Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-18T06:38:50.529Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  26 April 2011

Martin Lukac
Affiliation:
University of Reading
Douglas L. Godbold
Affiliation:
University of Wales, Bangor
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Soil Ecology in Northern Forests
A Belowground View of a Changing World
, pp. 238 - 252
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aber, J. D. (1992). Nitrogen cycling and nitrogen saturation in temperate forest ecosystems. Trends in Ecology and Evolution 7: 220–24.CrossRefGoogle ScholarPubMed
Aerts, R. (1997). Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: A triangular relationship. Oikos 79: 439–49.CrossRefGoogle Scholar
Agerer, R. (2001). Exploration types of ectomycorrhizae – A proposal to classify ectomycorrhizal mycelial systems according to their patterns of differentiation and putative ecological importance. Mycorrhiza 11: 107–14.CrossRefGoogle Scholar
Ainsworth, E. A. & Long, S. P. (2005). What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy. New Phytologist 165: 351–71.CrossRefGoogle ScholarPubMed
Allison, F. E. (1973). Soil Organic Matter and its Role in Crop Production. Amsterdam: Elsevier.Google Scholar
Andrews, J. A. & Schlesinger, W. H. (2001). Soil CO2 dynamics, acidification, and chemical weathering in a temperate forest with experimental CO2 enrichment. Global Biogeochemical Cycles 15: 149–62.CrossRefGoogle Scholar
Arnolds, E. (1991). Decline of ectomycorrhizal fungi in Europe. Agriculture, Ecosystems and Environment 35: 209–44.CrossRefGoogle Scholar
Barber, S. A. (1995). Soil Nutrient Bioavailability: a Mechanistic Approach. 2nd edition. New York: Wiley.Google Scholar
Barrett-Lennard, E. G. (2002). Restoration of saline land through revegetation. Agricultural Water Management 53: 213–26.CrossRefGoogle Scholar
Bassirirad, H. (2000). Kinetics of nutrient uptake by roots: responses to global change. New Phytologist 147: 155–69.CrossRefGoogle Scholar
Baudoin, E., Benizri, E. & Guckert, A. (2003). Impact of artificial root exudates on the bacterial community structure in bulk soil and maize rhizosphere. Soil Biology and Biochemistry 35: 1183–92.CrossRefGoogle Scholar
Bazzaz, F. A. (1990). The response of natural ecosystems to the rising global CO2 levels. Annual Review of Ecology and Systematics 21: 167–96.CrossRefGoogle Scholar
Beier, C., Emmett, B. A., Penuelas, J.et al. (2008). Carbon and nitrogen cycles in European ecosystems respond differently to global warming. Science of the Total Environment 407: 692–7.CrossRefGoogle ScholarPubMed
Bennett, K. D., Tzedakis, P. C. & Willis, K. J. (1991). Quaternary refugia of North European trees. Journal of Biogeography 18: 103–15.CrossRefGoogle Scholar
Bergkvist, B., Folkeson, L. & Berggren, D. (1989). Fluxes of Cu, Zn, Pb, Cd, Cr, and Ni in temperate forest ecosystems – a literature review. Water, Air, and Soil Pollution 47: 217–86.CrossRefGoogle Scholar
Bertills, U. & Näsholm, T. (2000). Effects of nitrogen deposition on forest ecosystems. Swedish Environmental Protection Agency, Report 5067. Stockholm.
Blom, J. M. (2009). Sweet chestnut (Castanea sativa Mill.) mycorrhizas: the composition of their communities over a wide geographical range in Europe. Bangor University, PhD thesis.Google Scholar
Blum, J. D., Klaue, A., Nezat, C. A.et al. (2002). Mycorrhizal weathering of apatite as an important calcium source in base-poor forest ecosystems. Nature 417: 729–31.CrossRefGoogle ScholarPubMed
Bobbink, R. (2004). Plant species richness and the exceedance of empirical nitrogen critical loads: an inventory. Bilthoven, The Netherlands: Utrecht University/RIVM.Google Scholar
Bobbink, R., Hicks, K., Galloway, J.et al. (2010). Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecological Applications 20: 30–59.CrossRefGoogle ScholarPubMed
Boberg, J. B., Finlay, R. D., Stenlid, J.et al. (2010). Fungal C translocation restricts N-mineralization in heterogeneous environments. Functional Ecology 24: 454–9.CrossRefGoogle Scholar
Bolton, H., Frederickson, J. K. & Elliot, L. F. (1992). Microbial ecology of the rhizosphere. In Metting, F. B. (ed.) Soil Microbial Ecology, pp. 219–35. New York: Marcel Dekker.Google Scholar
Borken, W. & Matzner, E. (2009). Introduction: impact of extreme meteorological events on soils and plants. Global Change Biology 15: 781.CrossRefGoogle Scholar
Bothe, H., Ferguson, S. J. & Newton, W. E. (2007). Biology of the Nitrogen Cycle. 1st edition. Amsterdam: Elsevier.Google Scholar
Boxman, A. W., Blanck, K., Brandrud, T. E.et al. (1998). Vegetation and soil biota response to experimentally-changed nitrogen inputs in coniferous forest ecosystems of the NITREX project. Forest Ecology and Management 101: 65–79.CrossRefGoogle Scholar
Braun, S., Schindler, C., Volz, R.et al. (2003). Forest damages by the storm ‘Lothar’ in permanent observation plots in Switzerland: the significance of soil acidification and nitrogen deposition. Water, Air and Soil Pollution 142: 327–40.CrossRefGoogle Scholar
Breda, N., Huc, R., Granier, A.et al. (2006). Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Annals of Forest Science 63: 625–44.CrossRefGoogle Scholar
Brown, T. C., Bergstrom, J. C. & Loomis, J. B. (2006). Ecosystem Goods and Services: Definition, Valuation and Provision. RMRS – RWU 4851 Discussion Paper: www.fs.fed.us/rm/value/docs/ecosystem_goods_services.pdf.
