Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-21T23:19:34.620Z Has data issue: false hasContentIssue false

9 - Flexible molecules

Published online by Cambridge University Press:  28 February 2011

D. C. Rapaport
Affiliation:
Bar-Ilan University, Israel
Get access

Summary

Introduction

The rigid molecule approach described in Chapter 8 is limited in its applicability, because it is really only appropriate for small, compact molecules. Here we consider the opposite extreme, namely, completely flexible molecules of a type used in certain kinds of polymer studies. No new principles are involved, since the intramolecular forces that maintain structural integrity by holding the molecule together, as well as providing any other necessary internal interactions, are treated in the same way as intermolecular forces. Later, in Chapters 10 and 11, we will consider more complex models, in which molecules exhibit a certain amount of flexibility but are also subject to various structural constraints that restrict the internal motion. The first case study in this chapter deals with the configurational properties of a single chain molecule in solution. The second deals with a model of a surfactant in solution, in which very short, interacting chain molecules are just one of the components of a three-component fluid; this very simple system is capable of producing coherent structures on length scales greatly exceeding the molecular size, as the results will demonstrate.

Description of molecule

Polymer chains

Owing to the central role played by polymers in a variety of fields, biochemistry and materials science are just two examples, model polymer systems have been the subject of extensive study, both by MD and by other methods such as Monte Carlo [bin95].

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Flexible molecules
  • D. C. Rapaport, Bar-Ilan University, Israel
  • Book: The Art of Molecular Dynamics Simulation
  • Online publication: 28 February 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511816581.012
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Flexible molecules
  • D. C. Rapaport, Bar-Ilan University, Israel
  • Book: The Art of Molecular Dynamics Simulation
  • Online publication: 28 February 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511816581.012
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Flexible molecules
  • D. C. Rapaport, Bar-Ilan University, Israel
  • Book: The Art of Molecular Dynamics Simulation
  • Online publication: 28 February 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511816581.012
Available formats
×