Skip to main content Accessibility help
×
Home
Hostname: page-component-684899dbb8-8hm5d Total loading time: 0.731 Render date: 2022-05-16T13:03:39.706Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

6 - Phylogenetic Relationships of Chromosomal Races

Published online by Cambridge University Press:  01 March 2019

Jeremy B. Searle
Affiliation:
Cornell University, New York
P. David Polly
Affiliation:
Indiana University
Jan Zima
Affiliation:
Academy of Sciences of the Czech Republic, Prague
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barbosa, S., Paupério, J., Herman, J. S., et al. (2017). Endemic species may have complex histories: within-refugium phylogeography of an endangered Iberian vole. Molecular Ecology, 26, 951–67.CrossRefGoogle ScholarPubMed
Borowik, O. A. (1995). Coding chromosomal data for phylogenetic analysis: phylogenetic resolution of the Pan-Homo-Gorilla trichotomy. Systematic Biology, 44, 563–70.CrossRefGoogle Scholar
Brace, S., Ruddy, M., Miller, R., et al. (2016). The colonization history of British water vole (Arvicola amphibius (Linnaeus, 1758)): origins and development of the Celtic fringe. Proceedings of the Royal Society B, 283, 20160130.CrossRefGoogle ScholarPubMed
Britton-Davidian, J., Catalan, J., Ramalhinho, M. G., et al. (2006). Chromosomal phylogeny of Robertsonian races of the house mouse on the island of Madeira: testing between alternative mutational processes. Genetical Research, 86, 171–83.Google Scholar
Brünner, H., Lugon-Moulin, N., Balloux, F., Fumagalli, L., and Hausser, J. (2002). A taxonomical re-evaluation of the Valais chromosome race of the common shrew Sorex araneus (Insectivora: Soricidae). Acta Theriologica, 47, 245–75.CrossRefGoogle Scholar
Bulatova, N., Jones, R. M., White, T. A., et al. (2011). Natural hybridization between extremely divergent chromosomal races of the common shrew (Sorex araneus, Soricidae, Soricomorpha): hybrid zone in European Russia. Journal of Evolutionary Biology, 24, 573–86.CrossRefGoogle ScholarPubMed
Camin, J. H. and Sokal, R. R. (1965). A method for deducing branching sequences in phylogeny. Evolution, 19, 311–26.CrossRefGoogle Scholar
Castiglia, R., Capanna, E., Bezerra, A. M., et al. (2015). New metacentric populations and phylogenetic hypotheses involving Whole-Arm Reciprocal Translocation in Mus musculus domesticus from Sicily, Southern Italy. Cytogenetic and Genome Research, 146, 230–7.CrossRefGoogle ScholarPubMed
Cernohorska, H., Kubickova, S., Kopecna, O., et al. (2015). Nanger, Eudorcas, Gazella, and Antilope form a well-supported chromosomal clade within Antilopini (Bovidae, Cetartiodactyla). Chromosoma, 124, 235–47.CrossRefGoogle Scholar
Chmátal, L., Gabriel, S. I., Mitsainas, G. P., et al. (2014). Centromere strength provides the cell biological basis for meiotic drive and karyotype evolution in mice. Current Biology, 24, 22953000.CrossRefGoogle ScholarPubMed
Dobigny, G., Ducroz, J.-F., Robinson, T. J., and Volobouev, V. (2004). Cytogenetics and cladistics. Systematic Biology, 53, 470–84.CrossRefGoogle ScholarPubMed
Excoffier, L. and Ray, N. (2008). Surfing during population expansions promotes genetic revolutions and structuration. Trends in Ecology and Evolution, 23, 347–51.CrossRefGoogle ScholarPubMed
Farris, J. S., Kluge, A. G., and Eckhardt, M. J. (1970). A numerical approach to phylogenetic systematics. Systematic Zoology, 19, 172–91.CrossRefGoogle Scholar
