Skip to main content Accessibility help
×
  • Cited by 15
Publisher:
Cambridge University Press
Online publication date:
April 2011
Print publication year:
2011
Online ISBN:
9780511976100

Book description

Forest soils form the foundation that underpins the existence of all forests. This book encapsulates soil ecology and functioning in northern forests, focusing on the effects of human activity and climate change. The authors introduce the fundamental principles necessary for studying forest soils, and explain the functioning and mutual influence of all parts of a forest soil ecosystem. A chapter is dedicated to each of soil acidity and heavy metal pollution, elevated carbon dioxide, nitrogen deposition and climate change, highlighting the most important anthropogenic factors influencing forest soil functioning and how these soils are likely to respond to environmental change. With its unique view of the functioning of the soils found under temperate and boreal forests in today's rapidly changing world, this book is of interest to anyone studying forestry and forest ecology in European, North American and North Asian contexts.

Reviews

'… suitable as a text for advanced undergraduates and beginning graduate students with a strong emphasis on soil classification and properties.'

Source: Ecology

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
Aber, J. D. (1992). Nitrogen cycling and nitrogen saturation in temperate forest ecosystems. Trends in Ecology and Evolution 7: 220–24.
Aerts, R. (1997). Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: A triangular relationship. Oikos 79: 439–49.
Agerer, R. (2001). Exploration types of ectomycorrhizae – A proposal to classify ectomycorrhizal mycelial systems according to their patterns of differentiation and putative ecological importance. Mycorrhiza 11: 107–14.
Ainsworth, E. A. & Long, S. P. (2005). What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy. New Phytologist 165: 351–71.
Allison, F. E. (1973). Soil Organic Matter and its Role in Crop Production. Amsterdam: Elsevier.
Andrews, J. A. & Schlesinger, W. H. (2001). Soil CO2 dynamics, acidification, and chemical weathering in a temperate forest with experimental CO2 enrichment. Global Biogeochemical Cycles 15: 149–62.
Arnolds, E. (1991). Decline of ectomycorrhizal fungi in Europe. Agriculture, Ecosystems and Environment 35: 209–44.
Barber, S. A. (1995). Soil Nutrient Bioavailability: a Mechanistic Approach. 2nd edition. New York: Wiley.
Barrett-Lennard, E. G. (2002). Restoration of saline land through revegetation. Agricultural Water Management 53: 213–26.
Bassirirad, H. (2000). Kinetics of nutrient uptake by roots: responses to global change. New Phytologist 147: 155–69.
Baudoin, E., Benizri, E. & Guckert, A. (2003). Impact of artificial root exudates on the bacterial community structure in bulk soil and maize rhizosphere. Soil Biology and Biochemistry 35: 1183–92.
Bazzaz, F. A. (1990). The response of natural ecosystems to the rising global CO2 levels. Annual Review of Ecology and Systematics 21: 167–96.
Beier, C., Emmett, B. A., Penuelas, J.et al. (2008). Carbon and nitrogen cycles in European ecosystems respond differently to global warming. Science of the Total Environment 407: 692–7.
Bennett, K. D., Tzedakis, P. C. & Willis, K. J. (1991). Quaternary refugia of North European trees. Journal of Biogeography 18: 103–15.
Bergkvist, B., Folkeson, L. & Berggren, D. (1989). Fluxes of Cu, Zn, Pb, Cd, Cr, and Ni in temperate forest ecosystems – a literature review. Water, Air, and Soil Pollution 47: 217–86.
Bertills, U. & Näsholm, T. (2000). Effects of nitrogen deposition on forest ecosystems. Swedish Environmental Protection Agency, Report 5067. Stockholm.
Blom, J. M. (2009). Sweet chestnut (Castanea sativa Mill.) mycorrhizas: the composition of their communities over a wide geographical range in Europe. Bangor University, PhD thesis.
Blum, J. D., Klaue, A., Nezat, C. A.et al. (2002). Mycorrhizal weathering of apatite as an important calcium source in base-poor forest ecosystems. Nature 417: 729–31.
Bobbink, R. (2004). Plant species richness and the exceedance of empirical nitrogen critical loads: an inventory. Bilthoven, The Netherlands: Utrecht University/RIVM.
Bobbink, R., Hicks, K., Galloway, J.et al. (2010). Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecological Applications 20: 30–59.
Boberg, J. B., Finlay, R. D., Stenlid, J.et al. (2010). Fungal C translocation restricts N-mineralization in heterogeneous environments. Functional Ecology 24: 454–9.
Bolton, H., Frederickson, J. K. & Elliot, L. F. (1992). Microbial ecology of the rhizosphere. In Metting, F. B. (ed.) Soil Microbial Ecology, pp. 219–35. New York: Marcel Dekker.
Borken, W. & Matzner, E. (2009). Introduction: impact of extreme meteorological events on soils and plants. Global Change Biology 15: 781.
Bothe, H., Ferguson, S. J. & Newton, W. E. (2007). Biology of the Nitrogen Cycle. 1st edition. Amsterdam: Elsevier.
Boxman, A. W., Blanck, K., Brandrud, T. E.et al. (1998). Vegetation and soil biota response to experimentally-changed nitrogen inputs in coniferous forest ecosystems of the NITREX project. Forest Ecology and Management 101: 65–79.
Braun, S., Schindler, C., Volz, R.et al. (2003). Forest damages by the storm ‘Lothar’ in permanent observation plots in Switzerland: the significance of soil acidification and nitrogen deposition. Water, Air and Soil Pollution 142: 327–40.
Breda, N., Huc, R., Granier, A.et al. (2006). Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Annals of Forest Science 63: 625–44.
Brown, T. C., Bergstrom, J. C. & Loomis, J. B. (2006). Ecosystem Goods and Services: Definition, Valuation and Provision. RMRS – RWU 4851 Discussion Paper: www.fs.fed.us/rm/value/docs/ecosystem_goods_services.pdf.
