Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-23T05:25:40.610Z Has data issue: false hasContentIssue false

Chapter 52 - Calcium, Hypercalcemia, Magnesium, and Brain Ischemia

from Section 6 - Systemic Disorders That Also Involve the Cerebrovascular System

Published online by Cambridge University Press:  15 June 2018

Louis Caplan
Affiliation:
Beth Israel-Deaconess Medical Center, Boston
José Biller
Affiliation:
Loyola University Stritch School of Medicine, Chicago
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, H. P. Jr. (1990). Calcium antagonists in the management of patients with aneurysmal subarachnoid hemorrhage: A review. Angiology, 41, 1010–16.Google Scholar
Adebamowo, S. N., Spiegelman, D., Willett, W. C., & Rexrode, K. M. (2015). Association between intakes of magnesium, potassium, and calcium and risk of stroke: 2 cohorts of US women and updated meta-analyses. American Journal of Clinical Nutrition, 101, 1269–77.CrossRefGoogle ScholarPubMed
Altura, B. T., Memon, Z. I., Zhang, A., et al. (1997). Low levels of serum ionized magnesium are found in patients early after stroke which result in rapid elevation in cytosolic free calcium and spasm in cerebral vascular muscle cells. Neuroscience Letters, 230, 3740.Google Scholar
Amighi, J., Sabeti, S., Schlager, O., et al. (2004). Low serum magnesium predicts neurological events in patients with advanced atherosclerosis. Stroke, 35, 22–7.Google Scholar
Bain, L. K., Myint, P. K., Jennings, A., et al. (2015). The relationship between dietary magnesium intake, stroke and its major risk factors, blood pressure and cholesterol, in the EPIC-Norfolk cohort. International Journal of Cardiology, 196, 108–14.CrossRefGoogle ScholarPubMed
Barth, M., Capelle, H. H., Weidauer, S., et al. (2007). Effect of nicardipine prolonged-release implants on cerebral vasospasm and clinical outcome after severe aneurysmal subarachnoid hemorrhage: A prospective, randomized, double-blind phase IIa study. Stroke, 38, 330–6.Google Scholar
Bauermeister, D. E., Jennings, E. R., Cruse, D. R., & Sedgwick, V. D. (1967). Hypercalcemia with seizures: A clinical paradox. JAMA, 201, 132–3.CrossRefGoogle ScholarPubMed
Bostrom, H. & Alveryd, A. (1972). Stroke in hyperparathyroidism. Acta Medica Scandinavica, 192, 299308.CrossRefGoogle ScholarPubMed
Campbell, C. A., Mackay, K. B., Patel, S., et al. (1997). Effects of isradipine, an L-type calcium channel blocker on permanent and transient focal cerebral ischemia in spontaneously hypertensive rats. Experimental Neurology, 148, 4550.Google Scholar
Chung, J. W., Ryu, W. S., Kim, B. J., & Yoon, B. W. (2015). Elevated calcium after acute ischemic stroke: Association with a poor short-term outcome and long-term mortality. Journal of Stroke, 17, 54–9.Google Scholar
Collignon, F. P., Friedman, J. A., Piepgras, D. G., et al. (2004). Serum magnesium levels as related to symptomatic vasospasm and outcome following aneurysmal subarachnoid hemorrhage. Neurocritical Care, 1, 441–8.Google Scholar
Dorhout Mees, S. M., Rinkel, G. J., Feigin, V. L., et al. (2007). Calcium antagonists for aneurysmal subarachnoid haemorrhage. The Cochrane Database of Systematic Reviews, 3, CD000277.Google Scholar
Dorhout Mees, S. M., Algra, A., Vandertop, W. P., et al. (2012). Magnesium for aneurysmal subarachnoid haemorrhage (MASH-2): A randomised placebo-controlled trial. Lancet, 380, 44–9.Google Scholar
Dorhout Mees, S. M., Algra, A., Wong, G. K., et al. (2015). Early magnesium treatment after aneurysmal subarachnoid hemorrhage: Individual patient data meta-analysis. Stroke, 46, 3190–3.CrossRefGoogle ScholarPubMed
