Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-25T08:09:12.428Z Has data issue: false hasContentIssue false

12 - Multispectral imaging from Mars Pathfinder

from Part III - Mineralogy and Remote Sensing of Rocks, Soil, Dust, and Ices

Published online by Cambridge University Press:  10 December 2009

W. H. Farrand
Affiliation:
Space Science Institute 4750 Walnut Street, # 205 Boulder, CO 80301, USA
J. F. Bell III
Affiliation:
Cornell University, Department of Astronomy, 402 Space Sciences Building, Ithaca, NY 14853-6801, USA
J. R. Johnson
Affiliation:
Cold Regions Research & Engineering Laboratory Alaska Office PO Box 35170 Ft. Wainwright, AK 99703, USA
J. L. Bishop
Affiliation:
SETI Institute 515 N. Whisman Road Mountain View, CA 94034, USA
R. V. Morris
Affiliation:
NASA/JSC Cose KR, Building 31, Room 120 2101 NASA Road 1 Houston, TX 77058, USA
Jim Bell
Affiliation:
Cornell University, New York
Get access

Summary

ABSTRACT

The Imager for Mars Pathfinder (IMP) was a mast-mounted instrument on the Mars Pathfinder (MPF) lander which landed on Mars' Ares Vallis floodplain on July 4, 1997. During the 83 sols of MPF landed operations, the IMP collected over 16 600 images. Multispectral images were collected using 12 narrowband filters at wavelengths between 400 and 1000 nm in the visible and near-infrared (VNIR) range. The IMP provided VNIR spectra of the materials surrounding the lander including rocks, bright soils, dark soils, and atmospheric observations. During the primary mission, only a single primary rock spectral class, “Gray Rock,” was recognized; since then, “Black Rock” has been identified. The Black Rock spectra have a stronger absorption at longer wavelengths than do Gray Rock spectra. A number of coated rocks have also been described, the Red and Maroon Rock classes, and perhaps indurated soils in the form of the Pink Rock class. A number of different soil types were also recognized with the primary ones being Bright Red Drift, Dark Soil, Brown Soil, and Disturbed Soil. Examination of spectral parameter plots indicated two trends which were interpreted as representing alteration products formed in at least two different environmental epochs of the Ares Vallis area. Subsequent analysis of the data and comparison with terrestrial analogs have supported the interpretation that the rock coatings provide evidence of earlier Martian environments.

Type
Chapter
Information
The Martian Surface
Composition, Mineralogy and Physical Properties
, pp. 263 - 280
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, J. B., Smith, M. O., and Johnson, P. E., Spectral mixture modeling: a new analysis of rock and soil types at the Viking Lander 1 site, J. Geophys. Res. 91 (B8), 8098–112, 1986.CrossRefGoogle Scholar
Adams, J. B., M. O. Smith, and A. R. Gillespie, Imaging spectroscopy: interpretation based on spectral mixture analysis. In Remote Geochemical Analysis: Elemental and Mineralogical Composition (ed. Pieters, C. M. and Englert, P. A. J.), New York: Cambridge University Press, pp. 145–6, 1993.Google Scholar
Allen, C. C., Morris, R. V., Jager, K. M., et al., Martian regolith simulant JSC Mars-1, Lunar Planet. Sci. Conf. XXIX, Abstract #1690, 1998.Google Scholar
Arvidson, R. E., Guinness, E. A., Dale-Bannister, M. A., et al., Nature and distribution of surficial deposits in Chryse Planitia and vicinity, Mars, J. Geophys. Res. 94, 1573–87, 1989.CrossRefGoogle Scholar
Bandfield, J. L., Hamilton, V. E., and Christensen, P. R., A global view of Martian surface compositions from MGS-TES, Science 287, 1626–30, 2000.CrossRefGoogle Scholar