Buijse, A. D., Coops, H., Staras, M.et al. (2002). Restoration strategies for river floodplains along large lowland rivers in Europe. Freshwater Biology 47: 889–907.
Burton, A. J., Melillo, J. M. & Frey, S. D. (2008). Adjustment of forest ecosystem root respiration as temperature warms. Journal of Integrated Plant Biology 50: 1467–83.
Bytnerowicz, A. & Fenn, M. E. (1996). Nitrogen deposition in California forests: a review. Environmental Pollution 92: 127–46.
Cardon, Z. G., Hungate, B. A., Cambardella, C. A.et al. (2001). Contrasting effects of elevated CO2 on old and new soil carbon pools. Soil Biology and Biochemistry 33: 365–73.
Carney, K. M., Hungate, B. A., Drake, B. G.et al. (2007). Altered soil microbial community at elevated CO2 leads to loss of soil carbon. Proceedings of the National Academy of Sciences of the United States of America 104: 4990–5.
Chadwick, O. A. & Chorover, J. (2001). The chemistry of pedogenic thresholds. Geoderma 100: 321–53.
Cotrufo, M. F., Ineson, P. & Scott, A. (1998). Elevated CO2 reduces the nitrogen concentration of plant tissues. Global Change Biology 4: 43–54.
Cotrufo, M. F., Angelis, P. & Polle, A. (2005). Leaf litter production and decomposition in a poplar short-rotation coppice exposed to free air CO2 enrichment (POPFACE). Global Change Biology 11: 971–82.
Cox, P. M., Betts, R. A., Jones, C. D.et al. (2000). Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408: 184–7.
Crawford, R. M. M., Jeffree, C. E. & Rees, W. G. (2003). Paludification and forest retreat in Northern oceanic environments. Annals of Botany 91: 213–26.
Cronan, C. S. & Grigal, D. F. (1995). Use of calcium aluminum ratios as indicators of stress in forest ecosystems. Journal of Environmental Quality 24: 209–26.
Cross, A. F. & Schlesinger, W. H. (1995). A literature review and evaluation of the Hedley fractionation: applications to the biogeochemical cycle of soil phosphorus in natural ecosystems. Geoderma 64: 197–214.
Cudlin, P., Kieliszewska-Rojucka, B., Rudawska, M.et al. (2007). Fine roots and ectomycorrhizas as indicators of environmental change. Plant Biosystems 141: 406–25.
Curt, T. & Prevosto, B. (2003). Rooting strategy of naturally regenerated beech in silver birch and Scots pine woodlands. Plant and Soil 255: 265–79.
Dahlberg, A. (1997). Population ecology of Suillus variegatus in old Swedish Scots pine forests. Mycological Research 101: 47–54.
Dahlberg, A., Jonsson, L. & Nylund, J. E. (1997). Species diversity and distribution of biomass above and below ground among ectomycorrhizal fungi in an old-growth Norway spruce forest in south Sweden. Canadian Journal of Botany 75: 1323–35.
Dalsgaard, L (2007). Above and below ground gaps – the effects of a small canopy opening on throughfall, soil moisture and tree transpiration in Suserup skov, Denmark. Ecological Bulletin 52: 81–102.
Davidson, E. A., Savage, K., Bolstad, P.et al. (2002). Belowground carbon allocation in forests estimated from litterfall and IRGA-based soil respiration measurements. Agricultural and Forest Meteorology 113: 39–51.
Davidson, E. A. & Janssens, I. A. (2006). Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440: 165–73.
Davidson, E. A., Janssens, I. A. & Luo, Y. (2006). On the variability of respiration in terrestrial ecosystems: moving beyond Q10. Global Change Biology 12: 154–64.
Davis, M. B. (2001). Past and future forest response to rapid climatic change. In Schulze, E. D. (ed.) Global Biogeochemical Cycles in the Climate System, pp. 167–74. San Diego, CA: Academic Press.
Schrijver, A., Verheyen, K., Mertens, J.et al. (2008). Nitrogen saturation and net ecosystem production. Nature 451 doi: 10.1038/nature 06578.
Delaire, M., Frak, E., Sigogne, M.et al. (2005). Sudden increase in atmospheric CO2 concentration reveals strong coupling between shoot carbon uptake and root nutrient uptake in young walnut trees. Tree Physiology 25: 229–35.
Dise, N. B. & Wright, R. F. (1995). Nitrogen leaching from European forests in relation to nitrogen deposition. Forest Ecology and Management 71: 153–61.
Dokuchaev, V. V. (1883). Russian Chernozem. (Translated 1967 by Kaner, N..) Jerusalem: Israeli Programme for Scientific Translations.
Dong, S. F., Scagel, C. F., Cheng, L. L.et al. (2001). Soil temperature and plant growth stage influence nitrogen uptake and amino acid concentration of apple during early spring growth. Tree Physiology 21: 541–7.
Drouet, T., Herbauts, J. & Demaiffe, D. (2005). Long-term records of strontium isotopic composition in tree rings suggest changes in forest calcium sources in the early 20th century. Global Change Biology 11: 1926–40.
Egoh, B., Reyers, B., Rouget, M.et al. (2009). Spatial congruence between biodiversity and ecosystem services in South Africa. Biological Conservation 142: 553–62.
Emmett, B. A. (2002). The Impact of Nitrogen Deposition in Forest Ecosystems: A Review. Centre for Ecology and Hydrology (Natural Environment Research Council) CEH Project No: C00311 DEFRA Terrestrial Umbrella Phase II, 1–14.
Emmett, B. A. (2007). Nitrogen saturation of terrestrial ecosystems: some recent findings and their implications for our conceptual framework. Water, Air, and Soil Pollution: Focus 7: 99–109.
Ernst, W. H. O. (2004). Vegetation, organic matter and soil quality. In Doelman, P. & Eijsackers, H. J. P. (eds.) Vital Soil. Function, Value and Properties, pp. 41–98. Amsterdam: Elsevier.
