Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-21T09:29:38.322Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 April 2014

A. O. Caldeira
Affiliation:
Universidade Estadual de Campinas, Brazil
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Affleck, I. 1981. Quantum-statistical metastability. Phys. Rev. Lett., 46, 388–391.CrossRefGoogle Scholar
Akhiezer, A.I., Bar'yaktar, V.G., and Peletminskii, S.V. 1968. Spin Waves. Amsterdam: North-Holland.Google Scholar
Ambegaokar, V. 1991. Quantum Brownian motion and its classical limit. Ber. Bunsenges. Phys. Chem., 95(3), 400–404.CrossRefGoogle Scholar
Anderson, P. W. 1963. Plasmons, gauge invariance, and mass. Phys. Rev., 130, 439–442.CrossRefGoogle Scholar
Anderson, P. W. 1966. Considerations on the flow of superfluid helium. Rev. Mod. Phys., 38, 298–310.CrossRefGoogle Scholar
Ankerhold, J. 2007. Quantum Tunneling in Complex Systems: The Semiclassical Approach. Springer Tracts in Modern Physics. Berlin: Springer-Verlag.Google Scholar
Ashcroft, N.W. and Mermin, N.D. 1976. Solid State Physics. Austin, TX: Holt, Rinehart and Winston.Google Scholar
Awschalom, D.D., Smyth, J.F., Grinstein, G., DiVincenzo, D.P., and Loss, D. 1992. Macroscopic quantum tunneling in magnetic proteins. Phys. Rev. Lett., 68, 3092–3095.CrossRefGoogle ScholarPubMed
Baranger, M., de Aguiar, M. A. M., Keck, F., Korsch, H. J., and Schellhaa, B. 2001. Semiclassical approximations in phase space with coherent states. J. Phys. A, 34, 7227–7286.CrossRefGoogle Scholar
Bardeen, J. and Stephen, M.J. 1965. Theory of the motion of vortices in superconductors. Phys. Rev., 140, A1197–A1207.CrossRefGoogle Scholar
Barone, P. M. V. B. and Caldeira, A. O. 1991. Quantum mechanics of the radiation damping. Phys. Rev. A, 43, 57–63.CrossRefGoogle ScholarPubMed
Bertotti, G. 1998. Hysteresis in Magnetism: For Physicists, Materials Scientists, and Engineers. Electromagnetism Series. New York: Academic Press.Google Scholar
Bjorken, J.D. and Drell, S.D. 1964. Relativistic Quantum Mechanics (Relativistic Quantum Fields). International Series in Pure and Applied Physics. New York: McGraw-Hill.Google Scholar
Blatter, G., Feigel'man, M. V., Geshkenbein, V. B., Larkin, A. I., and Vinokur, V. M. 1994. Vortices in high-temperature superconductors. Rev. Mod. Phys., 66, 1125–1388.CrossRefGoogle Scholar
Braun, H.-B., Kyriakidis, J., and Loss, D. 1997. Macroscopic quantum tunneling of ferromagnetic domain walls. Phys. Rev. B, 56, 8129–8137.CrossRefGoogle Scholar
Brazovskii, S. and Nattermann, T. 2004. Pinning and sliding of driven elastic systems: From domain walls to charge density waves. Adv. Phys., 53(2), 177–252.CrossRefGoogle Scholar
Breuer, H. P. and Petruccione, F. 2002. The Theory of Open Quantum Systems. New York: Oxford University Press.Google Scholar
Brooke, J., Rosenbaum, T. F., and Aeppli, G. 2001. Tunable quantum tunnelling of magnetic domain walls. Nature, 413, 610–613.CrossRefGoogle ScholarPubMed
Brune, M., Hagley, E., Dreyer, J., Maître, X., Maali, A., Wunderlich, C., Raimond, J. M., and Haroche, S. 1996. Observing the progressive decoherence of the “meter” in a quantum measurement. Phys. Rev. Lett., 77, 4887–4890.CrossRefGoogle Scholar
Caldeira, A. O. and Castro Neto, A. H. 1995. Motion of heavy particles coupled to fermionic and bosonic environments in one dimension. Phys. Rev. B, 52, 4198–4208.CrossRefGoogle ScholarPubMed
Caldeira, A. O. and Leggett, A. J. 1981. Inluence of dissipation on quantum tunneling in macroscopic systems. Phys. Rev. Lett., 46, 211–214.CrossRefGoogle Scholar
