Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-26T09:12:32.416Z Has data issue: false hasContentIssue false

Chapter 13 - Animal Models in Anxiety Research

Published online by Cambridge University Press:  08 March 2021

Gerard J. Byrne
Affiliation:
University of Queensland
Nancy A. Pachana
Affiliation:
University of Queensland
Get access

Summary

Fear and anxious apprehension are highly evolutionarily conserved responses triggered by a real or perceived imminent threat. These are adaptive responses, classically described as fight or flight responses, which comprise emotional, autonomic, and motor arousal. They are rapidly initiated and diminish as the danger abates. Anxiety states display physiological features that are similar to those evoked by fear, but as defined in the Diagnostic and Statistical Manual of Mental Disorders (DSM) of the American Psychiatric Association, these behavioural disturbances persist beyond the appropriate period. Anxiety disorders are prevalent in all societies, and in 2014 they were the sixth leading cause of disability worldwide in terms of years lived with disability.

Type
Chapter
Information
Anxiety in Older People
Clinical and Research Perspectives
, pp. 205 - 225
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abraham, A. D., Neve, K. A. and Lattal, K. M. (2014). Dopamine and extinction: a convergence of theory with fear and reward circuitry. Neurobiology of Learning and Memory, 104, 6577.CrossRefGoogle Scholar
Amano, T., Duvarci, S., Popa, D. and Paré, D. (2011). The fear circuit revisited: contributions of the basal amygdala nuclei to conditioned fear. Journal of Neuroscience, 31, 1548115489.Google Scholar
Amano, T., Unal, C. T. and Paré, D. (2010). Synaptic correlates of fear extinction in the amygdala. Nature Neuroscience, 13, 489494.Google Scholar
Ascoli, G. A., Alonso-Nanclares, L., Anderson, S. A., et al. (2008). Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex. Nature Reviews Neuroscience, 9, 557568.Google ScholarPubMed
Atack, J. R. (2011). GABAA receptor subtype-selective modulators. I. Alpha2/alpha3- selective agonists as non-sedating anxiolytics. Current Topics in Medical Chemistry, 11, 11761202.Google Scholar
Azmitia, E. C. and Segal, M. (1978). An autoradiographic analysis of the differential ascending projections of the dorsal and median raphe nuclei in the rat. Journal of Comparative Neurology, 179, 641667.CrossRefGoogle ScholarPubMed
Barnard, E. A., Skolnick, P., Olsen, R. W., et al. (1998). International Union of Pharmacology. XV. Subtypes of gamma-aminobutyric acidA receptors: classification on the basis of subunit structure and receptor function. Pharmacological Reviews, 50, 291313.Google Scholar
Bauer, E. P. (2015). Serotonin in fear conditioning processes. Behavioural Brain Research, 277, 6877.Google Scholar
Beaulieu, J. M. and Gainetdinov, R. R. (2011). The physiology, signaling, and pharmacology of dopamine receptors. Pharmacological Reviews, 63, 182217.Google Scholar
Bissiere, S., Humeau, Y. and Luthi, A. (2003). Dopamine gates LTP induction in lateral amygdala by suppressing feedforward inhibition. Nature Neuroscience, 6, 587592.Google Scholar
Blanchard, D. C. and Blanchard, R. J. (2008). Handbook of Anxiety and Fear. Amsterdam: Elsevier.Google Scholar
Blaze, J. and Roth, T. L. (2013). Epigenetic mechanisms in learning and memory. Wiley Interdisciplinary Reviews. Cognitive Science, 4, 105115.CrossRefGoogle ScholarPubMed
Burgos-Robles, A., Vidal-Gonzalez, I., Santini, E. and Quirk, G. J. (2007). Consolidation of fear extinction requires NMDA receptor-dependent bursting in the ventromedial prefrontal cortex. Neuron, 53, 871880.CrossRefGoogle ScholarPubMed
