Skip to main content Accessibility help
  • Cited by 1

Book description

Astronomy is fundamentally an observational science and as such it is important for astronomers and astrophysicists to understand how their data are collected and analyzed. This book is a comprehensive review of current observational techniques and instruments. Featuring instruments such as Spitzer, Herschel, Fermi, ALMA, Super-Kamiokande, SNO, IceCube, the Auger Observatory, LIGO and LISA, the book discusses the capabilities and limitations of different types of instruments. It explores the sources and types of noise and provides statistical tools necessary for interpreting observational data. Due to the increasingly important role of statistical analysis, the techniques of Bayesian analysis are discussed, along with sampling techniques and model comparison. With topics ranging from fundamental subjects such as optics, photometry and spectroscopy, to neutrinos, cosmic rays and gravitational waves, this book is essential for graduate students in astronomy and physics. Electronic and colour versions of selected figures are available online at www.

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.


Abadie, al. (LIGO and Virgo Collaborations) (2010a). Search for gravitational-wave inspiral signals associated with short gamma-ray bursts during LIGO's fifth and Virgo's first science run. ApJ, 715, 1453–1461.
Abadie, al. (LIGO and Virgo Collaborations) (2010b). All-sky search for gravitationalwave bursts in the first joint LIGO-GEO-Virgo run. Phys. Rev. D, 81, 102001.
Abadie, al. (2010c). Calibration of the LIGO gravitational wave detectors in the fifth science run. Nucl. Instrum. Methods Phys. Res. A, 624, 223–240.
Abbasi, R. al. (High Resolution Fly's Eye Collaboration) (2005). A study of the composition of ultra-high-energy cosmic rays using the High-Resolution Fly's Eye. ApJ, 622, 910–926.
Abbasi, R. al. (High Resolution Fly's Eye Collaboration (2008a). First observation of the Greisen-Zatsepin-Kuzmin suppression. Phys. Rev. Lett., 100, 101101.
Abbasi, R. al. (High Resolution Fly's Eye Collaboration (2008b). An upper limit on the electron-neutrino flux from the HiRes detector. ApJ, 684, 790–793.
Abbasi, R. al. (High Resolution Fly's Eye Collaboration) (2010a). Indications of proton-dominated cosmic-ray composition above 1.6 EeV. Phys. Rev. Lett., 104, 161101.
Abbasi, R. al. (High Resolution Fly's Eye Collaboration) (2010b). Analysis of largescale anisotropy of ultra-high energy cosmic rays in HiRes data. ApJ, 713, L64–L68.
Abbott, al. (LIGO and TAMA Collaborations) (2005). Upper limits from the LIGO and TAMA detectors on the rate of gravitational-wave bursts. Phys. Rev. D, 72, 122004.
Abdurashitov, J. al. (1994). Results from SAGE (The Russian-American gallium solar neutrino experiment). Phys. Lett. B, 328, 234–248.
Abraham, al. (Pierre Auger Collaboration) (2008a). Observation of the suppression of the flux of cosmic rays above 4 × 1019eV. Phys. Rev. Lett., 101, 061101.
Abraham, al. (Pierre Auger Collaboration) (2008b). Correlation of the highest-energy cosmic rays with the positions of nearby active galactic nuclei. Astropart. Phys., 29, 188–204.
Abraham, al. (Pierre Auger Collaboration) (2010). Measurement of the depth of maximum of extensive air showers above 1018eV. Phys. Rev. Lett., 104, 091101.
Abramowitz, M. & Stegun, I. A. (1970). Handbook of mathematical functions. Washington: National Bureau of Standards.
Accadia, al. (2010). Status and perspectives of the Virgo gravitational wave detector. J. Phys. Conf. Ser., 203, 012074.
Achterberg, al. (IceCube Collaboration) (2006). First year performance of the IceCube neutrino telescope. Astropart. Phys., 26, 155–173.
Achterberg, al. (IceCube Collaboration) (2007). Detection of atmospheric muon neutrinos with the IceCube 9-string detector. Phys. Rev. D, 76, 027101.
Agresti, J. (2008). Researches on non-standard optics for advanced gravitational wave interferometers. Ph.D. thesis, University of Pisa.
Aharmim, al. (SNO Collaboration) (2005). Electron energy spectra, fluxes, and daynight asymmetries of 8B solar neutrinos from measurements with NaCl dissolved in the heavy-water detector at the Sudbury Neutrino Observatory. Phys. Rev. C, 72, 055502.