Caldeira, A. O. and Leggett, A. J. 1983a. Quantum tunnelling in a dissipative system. Ann. Phys., 149, 374–456.CrossRefGoogle Scholar
Caldeira, A. O. and Leggett, A. J. 1983b. Path integral approach to quantum Brownian motion. Physica A, 121(3), 587–616.CrossRefGoogle Scholar
Caldeira, A. O. and Leggett, A. J. 1985. Influence of damping on quantum interference: An exactly soluble model. Phys. Rev. A, 31, 1059–1066.CrossRefGoogle Scholar
Caldeira, A. O., Cerdeira, H.A., and Ramaswamy, R. 1989. Limits of weak damping of a quantum harmonic oscillator. Phys. Rev. A, 40, 3438–3440.CrossRefGoogle ScholarPubMed
Callan, C. G. and Coleman, S. 1977. Fate of the false vacuum. II. First quantum corrections. Phys. Rev. D, 16, 1762–1768.CrossRefGoogle Scholar
Castella, H. and Zotos, X. 1993. Exact calculation of spectral properties of a particle interacting with a one-dimensional fermionic system. Phys. Rev. B, 47, 16186–16193.CrossRefGoogle ScholarPubMed
Castro Neto, A. H. and Caldeira, A. O. 1990. Quantum dynamics of an electromagnetic mode in a cavity. Phys. Rev. A, 42, 6884–6893.CrossRefGoogle ScholarPubMed
Castro Neto, A. H. and Caldeira, A. O. 1992. Alternative approach to the dynamics of polarons in one dimension. Phys. Rev. B, 46, 8858–8876.CrossRefGoogle ScholarPubMed
Castro Neto, A. H. and Caldeira, A. O. 1993. Transport properties of solitons. Phys. Rev. E, 48, 4037–4043.CrossRefGoogle ScholarPubMed
Castro Neto, A. H. and Fisher, M. P. A. 1996. Dynamics of a heavy particle in a Luttinger liquid. Phys. Rev. B, 53, 9713–9718.CrossRefGoogle Scholar
Chang, L.-D. and Chakravarty, S. 1984. Quantum decay in a dissipative system. Phys. Rev. B, 29, 130–137.CrossRefGoogle Scholar
Chiorescu, I., Nakamura, Y., Harmans, C. J. P. M., and Mooij, J. E. 2003. Coherent quantum dynamics of a superconducting flux qubit. Science, 299(5614), 1869–1871.CrossRefGoogle ScholarPubMed
Chudnovsky, E. M. and Gunther, L. 1988a. Quantum theory of nucleation in ferromagnets. Phys. Rev. B, 37, 9455–9459.CrossRefGoogle ScholarPubMed
Chudnovsky, E. M. and Gunther, L. 1988b. Quantum tunneling of magnetization in small ferromagnetic particles. Phys. Rev. Lett., 60, 661–664.CrossRefGoogle ScholarPubMed
Chudnovsky, E.M., Iglesias, O., and Stamp, P. C. E. 1992. Quantum tunneling of domain walls in ferromagnets. Phys. Rev. B, 46, 5392–5404.CrossRefGoogle ScholarPubMed
Clarke, J., Cleland, A.N., Devoret, M.H., Esteve, D., and Martinis, J.M. 1988. Quantum mechanics of a macroscopic variable: The phase difference of a Josephson junction. Science, 239, 992–997.CrossRefGoogle ScholarPubMed
Coffey, W., Kalmykov, Y. P., and Waldron, J. T. 1996. The Langevin Equation: With Applications in Physics, Chemistry, and Electrical Engineering. World Scientific Series in Contemporary Chemical Physics. Singapore: World Scientific.CrossRefGoogle Scholar
Coleman, S. 1977. Fate of the false vacuum: Semiclassical theory. Phys. Rev. D, 15, 2929–2936.CrossRefGoogle Scholar
Coleman, S. 1988. Aspects of Symmetry: Selected Erice Lectures. Cambridge: Cambridge University Press.Google Scholar
d'Agliano, E.G., Kumar, P., Schaich, W., and Suhl, H. 1975. Brownian motion model of the interactions between chemical species and metallic electrons: Bootstrap derivation and parameter evaluation. Phys. Rev. B, 11, 2122–2143.CrossRefGoogle Scholar
