Skip to main content Accessibility help
×
Home
Hostname: page-component-544b6db54f-s4m2s Total loading time: 0.229 Render date: 2021-10-22T06:49:07.589Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

12 - Radio receivers, spectrometers, and interferometers

Published online by Cambridge University Press:  05 June 2012

Edmund C. Sutton
Affiliation:
University of Illinois, Urbana-Champaign
Get access

Summary

Astrophysical radio sources

Most astronomical radio sources are fundamentally different than the most common optical sources, stars. Some radio continuum sources exhibit thermal emission, in which flux increases with frequency (remember that Sν ∝ ν2 at low frequencies for a blackbody). This type of spectrum is characteristic of thermal bremsstrahlung, also known as free–free emission, from a hot electron plasma such as an H II region, as shown in Figure 12.1. At low frequencies such a source is optically thick and the spectrum rises as ν2. At high frequencies such a source becomes optically thin, and the spectrum is nearly flat. The cosmic microwave background (CMB) is another example of a thermal source. Other continuum sources are non-thermal, with flux increasing at longer wavelengths. A typical spectrum from synchrotron radiation varies as Sν ∝ ν-0.8. The spatial structure of the emitting region is often quite complex and of great importance astrophysically. Spectral line emission at radio wavelengths comes from the 21 cm hyperfine structure line of H I (a tracer of neutral hydrogen), from recombination lines primarily of H and He (useful as probes of ionization conditions), and from molecular rotational lines (probes of dense gas and star forming regions). Some radio sources show rapid temporal variations (pulsars).

Fundamentals of radio receivers

At radio frequencies (λ ≳ 300 μm; ν ≲ 1012 Hz) generally the wave picture of electromagnetic radiation is more appropriate than the photon picture.

Type
Chapter
Information
Observational Astronomy
Techniques and Instrumentation
, pp. 209 - 232
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Send book to Kindle

To send this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Send book to Dropbox

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Dropbox.

Available formats
×

Send book to Google Drive

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Google Drive.

Available formats
×