Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-18T04:39:25.388Z Has data issue: false hasContentIssue false

23 - Sedimentary fluxes in Himalaya

from Part V - Solute and sedimentary fluxes in alpine/mountain environments

Published online by Cambridge University Press:  05 July 2016

Achim A. Beylich
Affiliation:
Geological Survey of Norway
John C. Dixon
Affiliation:
University of Arkansas
Zbigniew Zwoliński
Affiliation:
Adam Mickiewicz University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ali, K. F., and De Boer, D. H. (2007). Spatial patterns and variation of suspended sediment yield in the upper Indus River basin, northern Pakistan. Journal of Hydrology, 334, 368387CrossRefGoogle Scholar
Andermann, C., Crave, A., Gloaguen, R., Davy, Ph., and Bonnet, S. (2012). Connecting source and transport: Suspended sediments in the Nepal Himalayas. Earth and Planetary Science Letters, 351–352, 158170.CrossRefGoogle Scholar
Barnard, P. L., Owen, L. A., Sharma, M. C., and Finkel, R. C. (2004a). Late Quaternary (Holocene) landscape evolution of a monsoon-influenced high Himalayan valley, Gori Ganga, Nanda Devi, NE Garhwal. Geomorphology, 61, 91110.CrossRefGoogle Scholar
Barnard, P. L., Owen, L. A., and Finkel, R. C. (2004b). Style and timing of glacial and paraglacial sedimentation in a monsoonal-influenced high Himalayan environment, the upper Bhagirathi Valley, Garhwal Himalaya. Sedimentary Geology, 165, 199221.CrossRefGoogle Scholar
Barnard, P. L., Owen, L. A., Finkel, R. C., and Asahi, K. (2006). Landscape response to deglaciation in a high relief, monsoon-influenced alpine environment, Langtang Himal, Nepal. Quaternary Science Reviews, 25, 21622176.CrossRefGoogle Scholar
Barsch, D., and Jakob, M. (1998). Mass transport by active rockglaciers in the Khumbu Himalaya. Geomorphology, 26, 215222.CrossRefGoogle Scholar
Bhandary, N., Dahal, R. K., and Okamura, M. (2012). Preliminary understanding of the Seti River debris-flood in Pokhara, Nepal, on May 5th, 2012, Nepal Engineering Association – JC Newsletter, 6(1), 2938.Google Scholar
Bhutiyani, M. R. (2000). Sediment load characteristics of a proglacial stream of Siachen Glacier and the erosion rate in Nubra valley in the Karakoram Himalayas, India. Journal of Hydrology, 227, 8492.CrossRefGoogle Scholar
Blöthe, J. H., and Korup, O. (2013). Millennial lag times in the Himalayan sediment routing system. Earth and Planetary Science Letters, 382, 3846CrossRefGoogle Scholar
Blöthe, J. H., Munack, H., Korup, O., Fülling, A., Garzanti, E., Resentini, A., and Kubik, P. W. (2014). Late Quaternary valley infill and dissection in the Indus River, western Tibetan Plateau margin. Quaternary Science Reviews, 94, 102119.CrossRefGoogle Scholar
Blythe, A. E., Burbank, D. W., Carter, A., Schmidt, K., and Putkonen, J. (2007). Plio-Quaternary exhumation history of the central Himalaya: 1. Apatite and zircon fission-track and apatite [U–Th]/He data. Tectonics, 26, TC3002. doi:10.1029/2006TC001990.CrossRefGoogle Scholar
Bolch, T., Kulkarni, A., Kääb, A., Huggel, C., Paul, F., Cogley, J. G., Frey, H., Kargel, J. S., Fujita, K., Scheel, M., Bajracharya, S., and Stoffel, M. (2012). The state and fate of Himalayan glaciers. Science, 336, 310314. doi: 10.1126/science.1215828.CrossRefGoogle ScholarPubMed
Bollinger, L., Avouac, J.-P., Cattin, R., and Pandey, M. R. 2004. Stress buildup in the Himalaya. Journal of Geophysical Research, 109, B11405, doi:10.1029/2003JB002911CrossRefGoogle Scholar
Bookhagen, B., and Burbank, D. W. (2006). Topography, relief, and TRMM-derived rainfall variations along the Himalaya. Geophys. Res. Lett., 33, L08405, doi:10.1029/2006GL026037.Google Scholar
Bookhagen, B., Thiede, R. C., and Strecker, M. R. (2005a). Abnormal monsoon years and their control on erosion and sediment flux in the high, arid northwest Himalaya. Earth Planet. Sc. Lett., 231, 131146.CrossRefGoogle Scholar
