Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-23T12:12:40.824Z Has data issue: false hasContentIssue false

7 - Observational characteristics of accretion onto black holes II: environment and feedback

Published online by Cambridge University Press:  05 January 2014

Rob Fender
Affiliation:
University of Southampton
Ignacio González Martínez-País
Affiliation:
Instituto de Astrofísica de Canarias, Tenerife
Tariq Shahbaz
Affiliation:
Instituto de Astrofísica de Canarias, Tenerife
Jorge Casares Velázquez
Affiliation:
Instituto de Astrofísica de Canarias, Tenerife
Get access

Summary

7.1 Introduction

I'll begin this chapter with one of my favorite quotes about black holes:

Of all the conceptions of the human mind, from unicorns to gargoyles to the hydrogen bomb, the most fantastic, perhaps, is the black hole; a hole in space with a definite edge into which anything can fall and out of which nothing can escape; a hole with a gravitational force so strong that even light is caught and held in its grip; a hole that curves space and warps time. Like unicorns and gargoyles, black holes seem more at home in the realms of science fiction and ancient myth than in the real Universe. Nonetheless, well-tested laws of physics predict firmly that black holes exist.

(Thorne, 1994)

… and add that not only do the laws of physics predict that black holes exist, but a vast array of observational evidence points to their existence in a range of masses and environments, throughout the universe. Whether or not they really exist is debated by some and is hard to prove to the satisfaction of others, but there are clearly a vast number of objects (> 1016) in the observable universe that conform very closely to our concept of a black hole (i.e., high accretion efficiency but otherwise “dark,” no apparent surface, simple scaling of properties over a range ≥ 108 in mass). In this contribution to the XXI Canary Islands Winter School of Astrophysics, I focus on these objects, specifically on the observational consequences of accretion onto them, and the associated feedback to the surrounding environment.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Biretta, J. A., Sparks, W. B., and Macchetto, F. 2005. Hubble Space Telescope observations of superluminal motion in the M87 jet. 1999. ApJ, 520(Aug.), 621–626.Google Scholar
Blandford, R. D., and Königl, A. 1979. Relativistic jets as compact radio sources. ApJ, 232(Aug.), 34–48.Google Scholar
Blundell, K. M., and Bowler, M. G. 2004. Symmetry in the changing jets of SS 433 and its true distance from us. ApJ, 616(Dec.), L159–L162.Google Scholar
Burbidge, G. R. 1958. Possible sources of radio emission in clusters of galaxies. ApJ, 128(July), 1–8.Google Scholar
Burrows, C. J., Stapelfeldt, K. R., Watson, A. M., Krist, J. E., Ballester, G. E., Clarke, J. T., Crisp, D., Gallagher, J. S. III., Griffiths, R. E., Hester, J. J., Hoessel, J. G., Holtzman, J. A., Mould, J. R., Scowen, P. A., Trauger, J. T., Westphal, J. A. 1996. Hubble Space Telescope observations of the disk and jet of HH 30. ApJ, 473(Dec.), 437–L162.Google Scholar
Calvelo, D. E., Fender, R. P., Russell, D. M., Gallo, E., Corbel, S., Tzioumis, A. K., Bell, M. E., Lewis, F., and Maccarone, T. J. 2010. Limits on the quiescent radio emission from the black hole binaries GRO J1655-40 and XTE J1550-564. MNRAS, 409(Dec.), 839–845.Google Scholar
Casella, P., Belloni, T., and Stella, L. 2005. The ABC of low-frequency quasi-periodic oscillations in black hole candidates: analogies with Z sources. ApJ, 629(Aug.), 403–407.Google Scholar