Buijse, A. D., Coops, H., Staras, M.et al. (2002). Restoration strategies for river floodplains along large lowland rivers in Europe. Freshwater Biology 47: 889–907.CrossRefGoogle Scholar
Burton, A. J., Melillo, J. M. & Frey, S. D. (2008). Adjustment of forest ecosystem root respiration as temperature warms. Journal of Integrated Plant Biology 50: 1467–83.CrossRefGoogle ScholarPubMed
Bytnerowicz, A. & Fenn, M. E. (1996). Nitrogen deposition in California forests: a review. Environmental Pollution 92: 127–46.CrossRefGoogle ScholarPubMed
Cardon, Z. G., Hungate, B. A., Cambardella, C. A.et al. (2001). Contrasting effects of elevated CO2 on old and new soil carbon pools. Soil Biology and Biochemistry 33: 365–73.CrossRefGoogle Scholar
Carney, K. M., Hungate, B. A., Drake, B. G.et al. (2007). Altered soil microbial community at elevated CO2 leads to loss of soil carbon. Proceedings of the National Academy of Sciences of the United States of America 104: 4990–5.CrossRefGoogle Scholar
Chadwick, O. A. & Chorover, J. (2001). The chemistry of pedogenic thresholds. Geoderma 100: 321–53.CrossRefGoogle Scholar
Cotrufo, M. F., Ineson, P. & Scott, A. (1998). Elevated CO2 reduces the nitrogen concentration of plant tissues. Global Change Biology 4: 43–54.CrossRefGoogle Scholar
Cotrufo, M. F., Angelis, P. & Polle, A. (2005). Leaf litter production and decomposition in a poplar short-rotation coppice exposed to free air CO2 enrichment (POPFACE). Global Change Biology 11: 971–82.CrossRefGoogle Scholar
Cox, P. M., Betts, R. A., Jones, C. D.et al. (2000). Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408: 184–7.CrossRefGoogle Scholar
Crawford, R. M. M., Jeffree, C. E. & Rees, W. G. (2003). Paludification and forest retreat in Northern oceanic environments. Annals of Botany 91: 213–26.CrossRefGoogle ScholarPubMed
Cronan, C. S. & Grigal, D. F. (1995). Use of calcium aluminum ratios as indicators of stress in forest ecosystems. Journal of Environmental Quality 24: 209–26.CrossRefGoogle Scholar
Cross, A. F. & Schlesinger, W. H. (1995). A literature review and evaluation of the Hedley fractionation: applications to the biogeochemical cycle of soil phosphorus in natural ecosystems. Geoderma 64: 197–214.CrossRefGoogle Scholar
Cudlin, P., Kieliszewska-Rojucka, B., Rudawska, M.et al. (2007). Fine roots and ectomycorrhizas as indicators of environmental change. Plant Biosystems 141: 406–25.CrossRefGoogle Scholar
Curt, T. & Prevosto, B. (2003). Rooting strategy of naturally regenerated beech in silver birch and Scots pine woodlands. Plant and Soil 255: 265–79.CrossRefGoogle Scholar
Dahlberg, A. (1997). Population ecology of Suillus variegatus in old Swedish Scots pine forests. Mycological Research 101: 47–54.CrossRefGoogle Scholar
Dahlberg, A., Jonsson, L. & Nylund, J. E. (1997). Species diversity and distribution of biomass above and below ground among ectomycorrhizal fungi in an old-growth Norway spruce forest in south Sweden. Canadian Journal of Botany 75: 1323–35.CrossRefGoogle Scholar
Dalsgaard, L (2007). Above and below ground gaps – the effects of a small canopy opening on throughfall, soil moisture and tree transpiration in Suserup skov, Denmark. Ecological Bulletin 52: 81–102.Google Scholar
Davidson, E. A., Savage, K., Bolstad, P.et al. (2002). Belowground carbon allocation in forests estimated from litterfall and IRGA-based soil respiration measurements. Agricultural and Forest Meteorology 113: 39–51.CrossRefGoogle Scholar
Davidson, E. A. & Janssens, I. A. (2006). Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440: 165–73.CrossRefGoogle ScholarPubMed
Davidson, E. A., Janssens, I. A. & Luo, Y. (2006). On the variability of respiration in terrestrial ecosystems: moving beyond Q10. Global Change Biology 12: 154–64.CrossRefGoogle Scholar
Davis, M. B. (2001). Past and future forest response to rapid climatic change. In Schulze, E. D. (ed.) Global Biogeochemical Cycles in the Climate System, pp. 167–74. San Diego, CA: Academic Press.CrossRefGoogle Scholar
Schrijver, A., Verheyen, K., Mertens, J.et al. (2008). Nitrogen saturation and net ecosystem production. Nature 451 doi: 10.1038/nature 06578.CrossRefGoogle ScholarPubMed
Delaire, M., Frak, E., Sigogne, M.et al. (2005). Sudden increase in atmospheric CO2 concentration reveals strong coupling between shoot carbon uptake and root nutrient uptake in young walnut trees. Tree Physiology 25: 229–35.CrossRefGoogle ScholarPubMed
Dise, N. B. & Wright, R. F. (1995). Nitrogen leaching from European forests in relation to nitrogen deposition. Forest Ecology and Management 71: 153–61.CrossRefGoogle Scholar
Dokuchaev, V. V. (1883). Russian Chernozem. (Translated 1967 by Kaner, N..) Jerusalem: Israeli Programme for Scientific Translations.Google Scholar
Dong, S. F., Scagel, C. F., Cheng, L. L.et al. (2001). Soil temperature and plant growth stage influence nitrogen uptake and amino acid concentration of apple during early spring growth. Tree Physiology 21: 541–7.CrossRefGoogle ScholarPubMed
Drouet, T., Herbauts, J. & Demaiffe, D. (2005). Long-term records of strontium isotopic composition in tree rings suggest changes in forest calcium sources in the early 20th century. Global Change Biology 11: 1926–40.Google Scholar
Egoh, B., Reyers, B., Rouget, M.et al. (2009). Spatial congruence between biodiversity and ecosystem services in South Africa. Biological Conservation 142: 553–62.CrossRefGoogle Scholar
Emmett, B. A. (2002). The Impact of Nitrogen Deposition in Forest Ecosystems: A Review. Centre for Ecology and Hydrology (Natural Environment Research Council) CEH Project No: C00311 DEFRA Terrestrial Umbrella Phase II, 1–14.
