Skip to main content Accessibility help
×
Home
Hostname: page-component-7f7b94f6bd-8p2w5 Total loading time: 1.994 Render date: 2022-06-28T23:03:59.231Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

References

Published online by Cambridge University Press:  08 March 2019

Alan Boudreau
Affiliation:
Duke University, North Carolina
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmed, A.H. and Arai, S. (2002). Unexpectedly high-PGE chromitite from the deeper mantle section of the northern Oman ophiolite and its tectonic implications. Contributions to Mineralogy and Petrology, 143, 263278.CrossRefGoogle Scholar
Aird, H.M. and Boudreau, A.E. (2013). High-temperature carbonate minerals in the Stillwater Complex, Montana, USA. Contributions to Mineralogy and Petrology, 166, 11431160.CrossRefGoogle Scholar
Aird, H.M., Ferguson, K.M., Lehrer, M.L. and Boudreau, A.E. (2017). A study of the trace sulfide mineral assemblages in the Stillwater Complex, Montana. Mineralium Deposita, 52(3), 361382.CrossRefGoogle Scholar
Algar, C.K., Boudreau, B.P. and Barry, M.A. (2011). Initial rise of bubbles in cohesive sediments by a process of viscoelastic fracture. Journal of Geophysical Research, 116, B04207. DOI:10.1029/2010JB008133.CrossRefGoogle Scholar
Almeev, R.R., Holtz, F., Koepke, J., Parat, F. and Botcharnikov, R.E. (2007). The effect of H2O on olivine crystallization in MORB: Experimental calibration at 200 MPa. American Mineralogist, 92, 670674.CrossRefGoogle Scholar
Almeev, R.R., Holtz, F., Koepke, J. and Parat, F. (2012). Experimental calibration of the effect of H2O on plagioclase crystallization in basaltic melt at 200 MPa. American Mineralogist, 97, 12341240.CrossRefGoogle Scholar
Anderson, A.T. Jr, (1974). Chlorine, sulfur and water in magmas and oceans. Geological Society of America Bulletin, 85, 14851492.2.0.CO;2>CrossRefGoogle Scholar
Andersen, J.C.Ø. (2006). Postmagmatic sulphur loss in the Skaergaard Intrusion: Implications for the formation of the Platinova Reef. Lithos, 92, 198221.CrossRefGoogle Scholar
Andersen, J.C.Ø., Rasmussen, H., Nielsen, T.F.D. and Ronsbo, J.G. (1998). The triple group and the Platinova gold and palladium reefs in the Skaergaard intrusion: Stratigraphic and petrographic relations. Economic Geology, 93, 488509.CrossRefGoogle Scholar
Appold, M.S. and Nunn, J.A. (2002). Numerical models of petroleum migration via buoyancy porosity waves in viscously deformable sediments. Geofluids, 2, 233247.CrossRefGoogle Scholar
Arai, S. and Akizawa, N. (2014). Precipitation and dissolution of chromite by hydrothermal solutions in the Oman ophiolite, New behavior of Cr and chromite. American Mineralogist, 99, 2834.CrossRefGoogle Scholar
Arai, S., Prichard, H.M., Matsumoto, I. and Fisher, P.C. (1999). Platinum-group minerals in podiform chromitite from the Kamuikotan zone, Hokkaido, northern Japan. Resource Geology, 49, 3947.CrossRefGoogle Scholar
Aranovich, L.Ya., Zakirov, I.V., Sretenskaya, N.G. and Gerya, T.V. (2010). Ternary system H2O–CO2–NaCl at high T–P parameters: An empirical mixing model. Geochemistry International, 48(5), 446455.CrossRefGoogle Scholar
Armienti, P., Francalanci, L. and Landi, P. (2007). Textural effects of steady state behaviour of the Stromboli feeding system. Journal of Volcanology and Geothermal Research, 160, 8698.CrossRefGoogle Scholar
Armitage, G.J. (1992). The petrogenesis of potholes in the UG2 chromitite layer, Crocodile River Mine, Western Bushveld complex. Ph.D. dissertation, University of Natal, Pietermaritzburg, South Africa.Google Scholar
Armstrong, R. and Wilson, A.H. (2000). A SHRIMP U-Pb study of zircons from the layered sequence of the Great Dyke, Zimbabwe, and a granitoid anatectic dyke. Earth and Planetary Science Letters, 180, 112.CrossRefGoogle Scholar
Atkins, F.B. (1969). Pyroxenes of the Bushveld Intrusion, South Africa. Journal of Petrology, 10(2), 222249.CrossRefGoogle Scholar
Augé, T. (1988). Platinum-group minerals in the Tiébaghi and Vourinos ophiolitic complexes: Genetic implications. Canadian Mineralogist, 26, 177192.Google Scholar
Azimov, P.Ya. and Bushmin, S.A. (2007). Solubility of minerals of metamorphic and metasomatic rocks in hydrothermal solutions of varying acidity: Thermodynamic modeling at 400–800 °C and 1–5 kbar. Geochemistry International, 45(12), 12101234.CrossRefGoogle Scholar
Bachmann, O. and Bergantz, G.W. (2006). Gas percolation in upper-crustal silicic crystal mushes as a mechanism for upward heat advection and rejuvenation of near-solidus magma bodies. Journal of Volcanology and Geothermal Research, 149, 85102.CrossRefGoogle Scholar
Bagdassarov, N., Dorfman, A. and Dingwell, D.B. (2000). Effect of alkalis, phosphorus, and water on the surface tension of haplogranite melt. American Mineralogist, 85, 3340.CrossRefGoogle Scholar
Baker, D.R. and Moretti, R. (2011). Modeling the Solubility of Sulfur in Magmas: A 50-Year Old Geochemical Challenge. In Sulfur in Magmas and Melts: Its Importance for Natural and Technical Processes (Behrens, H. and Websater, J.D., eds.). Reviews in Mineralogy and Geochemistry, 73, 167–213.CrossRef
Ballhaus, C.G. (1988). Potholes of the Merensky Reef at Brakspruit Shaft, Rustenburg Platinum Mines: Primary disturbances in the magmatic stratigraphy. Economic Geology, 83, 11401158.CrossRefGoogle Scholar
Ballhaus, C.G. and Stumpfl, E.F. (1985). Occurrence and petrological significance of graphite in the Upper Critical Zone, Western Bushveld Complex, South Africa. Earth and Planetary Science Letters, 74, 5868.CrossRefGoogle Scholar
Ballhaus, C.G. and Stumpfl, E.F. (1986). Sulphide and platinum mineralization in the Merensky Reef: Evidence from hydrous silicates and fluid inclusions. Contributions to Mineralogy and Petrology, 94, 193204.CrossRefGoogle Scholar
Ballhaus, C.G. and Ulmer, P. (1995). Platinum-group elements in the Merensky Reef: II. Experimental solubilities of platinum and palladium in Fe1-XS from 950 to 450°C under controlled f(S2) and f(H2). Geochimica et Cosmochimica Acta, 59(23), 48814888.CrossRefGoogle Scholar
Ballhaus, C.G., Ryan, C.G., Mernagh, T.P. and Green, D.H. (1994). The partitioning of Fe, Ni, Cu, Pt, and Au between sulfide, metal, and fluid phases: A pilot study. Geochimica et Cosmochimica Acta, 58(2), 811826.CrossRefGoogle Scholar
Barnes, S.J. (1986). The effect of trapped liquid crystallization on cumulus mineral compositions in layered intrusions. Contributions to Mineralogy and Petrology, 93(4), 524531.CrossRefGoogle Scholar
Barnes, S.J. (1993). Partitioning of the platinum group elements and gold between silicate and sulphide magmas in the Munni Munni Complex, Western Australia. Geochimica et Cosmochimica Acta, 57, 12771290.CrossRefGoogle Scholar
Barnes, S.J. and Campbell, I.H. (1988). Role of late magmatic fluids in Merensky-type platinum deposits: A discussion. Geology, 16, 488491.Google Scholar
Barnes, S.J. and Fiorentini, M.L. (2008). Iridium, ruthenium and rhodium in komatiites: Evidence for iridium alloy saturation. Chemical Geology, 257, 4458.CrossRefGoogle Scholar
Barnes, S.J. and Hoatson, D.M. (1994). The Munni Munni Complex, Western Australia: Stratigraphy, structure, and petrogenesis. Journal of Petrology, 35, 715751.CrossRefGoogle Scholar
Barnes, S.J. and Naldrett, A.J. (1986). Geochemistry of the J-M Reef of the Stillwater Complex, Minneapolis Adit Area II. Silicate Mineral Chemistry and Petrogenesis. Journal of Petrology, 27(4), 791825.CrossRefGoogle Scholar