Eikermann-Haerter, K., Lee, J. H., Yuzawa, I., et al. (2012). Migraine mutations increase stroke vulnerability by facilitating ischemic depolarizations. Circulation, 125, 335–45.Google Scholar
Eikermann-Haerter, K., Arbel-Ornath, M., Yalcin, N., et al. (2015a). Abnormal synaptic Ca(2+) homeostasis and morphology in cortical neurons of familial hemiplegic migraine type 1 mutant mice. Annals of Neurology, 78, 193210.Google Scholar
Eikermann-Haerter, K., Lee, J. H., Yalcin, N., et al. (2015b). Migraine prophylaxis, ischemic depolarizations, and stroke outcomes in mice. Stroke, 46, 229–36.Google Scholar
Fan, X., Jin, W. Y., & Wang, Y. T. (2014). The NMDA receptor complex: A multifunctional machine at the glutamatergic synapse. Frontiers in Cellular Neuroscience, 8, 160.CrossRefGoogle ScholarPubMed
Gorelick, P. & Caplan, L. (1985). Calcium, hypercalcemia, and stroke. Current Concepts in Cerebrovascular Disease – Stroke, 20, 1317.Google Scholar
Haley, E. C. Jr, Kassell, N. F., Torner, J. C., Truskowski, L. L., & Germanson, T. P. (1994). A randomized trial of two doses of nicardipine in aneurysmal subarachnoid hemorrhage. A report of the cooperative aneurysm study. Journal of Neurosurgery, 80, 788–96.Google Scholar
Hall, J. E. (ed.). (2015). Guyton and Hall Textbook of Medical Physiology, 13th edn. Philadelphia, PA: Saunders.Google Scholar
Hamerman, D. (2005). Osteoporosis and atherosclerosis: Biological linkages and the emergence of dual-purpose therapies. QJM: Monthly Journal of the Association of Physicians, 98, 467–84.CrossRefGoogle ScholarPubMed
Hanggi, D., Turowski, B., Beseoglu, K., Yong, M., & Steiger, H. J. (2008). Intra-arterial nimodipine for severe cerebral vasospasm after aneurysmal subarachnoid hemorrhage: Influence on clinical course and cerebral perfusion. AJNR American Journal of Neuroradiology, 29, 1053–60.Google Scholar
Helpern, J. A., Vande Linde, A. M., Welch, K. M., et al. (1993). Acute elevation and recovery of intracellular [Mg2+] following human focal cerebral ischemia. Neurology, 43, 1577–81.CrossRefGoogle ScholarPubMed
Hollingworth, M., Chen, P. R., Goddard, A. J., et al. (2015). Results of an international survey on the investigation and endovascular management of cerebral vasospasm and delayed cerebral ischemia. World Neurosurgery, 83, 1120–6.Google Scholar
Horn, J. & Limburg, M. (2001). Calcium antagonists for ischemic stroke: A systematic review. Stroke, 32, 570–6.Google Scholar
Huang, B. R., Chang, P. C., Yeh, W. L., et al. (2014). Anti-neuroinflammatory effects of the calcium channel blocker nicardipine on microglial cells: Implications for neuroprotection. PloS One, 9, e91167.CrossRefGoogle ScholarPubMed
Huang, Q. F., Gebrewold, A., Altura, B. T., & Altura, B. M. (1990). Cocaine-induced cerebral vascular damage can be ameliorated by Mg2+ in rat brain. Neuroscience Letters, 109, 113–16.CrossRefGoogle ScholarPubMed
Iso, H., Stampfer, M. J., Manson, J. E., et al. (1999). Prospective study of calcium, potassium, and magnesium intake and risk of stroke in women. Stroke, 30, 1772–9.Google Scholar
Jackson, J. L., Cogbill, E., Santana-Davila, R., et al. (2015). A comparative effectiveness meta-analysis of drugs for the prophylaxis of migraine headache. PloS One, 10, e0130733.Google Scholar
Kalogeris, T., Baines, C. P., Krenz, M., & Korthuis, R. J. (2012). Cell biology of ischemia/reperfusion injury. International Review of Cell and Molecular Biology, 298, 229317.CrossRefGoogle ScholarPubMed