De Gennes, P. G. 1999. Superconductivity of Metals and Alloys. Advanced Book Classics. Advanced Book Program. Cambridge: Perseus Books.Google Scholar
DiVincenzo, D. P. 2000. The physical implementation of quantum computation. Forts. Phys., 48(9-11), 771–783.3.0.CO;2-E>CrossRefGoogle Scholar
Dorsey, A. T., Fisher, M. P. A., and Wartak, M. S. 1986. Truncation scheme for double-well systems with ohmic dissipation. Phys. Rev. A, 33, 1117–1121.CrossRefGoogle ScholarPubMed
Duarte, O. S. and Caldeira, A. O. 2006. Effective coupling between two Brownian particles. Phys. Rev. Lett., 97, 250601.CrossRefGoogle ScholarPubMed
Duarte, O. S. and Caldeira, A. O. 2009. Effective quantum dynamics of two Brownian particles. Phys. Rev. A, 80, 032110.CrossRefGoogle Scholar
Eschenfelder, A. H. 1980. Magnetic Bubble Technology. Springer Series in Solid-State Sciences. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Fetter, A. L. and Walecka, J. D. 2003. Quantum Theory of Many-Particle Systems. Dover Books on Physics. Mineola, NY: Dover Publications.Google Scholar
Feynman, R. P. 1998. Statistical Mechanics: A Set of Lectures. Advanced Book Classics. Boulder, CO: Westview Press.Google Scholar
Feynman, R. P. and Hibbs, A. R. 1965. Quantum Mechanics and Path Integrals. International Series in Pure and Applied Physics. New York: McGraw-Hill.Google Scholar
Feynman, R. P. and Vernon, F. L. Jr., 1963. The theory of a general quantum system interacting with a linear dissipative system. Ann. Phys., 24, 118–173.CrossRefGoogle Scholar
Forster, D. 1990. Hydrodynamic Fluctuations, Broken Symmetry, and Correlation Functions. Cambridge: Perseus Books.Google Scholar
Frampton, P. H. 1976. Vacuum instability and Higgs scalar mass. Phys. Rev. Lett., 37, 1378–1380.Google Scholar
Freidkin, E., Riseborough, P., and Hanggi, P. 1986. Decay of a metastable state: A varia-tional approach. Phys. Rev. B, 34, 1952–1955.CrossRefGoogle ScholarPubMed
Friedman, J. R., Sarachik, M. P., Tejada, J., and Ziolo, R. 1996. Macroscopic measurement of resonant magnetization tunneling in high-spin molecules. Phys. Rev. Lett., 76, 3830–3833.CrossRefGoogle ScholarPubMed
Friedman, J. R., Patel, V., Chen, W., Tolpygo, S. K., and Lukens, J. E. 2000. Quantum superposition of distinct macroscopic states. Nature, 406, 43–46.CrossRefGoogle ScholarPubMed
Furuya, K. and Caldeira, A. O. 1989. Quantum tunnelling in a double sine-Gordon system near the instability. Physica A, 154(2), 289–306.CrossRefGoogle Scholar
Gefen, Y., Ben-Jacob, E., and Caldeira, A. O. 1987. Zener transitions in dissipative driven systems. Phys. Rev. B, 36, 2770–2782.CrossRefGoogle ScholarPubMed
Gelfand, I. M. and Yaglom, A. M. 1960. Integration in functional spaces and its applications in quantum physics. J. Math. Phys., 1, 48–69.Google Scholar
Gilbert, T. L. 2004. A phenomenological theory of damping in ferromagnetic materials. IEEE Trans. Mag., 40, 3443–3449.CrossRefGoogle Scholar
Gottfried, K. 1966. Quantum Mechanics. Advanced Book Classics. New York: Addison-Wesley.Google Scholar
Grabert, H. and Weiss, U. 1984. Thermal enhancement of the quantum decay rate in a dissipative system. Z. Phys. B, 56, 171–183.CrossRefGoogle Scholar
Grabert, H., Olschowski, P., and Weiss, U. 1987. Quantum decay rates for dissipative systems at finite temperatures. Phys. Rev. B, 36, 1931–1951.CrossRefGoogle ScholarPubMed
Greenberger, D. M., Horne, M., and Zeilinger, A. 1989. Quantum Theory and Conceptions of the Universe. Dordrecht: Kluwer.Google Scholar
Gross, D. H. E. 1975. Theory of nuclear friction. Nucl. Phys. A, 240(3), 472–484.CrossRefGoogle Scholar
