Skip to main content Accessibility help
×
Home
Hostname: page-component-56f9d74cfd-dpvgk Total loading time: 1.246 Render date: 2022-06-27T19:14:46.550Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

9 - Computational image analysis techniques for cell mechanobiology

from Part I - Micro-nano techniques in cell mechanobiology

Published online by Cambridge University Press:  05 November 2015

Yu Sun
Affiliation:
University of Toronto
Deok-Ho Kim
Affiliation:
University of Washington
Craig A. Simmons
Affiliation:
University of Toronto
Get access

Summary

Light microscopy techniques are essential tools for visualizing the mechanobiology of cells. Computational image analysis transforms light microscopy techniques beyond tools of visualization by making it possible to extract from collected images quantitative measurements of cellular mechanical processes and to understand their behavior and mechanisms. The main goal of this chapter is to provide an up-to-date and selective review of computational image analysis techniques for cell mechanobiology applications. We aim to provide practical information to cell mechanobiology practitioners looking for image analysis techniques as well as to image analysis practitioners looking for cell mechanobiology applications. The focus of the chapter is exclusively on computational analysis techniques for dynamic fluorescence microscopy images. We first classify the images into two different categories: singe particle images and continuous region images. We then review computational analysis techniques for each category, respectively. For single particle images, we review related particle detection and particle tracking techniques and their cell mechanobiology applications. Similarly, for continuous region images, we review related region detection and region tracking techniques and their cell mechanobiology applications. We conclude with an outlook on future development of computational image analysis techniques for cell mechanobiology.

Type
Chapter
Information
Integrative Mechanobiology
Micro- and Nano- Techniques in Cell Mechanobiology
, pp. 148 - 168
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bar-Shalom, Y., Li, X. R. and Kirubarajan, T. (2001). Estimation with Applications to Tracking and Navigation. New York: Wiley-Interscience.CrossRefGoogle Scholar
Barron, J. L., Fleet, D. J. and Beauchemin, S. S. (1994). “Performance of optical flow techniques.” Int J Comp Vis 12: 4377.CrossRefGoogle Scholar
Betzig, E., Patterson, G. H., Sougrat, R., Lindwasser, O. W., Olenych, S., Bonifacino, J. S., Davidson, M. W., et al. (2006). “Imaging intracellular fluorescent proteins at nanometer resolution.” Science 313: 16421645.CrossRefGoogle Scholar
Blackman, S. and Popoli, R. (1999). Design and Analysis of Modern Tracking Systems. Norwood, MA: Artech House.Google Scholar
Born, M. and Wolf, E. (1999). Principles of Optics. Cambridge University Press.CrossRefGoogle Scholar
Burkard, R., Dell’amico, M. and Martello, S. (2009). Assignment Problems. Philadelphia: Society for Industrial and Applied Mathematics.CrossRefGoogle Scholar
Cheezum, M. K., Walker, W. F. and Guilford, W. H. (2001). “Quantitative comparison of algorithms for tracking single fluorescent particles.” Biophys J 81: 23782388.CrossRefGoogle Scholar
Chen, K. C., Yang, G. and Kovacevic, J. (2014). “Spatial density estimation based segmentation of super-resolution localization microscopy images.” Proc 2014 IEEE Int Conf Image Proc (ICIP): 867871.
Chen, K. C. J., Yiyi, Y., Ruiqin, L., Hao-Chih, L., Ge, Y. and Kovacevic, J. (2012). “Adaptive active-mask image segmentation for quantitative characterization of mitochondrial morphology.” Proc 2012 IEEE Int Conf Image Proc (ICIP): 20332036.