Emmett, B. A. (2007). Nitrogen saturation of terrestrial ecosystems: some recent findings and their implications for our conceptual framework. Water, Air, and Soil Pollution: Focus 7: 99–109.CrossRefGoogle Scholar
Ernst, W. H. O. (2004). Vegetation, organic matter and soil quality. In Doelman, P. & Eijsackers, H. J. P. (eds.) Vital Soil. Function, Value and Properties, pp. 41–98. Amsterdam: Elsevier.CrossRefGoogle Scholar
Farley, K. A., Jobbagy, E. G. & Jackson, R. B. (2005). Effects of afforestation on water yield: a global synthesis with implications for policy. Global Change Biology 11: 1565–76.CrossRefGoogle Scholar
Farrar, J. & Jones, D. L. (2003). The control of carbon acquisition by and growth of roots. In Kroon, H. & Wisser, J. W. D. (eds.) Root Ecology, pp. 91–124. Berlin: Springer.CrossRefGoogle Scholar
Feng, R., Yang, W., Zhang, J.et al. (2007). Effects of simulated elevated concentration of atmospheric CO2 and temperature on soil enzyme activity in the subalpine fir forest. Acta Ecologica Sinica 27: 4019−26.Google Scholar
Finer, L., Helmisaari, H. S., Lohmus, K.et al. (2007). Variation in fine root biomass of three European tree species: Beech (Fagus sylvatica L.), Norway spruce (Picea abies L. Karst.), and Scots pine (Pinus sylvestris L.). Plant Biosystematics, 141: 394–405.CrossRefGoogle Scholar
Finzi, A. C., Allen, A. S., DeLucia, E. H.et al. (2001). Forest litter production, chemistry, and decomposition following two years of free-air CO2 enrichment. Ecology 82: 470–84.Google Scholar
Finzi, A. C. & Schlesinger, A. H. (2002). Species control variation in litter decomposition in a pine forest exposed to elevated CO2. Global Change Biology 8: 1217–29.CrossRefGoogle Scholar
Finzi, A. C., Norby, R. J., Calfapietra, C.et al. (2007). Increases in nitrogen uptake rather than nitrogen-use efficiency support higher rates of temperate forest productivity under elevated CO2. Proceedings of the National Academy of Sciences of the United States of America 104: 14014–19.CrossRefGoogle ScholarPubMed
Fisher, R. F., Binkley, D. & Pritchett, W. L. (2000). Ecology and Management of Forest Soils. 3rd edition. New York: John Wiley.Google Scholar
,Food and Agriculture Organization of the United Nations, UNESCO. (1970). Soil Map of the World. Carte Mondiale des Sols. Mapa Mundial de Suelos. [Pochvennaya Karta Mira]. Paris: UNESCO.Google Scholar
Foran, B. & Poldy, F. (2002). The future of water in future dilemmas: options to 2050 for Australia's population, technology, resources and environment. CSIRO Sustainable Ecosystems Working Paper Series 02/01.
Franklin, O., McMurtrie, R. E., Iversen, C. M.et al. (2009). Forest fine-root production and nitrogen use under elevated CO2: contrasting responses in evergreen and deciduous trees explained by a common principle. Global Change Biology 15: 132–44.CrossRefGoogle Scholar
Galloway, J. N., Dentener, F. J., Capone, D. G.et al. (2004). Nitrogen Cycles: Past, Present, and Future. Biogeochemistry. 70: 153–226.
Genney, D. R., Anderson, I. C. & Alexander, I. J. (2006). Fine-scale distribution of pine ectomycorrhizas and their extramatrical mycelium. New Phytologist 170: 381–90.CrossRefGoogle ScholarPubMed
Gessler, A., Schneider, S., Sengbusch, D.et al. (1998). Field and laboratory experiments on net uptake of nitrate and ammonium by the roots of spruce (Picea abies) and beech (Fagus sylvatica) trees. New Phytologist 138: 275–85.CrossRefGoogle Scholar
Gielen, B., Calfapietra, C., Lukac, M.et al. (2005). Net carbon storage in a poplar plantation (POPFACE) after three years of free-air CO2 enrichment. Tree Physiology 25: 1399–1408.CrossRefGoogle Scholar
Gilliam, F. S. (2006). Response of the herbaceous layer of forest ecosystems to excess nitrogen deposition. Journal of Ecology 94: 1176–91.CrossRefGoogle Scholar
Glinka, K. D. (1927). The Great Soil Groups of the World and their Development. Ann Arbor, MI: Edward Bros.Google Scholar
Gobat, J. -M., Aragno, M. & Matthey, W. (2003). Le Sol Vivant. 2nd edition. Lausanne: Presses Polytechniques Universitaires Romandes.Google Scholar
Gobat, J. -M., Aragno, M. & Matthey, W. (2004). The Living Soil: Fundamentals of Soil Science and Soil Biology. Enfield, NH: Science Publishers.Google Scholar
Godbold, D. L., Berntson, G. M. & Bazzaz, F. A. (1997). Growth and mycorrhizal colonization of three North American tree species under elevated atmospheric CO2. New Phytologist 137: 433–40.CrossRefGoogle Scholar
Godbold, D. L. & Jentschke, G. (1998). Aluminium accumulation in root cell walls coincides with inhibition of root growth but not with inhibition of magnesium uptake in Norway spruce. Physiologia Plantarum 102: 553–60.CrossRefGoogle Scholar
Godbold, D. L., Hoosbeek, M. R., Lukac, M.et al. (2006). Mycorrhizal hyphal turnover as a dominant process for carbon input into soil organic matter. Plant and Soil 281: 15–24.CrossRefGoogle Scholar
Goodale, C. L., Apps, M. J., Birdsey, R. A.et al. (2002). Forest carbon sinks in the Northern Hemisphere. Ecological Applications 12: 891–9.CrossRefGoogle Scholar
Göttlein, A. & Stanjek, H. (1996). Micro-scale variation of solid-phase properties and soil solution chemistry in a forest podzol and its relation to soil horizons. European Journal of Soil Science 47: 627–36.CrossRefGoogle Scholar
Graf Pannatier, E., Walthert, L. & Blaser, P. (2004). Soil solution chemistry in acid forest soils: are BC: Al ratios as critical as expected in Switzerland?Journal of Plant Nutrition and Soil Science 167: 160–8.CrossRefGoogle Scholar
Griffiths, H. & Jarvis, P. G. (2005). The Carbon Balance of Forest Biomes. New York: Bios Scientific Publishers.Google Scholar
Gundersen, P., Callesen, I. & Vries, W. (1998). Nitrate leaching in forest ecosystems is related to forest floor C/N ratios. Environmental Pollution 102: 403–7.CrossRefGoogle Scholar
Hagedorn, F. & Bundt, M. (2002). The age of preferential flow paths. Geoderma 108: 119–32.CrossRefGoogle Scholar
