Skip to main content Accessibility help
×
Home
Hostname: page-component-768ffcd9cc-mqrwx Total loading time: 0.813 Render date: 2022-12-03T03:54:48.958Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

10 - The compositional diversity and physical properties mapped from the Mars Odyssey Thermal Emission Imaging System

from Part III - Mineralogy and Remote Sensing of Rocks, Soil, Dust, and Ices

Published online by Cambridge University Press:  10 December 2009

P. R. Christensen
Affiliation:
Planetary Exploration Laboratory Arizona State University Moeur Building 110D Tempe, AZ 85287, USA
J. L. Bandfield
Affiliation:
Arizona State University, MC 6305 Mars Space Flight Facility Tempe, AZ, USA
R. L. Fergason
Affiliation:
School of Earth & Space Exploration Arizona State University, PO Box 876305 Tempe, AZ 85287-6305, USA
V. E. Hamilton
Affiliation:
Hawaii Institute of Geophysics & Planetology, University of Hawaii, 1680 East-West Road Honolulu, HI 96822, USA
A. D. Rogers
Affiliation:
Department of Geosciences, SUNY at Stony Brook Stony Brook, NY 11794, USA
Jim Bell
Affiliation:
Cornell University, New York
Get access

Summary

ABSTRACT

The Thermal Emission Imaging System (THEMIS) began mapping Mars in 2002 on the Mars Odyssey spacecraft. This instrument provides nine infrared and five visible surface-sensing and atmospheric bands, with spatial resolutions of 100 m in the IR and 18 m in the visible. THEMIS data have been used to investigate the composition and physical properties of the surface and polar ices, as well as to study atmospheric temperature, dust, and water vapor. THEMIS provides an excellent complement to the hyperspectral, 3–6 km spatial resolution Thermal Emission Spectrometer (TES) observations, and the two instruments have been used together to map the distribution of geologic units and to determine their detailed mineralogy. Among the major findings to date is the discovery of a diversity in volcanic compositions, from ultramafic olivine-rich basalts through basalts, dacite cones and flows, and granitic rocks uplifted by impact. These observations indicate that the Martian crust, while dominated by basalt, has undergone many of the processes of igneous differentiation that occur on Earth. THEMIS has not detected any carbonate outcrops at 100 m scales, suggesting that carbonate rocks have not formed on Mars and has also not detected any evidence for near-surface volcanic activity, liquid water, or ice that is close enough to the surface to produce a measurable thermal anomaly. THEMIS nighttime temperature measurements have shown the existence of exposed bedrock at 100 m to km scales, and layered materials of differing physical properties, with inferred differences in the processes that deposited or consolidated them.

Type
Chapter
Information
The Martian Surface
Composition, Mineralogy and Physical Properties
, pp. 221 - 241
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aharonson, O., Schorghofer, N., and Gerstell, M. F., Slope streak formation and dust deposition rates on Mars, J. Geophys. Res. 108, 5138, doi:5110.1029/2003JE002123, 2003.CrossRefGoogle Scholar
Arvidson, R. E., Seelos, F. P. IV, Deal, K. S., et al., Mantled and exhumed terrains in Terra Meridiani, Mars, J. Geophys. Res. 108(E12), 8073, doi:8010.1029/2002JE001982, 2003.CrossRefGoogle Scholar
Baloga, S. M. and Bruno, B. C., Origin of transverse ridges on the surfaces of catastrophic mass flow deposits on the Earth and Mars, J. Geophys. Res. 110, doi:10.1029/2004JE002381, 2005.CrossRefGoogle Scholar
Bandfield, J. L., Global mineral distributions on Mars, J. Geophys. Res. 107, doi:10.1029/2001JE001510, 2002.CrossRefGoogle Scholar
Bandfield, J. L., Extended surface exposures of granitoid compositions in Syrtis Major, Mars, Geophys. Res. Lett. 33, doi:10.1029/2005GL025559, 2006.CrossRefGoogle Scholar