Chenouard, N., Smal, I., de Chaumont, F., Maska, M., Sbalzarini, I. F., Gong, Y., Cardinale, J., et al. (2014). “Objective comparison of particle tracking methods.” Nat Meth 11: 281289.CrossRefGoogle Scholar
Cox, I. (1993). “A review of statistical data association techniques for motion correspondence.” Int J Comp Vis 10: 5366.CrossRefGoogle Scholar
Crocker, J. C. and Hoffman, B. D. (2007). “Multiple-particle tracking and two-point microrheology in cells.” Meth in Cell Biol 83: 141178.CrossRefGoogle ScholarPubMed
Crum, W. R., Hartkens, T. and Hill, D. L. G. (2004). “Non-rigid image registration: theory and practice.” British J Radiology 77: S140S153.CrossRefGoogle Scholar
Danuser, G. and Waterman-Storer, C. M. (2006). “Quantitative fluorescent speckle microscopy of cytoskeleton dynamics.” Annu Rev Biophys Biomol Struct 35: 361387.CrossRefGoogle ScholarPubMed
Das, R., Cairo, C. W. and Coombs, D. (2009). “A hidden Markov model for single particle tracks quantifies dynamic interactions between LFA-1 and the actin cytoskeleton.” PLoS Comp Biol 5: e1000556.CrossRefGoogle ScholarPubMed
De Chaumont, F., Dallongeville, S., Chenouard, N., Herve, N., Pop, S., Provoost, T., Meas-Yedid, V., et al. (2012). “Icy: an open bioimage informatics platform for extended reproducible research.” Nat Meth 9: 690696.CrossRefGoogle ScholarPubMed
De Vlaminck, I. and Dekker, C. (2012). “Recent advances in magnetic tweezers.” Annu Rev Biophys 41: 453472.CrossRefGoogle ScholarPubMed
Dhawan, A. P. (2011). Medical Image Analysis. New York: Wiley-IEEE Press.CrossRefGoogle Scholar
Dima, A. A., Elliott, J. T., Filliben, J. J., Halter, M., Peskin, A., Bernal, J., Kociolek, M., et al. (2011). “Comparison of segmentation algorithms for fluorescence microscopy images of cells.” Cytometry Part A 79A: 545559.CrossRefGoogle Scholar
Dorn, J. F., Danuser, G., and Yang, G. (2008). “Computational processing and analysis of dynamic fluorescence image data.” Meth Cell Biol 85: 497538.CrossRefGoogle Scholar
Eliceiri, K. W., Berthold, M. R., Goldberg, I. G., Ibanez, L., Manjunath, B. S., Martone, M. E., Murphy, R. F., et al. (2012). “Biological imaging software tools.” Nat Meth 9: 697710.CrossRefGoogle ScholarPubMed
Fleet, D. J. and Weiss, Y. (2005). Optical flow estimation. In Paragios, N., Chen, Y. and Faugeras, O. (eds.), Mathematical Models in Computer Vision. New York: Springer.Google Scholar
Gao, Y. and Kilfoil, M. L. (2009). “Accurate detection and complete tracking of large populations of features in three dimensions.” Opt Exp 17: 46854704.CrossRefGoogle ScholarPubMed
Gelles, J., Schnapp, B. J. and Sheetz, M. P. (1988). “Tracking kinesin-driven movements with nanometre-scale precision.” Nature 331: 450453.CrossRefGoogle ScholarPubMed
Genovesio, A., Liedl, T., Emiliani, V., Parak, W. J., Coppey-Moisan, M. and Olivo-Marin, J. C. (2006). “Multiple particle tracking in 3-D+t microscopy: method and application to the tracking of endocytosed quantum dots.” IEEE Trans Image Proc 15: 10621070.CrossRefGoogle ScholarPubMed
Giepmans, B. N. G., Adams, S. R., Ellisman, M. H. and Tsien, R. Y. (2006). “The fluorescent toolbox for assessing protein location and function.” Science 312: 217224.CrossRefGoogle ScholarPubMed
Grashoff, C., Hoffman, B. D., Brenner, M. D., Zhou, R., Parsons, M., Yang, M. T., Mclean, M. A., et al. (2010). “Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics.” Nature 466: 263266.CrossRefGoogle ScholarPubMed