Farley, K. A., Jobbagy, E. G. & Jackson, R. B. (2005). Effects of afforestation on water yield: a global synthesis with implications for policy. Global Change Biology 11: 1565–76.
Farrar, J. & Jones, D. L. (2003). The control of carbon acquisition by and growth of roots. In Kroon, H. & Wisser, J. W. D. (eds.) Root Ecology, pp. 91–124. Berlin: Springer.
Feng, R., Yang, W., Zhang, J.et al. (2007). Effects of simulated elevated concentration of atmospheric CO2 and temperature on soil enzyme activity in the subalpine fir forest. Acta Ecologica Sinica 27: 4019−26.
Finer, L., Helmisaari, H. S., Lohmus, K.et al. (2007). Variation in fine root biomass of three European tree species: Beech (Fagus sylvatica L.), Norway spruce (Picea abies L. Karst.), and Scots pine (Pinus sylvestris L.). Plant Biosystematics, 141: 394–405.
Finzi, A. C., Allen, A. S., DeLucia, E. H.et al. (2001). Forest litter production, chemistry, and decomposition following two years of free-air CO2 enrichment. Ecology 82: 470–84.
Finzi, A. C. & Schlesinger, A. H. (2002). Species control variation in litter decomposition in a pine forest exposed to elevated CO2. Global Change Biology 8: 1217–29.
Finzi, A. C., Norby, R. J., Calfapietra, C.et al. (2007). Increases in nitrogen uptake rather than nitrogen-use efficiency support higher rates of temperate forest productivity under elevated CO2. Proceedings of the National Academy of Sciences of the United States of America 104: 14014–19.
Fisher, R. F., Binkley, D. & Pritchett, W. L. (2000). Ecology and Management of Forest Soils. 3rd edition. New York: John Wiley.
,Food and Agriculture Organization of the United Nations, UNESCO. (1970). Soil Map of the World. Carte Mondiale des Sols. Mapa Mundial de Suelos. [Pochvennaya Karta Mira]. Paris: UNESCO.
Foran, B. & Poldy, F. (2002). The future of water in future dilemmas: options to 2050 for Australia's population, technology, resources and environment. CSIRO Sustainable Ecosystems Working Paper Series 02/01.
Franklin, O., McMurtrie, R. E., Iversen, C. M.et al. (2009). Forest fine-root production and nitrogen use under elevated CO2: contrasting responses in evergreen and deciduous trees explained by a common principle. Global Change Biology 15: 132–44.
Galloway, J. N., Dentener, F. J., Capone, D. G.et al. (2004). Nitrogen Cycles: Past, Present, and Future. Biogeochemistry. 70: 153–226.
Genney, D. R., Anderson, I. C. & Alexander, I. J. (2006). Fine-scale distribution of pine ectomycorrhizas and their extramatrical mycelium. New Phytologist 170: 381–90.
Gessler, A., Schneider, S., Sengbusch, D.et al. (1998). Field and laboratory experiments on net uptake of nitrate and ammonium by the roots of spruce (Picea abies) and beech (Fagus sylvatica) trees. New Phytologist 138: 275–85.
Gielen, B., Calfapietra, C., Lukac, M.et al. (2005). Net carbon storage in a poplar plantation (POPFACE) after three years of free-air CO2 enrichment. Tree Physiology 25: 1399–1408.
Gilliam, F. S. (2006). Response of the herbaceous layer of forest ecosystems to excess nitrogen deposition. Journal of Ecology 94: 1176–91.
Glinka, K. D. (1927). The Great Soil Groups of the World and their Development. Ann Arbor, MI: Edward Bros.
Gobat, J. -M., Aragno, M. & Matthey, W. (2003). Le Sol Vivant. 2nd edition. Lausanne: Presses Polytechniques Universitaires Romandes.
Gobat, J. -M., Aragno, M. & Matthey, W. (2004). The Living Soil: Fundamentals of Soil Science and Soil Biology. Enfield, NH: Science Publishers.
Godbold, D. L., Berntson, G. M. & Bazzaz, F. A. (1997). Growth and mycorrhizal colonization of three North American tree species under elevated atmospheric CO2. New Phytologist 137: 433–40.
Godbold, D. L. & Jentschke, G. (1998). Aluminium accumulation in root cell walls coincides with inhibition of root growth but not with inhibition of magnesium uptake in Norway spruce. Physiologia Plantarum 102: 553–60.
Godbold, D. L., Hoosbeek, M. R., Lukac, M.et al. (2006). Mycorrhizal hyphal turnover as a dominant process for carbon input into soil organic matter. Plant and Soil 281: 15–24.
Goodale, C. L., Apps, M. J., Birdsey, R. A.et al. (2002). Forest carbon sinks in the Northern Hemisphere. Ecological Applications 12: 891–9.
Göttlein, A. & Stanjek, H. (1996). Micro-scale variation of solid-phase properties and soil solution chemistry in a forest podzol and its relation to soil horizons. European Journal of Soil Science 47: 627–36.
Graf Pannatier, E., Walthert, L. & Blaser, P. (2004). Soil solution chemistry in acid forest soils: are BC: Al ratios as critical as expected in Switzerland?Journal of Plant Nutrition and Soil Science 167: 160–8.
Griffiths, H. & Jarvis, P. G. (2005). The Carbon Balance of Forest Biomes. New York: Bios Scientific Publishers.
Gundersen, P., Callesen, I. & Vries, W. (1998). Nitrate leaching in forest ecosystems is related to forest floor C/N ratios. Environmental Pollution 102: 403–7.
Hagedorn, F. & Bundt, M. (2002). The age of preferential flow paths. Geoderma 108: 119–32.
Hale, C. M., Frelich, L. E. & Reich, P. B. (2006). Changes in cold-temperate hardwood forest understory plant communities in response to invasion by European earthworms. Ecology 87: 1637–49.
Hamburg, S. P., Yanai, R. D., Arthur, M. A.et al. (2003). Biotic control of calcium cycling in northern hardwood forests: acid rain and aging forests. Ecosystems 6: 399–406.
