Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-lvtdw Total loading time: 0 Render date: 2024-08-16T07:42:38.744Z Has data issue: false hasContentIssue false

17 - Pod landers

Published online by Cambridge University Press:  12 August 2009

Andrew Ball
Affiliation:
The Open University, Milton Keynes
James Garry
Affiliation:
Universiteit Leiden
Ralph Lorenz
Affiliation:
The Johns Hopkins University
Viktor Kerzhanovich
Affiliation:
NASA Jet Propulsion Laboratory
Get access

Summary

The landers covered in this chapter have the ability to survive an initial landing impact, which may send the vehicle rolling and/or bouncing across the surface, and then commence operations having come to rest in whatever orientation is finally reached. Most achieve this by means of airbags to cushion and dampen the initial impact and subsequent rolling/bouncing motion, followed by the opening out of a system of ‘petals’ to bring the lander itself to its proper orientation for surface operations. The Ranger seismometer capsules are the exception to this; their impact damping was provided by the balsa-wood shell and liquid-bath system surrounding the experimental equipment, and the orientation being achieved by means of the natural position of the equipment within its liquid bath.

Typical payload experiments for such landers include cameras, meteorological, geological, geophysical and environmental sensors for investigation of the landing site. While some can be body-mounted on the probe, others may require deployment by means of masts, arms or a rover. In the case of the Mars Exploration Rovers, the pod landing stage itself plays no further role once the rover has rolled off.

Pod landers are particularly suited to ‘network science’, where simultaneous seismological, meteorological or other geophysical measurements are made at multiple locations. Such a network was the aim of the NetLander mission a network of four Mars landers to be carried on the CNES-led Mars Premier mission. The mission was cancelled in 2003 towards the end of Phase B of the project, however.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×