Guinea, F. 1984. Friction and particle-hole pairs. Phys. Rev. Lett., 53, 1268–1271.CrossRefGoogle Scholar
Guth, A. H. 1981. Inlationary universe: A possible solution to the horizon and latness problems. Phys. Rev. D, 23, 347–356.CrossRefGoogle Scholar
Hakim, V. and Ambegaokar, V. 1985. Quantum theory of a free particle interacting with a linearly dissipative environment. Phys. Rev. A, 32, 423–434.CrossRefGoogle ScholarPubMed
Harris, R. A. and Silbey, R. 1983. On the stabilization of optical isomers through tunneling friction. J. Chem. Phys., 78(12), 7330–7333.CrossRefGoogle Scholar
Hedegård, P. and Caldeira, A. O. 1987. Quantum dynamics of a particle in a fermionic environment. Phys. Scripta, 35(5), 609–622.CrossRefGoogle Scholar
Hida, K. and Eckern, U. 1984. Quantum dynamics of the sine-Gordon model in the presence of dissipation. Phys. Rev. B, 30, 4096–4098.CrossRefGoogle Scholar
Hong, K. and Giordano, N. 1996. Evidence for domain wall tunnelling in a quasi-one dimensional ferromagnet. J. Phys.: Condens. Matter, 8(19), L301.Google Scholar
Huang, K. 1987. Statistical Mechanics. New York: Wiley.Google Scholar
Jaynes, E. T. and Cummings, F. W. 1963. Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proc. IEEE, 51(1), 89–109.CrossRefGoogle Scholar
Josephson, B. D. 1962. Possible new effects in superconductive tunnelling. Phys. Lett., 1(7), 251–253.CrossRefGoogle Scholar
Kapusta, J. I. and Gale, C. 2006. Finite-Temperature Field Theory: Principles and Applications. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Kittel, C. 1987. Quantum Theory of Solids. New York: Wiley.Google Scholar
Kittel, C. 2004. Introduction to Solid State Physics. New York: Wiley.Google Scholar
Koch, J., Yu, T. M., Gambetta, J., Houck, A. A., Schuster, D. I., Majer, J., et al. 2007. Charge-insensitive qubit design derived from the Cooper pair box. Phys. Rev. A, 76, 042319.CrossRefGoogle Scholar
Kramers, H.A. 1940. Brownian motion in a field of force and the diffusion model of chemical reactions. Physica, 7, 284–304.CrossRefGoogle Scholar
Kurkijärvi, J. 1972. Intrinsic fluctuations in a superconducting ring closed with a Josephson junction. Phys. Rev. B, 6, 832–835.CrossRefGoogle Scholar
Landau, L. D. and Lifshitz, E. M. 1935. On the theory of the dispersion of magnetic permeability in ferromagnetic bodies. Phys. Z. Sowjet, 8, 153–169.Google Scholar
Landau, L. D. and Lifshitz, E. M. 1974. Course of Theoretical Physics: Statistical Physics. New York: Addison-Wesley.Google Scholar
Langer, J. S. 1967. Theory of the condensation point. Ann. Phys., 41, 108–157.CrossRefGoogle Scholar
Larkin, A. I. 1970. Effect of inhomogeneities on the structure of the mixed state of superconductor. Sov. Phys. JETP, 31(4), 1466–1470.Google Scholar
Larkin, A. I. and Ovchinnikov, Yu. N. 1983. Quantum tunneling with dissipation. JETP Lett., 37, 382–385.Google Scholar
Larkin, A. I. and Ovchinnikov, Yu. N. 1984. Quantum-mechanical tunneling with dissipation. The pre-exponential factor. JETP, 59, 420–424.Google Scholar
Leggett, A. J. 1980. Macroscopic quantum systems and the quantum theory of measurement. Progr. Theor. Phys. Suppl., 69, 80–100.CrossRefGoogle Scholar
Leggett, A. J. 1984. Quantum tunneling in the presence of an arbitrary linear dissipation mechanism. Phys. Rev. B, 30, 1208–1218.CrossRefGoogle Scholar
Leggett, A. J. 2006. Quantum Liquids: Bose Condensation and Cooper Pairing in Condensed-matter Systems. Oxford Graduate Texts in Mathematics. Oxford: Oxford University Press.CrossRefGoogle Scholar