Bandfield, J. L., Hamilton, V. E., and Christensen, P. R., A global view of Martian volcanic compositions, Science 287, 1626–30, 2000.CrossRefGoogle Scholar
Bandfield, J. L., Glotch, T. D., and Christensen, P. R., Spectroscopic identification of carbonates in the Martian dust, Science 301 (1084), 1987, 2003.Google Scholar
Bandfield, J. L., Hamilton, V. E., Christensen, P. R., and McSween, H. Y. Jr., Identification of quartzofeldspathic materials on Mars, J. Geophys. Res. 109, doi:10.1029/2004JE002290, 2004a.CrossRefGoogle Scholar
Bandfield, J. L., Rogers, D., Smith, M. D., and Christensen, P. R., Atmospheric correction and surface spectral unit mapping using Thermal Emission Imaging System data, J. Geophys. Res. 109, E10008, doi:10010.11029/12004JE002289, 2004b.CrossRefGoogle Scholar
Barker, F., Trondhjemite: definition, environment, and hypothesis of origin. In Trondhjemites, Dacites, and Related Rocks (ed. Barker, F.), New York: Elsevier, pp. 1–12, 1979.Google Scholar
Barlow, N. G. and Perez, C. B., Martian impact crater ejecta morphologies as indicators of the distribution of subsurface volatiles, J. Geophys. Res. 108, doi:10.1029/2002JE002036, 2003.CrossRefGoogle Scholar
Barnouin-Jha, O. S., Baloga, S., and Glaze, L., Comparing landslides to fluidized crater ejecta on Mars, J. Geophys. Res. 110, doi:10.1029/2003JE002214, 2005.CrossRefGoogle Scholar
Beyer, R. A. and McEwen, A. S., Layering stratigraphy of eastern Corprates and northern Capri Chasmata, Mars, Icarus 179, 1–23, doi:10.1016/j.icarus.2005.1006.1014, 2005.CrossRefGoogle Scholar
Bibring, J.-P., Combes, M., Langevin, Y., et al., Results from the ISM experiment, Nature 341, 591–3, 1989.CrossRefGoogle Scholar
Bibring, J.-P., Langevin, Y., Gendrin, A., et al., Mars surface diversity as revealed by the OMEGA/Mars Express observations, Science 307, 1576–81, doi:1510.1126/science.1108806, 2005.CrossRefGoogle ScholarPubMed
Bibring, J.-P., Langevin, Y., Mustard, J. F., et al., Global mineralogical and aqueous Mars history derived from OMEGA/Mars Express data, Science 312, 400–4, doi:410.1126/science.1122659, 2006.CrossRefGoogle ScholarPubMed
Boyce, J. M., Mouginis-Mark, P., and Garbeil, H., Ancient oceans in the northern lowlands of Mars: evidence from impact crater depth/diameter relationships, J. Geophys. Res. 110, E03008, doi:03010.01029/02004JE002328, 2005.CrossRefGoogle Scholar
Bradley, B. A., Sakimoto, S. E. H., Frey, H., and Zimbelman, J. R., Medusa Fossae formation: new perspectives from Mars Global Surveyor, J. Geophys. Res. 107, doi:10.1029/2001JE001537, 2002.CrossRefGoogle Scholar
Carr, M. H., Crumpler, L. S., Cutts, J. A., et al., Martian impact craters and emplacement of ejecta by surface flow, J. Geophys. Res. 82, 4055–65, 1977.CrossRefGoogle Scholar
Catling, D. C. and Moore, J. M., The nature of coarse-grained crystalline hematite and its implications for the early environment of Mars, Icarus 165, 277–300, 2003.CrossRefGoogle Scholar
Chan, M. A., Beitler, B., Parry, W. T., Ormo, J., and Komatsu, G., A possible terrestrial analogue for hematite concretions on Mars, Nature 429, 731–4, 2004.CrossRefGoogle Scholar
Chapman, M. G. and Tanaka, K. L., Interior trough deposits on Mars: Subice volcanoes?, J. Geophys. Res. 106, 10087–100, 2001.CrossRefGoogle Scholar
Chojnacki, M., Jakosky, B. M., and Hynek, B. M., Surficial properties of landslides and surrounding units in Ophir Chasma, Mars, J. Geophys. Res. 111, doi:10.1029/2005JE002601, 2006.CrossRefGoogle Scholar
Christensen, P. R., Variations in Martian surface composition and cloud occurrence determined from thermal infrared spectroscopy: analysis of Viking and Mariner 9 data, J. Geophys. Res. 103, 1733–46, 1998.CrossRefGoogle Scholar