Barnes, S.J., McIntyre, J.R., Nisbet, B.W. and Williams, C.R. (1990). Platinum group element mineralisation in the Munni Munni Complex, Western Australia. Mineralogy and Petrology, 42, 141164.CrossRefGoogle Scholar
Barnes, S.J., Keays, R.R. and Hoatson, D.M. (1992). Distribution of sulphides and PGE within the porphyritic websterite zone of the Munni Munni Complex, Western Australia. Australian Journal of Earth Sciences, 39(3), 289302.CrossRefGoogle Scholar
Barnes, S.-J. and Fiorentini, M.L. (2008). Iridium, ruthenium and rhodium in komatiites: Evidence for iridium alloy saturation. Chemical Geology, 257, 4458.CrossRefGoogle Scholar
Barnes, S.-J. and Gomwe, T.S. (2011). The Pd deposit of the Lac des Iles Complex, Northwestern Ontario. Reviews in Economic Geology, 17, 351370.Google Scholar
Barnes, S-J. and Maier, W.D. (1999). The fractionation of Ni, Cu and the noble metals in silicate and sulfide liquids. In Dynamic Processes in Magmatic Ore Deposits and Their Application in Mineral Exploration (Keays, R.R., Lesher, C.M. Lightfoot, P.C. and Farrow, C.E.G., eds). Geological Association of Canada, Short Course Volume 13, 69106.Google Scholar
Barnes, S.-J. and Maier, W.D. (2002a). Platinum-group element distributions in the Rustenberg Layered Suite of the Bushveld Complex, South Africa. In The Geology, Geochemistry, Mineralogy and Mineral Beneficiation of Platinum-Group Elements (Cabri, L.J., ed). Canadian Institute of Mining, Metallurgy and Petroleum Special Volume, 54, 431458.Google Scholar
Barnes, S.-J. and Maier, W.D. (2002b). Platinum-group elements and microstructures of Normal Merensky Reef from Impala Platinum Mines, Bushveld Complex. Journal of Petrology, 43, 103128.CrossRefGoogle Scholar
Barnes, S.-J., Naldrett, A.J. and Gorton, M.P. (1985). The origin of the fractionation of platinum-group elements in terrestrial magmas. Chemical Geology, 53, 303323.CrossRefGoogle Scholar
Barnes, S.-J., Savard, D., Bédard, L.P. and Maier, W.D. (2009). Selenium and sulfur concentrations in the Bushveld Complex of South Africa and implications for formation of the platinum-group element deposits. Mineralium Deposita, 44, 647664.CrossRefGoogle Scholar
Barnes, S.-J., Maier, W.D. and Curl, E.A. (2010). Composition of the marginal rocks and sills of the Rustenburg Layered Suite, Bushveld Complex, South Africa: Implications for the formation of the platinum-group element deposits. Economic Geology, 105, 14911511.CrossRefGoogle Scholar
Barnes, S.-J., Pagé, P., Prichard, H.M., Zientek, M.L. and Fisher, P.C. (2016). Chalcophile and platinum-group element distribution in the Ultramafic series of the Stillwater Complex, MT, USA—Implications for processes enriching chromite layers in Os, Ir, Ru, and Rh. Mineralium Deposita, 51(1), 2547.CrossRefGoogle Scholar
Barry, M.A., Boudreau, B.P., Johnson, B.D. and Reed, A.H. (2010). First‐order description of the mechanical fracture behavior of fine‐grained surficial marine sediments during gas bubble growth. Journal of Geophysical Research, 115, F04029, doi:10.1029/2010JF001833.CrossRefGoogle Scholar
Batanova, V.G. and Savelieva, G.N (2009). Melt migration in the mantle beneath spreading zones and formation of replacive dunites: A review. Russian Geology and Geophysics, 50, 763778.CrossRefGoogle Scholar
Bazarkina, E.F., Pokrovski, G.S. and Hazemann, J.-L. (2014). Structure, stability and geochemical role of palladium chloride complexes in hydrothermal fluids. Geochimica et Cosmochimica Acta, 146, 107131.CrossRefGoogle Scholar
Bédard, J.H. (1994). A procedure for calculating the equilibrium distribution of trace elements among the minerals of cumulate rocks, and the concentration of trace elements in the coexisting liquids. Chemical Geology, 118, 143153.CrossRefGoogle Scholar
Bédard, J.H., Sparks, R.S.J., Renner, R., Cheadle, M.J. and Hallworth, M.A. (1988). Peridotite sills and metasomatic gabbros in the Eastern Layered Series of the Rhum Complex. Journal of the Geological Society, London, 145, 207224.CrossRefGoogle Scholar
Bédard, J.H., Marsh, B.D., Hershum, T.G., Naslund, H.R. and Musaka, S.B. (2007). Large scale mechanical redistribution of orthopyroxene and plagioclase in the Basement Sill, Ferrar Dolerites, Antarctica. Journal of Petrology, 48, 22892326.CrossRefGoogle Scholar
Behrens, H. and Webster, J.D., eds. (2011). Sulfur in magmas and melts: Its importance for natural and technical processes. Mineralogical Society of America, Reviews in Mineralogy, 30.Google Scholar
Belien, I.B., Cashman, K.V. and Rempel, A.W. (2010). Gas accumulation in particle-rich suspensions and implications for bubble populations in crystal-rich magma. Earth and Planetary Science Letters, 297, 133140.CrossRefGoogle Scholar
Bell, A.S., Siman, A. and Guilling, M. (2009). Experimental constraints on Pt, Pd and Au partitioning and fractionation in silicate melt–sulfide–oxide–aqueous fluid systems at 800 C, 150 MPa and variable sulfur fugacity. Geochimica et Cosmochimica Acta, 73, 57785792.CrossRefGoogle Scholar
Berkowitz, B. and Ewing, R.P. (1998). Percolation theory and network modeling applications in soil physics. Surveys in Geophysics, 19, 2372.CrossRefGoogle Scholar
Bezman, N.I., Gorbachev, P.N., Shalynin, A.I., Asif, M. and Naldrett, A.J. (2008). Solubility of platinum and palladium in silicate melts under high water pressure as a function of redox conditions. Petrology, 16(2), 161176.CrossRefGoogle Scholar
Bezos, A., Lorand, J.-P., Humler, E. and Gros, M. (2005). Platinum-group element systematics in Mid-Oceanic Ridge basaltic glasses from the Pacific, Atlantic, and Indian Oceans. Geochimica et Cosmochimica Acta, 69, 26132627.CrossRefGoogle Scholar
Bird, D.K., Arnason, J.G., Brandriss, M.E., Nevle, R.J, Radford, G., Bernstein, S., Gannicott, R.A. and Kelemen, P.B. (1995). A gold-bearing horizon in the Kap Edvard Holm Complex, East Greenland. Economic Geology, 90(5), 12881300.CrossRefGoogle Scholar
Bird, D.K., Brooks, C.K., Gannicott, R.A. and Turner, P.A. (1991). A gold-bearing horizon in the Skaergaard intrusion. Economic Geology, 56, 157166.Google Scholar
Blander, M. and Katz, J.L (1975). Bubble nucleation in liquids. American Institute of Chemical Engineering Journal, 21(5), 833848.CrossRefGoogle Scholar
Blaine, F.A. (2010). The effect of volatiles (H2O, Cl and CO2) on the solubility and partitioning of platinum and iridium in fluid-melt systems. Ph.D. Disseration, University of Waterloo, Ontario, Canada.Google Scholar
Blaine, F.A., Linnen, R.L., Holtz, F. and Brügmann, G.E. (2005). Platinum solubility in a haplobasaltic melt at 1250°C and 0.2 GPa: The effect of water content and oxygen fugacity. Geochimica et Cosmochimica Acta, 69(5), 12651273.CrossRefGoogle Scholar
Blaine, F.A., Linnen, R.L., Holtz, F. and Brügmann, G.E. (2011). The effect of Cl on Pt solubility in haplobasaltic melt: Implications for micronugget formation and evidence for fluid transport of PGEs. Geochimica et Cosmochimica Acta, 75, 77927805.CrossRefGoogle Scholar
Bodnar, R. J. (1994). Synthetic fluid inclusions; XII, The system H2O-NaCl; experimental determination of the halite liquidus and isochores for a 40 wt. % NaCl solution. Geochimica et Cosmochimica Acta, 53, 725733.Google Scholar
Bodnar, R.J., Burnham, C.W. and Sterner, S.M. (1985). Synthetic fluid inclusions in natural quartz. III. Determination of phase equilibrium properties in the system H2O-NaCl to 1000 C and 1500 bars. Geochimica et Cosmochimica Acta, 49(9), 18611873.CrossRefGoogle Scholar