Fedyk, S., Wójcik, J. M., Chętnicki, W., and Mączewski, S. (2008). Invalidation of Stobnica chromosome race of the common shrew Sorex araneus. Acta Theriologica, 53, 375–80.Google Scholar
Filipi, K., Marková, S., Searle, J. B., and Kotlík, P. (2015). Mitogenomic phylogenetics of the bank vole Clethrionomys glareolus, a model system for studying end-glacial colonization of Europe. Molecular Phylogenetics and Evolution, 82, 245–57.CrossRefGoogle ScholarPubMed
Fredga, K. (1996). The chromosome races of Sorex araneus in Scandinavia. Hereditas, 125, 123–35.Google Scholar
Fredga, K. (2003). Chromosome races of Sorex araneus in Norway: description of two new races. Mammalia, 67, 179–85.CrossRefGoogle Scholar
Garagna, S., Page, J., Fernandez-Donoso, R., Zuccotti, M., and Searle, J. B. (2014). The Robertsonian phenomenon in the house mouse: mutation, meiosis and speciation. Chromosoma, 123, 529–44.CrossRefGoogle ScholarPubMed
Halkka, L., Kaikusalo, A., and Vakula, N. (1994). Revision of Sorex araneus L. chromosome nomenclature, and race N new to Finland. Annales Zoologici Fennici, 31, 283–8.Google Scholar
Halkka, L., Söderlund, V., Skarén, U., and Heikkilä, J. (1987). Chromosomal polymorphism and racial evolution of Sorex araneus L. in Finland. Hereditas, 106, 257–75.Google Scholar
Hausser, J., Bosshard, F., Taberlet, P., and Wójcik, J. (1991). Relationships between chromosome races and species of Sorex of the araneus group in the western Alps. Mémoires de la Société Vaudoise des Sciences Naturelles, 19, 7995.Google Scholar
Hausser, J., Fedyk, S., Fredga, K., et al. (1994). Definition and nomenclature of chromosome races of Sorex araneus. Folia Zoologica, 43 (Suppl 1), 19.Google Scholar
Herman, J. S., McDevitt, A. D., Kawałko, A., et al. (2014). Land-bridge calibration of molecular clocks and the post-glacial colonization of Scandinavia by the Eurasian field vole Microtus agrestis. PLoS One, 9, e103949.CrossRefGoogle ScholarPubMed
Herman, J. S. and Searle, J. B. (2011). Post-glacial partitioning of mitochondrial genetic variation in the field vole. Proceedings of the Royal Society B, 278, 3601–7.Google Scholar
Hewitt, G. (2000). The genetic legacy of the Quaternary ice ages. Nature, 405, 907–13.CrossRefGoogle ScholarPubMed
Ivanitskaya, E. Y. (1994). Comparative cytogenetics and systematics of Sorex: a cladistic approach. In Advances in the Biology of Shrews, ed. Merritt, J. F., Kirkland, G. L. Jr, and Rose, R. K.. Pittsburgh: Carnegie Museum of Natural History, Special Publication No. 18, pp. 313–23.Google Scholar
Jaarola, M., Tegelström, H., and Fredga, K. (1999). Colonization history in Fennoscandian rodents. Biological Journal of the Linnean Society, 68, 113–27.CrossRefGoogle Scholar
Kotlík, P., Marková, S., Vojtek, L., et al. (2014). Adaptive phylogeography: functional divergence between haemoglobins derived from different glacial refugia in the bank vole. Proceedings of the Royal Society of London B, 281, 20140021.CrossRefGoogle ScholarPubMed
Lambeck, K. (1995). Late Devensian and Holocene shorelines of the British Isles and North Sea from models of glacio-hydro-isostatic rebound. Journal of the Geological Society of London, 152, 437–48.CrossRefGoogle Scholar