Christensen, P. R. and Ruff, S. W., The formation of the hematite-bearing unit in Meridiani Planum: evidence for deposition in standing water, J. Geophys. Res. 109, E08003, doi:08010.01029/02003JE002233, 2004.CrossRefGoogle Scholar
Christensen, P. R., Bandfield, J. L., Smith, M. D., Hamilton, V. E., and Clark, R. N., Identification of a basaltic component on the Martian surface from Thermal Emission Spectrometer data, J. Geophys. Res. 105, 9609–22, 2000a.CrossRefGoogle Scholar
Christensen, P. R., Clark, R. N., Kieffer, H. H., et al., Detection of crystalline hematite mineralization on Mars by the Thermal Emission Spectrometer: evidence for near-surface water, J. Geophys. Res. 105, 9623–42, 2000b.CrossRefGoogle Scholar
Christensen, P. R., Bandfield, J. L., Hamilton, V. E., et al., The Mars Global Surveyor Thermal Emission Spectrometer experiment: investigation description and surface science results, J. Geophys. Res. 106, 23823–71, 2001a.CrossRefGoogle Scholar
Christensen, P. R., Morris, R. V., Lane, M. D., Bandfield, J. L., and Malin, M. C., Global mapping of Martian hematite mineral deposits: remnants of water-driven processes on early Mars, J. Geophys. Res. 106, 23873–85, 2001b.CrossRefGoogle Scholar
Christensen, P. R., Bandfield, J. L., Bell, J. F. III, et al., Morphology and composition of the surface of Mars: Mars Odyssey THEMIS results, Science 300, 2056–61, 2003a.CrossRefGoogle Scholar
Christensen, P. R., Mehall, G. L., Silverman, S. H., et al., The Miniature Thermal Emission Spectrometer for the Mars Exploration Rovers, J. Geophys. Res. 108, 8064, doi:8010.1029/2003JE002117, 2003b.CrossRefGoogle Scholar
Christensen, P. R., Jakosky, B. M., Kieffer, H. H., et al., The Thermal Emission Imaging System (THEMIS) for the Mars 2001 Odyssey Mission, Space Sci. Rev. 110, 85–130, 2004a.CrossRefGoogle Scholar
Christensen, P. R., Ruff, S. W., Fergason, R. L., et al., Initial results from the Miniature Thermal Emission Spectrometer experiment at the Spirit landing site at Gusev crater, Science 305, 837–42, 2004b.CrossRefGoogle Scholar
Christensen, P. R., Wyatt, M. B., Glotch, T. D., et al., Mineralogy at Meridiani Planum from the Mini-TES Experiment on the Opportunity Rover, Science 306, 1733–9, 2004c.CrossRefGoogle Scholar
Christensen, P. R., McSween, H. Y. Jr., Bandfield, J. L., et al., Evidence for igneous diversity and magmatic evolution on Mars from infrared spectral observations, Nature 436, doi:10.1038/nature03639, 2005a.Google Scholar
Christensen, P. R., Ruff, S. W., Fergason, R. L., et al., Mars Exploration Rover candidate landing sites as viewed by THEMIS, Icarus 187, 12–43, 2005b.CrossRefGoogle Scholar
Conrath, B., Curran, R., Hanel, R., et al., Atmospheric and surface properties of Mars obtained by infrared spectroscopy on Mariner 9, J. Geophys. Res. 78, 4267–78, 1973.CrossRefGoogle Scholar
Edgett, K. S. and Parker, T. J., Water on early Mars: possible subaqueous sedimentary deposits covering ancient cratered terrain in western Arabia and Sinus Meridiani, Geophys. Res. Lett. 24, 2897–900, 1997.CrossRefGoogle Scholar
Fenton, L. K., Potential sand sources for the dune fields in Noachis Terra, Mars, J. Geophys. Res. 110, E11004, doi:11010.11029/12005JE002436, 2005.CrossRefGoogle Scholar
Fenton, L. K. and Mellon, M. T., Thermal properties of sand from Thermal Emission Spectrometer (TES) and Thermal Emission Imaging System (THEMIS): spatial variations within the Proctor crater dune field on Mars, J. Geophys. Res. 111, E06014, doi:06010.01029/02004JE002363, 2006.CrossRefGoogle Scholar
Fenton, L. K., Toigo, A. D., and Richardson, M. I., Aeolian processes in Proctor crater on Mars: mesoscale modeling of dune-forming winds, J. Geophys. Res. 110, doi:10.1029/2004JE002309, 2005.CrossRefGoogle Scholar