Ahlen, S. P. (1980). Theoretical and experimental aspects of the energy loss of relativistic heavily ionizing particles. Rev. Mod. Phys., 52, 121–173.
Ahmad, Q. al. (SNO Collaboration) (2001). Measurement of the rate of ve + d → p + p + e- interactions produced by 8B solar neutrinos at the Sudbury Neutrino Observatory. Phys. Rev. Lett., 87, 071301.
Ahmed, S. al. (SNO Collaboration) (2004). Measurement of the total active 8B solar neutrino flux at the Sudbury Neutrino Observatory with enhanced neutral current sensitivity. Phys. Rev. Lett., 92, 181301.
Ahn, H. al. (CREAM Collaboration) (2007). The cosmic ray energetics and mass (CREAM) instrument. Nucl. Instrum. Methods Phys. Res. A, 579, 1034–1053.
Ahrens, al. (IceCube Collaboration) (2001). IceCube preliminary design document (revision 1.24;
Allen, C. W. (2001). Allen's astrophysical quantities, 4th edn., A. N., Cox, ed. New York: Springer.
Amblard, A., Cooray, A., & Kaplinghat, M. (2007). Search for gravitational waves in the CMB after WMAP3: foreground confusion and the optimal frequency coverage for foreground minimization. Phys. Rev. D, 75, 083508.
Antonucci, R. (1993). Unified models for active galactic nuclei and quasars. ARA&A, 31, 473–521.
Armstrong, J. W., Estabrook, F. B., & Tinto, M. (1999). Time-delay interferometry for space-based gravitational wave searches. ApJ, 527, 814–826.
Arqueros, F., Hörandell, J. R., & Keilhauer, B. (2008). Air fluorescence relevant for cosmic-ray detection. Summary of the 5th fluorescence workshop, El Escorial, 2007. Nucl. Instrum. Methods Phys. Res. A, 597, 1–22.
Ashie, al. (Super-Kamiokande Collaboration) (2005). Measurement of atmospheric neutrino oscillation parameters by Super-Kamiokande I. Phys. Rev. D, 71, 112005.
The astronomical almanac for the year 2009 (2009). US Naval Observatory and HM Nautical Almanac Office (also
Bahcall, J. N., Pinsonneault, M. H., & Basu, S. (2001). Solar models: current epoch and time dependences, neutrinos, and helioseismological properties. ApJ, 555, 990–1012.
Bahcall, J. N., Serenelli, A. M., & Basu, S. (2005). New solar opacities, abundances, helioseismology, and neutrino fluxes. ApJ, 621, L85–L88.
Ballardin, al. (2001). Measurement of the VIRGO superattenuator performance for seismic noise suppression. Rev. Sci. Instrum., 72, 3643–3652.
Beatty, J. J. & Westerhoff, S. (2009). The highest-energy cosmic rays. Annu. Rev. Nucl. Part. Sci., 59, 319–345.
Bennett, C. al. (2003). The microwave anisotropy probe mission. ApJ, 583, 1–23.
Bessell, M. S. & Brett, J. M. (1988). JHKLM photometry: standard systems, passbands, and intrinsic colors. PASP, 100, 1134–1151.
Bessell, M. S., Castelli, F., & Plez, B. (1998). Model atmospheres broad-band colors, bolometric corrections and temperature calibrations for O-M stars. A&A, 333, 231–250.
Bevington, P. R. & Robinson, D. K. (2003). Data reduction and error analysis for the physical sciences, 3rd edn. New York: McGraw-Hill.
Bildsten, L. (1998). Gravitational radiation and rotation of accreting neutron stars. ApJ, 501, L89–L93.
Blair, D. G., ed. (1991). The detection of gravitational waves. Cambridge: Cambridge University Press.
Born, M. & Wolf, E. (1999). Principles of optics, 7th edn. Cambridge: Cambridge University Press.
Boyer, J. H., Knapp, B. C., Mannel, E. J., & Seman, M. (2002). FADC-based DAQ for HiRes Fly's Eye. Nucl. Instrum. Methods Phys. Res. A, 482, 457–474.
Braccini, al. (WG2 Suspension group) (2009). Superattenuator seismic isolation measurements by Virgo interferometer: a comparison with the future generation antenna. Einstein Telescope scientific note ET-025-09.
Bracewell, R. N. (2000). The Fourier transform and its applications, 3rd edn. New York: McGraw-Hill.