Barnouin-Jha, O., Murchie, S., Johnson, J. R., Bell, J. F. III, and Morris, R. V., Rock coatings at the Mars Pathfinder landing site, Lunar Planet. Sci. XXXI, Abstract #1267, 2000.Google Scholar
Bell, J. F. III, McSween, H. Y. Jr., Murchie, S. L., et al., Mineralogic and compositional properties of Martian soil and dust: results from Mars Pathfinder, J. Geophys. Res. 105, 1721–55, 2000.CrossRefGoogle Scholar
Bell, J. F. III, Farrand, W. H., Johnson, J. R., and Morris, R. V., Low abundance materials at the Mars Pathfinder landing site: an investigation using spectral mixture analysis and related techniques, Icarus 158, 56–71, 2002.CrossRefGoogle Scholar
Bell, J. F. III, Squyres, S. W., Arvidson, R. E., et al., Pancam multispectral imaging results from the Spirit rover at Gusev crater, Science 305, 800–6, 2004.CrossRefGoogle ScholarPubMed
Bishop, J. L., Froschl, H., and Mancinelli, R. L., Alteration processes in volcanic soils and identification of exobiologically important weathering products on Mars using remote sensing, J. Geophys. Res. 103(31), 457–31, 456, 1998.CrossRefGoogle ScholarPubMed
Bishop, J. L., Scheinost, A., Bell, J. F. III, et al., Ferrihydrite-Schwertmannite-Silicate mixtures as a model of Martian soils measured by Pathfinder, Lunar Planet. Sci. 29th, Abstract #1803, Lunar and Planetary Institute, Houston TX, 1998.Google Scholar
Bishop, J. L., Murchie, S. L., Pieters, C. M., and Zent, A. P., A model for formation of dust, soil, and rock coatings on Mars: physical and chemical processes on the Martian surface, J. Geophys. Res. 107(E11), 5097, doi:10.1029/2001JE001581, 2002.CrossRefGoogle Scholar
Bishop, J. L., Parente, M., and Hamilton, V. E., Identifying minerals on Mars through VNIR and mid-IR spectral deconvolution based on the Martian meteorites, EOS Trans. AGU 84(46), Fall Meeting. Suppl., Abstract P21B-0045, 2003a.Google Scholar
Bishop, J. L., Minitti, M. E., Lane, M. D., and Weitz, C. M., The influence of glassy coatings on volcanic rocks from Mauna Iki, Hawaii and applications to rocks on Mars, Lunar Planet. Sci. XXXIV, Abstract #1516, 2003b.Google Scholar
Bishop, J. L., Schiffman, P., Dyar, M. D., et al., Soil forming processes on Mars as determined by mineralogy: analysis of recent Martian spectral, chemical, and magnetic data and comparison with altered tephra from Haleakala, Maui, Lunar Planet. Sci. XXXVII, Abstract #1423, 2006.Google Scholar
Bridges, N. T., Crisp, J. A., and Bell, J. F. III (2001) Characteristics of the Pathfinder APXS sites: implications for the composition of Martian rocks and soils, J. Geophys. 106, 14621–66, 2001.CrossRefGoogle Scholar
Clark, B. C., Baird, A. K., Weldon, R. J., et al., Chemical composition of Martian fines, J. Geophys. Res. 87, 10059–67, 1982.CrossRefGoogle Scholar
Deal, K. S., Arvidson, R. E., and Jolliff, B. L., Remote mapping of the Ka'u Desert, Hawaii: silica in a Mars analog terrain, Lunar Planet. Sci. XXXIV, Abstract #1952, 2003.Google Scholar
Domingue, D., Harman, B., and Verbiscer, A., The scattering properties of natural terrestrial snows versus icy satellite surfaces, Icarus 128, 28–48, 1997.CrossRefGoogle Scholar
Farrand, W. H. and Harsanyi, J. C., Mapping the distribution of mine tailings in the Coeur d'Alene River Valley, Idaho through the use of a Constrained Energy Minimization technique, Remote Sens. Environ. 59, 64–76, 1997.CrossRefGoogle Scholar
Farrand, W. H., Johnson, J. R., and Bell, J. F. III, N-Dimensional visualization and spectral mixture analysis applied to Imager for Mars Pathfinder data: detection and mapping of rocks and soils, Lunar Planet. Sci. XXXII, Abstract #1656, 2001.Google Scholar