Fergason, R. L., Christensen, P. R., and Kieffer, H. H., High resolution thermal inertia derived from THEMIS: thermal model and applications, J. Geophys. Res. 111, E12004, doi:12010.11029/12006JE002735, 2006.CrossRefGoogle Scholar
Gellert, R., Rieder, R., Anderson, R. C., et al., Chemistry of rocks and soils at Gusev crater from the Alpha Particle X-ray Spectrometer, Science 305, 829–32, 2004.CrossRefGoogle ScholarPubMed
Gendrin, A., Mangold, N., Bibring, J.-P., et al., Sulfates in martian layered terrains: the OMEGA/Mars Express view, Science 307, 1587–90, 2005.CrossRefGoogle ScholarPubMed
Gillespie, A. R., Kahle, A. B., and Walker, R. E., Color enhancement of highly correlated images: I. Decorrelation and HSI contrast stretches, Remote Sens. Environ. 20, 209–35, 1986.CrossRefGoogle Scholar
Glotch, T. D. and Christensen, P. R., Geologic and mineralogic mapping of Aram Chaos: evidence for a water-rich history, J. Geophys. Res. 110, E09006, doi:09010.01029/02004JE02389, 2005.CrossRefGoogle Scholar
Glotch, T. D. and Rogers, A. D., Evidence for aqueous deposition of hematite- and sulfate-rich light-toned layered deposits in Aureum and Iani Chaos, Mars, J. Geophys. Res. 112, E06001, doi:10.1029/2006JE002863, 2007.CrossRefGoogle Scholar
Glotch, T. D., Morris, R. V., Christensen, P. R., and Sharp, T. G., Effect of precursor mineralogy on the thermal infrared emission spectra of hematite: application to martian hematite mineralization, J. Geophys. Res. 109, E07003, doi:07010.01029/02003JE002224, 2004.CrossRefGoogle Scholar
Glotch, T. D., Bandfield, J. L., Christensen, P. R., et al., The mineralogy of the light-toned outcrop at Meridiani Planum as seen by the Miniature Thermal Emission Spectrometer and implications for its formation, J. Geophys. Res. 111, doi:10.1029/2005JE002672, 2006.CrossRefGoogle Scholar
Golombek, M. P., Grant, J. A., Parker, T. J., et al., Selection of the Mars Exploration Rover landing sites, J. Geophys. Res. 108, 8072, doi:8010.1029/2003JE002074, 2003.CrossRefGoogle Scholar
Golombek, M. P., Arvidson, R. E., Bell, J. F., et al., Assessment of Mars Exploration Rover landing site predictions, Nature 436, 44–8, doi:10.1038/nature03600, 2005.CrossRefGoogle ScholarPubMed
Golombek, M. P., Grant, J. A., Crumpler, L. S., et al., Erosion rates at the Mars Exploration Rover landing sites and long-term climate change on Mars, J. Geophys. Res. 111, doi:10.1029/JE002754, 2006.CrossRefGoogle Scholar
Grotzinger, J., Bell, J. F. III, Calvin, W., et al., Stratigraphy, sedimentology and depositional environment of the Burns Formation, Meridiani Planum, Mars, Earth Planet. Sci. Lett. 240, 11–72, 2005.CrossRefGoogle Scholar
Hamilton, V. E. and Christensen, P. R., Determining the modal mineralogy of mafic and ultramafic igneous rocks using thermal emission spectroscopy, J. Geophys. Res. 105, 9717–34, 2000.CrossRefGoogle Scholar
Hamilton, V. E. and Christensen, P. R., Detailed mineralogical analyses of Martian meteorite-like terrains using MGS TES and Odyssey THEMIS data, Lunar Planet. Sci. XXXIV, Abstract #1982 (CD-ROM), 2003.Google Scholar
Hamilton, V. E. and Christensen, P. R., Evidence for extensive olivine-rich bedrock in Nili Fossae, Mars, Geology 33, 433–6, 2005.CrossRefGoogle Scholar
Hamilton, V. E., Christensen, P. R., McSween, H. Y. Jr., and Bandfield, J. L., Searching for the source regions of martian meteorites using MGS TES: integrating martian meteorites into the global distribution of igneous materials on Mars, Meteorit. Planet. Sci. 38, 871–85, 2003a.CrossRefGoogle Scholar
Hamilton, V. E., Christensen, P. R., and McSween, H. Y. Jr., Global constraints on the source regions of martian meteorites from MGS TES data, Meteorit. Planet. Sci. 37, 59, 2003b.Google Scholar
Hanel, R., Conrath, B., Hovis, W., et al., Investigation of the martian environment by infrared spectroscopy on Mariner 9, Icarus 17, 423–42, 1972a.CrossRefGoogle Scholar