Hanson, P. J., Wullschleger, S. D., Norby, R. J.et al. (2005). Importance of changing CO2, temperature, precipitation, and ozone on carbon and water cycles of an upland-oak forest: incorporating experimental results into model simulations. Global Change Biology 11: 1402–23.
Hare, F. K. & Ritchie, J. C. (1972). Boreal bioclimates. Geographical Review 62: 332–65.
Harper, L. A., Baker, D. N., Box, J. E.et al. (1973). Carbon-dioxide and photosynthesis of field crops – metered carbon-dioxide release in cotton under field conditions. Agronomy Journal 65: 7–11.
Helmisaari, H. S. & Hallbacken, L. (1999). Fine-root biomass and necromass in limed and fertilized Norway spruce (Picea abies (L.) Karst.) stands. Forest Ecology and Management 119: 99–110.
Hissinck, D. J. (1938). The reclamation of the Dutch saline soils (solonchak) and their further weathering under the humid climatic conditions of Holland. Soil Science 45: 83–94.
Hobbie, E. A. (2006). Carbon allocation to ectomycorrhizal fungi correlates with belowground allocation in culture studies. Ecology 87: 563–9.
Hogberg, P., Fan, H. B., Quist, M.et al. (2006). Tree growth and soil acidification in response to 30 years of experimental nitrogen loading on boreal forest. Global Change Biology 12: 489–99.
Holdridge, L. R. (1967). Life Zone Ecology. Revised edition. San Jose, Costa Rica: Tropical Science Center.
Hoosbeek, M. R. & Bryant, R. B. (1992). Towards the quantitative modeling of pedogenesis – a review. Geoderma 55: 183–210.
Hoosbeek, M. R., Lukac, M., Dam, D.et al. (2004). More new carbon in the mineral soil of a poplar plantation under Free Air Carbon Enrichment (POPFACE): cause of increased priming effect?Global Biogeochemical Cycles 18: GB1040.
Hu, S. J., Tu, C., Chen, X.et al. (2006). Progressive N limitation of plant response to elevated CO2: a microbiological perspective. Plant and Soil 289: 47–58.
Hungate, B. A., Dijkstra, P., Johnson, D. W.et al. (1999). Elevated CO2 increases nitrogen fixation and decreases soil nitrogen mineralization in Florida scrub oak. Global Change Biology 5: 781–9.
Hungate, B. A., Stiling, P. D., Dijkstra, P.et al. (2004). CO2 elicits long-term decline in nitrogen fixation. Science 304: 1291.
Hyvonen, R., Agren, G. I., Linder, S.et al. (2007). The likely impact of elevated [CO2], nitrogen deposition, increased temperature and management on carbon sequestration in temperate and boreal forest ecosystems: a literature review. New Phytologist 173: 463–80.
,IPCC (2001). Climate Change: the Scientific Basis. Cambridge: Cambridge University Press.
Janssens, I. A., Crookshanks, M., Taylor, G.et al. (1998). Elevated atmospheric CO2 increases fine root production, respiration, rhizosphere respiration and soil CO2 efflux in Scots pine seedlings. Global Change Biology 4: 871–8.
Jenny, H. (1941). Factors of Soil Formation: a System of Quantitative Pedology. 1st edition. New York: McGraw-Hill.
Jentschke, G., Marschner, P., Vodnik, D.et al. (1998). Lead uptake by Picea abies seedlings: Effects of nitrogen source and mycorrhizas. Journal of Plant Physiology 153: 97–104.
Jentschke, G., Drexhage, M., Fritz, H. W.et al. (2001). Does soil acidity reduce subsoil rooting in Norway spruce (Picea abies)?Plant and Soil 237: 91–108.
Jobbágy, E. G. & Jackson, R. B. (2000). The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications 10: 423–36.
Johnson, A. H., Frizano, J. & Vann, D. R. (2003). Biogeochemical implications of labile phosphorus in forest soils determined by the Hedley fractionation procedure. Oecologia 135: 487–99.
Johnson, D., Leake, J. R. & Read, D. J. (2002). Transfer of recent photosynthate into mycorrhizal mycelium of an upland grassland: short-term respiratory losses and accumulation of C-14. Soil Biology and Biochemistry 34: 1521–4.
Johnson, D. W., Cheng, W., Joslin, J. D.et al. (2004). Effects of elevated CO2 on nutrient cycling in a sweetgum plantation. Biogeochemistry 69: 379–403.
Jones, D. L., Dennis, P. G., Owen, A. G.et al. (2003). Organic acid behavior in soils – misconceptions and knowledge gaps. Plant and Soil 248: 31–41.
Jones, H. E., Hogberg, P. & Ohlsson, H. (1994). Nutritional assessment of a forest fertilization experiment in Northern Sweden by root bioassays. Forest Ecology and Management 64: 59–69.
Jonsson, T., Kokalj, S., Finlay, R.et al. (1999). Ectomycorrhizal community structure in a limed spruce forest. Mycological Research 103: 501–8.
Kaiser, C., Koranda, M., Kitzler, B.et al. (2010). Belowground carbon allocation by trees drives seasonal patterns of extracellular enzyme activities by altering microbial community composition in a beech forest soil. New Phytologist: doi: 10.1111/j.1469–8137.2010.03321.
Karl, T. R., Melillo, J. M. & Peterson, T. C. (2009). Global Climate Change Impacts in the United States. Cambridge: Cambridge University Press.
Kennedy, F. & Freer-Smith, P. (2000). Annual progress report May 2000 of Forestry Commission contract: cause–effect relationships for pollutant inputs to UK woodland ecosystems. Forestry Commission Research Agency.
Klironomos, J. N., Rillig, M. C. & Allen, M. F. (1996). Below-ground microbial and microfaunal responses to Artemisia tridentata grown under elevated atmospheric CO2. Functional Ecology 10: 527–34.
Klironomos, J. N., Rillig, M. C., Allen, M. F.et al. (1997). Soil fungal-arthropod responses to Populus tremuloides grown under enriched atmospheric CO2 under field conditions. Global Change Biology 3: 473–8.
