatment by statistical mechanics. The fact that statistical mechanics is generally unable to make much headway without resorting to simplification and approximation is merely a practical matter; the concepts and general relationships are extremely important even in the absence of closed-form solutions. When one departs from equilibrium, very little theoretical guidance is available and it is here that MD really begins to fill the role of an experimental tool.

There are many nonequilibrium phenomena worthy of study, but MD applications have so far tended to concentrate on relatively simple systems, and the case studies in this chapter will focus on the simplest of problems. To be more specific, we will demonstrate two very different approaches to questions related to fluid transport. The first approach uses genuine Newtonian dynamics applied to spatially inhomogeneous systems, in which the boundaries play an essential role: simulations of fluids partly constrained by hard walls will be used to determine both shear viscosity and thermal conductivity. The second approach is based on a combination of modified equations of motion and fully homogeneous systems: the same transport coefficients will be measured, but since there are no explicit boundaries the dynamics must be altered in very specific ways to compensate for their absence.

Homogeneous and inhomogeneous systems

As computational tools, both homogeneous and inhomogeneous nonequilibrium methods have their strengths and weaknesses.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Nonequilibrium dynamics
  • D. C. Rapaport, Bar-Ilan University, Israel
  • Book: The Art of Molecular Dynamics Simulation
  • Online publication: 28 February 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511816581.010
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Nonequilibrium dynamics
  • D. C. Rapaport, Bar-Ilan University, Israel
  • Book: The Art of Molecular Dynamics Simulation
  • Online publication: 28 February 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511816581.010
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Nonequilibrium dynamics
  • D. C. Rapaport, Bar-Ilan University, Israel
  • Book: The Art of Molecular Dynamics Simulation
  • Online publication: 28 February 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511816581.010
Available formats
×