Hanel, R. A., Conrath, B. J., Hovis, W. A., et al., Infrared spectroscopy experiment on the Mariner 9 mission: preliminary results, Science 175, 305–8, 1972b.CrossRefGoogle Scholar
Harrison, K. P. and Grimm, R. E., Rheological constraints on martian landslides, Icarus 163, 347–62, 2003.CrossRefGoogle Scholar
Herkenhoff, K. E. and Plaut, J. J., Surface ages and resurfacing rates of the polar layered deposits on Mars, Icarus 144, 243–53, 2000.CrossRefGoogle Scholar
Hiesinger, H. and Head, J. W. III, The Syrtis Major volcanic province, Mars: synthesis from Mars Global Surveyor data, J. Geophys. Res. 109, doi:10.1029/2003JE002143, 2004.CrossRefGoogle Scholar
Hoefen, T. M. and Clark, R. N., Compositional variability of martian olivines using Mars Global Surveyor thermal emission spectra, Lunar Planet. Sci. Conf. XXXII, Abstract #2049 (CD-ROM), 2001.Google Scholar
Hoefen, T., Clark, R. N., Bandfield, J. L., et al., Discovery of olivine in the Nili Fossae region of Mars, Science 302, 627–30, 2003.CrossRefGoogle ScholarPubMed
Howard, A. D., Moore, J. M., and Irwin, I. R. P., An intense terminal epoch of widespread fluvial activity on early Mars: 1. Valley network incision and associated deposits, J. Geophys. Res. 110, E12S14, doi:10.1029/2005JE002459, 2005.CrossRefGoogle Scholar
Hynek, B. M., Implications for hydrologic processes on Mars from extensive bedrock outcrops throughout Terra Meridiani, Nature 431, 156–9, 2005.CrossRefGoogle Scholar
Hynek, B. M., Arvidson, R. E., and Phillips, R. J., Geologic setting and origin of Terra Meridiani hematite deposit on Mars, J. Geophys. Res. 107, 5088, doi:5010.1029/2002E001891, 2002.CrossRefGoogle Scholar
Hynek, B. M., Phillips, R. J., and Arvidson, R. E., Explosive volcanism in the Tharsis region: Global evidence in the martian geologic record, J. Geophys. Res. 108, 5111, doi:5110.1029/2003JE002062, 2003.CrossRefGoogle Scholar
Kieffer, H. H., Martin, T. Z., Peterfreund, A. R., et al., Thermal and albedo mapping of Mars during the Viking primary mission, J. Geophys. Res. 82, 4249–92, 1977.CrossRefGoogle Scholar
Klingelhöfer, G., Morris, R. V., Bernhardt, B., et al., Jarosite and hematite at Meridiani Planum from the Mössbauer spectrometer on the Opportunity rover, Science 306, 1740–5, 2004.CrossRefGoogle Scholar
Knauth, L. P., Burt, D. M., and Wohletz, K. H., Impact origin of sediments at the Opportunity landing site on Mars, Nature 438, 1123–8, 2005.CrossRefGoogle ScholarPubMed
Komatsu, G., Geissler, P. E., Strom, R. G., and Singer, R. B., Stratigraphy and erosional landforms of layered deposits in Valles Marineris, Mars, J. Geophys. Res. 98, 1993.CrossRefGoogle Scholar
Lane, M. D., Morris, R. V., Mertzman, S. A., and Christensen, P. R., Evidence for platy hematite grains in Sinus Meridiani, Mars, J. Geophys. Res. 107, 5126, doi:5110.1029/2001JE001832, 2002.CrossRefGoogle Scholar
Lane, M. D., Christensen, P. R., and Hartmann, W. K., Utilization of the THEMIS visible and infrared imaging data for crater population studies in the Meridiani Planum landing site, Geophys. Res. Lett. 30, 1770, doi:1710.1029/2003GL017183, 2003.CrossRefGoogle Scholar
Lucchitta, B. K., Isbell, N. K., and Howington-Kraus, A., Topography of Valles Marineris: implications for erosional and structural history, J. Geophys. Res. 99, 3783–98, 1994.CrossRefGoogle Scholar
Malin, M. C. and Edgett, K. S., Sedimentary rocks of early Mars, Science 290, 1927–37, 2000.CrossRefGoogle ScholarPubMed
Malin, M. C. and Edgett, K. S., Mars Global Surveyor Mars Orbiter Camera: interplanetary cruise through primary mission, J. Geophys. Res. 106, 23429–570, 2001.CrossRefGoogle Scholar
Mangold, N., Quantin, C., Ansan, V., Delacourt, C., and Allemand, P., Evidence for precipitation on Mars from dendritic valleys in the Valles Marineris area, Science 305, 78–81, 2004.CrossRefGoogle ScholarPubMed