Leggett, A.J. and Sols, F. 1991. On the concept of spontaneously broken gauge-symmetry in condensed matter physics. Found. Phys., 21(3), 353–364.CrossRefGoogle Scholar
Leggett, A. J., Chakravarty, S., Dorsey, A. T., Fisher, M. P. A., Garg, A., and Zwerger, W. 1987. Dynamics of the dissipative two-state system. Rev. Mod. Phys., 59, 1–85.CrossRefGoogle Scholar
Leibfried, D., Blatt, R., Monroe, C., and Wineland, D. 2003. Quantum dynamics of single trapped ions. Rev. Mod. Phys., 75, 281–324.CrossRefGoogle Scholar
Likharev, K. K. 1986. Dynamics of Josephson Junctions and Circuits. Oxford: Taylor & Francis.Google Scholar
Lindblad, G. 1975. Completely positive maps and entropy inequalities. Commun. Math. Phys., 40, 147–151.CrossRefGoogle Scholar
Liu, Y., Haviland, D. B., Glazman, L. I., and Goldman, A. M. 1992. Resistive transitions in ultrathin superconducting films: Possible evidence for quantum tunneling of vortices. Phys. Rev. Lett., 68, 2224–2227.CrossRefGoogle ScholarPubMed
London, F. 1961. Superfluids: Macroscopic Theory of Superconductivity. Superfluids. Mineola, NY: Dover Publications.Google Scholar
Louisell, W. H. 1990. Quantum Statistical Properties of Radiation. Wiley Classics Library. New York: Wiley.Google Scholar
Makhlin, Y., Schön, G., and Shnirman, A. 2001. Quantum-state engineering with Josephson-junction devices. Rev. Mod. Phys., 73, 357–400.CrossRefGoogle Scholar
Martinis, J. M., Nam, S., Aumentado, J., and Urbina, C. 2002. Rabi oscillations in a large Josephson-junction qubit. Phys. Rev. Lett., 89, 117901.CrossRefGoogle Scholar
Mattis, D. C. 1988. The Theory of Magnetism I: Statics and Dynamics. Berlin: Springer-Verlag.Google Scholar
Meissner, W. and Ochsenfeld, R. 1933. Ein neuer Effekt bei Eintritt der Supraleitfhigkeit. Naturwiss., 21, 787.CrossRefGoogle Scholar
Merzbacher, E. 1998. Quantum Mechanics. New York: Wiley.Google Scholar
Monroe, C., Meekhof, D. M., King, B. E., and Wineland, D. J. 1996. A Schrödinger cat superposition state of an atom. Science, 272(5265), 1131–1136.CrossRefGoogle ScholarPubMed
Mota, A. C., Juri, G., Visani, P., Pollini, A., Teruzzi, T., Aupke, K., and Hilti, B. 1991. Flux motion by quantum tunneling. Physica C, 185-189, 343–348.CrossRefGoogle Scholar
Munro, W. J. and Gardiner, C. W. 1996. Non-rotating-wave master equation. Phys. Rev. A, 53, 2633–2640.CrossRefGoogle ScholarPubMed
Murray, I. S., Scully, M. O. Jr., and Lamb, W. E., 1978. Laser Physics. Advanced Book Program. Boulder, CO: Westview Press.Google Scholar
Negele, J. W. and Orland, H. 1998. Quantum Many-particle Systems. Advanced Book Classics. Boulder, CO: Westview Press.Google Scholar
Onnes, H. K. 1911. Leiden Comm. 120b, 122b, 124c. Technical reports.Google Scholar
Paulsen, C., Sampaio, L. C., Barbara, B., Tucoulou-Tachoueres, R., Fruchart, D., Marchand, A., Tholence, J.L., and Uehara, M. 1992. Macroscopic quantum tunnelling effects of Bloch walls in small ferromagnetic particles. Europhys. Lett, 19(7), 643.CrossRefGoogle Scholar
Pechukas, P. 1994. Reduced dynamics need not be completely positive. Phys. Rev. Lett., 73, 1060–1062.CrossRefGoogle Scholar
Rabi, I. I. 1937. Space quantization in a gyrating magnetic field. Phys. Rev., 51, 652–654.CrossRefGoogle Scholar
Raimond, J. M., Brune, M., and Haroche, S. 2001. Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys., 73, 565–582.CrossRefGoogle Scholar