Campbell, B. M. and Merchant, K. M. (2003). Serotonin 2C receptors within the basolateral amygdala induce acute fear-like responses in an open-field environment. Brain Research, 993, 19.CrossRefGoogle Scholar
Cassell, M. D., Gray, T. S. and Kiss, J. Z. (1986). Neuronal architecture in the rat central nucleus of the amygdala: a cytological, hodological, and immunocytochemical study. Journal of Comparative Neurology, 246, 478499.CrossRefGoogle ScholarPubMed
Ciocchi, S., Herry, C., Grenier, F., et al. (2010). Encoding of conditioned fear in central amygdala inhibitory circuits. Nature, 468, 277282.Google Scholar
Collingridge, G. L. and Bliss, T. V. P. (1987). NMDA receptors – their role in long-term potentiation. Trends in Neuroscience, 10, 288293.Google Scholar
Connors, B. W. and Gutnick, M. J. (1990). Intrinsic firing patterns of diverse neocortical neurons. Trends in Neuroscience, 13, 99103.Google Scholar
Corcoran, K. A. and Quirk, G. J. (2007). Activity in prelimbic cortex is necessary for the expression of learned, but not innate, fears. Journal of Neuroscience, 27, 840844.Google Scholar
Davis, M. (1979). Diazepam and flurazepam: effects on conditioned fear as measured with the potentiated startle paradigm. Psychopharmacology (Berlin), 62, 17.Google Scholar
Davis, M., Ressler, K., Rothbaum, B. O. and Richardson, R. (2006). Effects of d-cycloserine on extinction: translation from preclinical to clinical work. Biological Psychiatry, 60, 369375.Google Scholar
Davis, M., Walker, D. L., Miles, L. and Grillon, C. (2010). Phasic vs sustained fear in rats and humans: role of the extended amygdala in fear vs anxiety. Neuropsychopharmacology, 35, 105135.Google Scholar
de Olmos, J., Hardy, H. and Heimer, L. (1985). Amygdala. In Paxinos, G, ed., The Rat Nervous System. Sydney: Academic Press, Australia, pp. 223334.Google Scholar
De Souza Caetano, K. A., De Oliveira, A. R. and Brandao, M. L. (2013). Dopamine D2 receptors modulate the expression of contextual conditioned fear: role of the ventral tegmental area and the basolateral amygdala. Behavioural Pharmacology, 24, 264274.Google Scholar
Delaney, A. J. and Sah, P. (1999). GABA receptors inhibited by benzodiazepines mediate fast inhibitory transmission in the central amygdala. Journal of Neuroscience, 19, 96989704.Google Scholar
Delaney, A. J. and Sah, P. (2001). Pathway-specific targeting of GABA(A) receptor subtypes to somatic and dendritic synapses in the central amygdala. Journal of Neurophysiology, 86, 717723.Google Scholar
Delaney, A. J., Sedlak, P. L., Autuori, E., Power, J. M. and Sah, P. (2013). Synaptic NMDA receptors in basolateral amygdala principal neurons are triheteromeric proteins: physiological role of GluN2B subunits. Journal of Neurophysiology, 109, 13911402.Google Scholar
Delgado, M. R., Nearing, K. I., Ledoux, J. E. and Phelps, E. A. (2008). Neural circuitry underlying the regulation of conditioned fear and its relation to extinction. Neuron, 59, 829838.Google Scholar
Dumont, E. C., Martina, M., Samson, R. D., Drolet, G. and Paré, D. (2002). Physiological properties of central amygdala neurons: species differences. European Journal of Neuroscience, 15, 544552.CrossRefGoogle ScholarPubMed
Ehrlich, I., Humeau, Y., Grenier, F., Ciocchi, S., Herry, C. and Luthi, A. (2009). Amygdala inhibitory circuits and the control of fear memory. Neuron, 62, 757771.Google Scholar
Esmaeili, A., Lynch, J. W. and Sah, P. (2009). GABAA receptors containing gamma1 subunits contribute to inhibitory transmission in the central amygdala. Journal of Neurophysiology, 101, 341349.Google Scholar
Faber, E. S. L., Callister, R. J. and Sah, P. (2001). Morphological and electrophysiological properties of principal neurons in the rat lateral amygdala in vitro. Journal of Neurophysiology, 85, 714723.Google Scholar
