Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-19T15:47:14.422Z Has data issue: false hasContentIssue false

10 - Network design

Published online by Cambridge University Press:  05 June 2012

Lap Chi Lau
Affiliation:
The Chinese University of Hong Kong
R. Ravi
Affiliation:
Carnegie Mellon University, Pennsylvania
Mohit Singh
Affiliation:
McGill University, Montréal
Get access

Summary

In this chapter, we study the survivable network design problem. Given an undirected graph G = (V, E) and a connectivity requirement ruv for each pair of vertices u, v, a Steiner network is a subgraph of G in which there are at least ruv edge-disjoint paths between u and v for every pair of vertices u, v. The survivable network design problem is to find a Steiner network with minimum total cost. In the first part of this chapter, we will present the 2-approximation algorithm given by Jain [75] for this problem. We will present his original proof, which introduced the iterative rounding method to the design of approximation algorithms.

Interestingly, we will see a close connection of the survivable network design problem to the traveling salesman problem. Indeed the linear program, the characterization results, and presence of edges with large fractional value are identical for both problems. In the (symmetric) TSP, we are given an undirected graph G = (V, E) and cost function c: E → ℝ+, and the task is to find a minimum-cost Hamiltonian cycle. In the second part of this chapter, we will present an alternate proof of Jain's result, which also proves a structural result about extreme point solutions to the traveling salesman problem.

In the final part of this chapter, we consider the minimum bounded degree Steiner network problem, where we are also given a degree upper bound Bv for each vertex vV, and the task is to find a minimum-cost Steiner network satisfying all the degree bounds.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Network design
  • Lap Chi Lau, The Chinese University of Hong Kong, R. Ravi, Carnegie Mellon University, Pennsylvania, Mohit Singh, McGill University, Montréal
  • Book: Iterative Methods in Combinatorial Optimization
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511977152.011
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Network design
  • Lap Chi Lau, The Chinese University of Hong Kong, R. Ravi, Carnegie Mellon University, Pennsylvania, Mohit Singh, McGill University, Montréal
  • Book: Iterative Methods in Combinatorial Optimization
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511977152.011
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Network design
  • Lap Chi Lau, The Chinese University of Hong Kong, R. Ravi, Carnegie Mellon University, Pennsylvania, Mohit Singh, McGill University, Montréal
  • Book: Iterative Methods in Combinatorial Optimization
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511977152.011
Available formats
×