McCollom, T. M. and Hynek, B. M., A volcanic environment for bedrock diagenesis at Meridiani Planum on Mars, Nature 438, 1129–31, doi:1110.1038/nature04390, 2005.CrossRefGoogle ScholarPubMed
McConnochie, T. H., Bell, J. F. III, Savransky, D., et al., Calibration and in-flight performance of the Mars Odyssey THEMIS Visible Imaging Subsystem (VIS) Instrument, J. Geophys. Res. 111, E06018, doi:10.1029/2005JE002568, 2006.CrossRefGoogle Scholar
McCord, T. B. and Adams, J. B., Spectral reflectivity of Mars, Science 163, 1058–60, 1969.CrossRefGoogle ScholarPubMed
McEwen, A. S., Mobility of large rock avalanches; evidence from Valles Marineris, Mars, Geology 17, 1111–14, 1989.2.3.CO;2>CrossRefGoogle Scholar
McEwen, A. S., Malin, M. C., Carr, M. H., and Hartmann, W. K., Voluminous volcanism on early Mars revealed in Valles Marineris, Nature 397, 584–6, 1999.CrossRefGoogle Scholar
McEwen, A. S., Preblich, B. S., Turtle, E. P., et al., The rayed crater Zunil and interpretations of small impact craters on Mars, Icarus 176, 351–81, 2005.CrossRefGoogle Scholar
McSween, H. Y. Jr., Arvidson, R. E., Bell, J. F. III, et al., Basaltic rocks analyzed by the Spirit rover in Gusev crater, Science 305, 842–5, 2004.CrossRefGoogle ScholarPubMed
McSween, H. Y. Jr., Grove, T. L., and Wyatt, W. B., Constraints on the composition and petrogenesis of the martian crust, J. Geophys. Res. 108 (E12), 5135, doi:5110.1029/2003JE002175, 2003.CrossRefGoogle Scholar
McSween, H. Y., Wyatt, M. B., Gellert, R., et al., Characterization and petrologic interpretation of olivine-rich basalts at Gusev crater, Mars, J. Geophys. Res. 111, E02S10, doi:1029/2005JE002477, 2006.CrossRefGoogle Scholar
Mellon, M. T., Jakosky, B. M., Kieffer, H. H., and Christensen, P. R., High resolution thermal inertia mapping from the Mars Global Surveyor Thermal Emission Spectrometer, Icarus 148, 437–55, 2000.CrossRefGoogle Scholar
Michalski, J. R., Kraft, M. D., Sharp, T. G., Williams, L. B., and Christensen, P. R., Mineralogical constraints on the high-silica Martian surface component observed by TES, Icarus 174, 161–77, 2005.CrossRefGoogle Scholar
Milam, K. A., Stockstill, K. R., Moersch, J. E., et al., THEMIS characterization of the MER Gusev crater landing site, J. Geophys. Res. 108, 8078, doi:1029/2003JE002023, 2003.CrossRefGoogle Scholar
Milkovich, S. M. and Head, J. W. III, North polar cap of Mars: polar layered deposit characterization and identification of a fundamental climate signal, J. Geophys. Res. 110, doi:10.1029/2004JE002349, 2005.CrossRefGoogle Scholar
Moersch, J. E., Hayward, T., Nicholson, P., et al., Identification of a 10 µm silicate absorption feature in the Acidalia region of Mars, Icarus 126, 183–96, 1997.CrossRefGoogle Scholar
Morris, R. V., Lane, M. D., Mertzman, S., Shelfer, T. D., and Christensen, P. R., Chemical and mineralogical purity of Sinus Meridiani hematite, Lunar Planet. Sci. XXXI, Abstract #1618 (CD-ROM), 2000.Google Scholar
Morris, R. V., Klingelhöfer, G., Bernhardt, B., et al., Mineralogy at Gusev crater from the Mössbauer spectrometer on the Spirit Rover, Science 305, 833–6, 2004.CrossRefGoogle ScholarPubMed
Mouginis-Mark, P., Martian fluidized crater morphology: variations with crater size, latitude, altitude and target material, J. Geophys. Res. 84, 8011–22, 1979.CrossRefGoogle Scholar
Mouginis-Mark, P. J. and Christensen, P. R., New observations of volcanic features on Mars from the THEMIS instrument, J. Geophys. Res. 110, doi:10.1029/2005JE002421, 2005.CrossRefGoogle Scholar
Murchie, S., Mustard, J., Bishop, J., et al., Spatial variations in the spectral properties of bright regions on Mars, Icarus 105, 454–68, 1993.CrossRefGoogle Scholar