Boorman, S.L., McGuire, J.B., Boudreau, A.E. and Kruger, F.J. (2003). Fluid overpressure in layered intrusions: Formation of a breccia pipe in the Eastern Bushveld Complex, Republic of South Africa. Mineralium Deposita, 38, 356369.CrossRefGoogle Scholar
Boorman, S., Boudreau, A.E. and Kruger, F.J. (2004). The Lower Zone – Critical Zone transition of the Bushveld Complex: A quantitative textural study. Journal of Petrology, 45, 12091235.CrossRefGoogle Scholar
Borisov, A. and Danyushevsky, L. (2011). The effect of silica contents on Pd, Pt and Rh solubilities in silicate melts: An experimental study. European Journal of Mineralogy, 23(3), 355367.CrossRefGoogle Scholar
Borisov, S. and Palme, H. (1995). The solubility of iridium in silicate melts: New data from experiments with lr10Pt90 alloys. Geochimica et Cosmochimica Acta, 59(3), 481485.CrossRefGoogle Scholar
Borisov, S. and Palme, H. (2000). Solubilities of noble metals in Fe-containing silicate melts as derived from experiments in Fe-free systems. American Mineralogist, 85(11–12), 16651673.CrossRefGoogle Scholar
Boudreau, A.E. (1988). Investigations of the Stillwater Complex; IV, The role of volatiles in the petrogenesis of the J-M Reef, Minneapolis adit section. Canadian Mineralogist, 26, 193208.Google Scholar
Boudreau, A.E. (1992). Volatile fluid overpressure in layered intrusions and the formation of potholes. Australian Journal of Earth Sciences, 39, 277287.CrossRefGoogle Scholar
Boudreau, A.E. (1993). Chlorine as an exploration guide for the Platinum-group elements in layered intrusions. Journal of Geochemical Exploration, 48, 2137.CrossRefGoogle Scholar
Boudreau, A.E. (1994). Pattern formation during crystallization in two crystal, two component systems. South African Journal of Geology, 97, 473485.Google Scholar
Boudreau, A.E. (1995). Crystal aging and the formation of fine-scale layering. Mineralogy and Petrology, 54, 5569.CrossRefGoogle Scholar
Boudreau, A.E. (1999a). Fluid fluxing of cumulates: The J-M Reef and associated rocks of the Stillwater Complex, Montana. Journal of Petrology, 40(5), 755772.CrossRefGoogle Scholar
Boudreau, A.E. (1999b). PELE – A version of the MELTS software program for the PC platform. Computers and Geosciences, 25, 201203.CrossRefGoogle Scholar
Boudreau, A.E. (2004). PALLADIUM – A program to model the chromatographic separation of the platinum-group elements, base metals and sulfur in a solidifying igneous crystal pile. Canadian Mineralogist, 42, 393403.CrossRefGoogle Scholar
Boudreau, A.E. (2008). Modeling the Merensky Reef, Bushveld Complex, South Africa. Contributions to Mineralogy and Petrology, 156, 431437.CrossRefGoogle Scholar
Boudreau, A.E. (2009). Transport of the platinum-group elements by igneous fluids in layered intrusions. In New Developments in Magmatic Ni-Cu and PGE Deposits (Li, C. and Ripley, E.M., eds.). Beijing: Geological Publishing House, 229249.Google Scholar
Boudreau, A.E. (2011). The evolution of texture and layering in layered intrusions. International Geology Review, 53(3–4), 330353.CrossRefGoogle Scholar
Boudreau, A.E. (2016a). Bubble migration in a compacting crystal-liquid mush. Contributions to Mineralogy and Petrology, 171, 32. doi: 10.1007/s00410-016-1237-9.CrossRefGoogle Scholar
Boudreau, A.E. (2016b). The Stillwater Complex, Montana – Overview and the significance of volatiles. Mineralogical Magazine, 80, 585637.Google Scholar
Boudreau, A.E. (2016c). The Bushveld complex as an analog to subduction zone hydrothermal systems. Penrose Conference on Layered Intrusions, Red Lodge Montana, 6–10 August, 2016 (abstract).Google Scholar
Boudreau, A.E. and Hoatson, D.M. (2004). Halogen variations in the paleoProterozoic layered mafic-ultramafic Intrusions of the East Kimberly, Western Australia: Implications for platinum-group element mineralization. Economic Geology, 99, 10151026.CrossRefGoogle Scholar
Boudreau, A.E. and Kruger, F.J. (1990). Variations in the composition of apatite through the Merensky cyclic unit on the Western Bushveld Complex. Economic Geology, 85, 737745.CrossRefGoogle Scholar
Boudreau, A.E. and McBirney, A.R. (1997). The Skaergaard Layered Series. Part III. In Situ Layering. Journal of Petrology, 38, 10031020.CrossRefGoogle Scholar
Boudreau, A.E. and McCallum, I.S. (1985). Features of the Picket Pin Pt-Pd deposit). In Stillwater Complex, Montana: Geology and Guide (Czamanske, C.K. and Zientek, M.L., eds.). Montana Bureau of Mines and Geology, Special Publication 92, 346357.Google Scholar
Boudreau, A.E. and McCallum, I.S. (1986). Investigations of the Stillwater Complex. Part III. The Picket Pin Pt-Pd deposit. Economic Geology, 81, 19531975.CrossRefGoogle Scholar
Boudreau, A.E. and McCallum, I.S. (1989). Investigations of the Stillwater Complex: Part V. Apatites as indicators of evolving fluid composition. Contributions to Mineralogy and Petrology, 102, 138153.CrossRefGoogle Scholar
Boudreau, A.E. and McCallum, I.S. (1990). Low temperature alteration of REE-rich chlorapatite from the Stillwater Complex Montana. American Mineralogist, 75, 87693.Google Scholar
Boudreau, A.E. and McCallum, I.S. (1992a). Concentration of platinum-group elements by magmatic fluids in layered intrusions. Economic Geology, 87, 18301848.CrossRefGoogle Scholar
Boudreau, A.E. and McCallum, I.S. (1992b). Infiltration metasomatism in layered intrusions—an example from the Stillwater Complex, Montana. Journal of Volcanology and Geothermal Research, 52, 171183.CrossRefGoogle Scholar
Boudreau, A.E. and Meurer, W.P. (1999). Chromatographic separation of the platinum-group elements, gold, base metals and sulfur during degassing of a compacting and solidifying igneous crystal pile. Contributions to Mineralogy and Petrology, 134, 174185.CrossRefGoogle Scholar
Boudreau, A.E. and Philpotts, A.J. (2002). Quantitative modeling of compaction in the Holyoke flood basalt flow, Hartford Basin, Connecticut. Contributions to Mineralogy and Petrology, 144, 176184.CrossRefGoogle Scholar
Boudreau, A.E. and Simon, A. (2007). Halogen variations and degassing in the Basement Ferrar sill, Antarctica. Journal of Petrology, 48, 13691386. DOI:10.1093/petrology/egm022.CrossRefGoogle Scholar
Boudreau, A.E., Mathez, E.A. and McCallum, I.S. (1986). Halogen geochemistry of the Stillwater and Bushveld Complexes: Evidence for t transport of the platinum-group elements by Cl-rich Fluids. Journal of Petrology, 27, 967986.CrossRefGoogle Scholar
Boudreau, A.E., Love, C. and Hoatson, D. (1993). Halogen geochemistry of the Munni Munni Complex and associated intrusions of the Pilbara Block, W. Australia. Geochimica et Cosmochimica Acta, 57, 44674477.CrossRefGoogle Scholar
Boudreau, A.E., Love, C. and Prendergast, M.D. (1995). Halogen geochemistry of the Great Dyke, Zimbabwe. Contributions to Mineralogy and Petrology, 122, 289300.Google Scholar
Boudreau, A.E., Stewart, M.A. and Spivack, A.J. (1997). Stable Cl isotopes and origin of high-Cl magmas of the Stillwater Complex, Montana. Geology, 25(9), 791794.2.3.CO;2>CrossRefGoogle Scholar
Boudreau, A.E., Djon, L., Ychalikian, A. and Corkery, J. (2014). The Lac Des Iles Palladium Deposit, Ontario, Canada. Part I. The effect of variable alteration on the Offset Zone. Mineralium Deposita, 49, 625654.CrossRefGoogle Scholar
Boudreau, A.E., Butak, K.C., Geraghty, E.P., Holick, P.A. and Koski, M.S. (2019). Mineral Deposits of the Stillwater Complex. In Geology of Montana). Montana Bureau of Mines and Geology (In press).