Hale, C. M., Frelich, L. E. & Reich, P. B. (2006). Changes in cold-temperate hardwood forest understory plant communities in response to invasion by European earthworms. Ecology 87: 1637–49.CrossRefGoogle Scholar
Hamburg, S. P., Yanai, R. D., Arthur, M. A.et al. (2003). Biotic control of calcium cycling in northern hardwood forests: acid rain and aging forests. Ecosystems 6: 399–406.CrossRefGoogle Scholar
Hanson, P. J., Wullschleger, S. D., Norby, R. J.et al. (2005). Importance of changing CO2, temperature, precipitation, and ozone on carbon and water cycles of an upland-oak forest: incorporating experimental results into model simulations. Global Change Biology 11: 1402–23.CrossRefGoogle Scholar
Hare, F. K. & Ritchie, J. C. (1972). Boreal bioclimates. Geographical Review 62: 332–65.CrossRefGoogle Scholar
Harper, L. A., Baker, D. N., Box, J. E.et al. (1973). Carbon-dioxide and photosynthesis of field crops – metered carbon-dioxide release in cotton under field conditions. Agronomy Journal 65: 7–11.CrossRefGoogle Scholar
Helmisaari, H. S. & Hallbacken, L. (1999). Fine-root biomass and necromass in limed and fertilized Norway spruce (Picea abies (L.) Karst.) stands. Forest Ecology and Management 119: 99–110.CrossRefGoogle Scholar
Hissinck, D. J. (1938). The reclamation of the Dutch saline soils (solonchak) and their further weathering under the humid climatic conditions of Holland. Soil Science 45: 83–94.CrossRefGoogle Scholar
Hobbie, E. A. (2006). Carbon allocation to ectomycorrhizal fungi correlates with belowground allocation in culture studies. Ecology 87: 563–9.CrossRefGoogle ScholarPubMed
Hogberg, P., Fan, H. B., Quist, M.et al. (2006). Tree growth and soil acidification in response to 30 years of experimental nitrogen loading on boreal forest. Global Change Biology 12: 489–99.CrossRefGoogle Scholar
Holdridge, L. R. (1967). Life Zone Ecology. Revised edition. San Jose, Costa Rica: Tropical Science Center.Google Scholar
Hoosbeek, M. R. & Bryant, R. B. (1992). Towards the quantitative modeling of pedogenesis – a review. Geoderma 55: 183–210.CrossRefGoogle Scholar
Hoosbeek, M. R., Lukac, M., Dam, D.et al. (2004). More new carbon in the mineral soil of a poplar plantation under Free Air Carbon Enrichment (POPFACE): cause of increased priming effect?Global Biogeochemical Cycles 18: GB1040.CrossRefGoogle Scholar
Hu, S. J., Tu, C., Chen, X.et al. (2006). Progressive N limitation of plant response to elevated CO2: a microbiological perspective. Plant and Soil 289: 47–58.CrossRefGoogle Scholar
Hungate, B. A., Dijkstra, P., Johnson, D. W.et al. (1999). Elevated CO2 increases nitrogen fixation and decreases soil nitrogen mineralization in Florida scrub oak. Global Change Biology 5: 781–9.CrossRefGoogle Scholar
Hungate, B. A., Stiling, P. D., Dijkstra, P.et al. (2004). CO2 elicits long-term decline in nitrogen fixation. Science 304: 1291.CrossRefGoogle ScholarPubMed
Hyvonen, R., Agren, G. I., Linder, S.et al. (2007). The likely impact of elevated [CO2], nitrogen deposition, increased temperature and management on carbon sequestration in temperate and boreal forest ecosystems: a literature review. New Phytologist 173: 463–80.CrossRefGoogle ScholarPubMed
,IPCC (2001). Climate Change: the Scientific Basis. Cambridge: Cambridge University Press.Google Scholar
Janssens, I. A., Crookshanks, M., Taylor, G.et al. (1998). Elevated atmospheric CO2 increases fine root production, respiration, rhizosphere respiration and soil CO2 efflux in Scots pine seedlings. Global Change Biology 4: 871–8.CrossRefGoogle Scholar
Jenny, H. (1941). Factors of Soil Formation: a System of Quantitative Pedology. 1st edition. New York: McGraw-Hill.Google Scholar
Jentschke, G., Marschner, P., Vodnik, D.et al. (1998). Lead uptake by Picea abies seedlings: Effects of nitrogen source and mycorrhizas. Journal of Plant Physiology 153: 97–104.CrossRefGoogle Scholar
Jentschke, G., Drexhage, M., Fritz, H. W.et al. (2001). Does soil acidity reduce subsoil rooting in Norway spruce (Picea abies)?Plant and Soil 237: 91–108.CrossRefGoogle Scholar
Jobbágy, E. G. & Jackson, R. B. (2000). The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications 10: 423–36.CrossRefGoogle Scholar
Johnson, A. H., Frizano, J. & Vann, D. R. (2003). Biogeochemical implications of labile phosphorus in forest soils determined by the Hedley fractionation procedure. Oecologia 135: 487–99.CrossRefGoogle ScholarPubMed
Johnson, D., Leake, J. R. & Read, D. J. (2002). Transfer of recent photosynthate into mycorrhizal mycelium of an upland grassland: short-term respiratory losses and accumulation of C-14. Soil Biology and Biochemistry 34: 1521–4.CrossRefGoogle Scholar
Johnson, D. W., Cheng, W., Joslin, J. D.et al. (2004). Effects of elevated CO2 on nutrient cycling in a sweetgum plantation. Biogeochemistry 69: 379–403.CrossRefGoogle Scholar
Jones, D. L., Dennis, P. G., Owen, A. G.et al. (2003). Organic acid behavior in soils – misconceptions and knowledge gaps. Plant and Soil 248: 31–41.CrossRefGoogle Scholar
Jones, H. E., Hogberg, P. & Ohlsson, H. (1994). Nutritional assessment of a forest fertilization experiment in Northern Sweden by root bioassays. Forest Ecology and Management 64: 59–69.CrossRefGoogle Scholar
Jonsson, T., Kokalj, S., Finlay, R.et al. (1999). Ectomycorrhizal community structure in a limed spruce forest. Mycological Research 103: 501–8.CrossRefGoogle Scholar
Kaiser, C., Koranda, M., Kitzler, B.et al. (2010). Belowground carbon allocation by trees drives seasonal patterns of extracellular enzyme activities by altering microbial community composition in a beech forest soil. New Phytologist: doi: 10.1111/j.1469–8137.2010.03321.CrossRef
Karl, T. R., Melillo, J. M. & Peterson, T. C. (2009). Global Climate Change Impacts in the United States. Cambridge: Cambridge University Press.Google Scholar
Kennedy, F. & Freer-Smith, P. (2000). Annual progress report May 2000 of Forestry Commission contract: cause–effect relationships for pollutant inputs to UK woodland ecosystems. Forestry Commission Research Agency.