Rajaraman, R. 1987. Solitons and Instantons: An Introduction to Solitons and Instantons in Quantum Field Theory. North-Holland Personal Library. Amsterdam: North-Holland.Google Scholar
Ramsey, N. F. 1950. A molecular beam resonance method with separated oscillating fields. Phys. Rev., 78, 695–699.CrossRefGoogle Scholar
Reichl, L. E. 2009. A Modern Course in Statistical Physics. Physics Textbook. New York: Wiley.Google Scholar
Reif, F. 1965. Statistical and Thermal Physics. New York: McGraw-Hill.Google Scholar
Rigetti, C., Gambetta, J.M., Poletto, S., Plourde, B.L.T., Chow, J.M., Córcoles, A.D., et al. 2012. Superconducting qubit in a waveguide cavity with a coherence time approaching 0.1 ms. Phys. Rev. B, 86, 100506.CrossRefGoogle Scholar
Rosenau da Costa, M., Caldeira, A. O., Dutra, S. M., and Westfahl, H. 2000. Exact diagonalization of two quantum models for the damped harmonic oscillator. Phys. Rev. A, 61, 022107.CrossRefGoogle Scholar
Sangregorio, C., Ohm, T., Paulsen, C., Sessoli, R., and Gatteschi, D. 1997. Quantum tunneling of the magnetization in an iron cluster nanomagnet. Phys. Rev. Lett., 78, 4645–4648.CrossRefGoogle Scholar
Santos, A.C. 2013. Decoerência de pacote gaussiano num oscilador harmónico. MSc thesis, Universidade Estadual de Campinas (in Portuguese).Google Scholar
Schön, G. and Zaikin, A. D. 1990. Quantum coherent effects, phase transitions, and the dissipative dynamics of ultra small tunnel junctions. Phys. Rep., 198, 237–412.CrossRefGoogle Scholar
Schrödinger, E. 1935. Die gegenwärtige Situation in der Quantenmechanik. Naturwiss., 23, 807-812; 823-828; 844–849.CrossRefGoogle Scholar
Schulman, L. S. 1981. Techniques and Applications of Path Integration. New York: Wiley-Interscience.Google Scholar
Sefrioui, Z., Arias, D., Morales, F., Varela, M., León, C., Escudero, R., and Santamaria, J. 2001. Evidence for vortex tunnel dissipation in deoxygenated YBa2Cu3O6.4 thin films. Phys. Rev. B, 63, 054509-1-4.CrossRefGoogle Scholar
Sessoli, R., Gatteschi, D., Caneschi, A., and Novak, M. A. 1993. Magnetic bistability in a metalion cluster. Nature, 365, 141–143.CrossRefGoogle Scholar
Shpyrko, O. G., Isaacs, E. D., Logan, J. M., Feng, Y., Aeppli, G., Jaramillo, R., et al. 2007. Direct measurement of antiferromagnetic domain luctuations. Nature, 447, 68–71.CrossRefGoogle Scholar
Slichter, C.P. 1996. Principles of Magnetic Resonance. Springer Series in Solid-State Sciences. Berlin: Springer-Verlag.Google Scholar
Smith, C.M., and Caldeira, A. O. 1990. Application of the generalized Feynman-Vernon approachto asimplesystem: Thedampedharmonic oscillator. Phys. Rev. A, 41, 3103–3115.CrossRefGoogle Scholar
Smith, C. M., Caldeira, A. O., and Blatter, G. 1996. Creep of vortices from columnar defects. Phys. Rev. B, 54, R784–R787.CrossRefGoogle ScholarPubMed
Smith, C. M., Caldeira, A. O., and Blatter, G. 1997. Relaxation rates of lux-lines and lux-pancakes in the presence of correlated disorder. Physica C: Supercond., 276(1-2), 42–56.CrossRefGoogle Scholar
Stamp, P. C. E., Chudnovski, E.M., and Barbara, B. 1992. Quantum tunnelling of magnetization in solids. Int. J. Mod. Phys. B, 6(9), 1355–1473.CrossRefGoogle Scholar
Stone, M. 1976. Lifetime and decay of “excited vacuum” states of a field theory associated with nonabsolute minima of its effective potential. Phys. Rev. D, 14, 3568–3573.CrossRefGoogle Scholar
Tafuri, F., Kirtley, J. R., Born, D., Stornaiuolo, D., Medaglia, P. G., Orgiani, P., et al. 2006. Dissipation in ultra-thin current-carrying superconducting bridges; evidence for quantum tunneling of Pearl vortices. Europhys. Lett., 73(6), 948.CrossRefGoogle Scholar