Kranabetter, J. M., Friesen, J., Gamiet, S.et al. (2005). Ectomycorrhizal mushroom distribution by stand age in western hemlock – lodgepole pine forests of northwestern British Columbia. Canadian Journal of Forest Research 35: 1527–39.
Kreutzer, A. M., Dunham, S., Molina, R. & Spatafora, J. W. (2003). Microsatellite markers reveal the belowground distribution of two species of Rhizopogon forming tuberculate ectomycorrhizas. New Phytologist 161: 313–20.
Kulmala, M., Laaksonen, A. & Pirjola, L. (1998). Parameterizations for sulfuric acid/water nucleation rates. Journal of Geophysical Research 103: 8301–7.
Lagomarsino, A., Marinari, S., Moscatelli, M. C.et al. (2006). Disponibilità di cationi scambiabili nel suolo di un pioppeto in condizioni di elevata CO2 e fertilizzazione azotata. In The annual meeting of the Italian Society of Agricultural Chemistry, Alghero, 1–4 October 2006.
Lal, R. (2006). Encyclopedia of Soil Science. 2nd edition. New York: Taylor & Francis.
Landre, A. L., Watmough, S. A. & Dillon, P. J. (2010). Metal pools, fluxes, and budgets in an acidified forested catchment on the Precambrian shield, central Ontario, Canada. Water, Air and Soil Pollution 209: 209–28.
Larson, J. L., Zak, D. R. & Sinsabaugh, R. L. (2002). Extracellular enzyme activity beneath temperate trees growing under elevated carbon dioxide and ozone. Soil Science Society of America Journal 66: 1848–56.
Liiri, M., Setala, H., Haimi, J.et al. (2002). Soil processes are not influenced by the functional complexity of soil decomposer food webs under disturbance. Soil Biology and Biochemistry 34: 1009–20.
Likens, G. E. & Bormann, F. H. (1995). Biogeochemistry of a Forested Ecosystem. 2nd edition. New York: Springer-Verlag.
Likens, G. E., Driscol, C. T., Buso, D. C.et al. (1998). The biogeochemistry of calcium at Hubbard Brook. Biogeochemistry 41: 89–173.
Lischke, H. & Zierl, B. (2006). Feedback between structured vegetation and soil water in a changing climate: a simulation study. In Beniston, M. (ed.) Advances in Global Change Research Climatic Change: Implications for the Hydrological Cycle and for Water Management, pp. 349–78. The Netherlands: Springer.
Litton, C. M., Raich, J. W. & Ryan, M. G. (2007). Carbon allocation in forest ecosystems. Global Change Biology 13: 2089–109.
Loladze, I. (2002). Rising atmospheric CO2 and human nutrition: toward globally imbalanced plant stoichiometry?Trends in Ecology and Evolution 17: 457–61.
Loranger, G. I., Pregitzer, K. S. & King, J. S. (2004). Elevated CO2 and O3 concentrations differentially affect selected groups of the fauna in temperate forest soils. Soil Biology and Biochemistry 36: 1521–4.
Lorenz, K. & Lal, R. (2010). Carbon Sequestration in Forests. Dordrecht: Springer.
Lukac, M., Calfapietra, C. & Godbold, D. L. (2003). Production, turnover and mycorrhizal colonization of root systems of three Populus species grown under elevated CO2 (POPFACE). Global Change Biology 9: 838–48.
Lukac, M., Lagomarsino, A., Moscatelli, M. C.et al. (2009). Forest soil carbon cycle under elevated CO2 – a case of increased throughput?Forestry 82: 75–86.
Luo, Y., Su, B., Currie, W. S.et al. (2004). Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. BioScience 54: 731–9.
Luo, Y. Q., Hui, D. F. & Zhang, D. Q. (2006). Elevated CO2 stimulates net accumulations of carbon and nitrogen in land ecosystems: a meta-analysis. Ecology 87: 53–63.
Magill, A. H., Aber, J. D., Currie, W. S.et al. (2004). Ecosystem response to 15 years of chronic nitrogen additions at the Harvard Forest LTER, Massachusetts, USA. Forest Ecology and Management 196: 7–28.
Majdi, H., Pregitzer, K., Moren, A. S.et al. (2005). Measuring fine root turnover in forest ecosystems. Plant and Soil 276: 1–8.
Mäkelä, A., Valentine, H. T., Helmisaari, H. S. (2008). Optimal co-allocation of carbon and nitrogen in a forest stand at steady state. New Phytologist 180: 114–23.
Markkola, A. M., Ohtonen, A., Ahonen-Jonnarth, U.et al. (1996). Scots pine responses to CO2 enrichment. 1. Ectomycorrhizal fungi and soil fauna. Environmental Pollution 94: 309–16.
Marschner, H. (1995). Mineral Nutrition of Higher Plants, 2nd edn. London: Academic Press.
Mayer, P., Brang, P., Dobbertin, M.et al. (2005). Forest storm damage is more frequent on acidic soils. Annals of Forestry Science 62: 303–11.
McCarthy, J. J. & Intergovernmental Panel on Climate Change. Working Group II. (2001). Climate Change 2001: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the third assessment report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.
McLeod, A. R., Fackrell, J. E. & Alexander, K. (1985). Open-air fumigation of field crops – criteria and design for a new experimental system. Atmospheric Environment 19: 1639–49.
McNulty, S. G., Aber, J. D. & Newman, S. D. (1996). Nitrogen saturation in a high elevation New England spruce-fir stand. Forest Ecology and Management 84: 109–21.
,MEA (2005). Millennium Ecosystem Assessment: Synthesis Report.
Mind'áš, J. & Škvarenina, J. (2004). Lesy Slovenska a Zneč istenie Ovzdušia. Zvolen, Slovakia: EFRA.
Mirsal, I. A. (2008). Soil Pollution: Origin, Monitoring and Remediation. 2nd edition. Berlin: Springer.