Farrand, W. H., Merényi, E., Murchie, S., Barnouin-Jha, O., and Johnson, J., Mapping rock and soil units in the MPF Superpan using a Kohonen self-organizing map, Lunar Planet. Sci. XXXV, Abstract #1916, 2004.Google Scholar
Farrand, W. H., Merényi, E., Murchie, S., and Barnouin-Jha, O. S., Spectral class distinctions observed in the MPF IMP SuperPan using a self-organizing map, Lunar Planet. Sci. XXXVI, Abstract #2009, 2005.Google Scholar
Farrand, W. H., Bell, J. F. III, Johnson, J. R., et al., Spectral variability among rocks in visible and near infrared multispectral Pancam data collected at Gusev crater: examinations using spectral mixture analysis and related techniques, J. Geophys. Res. – Planets 111, E02S15, doi:10.1029/2005JE002495, 2006.CrossRefGoogle Scholar
Fischer, E. M., and Pieters, C. M., The continuum slope of Mars: Bi-directional reflectance investigations and applications to Olympus Mons, Icarus 102, 185–202, 1993.CrossRefGoogle Scholar
Foley, C. N., Economou, T. E., and Clayton, R. N., Final chemical results from the Mars Pathfinder alpha proton X-ray spectrometer, J. Geophys. Res. 108 (E12), doi:10.1029/2002JE002019, 2003.Google Scholar
Gaddis, L., Kirk, R., Johnson, J., et al., Digital mapping of the Mars Pathfinder landing site: design, acquisition, and derivation of cartographic products for science applications, J. Geophys. Res. 104, 8853–68, 1999.CrossRefGoogle Scholar
Golombek, M. P., Cook, R. A., Moore, H. J., and Parker, T. J., Selection of the Mars Pathfinder landing site, J. Geophys. Res. 102, 3967–88, 1997a.CrossRefGoogle Scholar
Golombek, M. P., Cook, R. A., Economou, T., et al., Overview of the Mars Pathfinder mission and assessment of landing site predictions, Science 278, 1743–8, 1997b.CrossRefGoogle Scholar
Golombek, M. P., Moore, H. J., Haldemann, A. F. C., Parker, T. J., and Schofield, J. T., Assessment of Mars Pathfinder landing site predictions, J. Geophys. Res. 104, 8585–94, 1999.CrossRefGoogle Scholar
Golombek, M. P., Crumpler, L. S., Grant, J. A., et al., Geology of the Gusev cratered plains from the Spirit rover transverse, J. Geophys. Res. 111, E02S07, doi:10.1029/2005JE002503, 2006.CrossRefGoogle Scholar
Greeley, R., Squyres, S. W., Arvidson, R. E., et al., Wind-Related Processes Detected by the Spirit Rover at Gusev crater, Mars, Science 305, 810–21, 2004.CrossRefGoogle ScholarPubMed
Guinness, E. A., Arvidson, R. E., Clark, I. H. D., and Shepard, M. K., Optical scattering properties of terrestrial varnished basalts compared with rocks and soils at the Viking Lander sites, J. Geophys. Res. 102, 28687–703, 1997.CrossRefGoogle Scholar
Hamilton, V. E., Christensen, P. R., and Bandfield, J. L., Volcanism or aqueous alteration on Mars? (Communication Arising), Nature 421, 711–12, doi:10.1038/421711b, 2003.CrossRefGoogle Scholar
Hapke, B., Theory of Reflectance and Emittance Spectroscopy, Cambridge University Press, 455pp., 1993.CrossRefGoogle Scholar
Herkenhoff, K. E., Johnson, J. R., and Weller, L. A., The Imager for Mars Pathfinder Insurance Pan, 6th Int. Conf. Mars, Abstract #3224, 2003.Google Scholar
Huck, F. O., Jobson, D. J., Park, S. K., et al., Spectrophotometric and color estimates of the Viking lander sites, J. Geophys. Res. 82, 4401–11, 1977.CrossRefGoogle Scholar
Johnson, J. R. and Grundy, W. M., Visible/near-infrared spectra and two-layer modeling of palagonite-coated basalts, Geophys. Res. Lett. 28, 2101–4, 2001.CrossRefGoogle Scholar
Johnson, J. R., Kirk, R., Soderblom, L. A., et al., Preliminary results on photometric properties of materials at the Sagan Memorial Station, Mars, J. Geophys. Res. 104, 8809–30, 1999.CrossRefGoogle Scholar