Boudreau, B.P. (2012). The physics of bubbles in surficial, soft cohesive sediments. Marine and Petroleum Geology, 38, 118.CrossRefGoogle Scholar
Boudreau, B.P., Algar, C., Johnson, B.D., Croudace, I., Reed, A., Furukawa, Y., Dorgan, K.M., Jumar, P.A., Grader, A.S. and Gardiner, B.S. (2005). Bubble growth and rise in soft sediments. Geology, 33, 517520.CrossRefGoogle Scholar
Boyce, J.W., Tomlinson, S.M., McCubbin, F.M., Greenwood, J.P. and Treiman, A.H. (2014). The lunar apatite paradox. Science, 344, 400402.CrossRefGoogle ScholarPubMed
Bragagni, A., Luguet, A., Fonseca, R.O.C., Pearson, D.G., Lorand, J.-P.,Nowell, G.M. and Kjarsgaard, B.A. (2017). The geological record of base metal sulfides in the cratonic mantle: A microscale 187Os/188Os study of peridotite xenoliths from Somerset Island, Rae Craton (Canada). Geochimica et Cosmochimica Acta, 216, 264285.CrossRefGoogle Scholar
Brandeis, G. and Jaupart, C. (1986). On the interaction between convection and crystallization in cooling magma chambers. Earth and Planetary Science Letters, 77, 345361.CrossRefGoogle Scholar
Braun, K., Meurer, W. and Boudreau, A.E. (1994). Compositions of pegmatoids beneath the J-M Reef of the Stillwater Complex, Montana, U.S.A. Chemical Geology, 113, 245257.CrossRefGoogle Scholar
Brearley, M. and Scarfe, C.M. (1986). Dissolution rates of upper mantle minerals in an alkali basalt melt at high pressure—An experimental study and implications for ultramafic xenolith survival. Journal of Petrology, 27, 11571182.CrossRefGoogle Scholar
Brenan, J.M. (1993). Partitioning of fluorine and chlorine between apatite and aqueous fluids at high pressure and temperature: Implications for the F and Cl content of high P-T fluids. Earth and Planetary Science Letters, 117, 251263.CrossRefGoogle Scholar
Brenan, J.M. (1994). Kinetics of fluorine, chlorine and hydroxyl exchange in fluorapatite. Chemical Geology, 110, 195210.CrossRefGoogle Scholar
Brenan, J.M. and Andrews, D. (2001). High temperature stability of laurite and Ru-Os-Ir alloy and their role in PGE fractionation in mafic magmas. Canadian Mineralogist, 39, 341360.CrossRefGoogle Scholar
Brenan, J.M., McDonough, W.F. and Dalpé, C. (2003). Experimental constraints on the partitioning of rhenium and some platinum-group elements between olivine and silicate melt. Earth and Planetary Science Letters, 212, 135150.CrossRefGoogle Scholar
Brenan, J.M., McDonough, W.F., and Ash, R. (2005). An experimental study of the solubility and partitioning of iridium, osmium and gold between olivine and silicate melt. Earth and Planetary Science Letters, 237, 855872.CrossRefGoogle Scholar
Brenan, J.M., Finnigan, C.S., McDonough, W.F. and Homolova, V., (2012). Experimental constraints on the partitioning of Ru, Rh, Ir, Pt and Pd between chromite and silicate melt: The importance of ferric iron. Chemical Geology, 302–303, 1632.CrossRefGoogle Scholar
Broek, D. (1982). Elementary Engineering Fracture Mechanics, Fourth Edition. Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
Brown, G. M. and Peckett, A. (1977). Fluorapatites from the Skaergaard intrusion, East Greenland. Mineralogy Magazine 41, 227232.Google Scholar
Büchl, A., Brügmann, G. and Batanov, V.G. (2004). Formation of podiform chromitite deposits: Implications from PGE abundances and Os isotopic compositions of chromites from the Troodos complex, Cyprus. Chemical Geology, 208, 217232.CrossRefGoogle Scholar
Buick, I.S., Gibson, R.L., Cartwright, I., Maas, R., Wallmach, T. and Uken, R. (2000) Fluid flow in metacarbonates associated with emplacement of the Bushveld Complex, South Africa. Journal of Geochemical Exploration, 69–70, 391395.CrossRefGoogle Scholar
Buntin, T.J., Grandstaff, D.E., Ulmer, G.C. and Gold, D.P. (1985). A pilot study of geochemical and redox relationships between potholes and adjacent normal Merensky Reef of the Bushveld Complex. Economic Geology, 80, 975987.CrossRefGoogle Scholar
Burnham, C.W. (1979). Magmas and hydrothermal fluids. In Geochemistry of Hydrothermal Ore Deposits, 2nd Edition (Barnes, H.L., ed.). New York: Wiley, 71136.Google Scholar
Burton, K.W., Schiano, P., Birck, J.-L. and Allègre, C. J. (1999) Osmium isotope disequilibrium between mantle minerals in a spinel-lherzolite. Earth and Planetary Science Letters, 172, 311322.CrossRefGoogle Scholar
Cabri, L.J. (1981). The platinum-group minerals. In Platinum-Group Elements: Mineralogy, Geology, Recovery (Cabri, L.J., ed.). Canadian Institute of Mining, Metallurgy and Petroleum Special Volume 23, 13129.Google Scholar
Caltabiano, T., Burton, M., Giammanov, S., Allard, P., Bruno, N., Murè, F. and Romano, R. (2004). Volcanic gas emissions from the summit craters and flanks of Mt. Etna, 1987–2000. American Geophysical Union Geophysical Monograph doi:10.1029/143GM08.CrossRef
Cameron, E.N. (1978). The Lower Zone of the Eastern Bushveld Complex in the Olifants River Trough. Journal of Petrology, 19(3), 437462.CrossRefGoogle Scholar
Cameron, E.N. and Desborough, G.A. (1964). Origin of certain magnetite-bearing pegmatites in the eastern part of the Bushveld Complex, South Africa. Economic Geology, 59, 197225.CrossRefGoogle Scholar
Campbell, I.H. (1978). Some problems with the cumulus theory. Lithos, 11, 311323.CrossRefGoogle Scholar
Campbell, I.H. (1986). A fluid dynamic model for the potholes of the Merensky reef. Economic Geology, 81, 11181125.CrossRefGoogle Scholar
Campbell, I.H. (1987). Distribution of orthocumulate textures in the Jimberlana intrusion. Journal of Geology, 95, 3554.CrossRefGoogle Scholar
Campbell, I.H. and Murck, B.W. (1993). Petrology of the G and H Chromitite Zones in the Mountain View Area of the Stillwater Complex, Montana. Journal of Petrology, 34(2), 291316.CrossRefGoogle Scholar
Campbell, I.H. and Naldrett, A.J. (1979). The influence of silicate: Sulfide ratios on the geochemistry of magmatic sulfides. Economic Geology, 74(6), 15031506.CrossRefGoogle Scholar
Campbell, I.H., Roeder, P.L. and Dixon, J.M. (1978). Plagioclase buoyancy in basaltic liquids as determined with a centrifuge furnace. Contributions to Mineralogy Petrology, 67, 369377.CrossRefGoogle Scholar
Campbell, I.H., Naldrett, A.J. and Barnes, S.J. (1983). A model for the origin of the platinum-rich sulphide horizons in the Bushveld and Stillwater complexes. Journal of Petrology, 24, 33165.CrossRefGoogle Scholar
Candela, P.A. (1986). Toward a thermodynamic model for the halogens in magmatic systems: An application to melt-vapor-apatite equilibria. Chemical Geology, 57, 289301.CrossRefGoogle Scholar
Candela, P.A. (1991). Physics of aqueous phase evolution in plutonic environments. American Mineralogist, 76, 10811091.Google Scholar
Capobianco, C.H. and Drake, M. (1990). Partitioning of ruthenium, rhodium, and palladium between spinel and silicate melt and implications for platinum-group element fractionation trends. Geochimica et Cosmochimica Acta, 54, 869874.CrossRefGoogle Scholar
Carr, H.W., Groves, D.I. and Cawthorn, R.G. (1994). The importance of synmagmatic deformation in the formation of Merensky Reef potholes in the Bushveld Complex. Economic Geology, 89, 13981410.CrossRefGoogle Scholar