Klironomos, J. N., Rillig, M. C. & Allen, M. F. (1996). Below-ground microbial and microfaunal responses to Artemisia tridentata grown under elevated atmospheric CO2. Functional Ecology 10: 527–34.CrossRefGoogle Scholar
Klironomos, J. N., Rillig, M. C., Allen, M. F.et al. (1997). Soil fungal-arthropod responses to Populus tremuloides grown under enriched atmospheric CO2 under field conditions. Global Change Biology 3: 473–8.CrossRefGoogle Scholar
Kranabetter, J. M., Friesen, J., Gamiet, S.et al. (2005). Ectomycorrhizal mushroom distribution by stand age in western hemlock – lodgepole pine forests of northwestern British Columbia. Canadian Journal of Forest Research 35: 1527–39.CrossRefGoogle Scholar
Kreutzer, A. M., Dunham, S., Molina, R. & Spatafora, J. W. (2003). Microsatellite markers reveal the belowground distribution of two species of Rhizopogon forming tuberculate ectomycorrhizas. New Phytologist 161: 313–20.CrossRefGoogle Scholar
Kulmala, M., Laaksonen, A. & Pirjola, L. (1998). Parameterizations for sulfuric acid/water nucleation rates. Journal of Geophysical Research 103: 8301–7.CrossRefGoogle Scholar
Lagomarsino, A., Marinari, S., Moscatelli, M. C.et al. (2006). Disponibilità di cationi scambiabili nel suolo di un pioppeto in condizioni di elevata CO2 e fertilizzazione azotata. In The annual meeting of the Italian Society of Agricultural Chemistry, Alghero, 1–4 October 2006.Google Scholar
Lal, R. (2006). Encyclopedia of Soil Science. 2nd edition. New York: Taylor & Francis.Google Scholar
Landre, A. L., Watmough, S. A. & Dillon, P. J. (2010). Metal pools, fluxes, and budgets in an acidified forested catchment on the Precambrian shield, central Ontario, Canada. Water, Air and Soil Pollution 209: 209–28.CrossRefGoogle Scholar
Larson, J. L., Zak, D. R. & Sinsabaugh, R. L. (2002). Extracellular enzyme activity beneath temperate trees growing under elevated carbon dioxide and ozone. Soil Science Society of America Journal 66: 1848–56.CrossRefGoogle Scholar
Liiri, M., Setala, H., Haimi, J.et al. (2002). Soil processes are not influenced by the functional complexity of soil decomposer food webs under disturbance. Soil Biology and Biochemistry 34: 1009–20.CrossRefGoogle Scholar
Likens, G. E. & Bormann, F. H. (1995). Biogeochemistry of a Forested Ecosystem. 2nd edition. New York: Springer-Verlag.CrossRefGoogle Scholar
Likens, G. E., Driscol, C. T., Buso, D. C.et al. (1998). The biogeochemistry of calcium at Hubbard Brook. Biogeochemistry 41: 89–173.CrossRefGoogle Scholar
Lischke, H. & Zierl, B. (2006). Feedback between structured vegetation and soil water in a changing climate: a simulation study. In Beniston, M. (ed.) Advances in Global Change Research Climatic Change: Implications for the Hydrological Cycle and for Water Management, pp. 349–78. The Netherlands: Springer.Google Scholar
Litton, C. M., Raich, J. W. & Ryan, M. G. (2007). Carbon allocation in forest ecosystems. Global Change Biology 13: 2089–109.CrossRefGoogle Scholar
Loladze, I. (2002). Rising atmospheric CO2 and human nutrition: toward globally imbalanced plant stoichiometry?Trends in Ecology and Evolution 17: 457–61.CrossRefGoogle Scholar
Loranger, G. I., Pregitzer, K. S. & King, J. S. (2004). Elevated CO2 and O3 concentrations differentially affect selected groups of the fauna in temperate forest soils. Soil Biology and Biochemistry 36: 1521–4.CrossRefGoogle Scholar
Lorenz, K. & Lal, R. (2010). Carbon Sequestration in Forests. Dordrecht: Springer.CrossRefGoogle Scholar
Lukac, M., Calfapietra, C. & Godbold, D. L. (2003). Production, turnover and mycorrhizal colonization of root systems of three Populus species grown under elevated CO2 (POPFACE). Global Change Biology 9: 838–48.CrossRefGoogle Scholar
Lukac, M., Lagomarsino, A., Moscatelli, M. C.et al. (2009). Forest soil carbon cycle under elevated CO2 – a case of increased throughput?Forestry 82: 75–86.CrossRefGoogle Scholar
Luo, Y., Su, B., Currie, W. S.et al. (2004). Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. BioScience 54: 731–9.CrossRefGoogle Scholar
Luo, Y. Q., Hui, D. F. & Zhang, D. Q. (2006). Elevated CO2 stimulates net accumulations of carbon and nitrogen in land ecosystems: a meta-analysis. Ecology 87: 53–63.CrossRefGoogle ScholarPubMed
Magill, A. H., Aber, J. D., Currie, W. S.et al. (2004). Ecosystem response to 15 years of chronic nitrogen additions at the Harvard Forest LTER, Massachusetts, USA. Forest Ecology and Management 196: 7–28.CrossRefGoogle Scholar
Majdi, H., Pregitzer, K., Moren, A. S.et al. (2005). Measuring fine root turnover in forest ecosystems. Plant and Soil 276: 1–8.CrossRefGoogle Scholar
Mäkelä, A., Valentine, H. T., Helmisaari, H. S. (2008). Optimal co-allocation of carbon and nitrogen in a forest stand at steady state. New Phytologist 180: 114–23.CrossRefGoogle Scholar
Markkola, A. M., Ohtonen, A., Ahonen-Jonnarth, U.et al. (1996). Scots pine responses to CO2 enrichment. 1. Ectomycorrhizal fungi and soil fauna. Environmental Pollution 94: 309–16.CrossRefGoogle Scholar
Marschner, H. (1995). Mineral Nutrition of Higher Plants, 2nd edn. London: Academic Press.Google Scholar
Mayer, P., Brang, P., Dobbertin, M.et al. (2005). Forest storm damage is more frequent on acidic soils. Annals of Forestry Science 62: 303–11.CrossRefGoogle Scholar
McCarthy, J. J. & Intergovernmental Panel on Climate Change. Working Group II. (2001). Climate Change 2001: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the third assessment report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.Google Scholar
McLeod, A. R., Fackrell, J. E. & Alexander, K. (1985). Open-air fumigation of field crops – criteria and design for a new experimental system. Atmospheric Environment 19: 1639–49.CrossRefGoogle Scholar
McNulty, S. G., Aber, J. D. & Newman, S. D. (1996). Nitrogen saturation in a high elevation New England spruce-fir stand. Forest Ecology and Management 84: 109–21.CrossRefGoogle Scholar
,MEA (2005). Millennium Ecosystem Assessment: Synthesis Report.