Heimann, T., van Ginneken, B., Styner, M. A., Arzhaeva, Y., Aurich, V., Bauer, C., Beck, A., et al. (2009). “Comparison and evaluation of methods for liver segmentation from CT datasets.” IEEE Trans Med Imaging 28: 12511265.CrossRefGoogle ScholarPubMed
Herbert, K. M., Greenleaf, W. J. and Block, S. M. (2008). “Single-molecule studies of RNA polymerase: motoring along.” Annu Rev Biochem 77: 149176.CrossRefGoogle ScholarPubMed
Hochmuth, R. M. (2000). “Micropipette aspiration of living cells.” J Biomechanics 33: 1522.CrossRefGoogle ScholarPubMed
Huang, B., Bates, M. and Zhuang, X. (2009). “Super-resolution fluorescence microscopy.” Annu Rev Biochem 78: 9931016.CrossRefGoogle ScholarPubMed
Jaqaman, K., Loerke, D., Mettlen, M., Kuwata, H., Grinstein, S., Schmid, S. L. and Danuser, G. (2008). “Robust single-particle tracking in live-cell time-lapse sequences.” Nat Meth 5: 695702.CrossRefGoogle Scholar
Ji, L. and Danuser, G. (2005). “Tracking quasi-stationary flow of weak fluorescent signals by adaptive multi-frame correlation.” J Microscopy 220: 150167.CrossRefGoogle ScholarPubMed
Ji, L., Lim, J. and Danuser, G. (2008). “Fluctuations of intracellular forces during cell protrusion.” Nat Cell Biol 10: 13931400.CrossRefGoogle ScholarPubMed
Ji, L., Loerke, D., Gardel, M., Danuser, G. (2007). “Probing intracellular force distributions by high-resolution live cell imaging and inverse dynamics.” Meth Cell Biol 83: 199235.CrossRefGoogle ScholarPubMed
Kraning-Rush, C. M., Carey, S. P., Califano, J. P. and Reinhart-King, C. A. (2012). “Quantifying traction stresses in adherent cells.” Methods in Cell Biology 110: 139178.CrossRefGoogle ScholarPubMed
Legant, W. R., Miller, J. S., Blakely, B. L., Cohen, D. M., Genin, G. M. and Chen, C. S. (2010). “Measurement of mechanical tractions exerted by cells in three-dimensional matrices.” Nat Meth 7: 969971.CrossRefGoogle ScholarPubMed
Lei, Y., Zhen, Q., Greenaway, A. H. and Weiping, L. (2012). “A new framework for particle detection in low-SNR fluorescence live-cell images and its application for improved particle tracking.” IEEE Trans Biomed Eng 59: 20402050.Google Scholar
Li, K., Miller, E. D., Chen, M., Kanade, T., Weiss, L. E. and Campbell, P. G. (2008). “Cell population tracking and lineage construction with spatiotemporal context.” Med Image Analy 12: 546566.CrossRefGoogle Scholar
Lippincott-Schwartz, J., Snapp, E. and Kenworthy, A. (2001). “Studying protein dynamics in living cells.” Nat Rev Mol Cell Biol 2: 444456.CrossRefGoogle ScholarPubMed
Machacek, M. and Danuser, G. (2006). “Morphodynamic profiling of protrusion phenotypes.” Biophys J 90: 14391452.CrossRefGoogle ScholarPubMed
Machacek, M., Hodgson, L., Welch, C., Elliott, H., Pertz, O., Nalbant, P., Abell, A., et al. (2009). “Coordination of Rho GTPase activities during cell protrusion.” Nature 461: 99103.CrossRefGoogle ScholarPubMed
Maska, M., Ulman, V., Svoboda, D., Matula, P., Matula, P., Ederra, C., Urbiola, A., et al. (2014). “A benchmark for comparison of cell tracking algorithms.” Bioinformatics 30: 16091617.CrossRefGoogle Scholar
Matov, A., Edvall, M. M., Yang, G. and Danuser, G. (2011). “Optimal-flow minimum-cost correspondence assignment in particle flow tracking.” Comput Vis Image Underst 115: 531540.CrossRefGoogle ScholarPubMed
Meijering, E., Dzyubachyk, O. and Smal, I. (2012). “Methods for cell and particle tracking.” Meth Enzymol 504: 183200.CrossRefGoogle Scholar
Meijering, E., Dzyubachyk, O., Smal, I. and van Cappellen, W. A. (2009). “Tracking in cell and developmental biology.” Semi Cell Dev Biol 20: 894902.CrossRefGoogle ScholarPubMed