Falls, W. A., Miserendino, M. J. and Davis, M. (1992). Extinction of fear-potentiated startle: blockade by infusion of an NMDA antagonist into the amygdala. Journal of Neuroscience, 12, 854863.CrossRefGoogle ScholarPubMed
Fanselow, M. S. and Dong, H. W. (2010). Are the dorsal and ventral hippocampus functionally distinct structures? Neuron, 65, 719.Google Scholar
Farb, C. R. and Ledoux, J. E. (1999). Afferents from rat temporal cortex synapse on lateral amygdala neurons that express NMDA and AMPA receptors. Synapse, 33, 218229.3.0.CO;2-1>CrossRefGoogle ScholarPubMed
Farb, D. H. and Ratner, M. H. (2014). Targeting the modulation of neural circuitry for the treatment of anxiety disorders. Pharmacological Reviews, 66, 10021032.Google Scholar
Gibson, E. L., Barnfield, A. M. and Curzon, G. (1994). Evidence that mCPP-induced anxiety in the plus-maze is mediated by postsynaptic 5-HT2C receptors but not by sympathomimetic effects. Neuropharmacology, 33, 457465.Google Scholar
Goosens, K. A. and Maren, S. (2004). NMDA receptors are essential for the acquisition, but not expression, of conditional fear and associative spike firing in the lateral amygdala. European Journal of Neuroscience, 20, 537548.CrossRefGoogle Scholar
Goosens, K. A., Hobin, J. A. and Maren, S. (2003). Auditory-evoked spike firing in the lateral amygdala and Pavlovian fear conditioning: mnemonic code or fear bias? Neuron, 40, 10131022.Google Scholar
Gray, J. A. and McNaughton, N. 2000. The Neuropsychology of Anxiety. Oxford: Oxford University Press.Google Scholar
Greba, Q. and Kokkinidis, L. (2000). Peripheral and intraamygdalar administration of the dopamine D1 receptor antagonist SCH 23390 blocks fear-potentiated startle but not shock reactivity or the shock sensitization of acoustic startle. Behavioral Neuroscience, 114, 262272.CrossRefGoogle ScholarPubMed
Guastella, A. J., Lovibond, P. F., Dadds, M. R., Mitchell, P. and Richardson, R. (2007). A randomized controlled trial of the effect of d-cycloserine on extinction and fear conditioning in humans. Behaviour Research and Therapy, 45, 663672.Google Scholar
Harris, J. A. and Westbrook, R. F. (1998). Evidence that GABA transmission mediates context-specific extinction of learned fear. Psychopharmacology (Berlin), 140, 105115.CrossRefGoogle ScholarPubMed
Haubensak, W., Kunwar, P. S., Cai, H., et al. (2010). Genetic dissection of an amygdala microcircuit that gates conditioned fear. Nature, 468, 270276.Google Scholar
Heidbreder, C. A. and Groenewegen, H. J. (2003). The medial prefrontal cortex in the rat: evidence for a dorso-ventral distinction based upon functional and anatomical characteristics. Neuroscience and Biobehavioral Reviews, 27, 555579.CrossRefGoogle ScholarPubMed
Held, J. R. (1983). Appropriate animal models. Annals of the New York Academy of Sciences, 406, 1319.CrossRefGoogle ScholarPubMed
Herry, C., Ciocchi, S., Senn, V., Demmou, L., Muller, C. and Luthi, A. (2008). Switching on and off fear by distinct neuronal circuits. Nature, 454, 600606.Google Scholar
Hestrin, S., Nicoll, R. A., Perkel, D. J. and Sah, P. (1990). Analysis of excitatory synaptic action in pyramidal cells using whole-cell recording from rat hippocampal slices. Journal of Physiology, 422, 203225.Google Scholar
Hitchcock, J. and Davis, M. (1986). Lesions of the amygdala, but not of the cerebellum or red nucleus, block conditioned fear as measured with the potentiated startle paradigm. Behavioral Neuroscience, 100, 1122.Google Scholar
Humeau, Y., Shaban, H., Bissiere, S. and Luthi, A. (2003). Presynaptic induction of heterosynaptic associative plasticity in the mammalian brain. Nature, 426, 841845.CrossRefGoogle ScholarPubMed