Mind'áš, J. & Škvarenina, J. (2004). Lesy Slovenska a Zneč istenie Ovzdušia. Zvolen, Slovakia: EFRA.Google Scholar
Mirsal, I. A. (2008). Soil Pollution: Origin, Monitoring and Remediation. 2nd edition. Berlin: Springer.Google Scholar
Moore, T. R., Trofymow, J. A., Taylor, B.et al. (1999). Litter decomposition rates in Canadian forests. Global Change Biology 5: 75–82.CrossRefGoogle Scholar
Müller, P. E. (1879). Studier over skovjord, som bidrag til skovdyrkningens teori om bögemuld og bögemor paa sand og ler. Tidsskrift for Skovbrug 3: 1–124.Google Scholar
Naeem, S. (1998). Species redundancy and ecosystem reliability. Conservation Biology 12: 39–45.CrossRefGoogle Scholar
Nasholm, T., Ekblad, A., Nordin, A.et al. (1998). Boreal forest plants take up organic nitrogen. Nature 392: 914–16.CrossRefGoogle Scholar
Natali, S. M., Sanudo-Wilhelmy, S. A. & Lerdau, M. T. (2009). Plant and soil mediation of elevated CO2 impacts on trace metals. Ecosystems 12: 715–27.CrossRefGoogle Scholar
Neher, D. A., Weicht, T. R., Moorhead, D. L.et al. (2004). Elevated CO2 alters functional attributes of nematode communities in forest soils. Functional Ecology 18: 584–91.CrossRefGoogle Scholar
Nihlgard, B. (1985). The ammonium hypothesis – an additional explanation to the forest dieback in Europe. Ambio 14: 2–8.Google Scholar
Nilsen, E. T., Orcutt, D. M. & Hale, M. G. (1996). The Physiology of Plants under Stress. New York: Wiley.Google Scholar
Nilsson, L. O., Wallander, H., Baath, E.et al. (2006). Soil N chemistry in oak forests along a nitrogen deposition gradient. Biogeochemistry 80: 43–55.CrossRefGoogle Scholar
Nilsson, L. O., Baath, E., Falkengren-Grerup, U.et al. (2007). Growth of ectomycorrhizal mycelia and composition of soil microbial communities in oak forest soils along a nitrogen deposition gradient. Oecologia 153: 375–84.CrossRefGoogle ScholarPubMed
Norby, R. J., Wullschleger, S. D., Gunderson, C. A.et al. (1999). Tree responses to rising CO2 in field experiments: implications for the future forest. Plant Cell and Environment 22: 683–714.CrossRefGoogle Scholar
Norby, R. J., Ledford, J., Reilly, C. D.et al. (2004). Fine-root production dominates response of a deciduous forest to atmospheric CO2 enrichment. Proceedings of the National Academy of Sciences of the United States of America 101: 9689–93.CrossRefGoogle ScholarPubMed
Norby, R. J., DeLucia, E. H., Gielen, B.et al. (2005). Forest response to elevated CO2 is conserved across a broad range of productivity. Proceedings of the National Academy of Sciences of the United States of America 102: 18052–6.CrossRefGoogle ScholarPubMed
Parsons, W. F. J., Bockheim, J. G. & Lindroth, R. L. (2008). Independent, interactive, and species-specific responses of leaf litter decomposition to elevated CO2 and O3 in a northern hardwood forest. Ecosystems 11: 505–19.CrossRefGoogle Scholar
Perakis, S. S. & Hedin, L. O. (2002). Nitrogen loss from unpolluted South American forests mainly via dissolved organic compounds. Nature 415: 416–19.CrossRefGoogle ScholarPubMed
Peterson, G., Allen, C. R. & Holling, C. S. (1998). Ecological resilience, biodiversity, and scale. Ecosystems 1: 6–18.CrossRefGoogle Scholar
Pimentel, D., Wilson, C., McCullum, C.et al. (1997). Economic and environmental benefits of biodiversity. BioScience 47: 747–57.CrossRefGoogle Scholar
Poszwa, A., Wickman, T., Dambrine, E.et al. (2003). A retrospective isotopic study of spruce decline in the Vosges mountains (France). Water, Air and Soil Pollution Focus 3: 201–22.CrossRefGoogle Scholar
Powlson, D. S., Smith, P., Smith, J. U.et al. (1996). Evaluation of Soil Organic Matter Models: Using Existing Long-term Datasets. Berlin: Springer.CrossRefGoogle Scholar
Pregitzer, K. S., DeForest, J. L., Burton, A. J.et al. (2002). Fine root architecture of nine North American trees. Ecological Monographs 72: 293–309.CrossRefGoogle Scholar
Puhe, J. (1994). Die Wurzelentwicklung der Fichte (Picea abies [L.] Karst.) bei unterschiedlichen chemischen Bodenbedingungen. Berichte der Forschungszentrum Waldökosysteme Universität Göttingen A 108: 1–128.Google Scholar
Puhe, J. (2003). Growth and development of the root system of Norway spruce (Picea abies) in forest stands – a review. Forest Ecology and Management 175: 253–73.CrossRefGoogle Scholar
Querejeta, J. I., Barea, J. M., Allen, M. F.et al. (2003). Differential response of delta C13 and water use efficiency to arbuscular mycorrhizal infection in two aridland woody plant species. Oecologia 135: 510–15.CrossRefGoogle Scholar
Raben, G., Anderea, H. & Meyer-Heisig, M. (2000). Long-term acid load and its consequences in forest ecosystem in Saxony Germany. WASP 122: 93–103.Google Scholar
Raich, J. W. & Nadelhoffer, K. J. (1989). Belowground carbon allocation in forest ecosystems – global trends. Ecology 70: 1346–54.CrossRefGoogle Scholar
Rambal, S. (1984). Water-balance and pattern of root water-uptake by a Quercus coccifera L evergreen scrub. Oecologia 62: 18–25.CrossRefGoogle Scholar
Read, D. J. & Perez-Moreno, J. (2003). Mycorrhizas and nutrient cycling in ecosystems – a journey towards relevance?New Phytologist 157: 475–92.CrossRefGoogle Scholar
Redecker, D., Szaro, T. M., Bowman, R. J.et al. (2001). Small genets of Lactarius xanthogalactus, Russula cremoricolor and Amanita francheti in late-stage ectomycorrhizal successions. Molecular Ecology 10: 1025–34.CrossRefGoogle ScholarPubMed
Rennenberg, H., Loreto, F., Polle, A.et al. (2006). Physiological responses of forest trees to heat and drought. Plant Biology 8: 556–71.CrossRefGoogle ScholarPubMed
Rennenberg, H., Dannenmann, M., Gessler, A.et al. (2009). Nitrogen balance in forest soils: nutritional limitation of plants under climate change stresses. Plant Biology 11: 4–23.CrossRefGoogle ScholarPubMed
Richter, D. & Markewitz, D. (2001). Understanding Soil Change: Soil Sustainability over Millennia, Centuries, and Decades. Cambridge: Cambridge University Press.Google Scholar
Rillig, M. C., Field, C. B. & Allen, M. F. (1999). Fungal root colonization responses in natural grasslands after long-term exposure to elevated atmospheric CO2. Global Change Biology 5: 577–85.CrossRefGoogle Scholar
Rillig, M. C. & Steinberg, P. D. (2002). Glomalin production by an arbuscular mycorrhizal fungus: a mechanism of habitat modification?Soil Biology and Biochemistry 34: 1371–4.CrossRefGoogle Scholar