Bookhagen, B., Thiede, R. C., and Strecker, M. R. (2005b), Late Quaternary intensified monsoon phases control landscape evolution in the northwest Himalaya. Geology, 33, 149152.CrossRefGoogle Scholar
Burbank, D. W. (2002). Rates of erosion and their implications for exhumation. Mineral. Mag., 66, 2552.CrossRefGoogle Scholar
Burbank, D. W., Blythe, A. E., Putkonen, J., Pratt-Sitaula, B., Gabet, E., Oskin, M., Barros, A., and Ohja, T. P. (2003). Decoupling of erosion and climate in the Himalaya. Nature, 426, 652655.CrossRefGoogle Scholar
Burbank, D. W., Bookhagen, B., Gabet, E. J., and Putkonen, J. (2012). Modern climate and erosion in the Himalaya. C.R. Geosciences, 344, 610626.Google Scholar
Burbank, D. W., Leland, J., Fielding, E., Anderson, R. S., Brozovic, N., Reid, M. R., and Duncan, C. (1996). Bedrock incision, rock uplift and threshold hillslopes in the northwestern Himalayas. Nature, 379, 505510,CrossRefGoogle Scholar
Cenderelli, D. A., and Wohl, E. E. (2003). Flow hydraulics and geomorphic effects of glacial-lake outburst floods in the Mount Everest region, Nepal. Earth Surface Processes and Landforms, 28, 385407. doi: 10.1002/esp.448.CrossRefGoogle Scholar
Chakrapany, G. J., and Saini, R. K. (2009). Temporal and spatial variations in water discharge and sediment load in the Alaknanda and Bhagirathi Rivers in Himalaya, India. Journal of Asian Earth Sciences, 35, 545553.CrossRefGoogle Scholar
Chen, N. Sh., Hu, G. Sh., Deng, W., Khanal, N. R., Zhu, Y. H., and Han, D. (2013). On the water hazards in the trans-boundary Kosi River basin. Nat. Hazards Earth Syst. Sci., 13, 795808CrossRefGoogle Scholar
Clift, P. D., Shimizu, N., Layne, G. D., Blusztajn, J. S., Gaedicke, C., Schlüter, H.-U., Clark, M. K., and Amjad, S. (2001). Development of the Indus Fan and its significance for the erosional history of the Western Himalaya and Karakoram. Geol. Soc. Am. Bull, 113, 10391051.2.0.CO;2>CrossRefGoogle Scholar
Collins, B. D., and Jibson, R. W. (2015). Assessment of existing and potential landslide hazards resulting from the April 25, 2015 Gorkha, Nepal earthquake sequence (ver. 1.1, August 2015): U.S. Geological Survey Open-File Report. 2015–1142, 50 p., http://dx.doi.org/10.3133/ofr20151142.CrossRefGoogle Scholar
Collins, D. N. (1996). Sediment transport from glacierized basins in the Karakoram Mountains. In Erosion and Sediment Yield: Global and Regional Perspectives (Proceedings of the Exeter Symposium, July 1996). Wallingford, UK: IAHS Publications. 236, 85–96.Google Scholar
Collins, D. N., Davenport, J. L., and Stoffel, M. (2013). Climatic variation and runoff from partially-glacierised Himalayan tributary basins of the Ganges. Science of the Total Environment, 468–469, 548559.Google ScholarPubMed
Curray, J. R. (1994). Sediment volume and mass beneath the Bay of Bengal. Earth Planet. Sci. Lett., 125, 371383.CrossRefGoogle Scholar
Derry, L. A., and France-Lanord, C. (1996). Neogene Himalayan weathering history and river 87Sr/86Sr: Impact on the marine Sr record. Earth Planet. Sci. Lett., 142, 5974.CrossRefGoogle Scholar
Dhobal, D. P., Gupta, A. K., Mehta, M., and Khandelwal, D. D. (2013). Kedarnath Disaster: Facts and plausible causes. Current Science, 105(2), 171174.Google Scholar
Dobremez, J.-F. (1976) Le Népal. Écologie et Biogéographie. Paris: CNRS, 363 p.Google Scholar
Dortch, J. M, Owen, L. A, Caffee, M. W., and Kamp, U. (2011). Catastrophic partial drainage of Pangong Tso, northern India and Tibet. Geomorphology, 125, 109121CrossRefGoogle Scholar
Dortch, J. M., Owen, L. A., Haneberg, W. C., Caffee, M. W., Dietsch, C., and Kamp, U. (2009). Nature and timing of large landslides in the Himalaya and Transhimalaya of northern India. Quaternary Science Reviews, 28, 10371054.CrossRefGoogle Scholar