Inoue, T., Izumi, T., Maki, Y., Muraki, I. and Koyama, T. (2000). Effect of the dopamine D(1/5) antagonist SCH 23390 on the acquisition of conditioned fear. Pharmacology, Biochemistry, and Behavior, 66, 573578.Google Scholar
Jasnow, A. M., Ressler, K. J., Hammack, S. E., Chhatwal, J. P. and Rainnie, D. G. (2009). Distinct subtypes of cholecystokinin (CCK)-containing interneurons of the basolateral amygdala identified using a CCK promoter-specific lentivirus. Journal of Neurophysiology, 101, 14941506.Google Scholar
Jennings, J. H., Sparta, D. R., Stamatakis, A. M., et al. (2013). Distinct extended amygdala circuits for divergent motivational states. Nature, 496, 224228.Google Scholar
Kawahara, H., Yoshida, M., Yokoo, H., Nishi, M. and Tanaka, M. (1993). Psychological stress increases serotonin release in the rat amygdala and prefrontal cortex assessed by in vivo microdialysis. Neuroscience Letters, 162, 8184.Google Scholar
Kim, M., Campeau, S., Falls, W. A. and Davis, M. (1993). Infusion of the non-NMDA receptor antagonist CNQX into the amygdala blocks the expression of fear-potentiated startle. Behavioral and Neural Biology, 59, 58.Google Scholar
Labar, K. S., Gatenby, J. C., Gore, J. C., Ledoux, J. E. and Phelps, E. A. (1998). Human amygdala activation during conditioned fear acquisition and extinction: a mixed- trial fMRI study. Neuron, 20, 937945.Google Scholar
Lacivita, E., Leopoldo, M., Berardi, F. and Perrone, R. (2008). 5-HT1A receptor, an old target for new therapeutic agents. Current Topics in Medical Chemistry, 8, 10241034.Google Scholar
Lanuza, E., Moncho-Bogani, J. and Ledoux, J. E. (2008). Unconditioned stimulus pathways to the amygdala: effects of lesions of the posterior intralaminar thalamus on foot- shock-induced c-Fos expression in the subdivisions of the lateral amygdala. Neuroscience, 155, 959968.CrossRefGoogle Scholar
Laurent, V. and Westbrook, R. F. (2008). Distinct contributions of the basolateral amygdala and the medial prefrontal cortex to learning and relearning extinction of context conditioned fear. Learning & Memory, 15, 657666.Google Scholar
Laurent, V. and Westbrook, R. F. (2009). Inactivation of the infralimbic but not the prelimbic cortex impairs consolidation and retrieval of fear extinction. Learning & Memory, 16, 520529.Google Scholar
Laurie, D. J., Wisden, W. and Seeburg, P. H. (1992). The distribution of thirteen GABAA receptor subunit mRNAs in the rat brain. III. Embryonic and postnatal development. Journal of Neuroscience, 12, 41514172.Google Scholar
Ledgerwood, L., Richardson, R. and Cranney, J. (2003). Effects of d-cycloserine on extinction of conditioned freezing. Behavioral Neuroscience, 117, 341349.Google Scholar
Ledoux, J. E., Cicchetti, P., Xagoraris, A. and Romanski, L. M. (1990). The lateral amygdaloid nucleus: sensory interface of the amygdala in fear conditioning. Journal of Neuroscience, 10, 10621069.Google Scholar
Lesch, K. P., Bengel, D., Heils, A., et al. (1996). Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science, 274, 15271531.Google Scholar
Lopez de Armentia, M. and Sah, P. (2003). Development and subunit composition of synaptic NMDA receptors in the amygdala: NR2B synapses in the adult central amygdala. Journal of Neuroscience, 23, 68766883.Google Scholar
Lopez de Armentia, M. and Sah, P. (2004). Firing properties and connectivity of neurons in the rat lateral central nucleus of the amygdala. Journal of Neurophysiology, 92, 12851294.Google Scholar
Lubin, F. D., Gupta, S., Parrish, R. R., Grissom, N. M. and Davis, R. L. (2011). Epigenetic mechanisms: critical contributors to long-term memory formation. Neuroscientist, 17, 616632.CrossRefGoogle ScholarPubMed