Johnson, J. R., Grundy, W. M., and Lemmon, M. T., Dust deposition at the Mars Pathfinder landing site: observations and modeling of visible/near-infrared spectra, Icarus 163, 330–46, 2003.CrossRefGoogle Scholar
Klaasen, K. P., Thorpe, T. E., and Morabito, L. A., Inflight performance of the Viking visual imaging subsystem, Appl. Opt. 16, 3158–70, 1977.CrossRefGoogle ScholarPubMed
Kohonen, T., Self-Organizing Maps, in Springer Series in Information Sciences, vol. 30, Springer, Berlin, 1997.CrossRefGoogle Scholar
Kraft, D., Sharp, T. G., and Michalski, J. R., Thermal emission spectra of silica-coated basalt and considerations for Martian surface morphology, Lunar Planet. Sci. XXXIV, Abstract #1420, 2003.Google Scholar
Madsen, M. B., Hviid, S. F., Gunnlaugsson, H. P., et al., The magnetic properties on Mars Pathfinder, J. Geophys. Res. 104, 8761–94, 1999.CrossRefGoogle Scholar
McGuire, A. F. and Hapke, B. W., An experimental study of light scattering by large, irregular particles, Icarus 113, 134–55, 1995.CrossRefGoogle Scholar
McSween, H. Y. Jr., Murchie, S. L., Crisp, J. A., et al., Chemical, multispectral, and textural constraints on the composition and origin of rocks at the Mars Pathfinder landing site, J. Geophys. Res. 104, 8679–716, 1999.CrossRefGoogle Scholar
Merényi, E., Jain, A., and Farrand, W. H., Applications of SOM magnification to data mining. WSEAS Trans. Syst. 3(5), 2122–8, 2004.Google Scholar
Minitti, M. E., Mustard, J. F., and Rutherford, M. J., Effects of glass content and oxidation on the spectra of SNC-like basalts: applications to Mars remote sensing, J. Geophys. Res. 107(E5), doi:10.1029/2001JE001518, 2002.CrossRefGoogle Scholar
Morris, R. V. and Neely, S. C., Optical properties of hematite-magnetite mixtures: implications for Mars, Lunar Planet. Sci. XIII, 548–9, 1982.Google Scholar
Moore, H. J., Bickler, D. B., Crisp, J. A., et al., Soil-like deposits observed by Sojourner, the Pathfinder rover, J. Geophys. Res. 104 (E4), 8729–46, 1999.CrossRefGoogle Scholar
Morris, R. V., Golden, D. C., Bell, J. F. III, and Lauer, H. V., Hematite, pyroxene, and phyllosilicates on Mars: implications from oxidized impact melt rocks from Manicouagan crater, Quebec, Canada, J. Geophys. Res. 100, 5319–28, 1995.CrossRefGoogle Scholar
Morris, R. V., Golden, D. C., Bell, J. F. III, et al., Possible products of hydrolytic, hydrochloric, and sulfuric weathering at the Mars Pathfinder landing site: evidence from multispectral, elemental, and magnetic data on analogue and meteorite samples, J. Geophys. Res. 105, 1757–817, 2000.CrossRefGoogle Scholar
Morris, R. V., Klingelhöfer, G., Bernhardt, B., et al., Mössbauer mineralogy on Mars: first results from the Spirit landing site in Gusev crater, Science 305, 833–6, 2004.CrossRefGoogle Scholar
Morris, R. V., Klingelhöfer, G., Schröder, C., et al., Mössbauer mineralogy of rock, soil, and dust at Meridiani Planum, Mars: Opportunity's journey across sulfate-rich outcrop, basaltic sand and dust, and hematite lag deposits, J. Geophys. Res. 111, E12S15, doi:10.1029/2006JE002791, 2006.CrossRefGoogle Scholar
Murchie, S., Thomas, N., Britt, D., Herkenhoff, K., and Bell, J. F. III, Mars Pathfinder spectral measurements of Phobos and Deimos: Comparisons with previous data, J. Geophys. Res. 104, 9069–79, 1999.CrossRefGoogle Scholar
Murchie, S., Barnouin-Jha, O., Johnson, J. R., et al., Diverse rock types at the Mars Pathfinder landing site, Lunar Planet. Sci. XXXI, Abstract #1267, 2000.Google Scholar
Murchie, S., Barnouin-Jha, O., Johnson, J., Bell, J. F. III, and Morris, R. V., Spectral differences between shape classes of rocks at the Mars Pathfinder landing site, Lunar Planet. Sci. XXXII, Abstract #1825, 2001.Google Scholar