Mustard, J. F., Erard, S., Bibring, J.-P., et al., The surface of Syrtis Major: composition of the volcanic substrate and mixing with altered dust and soil, J. Geophys. Res. 98, 3387–400, 1993.CrossRefGoogle Scholar
Mustard, J. F., Poulet, F., Gendrin, A., et al., Olivine and pyroxene diversity in the crust of Mars, Science 307, 1594–7, 2005.CrossRefGoogle ScholarPubMed
Nedell, S. S., Squyres, S. W., and Anderson, D. W., Origin and evolution of the layered deposits in the Valles Marineris, Mars, Icarus 70, 409–41, 1987.CrossRefGoogle Scholar
Newsom, H. E., Barber, C. A., Hare, T. M., et al., Paleolakes and impact basins in southern Arabia Terra, including Meridiani Planum: implications for the formation of hematite deposits on Mars, J. Geophys. Res. 108, 8075, doi:8010.1029/2002JE001993, 2003.CrossRefGoogle Scholar
Pelkey, S. M., Jakosky, B. M., and Christensen, P. R., Surficial properties in Melas Chasma, Mars, from Mars Odyssey THEMIS data, Icarus 165, 68–89, 2003.CrossRefGoogle Scholar
Pelkey, S. M., Jakosky, B. M., and Christensen, P. R., Surficial properties in Gale crater, Mars, from Mars Odyssey THEMIS data, Icarus 167, 244–70, doi:1016/j.icarus.2003.1009.1013, 2004.CrossRefGoogle Scholar
Pimentel, G. C., Forney, P. B., and Herr, K. C., Evidence about hydrate and solid water in the martian surface from the 1969 Mariner infrared spectrometer, J. Geophys. Res. 79, 1623–34, 1974.CrossRefGoogle Scholar
Pollack, J. B., Roush, T., Witteborn, F., et al., Thermal emission spectra of Mars (5.4–10.5µm): evidence for sulfates, carbonates, and hydrates, J. Geophys. Res. 95, 14595–627, 1990.CrossRefGoogle Scholar
Poulet, F., Bibring, J.-P., Mustard, J. F., et al., Phyllosilicates on Mars and implications for early martian climate, Nature 438, 623–7, doi:610.1038/nature04274, 2005.CrossRefGoogle ScholarPubMed
Presley, M. A. and Arvidson, R. E., Nature and origin of materials exposed in the Oxia Palus-Western Arabia-Sinus Meridiani region, Mars, Icarus 75, 499–517, 1988.CrossRefGoogle Scholar
Putzig, N. E., Mellon, M. T., Jakosky, B. M., et al., Mars thermal inertia from THEMIS data, Lunar Planet. Sci. XXXV, Abstract #1863 (CD-ROM), 2004.Google Scholar
Putzig, N. E., Mellon, M. T., Kretkea, K. A., and Arvidson, R. E., Global thermal inertia and surface properties of Mars from the MGS mapping mission, Icarus 173, 325–41, 2005.CrossRefGoogle Scholar
Quantin, C., Allemand, P., Mangold, N., and Delacourt, C., Ages of Valles Marineris (Mars) landslides and implications for canyon history, Icarus 172, 555–72, 2004.CrossRefGoogle Scholar
Quantin, C., Allemand, P., Mangold, N., Dromart, G., and Delacourt, C., Fluvial and lacustrine activity on layered deposits in Melas Chasma, Valles Marineris, Mars, J. Geophys. Res. 110, E12S19, doi:10.1029/2005JE002440, 2005.CrossRefGoogle Scholar
Ramsey, M. S. and Christensen, P. R., Mineral abundance determination: quantitative deconvolution of thermal emission spectra, J. Geophys. Res. 103, 577–96, 1998.CrossRefGoogle Scholar
Rieder, R., Gellert, R., Anderson, R. C., et al., Chemistry of rocks and soils at Meridiani Planum from the Alpha Particle X-ray Spectrometer, Science 306, 1746–9, 2005.CrossRefGoogle Scholar
Rogers, A. D. and Christensen, P. R., Surface mineralogy of martian low-albedo regions from MGS TES data: implications for crustal evolution and surface alteration, J. Geophys. Res. 112, E01003, doi:01010.01029/02006JE002727, 2007.CrossRefGoogle Scholar
Rogers, A. D., Christensen, P. R., and Bandfield, J. L., Compositional heterogeneity of the ancient martian crust: analysis of Ares Vallis bedrock the THEMIS and TES data, J. Geophys. Res. 110, doi:10.1029/2005JE002399, 2005.CrossRefGoogle Scholar
Ruff, S. W., Quantitative thermal infrared emission spectroscopy applied to granitoid petrology, Ph.D. Dissertation thesis, 234pp., Arizona State University, 1998.