Fergusson, R. J. (1984). Sediment load of Hunza River. In Miller, K. J., ed., International Karakorum Project 2. Cambridge: Cambridge University Press, 581597.Google Scholar
Finnegan, N. J., Hallet, B., Montgomery, D. R., Zeitler, P. K., Stone, J. O., Anders, A. M., and Yuping, L. (2008) Coupling of rock uplift and river incision in the Namche Barwa-Gyala Peri massif, Tibet. Geol Soc Am Bull, 120,144152.CrossRefGoogle Scholar
Fort, M. (1979). La Haute Vallée de la Buri Gandaki. Etudes sur le Quaternaire de l'Himalaya. Paris: Editions du CNRS, 236 p.Google Scholar
Fort, M. (1982). Geomorphological Observations in the Ladakh area (Himalaya): Quaternary evolution and present dynamics. In Gupta, V. J., ed., Contributions to Himalayan Geology, 2.: Delhi: Hindustan Publ. Co., 3958.Google Scholar
Fort, M. (1987). Sporadic morphogenesis in a continental subduction setting: an example from the Annapurna Range, Nepal Himalaya. Zeit. F. Geomorphologie, Suppl.-Bd NF, 63, 936.Google Scholar
Fort, M. (1993). Etude géomorphologique d'une chaîne de collision intracontinentale (Himalaya du Népal, Transversale des Annapurnas). State Professoral Thesis (Habilitation), Université Paris 7, 702 p. dactylographiées.Google Scholar
Fort, M. (2000a). Glaciers and mass wasting processes: their influence on the shaping of the Kali Gandaki Valley (Higher Himalaya of Nepal). Quaternary International, 65/66, 101119.CrossRefGoogle Scholar
Fort, M. (2000b). Natural conditions and hazards for irrigation in the arid Himalaya of Upper Mustang District, Nepal. In Kreutzmann, H., ed., Sharing Water. New York: Oxford, 239258.Google Scholar
Fort, M. (2003). Are high altitude, lava stream-like, debris mixtures all rock glaciers? A perspective from the Western Himalaya. Zeit. F. Geomorphologie, Suppl.-Bd NF, 130, 1129.Google Scholar
Fort, M. (2010). Pokhara valley (Nepal): a product of a natural catastrophe. In Migon, P., ed., Geomorphological Landscapes of the WorldNew York: Springer Verlag, 27, 265–274.Google Scholar
Fort, M. (2011). Two large late Quaternary rock slope failures and their geomorphic significance, Annapurna Himalayas (Nepal). Geografia Fisica e Dinamica Quaternaria. 34(1), 514.Google Scholar
Fort, M. (2014). Natural hazards versus climate change and their potential impacts in the dry, northern Himalayas: focus on the upper Kali Gandaki (Mustang District, Nepal). Environ. Earth Sci., doi:10.1007/s12665-014-3087-y.CrossRefGoogle Scholar
Fort, M., Braucher, R., Bourlès, D., Guillou, V., Rimal, L. N., Gribenski, N., and Cossart, E. (2014). Geomorphic impacts, age and significance of two giant landslide dams in the Nepal Himalayas: Ringmo-Phoksundo (Dolpo District) and Dhampu-Chhoya (Mustang District). Geophysical Research Abstracts, 16, EGU2014-5615Google Scholar
Fort, M., and Cossart, E. (2013). Erosion assessment in the middle Kali Gandaki (Nepal): A sediment budget approach. Journal of Nepal Geological Society, 46, 2540.CrossRefGoogle Scholar
Fort, M., Freytet, P., and Colchen, M. (1982). Structural and sedimentological evolution of the Thakkhola-Mustang Graben (Nepal Himalaya). Zeit. f. Geomorph., N.F., Suppl.-Bd, 42, 7593.Google Scholar
Fort, M., and Peulvast, J.-P. (1995). Catastrophic mass-movements and morphogenesis in the peri-Tibetan ranges: examples from West Kunlun, East Pamir and Ladakh. In Slaymaker, O., ed., Steepland Geomorphology. New York: Wiley, pp. 171198.Google Scholar
France-Lanord, C., and Derry, L. A. (1997). Organic carbon burial forcing of the carbon cycle from Himalayan erosion. Nature, 390, 6567.CrossRefGoogle Scholar
Fukui, K., Fujii, Y., Ageta, Y., and Asahi, K. (2007). Changes in the lower limit of mountain permafrost between 1973 and 2004 in the Khumbu Himal, the Nepal Himalayas. Global and Planetary Change, 55, 251256CrossRefGoogle Scholar