Casella, P., Maccarone, T. J., O'Brien, K., Fender, R. P., Russell, D. M., van der Klis, M., Pe'Er, A., Maitra, D., Altamirano, D., Belloni, T., Kanbach, G., Klein-Wolt, M., Mason, E., Soleri, P., Stefanescu, A., Wiersema, K., and Wijnands, R. 2010. Fast infrared variability from a relativistic jet in GX 339-4. MNRAS, 404(May), L21–L25.Google Scholar
Corbel, S., Fender, R. P., Tomsick, J. A., Tzioumis, A. K., and Tingay, S. 2004. On the origin of radio emission in the X-ray states of XTE J1650-500 during the 2001-2002 outburst. ApJ, 617(Dec.), 1272–1283.Google Scholar
Corbel, S., Fender, R. P., Tzioumis, A. K., Tomsick, J. A., Orosz, J. A., Miller, J. M., Wij-nands, R., and Kaaret, P. 2002. Large-scale, decelerating, relativistic X-ray jets from the microquasar XTE J1550-564. Science, 298(Oct.), 196–199.Google Scholar
De Villiers, J.-P., Hawley, J. F., Krolik, J. H., and Hirose, S. 2005. Magnetically driven accretion in the Kerr metric. III. Unbound outflows. ApJ, 620(Feb.), 878–888.Google Scholar
Doeleman, S., Agol, E., Backer, D., Baganoff, F., Bower, G. C., Broderick, A., Fabian, A., Fish, V., Gammie, C., Ho, P., Honman, M., Krichbaum, T., Loeb, A., Marrone, D., Reid, M., Rogers, A., Shapiro, I., Strittmatter, P., Tilanus, R., Weintroub, J., Whitney, A., Wright, M., and Ziurys, L. 2009. Imaging an event horizon: sub-mm-VLBI of a super massive black hole. Astro2010: The Astronomy and Astrophysics Decadal Survey. Science White Papers, no. 68.
Dunn, R. J. H., Fender, R. P., Kording, E. G., Cabanac, C., and Belloni, T. 2008. Studying the X-ray hysteresis in GX 339-4: the disc and iron line over one decade. MNRAS, 387(June), 545–563.Google Scholar
Fabian, A. C., and Iwasawa, K. 1999. The mass density in black holes inferred from the X-ray background. MNRAS, 303(Feb.), L34–L36.Google Scholar
Fabian, A. C., Sanders, J. S., Taylor, G. B., Allen, S. W., Crawford, C. S., Johnstone, R. M., and Iwasawa, K. 2006. A very deep Chandra observation of the Perseus cluster: shocks, ripples and conduction. MNRAS, 366(Feb.), 417–428.Google Scholar
Falcke, H., Kording, E., and Markoff, S. 2004. A scheme to unify low-power accreting black holes. Jet-dominated accretion flows and the radio/X-ray correlation. A&A, 414(Feb.), 895–903.Google Scholar
Fender, R. 2006. Jets from X-Ray Binaries. Compact stellar X-ray sources. Walter, Lewin & Michiel van der, Klis (eds.), Cambridge Astrophysics Series, No. 39. Cambridge, UK: Cambridge University Press, p. 381–419.
Fender, R. P., Belloni, T. M., and Gallo, E. 2004. Towards a unified model for black hole X-ray binary jets. MNRAS, 355(Dec.), 1105–1118.Google Scholar
Fender, R. P., Gallo, E., and Jonker, P. G. 2003. Jet-dominated states: an alternative to advection across black hole event horizons in “quiescent” X-ray binaries. MNRAS, 343(Aug.), L99–L103.Google Scholar
Fender, R. P., Gallo, E., and Russell, D. 2010. No evidence for black hole spin powering of jets in X-ray binaries. MNRAS, 406(Aug.), 1425–1434.Google Scholar
Fender, R. P., Garrington, S. T., McKay, D. J., Muxlow, T. W. B., Pooley, G. G., Spencer, R. E., Stirling, A. M., and Waltman, E. B. 1999. MERLIN observations of relativistic ejections from GRS 1915+105. MNRAS, 304(Apr.), 865–876.Google Scholar
Fender, R. P., Homan, J., and Belloni, T. M. 2009. Jets from black hole X-ray binaries: testing, refining and extending empirical models for the coupling to X-rays. MNRAS, 396(July), 1370–1382.Google Scholar