Burke, B. E., Mountain, R.W., Harrison, D. al. (1991). An abuttable CCD imager for visible and X-ray focal plane arrays. IEEE Trans. Electron Dev., 38, 1069–1076.
Callen, H. & Welton, T. (1951). Irreversibility and generalized noise. Phys. Rev., 83, 34–40.
Caves, C. M. (1980a). Quantum-mechanical radiation-pressure fluctuations in an interferometer. Phys. Rev. Lett., 45, 75–79.
Caves, C. M., Thorne, K. S., Drever, R. W. P., Sandberg, V. D., & Zimmermann, M. (1980b). On the measurement of a weak classical force coupled to a quantummechanical oscillator. I. Issues of principle. Rev. Mod. Phys., 52, 341–392.
Caves, C. M. (1981). Quantum-mechanical noise in an interferometer. Phys. Rev. D, 23, 1693–1708.
Cesarsky, C. J. (1980). Cosmic-ray confinement in the galaxy. ARA&A, 18, 289–319.
Chang, F.-Y., Chen, P., Lin, G.-L., Noble, R., & Sydora, R. (2009). Magnetowave induced plasma wakefield acceleration for ultrahigh energy cosmic rays. Phys. Rev. Lett., 102, 111101.
Cherry, M. L., Hartmann, G., Müller, D., & Prince, T. A. (1974). Transition radiation from relativistic electrons in periodic radiators. Phys. Rev. D, 10, 3594–3607.
Chiang, H. al. (2010). Measurement of cosmic microwave background polarization power spectra from two years of BICEP data. ApJ, 711, 1123–1140.
Cleveland, B. al. (1998). Measurement of the solar electron neutrino flux with the Homestake chlorine detector. ApJ, 496, 505–526.
Corbitt, T., Chen, Y., Khalili, al. (2006). Squeezed-state source using radiationpressure-induced rigidity. Phys. Rev. A, 73, 023801.
Cox, R. T. (1946). Probability, frequency, and reasonable expectation. Am. J. Phys., 14, 1–13.
Crutcher, R. M., Troland, T. H., Goodman, A. al. (1993). OH Zeeman observations of dark clouds. ApJ, 407, 175–184.
Crutcher, R. M., Troland, T. H., Lazareff, B., Paubert, G., & Kazès, I. (1999). Detection of the CN Zeeman effect in molecular clouds. ApJ, 514, L121–L124.
Cutler, C. & Thorne, K. S. (2002). An overview of gravitational-wave sources. In Proceedings of 16th international conference on general relativity and gravitation (GR16), N., Bishop & S. D., Maharaj, eds., 72–111, Singapore: World Scientific.
Cuttaia, al. (2004). Analysis of the pseudocorrelation radiometers for the low frequency instrument onboard the PLANCK satellite. Proc. SPIE, 5498, 756–767.
Davis, L. Jr. & Greenstein, J. L. (1951). The polarization of starlight by aligned dust grains. ApJ, 114, 206–240.
den Herder, J. al. (2001). The reflection grating spectrometer on board XMM-Newton. A&A, 365, L7–L17.
Diaconis, P. & Efron, B. (1983). Computer-intensive methods in statistics. Sci. Am., 248, 116–130.
Efron, B. (1981). Censored data and the bootstrap. J. Am. Stat. Assoc., 76, 312–319.
ESA/NASA (2009a). Laser Interferometer Space Antenna (LISA) Mission Concept, LISA-PRJ-RP-0001.
ESA/NASA (2009b). Laser Interferometer Space Antenna (LISA) Measurement Requirements Flowdown Guide, LISA-MSE-TN-0001.
Esposito, J. al. (1999). In-flight calibration of EGRET on the Compton gamma-ray observatory. ApJS, 123, 203–217.
Estabrook, F. B. & Wahlquist, H. D. (1975). Response of Doppler spacecraft tracking to gravitational radiation. Gen. Relativ. Gravit., 6, 439–447.
Estabrook, F. B., Tinto, M., & Armstrong, J.W. (2000). Time-delay analysis of LISA gravitational wave data: elimination of spacecraft motion effects. Phys. Rev. D, 62, 042002.
Falta, D., Fisher, R., & Khanna, G. (2010). Gravitational wave emission from the singledegenerate channel of type Ia supernovae. arXiv:1011.6387v1.