Robinson, M., Cognard-Plancq, A. L., Cosandey, C.et al. (2003). Studies of the impact of forests on peak flows and baseflows: a European perspective. Forest Ecology and Management 186: 85–97.CrossRefGoogle Scholar
Ross, D. J., Newton, P. C. D. & Tate, K. R. (2004). Elevated [CO2] effects on herbage production and soil carbon and nitrogen pools and mineralization in a species-rich, grazed pasture on a seasonally dry sand. Plant and Soil 260: 183–96.CrossRefGoogle Scholar
Ross, D. S., Matschonat, G. & Skyllberg, U. (2008). Cation exchange in forest soils: the need for a new perspective. European Journal of Soil Science 59: 1141–59.CrossRefGoogle Scholar
Rothe, A., Kreutzer, K. & Kuchenhoff, H. (2002). Influence of tree species composition on soil and soil solution properties in two mixed spruce-beech stands with contrasting history in Southern Germany. Plant and Soil 240: 47–56.CrossRefGoogle Scholar
Ryel, R. J., Caldwell, M. M., Yoder, C. K.et al. (2002). Hydraulic redistribution in a stand of Artemisia tridentata: evaluation of benefits to transpiration assessed with a simulation model. Oecologia 130: 173–84.CrossRefGoogle Scholar
Šály, R. (1991). Pedológia. Zvolen: VŠLD.Google Scholar
Sardans, J., Penuelas, J. & Estiarte, M. (2008). Changes in soil enzymes related to C and N cycle and in soil C and N content under prolonged warming and drought in a Mediterranean shrubland. Applied Soil Ecology 39: 223–35.CrossRefGoogle Scholar
Schimel, J. P. & Bennett, J. (2004). Nitrogen mineralization: challenges of a changing paradigm. Ecology 85: 591–602.CrossRefGoogle Scholar
Schume, H., Jost, G. & Hager, H. (2004). Soil water depletion and recharge patterns in mixed and pure forest stands of European beech and Norway spruce. Journal of Hydrology 289: 258–74.CrossRefGoogle Scholar
Schume, H. G. & Hager, H. (2004). Soil water depletion and recharge patterns in mixed and pure forest stands of European beech and Norway spruce. Journal of Hydrology 289: 258–74.CrossRefGoogle Scholar
Sellin, A. (2001). Hydraulic and stomatal adjustment of Norway spruce trees to environmental stress. Tree Physiology 21: 879–88.CrossRefGoogle ScholarPubMed
Sinsabaugh, R. L., Saiya-Cork, K., Long, T.et al. (2003). Soil microbial activity in a Liquidambar plantation unresponsive to CO2-driven increases in primary production. Applied Soil Ecology 24: 263–71.CrossRefGoogle Scholar
Sittig, U. (1999). Zur saisonalen Dynamik von Ektomykorrhizen der Buche (Fagus sylvatica L.). Universität Göttingen, PhD thesis.Google Scholar
Smith, P. (2008). Land use change and soil organic carbon dynamics. Nutrient Cycling in Agroecosystems 81: 169–78.CrossRefGoogle Scholar
Snowdon, P., Ryan, P. & Raison, J. (2005). Review of C:N ratios in vegetation, litter and soil under Australian native forests and plantations. Canberra, Australia: Australian Greenhouse Office.Google Scholar
,Soil-net. 2010. www.soil-net.com/legacy/advanced/soil_formation3.htm.
Solberg, S., Dobbertin, M. & Reinds, G. J.et al. (2009). Analyses of the impact of changes in atmospheric deposition and climate on forest growth in European monitoring plots: A stand growth approach. Forest Ecology and Management 258: 1735–50.CrossRefGoogle Scholar
Solomon, S., Intergovernmental Panel on Climate Change. Working Group I. (2007). Climate Change 2007: the Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.Google Scholar
Soltner, D. (1996). The Bases of Plant Production, vol. I, The Soil and its Improvement. 21st edition. Saint-Gemmes-sur-Loire.
Staddon, P. L. & Fitter, A. H. (1998). Does elevated atmospheric carbon dioxide affect arbuscular mycorrhizas?Trends in Ecology and Evolution 13: 455–8.CrossRefGoogle ScholarPubMed
Stoorvogel, J. J., Breemen, N. V. & Janssen, B. H. (1997). The nutrient input by Harmattan dust to a forest ecosystem in Côte d'Ivoire, Africa. Biogeochemistry 37: 145–57.CrossRefGoogle Scholar
Subke, J. A., Reichstein, M. & Tenhunen, J. D. (2003). Explaining temporal variation in soil CO2 efflux in a mature spruce forest in Southern Germany. Soil Biology and Biochemistry 35: 1467–83.CrossRefGoogle Scholar
Sumner, M. E. (2000). Handbook of Soil Science. Boca Raton, FL: CRC Press.Google Scholar
Svenson, T., Dickson, W., Hellberg, J.et al. (1995). The Swedish liming programme. Water, Air and Soil Pollution 85: 1003–8.CrossRefGoogle Scholar
Thomas, G. W. & Hargrove, W. L. (1984). The chemistry of soil acidity. In Adams, F. (ed.) Soil Acidity and Liming, pp. 3–56. Madison, WI: American Society of Agronomy.Google Scholar
Tiessen, H., Stewart, J. W. B. & Cole, C. V. (1984). Pathways of phosphorus transformations in soils of differing pedogenesis. Soil Science Society of America Journal 48: 853–8.CrossRefGoogle Scholar
Tognetti, R., Giovannelli, A., Longobucco, A.et al. (1996). Water relations of oak species growing in the natural CO2 spring of Rapolano (central Italy). Annales Des Sciences Forestieres 53: 475–85.CrossRefGoogle Scholar
Tomlinson, G. H. (2003). Acidic deposition, nutrient leaching and forest growth. Biogeochemistry 65: 51–81.CrossRefGoogle Scholar
Townsend, A. R., Howarth, R. W., Bazzaz, F. A.et al. (2003). Human health effects of a changing global nitrogen cycle. Front Ecol Environ 1: 240–6.CrossRefGoogle Scholar
Treseder, K. K. (2004). A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. New Phytologist 164: 347–55.CrossRefGoogle Scholar
Troeh, F. R. & Thompson, L. M. (2005). Soils and Soil Fertility. 6th edition. Ames, IA: Blackwell.Google Scholar
Tsukuda, S., Sugiyama, M., Harita, Y.et al. (2006). Atmospheric phosphorus deposition in Ashiu, Central Japan – source apportionment for the estimation of true input to a terrestrial ecosystem. Biogeochemistry 77: 117–38.CrossRefGoogle Scholar
Turrion, M. B., Gallardo, J. F. & Gonzalez, M. I. (1997). Nutrient availability in forest soils as measured with anion-exchange membranes. Geomicrobiology Journal 14: 51–64.CrossRefGoogle Scholar
Tyler, G., Berggren, D., Bergkvist, B.et al. (1987). Soil acidification and metal solubility in forests of southern Sweden. In Hutchinson, T. C. & Meema, K. M. (eds.) Effects of Atmospheric Pollution on Forests, Wetlands and Agricultural Ecosystems, pp. 347–59. New York: Springer-Verlag.CrossRefGoogle Scholar