Murchie, S., Barnouin-Jha, O., Barnouin-Jha, K., et al., New insights into the geology of the Mars Pathfinder landing site from spectral and morphologic analysis of the 12-color Superpan panorama, 6th Int. Conf. Mars, Abstract #3060, 2003.Google Scholar
Mustard, J. F. and Bell, J. F. III, New composite reflectance spectra of Mars from 0.4 to 3.14 µm, Geophys. Res. Lett. 21, 353–6, 1994.CrossRefGoogle Scholar
Mustard, J. F., Murchie, S., Erard, S., and Sunshine, J., In situ compositions of Martian volcanics: implications for the mantle, J. Geophys. Res. 102, 25605–15, 1997.CrossRefGoogle Scholar
Mustard, J. F., Poulet, F., Gendrin, A., et al., Olivine and pyroxene diversity in the crust of Mars, Science 307, 1594–7, 2005.CrossRefGoogle ScholarPubMed
Reid, R. J., Smith, P. H., Lemmon, M., et al., Imager for Mars Pathfinder (IMP) image calibration. J. Geophys. Res. 104, 8907–26, 1999.CrossRefGoogle Scholar
Rieder, R., Economou, T., Wänke, H., et al., The chemical composition of martian soil and rocks returned by the mobile alpha proton X-ray spectrometer: preliminary results from the X-ray mode, Science 278, 1771–4, 1997.CrossRefGoogle ScholarPubMed
Rieder, R., Gellert, R., Anderson, R. C., et al., Chemistry of rocks and soils at Meridiani Planum from the Alpha Particle X-ray Spectrometer, Science 306, 1746–9, 2004.CrossRefGoogle ScholarPubMed
Roush, T. L., D. L. Blaney, and R. B. Singer, The surface composition of Mars as inferred from spectroscopic observations. In Remote Geochemical Analysis: Elemental and Mineralogical Composition (ed. Pieters, C. M. and Englert, P. A. J.), New York: Cambridge University Press, pp. 367–93, 1993.Google Scholar
Singer, R. B., Spectroscopic observations of Mars, Adv. Space Res. 5, 59–68, 1985.CrossRefGoogle Scholar
Singer, R. B., McCord, T. B., Clark, R. N., Adams, J. B., and Huguenin, R. L., Mars surface composition from reflectance spectroscopy: a summary. J. Geophys. Res. 84, 8415–26, 1979.CrossRefGoogle Scholar
Smith, P. H., Tomasko, M. G., Britt, D., et al., The Imager for Mars Pathfinder experiment, J. Geophys. Res. 102, 4003–25, 1997a.CrossRefGoogle Scholar
Smith, P. H., Bell, J. F. III, Bridges, N. T., et al., Results from the Mars Pathfinder camera, Science 278, 1758–65, 1997b.CrossRefGoogle Scholar
Smith, P. H. and Lemmon, M., Opacity of the Martian atmosphere measured by the Imager for Mars Pathfinder, J. Geophy. Res. 104, 8975–86, 1999.CrossRefGoogle Scholar
Soderblom, L. A., Anderson, R. C., Arvidson, R. E., et al., Soils of Eagle crater and Meridiani Planum at the Opportunity landing site, Science 306, 1723–6, 2004.CrossRefGoogle Scholar
Squyres, S. W., Arvidson, R. E., Bell, J. F. III, et al., The Opportunity Rover's Athena science investigation at Meridiani Planum, Mars, Science 306, 1698–702, 2004.CrossRefGoogle ScholarPubMed
Sullivan, R., Greeley, R., Kraft, M., et al., Results of the Imager for Mars Pathfinder windsock experiment, J. Geophys. Res. 105, 24547–62, 2000.CrossRefGoogle Scholar
Tanaka, K. L., Sedimentary history and mass flow structures of Chryse and Acidalia Planitiae, Mars, J. Geophys. Res. 102, 4131–50, 1997.CrossRefGoogle Scholar
Thomas, N., Markiewicz, W. J., Sablotny, R. M., et al., The color of the Martian sky and its influence on the illumination of the Martian surface, J. Geophys. Res. 104, 8795–808, 1999.CrossRefGoogle Scholar
Wadhwa, M., Lentz, R. C. F., McSween, H. Y. Jr., and Crozaz, G., A petrologic and trace element study of Dar al Gani 476 and 489: twin meteorites with affinities to basaltic and lherzolitic shergottites, Meteorit. Planet. Sci. 36, 195–208, 2001.CrossRefGoogle Scholar