Katsamakis, G., Lukovits, T. G., & Gorelick, P. B. (1998). Calcific cerebral embolism in systemic calciphylaxis. Neurology, 51, 295–7.Google Scholar
Kristian, T. & Siesjo, B. K. (1996). Calcium-related damage in ischemia. Life Sciences, 59, 357–67.Google Scholar
Larsson, S. C., Orsini, N., & Wolk, A. (2012). Dietary magnesium intake and risk of stroke: A meta-analysis of prospective studies. American Journal of Clinical Nutrition, 95, 362–6.Google Scholar
Li, L., Schulz, U. G., Kuker, W., Rothwell, P. M., & Oxford Vascular Study. (2015). Age-specific association of migraine with cryptogenic TIA and stroke: Population-based study. Neurology, 85, 1444–51.Google Scholar
Mohr, J. P., Orgogozo, J. M., Harrison, M. J. G., et al. (1994). Meta-analysis of oral nimodipine trials in acute ischemic stroke. Cerebrovasc Dis, 4, 197203.Google Scholar
Muir, K. W. (2002). Magnesium in stroke treatment. Postgraduate Medical Journal, 78, 641–5.Google Scholar
Muir, K. W., Lees, K. R., Ford, I., Davis, S., & Intravenous Magnesium Efficacy in Stroke (IMAGES) Study Investigators. (2004). Magnesium for acute stroke (intravenous magnesium efficacy in stroke trial): Randomised controlled trial. Lancet, 363, 439–45.Google Scholar
Nogueira, R. G., Lev, M. H., Roccatagliata, L., et al. (2009). Intra-arterial nicardipine infusion improves CT perfusion-measured cerebral blood flow in patients with subarachnoid hemorrhage-induced vasospasm. AJNR American Journal of Neuroradiology, 30, 160–4.Google Scholar
Ohira, T., Peacock, J. M., Iso, H., et al. (2009). Serum and dietary magnesium and risk of ischemic stroke: The Atherosclerosis Risk in Communities Study. American Journal of Epidemiology, 169, 1437–44.CrossRefGoogle ScholarPubMed
Ram, Z., Sadeh, M., Shacked, I., Sahar, A., & Hadani, M. (1991). Magnesium sulfate reverses experimental delayed cerebral vasospasm after subarachnoid hemorrhage in rats. Stroke, 22, 922–7.Google Scholar
Reddy, D., Fallah, A., Petropoulos, J. A., et al. (2014). Prophylactic magnesium sulfate for aneurysmal subarachnoid hemorrhage: A systematic review and meta-analysis. Neurocritical Care, 21, 356–64.Google Scholar
Sato, Y., Kuno, H., Kaji, M., et al. (1998). Increased bone resorption during the first year after stroke. Stroke, 29, 1373–7.CrossRefGoogle ScholarPubMed
Sato, Y., Kaji, M., Metoki, N., Satoh, K., & Iwamoto, J. (2003). Does compensatory hyperparathyroidism predispose to ischemic stroke? Neurology, 60, 626–9.CrossRefGoogle ScholarPubMed
Saver, J. L., Kidwell, C., Eckstein, M., Starkman, S., & FAST-MAG Pilot Trial Investigators. (2004). Prehospital neuroprotective therapy for acute stroke: Results of the field administration of stroke therapy – magnesium (FAST– MAG) pilot trial. Stroke, 35, e1068.Google Scholar
Saver, J. L., Starkman, S., Eckstein, M., et al. (2015). Prehospital use of magnesium sulfate as neuroprotection in acute stroke. New England Journal of Medicine, 372, 528–36.CrossRefGoogle ScholarPubMed
Scher, A. I., Gudmundsson, L. S., Sigurdsson, S., et al. (2009). Migraine headache in middle age and late-life brain infarcts. JAMA, 301, 2563–70.Google Scholar
Shanmugam, V., Chhablani, R., & Gorelick, P. B. (1997). Spontaneous calcific cerebral embolus. Neurology, 48, 538–9.Google Scholar
Singhal, A. B., Hajj-Ali, R. A., Topcuoglu, M. A., et al. (2011). Reversible cerebral vasoconstriction syndromes: Analysis of 139 cases. Archives of Neurology, 68, 1005–12.Google Scholar