Moore, T. R., Trofymow, J. A., Taylor, B.et al. (1999). Litter decomposition rates in Canadian forests. Global Change Biology 5: 75–82.
Müller, P. E. (1879). Studier over skovjord, som bidrag til skovdyrkningens teori om bögemuld og bögemor paa sand og ler. Tidsskrift for Skovbrug 3: 1–124.
Naeem, S. (1998). Species redundancy and ecosystem reliability. Conservation Biology 12: 39–45.
Nasholm, T., Ekblad, A., Nordin, A.et al. (1998). Boreal forest plants take up organic nitrogen. Nature 392: 914–16.
Natali, S. M., Sanudo-Wilhelmy, S. A. & Lerdau, M. T. (2009). Plant and soil mediation of elevated CO2 impacts on trace metals. Ecosystems 12: 715–27.
Neher, D. A., Weicht, T. R., Moorhead, D. L.et al. (2004). Elevated CO2 alters functional attributes of nematode communities in forest soils. Functional Ecology 18: 584–91.
Nihlgard, B. (1985). The ammonium hypothesis – an additional explanation to the forest dieback in Europe. Ambio 14: 2–8.
Nilsen, E. T., Orcutt, D. M. & Hale, M. G. (1996). The Physiology of Plants under Stress. New York: Wiley.
Nilsson, L. O., Wallander, H., Baath, E.et al. (2006). Soil N chemistry in oak forests along a nitrogen deposition gradient. Biogeochemistry 80: 43–55.
Nilsson, L. O., Baath, E., Falkengren-Grerup, U.et al. (2007). Growth of ectomycorrhizal mycelia and composition of soil microbial communities in oak forest soils along a nitrogen deposition gradient. Oecologia 153: 375–84.
Norby, R. J., Wullschleger, S. D., Gunderson, C. A.et al. (1999). Tree responses to rising CO2 in field experiments: implications for the future forest. Plant Cell and Environment 22: 683–714.
Norby, R. J., Ledford, J., Reilly, C. D.et al. (2004). Fine-root production dominates response of a deciduous forest to atmospheric CO2 enrichment. Proceedings of the National Academy of Sciences of the United States of America 101: 9689–93.
Norby, R. J., DeLucia, E. H., Gielen, B.et al. (2005). Forest response to elevated CO2 is conserved across a broad range of productivity. Proceedings of the National Academy of Sciences of the United States of America 102: 18052–6.
Parsons, W. F. J., Bockheim, J. G. & Lindroth, R. L. (2008). Independent, interactive, and species-specific responses of leaf litter decomposition to elevated CO2 and O3 in a northern hardwood forest. Ecosystems 11: 505–19.
Perakis, S. S. & Hedin, L. O. (2002). Nitrogen loss from unpolluted South American forests mainly via dissolved organic compounds. Nature 415: 416–19.
Peterson, G., Allen, C. R. & Holling, C. S. (1998). Ecological resilience, biodiversity, and scale. Ecosystems 1: 6–18.
Pimentel, D., Wilson, C., McCullum, C.et al. (1997). Economic and environmental benefits of biodiversity. BioScience 47: 747–57.
Poszwa, A., Wickman, T., Dambrine, E.et al. (2003). A retrospective isotopic study of spruce decline in the Vosges mountains (France). Water, Air and Soil Pollution Focus 3: 201–22.
Powlson, D. S., Smith, P., Smith, J. U.et al. (1996). Evaluation of Soil Organic Matter Models: Using Existing Long-term Datasets. Berlin: Springer.
Pregitzer, K. S., DeForest, J. L., Burton, A. J.et al. (2002). Fine root architecture of nine North American trees. Ecological Monographs 72: 293–309.
Puhe, J. (1994). Die Wurzelentwicklung der Fichte (Picea abies [L.] Karst.) bei unterschiedlichen chemischen Bodenbedingungen. Berichte der Forschungszentrum Waldökosysteme Universität Göttingen A 108: 1–128.
Puhe, J. (2003). Growth and development of the root system of Norway spruce (Picea abies) in forest stands – a review. Forest Ecology and Management 175: 253–73.
Querejeta, J. I., Barea, J. M., Allen, M. F.et al. (2003). Differential response of delta C13 and water use efficiency to arbuscular mycorrhizal infection in two aridland woody plant species. Oecologia 135: 510–15.
Raben, G., Anderea, H. & Meyer-Heisig, M. (2000). Long-term acid load and its consequences in forest ecosystem in Saxony Germany. WASP 122: 93–103.
Raich, J. W. & Nadelhoffer, K. J. (1989). Belowground carbon allocation in forest ecosystems – global trends. Ecology 70: 1346–54.
Rambal, S. (1984). Water-balance and pattern of root water-uptake by a Quercus coccifera L evergreen scrub. Oecologia 62: 18–25.
Read, D. J. & Perez-Moreno, J. (2003). Mycorrhizas and nutrient cycling in ecosystems – a journey towards relevance?New Phytologist 157: 475–92.
Redecker, D., Szaro, T. M., Bowman, R. J.et al. (2001). Small genets of Lactarius xanthogalactus, Russula cremoricolor and Amanita francheti in late-stage ectomycorrhizal successions. Molecular Ecology 10: 1025–34.
Rennenberg, H., Loreto, F., Polle, A.et al. (2006). Physiological responses of forest trees to heat and drought. Plant Biology 8: 556–71.
Rennenberg, H., Dannenmann, M., Gessler, A.et al. (2009). Nitrogen balance in forest soils: nutritional limitation of plants under climate change stresses. Plant Biology 11: 4–23.
Richter, D. & Markewitz, D. (2001). Understanding Soil Change: Soil Sustainability over Millennia, Centuries, and Decades. Cambridge: Cambridge University Press.
Rillig, M. C., Field, C. B. & Allen, M. F. (1999). Fungal root colonization responses in natural grasslands after long-term exposure to elevated atmospheric CO2. Global Change Biology 5: 577–85.