Mahanty, N. K. and Sah, P. (1998). Calcium-permeable AMPA receptors mediate long-term potentiation in interneurons in the amygdala. Nature, 394, 683687.Google Scholar
Mahanty, N. K. and Sah, P. (1999). Excitatory synaptic inputs to pyramidal neurons of the lateral amygdala. European Journal of Neuroscience, 11, 12171222.Google Scholar
Mamiya, N., Fukushima, H., Suzuki, A., et al. (2009). Brain region-specific gene expression activation required for reconsolidation and extinction of contextual fear memory. Journal of Neuroscience, 29, 402413.CrossRefGoogle ScholarPubMed
Marek, R., Coelho, C. M., Sullivan, R. K., et al. (2011). Paradoxical enhancement of fear extinction memory and synaptic plasticity by inhibition of the histone acetyltransferase p300. Journal of Neuroscience, 31, 7486–91.Google Scholar
Maren, S. (2001). Neurobiology of Pavlovian fear conditioning. Annual Review of Neuroscience, 24, 897931.Google Scholar
Maren, S. and Quirk, G. J. (2004). Neuronal signalling of fear memory. Nature Reviews Neuroscience, 5, 844852.Google Scholar
Markram, H., Toledo-Rodriguez, M., Wang, Y., Gupta, A., Silberberg, G. and Wu, C. (2004). Interneurons of the neocortical inhibitory system. Nature Reviews Neuroscience, 5, 793807.CrossRefGoogle ScholarPubMed
Martina, M., Royer, S. and Paré, D. (1999). Physiological properties of central medial and central lateral amygdala neurons. Journal of Neurophysiology, 82, 18431854.Google Scholar
Mayford, M., Siegelbaum, S. A. and Kandel, E. R. (2012). Synapses and memory storage. Cold Spring Harbor Perspectives in Biology, 4, a005751.Google Scholar
McDonald, A. J. (1982). Neurons of the lateral and basolateral amygdaloid nuclei: a Golgi study in the rat. Journal of Comparative Neurology, 212, 293312.CrossRefGoogle ScholarPubMed
McDonald, A. J. (1992). Cell types and intrinsic connections of the amygdala. In Aggleton, J. P., ed., The Amygdala: Neurobiological Aspects of Emotion, Memory and Mental Dysfunction. New York: Wiley-Liss, pp. 67–96.Google Scholar
McDonald, A. J. (1998). Cortical pathways to the mammalian amygdala. Progress in Brain Research, 55, 257332.Google Scholar
McDonald, A. J. and Mascagni, F. (2001). Colocalization of calcium-binding proteins and GABA in neurons of the rat basolateral amygdala. Neuroscience, 105, 681693.Google Scholar
McKiernan, M. G. and Shinnick-Gallagher, P. (1997). Fear conditioning induces a lasting potentiation of synaptic currents in vitro. Nature, 390, 607611.Google Scholar
McKernan, R. M., Rosahl, T. W., Reynolds, D. S., et al. (2000). Sedative but not anxiolytic properties of benzodiazepines are mediated by the GABA(A) receptor alpha1 subtype. Nature Neuroscience, 3, 587592.Google Scholar
McNally, R. J. (2007). Mechanisms of exposure therapy: how neuroscience can improve psychological treatments for anxiety disorders. Clinical Psychology Review, 27, 750759.Google Scholar
McQuade, R. and Sharp, T. (1997). Functional mapping of dorsal and median raphe 5- hydroxytryptamine pathways in forebrain of the rat using microdialysis. Journal of Neurochemistry, 69, 791796.Google Scholar
Milad, M. R. and Quirk, G. J. (2002). Neurons in medial prefrontal cortex signal memory for fear extinction. Nature, 420, 7074.Google Scholar
Miller, K. D., Pinto, D. J. and Simons, D. J. (2001). Processing in layer 4 of the neocortical circuit: new insights from visual and somatosensory cortex. Current Opinion in Neurobiology, 11, 488–97.Google Scholar
Millhouse, O. E. (1986). The intercalated cells of the amygdala. Journal of Comparative Neurology, 247, 246271.Google Scholar
Milner, B., Squire, L. R. and Kandel, E. R. (1998). Cognitive neuroscience and the study of memory. Neuron, 20, 445468.Google Scholar
