Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-tdptf Total loading time: 0 Render date: 2024-08-16T17:22:48.171Z Has data issue: false hasContentIssue false

Foreword

Published online by Cambridge University Press:  06 July 2010

François Bardou
Affiliation:
Université Louis Pasteur, Strasbourg
Jean-Philippe Bouchaud
Affiliation:
Commissariat à l'Energie Atomique (CEA), Saclay
Alain Aspect
Affiliation:
Institut d'Optique, Palaiseau
Claude Cohen-Tannoudji
Affiliation:
Collège de France, Paris
Get access

Summary

Long ago, Paul Lévy invented a strange family of random walks – where each segment has a very broad probability distribution. These flights, when they are observed on a macroscopic scale, do not follow the standard Gaussian statistics. When I was a student, Lévy's idea appeared to me as (a) amusing, (b) simple – all the statistics can be handled via Fourier transforms – and (c) somewhat baroque: where would it apply?

As often happens with new mathematical ideas, the fruits came later. For example, é. Bouchaud proved that adsorbed polymer chains often behave like Lévy flights. In a very different sector, J.P. Bouchaud showed the role of Lévy distributions in risk evaluation. Now we meet a third major example, which is described in this book: cold atoms.

The starting point is a jewel of quantum physics: we think of an atom in a state of 0 translational momentum p = 0 (zero Doppler effect), inside a suitably prescribed laser field. For instance, with an angular momentum J = 1 we can have two ground states │+〉 and │−〉, and one excited state │0〉. The particular state │+〉+│−〉 has an admirable property: it is entirely decoupled from the radiation and can live for an indefinitely long time. It is thus possible to create a trap (around p = 0 in momentum space) in which the atoms will live for very long times: this so-called ‘ subrecoil laser cooling’ has been a major advance of recent years.

Type
Chapter
Information
Lévy Statistics and Laser Cooling
How Rare Events Bring Atoms to Rest
, pp. xi - xii
Publisher: Cambridge University Press
Print publication year: 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×