Cashman, K.V. (1993). Relationship between plagioclase crystallization and cooling rate in basaltic melts. Contributions to Mineralogy Petrology, 113, 126142.CrossRefGoogle Scholar
Cashman, K.V. and Ferry, J.M. (1988). Crystal size distribution (CSD) in rocks and the kinetics and dynamics of crystallization. III. Metamorphic crystallization. Contributions to Mineralogy Petrology, 99, 401415.CrossRefGoogle Scholar
Cawthorn, R.G. (1976). Some chemical controls in igneous amphibole compositions. Geochimica et Cosmochimica Acta, 40, 13191328.CrossRefGoogle Scholar
Cawthorn, R.G. (1982). An origin for the small scale fluctuations in orthopyroxene composition in the lower and critical zones of the Bushveld Complex, South Africa. Chemical Geology, 36, 227236.CrossRefGoogle Scholar
Cawthorn, R.G. (1994). Formation of chlor- and fluor-apatite in layered intrusions. Mineralogical Magazine, 58, 299306.CrossRefGoogle Scholar
Cawthorn, R.G. (2002). Delayed accumulation of plagioclase in the Bushveld Complex. Mineralogical Magazine, 66(6), 881893.CrossRefGoogle Scholar
Cawthorn, R.G. and Poulton, K.L. (1988). Evidence for fluid in the footwall beneath potholes in the Merensky Reef of the Bushveld Complex. In Geo-Platinum 87 (Prichard, H.M., Potts, P.J., Bowles, J.F.W. and Cribbs, S.J., eds.), London: Elsevier, 343356.CrossRefGoogle Scholar
Cawthorn, R.G. and Walsh, K.L. (1988). The use of phosphorus contents in yielding estimates of the proportion of trapped liquid in cumulates of the Upper Zone of the Bushveld Complex. Mineralogical Magazine, 52, 8189.CrossRefGoogle Scholar
Cawthorn, R.G. and Lee, C. (1998). Field Excursion Guide to the Bushveld Complex. 8th International Platinum Symposium. The Geological Society of South Africa and The South African Institute of Mining and Metallurgy.Google Scholar
Cawthorn, R.G. and Boerst, K. (2006). Origin of the pegmatitic pyroxenite in the Merensky Unit, Bushveld Complex, South Africa. Journal of Petrology, 47, 15091530.CrossRefGoogle Scholar
Cawthorn, R.G. and Webb, S.J. (2013). Cooling of the Bushveld Complex, South Africa: Implications for paleomagnetic reversals. Geology, 41(6), 687690.CrossRefGoogle Scholar
Cawthorn, R.G., Harris, C. and Kruger, F.J. (2000). Discordant ultramafic pegmatoidal pipes in the Bushveld Complex. Contributions to Mineralogy and Petrology, 140, 119133.CrossRefGoogle Scholar
Cawthorn, R.G., Lee, C., Schouwstra, R.P. and Mellowship, P. (2002). Relationship between PGE and PGM in the Bushveld Complex. The Canadian Mineralogist, 40, 311328.CrossRefGoogle Scholar
Cawthorn, R.G., Latipov, R., Klemd, R. and Vuthuza, A. (2017). Origin of discordant ultramafic pegmatites in the Bushveld Complex, South Africa. Contributions to Mineralogy and Petrology (In review).
Chauveau, B. and Kaminski, E. (2008). Porous compaction in transient creep regime and implications for melt, petroleum, and CO2 circulation. Journal of Geophysical Research – Solid Earth, 113, B09406. doi:10.1029/2007JB005088CrossRefGoogle Scholar
Chitiyo, G., Schweitzer, J., de Waal, S., Lambert, P. and Olgilvie, P. (2008). Predictability of pothole characteristics and their spatial distribution at Rustenburg Platinum Mine. The Journal of The Southern African Institute of Mining and Metallurgy, 108, 733740.Google Scholar
Chou, I.-M. (1987). Phase relations in the system NaCl-KCl-H2O. III: Solubilities of halite in vapor-saturated liquids above 445°C and redetermination of phase equilibrium properties in the system NaCl-H2O to 1000°C and 1500 bars. Geochimica et Cosmochimica Acta, 51(7), 19651975.CrossRefGoogle Scholar
Chutas, N.I., Bates, E., Prevec, S.A., Coleman, D.S. and Boudreau, A.E. (2012). Sr and Pb isotopic disequilibrium between coexisting plagioclase and orthopyroxene in the Bushveld Complex, South Africa: Microdrilling and progressive leaching evidence for sub-liquidus contamination within a crystal mush. Contributions to Mineralogy and Petrology, 163(4), 653668.CrossRefGoogle Scholar
Clennell, M.B., Judd, A. and Hovland, M., (2000). Movement and accumulation of methane in marine sediments: Relation to gas hydrate systems. In Natural Gas Hydrate in Oceanic and Permafrost Environments, (Max, M.D., ed.). Dordrecht: Kluwer Academic Publishers, 105122.Google Scholar
Connolly, J.A.D. (2010). The mechanics of metamorphic fluid expulsion. Elements, 6(3), 165172. doi:10.2113/gselements.6.3.165CrossRefGoogle Scholar
Connolly, J.A.D. and Podladchikov, Y.Y. (1998). Compaction – Driven fluid flow in viscoelastic rock. Geodinamica Acta, 11(2/3), 5584.CrossRefGoogle Scholar
Connolly, J.A.D. and Podladchikov, Y.Y. (2007). Decompaction weakening and channeling instability in ductile porous media: Implications for asthenospheric melt segregation. Journal of Geophysical Research – Solid Earth, 112(B10), 15. doi:10.1029/2005jb004213CrossRefGoogle Scholar
Coombs, M.L., Sisson, T.W. and Kimura, J.-I. (2004). Ultra-high chlorine in submarine Kilauea glasses: Evidence for direct assimilation of brine by magma. Earth and Planetary Science Letters, 217, 297313.CrossRefGoogle Scholar
Crawford, A.J., Fallon, T.J. and Green, D.H. (1989). Classification, petrogenesis and tectonic setting of boninites. In Boninites and Related Rocks (Crawford, A.J., ed.). London: Unwin Hyman, 149.Google Scholar
Criscenti, L.J. (1984). The Origin of Macrorhythmic Units in the Stillwater Complex. M.S. thesis, University of Washington, Seattle, Washington.Google Scholar
Czamanske, G.K., Zientek, M.L. and Manning, C.E. (1991). Low-K granophyres of the Stillwater Complex, Montana. American Mineralogist, 76, 16461661.Google Scholar
Damian, S. Smith, D.S., Bassson, I.J. and Reid, D.L. (2003). Normal reef subfacies of the Merensky Reef at Northam Platinum Mine, Zwartklip Facies, Western Bushveld complex, Sourth Africa. The Canadian Mineralogist, 42, 243260.Google Scholar
Davidson, J.P. and Tepley, F.J. (1997). Recharge in volcanic systems: Evidence from isotope profiles of phenocrysts. Science, 275, 826829.CrossRefGoogle ScholarPubMed
Davies, G. and Tredoux, M. (1985). The platinum-group element and gold contents of the marginal rocks and sills of the Bushveld Complex. Economic Geology, 80, 838848.CrossRefGoogle Scholar
Davydov, M.N. (2012). Nucleation and growth of a gas bubble in magma. Journal of Applied Mechanics and Technical Physics, 53(3), 324332.CrossRefGoogle Scholar
DePaolo, D.J. and Wasserburg, G.J. (1979). Sm-Nd age of the Stillwater complex and the mantle evolution curve for neodymium. Geochimica et Cosmochimica Acta, 43(7), 9991008.CrossRefGoogle Scholar
De Vivo, B., Torok, K., Ayuso, R.A., Lima, A. and Lirer, L. (1995). Fluid inclusion evidence for magmatic silicate/saline/CO2 immiscibility and geochemistry of alkaline xenoliths from Ventotene Island, Italy. Geochimica et Cosmochimica Acta, 59(14), 29412953.CrossRefGoogle Scholar
De Waal, S.A. (1977). Carbon dioxide and water from metamorphic reactions as agents for sulphide and spinel precipitation in mafic magmas. Geological Society of South Africa Transactions, 80, 198196.Google Scholar