Miserendino, M. J. D., Sananes, C. B., Melia, K. R. and Davis, M. (1990). Blocking of acquisition but not expression of conditioned fear-potentiated startle by NMDA antagonists in the amygdala. Nature, 345, 716718.Google Scholar
Mohler, H. (2006). GABA(A) receptor diversity and pharmacology. Cell Tissue Research, 326, 505516.Google Scholar
Morris, J. S., Frith, C. D., Perrett, D. I., et al. (1996). A differential neural response in the human amygdala to fearful and happy facial expressions. Nature, 383, 812815.Google Scholar
Moser, M. B. and Moser, E. I. (1998). Functional differentiation in the hippocampus. Hippocampus, 8, 608619.Google Scholar
Mueller, D., Bravo-Rivera, C. and Quirk, G. J. (2010). Infralimbic D2 receptors are necessary for fear extinction and extinction-related tone responses. Biological Psychiatry, 68, 10551060.Google Scholar
Nestler, E. J., Hyman, S. E. and Malenka, R. (2015). Molecular Nuropharmacology: A Foundation for Clinical Neuroscience, 3rd ed. New York: McGraw-Hill.Google Scholar
Nestler, E. J., Walaas, S. I. and Greengard, P. (1984). Neuronal phosphoproteins: physiological and clinical implications. Science, 225, 13591364.CrossRefGoogle ScholarPubMed
Niehoff, D. L. and Kuhar, M. J. (1983). Benzodiazepine receptors: localization in rat amygdala. Journal of Neuroscience, 3, 20912097.Google Scholar
Olsen, R. W. and Tobin, A. J. (1990). Molecular biology of GABAA receptors. FASEB Journal, 4, 14691480.Google Scholar
Palomares-Castillo, E., Hernandez-Perez, O. R., Perez-Carrera, D., Crespo-Ramirez, M., Fuxe, K. and Perez De La Mora, M. (2012). The intercalated paracapsular islands as a module for integration of signals regulating anxiety in the amygdala. Brain Research, 1476, 211–34.Google Scholar
Pape, H. C. and Paré, D. (2010). Plastic synaptic networks of the amygdala for the acquisition, expression, and extinction of conditioned fear. Physiological Reviews, 90, 419463.Google Scholar
Paré, D. and Duvarci, S. (2012). Amygdala microcircuits mediating fear expression and extinction. Current Opinion in Neurobiology, 22, 717723.Google Scholar
Paré, D. and Smith, Y. (1993). The intercalated cell masses project to the central and medial nuclei of the amygdala in cats. Neuroscience, 57, 10771090.Google Scholar
Pavlov, I. P. (1927). Conditioned Reflexes, New York: Dover.Google Scholar
Pesold, C. and Treit, D. (1994). The septum and amygdala differentially mediate the anxiolytic effects of benzodiazepines. Brain Research, 638, 295301.CrossRefGoogle ScholarPubMed
Pinard, C. R., Mascagni, F. and McDonald, A. J. (2012). Medial prefrontal cortical innervation of the intercalated nuclear region of the amygdala. Neuroscience, 205, 112124.Google Scholar
Polepalli, J. S., Sullivan, R. K., Yanagawa, Y. and Sah, P. (2010). A specific class of interneuron mediates inhibitory plasticity in the lateral amygdala. Journal of Neuroscience, 30, 1461914629.Google Scholar
Power, J. M. and Sah, P. (2008). Competition between calcium-activated K+ channels determines cholinergic action on firing properties of basolateral amygdala projection neurons. Journal of Neuroscience, 28, 32093220.Google Scholar
Price, J. L., Russchen, F. T. and Amaral, D. G. (1987). The Limbic Region. II: The Amygdaloid Complex. Amsterdam: Elsevier Science.Google Scholar
Quirk, G. J. and Mueller, D. (2008). Neural mechanisms of extinction learning and retrieval. Neuropsychopharmacology, 33, 5672.CrossRefGoogle ScholarPubMed
Quirk, G. J., Repa, C. and Ledoux, J. E. (1995). Fear conditioning enhances short-latency auditory responses of lateral amygdaloid neurons: parallel recordings in the freely behaving rat. Neuron, 15, 10291039.CrossRefGoogle Scholar
Rainnie, D. G., Asprodini, E. K. and Schinnick-Gallagher, P. (1991). Inhibitory transmission in the basolateral amygdala. Journal of Neurophysiology, 66, 9991009.Google Scholar