Ferrarese, L., and Merritt, D. 2000. A fundamental relation between supermassive black holes and their host galaxies. ApJ, 539(Aug.), L9–L12.Google Scholar
Gallo, E., Fender, R. P., Kaiser, C., Russell, D., Morganti, R., Oosterloo, T., and Heinz, S. 2005. A dark jet dominates the power output of the stellar black hole Cygnus X-1. Nature, 436(Aug.), 819–821.Google Scholar
Gallo, E., Fender, R. P., Miller-Jones, J. C. A., Merloni, A., Jonker, P. G., Heinz, S., Maccarone, T. J., and van der Klis, M. 2006. A radio-emitting outflow in the quiescent state of A0620-00: implications for modelling low-luminosity black hole binaries. MNRAS, 370(Aug.), 13511360.Google Scholar
Gallo, E., Fender, R. P., and Pooley, G. G. 2003. A universal radio-X-ray correlation in low/hard state black hole binaries. MNRAS, 344(Sept.), 60–72.Google Scholar
Garcia, M. R., McClintock, J. E., Narayan, R., Callanan, P., Barret, D., and Murray, S. S. 2001. New evidence for black hole event horizons from Chandra. ApJ, 553(May), L47–L50.Google Scholar
Hannikainen, D. C., Hunstead, R. W., Campbell-Wilson, D., and Sood, R. K. 1998. MOST radio monitoring of GX 339-4. A&A, 337(Sept.), 460–464.Google Scholar
Hughes, P. A. 1991. Beams and Jets in Astrophysics. Cambridge University Press (Cambridge Astrophysics Series, No. 19), 593 p.
Jamil, O., Fender, R. P., and Kaiser, C. R. 2010. iShocks: X-ray binary jets with an internal shocks model. MNRAS, 401(Jan.), 394–404.Google Scholar
Kaiser, C. R., and Alexander, P. 1997. A self-similar model for extragalactic radio sources. MNRAS, 286(Mar.), 215–222.Google Scholar
Koide, S., Shibata, K., Kudoh, T., and Meier, D. L. 2002. Extraction of black hole rotational energy by a magnetic field and the formation of relativistic jets. Science, 295(Mar.), 1688–1691.Google Scholar
Körding, E., Falcke, H., and Corbel, S. 2006a. Refining the fundamental plane of accreting black holes. A&A, 456(Sept.), 439–450.Google Scholar
Kording, E. G., Fender, R. P., and Migliari, S. 2006b. Jet-dominated advective systems: radio and X-ray luminosity dependence on the accretion rate. MNRAS, 369(July), 1451–1458.Google Scholar
Kording, E. G., Jester, S., and Fender, R. 2006c. Accretion states and radio loudness in active galactic nuclei: analogies with X-ray binaries. MNRAS, 372(Nov.), 1366–1378.Google Scholar
Kording, E. G., Migliari, S., Fender, R., Belloni, T., Knigge, C., and McHardy, I. 2007. The variability plane of accreting compact objects. MNRAS, 380(Sept.), 301–310.Google Scholar
Mahadevan, R. 1997. Scaling laws for advection-dominated flows: applications to low-luminosity galactic nuclei. ApJ, 477(Mar.), 585+.Google Scholar
Markoff, S., Falcke, H., and Fender, R. 2001. A jet model for the broadband spectrum of XTE J1118+480. Synchrotron emission from radio to X-rays in the low/hard spectral state. A&A, 372(June), L25–L28.Google Scholar
Marscher, A. P., Jorstad, S. G., Gomez, J.-L., Aller, M. F., Teräsranta, H., Lister, M. L., and Stirling, A. M. 2002. Observational evidence for the accretion-disk origin for a radio jet in an active galaxy. Nature, 417(June), 625–627.Google Scholar
McHardy, I. M., Koerding, E., Knigge, C., Uttley, P., and Fender, R. P. 2006. Active galactic nuclei as scaled-up Galactic black holes. Nature, 444(Dec.), 730–732.Google Scholar
McKinney, J. C., and Blandford, R. D. 2009. Stability of relativistic jets from rotating, accreting black holes via fully three-dimensional magnetohydrodynamic simulations. MNRAS, 394(Mar.), L126–L130.Google Scholar
Merloni, A., Heinz, S., and di Matteo, T. 2003. A fundamental plane of black hole activity. MNRAS, 345(Nov.), 1057–1076.Google Scholar