Dixon, J. E., Clague, D.A. and Stolper, E.M. (1991). Degassing history of water, sulfur and carbon in submarine lavas from Kilaueau Volcano, Hawaii. Journal of Geology, 99, 371394.CrossRefGoogle Scholar
Doherty, A.L., Webster, J.D., Goldoff, B.A. and Piccoli, P.M. (2014). Partitioning behavior of chlorine and fluorine in felsic melt–fluid(s)–apatite systems at 50 MPa and 850–950 °C. Chemical Geology, 384, 94109.CrossRefGoogle Scholar
Donaldson, M.J. (1974). Petrology of the Munni Munni Complex, Roebourne, Western Australia. Journal of the Geological Society of Australia, 21, 116.CrossRefGoogle Scholar
Dreibus, G., Palme, H., Spettel, B., Zipfel, J. and Wanke, H. (1995). Sulphur and selenium in chondritic meteorites. Meteoritics, 30, 439445.CrossRefGoogle Scholar
Drinkwater, J.L., Czamanske, G.K. and Ford, A.B. (1990). Apatite of the Dufek intrusion: Disribution, paragenesis, and chemistry. Canadian Mineralogist, 28, 835854.Google Scholar
Duran, C.J., Barnes, S.-J. and Corkery, J.T. (2015). Chalcophile and platinum-group element distribution in pyrites from the sulfide-rich pods of the Lac des Iles Pd deposits, Western Ontario, Canada: Implications for post-cumulus re-equilibration of the ore and the use of pyrite compositions in exploration. Journal of Geochemical Exploration, 158, 223242.CrossRefGoogle Scholar
Duran, C.J., Barnes, S.-J. and Corkery, J.T. (2016). Geology, petrography, geochemistry, and genesis of sulfide-rich pods in the Lac des Iles palladium deposits, western Ontario, Canada. Mineralium Deposita, 51(4), 509532.CrossRefGoogle Scholar
Eales, H.V. and Cawthorn, R.G. (1996). The Bushveld Complex. In Layered Intrusions (Cawthorn, R.G., ed.). Amsterdam: Elsevier, 181229.CrossRefGoogle Scholar
Eales, H.V., De Klerk, W.J. and Teigler, B. (1990). Evidence for magma mixing processes within the Critical and Lower Zones of the northwestern Bushveld Complex. Chemical Geology, 88, 261278.CrossRefGoogle Scholar
Eales, H.V., De Klerk, W.J., Teigler, B. and Maier, W.D. (1994) Nature and origin of orthopyroxenites in the western Bushveld Complex, in the light of compositional data. South African Journal of Geology, 97(4), 399407.Google Scholar
Eales, H.V., Field, M., de Klerk, W.J. and Scoon, R.N. (1988). Regional trends of chemical variation and thermal erosion in the Upper Critical Zone, western Bushveld Complex. Mineralogical Magazine, 52: 6379.CrossRefGoogle Scholar
Economou, M.I. (1986). Platinum group elements (PGE) in chromite and sulphide ores within the ultramafic zone of some Greek ophiolite complexes. In Metallogeny of Basic and Ultrabasic Rocks (Gallagher, M.J., Ixer, R.A., Neary, C.R. and Prichard, H.M., eds.). London: The Institution of Mining and Metallurgy, 441453.Google Scholar
Eggler, D.H. and Burnham, C.W. (1973). Crystallization and fractionation trends in the system andesite-H2O-CO2-O2 at pressures to 10 kilobars. Geological Society of America Bulletin 84, 25172532.2.0.CO;2>CrossRefGoogle Scholar
Elliot, W.C., Grandstaff, D.E., Ulmer, G.C. and Gold, D.P. (1982). An intrinsic oxygen fugacity study of platinum-carbon associations in layered intrusions. Economic Geology, 77, 14931510.CrossRefGoogle Scholar
Eriksson, P.G., Hattingh, P.J. and Altermann, W. (1995). An overview of the geology of the Transvaal Sequence and Bushveld Complex. Mineralium Deposita, 30, 98111.Google Scholar
Eriksson, P.G., Schweitzer, K., Bosch, P.J.A., Schereiber, U.M., Van Deventer, J. and Hatton, C.J. (1993). The Transvaal Sequence: an overview. Journal of African Earth Sciences, 16(1/2), 2551.CrossRefGoogle Scholar
Ertel, W., O’Neill, H.St.C., Sylvester, P.J. and Dingwell, D.B. (1999). Solubilities of Pt and Rh in a haplobasaltic silicate melt at 1300°C. Geochimica et Cosmochimica Acta, 63(16), 24392449.Google Scholar
Fahlquist, L.S. and Popp, R.K. (1989). The effect of NaCl on bunsenite solubility and Ni complexing in supercritical aqueous fluids. Geochimica et Cosmochimica Acta, 53, 989995.CrossRefGoogle Scholar
Fehlhaber, K. and Bird, D. K. (1991). Oxygen-isotope and mineral alteration in gabbros of the Lower Layered Series, Kap Edvard Holm Complex, East Greenland. Geology, 19, 819822.2.3.CO;2>CrossRefGoogle Scholar
Feig, S.T, Koepke, J. and Snow, J.E. (2010). Effect of oxygen fugacity and water on phase equilibria of a hydrous tholeiitic basalt. Contributions to Mineralogy and Petrology, 160, 551568CrossRefGoogle Scholar
Ferguson, J. and McCarthy, T.S. (1970). Origin of an ultramafic pegmatoid in the eastern part of the Bushveld Complex. Geological Society of South Africa Special Pub, 1, 7479.Google Scholar
Ferris, J., Johnson, A. and Strey, B. (1998). Form and extent of the Dufek intrusion, Antarctica, from newly compiled aeromagnetic data. Science Letters, 154, 185202.Google Scholar
Fiege, A., Behrens, H., Holtz, F. and Adams, F. (2014). Kinetic vs. thermodynamic control of degassing of H2O-S ± Cl-bearing andesitic melts. Geochimica et Cosmochimica Acta, 125, 241264CrossRefGoogle Scholar
Finnigan, C.S., Brenan, J.M., Mungall, J.E. and McDonough, W.F. (2008). Experiments and models bearing on the role of chromite as a collector of platinum group minerals by local reduction. Journal of Petrology, 49, 16471665.CrossRefGoogle Scholar
Fiorentini, M.L, Stone, W.E., Beresford, S.W. and Barley, M.E. (2004). Platinum-group element alloy inclusions in chromites from Archaean mafic-ultramafic units: Evidence from the Abitibi and the Agnew-Wiluna Greenstone Belts. Mineralogy and Petrology, 82, 341355.CrossRefGoogle Scholar
Fleet, M.E. and Wu, T.-W. (1993). Volatile transport of platinum-group elements in sulfide-chloride assemblages at 1000 °C. Geochimica et Cosmochimica Acta, 57, 35193531.CrossRefGoogle Scholar
Fleet, M.E. and Wu, T.-W. (1995). Volatile transport of precious metals at 1000 °C: Speciation, fractionation, and effect of base metal sulfide. Geochimica et Cosmochimica Acta, 59, 487495.CrossRefGoogle Scholar
Fleet, M.E., Crocket, J.H. and Stone, W.E. (1996). Partitioning of platinum-group elements (Os, Ir, Ru, Pt, Pd) and gold between sulfide liquid and basalt melt. Geochimica et Cosmochimica Acta, 60, 23972412.CrossRefGoogle Scholar
Fonseca, R.O.C., Campbell, I.H., O’Neill, H.S.C. and Allen, C.M. (2009). Solubility of Pt in sulfide mattes: Implications for the genesis of PGE-rich horizons in layered intrusions. Geochimica et Cosmochimica Acta, 73(19), 57645777.CrossRefGoogle Scholar
Font, L., Davidson, J.P., Pearson, D.G., Nowell, G.M., Jerram, D.A. and Ottley, C.J. (2008). Sr and Pb isotope micro-analysis of Plagioclase Crystals from Skye Lavas: An insight into open-system processes in a Flood Basalt Province. Journal of Petrology, 49(8), 14491471.CrossRefGoogle Scholar
Ford, C.E., Biggar, G.M., Humphries, D.J., Wilson, G., Dixon, D. and O’Hara, M.J. (1972). Role of water in the evolution of the lunar crust; an experimental study of sample 14310; an indication of lunar calc-alkaline volcanism. Proceedings of the Third Lunar Science Conference. Geochimica et Cosmochimica Acta, Suppl. 3, 207–229.