Reinhold, J. A. (2015). Pharmacological treatment for generalized anxiety disorder in adults: an update. Expert Opinion on Pharmacotherapy, 16, 16691681.Google Scholar
Ressler, K. J., Rothbaum, B. O., Tannenbaum, L., et al. (2004). Cognitive enhancers as adjuncts to psychotherapy: use of d-cycloserine in phobic individuals to facilitate extinction of fear. Archives of General Psychiatry, 61, 11361144.Google Scholar
Richards, J. G. and Möhler, H. (1984). Benzodiazepine receptors. Neuropharmacology, 23, 233242.Google Scholar
Rodrigues, S. M., Schafe, G. E. and Ledoux, J. E. (2004). Molecular mechanisms underlying emotional learning and memory in the lateral amygdala. Neuron, 44, 7591.Google Scholar
Rogan, M. T., Staubli, U. V. and Ledoux, J. E. (1997). Fear conditioning induces associative long-term potentiation in the amygdala. Nature, 390, 604607.Google Scholar
Royer, S. and Paré, D. (2002). Bidirectional synaptic plasticity in intercalated amygdala neurons and the extinction of conditioned fear responses. Neuroscience, 115, 455462.Google Scholar
Royer, S., Martina, M. and Paré, D. (1999). An inhibitory interface gates impulse traffic between the input and output stations of the amygdala. Journal of Neuroscience, 19, 1057510583.Google Scholar
Rudolph, U. and Mohler, H. (2006). GABA-based therapeutic approaches: GABAA receptor subtype functions. Current Opinion in Pharmacology, 6, 1823.Google Scholar
Rumpel, S., Ledoux, J., Zador, A. and Malinow, R. (2005). Postsynaptic receptor trafficking underlying a form of associative learning. Science, 308, 8388.Google Scholar
Sah, P., Faber, E. S., Lopez de Armentia, M. and Power, J. (2003). The amygdaloid complex: anatomy and physiology. Physiological Reviews, 83, 803834.Google Scholar
Sah, P., Westbrook, R. F. and Luthi, A. (2008). Fear conditioning and long-term potentiation in the amygdala: what really is the connection? Annals of the New York Academy of Science, 1129, 8895.Google Scholar
Santini, E., Ge, H., Ren, K., Pena De Ortiz, S. and Quirk, G. J. (2004). Consolidation of fear extinction requires protein synthesis in the medial prefrontal cortex. Journal of Neuroscience, 24, 57045710.Google Scholar
Sieghart, W. and Sperk, G. (2002). Subunit composition, distribution and function of GABA(A) receptor subtypes. Current Topics in Medical Chemistry, 2, 795816.Google Scholar
Slotnick, B. M. (1973). Fear behavior and passive avoidance deficits in mice with amygdala lesions. Physiology & Behavior, 11, 717720.Google Scholar
Smith, Y., Paré, J. F. and Paré, D. (1998). Cat intraamygdaloid inhibitory network: ultrastructural organization of parvalbumin-immunoreactive elements. Journal of Comparative Neurology, 391, 164179.Google Scholar
Smith, Y., Paré, J. F. and Paré, D. (2000). Differential innervation of parvalbumin- immunoreactive interneurons of the basolateral amygdaloid complex by cortical and intrinsic inputs. Journal of Comparative Neurology, 416, 496508.3.0.CO;2-N>CrossRefGoogle ScholarPubMed
Sotres-Bayon, F. and Quirk, G. J. (2010). Prefrontal control of fear: more than just extinction. Current Opinion in Neurobiology, 20, 231235.Google Scholar
Sotres-Bayon, F., Sierra-Mercado, D., Pardilla-Delgado, E. and Quirk, G. J. (2012). Gating of fear in prelimbic cortex by hippocampal and amygdala inputs. Neuron, 76, 804812.Google Scholar
Spampanato, J., Polepalli, J. and Sah, P. (2011). Interneurons in the basolateral amygdala. Neuropharmacology, 60, 765773.Google Scholar
Starcevic, V. (2014). The reappraisal of benzodiazepines in the treatment of anxiety and related disorders. Expert Review of Neurotherapeutics, 14, 12751286.Google Scholar