Forward, R. L. (1978). Wideband laser-interferometer gravitational-radiation experiment. Phys. Rev. D, 17, 379–390.
Fryer, C. & Kalogera, V. (1997). Double neutron star systems and natal neutron star kicks. ApJ, 489, 244–253.
Fukuda, al. (1998). Evidence for oscillation of atmospheric neutrinos. Phys. Rev. Lett., 81, 1562–1567.
Fukuda, al. (2001). Solar 8B and hep neutrino measurements from 1258 days of Super-Kamiokande data. Phys. Rev. Lett., 86, 5651–5655.
Gahbauer, F., Hermann, G., Hörandel, J. R., Müller, D., & Radu, A. A. (2004). A new measurement of the intensities of the heavy primary cosmic-ray nuclei around 1 TeV amu-1. ApJ, 607, 333–341.
Gaisser, T. & Stanev, T. (2008). Cosmic rays. In Review of particle physics. Phys. Lett. B, 667, 254–260.
Gelman, A., Roberts, G. O., & Gilks, W. R. (1996). Efficient Metropolis jumping rules. In Bayesian statistics, Vol. 5, J., Bernardo, J., Berger, A., Dawid, & A., Smith, eds., 599–607, Oxford: Oxford University Press.
Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (2004). Bayesian data analysis, 2nd edn. Boca Raton: CRC Press.
Genzel, R. & Karas, V. (2007). The galactic center. Proc. Int. Astron. Union Symp., 238, 173–180.
Ghez, A. M., Klein, B. L., Morris, M., & Becklin, E. E. (1998). High proper-motion stars in the vicinity of Sagittarius A*: evidence for a supermassive black hole at the center of our galaxy. ApJ, 509, 678–686.
Gillespie, A. & Raab, F. (1993). Thermal noise in the test mass suspensions of a laser interferometer gravitational-wave detector prototype. Phys. Lett. A, 178, 357–363.
Ginzburg, V. L. & Tsytovich, V. N. (1979). Several problems of the theory of transition radiation and transition scattering. Phys. Rep., 49, 1–89.
Giunti, C. & Kim, C. W. (2007). Fundamentals of neutrino physics and astrophysics. Oxford:Oxford University Press.
Goda, K., Mikhailov, E. E., Miyakawa, al. (2008). Generation of a stable low-frequency squeezed vacuum field with periodically poled KTiOPO4 at 1064 nm. Opt. Lett., 33, 92–94.
Goldreich, R. & Kylafis, N. D. (1981). On mapping the magnetic field direction in molecular clouds by polarization measurements. ApJ, 243, L75–L78.
Gorbunov, D. S., Tinyakov, P. G., Tkachev, I. I., & Troitsky, S. V. (2004). Testing the correlations between ultrahigh-energy cosmic rays and BL Lac-type objects with HiRes stereoscopic data. JETP Lett., 80, 145–148.
Goßler, al. (2003). Mode-cleaning and injection optics of the gravitational-wave detector GEO600. Rev. Sci. Instrum., 74, 3787–3795.
Gradshteyn, I. S. & Ryzhik, I. M. (1980). Table of integrals, series, and products (corrrected and enlarged edition), A., Jeffrey, ed. New York: Academic Press.
Gross, E. P. (1955). Shape of collision-broadened spectral lines. Phys. Rev., 97, 395–403.
Hamaker, J. P. & Bregman, J. D. (1996). Understanding radio polarimetry. III. Interpreting the IAU/IEEE definitions of the Stokes parameters. A&AS, 117, 161–165.
Hamaker, J. P., Bregman, J. D., & Sault, R. J. (1996). Understanding radio polarimetry. I. Mathematical foundations. A&AS, 117, 137–147.
Hamamatsu, Photonics (2006). Photomultiplier tubes: basics and applications, 3rd edn.
Hampel, al.(GALLEX Collaboration) (1999). GALLEX solar neutrino observations: results for GALLEX IV. Phys. Lett. B, 447, 127–133.
Hanbury Brown, R., Jennison, R. C., & Das Gupta, >M. K. (1952). Apparent angular sizes of discrete radio sources: observations at Jodrell Bank, Manchester. Nature, 170, 1061–1063.
Hecht, E. (2002). Optics, 4th edn. Reading: Addison-Wesley.
Helstrom, C. W. (1991). Probability and stochastic processes for engineers, 2nd edn. New York: Macmillan.