Miller, J. M., Raymond, J., Fabian, A., Steeghs, D., Homan, J., Reynolds, C., van der Klis, M., and Wijnands, R. 2006. The magnetic nature of disk accretion onto black holes. Nature, 441(June), 953–955.Google Scholar
Miller-Jones, J. C. A., Fender, R. P., and Nakar, E. 2006. Opening angles, Lorentz factors and confinement of X-ray binary jets. MNRAS, 367(Apr.), 1432–1440.Google Scholar
Miller-Jones, J. C. A., McCormick, D. G., Fender, R. P., Spencer, R. E., Muxlow, T. W. B., and Pooley, G. G. 2005. Multiple relativistic outbursts of GRS1915+105: radio emission and internal shocks. MNRAS, 363(Nov.), 867–881.Google Scholar
Mirabel, I. F., and Rodriguez, L. F. 1994. A superluminal source in the Galaxy. Nature, 371(Sept.), 46–48.Google Scholar
Moretti, A., Campana, S., Lazzati, D., and Tagliaferri, G. 2003. The resolved fraction of the cosmic X-ray background. ApJ, 588(May), 696–703.Google Scholar
Narayan, R., and Yi, I. 1994. Advection-dominated accretion: A self-similar solution. ApJ, 428(June), L13–L16.Google Scholar
Neilsen, J., and Lee, J. C. 2009. Accretion disk winds as the jet suppression mechanism in the microquasar GRS 1915+105. Nature, 458(Mar.), 481–484.Google Scholar
Pe'er, A., and Casella, P. 2009. A model for emission from jets in X-ray binaries: consequences of a single acceleration episode. ApJ, 699(July), 1919–1937.Google Scholar
Ponti, G., Terrier, R., Goldwurm, A., Belanger, G., and Trap, G. 2010. Discovery of a superlu-minal Fe K Echo at the galactic center: the glorious past of Sgr A* preserved by molecular clouds. ApJ, 714(May), 732–747.Google Scholar
Rees, M. J. 1966. Appearance of relativistically expanding radio sources. Nature, 211(July), 468–470.Google Scholar
Russell, D. M., Fender, R. P., Hynes, R. I., Brocksopp, C., Homan, J., Jonker, P. G., and Buxton, M. M. 2006. Global optical/infrared-X-ray correlations in X-ray binaries: quantifying disc and jet contributions. MNRAS, 371(Sept.), 1334–1350.Google Scholar
Russell, D. M., Maitra, D., Dunn, R. J. H., and Markoff, S. 2010. Evidence for a compact jet dominating the broad-band spectrum of the black hole accretor XTE J1550-564. MNRAS, 405(July), 1759–1769.Google Scholar
Sams, B. J., Eckart, A., and Sunyaev, R. 1996. Near-infrared jets in the Galactic microquasar GRS1915+105. Nature, 382(July), 47–49.Google Scholar
Schmitt, J. H. M. M., Snowden, S. L., Aschenbach, B., Hasinger, G., Pfeffermann, E., Predehl, P., Trumper, J., 1991, A soft X-ray image of the moon. Nature, 349(February), 583–587.Google Scholar
Sikora, M., Stawarz, Ł., and Lasota, J.-P. 2007. Radio loudness of active galactic nuclei: observational facts and theoretical implications. ApJ, 658(Apr.), 815–828.Google Scholar
Soltan, A. 1982. Masses of quasars. MNRAS, 200(July), 115–122.Google Scholar
Susskind, L. 2009. The Black Hole War: My Battle with Stephen Hawking to Make the World Safe for Quantum Mechanics. Published by Little, Brown and Company, Hachette Book Group, 237 Park Avenue, New York, NY 10017 (www.HachetteBookGroup.com)
Tchekhovskoy, A., Narayan, R., and McKinney, J. C. 2010. Black hole spin and the radio loud/quiet dichotomy of active galactic nuclei. ApJ, 711(Mar.), 50–63.Google Scholar
Thorne, K. 1994. Black Holes and Time Warps: Einstein's Outrageous Legacy. Published by W. W. Norton & Company, Inc, 500 Fifth Avenue, New York, NY 10110.
Yu, Q., and Tremaine, S. 2002. Observational constraints on growth of massive black holes. MNRAS, 335(Oct.), 965–976.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×