Gabet, E. J., Burbank, D. W., Pratt-Sitaula, , Putkonen, J. B., and Bookhagen, B. (2008). Modern erosion rates in the High Himalayas of Nepal. Earth Planet. Sci. Lett., 267(3–4), 482494, doi:10.1016/j.epsl.2007.11.059.CrossRefGoogle Scholar
Gabet, E. J., Wolff-Boenisch, D., Langner, H., Burbank, D. W., and Putkonen, J. B. (2010). Geomorphic and climatic controls on chemical weathering in the High Himalayas of Nepal. Geomorphology, 122, 205210, doi:10.1016/j.geomorph.2010.06.016CrossRefGoogle Scholar
Galy, A., and France-Lanord, C. (1999a). Higher erosion rates in the Himalaya: Geochemical constraints on riverine fluxes. Geology, 29, 2326.2.0.CO;2>CrossRefGoogle Scholar
Galy, A., and France-Lanord, C. (1999b). Weathering processes in the Ganges – Brahmaputra basin and the riverine alkalinity budget. Chemical Geology, 159, 3160.CrossRefGoogle Scholar
Galy, A., France-Lanord, C., and Derry, L. A. (1999). The strontium isotopic budget of Himalayan Rivers in Nepal and Bangladesh. Geochim. Cosmochim. Acta, 63(13–14), 19051925.CrossRefGoogle Scholar
Gansser, A. (1964). The Geology of the Himalayas. Chichester: Wiley, 289 p.Google Scholar
Garzanti, E., Vezzolia, G., Ando, S., Paparella, P., and Clift, P. D. (2005). Petrology of Indus River sands: a key to interpret erosion history of the Western Himalayan Syntaxis. Earth and Planetary Science Letters, 229, 287302.CrossRefGoogle Scholar
Godard, V., Burbank, D. W., Bourlès, D. L., Bookhagen, B., Braucher, R., and Fisher, G. B. (2012). Impact of glacial erosion on 10Be concentrations in fluvial sediments of the Marsyandi catchment, central Nepal. Journal of Geophysical Research, 117, F03013, doi:10.1029/2011JF002230, 17p.CrossRefGoogle Scholar
Hallet, B., Zeitler, P., Koons, P., Finnegan, N., and Barker, A. D. (2010). Erosion rates at the crest of the Himalaya: slow or fast? In Leech, M. L., Klemperer, S. L., and Mooney, W. D., eds., Proceedings for the 25th Himalaya-Karakoram-Tibet Workshop. Menlo Park, CA: U.S. Geological Survey. Open-File Report 2010-1099, 2 p. [http://pubs.usgs.gov/of/2010/1099/hallet/].Google Scholar
Harper, J. T., and Humphrey, N. (2003). High altitude Himalayan climate inferred from glacial ice flux. Geophysical Research Letters 30(14), 1764, doi:10.1029/2003GL017329CrossRefGoogle Scholar
Hasnain, S. I., and Chauhan, D. S. (1993). Sediment transfer in the glaciofluvial environment – a Himalayan perspective. Environmental Geology, 22, 205211.CrossRefGoogle Scholar
Hasnain, S. I., and Thayyen, R. J. (1999a). Controls on the major-ion chemistry of the Dokriani glacier meltwaters, Ganga basin, Garhwal Himalaya, India. J. of Glaciology, 45(149), 8792.CrossRefGoogle Scholar
Hasnain, S. I., and Thayyen, R. J. (1999b). Discharge and suspended-sediment concentration of meltwaters, draining from the Dokriani glacier, Garhwal Himalaya, India. Journal of Hydrology, 218, 191198.CrossRefGoogle Scholar
Heim, A., and Gansser, A. (1939). Central Himalaya: Geological Observations of the Swiss Expedition 1936. New Delhi: Hindustan Publishing Corporation, 73, 245.Google Scholar
Heimsath, A. M., and McGlynn, R. (2008). Quantifying periglacial erosion in the Nepal high Himalaya. Geomorphology, 97(1–2), 523.CrossRefGoogle Scholar
Heuberger, H., and Weingartner, H. (1985). Die Ausdehnung der letzteiszeitlichen Vergletscherung an der Mount-Everest-Südflanke, Nepal. Mitteilungen der Österreichischen Geographischen Gesellschaft, 127, 7180.Google Scholar
Hewitt, K. (1988). Catastrophic landslide deposits in the Karakoram Himalaya. Science, 242, 6477.CrossRefGoogle ScholarPubMed
Hewitt, K. (1998). Catastrophic landslides and their effects on the Upper Indus streams, Karakoram Himalaya, northern Pakistan. Geomorphology, 26, 4780CrossRefGoogle Scholar
Hewitt, K. (1999). Quaternary moraines vs. catastrophic avalanches in the Karakoram Himalaya, northern Pakistan. Quaternary Research, 51, 220237.CrossRefGoogle Scholar