Ruff, S. W. and Hamilton, V. E., Mineralogical anomalies in Mars Nili Patera caldera observed with Thermal Emission Spectrometer data, Lunar Planet. Sci. XXXII, Abstract #2186 (CD-ROM), 2001.Google Scholar
Ruff, S. W. and Christensen, P. R., Identifying compositional heterogeneity in Mars' Nili Patera caldera using THEMIS and TES daa, Lunar Planet. Sci. XXXIV, Abstract # 2068 (CD-ROM), 2003.Google Scholar
Salisbury, J. W. and Walter, L. S., Thermal infrared (2.5–13.5 µm) spectroscopic remote sensing of igneous rock types on particulate planetary surfaces, J. Geophys. Res. 94, 9192–202, 1989.CrossRefGoogle Scholar
Schaber, G. G., Syrtis Major: a low-relief volcanic shield, J. Geophys. Res. 87, 9852–66, 1982.CrossRefGoogle Scholar
Selivanov, A. S., Naraeva, M. K., Panfilov, A. S., et al., Thermal imaging of the surface of Mars, Nature 341, 593–5, 1989.CrossRefGoogle Scholar
Shean, D. E., Head, J. W., and Marchant, D. R., Origin and evolution of a cold-based tropical mountain glacier on Mars: the Pavonis Mons fan-shaped deposit, J. Geophys. Res. 110, E05001, doi:05010.01029/02004JE002360, 2005.CrossRefGoogle Scholar
Shorthill, R. W., Infrared atlas of the eclipsed Moon, The Moon 7, 22–45, 1973.CrossRefGoogle Scholar
Smith, D. E., Zuber, M. T., Frey, H. V., et al., Mars Orbiter Laser Altimeter: experiment summary after the first year of global mapping of Mars, J. Geophys. Res. 106, 23689–722, 2001.CrossRefGoogle Scholar
Squyres, S. W., Arvidson, R., Bell, J. F. III, et al., The Opportunity Rover's Athena Science Investigation at Meridiani Planum, Mars, Science 306, 1698–703, 2004a.CrossRefGoogle Scholar
Squyres, S. W., Grotzinger, J. P., Bell, J. F., et al., In-situ evidence for an ancient aqueous environment on Mars, Science 306, 1709–14, 2004b.CrossRefGoogle Scholar
Squyres, S. W. and Knoll, A. H., Sedimentary rocks at Meridiani Planum: origin, diagenesis, and implications for life on Mars, Earth Planet. Sci. Lett. 240, 1–10, 2005.CrossRefGoogle Scholar
Stockstill, K. R., Moersch, J. E., McSween, H. Y. Jr., Piatek, J., and Christensen, P. R., TES and THEMIS study of proposed paleolake basins within the Aeolis quadrangle of Mars, J. Geophys. Res. 112, 10.1029/2005JE002517, 2007.CrossRefGoogle Scholar
Sullivan, R., Thomas, P., Veverka, J., Malin, M., and Edgett, K. S., Mass movement slope streaks imaged by the Mars Orbiter Camera, J. Geophys. Res. 106, 23607–33, 2001.CrossRefGoogle Scholar
Tanaka, K. L., Carr, M. H., Skinner, J. A., Gilmore, M. S., and Hare, T. M., Geology of the MER 2003 “Elysium” candidate landing site in southeastern Utopia Planitia, Mars, J. Geophys. Res. 108, doi:10.1029/2003JE002054, 2003.CrossRefGoogle Scholar
Thomas, P. C., S. Squyres, K. Herkenhoff, A. Howard, and B. Murray, Polar deposits of Mars. In Mars (ed. Kieffer, H., et al.), Tucson: University of Arizona Press, pp. 767–95, 1992.Google Scholar
Tornabene, L. L., Moersch, J. E., McSween, H. Y. Jr., et al., Identification of large (2–10 km) rayed craters on Mars in THEMIS thermal infrared images: implications for possible Martian meteorite source regions, J. Geophys. Res. 111, doi:10.1029/2005JE002600, 2006.CrossRefGoogle Scholar
Weitz, C. M., Parker, T. J., Bulmer, M. H., Anderson, F. S., and Grant, J. A., Geology of the Melas Chasma landing site for the Mars Exploration Rover mission, J. Geophys. Res. 108, doi:10.1029/2002JE002022, 2003.CrossRefGoogle Scholar
Wright, S. P. and Ramsey, M. S., Thermal infrared data analyses of Meteor crater, Arizona: implications for Mars spaceborne data from the Thermal Emission Imaging System, J. Geophys. Res. 111, doi:10.1029/2005JE002472, 2006.CrossRefGoogle Scholar
Wyatt, M. B., Hamilton, V. E., McSween, H. Y. Jr., Christensen, P. R., and Taylor, L. A., Analysis of terrestrial and martian volcanic compositions using thermal emission spectroscopy: I. Determination of mineralogy, chemistry, and classification strategies, J. Geophys. Res. 106, 14711–32, 2001.CrossRefGoogle Scholar
Wyatt, M. B., McSween, H. Y. Jr., Moersch, J. E., and Christensen, P. R., Analysis of surface compositions in the Oxia Palus region on Mars from Mars Global Surveyor Thermal Emission Spectrometer observations, J. Geophys. Res. 108, 5107, doi:5110.1029/2002JE001986, 2003.CrossRefGoogle Scholar
Wyrick, D. Y., Ferrill, D. A., Morris, A. P., Colton, S. L., and Sims, D. W., Distribution, morphology and origins of Martian pit crater chains, J. Geophys. Res. 109, E06005, doi: 06010.01029/02004JE002240, 2004.CrossRefGoogle Scholar
5
Cited by

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×