Frost, B.R. and Touret, J.L.R. (1989). Magmatic CO2 and saline melts from the Sybille monzosyenite, Laramie anorthosite complex, Wyoming. Contributions to Mineralogy and Petrology, 103, 178186.CrossRefGoogle Scholar
Fowler, A.C., Rust, A.C. and Vynnycky, M. (2015). The formation of vesicular cylinders in pahoehoe lava flows. Geophysical and Astrophysical Fluid Dynamics, 109, 3961.Google Scholar
Gaetani, G.A. and Grove, T.L. (1998). The influence of water on melting of mantle peridotite. Contributions to Mineralogy and Petrology, 131, 323346.CrossRefGoogle Scholar
Gaetani, G.A., Grove, T.L. and Bryan, E.B. (1994). Experimental phase relations of basaltic andesite from Hole 839B under hydrous and anhydrous conditions). In Proceedings of the Ocean Drilling Program, Scientific Results, 135 (Hawkins, J., et al., eds). College Station, Ocean Drilling Program, 557564.Google Scholar
Gafeira, J., Dolan, M.F.J. and Monteys, X. (2018). Geomorphic characterization of pockmarks by using a GIS-based semi-automatic toolbox. Geosciences, 8. doi:10.3390/geosciences8050154CrossRefGoogle Scholar
Gain, S.B. (1985). The geologic setting of the platiniferous UG2 chromitite layer on the Farm Maandagshoek, eastern Bushveld Complex. Economic Geology, 80, 925943.CrossRefGoogle Scholar
Gammons, C.H., Bloom, M.S. and Yu, Y. (1992). Experimental investigation of the hydrothermal geochemistry of platinum and palladium: I. Solubility of platinum and palladium sulfide minerals in NaCl/H2SO4 solutions at 300°C. Geochimica et Cosmochimica Acta, 56, 38813894.CrossRefGoogle Scholar
Gardner, J.E., Hilton, M., M. and Carroll, M.R. (1999). Experimental constraints on degassing of magma: Isothermal bubble growth during continuous decompression from high pressure. Earth and Planetary Science Letters, 168, 201218.CrossRefGoogle Scholar
Garuti, G., Bea, F., Zaccarini, F. and Montero, P. (2001). Age, geochemistry and petrogenesis of the ultramafic pipes in the Ivrea Zone, NW Italy. Journal of Petrology, 42, 433457.CrossRefGoogle Scholar
Garuti, G., Zaccarini, F., Cabella, R., Fershtater, G., (1997). Occurrence of unknown Ru–Os–Ir–Fe oxides in the chromitites of the Nurali ultramafic complex, Southern Urals, Russia. Canadian Mineralogist, 35, 14311439.Google Scholar
Garuti, G., Zaccarini, F., Moiloshaq, V. and Alimov, V. (1999). Platinum-group minerals as indicators of sulfur fugacity in ophiolitic upper mantle; an example from chromitites of the Ray-Iz ultramafic complex, Polar Urals, Russia. Canadian Mineralogist, 37, 10991115.Google Scholar
Gee, J.S., Cheadle, M.J., Meurer, W.P. and Grimes, C.B. (2016). Magnetic Constraints on the Thermal History of the Dufek Intrusion. Geological Society of America Penrose Conference on Layered Mafic Intrusions and Associated Economic Deposits, Red Lodge, Montana, August 8–12, 2016 (Abstract).
Gerlach, T.M. and Graber, E.J. (1985). Volatile budget of Kilauea volcano. Nature, 313, 273277.CrossRefGoogle Scholar
Ghiorso, M.S. and Sack, R.O. (1995). Chemical mass transfer in magmatic processes. IV. A revised and internally consistent thermodynamic model for the interpretation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures. Contributions to Mineralogy and Petrology, 119, 197212.CrossRefGoogle Scholar
Ghiorso, M.S., Hirschman, M. and Sack, R.O. (1994). MELTS: Software for thermodynamic modeling of magmatic systems. EOS, 75, 571.CrossRefGoogle Scholar
Gijbels, R.H., Millard, H.T. Jr., Desborough, G.A. and Bartel, A.J. (1974). Osmium, ruthenium, iridium and uranium in silicates and chromite from the eastern Bushveld Complex, South Africa. Geochimica et Cosmochimica Acta, 38, 319337.CrossRefGoogle Scholar
Gleason, J.D., Gutzmer, J., Kesler, S.E. and Zwingmann, H. (2011). 2.05-Ga Isotopic Ages for Transvaal Mississippi Valley–Type Deposits: Evidence for Large-Scale Hydrothermal Circulation around the Bushveld Igneous Complex, South Africa. Journal of Geology, 119, 6980.CrossRefGoogle Scholar
Glebovitsky, V.A., Semenov, V.S., Belyatsky, B.V., Koptev-Dvornikov, E.V., Pchelintseva, N.F., Kireev, B.S. and Koltsov, A.B. (2001). The structure of the Lukkulaisvaara Intrusion, Oulanka Group, Northern Karelia: Petrological Implications. Canadian Mineralogist, 39, 607637.CrossRefGoogle Scholar
Godard, M., Bodinier, J.-L. and Vasseur, G. (1995). Effects of mineralogical reactions on trace element redistributions in mantle rocks during percolation processes: A chromatographic approach. Earth and Planetary Science Letters, 133, 449461.CrossRefGoogle Scholar
Godel, B. (2015). Platinum-Group Element Deposits. In Layered Intrusions: Recent Advances in the Understanding of the Ore Forming Processes (Charlier, B., Namur, O., Latypov, R. and Tegner, C., eds.). Dordrecht: Springer Geology, 379432.CrossRefGoogle Scholar
Godel, B., Barnes, S.-J. and Maier, W.D. (2006). 3-D distribution of sulphide minerals in the Merensky Reef (Bushveld Complex, South Africa) and the J-M Reef (Stillwater Complex, USA) and their relationship to microstrucures using X-ray computed tomography. Journal of Petrology, 47, 18531872.CrossRefGoogle Scholar
González-Jiménez, J.M., Griffin, W.L., Gervilla, F., Proenza, J.A., O’Reilly, S.Y. and Pearson, N.J. (2013). Chromitites in ophiolites: How, where, when, why? Part I. A review and new ideas on the origin and significance of platinum-group minerals. Lithos, 189, 127139.CrossRefGoogle Scholar
Graham, C.M., Valley, J.W., Eiler, J.M. and Wada, H. (1998). Timescales and mechanisms of fluid infiltration in a marble: An ion microprobe study. Contributions to Mineralogy and Petrology, 132, 371-389.CrossRefGoogle Scholar
Grant, N.K. and Moiling, P.A. (1981). A strontium isotope and trace element profile through the Partridge River tractolite, Duluth Complex, Minnesota. Contributions to Mineralogy and Petrology, 77, 296305.CrossRefGoogle Scholar
Green, D.H., Schmidt, M.W. and Hibberson, W.O. (2004). Island-arc Ankaramites: Primitive Melts from Fluxed Refractory Lherzolitic Mantle. Journal of Petrology, 45, 392403.CrossRefGoogle Scholar
Grove, T.L., Till, C.B. and Krawczynski, M.J. (2012). The role of H2O in subduction zone magmatism. Annual Review of Earth and Planetary Sciences, 40, 413439.CrossRefGoogle Scholar
Gurioli, L., Harris, A.J.L., Houghton, B.F., Polacci, M. and Ripepe, M. (2008). Textural and geophysical characterization of explosive basaltic activity at Villarrica volcano. Journal of Geophysical Research, 113, B08206. doi:10.1029/2007JB005328.CrossRefGoogle Scholar
Halkoaho, T.A. and Alapieti, T.T. (1993). Variation in F and Cl-contents of apatite in the Penikat layered intrusion, Northern Finland. In Symposium on layering in igneous complexes, September, 1993, Johannesburg, South Africa, Abstracts Volume, 18–19.