Ward, A., Gaddis, L. R., Kirk, R. L., et al., General geology and morphology of the Mars Pathfinder landing site, J. Geophys. Res. 104, 8555–72, 1999.CrossRefGoogle Scholar
Wright, S. P., Farrand, W. H., Rogers, D., and Merényi, E., The nature of the Mars Pathfinder “Black Rock” lithology: comparisons with SNC meteorites and OMEGA spectral images of Chryse Planitia, EOS Trans. AGU, 86(52), Fall Meeting Suppl., Abstract P21B-0145, 2005.Google Scholar
Wyatt, M. B. and McSween, H. Y. Jr., Spectral evidence for weathered basalt as an alternative to andesite in the northern lowlands of Mars, Nature 417, 263–6, 2002.CrossRefGoogle ScholarPubMed
Wyatt, M. B., McSween, H. Y., Moersch, J. E., and Christensen, P. R., Analysis of surface compositions in the Oxia Palus region on Mars from Mars Global Surveyor Thermal Emission Spectrometer observations, J. Geophys. Res. 108(E9), 5107, doi:10.1029/2002JE001986, 2003.Google Scholar
Yen, A. S., Gellert, R., Schröder, C., et al., An integrated view of the chemistry and mineralogy of martian soils, Nature 436, doi:10.1038/nature03637, 2005.Google ScholarPubMed
Zipfel, J., Scherer, P., Spettel, B., Dreibus, G., and Schultz, L., Petrology and chemistry of the new shergottite Dar al Gani 476, Meteorit. Planet. Sci. 35, 95–106, 2000.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Multispectral imaging from Mars Pathfinder
    • By W. H. Farrand, Space Science Institute 4750 Walnut Street, # 205 Boulder, CO 80301, USA, J. F. Bell III, Cornell University, Department of Astronomy, 402 Space Sciences Building, Ithaca, NY 14853-6801, USA, J. R. Johnson, Cold Regions Research & Engineering Laboratory Alaska Office PO Box 35170 Ft. Wainwright, AK 99703, USA, J. L. Bishop, SETI Institute 515 N. Whisman Road Mountain View, CA 94034, USA, R. V. Morris, NASA/JSC Cose KR, Building 31, Room 120 2101 NASA Road 1 Houston, TX 77058, USA
  • Edited by Jim Bell, Cornell University, New York
  • Book: The Martian Surface
  • Online publication: 10 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511536076.013
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Multispectral imaging from Mars Pathfinder
    • By W. H. Farrand, Space Science Institute 4750 Walnut Street, # 205 Boulder, CO 80301, USA, J. F. Bell III, Cornell University, Department of Astronomy, 402 Space Sciences Building, Ithaca, NY 14853-6801, USA, J. R. Johnson, Cold Regions Research & Engineering Laboratory Alaska Office PO Box 35170 Ft. Wainwright, AK 99703, USA, J. L. Bishop, SETI Institute 515 N. Whisman Road Mountain View, CA 94034, USA, R. V. Morris, NASA/JSC Cose KR, Building 31, Room 120 2101 NASA Road 1 Houston, TX 77058, USA
  • Edited by Jim Bell, Cornell University, New York
  • Book: The Martian Surface
  • Online publication: 10 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511536076.013
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Multispectral imaging from Mars Pathfinder
    • By W. H. Farrand, Space Science Institute 4750 Walnut Street, # 205 Boulder, CO 80301, USA, J. F. Bell III, Cornell University, Department of Astronomy, 402 Space Sciences Building, Ithaca, NY 14853-6801, USA, J. R. Johnson, Cold Regions Research & Engineering Laboratory Alaska Office PO Box 35170 Ft. Wainwright, AK 99703, USA, J. L. Bishop, SETI Institute 515 N. Whisman Road Mountain View, CA 94034, USA, R. V. Morris, NASA/JSC Cose KR, Building 31, Room 120 2101 NASA Road 1 Houston, TX 77058, USA
  • Edited by Jim Bell, Cornell University, New York
  • Book: The Martian Surface
  • Online publication: 10 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511536076.013
Available formats
×