Strobel, C., Marek, R. H. G., Sullivan, R. and Sah, P. (2015). Prefrontal and auditory input to intercalated neurons of the amygdala. Cell Reports, 10, 14351442.Google Scholar
Tang, H. H., McNally, G. P. and Richardson, R. (2007). The effects of FG7142 on two types of forgetting in 18-day-old rats. Behavioral Neuroscience, 121, 14211425.Google Scholar
Tovote, P., Fadok, J. P. and Luthi, A. (2015). Neuronal circuits for fear and anxiety. Nature Reviews Neuroscience, 16, 317331.Google Scholar
Tully, K. and Bolshakov, V. Y. (2010). Emotional enhancement of memory: how norepinephrine enables synaptic plasticity. Molecular Brain, 3, 15.Google Scholar
Van De Werd, H. J., Rajkowska, G., Evers, P. and Uylings, H. B. (2010). Cytoarchitectonic and chemoarchitectonic characterization of the prefrontal cortical areas in the mouse. Brain Structure & Function, 214, 339353.Google Scholar
Vertes, R. P. (1991). A PHA-L analysis of ascending projections of the dorsal raphe nucleus in the rat. Journal of Comparative Neurology, 313, 643668.Google Scholar
Vidal-Gonzalez, I., Vidal-Gonzalez, B., Rauch, S. L. and Quirk, G. J. (2006). Microstimulation reveals opposing influences of prelimbic and infralimbic cortex on the expression of conditioned fear. Learning & Memory, 13, 728733.Google Scholar
Viviani, D., Charlet, A., Van Den Burg, E., et al. (2011). Oxytocin selectively gates fear responses through distinct outputs from the central amygdala. Science, 333, 104107.Google Scholar
Wang, Y., Markram, H., Goodman, P. H., Berger, T. K., Ma, J. and Goldman-Rakic, P. S. (2006). Heterogeneity in the pyramidal network of the medial prefrontal cortex. Nature Neuroscience, 9, 534542.Google Scholar
Washburn, M. S. and Moises, H. C. (1992). Electrophysiological and morphological properties of rat basolateral amygdaloid neurons in vitro. Journal of Neuroscience, 12, 40664079.Google Scholar
Wei, W., Coelho, C. M., Li, X., et al. (2012). p300/CBP-associated factor selectively regulates the extinction of conditioned fear. Journal of Neuroscience, 32, 1193011941.Google Scholar
Weisskopf, M. G. and Ledoux, J. E. (1999). Distinct populations of NMDA receptors at subcortical and cortical inputs to principal cells of the lateral amygdala. Journal of Neurophysiology, 81, 930934.Google Scholar
Weisskopf, M. G., Bauer, E. P. and Ledoux, J. E. (1999). L-type voltage-gated calcium channels mediate NMDA-independent associative long-term potentiation at thalamic input synapses to the amygdala. Journal of Neuroscience, 19, 1051210519.Google Scholar
Weisstaub, N. V., Zhou, M., Lira, A., et al. (2006). Cortical 5-HT2A receptor signaling modulates anxiety-like behaviors in mice. Science, 313, 536540.Google Scholar
Woodruff, A. R. and Sah, P. (2007a). Inhibition and synchronization of basal amygdala principal neuron spiking by parvalbumin-positive interneurons. Journal of Neurophysiology, 98, 29562961.Google Scholar
Woodruff, A. R. and Sah, P. (2007b). Networks of parvalbumin-positive interneurons in the basolateral amygdala. Journal of Neuroscience, 27, 553563.Google Scholar
Woodruff, A. R., Monyer, H. and Sah, P. (2006). GABAergic excitation in the basolateral amygdala. Journal of Neuroscience, 26, 1188111887.Google Scholar
Yokoyama, M., Suzuki, E., Sato, T., Maruta, S., Watanabe, S. and Miyaoka, H. (2005). Amygdalic levels of dopamine and serotonin rise upon exposure to conditioned fear stress without elevation of glutamate. Neuroscience Letters, 379, 3741.Google Scholar
Zhang, G., Asgeirsdottir, H. N., Cohen, S. J., Munchow, A. H., Barrera, M. P. and Stackman, R. W. Jr. (2013). Stimulation of serotonin 2 A receptors facilitates consolidation and extinction of fear memory in C57BL/6J mice. Neuropharmacology, 64, 403413.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×