Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-g7rbq Total loading time: 0 Render date: 2024-07-29T12:19:10.772Z Has data issue: false hasContentIssue false

20 - Consistent discretizations as a road to Quantum Gravity

from Part IV - Discrete Quantum Gravity

Published online by Cambridge University Press:  26 October 2009

Daniele Oriti
Affiliation:
Universiteit Utrecht, The Netherlands
Get access

Summary

Consistent discretizations: the basic idea

There has long been the hope that lattice methods could be used as a non-perturbative approach to Quantum Gravity. This is in part based on the fact that lattice methods have been quite successful in the treatment of quantum chromodynamics. However, one needs to recall that one of the appeals of lattice methods in QCD is that they are gauge invariant regularization methods. In the gravitational context this is not the case. As soon as one discretizes space-time one breaks the invariance under diffeomorphisms, the symmetry of most gravitational theories of interest. As such, lattice methods in the gravitational context face unique challenges. For instance, in the path integral context, since the lattices break some of the symmetries of the theory, this may complicate the use of the Fadeev–Popov technique. In the canonical approach if one discretizes the constraints and equations of motion, the resulting discrete equations are inconsistent: they cannot be solved simultaneously. A related problem is that the discretized constraints fail to close a constraint algebra.

To address these problems we have proposed a different methodology for discretizing gravitational theories (or to use a different terminology “to put gravity on the lattice”). The methodology is related to a discretization technique that has existed for a while in the context of unconstrained theories called “variational integrators”. In a nutshell, the technique consists in discretizing the action of the theory and working from it the discrete equations of motion.

Type
Chapter
Information
Approaches to Quantum Gravity
Toward a New Understanding of Space, Time and Matter
, pp. 378 - 392
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×