Longo, M. S., Carone, D. M., Green, E. D., O’Neill, M. J., and O’Neill, R. J. (2009). Distinct retroelement classes define evolutionary breakpoints demarcating sites of evolutionary novelty. BMC Genomics, 10, 334.CrossRefGoogle ScholarPubMed
McDevitt, A. D., Zub, K., Kawałko, A., et al. (2012). Climate and refugial origin influence the mitochondrial lineage distribution of weasels (Mustela nivalis) in a phylogeographic suture zone. Biological Journal of the Linnean Society, 106, 5769.CrossRefGoogle Scholar
Nachman, M. W. and Searle, J. B. (1995). Why is the house mouse karyotype so variable? Trends in Ecology and Evolution, 10, 397402.CrossRefGoogle ScholarPubMed
Olert, J. (1973). A case of chromosome dissociation in a shrew. Genetical Research, 22, 323–4.CrossRefGoogle Scholar
Pardo-Manuel de Villena, F. and Sapienza, C. (2001). Female meiosis drives karyotypic evolution in mammals. Genetics, 159, 1179–89.Google ScholarPubMed
Pavlova, S. V., Kolomiets, O. L., Bulatova, N., and Searle, J. B. (2008). Demonstration of a WART in a hybrid zone of the common shrew (Sorex araneus Linnaeus, 1758). Comparative Cytogenetics, 2, 115–20.Google Scholar
Pavlova, S. V., Borisov, S. A., Timoshenko, A. F., and Sheftel, B. I. (2017). “European” race-specific metacentrics in East Siberian common shrews (Sorex araneus): a description of two new chromosomal races, Irkutsk and Zima. Comparative Cytogenetics, 11, 797806.CrossRefGoogle ScholarPubMed
Pazonyi, P. (2004). Mammalian ecosystem dynamics in the Carpathian Basin during the last 27,000 years. Palaeogeography, Palaeoclimatology, Palaeoecology, 212, 295314.CrossRefGoogle Scholar
Perelman, P. L., Beklemisheva, V. R., Yudkin, D. V., et al. (2012). Comparative chromosome painting in Carnivora and Pholidota. Cytogenetic and Genome Research, 137, 174–93.CrossRefGoogle ScholarPubMed
Piálek, J., Hauffe, H. C., Rodríguez-Clark, K. M., and Searle, J. B. (2001). Raciation and speciation in house mice from the Alps: the role of chromosomes. Molecular Ecology, 10, 613–25.Google Scholar
Piálek, J., Hauffe, H. C., and Searle, J. B. (2005). Chromosomal variation in the house mouse: a review. Biological Journal of the Linnean Society, 84, 535–63.CrossRefGoogle Scholar
Polyakov, A. V., Borodin, P. M., Lukáčová, L., Searle, J. B., and Zima, J. (1997). The hypothetical Old-Northern chromosome race of Sorex araneus found in the Ural Mts. Annales Zoologici Fennici, 34, 139–42.Google Scholar
Polyakov, A. V., Volobouev, V. T., Borodin, P. M., and Searle, J. B. (1996). Karyotypic races of the common shrew (Sorex araneus) with exceptionally large ranges: the Novosibirsk and Tomsk races of Siberia. Hereditas, 125, 109–15.Google Scholar
Posada, D. and Crandall, K. A. (2001). Intraspecific phylogenetics: trees grafting into networks. Trends in Ecology and Evolution, 16, 3745.CrossRefGoogle Scholar
Ratkiewicz, M., Fedyk, S., Banaszek, A., et al. (2002). The evolutionary history of the two karyotypic groups of the common shrew, Sorex araneus, in Poland. Heredity, 88, 235–42.CrossRefGoogle ScholarPubMed
Searle, J. B. (1984a). Robertsonian Chromosomal Variation in the Common Shrew Sorex araneus L. PhD dissertation, University of Aberdeen.Google Scholar
Searle, J. B. (1984b). Three new karyotypic races of the common shrew Sorex araneus (Mammalia: Insectivora) and a phylogeny. Systematic Zoology, 33, 184–94.CrossRefGoogle Scholar