Rillig, M. C. & Steinberg, P. D. (2002). Glomalin production by an arbuscular mycorrhizal fungus: a mechanism of habitat modification?Soil Biology and Biochemistry 34: 1371–4.
Robinson, M., Cognard-Plancq, A. L., Cosandey, C.et al. (2003). Studies of the impact of forests on peak flows and baseflows: a European perspective. Forest Ecology and Management 186: 85–97.
Ross, D. J., Newton, P. C. D. & Tate, K. R. (2004). Elevated [CO2] effects on herbage production and soil carbon and nitrogen pools and mineralization in a species-rich, grazed pasture on a seasonally dry sand. Plant and Soil 260: 183–96.
Ross, D. S., Matschonat, G. & Skyllberg, U. (2008). Cation exchange in forest soils: the need for a new perspective. European Journal of Soil Science 59: 1141–59.
Rothe, A., Kreutzer, K. & Kuchenhoff, H. (2002). Influence of tree species composition on soil and soil solution properties in two mixed spruce-beech stands with contrasting history in Southern Germany. Plant and Soil 240: 47–56.
Ryel, R. J., Caldwell, M. M., Yoder, C. K.et al. (2002). Hydraulic redistribution in a stand of Artemisia tridentata: evaluation of benefits to transpiration assessed with a simulation model. Oecologia 130: 173–84.
Šály, R. (1991). Pedológia. Zvolen: VŠLD.
Sardans, J., Penuelas, J. & Estiarte, M. (2008). Changes in soil enzymes related to C and N cycle and in soil C and N content under prolonged warming and drought in a Mediterranean shrubland. Applied Soil Ecology 39: 223–35.
Schimel, J. P. & Bennett, J. (2004). Nitrogen mineralization: challenges of a changing paradigm. Ecology 85: 591–602.
Schume, H., Jost, G. & Hager, H. (2004). Soil water depletion and recharge patterns in mixed and pure forest stands of European beech and Norway spruce. Journal of Hydrology 289: 258–74.
Schume, H. G. & Hager, H. (2004). Soil water depletion and recharge patterns in mixed and pure forest stands of European beech and Norway spruce. Journal of Hydrology 289: 258–74.
Sellin, A. (2001). Hydraulic and stomatal adjustment of Norway spruce trees to environmental stress. Tree Physiology 21: 879–88.
Sinsabaugh, R. L., Saiya-Cork, K., Long, T.et al. (2003). Soil microbial activity in a Liquidambar plantation unresponsive to CO2-driven increases in primary production. Applied Soil Ecology 24: 263–71.
Sittig, U. (1999). Zur saisonalen Dynamik von Ektomykorrhizen der Buche (Fagus sylvatica L.). Universität Göttingen, PhD thesis.
Smith, P. (2008). Land use change and soil organic carbon dynamics. Nutrient Cycling in Agroecosystems 81: 169–78.
Snowdon, P., Ryan, P. & Raison, J. (2005). Review of C:N ratios in vegetation, litter and soil under Australian native forests and plantations. Canberra, Australia: Australian Greenhouse Office.
,Soil-net. 2010. www.soil-net.com/legacy/advanced/soil_formation3.htm.
Solberg, S., Dobbertin, M. & Reinds, G. J.et al. (2009). Analyses of the impact of changes in atmospheric deposition and climate on forest growth in European monitoring plots: A stand growth approach. Forest Ecology and Management 258: 1735–50.
Solomon, S., Intergovernmental Panel on Climate Change. Working Group I. (2007). Climate Change 2007: the Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.
Soltner, D. (1996). The Bases of Plant Production, vol. I, The Soil and its Improvement. 21st edition. Saint-Gemmes-sur-Loire.
Staddon, P. L. & Fitter, A. H. (1998). Does elevated atmospheric carbon dioxide affect arbuscular mycorrhizas?Trends in Ecology and Evolution 13: 455–8.
Stoorvogel, J. J., Breemen, N. V. & Janssen, B. H. (1997). The nutrient input by Harmattan dust to a forest ecosystem in Côte d'Ivoire, Africa. Biogeochemistry 37: 145–57.
Subke, J. A., Reichstein, M. & Tenhunen, J. D. (2003). Explaining temporal variation in soil CO2 efflux in a mature spruce forest in Southern Germany. Soil Biology and Biochemistry 35: 1467–83.
Sumner, M. E. (2000). Handbook of Soil Science. Boca Raton, FL: CRC Press.
Svenson, T., Dickson, W., Hellberg, J.et al. (1995). The Swedish liming programme. Water, Air and Soil Pollution 85: 1003–8.
Thomas, G. W. & Hargrove, W. L. (1984). The chemistry of soil acidity. In Adams, F. (ed.) Soil Acidity and Liming, pp. 3–56. Madison, WI: American Society of Agronomy.
Tiessen, H., Stewart, J. W. B. & Cole, C. V. (1984). Pathways of phosphorus transformations in soils of differing pedogenesis. Soil Science Society of America Journal 48: 853–8.
Tognetti, R., Giovannelli, A., Longobucco, A.et al. (1996). Water relations of oak species growing in the natural CO2 spring of Rapolano (central Italy). Annales Des Sciences Forestieres 53: 475–85.
Tomlinson, G. H. (2003). Acidic deposition, nutrient leaching and forest growth. Biogeochemistry 65: 51–81.
Townsend, A. R., Howarth, R. W., Bazzaz, F. A.et al. (2003). Human health effects of a changing global nitrogen cycle. Front Ecol Environ 1: 240–6.
Treseder, K. K. (2004). A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. New Phytologist 164: 347–55.
Troeh, F. R. & Thompson, L. M. (2005). Soils and Soil Fertility. 6th edition. Ames, IA: Blackwell.
Tsukuda, S., Sugiyama, M., Harita, Y.et al. (2006). Atmospheric phosphorus deposition in Ashiu, Central Japan – source apportionment for the estimation of true input to a terrestrial ecosystem. Biogeochemistry 77: 117–38.
