Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-26T08:06:44.591Z Has data issue: false hasContentIssue false

9 - Individual decisions, traffic rules, and emergent pattern in schooling fish

from Part two - Analysis

Published online by Cambridge University Press:  01 June 2010

Julia K. Parrish
Affiliation:
University of Washington
William M. Hamner
Affiliation:
University of California, Los Angeles
Get access

Summary

Introduction

Schools of fish are one of the most studied and best known of all animal congregations (see Pitcher & Parrish 1993). Over 25% of the world's fish school throughout their lives, and over 50% school as juveniles (Shaw 1978). Behavioral and evolutionary studies of schooling fish have indicated that group membership is more advantageous than a solitary existence. Group members may incur a lower risk of predation (Turner & Pitcher 1986; Magurran 1990; Romey Ch. 12), have greater access to food resources (Street & Hart 1985; Ryer & Olla 1992), and expend less energy swimming (Zuyev & Belyayev 1970; Weihs 1973, 1975). Regardless of the reason, most studies assume that membership in a stable congregation is beneficial to the individual. This positive cost to benefit ratio is then used as an argument for both the evolution (Hamilton 1971; Mangel 1990) and maintenance (Parrish 1992) of aggregative behavior in fish. However, as with the study of congregation in general, mechanistic approaches to the study of fish schooling have lagged behind functional approaches. While we may have a good idea why fish congregate, we know relatively little about how fish congregate, let alone form polarized schools of synchronously responding individuals.

Traditionally, schools have been defined by a polarized orientation of the individuals, regardless of whether the school itself is moving or stationary (see Pitcher & Parrish 1993). Thus it is easy to imagine a congregation of fish slipping into, and out of, a schooling configuration, while still maintaining the same group boundaries, volume, shape, and even relative position of the individual members.

Type
Chapter
Information
Animal Groups in Three Dimensions
How Species Aggregate
, pp. 126 - 142
Publisher: Cambridge University Press
Print publication year: 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×