Mitchison, T. J. (2005). “Mechanism and function of poleward flux in Xenopus extract meiotic spindles.” PhiloTrans Royal Soc B: BiolSci 360: 623629.CrossRefGoogle ScholarPubMed
Moffitt, J. R., Chemla, Y. R., Smith, S. B. and Bustamante, C. (2008). “Recent advances in optical tweezers.” Annu Rev Biochem 77: 205228.CrossRefGoogle ScholarPubMed
Nixon, M. and Aguado, A. (2012). Feature Extraction and Image Processing for Computer Vision. Waltham, MA: Academic Press.Google Scholar
Padfield, D., Rittscher, J. and Roysam, B. (2011). “Coupled minimum-cost flow cell tracking for high-throughput quantitative analysis.” Med Image Analy 15: 650668.CrossRefGoogle Scholar
Patterson, G., Davidson, M., Manley, S. and Lippincott-Schwartz, J. (2010). “Superresolution imaging using single-molecule localization.” Annu Rev Phys Chem 61: 345367.CrossRefGoogle Scholar
Peng, H. (2008). “Bioimage informatics: a new area of engineering biology.” Bioinformatics 24: 18271836.CrossRefGoogle ScholarPubMed
Pham, D. L., Xu, C. and Prince, J. L. (2000). “Current methods in medical image segmentation.” Annu Rev Biomed Eng 2: 315337.CrossRefGoogle ScholarPubMed
Planchon, T. A., Gao, L., Milkie, D. E., Davidson, M. W., Galbraith, J. A., Galbraith, C. G. and Betzig, E. (2011). “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination.” Nat Meth 8: 417423.CrossRefGoogle ScholarPubMed
Ponti, A., Vallotton, P., Salmon, W. C., Waterman-Storer, C. M. and Danuser, G. (2003). “Computational analysis of F-actin turnover in cortical actin meshworks using fluorescent speckle microscopy.” Biophys J 84: 33363352.CrossRefGoogle ScholarPubMed
Qian, H., Sheetz, M. P. and Elson, E. L. (1991). “Single particle tracking: analysis of diffusion and flow in two-dimensional systems.” Biophys J 60: 910921.CrossRefGoogle ScholarPubMed
Qiu, M., Lee, H.-C. and Yang, G. (2012). “Nanometer resolution tracking and modeling of bidirectional axonal cargo transport.” Proc 2012 IEEE Int Symp Biomed Imaging (ISBI): 992995.
Reis, G. F., Yang, G., Szpankowski, L., Weaver, C., Shah, S. B., Robinson, J. T., Hays, T. S., et al. (2012). “Molecular motor function in axonal transport in vivo probed by genetic and computational analysis in Drosophila.” Mol Biol Cell 23: 17001714.CrossRefGoogle ScholarPubMed
Rust, M. J., Bates, M. and Zhuang, X. (2006). “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM).” Nat Meth 3: 793795.CrossRefGoogle Scholar
Saxton, M. J. (2007). “Modeling 2D and 3D diffusion.” Meth Mol Biol 400: 295321.CrossRefGoogle ScholarPubMed
Saxton, M. J. and Jacobson, K. (1997). “Single-particle tracking: applications to membrane dynamics.” Annu Rev Biophys Biomol Struct 26: 373399.CrossRefGoogle Scholar
Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., et al. (2012). “Fiji: an open-source platform for biological-image analysis.” Nat Meth 9: 676682.CrossRefGoogle Scholar
Selvin, P. and Ha, T. (2008). Single-Molecule Techniques. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.Google Scholar
Smal, I., Loog, M., Niessen, W. and Meijering, E. (2010). “Quantitative comparison of spot detection methods in fluorescence microscopy.” IEEE Trans Med Img 29: 282301.CrossRefGoogle ScholarPubMed
Smal, I., Niessen, W. and Meijering, E. (2008). “A new detection scheme for multiple object tracking in fluorescence microscopy by joint probabilistic data association filtering.” Proc 2008 IEEE Int Symp Biomed Imaging (ISBI): 264267.