Takagi, S. 2002. Macroscopic Quantum Tunneling. Cambridge: Cambridge University Press.Google Scholar
Thouless, D. J. 1972. The Quantum Mechanics of Many-body Systems. Pure and Applied Physics. New York: Academic Press.Google Scholar
Tinkham, M. 2004. Introduction to Superconductivity, 2nd edn. Dover Books on Physics and Chemistry. Mineola, NY: Dover Publications.Google Scholar
Ueda, M. 1996. Transmission spectrum of a tunneling particle interacting with dynamical fields: Real-time functional-integral approach. Phys. Rev. B, 54, 8676–8687.CrossRefGoogle ScholarPubMed
Valente, D. M. and Caldeira, A. O. 2010. Thermal equilibrium of two quantum Brownian particles. Phys. Rev. A, 81, 012117-1-7.CrossRefGoogle Scholar
Venugopalan, A. 1994. Preferred basis in a measurement process. Phys. Rev. A, 50, 2742–2745.CrossRefGoogle Scholar
Vion, D., Aassime, A., Cottet, A., Joyez, P., Pothier, H., Urbina, C., et al. 2002. Manipulating the quantum state of an electrical circuit. Science, 296(5569), 886–889.CrossRefGoogle ScholarPubMed
Voss, R. F. and Webb, R. A. 1981. Macroscopic quantum tunneling in 1-μm Nb Josephson junctions. Phys. Rev. Lett., 47, 265–268.CrossRefGoogle Scholar
Wax, N. 2003. Selected Papers on Noise and Stochastic Processes. Dover Phoenix Editions. Mineola, NY: Dover Publications.Google Scholar
Waxman, D. 1985. Macroscopic quantum coherence and tunnelling in a double well potential. J. Phys. C: Solid State Phys., 18(15), L421.CrossRefGoogle Scholar
Waxman, D. and Leggett, A. J. 1985. Dissipative quantum tunneling at finite temperatures. Phys. Rev. B, 32, 4450–4468.CrossRefGoogle ScholarPubMed
Weiss, U. 1999. Quantum Dissipative Systems. Series in Modern Condensed Matter Physics. Singapore: World Scientific.CrossRefGoogle Scholar
White, R. M. 2007. Quantum Theory of Magnetism. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Yang, C. N. 1962. Concept of off-diagonal long-range order and the quantum phases of liquid He and of superconductors. Rev. Mod. Phys., 34, 694–704.CrossRefGoogle Scholar
Yu, Y., Han, S., Chu, X., Chu, S.-I., and Wang, Z. 2002. Coherent temporal oscillations of macroscopic quantum states in a Josephson junction. Science, 296(5569), 889–892.CrossRefGoogle Scholar
Zurek, W. H. 1991. Decoherence and the transition from quantum to classical. Physics Today, 44, 36–44.CrossRefGoogle Scholar
Zurek, W. H. 2003. Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys., 75, 715–775.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • A. O. Caldeira, Universidade Estadual de Campinas, Brazil
  • Book: An Introduction to Macroscopic Quantum Phenomena and Quantum Dissipation
  • Online publication: 05 April 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139035439.016
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • A. O. Caldeira, Universidade Estadual de Campinas, Brazil
  • Book: An Introduction to Macroscopic Quantum Phenomena and Quantum Dissipation
  • Online publication: 05 April 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139035439.016
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • A. O. Caldeira, Universidade Estadual de Campinas, Brazil
  • Book: An Introduction to Macroscopic Quantum Phenomena and Quantum Dissipation
  • Online publication: 05 April 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139035439.016
Available formats
×