Ulrich, B. (1987). Stability, elasticity and resilience of terrestrial ecosystems with respect to matter balance. Ecological Studies 61: 11–49.CrossRefGoogle Scholar
,United States Natural Resources Conservation Service. (1999). Soil Taxonomy: a Basic System of Soil Classification for Making and Interpreting Soil Surveys. 2nd edition. Washington, D.C.: US Department of Agriculture.Google Scholar
Breemen, N., Mulder, J. & Driscoll, C. T. (1983). Acidification and alkalinization of soils. Plant and Soil 75: 283–308.CrossRefGoogle Scholar
Breemen, N., Finlay, R., Lundstrom, U.et al. (2000). Mycorrhizal weathering: A true case of mineral plant nutrition?Biogeochemistry 49: 53–67.CrossRefGoogle Scholar
Salm, C., Reinds, G. J. & Vries, W. (2007). Water balances in intensive monitored forest ecosystem in Europe. Environmental Pollution 148: 201–12.CrossRefGoogle Scholar
Groenigen, K. J., Six, J., Hungate, B. A.et al. (2006). Element interactions limit soil carbon storage. Proceedings of the National Academy of Sciences of the United States of America 103: 6571–4.CrossRefGoogle ScholarPubMed
Hees, P. A. W., Jones, D. L., Finlay, R.et al. (2005). The carbon we do not see – the impact of low molecular weight compounds on carbon dynamics and respiration in forest soils: a review. Soil Biology and Biochemistry 37: 1–13.CrossRefGoogle Scholar
Vanguelova, E. I. (2002). Soil acidification and fine root response of Scots pine. PhD thesis, University of Reading.Google Scholar
Vanguelova, E. I., Nortcliff, S., Moffat, A. J.et al. (2005). Morphology, biomass and nutrient status of fine roots of Scots pine (Pinus sylvestris) as influenced by seasonal fluctuations in soil moisture and soil solution chemistry. Plant and Soil 270: 233–47.CrossRefGoogle Scholar
Vanguelova, E. I., Nortcliff, S., Moffat, A. J.et al. (2007). Short-term effects of manipulated increase in acid deposition on soil, soil solution chemistry and fine roots in Scots pine (Pinus sylvestris) stand on a podzol. Plant and Soil 294: 41–54.CrossRefGoogle Scholar
Vartapetian, B. B. & Jackson, M. B. (1997). Plant adaptations to anaerobic stress. Annals of Botany 79: 3–20.CrossRefGoogle Scholar
Verburg, P. S. J., Gorissen, A. & Arp, W. J. (1998). Carbon allocation and decomposition of root-derived organic matter in a plant-soil system of Calluna vulgaris as affected by elevated CO2. Soil Biology and Biochemistry 30: 1251–8.CrossRefGoogle Scholar
Visser, S. (1995). Ectomycorrhizal fungal succession in Jack pine stands following wildfire. New Phytologist 129: 389–401.CrossRefGoogle Scholar
Vitousek, P. M., Porder, S., Houlton, B. Z.et al. (2010). Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions. Ecological Applications 20: 5–15.CrossRefGoogle ScholarPubMed
Vogt, K. (1991). Carbon budgets of temperate forest ecosystems. Tree Physiology 9: 69–86.CrossRefGoogle ScholarPubMed
Waksman, S. A. (1936). Humus; Origin, Chemical Composition, and Importance in Nature. Baltimore, MD: The Williams & Wilkins Company.Google Scholar
Walker, T. W. & Syers, J. K. (1976). The fate of phosphorus during pedogenesis. Geoderma 15: 1–19.CrossRefGoogle Scholar
Wallander, H. (2000). Uptake of P from apatite by Pinus sylvestris seedlings colonised by different ectomycorrhizal fungi. Plant and Soil 218: 249–56.CrossRefGoogle Scholar
Wallander, H., Nilsson, L. O., Hagerberg, D.et al. (2001). Estimation of the biomass and seasonal growth of external mycelium of ectomycorrhizal fungi in the field. New Phytologist 151: 753–60.CrossRefGoogle Scholar
Wallenstein, M. D., McNulty, S., Fernandez, I. J.et al. (2006). Nitrogen fertilization decreases forest soil fungal and bacterial biomass in three long-term experiments. Forest Ecology and Management 222: 459–68.CrossRefGoogle Scholar
Wan, S. Q., Norby, R. J., Pregitzer, K. S.et al. (2004). CO2 enrichment and warming of the atmosphere enhance both productivity and mortality of maple tree fine roots. New Phytologist 162: 437–46.CrossRefGoogle Scholar
Wardle, D. A., Walker, L. R. & Bardgett, R. D. (2004). Ecosystem properties and forest decline in contrasting long-term chronosequences. Science 305: 509–13.CrossRefGoogle ScholarPubMed
Waring, R. H., Landsberg, J. J. & Williams, M. (1998). Net primary production of forests: a constant fraction of gross primary production?Tree Physiology 18: 129–34.CrossRefGoogle ScholarPubMed
Warren, J. M., Meinzer, F. C., Brooks, J. R.et al. (2007). Hydraulic redistribution of soil water in two old-growth coniferous forests: quantifying patterns and controls. New Phytologist 173: 753–65.CrossRefGoogle ScholarPubMed
Watanabe, T., Broadley, M. R., Jansen, S.et al. (2007). Evolutionary control of leaf element composition in plants. New Phytologist 174: 516–23.CrossRefGoogle ScholarPubMed
Watmough, S. A. & Hutchinson, T. C. (2004). The quantification and distribution of pollution Pb at a woodland in rural south central Ontario, Canada. Environmental Pollution 128: 419–28.CrossRefGoogle Scholar
Webb, R. S. & Webb, T. (1988). Rates of sediment accumulation in pollen cores from small lakes and mires of Eastern North-America. Quaternary Research 30: 284–97.CrossRefGoogle Scholar
White, R. E. (1979). Introduction to the Principles and Practice of Soil Science. New York: Wiley.Google Scholar
Wilde, S. A. (1958). Forest Soils. New York: Ronald Press.Google Scholar
Zhang, H. & Kovar, J. L. (2000). Phosphorus fractionation. In Pierzynski, G. (ed.) Methods of Phosphorus Analysis for Soils, Sediments, Residuals and Water. Southern Cooperative SeriesBulletin.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Martin Lukac, University of Reading, Douglas L. Godbold, University of Wales, Bangor
  • Book: Soil Ecology in Northern Forests
  • Online publication: 26 April 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511976100.013
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Martin Lukac, University of Reading, Douglas L. Godbold, University of Wales, Bangor
  • Book: Soil Ecology in Northern Forests
  • Online publication: 26 April 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511976100.013
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Martin Lukac, University of Reading, Douglas L. Godbold, University of Wales, Bangor
  • Book: Soil Ecology in Northern Forests
  • Online publication: 26 April 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511976100.013
Available formats
×