Searle, J. B. (1986). Factors responsible for a karyotypic polymorphism in the common shrew, Sorex araneus. Proceedings of the Royal Society of London B, 229, 277–98.Google ScholarPubMed
Searle, J. B. (1993). Chromosomal hybrid zones in eutherian mammals. In Hybrid Zones and the Evolutionary Process, ed. Harrison, R. G.. New York: Oxford University Press, pp. 309–53.Google Scholar
Searle, J. B., Kotlík, P., Rambau, R. V., et al. (2009). The Celtic fringe of Britain: insights from small mammal phylogeography. Proceedings of the Royal Society of London B, 276, 4287–94.CrossRefGoogle ScholarPubMed
Searle, J. B. and Wilkinson, P. J. (1987). Karyotypic variation in the common shrew (Sorex araneus) in Britain – a “Celtic Fringe”. Heredity, 59, 345–51.CrossRefGoogle Scholar
Searle, J. B. and Wójcik, J. M. (1998). Chromosomal evolution: the case of Sorex araneus. In Evolution of Shrews, ed. Wójcik, J. M. and Wolsan, M.. Białowieża: Mammal Research Institute, pp. 219–68.Google Scholar
Shchipanov, N. A. and Pavlova, S. V. (2017). Density-dependent processes determine the distribution of chromosomal races of the common shrew Sorex araneus (Lipotyphla, Mammalia). Mammal Research, 62, 267–82.CrossRefGoogle Scholar
Steffensen, J. P., Andersen, K. K., Bigler, M., et al. (2008). High-resolution Greenland ice core data show abrupt climate change happens in few years. Science, 321, 680–4.CrossRefGoogle ScholarPubMed
Swofford, D. L. (1998). PAUP: Phylogenetic Analysis Using Parsimony, version 4.0. Sunderland, MA: Sinauer.Google Scholar
Volobouev, V. T. (1989). Phylogenetic relationships of the Sorex araneus-arcticus species complex (Insectivora, Soricidae) based on high-resolution chromosome analysis. Journal of Heredity, 80, 284–90.CrossRefGoogle Scholar
Volobouev, V. T., Aniskin, V. M., Lecompte, E., and Ducroz, J. F. (2002). Patterns of karyotype evolution in complexes of sibling species within three genera of African murid rodents inferred from the comparison of cytogenetic and molecular data. Cytogenetic and Genome Research, 96, 261–75.CrossRefGoogle ScholarPubMed
Wen, D., Yu, Y., Hahn, M.W., and Nakhleh, L. (2016). Reticulate evolutionary history and extensive introgression in mosquito species revealed by phylogenetic network analysis. Molecular Ecology, 25, 2361–72.Google Scholar
White, M. J. D. (1978). Chain processes in chromosomal speciation. Systematic Zoology, 27, 285–98.CrossRefGoogle Scholar
White, T. A., Bordewich, M., and Searle, J. B. (2010). A network approach to study karyotypic evolution: the chromosomal races of the common shrew (Sorex araneus) and house mouse (Mus musculus) as model systems. Systematic Biology, 59, 262–76.CrossRefGoogle ScholarPubMed
Wójcik, J. M. (1993). Chromosome races of the common shrew Sorex araneus in Poland: a model of karyotype evolution. Acta Theriologica, 38, 315–38.CrossRefGoogle Scholar
Wójcik, J. M. and Searle, J. B. (1988). The chromosome complement of Sorex granarius – the ancestral karyotype of the common shrew (Sorex araneus)? Heredity, 61, 225–9.CrossRefGoogle ScholarPubMed
Zima, J., Slivková, L., Andreas, M., Benda, P., and Reiter, A. (1997). Karyotypic status of shrews (Sorex) from Thrace, European Turkey. Zeitschrift für Säugetierkunde, 62, 315–17.Google Scholar
Zima, J., Wójcik, J. M., and Horáková, M. (1988). The number of karyotypic variants in the common shrew (Sorex araneus). Acta Theriologica, 33, 467–75.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×