Hewitt, K. (2002). Postglacial landform and sediment associations in a landslide-fragmented river system: The trans-Himalayan Indus streams, Inner Asia. In Hewitt, K., Byrne, M.-L., English, M., and Young, G., eds., Landscapes of Transition: Landform Assemblages and Transformations in Cold Regions: Amsterdam: Kluwer, p. 6391.CrossRefGoogle Scholar
Hewitt, K. (2009a). Catastrophic rock slope failures and late Quaternary developments in the Nanga Parbat–Haramosh Massif, Upper Indus basin, northern Pakistan. Quaternary Science Reviews, 28, 24/10/2015 3:43 PM1055–1069CrossRefGoogle Scholar
Hewitt, K. (2009b). Rock avalanches that travel onto glaciers and related developments, Karakoram Himalaya, Inner Asia. Geomorphology, 103, 6679.CrossRefGoogle Scholar
Hewitt, K., Gosse, J., and Clague, J. J. (2011) Rock avalanches and the pace of late Quaternary development of river valleys in the Karakoram Himalaya. Geol. Soc. Am. Bull., 123, 18361850.CrossRefGoogle Scholar
Hobley, D. E. J., Sinclair, H. D., and Mudd, S. M. (2012). Reconstruction of a major storm event from its geomorphic signal: The Ladakh floods, 6 August 2010. Geology, 40(6), 483486.CrossRefGoogle Scholar
Hodson, A., Porter, P., Lowe, A., and Mumford, P. (2002). Chemical denudation and silicate weathering in Himalayan glacier basins: Batura Glacier, Pakistan. Journal of Hydrology, 262, 193208.CrossRefGoogle Scholar
Immerzeel, W. W., Van Beek, L. P., and Bierkens, M. F. P. (2010), Climate change will affect the Asian water towers. Science, 328(5984), 1382–5, doi:10.1126/science.1183188.CrossRefGoogle ScholarPubMed
Immerzeel, W. W., Pellicciotti, F., and Bierkens, M. F. P. (2013). Rising river flows throughout the twenty-first century in two Himalayan glacierized watersheds. Nature Geoscience, Published online, doi: 10.1038/NGEO1896.CrossRefGoogle Scholar
Kargel, J. S. et al. (2015). Geomorphic and geologic controls of geohazards induced by Nepal?s 2015 Gorkha earthquake. Science. http://dx.doi.org/10.1126/science.aac8353.Google Scholar
Kargel, J. S., Leonard, G., Paudel, L., Regmi, D., Fort, M., Mool, P., Poudel, K., Thapa, B., and Watanabe, T. (2014). The 2012 Seti River flood disaster and alpine cryospheric hazards facing Pokhara, Nepal. Geophysical Research Abstracts, 16, EGU2014-12448-1.Google Scholar
Karim, A., and Veizer, J. (2000). Weathering processes in the Indus River Basin: implications from riverine carbon, sulfur, oxygen, and strontium isotopes. Chemical Geology, 170, 153177CrossRefGoogle Scholar
Korup, O., and Tweed, F. (2007). Ice, moraine, and landslide dams in mountainous terrain. Quaternary Science Reviews, 26, 34063422.CrossRefGoogle Scholar
Korup, O., Clague, J. J., Hermanns, R. L., Hewitt, K., Strom, A. L., and Weidinger, J. T. (2007). Giant landslides, topography, and erosion. Earth and Planetary Science Letters, 261, 578589, doi: 10.1016/j.epsl.2007.07.025.CrossRefGoogle Scholar
Korup, O., Montgomery, D. R., and Hewitt, K. (2010). Glacier and landslide feedbacks to topographic relief in the Himalayan syntaxes. Proc. Natl. Acad. Sci. USA, 107, 53175322.CrossRefGoogle ScholarPubMed
Korup, O., Strom, A. L., and Weidinger, J. T. (2006). Fluvial response to large rock-slope failures – examples from the Himalayas, the Tien Shan, and the Southern Alps in New Zealand. Geomorphology, 78, 321.CrossRefGoogle Scholar
Lal, D., Harris, N. B. W., Sharma, K. K., Gu, Z., Ding, L., Liu, T., Dong, W., Caffee, M. W., and Jull, A. J. T. (2003). Erosion history of the Tibetan Plateau since the last interglacial: constraints from the first studies of cosmogenic 10Be from Tibetan bedrock. Earth Planet. Sc. Lett., 217, 3342.CrossRefGoogle Scholar