Hild, S., Chelkowski, S., Freise, al. (2010). A xylophone configuration for a third generation gravitational wave detector. Class. Quantum Grav., 27, 015003.
Hillas, A. M. (1984). The origin of ultra-high-energy cosmic rays. ARA&A, 22, 425–444.
Hillas, A. M. (1996). Differences between gamma-ray and hadronic showers. Space Sci. Rev., 75, 17–30.
Hopkins, A. M. & Beacom, J. F. (2006). On the normalization of the cosmic star formation history. ApJ, 651, 142–154.
Horiuchi, S., Beacom, J. F., & Dwek, E. (2009). Diffuse supernova neutrino background is detectable in Super-Kamiokande. Phys. Rev. D, 79, 083013.
Hu, W. & White, M. (1997). CMB anisotropies: total angular momentum method. Phys. Rev. D, 56, 596–615.
Hughes, S. A. (2001). Evolution of circular, nonequatorial orbits of Kerr black holes due to gravitational-wave emission. II. Inspiral trajectories and gravitational waveforms. Phys. Rev. D, 64, 064004.
Hulse, R. A. & Taylor, J. H. (1975). Discovery of a pulsar in a binary system. ApJ, 195, L51–L53.
IAU (1974). Polarization definitions (Commission 40). Trans. Int. Astron. Union, 15B, 166.
IEEE (1969). IEEE standard #211: definitions of terms for radio wave propagation. IEEE Trans. Antennas Propag., AP-17, 270–275.
In't Zand, J. J. M. (1992). A coded-mask imager as monitor of galactic X-ray sources. Ph.D. thesis, University of Utrecht.
Irwin, K. D. & Hilton, G. C. (2005). Transition-edge sensors. In Cryogenic particle detection, C., Enss, ed. Topics in Applied Physics, 99, 63–149, Berlin: Springer.
Jackson, J. D. (1998). Classical electrodynamics, 3rd edn. New York: Wiley.
Jahoda, K., Markwardt, C. B., Radeva, Yet al. (2006). Calibration of the Rossi x-ray timing explorer proportional counter array. ApJS, 163, 401–423.
Jansen, R. A. (2006). Astronomy with charged coupled devices (e-book:∼rjansen/ast598/ast598_jansen2006.pdf).
Jansen, F., Lumb, D., Altieri, al. (2001). XMM-Newton observatory. I. The spacecraft and operations. A&A, 365, L1–L6.
Johnson, H. L. (1966). Astronomical measurements in the infrared. ARA&A, 4, 193–206.
Johnson, H. L. & Morgan, W. W. (1953). Fundamental stellar photometry for standards of spectral type on the revised system of the Yerkes spectral atlas. ApJ, 117, 313–352.
Kitchin, C. R. (2009). Astrophysical techniques, 5th edn. Boca Raton: CRC Press.
Kliger, D. S., Lewis, J. W., & Randall, C. E. (1990). Polarized light in optics and spectroscopy. Boston: Academic Press.
Kuroda, al.(LCGT Collaboration) (2010). Status of LCGT. Class. Quantum Grav., 27, 084004.
Lamarre, J. al. (2003). The Planck high frequency instrument, a third generation CMB experiment, and a full sky submillimeter survey. New Astron. Rev., 47, 1017–1024.
Larson, al. (2011). Seven-year Wilkinson microwave anisotropy probe (WMAP) observations: power spectra and WMAP-derived parameters. ApJS, 192, 16.
Lazarian, A. & Cho, J. (2005). Grain alignment in molecular clouds. In Astronomical polarimetry: current status and future directions, ASP Conference Series, 343 A. Adamson, C. Aspin, C. J. Davis, , & T., Fujiyoshi, eds. 333–345.
Lazarian, A., Goodman, A. A., & Myers, P. C. (1997). On the efficiency of grain alignment in dark clouds. ApJ, 490, 273–280.
Lèna, P., Lebrun, F., & Mignard, F. (1998). Observational astrophysics, 2nd edn. Berlin: Springer.
Loredo, T. J. (1992). Promise of Bayesian inference for astrophysics. In Statistical challenges in modern astronomy, E. D., Feigelson & G. J., Babu, eds., 275–306. New York: Springer-Verlag.
Lyons, L. (1991). A practical guide to data analysis for physical science students. Cambridge: Cambridge University Press.
MacKay, D. J. C. (2003). Information theory, inference, and learning algorithms. Cambridge: Cambridge University Press.