Sonka, M., Hlavac, V. and Boyle, R. (2007). Image Processing, Analysis, and Machine Vision. Toronto: Thomson Learning.Google Scholar
Srinivasa, G., Fickus, M. C., Yusong, G., Linstedt, A. D. and Kovacevic, J. (2009). “Active mask segmentation of fluorescence microscope images.” IEEE Trans Image Proc 18: 18171829.CrossRefGoogle Scholar
Style, R. W., Boltyanskiy, R., German, G. K., Hyland, C., Macminn, C. W., Mertz, A. F., Wilen, , et al. (2014). “Traction force microscopy in physics and biology.” Soft Mat 10: 40474055.CrossRefGoogle Scholar
Sun, D., Roth, S. and Black, M. J. (2014). “A quantitative analysis of current practices in optical flow estimation and the principles behind them.” Int J Comp Vis 106: 115137.CrossRefGoogle Scholar
Svoboda, K. and Block, S. M. (1994). “Biological applications of optical forces.” Annu Rev Biophy Biomol Struc 23: 247285.CrossRefGoogle Scholar
Szeliski, R. (2010). Computer Vision: Algorithms and Applications. New York: Springer.Google Scholar
Thompson, R. E., Larson, D. R. and Webb, W. W. (2002). “Precise nanometer localization analysis for individual fluorescent probes.” Biophys J 82: 27752783.CrossRefGoogle Scholar
Ulrich, T. A., Jain, A., Tanner, K., Mackay, J. L. and Kumar, S. (2010). “Probing cellular mechanobiology in three-dimensional culture with collagen-agarose matrices.” Biomaterials 31: 18751884.CrossRefGoogle ScholarPubMed
Vaziri, A. and Mofrad, M. R. K. (2007). “Mechanics and deformation of the nucleus in micropipette aspiration experiment.” J Biomechanics 40: 20532062.CrossRefGoogle Scholar
Veenman, C. J., Reinders, M. J. T. and Backer, E. (2001). “Resolving motion correspondence for densely moving points.” IEEE Trans Patt Analy Mach Intel 23: 5472.CrossRefGoogle Scholar
Wang, N., Hu, S., and Butler, J. P. (2007). “Imaging stress propagation in the cytoplasm of a living cell.” Methods in Cell Biology 83: 179198.CrossRefGoogle Scholar
Waterman-Storer, C. M. and Salmon, E. D. (1998). “How microtubules get fluorescent speckles.” Biophys J 75: 20592069.CrossRefGoogle Scholar
Wilson, C. A., Tsuchida, M. A., Allen, G. M., Barnhart, E. L., Applegate, K. T., Yam, P. T., Ji, L., et al. (2010). “Myosin II contributes to cell-scale actin network treadmilling through network disassembly.” Nature 465: 373377.CrossRefGoogle Scholar
Wirtz, D. (2009). “Particle-tracking microrheology of living cells: principles and applications.” Annu Rev Biophys 38: 301326.CrossRefGoogle Scholar
Yang, G. (2013). “Bioimage informatics for understanding spatiotemporal dynamics of cellular processes.” Wiley Inter Rev Sys Biol Med 5: 367380.CrossRefGoogle Scholar
Yang, G., Cameron, L. A., Maddox, P. S., Salmon, E. D. and Danuser, G. (2008). “Regional variation of microtubule flux reveals microtubule organization in the metaphase meiotic spindle.” J Cell Biol 182: 631639.CrossRefGoogle ScholarPubMed
Yang, G., Houghtaling, B. R., Gaetz, J., Liu, J. Z., Danuser, G. and Kapoor, T. M. (2007). “Architectural dynamics of the meiotic spindle revealed by single-fluorophore imaging.” Nat Cell Biol 9: 12331242.CrossRefGoogle Scholar
Yildiz, A. and Selvin, P. R. (2005). “Fluorescence imaging with one nanometer accuracy: application to molecular motors.” Acc Chem Res 38: 574582.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×