Lang, K. A., and Huntington, K. W. (2014). Antecedence of the Yarlung-Siang-Brahmaputra River, eastern Himalaya. Earth Planet. Sc. Lett., 397, 145158.CrossRefGoogle Scholar
Lu, X. X., Zhang, S., and Xu, J. (2010). Climate change and sediment fluxes from the Roof of the World. Earth Surface Processes and Landforms, 35(6), 732735.CrossRefGoogle Scholar
Lutz, A. F., Immerzeel, W. W., and Bierkens, M. F. P. (2014). Consistent increase in High Asia’s runoff due to increasing glacier melt and precipitation. Nature Climate Change, Published online, doi: 10.1038/NCLIMATE2237.CrossRefGoogle Scholar
Lupker, M., Blard, P.-H., Lavé, J., France-Lanord, C., Leanni, L., Puchol, N., Charreau, J., and Bourlès, D. (2012). 10Be-derived Himalayan denudation rates and sediment budgets in the Ganga basin. Earth Planet. Sci. Lett., 333334, 146156.CrossRefGoogle Scholar
Métivier, F., Gaudemer, Y., Tapponnier, P., and Klein, M. (1999). Mass accumulation rates in Asia during the Cenozoic. Geophys. J. Int., 137, 280318.CrossRefGoogle Scholar
Milliman, J. D., and Syvitski, J. P. M. (1992). Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers. J. Geol., 100, 525544.CrossRefGoogle Scholar
Mitchell, W. A., McSaveney, M. J., Zondervan, A., Kim, K., Dunning, D. A., and Taylor, P. J., (2007). The Keylong Seri rock avalanche, NW Indian Himalaya: geomorphology and palaeoseismic implications. Landslides, 4, 245254.CrossRefGoogle Scholar
Molnar, P., and England, P. (1990). Late Cenozoic uplift of mountain ranges and global climate change: Chicken or egg? Nature, 346(6279), 2934.CrossRefGoogle Scholar
Montgomery, D. R., Hallet, B., Yuping, L., Finnegan, N., Anders, A., and Gillespie, A. (2004). Evidence for Holocene megafloods down the Tsangpo River gorge, southeastern Tibet. Quaternary Res., 62, 201207. doi: 10.1016/j.yqres.2004.06.008.CrossRefGoogle Scholar
Mool, P. K., Bajracharya, S. R., and Joshi, S. P. (2001). Inventory of glaciers, glacial lakes and glacial lake outburst floods, Nepal. Kathmandu: ICIMOD and UNEP/RRC-AP.Google Scholar
Moore, M. A., and England, P. C. (2001). On the inference of denudation rates from cooling ages of minerals. Earth Planet. Sci. Lett., 185, 265284.CrossRefGoogle Scholar
Niemi, N. A., Oskin, M., Burbank, D. W., Heimsath, A. M., and Gabet, E. (2005). Effects of bedrock landslides on cosmogenically determined erosion rates. Earth and Planetary Science Letters, 237, 480498.CrossRefGoogle Scholar
Osti, R., and Egashira, S. (2009). Hydrodynamic characteristics of the Tam Pokhari Glacial Lake outburst flood in the Mt. Everest region, Nepal. Hydrological Processes, 23, 29432955.CrossRefGoogle Scholar
Owen, L. A., and England, J. (1998). Observations on rock glaciers in the Himalayas and Karakoram Mountains of northern Pakistan and India. Geomorphology, 26, 199213.CrossRefGoogle Scholar
Phartiyal, B., Sharma, A., Upadhyay, R., Ram-Awatar, , and Sinha, A. K. (2005). Quaternary geology, tectonics and distribution of palaeo- and present fluvio/glacio lacustrine deposits in Ladakh, NW Indian Himalaya—A study based on field observations. Geomorphology, 65, 241256CrossRefGoogle Scholar
Phartiyal, B., Sharma, A., Srivastava, P., and Ray, Y. (2009). Chronology of relic lake deposits in the Spiti river, NW Trans Himalaya: Implications to Late Pleistocene-Holocene climate-tectonic perturbations. Geomorphology, 108, 264272CrossRefGoogle Scholar
Phartiyal, B., Sharma, A., and Kothyari, G. C. (2013). Damming of River Indus during Late Quaternary in Ladakh Region of Trans-Himalaya, NW India: implications to lake formation-climate and tectonics. Chinese Science Bulletin, 58(Suppl.1), 142155Google Scholar
Pratt-Sitaula, B. A., Burbank, D. W., Heimsath, A., and Ohja, T. P. (2004). Landscape disequilibrium on 1000–10,000 year scales Marsyandi River, Nepal, central Himalaya. Geomorphology, 58, 223241.CrossRefGoogle Scholar