Mathews, J. (1962). Gravitational multipole radiation. J. Soc. Indust. Appl. Math., 10, 768–780.
Mathews, J. & Walker, R. L. (1970). Mathematical methods of physics. Menlo Park: Benjamin.
Matthews, J. N. (2010). Overview of the high resolution fly's eye: some results from the HiRes experiment. In Proc. 2009 Snowbird particle astrophysics and cosmology workshop, ASP Conference Series, 426, D. B., Kieda & P., Gondolo, eds., 3–10.
McKenzie, K., Grosse, N., Bowen, W. al. (2004). Squeezing in the audio gravitationalwave detection band. Phys. Rev. Lett., 93, 161105.
Meers, B. J. (1988). Recycling in laser-interferometric gravitational-wave detectors. Phys. Rev. D, 38, 2317–2326.
Mie, G. (1908). Beiträge zur optik trüber medien, speziell kolloidaler Metallösungen. Ann. Physik, 330, 377–445.
Misner, C. W., Thorne, K. S., & Wheeler, M. A. (1973). Gravitation. San Francisco:Freeman.
Nyquist, H. (1928). Thermal agitation of electric charge in conductors. Phys. Rev., 32, 110–113.
Ogliore, R. (2007). The sulfur, argon, and calcium isotopic composition of the galactic cosmic ray source. Ph.D. thesis, Caltech.
Oke, J. B. (1964). Photoelectric spectrophotometry of stars suitable for standards. ApJ, 140, 689–693.
Oppenheimer, B. R. & Hinkley, S. (2009). High-contrast observations in optical and infrared astronomy. ARA&A, 47, 253–289.
Papoulis, A. (1991). Probability, random variables, and stochastic processes, 3rd edn. New York: McGraw-Hill.
Perryman, M. A. al. (1997). The HIPPARCOS catalogue. A&A, 323, L49–L52.
Peters, P. C. & Mathews, J. (1963). Gravitational radiation from point masses in a Keplerian orbit. Phys. Rev., 131, 435–440.
Press, W. H. (1997). Understanding data better with Bayesian and global statistical methods. In Unsolved problems in astrophysics, J. N., Bahcall & J. P., Ostriker, eds., pp. 49–60, Princeton: Princeton University Press.
Press, W. H., Teukolsky, S. A, Vetterling, W. T., & Flannery, B. P. (2007). Numerical recipes: the art of scientific computing, 3rd edn. Cambridge: Cambridge University Press.
Price, P. B. & Fleisher, R. L. (1971). Identification of energetic heavy nuclei with solid dielectric track detectors: applications to astrophysical and planetary studies. Annu. Rev. Nucl. Sci., 21, 295–334.
Prior, G.(for SNO Collaboration) (2009). Results from the Sudbury Neutrino Observatory phase III. Nucl. Phys. B (Proc. Suppl.), 188, 96–100.
Raffelt, G. (1996). Stars as laboratories for fundamental physics. Chicago: University of Chicago Press.
Ramsey, N. F. (1949). A new molecular beam resonance method. Phys. Rev., 76, 996.
Reitz, J. R., Milford, F. J., & Christy, R.W. (1979). Foundations of electromagnetic theory, 3rd edn. Reading: Addison-Wesley.
Rieke, G. H. (2002). Detection of light: from the ultraviolet to the submillimeter, 2nd edn. Cambridge: Cambridge University Press.
Roberts, G. O., Gelman, A., & Gilks, W. R. (1997). Weak convergence and optimal scaling of random walk Metropolis algorithms. Annu. Appl. Prob., 7, 110–120.
Röser, S. & Bastian, U., eds. (1991). PPM star catalogue. Heidelberg: Spektrum Akademischer Verlag.
Saikia, D. J. & Salter, C. J. (1988). Polarization properties of extragalactic radio sources. ARA&A, 26, 93–144.
Sault, R. J.Hamaker, J. P., & Bregman, J. D. (1996). Understanding radio polarimetry. II. Instrumental calibration of an interferometer array. A&AS, 117, 149–159.
Schönfelder, al. (1993). Instrument description and performance of the imaging gamma-ray telescope COMPTEL aboard the Compton gamma-ray observatory. ApJS, 86, 657–692.
Schroeder, D. J. (2000). Astronomical optics, 2nd edn. San Diego: Academic Press.
Seidelmann, P. K. (2006). Explanatory supplement to the astronomical almanac, rev. edn. Mill Valley: University Science Books.