Turrion, M. B., Gallardo, J. F. & Gonzalez, M. I. (1997). Nutrient availability in forest soils as measured with anion-exchange membranes. Geomicrobiology Journal 14: 51–64.
Tyler, G., Berggren, D., Bergkvist, B.et al. (1987). Soil acidification and metal solubility in forests of southern Sweden. In Hutchinson, T. C. & Meema, K. M. (eds.) Effects of Atmospheric Pollution on Forests, Wetlands and Agricultural Ecosystems, pp. 347–59. New York: Springer-Verlag.
Ulrich, B. (1987). Stability, elasticity and resilience of terrestrial ecosystems with respect to matter balance. Ecological Studies 61: 11–49.
,United States Natural Resources Conservation Service. (1999). Soil Taxonomy: a Basic System of Soil Classification for Making and Interpreting Soil Surveys. 2nd edition. Washington, D.C.: US Department of Agriculture.
Breemen, N., Mulder, J. & Driscoll, C. T. (1983). Acidification and alkalinization of soils. Plant and Soil 75: 283–308.
Breemen, N., Finlay, R., Lundstrom, U.et al. (2000). Mycorrhizal weathering: A true case of mineral plant nutrition?Biogeochemistry 49: 53–67.
Salm, C., Reinds, G. J. & Vries, W. (2007). Water balances in intensive monitored forest ecosystem in Europe. Environmental Pollution 148: 201–12.
Groenigen, K. J., Six, J., Hungate, B. A.et al. (2006). Element interactions limit soil carbon storage. Proceedings of the National Academy of Sciences of the United States of America 103: 6571–4.
Hees, P. A. W., Jones, D. L., Finlay, R.et al. (2005). The carbon we do not see – the impact of low molecular weight compounds on carbon dynamics and respiration in forest soils: a review. Soil Biology and Biochemistry 37: 1–13.
Vanguelova, E. I. (2002). Soil acidification and fine root response of Scots pine. PhD thesis, University of Reading.
Vanguelova, E. I., Nortcliff, S., Moffat, A. J.et al. (2005). Morphology, biomass and nutrient status of fine roots of Scots pine (Pinus sylvestris) as influenced by seasonal fluctuations in soil moisture and soil solution chemistry. Plant and Soil 270: 233–47.
Vanguelova, E. I., Nortcliff, S., Moffat, A. J.et al. (2007). Short-term effects of manipulated increase in acid deposition on soil, soil solution chemistry and fine roots in Scots pine (Pinus sylvestris) stand on a podzol. Plant and Soil 294: 41–54.
Vartapetian, B. B. & Jackson, M. B. (1997). Plant adaptations to anaerobic stress. Annals of Botany 79: 3–20.
Verburg, P. S. J., Gorissen, A. & Arp, W. J. (1998). Carbon allocation and decomposition of root-derived organic matter in a plant-soil system of Calluna vulgaris as affected by elevated CO2. Soil Biology and Biochemistry 30: 1251–8.
Visser, S. (1995). Ectomycorrhizal fungal succession in Jack pine stands following wildfire. New Phytologist 129: 389–401.
Vitousek, P. M., Porder, S., Houlton, B. Z.et al. (2010). Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions. Ecological Applications 20: 5–15.
Vogt, K. (1991). Carbon budgets of temperate forest ecosystems. Tree Physiology 9: 69–86.
Waksman, S. A. (1936). Humus; Origin, Chemical Composition, and Importance in Nature. Baltimore, MD: The Williams & Wilkins Company.
Walker, T. W. & Syers, J. K. (1976). The fate of phosphorus during pedogenesis. Geoderma 15: 1–19.
Wallander, H. (2000). Uptake of P from apatite by Pinus sylvestris seedlings colonised by different ectomycorrhizal fungi. Plant and Soil 218: 249–56.
Wallander, H., Nilsson, L. O., Hagerberg, D.et al. (2001). Estimation of the biomass and seasonal growth of external mycelium of ectomycorrhizal fungi in the field. New Phytologist 151: 753–60.
Wallenstein, M. D., McNulty, S., Fernandez, I. J.et al. (2006). Nitrogen fertilization decreases forest soil fungal and bacterial biomass in three long-term experiments. Forest Ecology and Management 222: 459–68.
Wan, S. Q., Norby, R. J., Pregitzer, K. S.et al. (2004). CO2 enrichment and warming of the atmosphere enhance both productivity and mortality of maple tree fine roots. New Phytologist 162: 437–46.
Wardle, D. A., Walker, L. R. & Bardgett, R. D. (2004). Ecosystem properties and forest decline in contrasting long-term chronosequences. Science 305: 509–13.
Waring, R. H., Landsberg, J. J. & Williams, M. (1998). Net primary production of forests: a constant fraction of gross primary production?Tree Physiology 18: 129–34.
Warren, J. M., Meinzer, F. C., Brooks, J. R.et al. (2007). Hydraulic redistribution of soil water in two old-growth coniferous forests: quantifying patterns and controls. New Phytologist 173: 753–65.
Watanabe, T., Broadley, M. R., Jansen, S.et al. (2007). Evolutionary control of leaf element composition in plants. New Phytologist 174: 516–23.
Watmough, S. A. & Hutchinson, T. C. (2004). The quantification and distribution of pollution Pb at a woodland in rural south central Ontario, Canada. Environmental Pollution 128: 419–28.
Webb, R. S. & Webb, T. (1988). Rates of sediment accumulation in pollen cores from small lakes and mires of Eastern North-America. Quaternary Research 30: 284–97.
White, R. E. (1979). Introduction to the Principles and Practice of Soil Science. New York: Wiley.
Wilde, S. A. (1958). Forest Soils. New York: Ronald Press.
Zhang, H. & Kovar, J. L. (2000). Phosphorus fractionation. In Pierzynski, G. (ed.) Methods of Phosphorus Analysis for Soils, Sediments, Residuals and Water. Southern Cooperative SeriesBulletin.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.