Pratt-Sitaula, B. A., Garde, M., Burbank, D. W., Oskin, M., Heimsath, A., and Gabet, E. J. (2007). Bedload-to-suspended load ratio and rapid bedrock incision from Himalayan landslide-dam lake record. Quat. Res., 68, 111120.CrossRefGoogle Scholar
Pratt-Sitaula, B., Burbank, D. W., Heimsath, A. M., Humphrey, N. F., Oskin, M., and Putkonen, J. (2011). Topographic control of asynchronous glacial advances: A case study from Annapurna, Nepal. Geophys. Res. Lett., 38, L24502, doi:10.1029/2011GL049940.CrossRefGoogle Scholar
Rao, K. H. V., Rao, V. V., Dhdhwal, V. K., and Diwakar, P. G. (2014). Kedarnath flash floods: a hydrological and hydraulic simulation study. Current Science, 106(4), 598603.Google Scholar
Regmi, D., and Watanabe, T. (2009). Rockfall activity in the Kangchenjunga area, Nepal Himalaya. Permafrost and Periglac. Process, 20, 390398CrossRefGoogle Scholar
Saylor, J., DeCelles, P., Gehrels, G., Murphy, M., Zhang, R., and Kapp, P. (2010). Basin formation in the High Himalaya by arc parallel extension and tectonic damming: Zhada basin, southwestern Tibet, Tectonics, 29, TC1004, doi:10.1029/2008TC002390.CrossRefGoogle Scholar
Scherler, D., Bookhagen, B., and Strecker, M. R. (2011). Hillslope-glacier coupling: the interplay of topography and glacial dynamics in High Asia. Journal of Geophysical Research, 116, F02019, doi:10.1029/2010JF001751CrossRefGoogle Scholar
Schramm, J. M., Weidinger, J. T., and Ibetsberger, H. J. (1998). Petrologic and structural control on geomorphology of prehistoric Tsergo Ri slope failure, Langtang Himal, Nepal. Geomorphology, 26, 107121.CrossRefGoogle Scholar
Schwanghart, W., Bernhardt, A., Stolle, A., Hoelzmann, P., Adhikari, B. R., Andermann, C., Tofelde, S., Merchel, S., Rugel, G., Fort, M., and Korup, O. (2016). Repeated catastrophic valley infill following medieval earthquakes in the Nepal Himalaya. - Science, 351, 6269, p. 147-150, http://doi.org/10.1126/science.aac9865.Google Scholar
Searle, M. P. (1991). Geology and Tectonics of the Karakoram Mountains. New York: Wiley.Google Scholar
Seong, Y. B., Owen, L. A., Bishop, M. P., Bush, A., Clendon, P., Copland, L., Finkel, R. C., Kamp, U., and Shroder, J. F. (2008). Rates of fluvial bedrock incision within an actively uplifting orogen: Central Karakoram Mountains, northern Pakistan. Geomorphology, 97, 274286.CrossRefGoogle Scholar
Seong, Y. B., Owen, L. A., Caffee, M. W., Kamp, U., Bishop, M. P., Bush, A., Copland, L., and Shroder, J. F. (2009). Rates of basin-wide rockwall retreat in the K2 region of the Central Karakoram defined by terrestrial cosmogenic nuclide 10Be. Geomorphology, 107, 254262.CrossRefGoogle Scholar
Sharma, M. C., and Owen, L. A. (1996). Quaternary glacial history of the Garhwal Himalaya, India. Quaternary Science Reviews, 15, 335365.CrossRefGoogle Scholar
Shiraiwa, T. (1992). Freeze-thaw activities and rock breakdown in the Langtang Valley, Nepal Himalaya. Environ. Sci., Hokkaido University, 15(1), 112.Google Scholar
Shroder, J. F., Scheppy, R. A., and Bishop, M. P. (1999). Denudation of small alpine basins, Nanga Parbat Himalaya, Pakistan. Arctic, Antarctic and Alpine Research, 31(2), 121127.CrossRefGoogle Scholar
Stewart, R. J., Hallet, B., Zeitler, P. K, Malloy, M. A., Allen, C. M., and Trippett, D. (2008). Brahmaputra sediment flux dominated by highly localized rapid erosion from the easternmost Himalaya. Geology, 36(9), 711714. DOI: 10.1130/G24890A.1CrossRefGoogle Scholar
Stolle, A., Langer, M., Blöthe, J. H., and Korup, O. (2015). On predicting debris flows in arid mountain belts. Global and Planetary Change, 126, 113.CrossRefGoogle Scholar
Struck, M., Andermann, C., Bista, R., and Korup, O. (2013). Towards a complete contemporary sediment budget of a major Himalayan river: Kali Gandaki, Nepal. Geophysical Research Abstracts, 15, EGU2013-7008-2.Google Scholar