Sivia, D. S. (1996). Data analysis: a Bayesian tutorial. Oxford: Clarendon Press.
Soffitta, al. (2003). Techniques and detectors for polarimetry in X-ray astronomy. Nucl. Instrum. Meth. A, 510, 170–175.
Stone, E. al. (1998). The solar isotope spectrometer for the Advanced Composition Explorer. Space Sci. Rev., 86, 357–408.
Streetman, B. G. & Banerjee, S. K. (2005). Solid state electronic devices, 6th edn. Englewood Cliffs: Prentice Hall.
Strömgren, B. (1966). Spectral classification through photoelectric narrow-band photometry. ARA&A, 4, 433–472.
Strüder, L., Briel, U., Dennerl, al. (2001). The European photon imaging camera on XMM-Newton: the pn-CCD camera. A&A, 365, L18–L26.
Sutton, E. C. & Wandelt, B. D. (2006). Optimal image reconstruction in radio interferometry. ApJS, 162, 401–416.
Sze, S. M. & Ng, K wok K. (2006). Physics of semiconductor devices, 3rd edn. Hoboken:Wiley.
Tatarskii, V. I. (1971). The effects of the turbulent atmosphere on wave propagation. Jerusalem: Israel Program for Scientific Translations.
Thompson, A. R., Moran, J. M., & Swenson, G. W. (2001). Interferometry and synthesis in radio astronomy, 2nd edn. New York: Wiley.
Thorne, K. S. (1987). Gravitational radiation. In Three hundred years of gravitation, S. W., Hawking & W., Israel, eds., 330–458. Cambridge: Cambridge University Press.
Timothy, J. G. (1983). Optical detectors for spectroscopy. PASP, 95, 810–834.
Tinbergen, J. (1996). Astronomical polarimetry. Cambridge: Cambridge University Press.
Tinto, M. & Armstrong, J. W. (1999). Cancellation of laser noise in an unequal-arm interferometer detector of gravitational radiation. Phys. Rev. D, 59, 102003.
Tinto, M. & Dhurandhar, S. V. (2005). Time-delay interferometry. Living Rev. Relativity, 8, 4 (
Tretyakov, M. Yu., Koshelev, M. A., Dorovskikh, V. V., Makarov, D. S., and Rosenkranz, P. W. (2005). 60-GHz oxygen band: precise broadening and central frequencies of fine-structure lines, absolute absorption profile at atmospheric pressure, and revision of mixing coefficients. J. Mol. Spectrosc., 231, 1–14.
Turner, M. J. L., Abbey, A., Arnaud, M., et al. (2001). The European photon imaging camera on XMM-Newton: the MOS cameras. A&A, 365, L27–L35.
Vahlbruch, H., Khalaidovski, A., Lastzka, al. (2010). The GEO 600 squeezed light source. Class. Quantum Grav. 27, 084027.
Vallerga, J. V., Kaplan, G. C., Siegmund, O. H. al. (1989). Imaging characteristics of the extreme ultraviolet explorer microchannel plate detectors. IEEE Trans. Nucl. Sci., 36, 881–886.
van de Hulst, H. C. (1957). Light scattering by small particles. New York: Dover.
Virtue, C. J.(SNO Collaboration) (2001). SNO and supernovae. Nucl. Phys. B Proc. Suppl., 100, 326–331.
Wakely, S. P. (2002). Precision x-ray transition radiation detection. Astropart. Phys., 18, 67–87.
Wang, L. & Wheeler, J. C. (2008). Spectropolarimetry of supernovae. ARA&A, 46, 433–474.
Weber, J. (1966). Observation of the thermal fluctuations of a gravitational-wave detector. Phys. Rev. Lett., 17, 1228–1230.
Weisberg, J. M. & Taylor, J. H. (2005). The relativistic binary pulsar B1913+16: thirty years of observations and analysis. In Binary radio pulsars, ASP Conference Series, 328, F. A., Razio & I. H., Stairs, eds., 25–31.
Wilson, R. N. (1996). Reflecting telescope optics I. Berlin: Springer.
Wilson, R. N. & Delabre, B. (1995). New optical solutions for very large telescopes using a spherical primary. A&A, 294, 322–338.
Wolf, E. (2007). Introduction to the theory of coherence and polarization of light. Cambridge: Cambridge University Press.
Zuber, K. (2004). Neutrino physics. Bristol: Institute of Physics Publishing.


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.