Streeto, J. M. (1969). Acute hypercalcemia simulating basilar-artery insufficiency. New England Journal of Medicine, 280, 427–9.Google Scholar
Sun, Y., Zhang, L., Chen, Y., Zhan, L., & Gao, Z. (2015). Therapeutic targets for cerebral ischemia based on the signaling pathways of the GluN2B C terminus. Stroke, 46, 2347–53.Google Scholar
Syntichaki, P. & Tavernarakis, N. (2003). The biochemistry of neuronal necrosis: Rogue biology? Nature Reviews Neuroscience, 4, 672–84.Google Scholar
Takano, T., Oberheim, N., Cotrina, M. L., & Nedergaard, M. (2009). Astrocytes and ischemic injury. Stroke, 40, S812.Google Scholar
van den Bergh, W. M., Algra, A., van der Sprenkel, J. W., Tulleken, C. A., & Rinkel, G. J. (2003). Hypomagnesemia after aneurysmal subarachnoid hemorrhage. Neurosurgery, 52, 276–81.Google Scholar
van den Bergh, W. M., Algra, A., van Kooten, F., et al. (2005). Magnesium sulfate in aneurysmal subarachnoid hemorrhage: A randomized controlled trial. Stroke, 36, 1011–15.CrossRefGoogle ScholarPubMed
Velat, G. J., Kimball, M. M., Mocco, J. D., & Hoh, B. L. (2011). Vasospasm after aneurysmal subarachnoid hemorrhage: Review of randomized controlled trials and meta-analyses in the literature. World Neurosurgery, 76, 446–54.CrossRefGoogle ScholarPubMed
Vivancos, J., Gilo, F., Frutos, R., et al. (2014). Clinical management guidelines for subarachnoid haemorrhage. Diagnosis and treatment. Neurologia, 29, 353–70.Google ScholarPubMed
Walker, G. L., Williamson, P. M., Ravich, R. B., & Roche, J. (1980). Hypercalcaemia associated with cerebral vasospasm causing infarction. Journal of Neurology, Neurosurgery, and Psychiatry, 43, 464–7.Google Scholar
Warach, S., Kaufman, D., Chiu, D., et al. (2006). Effect of the glycine antagonist gavestinel on cerebral infarcts in acute stroke patients, a randomized placebo-controlled trial: The GAIN MRI substudy. Cerebrovascular Diseases, 21, 106–11.CrossRefGoogle ScholarPubMed
Westermaier, T., Stetter, C., Kunze, E., et al. (2013). Magnesium treatment for neuroprotection in ischemic diseases of the brain. Experimental & Translational Stroke Medicine, 5, 6–7378–5–6.Google Scholar
Wong, G. K., Chan, M. T., Boet, R., Poon, W. S., & Gin, T. (2006). Intravenous magnesium sulfate after aneurysmal subarachnoid hemorrhage: A prospective randomized pilot study. Journal of Neurosurgical Anesthesiology, 18, 142–8.Google Scholar
Yamamoto, T., Mori, K., Esaki, T., et al. (2015). Preventive effect of continuous cisternal irrigation with magnesium sulfate solution on angiographic cerebral vasospasms associated with aneurysmal subarachnoid hemorrhages: A randomized controlled trial. Journal of Neurosurgery, 124, 1826.CrossRefGoogle ScholarPubMed
Yarnell, P. R. & Caplan, L. R. (1986). Basilar artery narrowing and hyperparathyroidism: Illustrative case. Stroke, 17, 1022–4.Google Scholar
Zhang, J., Yang, J., Zhang, C., et al. (2012). Calcium antagonists for acute ischemic stroke. The Cochrane Database of Systematic Reviews, 5, CD001928.Google Scholar
Zhao, J., Zhou, D., Guo, J., et al. (2011). Efficacy and safety of fasudil in patients with subarachnoid hemorrhage: Final results of a randomized trial of fasudil versus nimodipine. Neurologia Medico-Chirurgica, 51, 679–83.Google Scholar
Zoerle, T., Ilodigwe, D. C., Wan, H., et al. (2012). Pharmacologic reduction of angiographic vasospasm in experimental subarachnoid hemorrhage: Systematic review and meta-analysis. Journal of Cerebral Blood Flow and Metabolism, 32, 1645–58.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×