Thayyen, R. J., Dimri, A. P, Kumar, P., and Agnihotri, (2013). Study of cloudburst and flash floods around Leh, India during August 4–6, 2010. Natural Hazards, 01/2013; 65(3), 21752204.CrossRefGoogle Scholar
Thayyen, R. J., Gergan, J. T., and Dobhal, D. P. (2009). Suspended sediment transfer in a Himalayan headwater stream: glacier vs. monsoon. International Conference on Water, Environment, Energy and Society, Abstract.Google Scholar
Vance, D., Bickle, M., Ivy-Ochs, S., and Kubik, P. W. (2003). Erosion and exhumation in the Himalaya from cosmogenic isotope inventories of river sediments. Earth Planet. Sci. Lett., 206, 273288.CrossRefGoogle Scholar
Valdyia, K. S. (1998), Dynamic Himalaya, Hyderabad (India): University Press, 178 p.Google Scholar
Vuichard, D., and Zimmermann, M. (1987). The 1985 catastrophic drainage of a moraine-dammed lake, Khumbu Himal, Nepal. Causes and consequence. Mountain Research and Development, 7, 91110.CrossRefGoogle Scholar
Wang, P., Scherler, D., Liu-Zeng, J., Mey, J., Avouac, J.-P., Zhang, Y., and Shi, D. (2014). Tectonic control of Yarlung Tsangpo Gorge revealed by a buried canyon in Southern Tibet. Science, 346(6212), 978981.CrossRefGoogle ScholarPubMed
Wasson, R. J., Juyal, N., Jaiswal, M. K., McCulloch, M., Sarin, M. M., Jain, V., Srivastava, P., and Singhvi, A. K. (2008). The mountain-lowland debate: deforestation and sediment transport in the upper Ganga catchment. Journal of Environmental Management, 88, 5361.CrossRefGoogle ScholarPubMed
Wasson, R. J., Sundriyal, Y. P., Chaudhary, S., Jaiswal, M. K., Morthekai, P., Sati, S. P., and Juyal, N. (2013). A 1000-year history of large floods in the Upper Ganga catchment, central Himalaya, India. Quaternary Science Reviews, 77, 156166.CrossRefGoogle Scholar
Watanabe, T., Dali, L., and Shiraiwa, T. (1998). Slope denudation and the supply of debris to cones in Langtang Himal, Central Nepal Himalaya. Geomorphology, 26, 185197.CrossRefGoogle Scholar
Watanabe, T., and Rothacher, D. (1996). The 1994 Lugge Tsho glacial lake outburst flood, Bhutan Himalaya. Mountain Research and Development, 16, 7781. doi:10.2307/3673897.CrossRefGoogle Scholar
Weidinger, J. T., and Ibetsberger, H. J. (2000). Landslide dams of Tal, Latamrang, Ghatta Khola, Ringmo and Darbang in the Nepal Himalayas and related hazards. Journal of the Nepal Geological Society, 22, 371380.CrossRefGoogle Scholar
Westoby, M. J., Glasser, N. F., Hambrey, M. J., Brasington, J., Reynolds, J. M., and Hassan, M. A. A. M. (2014). Reconstructing historic glacial lake outburst floods through numerical modelling and geomorphological assessment: extreme events in the Himalaya. Earth Surf. Process. Landforms, 39, 16751692.CrossRefGoogle Scholar
Wolff-Boenisch, D., Gabet, E. J., Burbank, D. W., Langner, H., and Putkonen, J. B. (2009). Spatial variations in chemical weathering and CO2 consumption in Nepalese High Himalayan catchments during the monsoon season. Geochimica et Cosmochimica Acta, 73, 31483170CrossRefGoogle Scholar
Wulf, H., Bookhagen, B., and Scherler, D. (2010): Seasonal precipitation gradients and their impact on fluvial sediment flux in the Northwest Himalaya. Geomorphology, 118, 1321, doi:10.1016/J.Geomorph.2009.12.003.CrossRefGoogle Scholar
Wulf, H., Bookhagen, B., and Scherler, D. (2012). Climatic and geological controls on suspended sediment flux in the Sutlej River Valley, western Himalaya. Hydrol. Earth Syst. Sci., 16, 21932217.CrossRefGoogle Scholar
Yadav, S. K., and Chakrapani, G. J. (2013). Geochemistry, dissolved elemental flux rates, and dissolution kinetics of lithologies of Alaknanda and Bhagirathi rivers in Himalayas, India. Environ Earth Sci., 62, 593610. doi:10.1007/s12665-010-0550-2CrossRefGoogle Scholar
Zeitler, P. K. (1985). Cooling history of the NW Himalaya, Pakistan. Tectonics, 4, 127151.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×