Hamilton, D.L. and Anderson, G.M. (1967). Effects of water and oxygen pressure on the crystallization of basaltic magmas, In Basalts (Hess, H.H. and Poldervaart, A., eds.). New York: Wiley Interscience, 445482.Google Scholar
Hamilton, J. (1977). Sr isotope and trace element studies of the Great Dyke and Bushveld mafic phase and their relation to early Proterozoic magma genesis in southern Africa. Journal of Petrology, 18, 2452.CrossRefGoogle Scholar
Hamlyn, P.R. and Keays, R.R. (1986). Sulfur saturation and second-stage melts: Application to the Bushveld platinum metal deposits. Economic Geology, 81, 14311445.CrossRefGoogle Scholar
Hanley, J.J. and Gladney, E.R. (2011). The presence of carbonic-dominant volatiles during the crystallization of sulfide-bearing mafic pegmatites in the North Roby Zone, Lac des Iles Complex, Ontario. Economic Geology, 106, 3354.CrossRefGoogle Scholar
Hanley, J., Pettke, T., Mungall, J. and Spooner, E.T.C. (2005a) Fluid and melt inclusion evidence for platinum-group element transport by high salinity fluids and halide melts below the J-M Reef, Stillwater Complex, Montana, U.S.A., 10th Platinum Symposium (abstract)
Hanley, J.J., Mungall, J.E., Pettke, T., Spooner, E.T.C. and Bray, C.J. (2005b). Ore metal redistribution by hydrocarbon–brine and hydrocarbon–halide melt phases, North Range footwall of the Sudbury Igneous Complex, Ontario, Canada. Mineralium Deposita, 40, 237256.Google Scholar
Hanley, J.J., Pettke, T., Mungall, J.E. and Spooner, E.T.C. (2005c). The solubility of platinum and gold in NaCl brines at 1.5 kbar, 600 to 800°C: A laser ablation ICP-MS pilot study of synthetic fluid inclusions. Geochimica et Cosmochimica Acta, 69(10), 25932611.CrossRefGoogle Scholar
Hanley, J.J., Mungall, J.E., Pettke, T., Spooner, E.T.C. and Bray, C.J. (2008). Fluid and halide melt inclusions of magmatic origin in the Ultramafic and Lower Banded series, Stillwater Complex, Montana, USA. Journal of Petrology, 49(6), 11331160.CrossRefGoogle Scholar
Hanley, J.J., Ames, D., Barnes, J., Sharp, Z. and Guillong, M. (2011). Interaction of magmatic fluids and silicate melt residues with saline groundwater in the footwall of the Sudbury Igneous Complex, Ontario, Canada: New evidence from bulk rock geochemistry, fluid inclusions and stable isotopes. Chemical Geology, 281, 125.CrossRefGoogle Scholar
Hardy, S.C. and Voorhees, P.W. (1988). Ostwald ripening in a system with a high volume fraction of coarsening phase. Metallurgical and Materials Transactions A, 19A, 27132721.CrossRefGoogle Scholar
Harper, M.P. (2004). Platinum Group Element Mineralization in “Ballrooms” of the J-M Reef of the Stillwater Complex, Montana. M.S. thesis, Brigham Young University, Provo.Google Scholar
Harmer, R.E. and Sharpe, M.R. (1985). Field relations and Sr isotope systematics of the marginal rocks of the eastern Bushveld Complex. Economic Geology, 80, 813837.CrossRefGoogle Scholar
Harmer, R.E., Auret, J.M. and Eglington, B.M. (1995). Lead isotope variations within the Bushveld complex, Southern Africa: A reconnaissance study. Journal of African Earth Sciences, 21(4), 595606.CrossRefGoogle Scholar
Harris, C. and Chaumba, J.B. (2001). Crustal contamination and the fluid-rock interaction during the formation of the Platreef, Northern limb of the Bushveld Complex, South Africa. Journal of Petrology, 42, 13211347.CrossRefGoogle Scholar
Harris, C., Pronost, J.J.M., Ashwal, L.D. and Cawthorn, R.G. (2005). Oxygen and Hydrogen Isotope Stratigraphy of the Rustenburg Layered Suite, Bushveld Complex: Constraints on Crustal Contamination. Journal of Petrology, 46(3), 579601.CrossRefGoogle Scholar
Harris, N., McMillan, A., Holness, M., Uken, R., Watkeys, M., Rogers, N. and Fallick, A. (2003). Melt generation and fluid flow in the thermal aureole of the Bushveld Complex. Journal of Petrology, 44(6), 10311054.CrossRefGoogle Scholar
Hart, S.R. and Ravizza, G.E. (1996). Os partitioning between phases in lherzolite and basalt. Geophysical Monographs, 95, 123134.Google Scholar
Hart, S.R. and Kinloch, E.D. (1989). Osmium isotope systematics in Witwatersrand and Bushveld ore deposits. Economic Geology, 84, 16511655.CrossRefGoogle Scholar
Harvey, J., Warren, J.M. and Shirey, S.B. (2016). Mantle sulfides and their role in Re–Os and Pb isotope geochronology. Reviews in Mineralogy and Geochemistry, 81, 579649.CrossRefGoogle Scholar
Haskin, L.A. and Salpas, P.A. (1992). Genesis of compositional characteristics of Stillwater AN-I and AN-II thick anorthosite units. Geochimica et Cosmochimica Acta, 56, 11871212.CrossRefGoogle Scholar
Hatch, F.H., Wells, A.K. and Wells, M.K. (1974). Petrology of the Igneous Rocks. London: Thomas Murphy and Company.Google Scholar
Hauri, E.H., Gaetani, G.A. and Green, T.H. (2006). Partitioning of water during melting of the Earth’s upper mantle at H2O-undersaturated conditions. Earth and Planetary Science Letters, 248, 715734.CrossRefGoogle Scholar
Haughton, D.R., Roeder, P.L. and Skinner, B.J. (1974). Solubility of sulfur in mafic magmas. Economic Geology, 69, 451467.CrossRefGoogle Scholar
Hawkesworth, C.j., Gallagher, K., Hergt, J.M. and McDermott, F. (1993). Manlte and slab contributions in arc magmas. Annual Review of Earth and Planetary Sciences, 21, 175204.CrossRefGoogle Scholar
Helz, R.T. (1976). Phase relations of basalts in their melting ranges at PH2O = 5 kb. Part II. Melt compositions. Journal of Petrology, 17(2), 139193.CrossRefGoogle Scholar
Helz, R.T. (1985). Compositions of fine-grained mafic rocks from sills and dikes associated with the Stillwater complex. In Stillwater complex, Geology and Guide (Czamanske, G.K. and Zientek, M.L., eds.). Montana Bureau of Mines and Geology Special Publication 92, pp.97–117.
Henderson, P. (1970). The significance of mesostasis of basic layered igneous rocks. Journal of Petrology, 11(3), 463473.CrossRefGoogle Scholar
Hermann, J., Spandler, C. Hack, A. and Korsakov, A.V. (2006). Aqueous fluids and hydrous melts in high-pressure and ultra-high pressure rocks: Implications for element transfer in subduction zones. Lithos, 92, 399417.CrossRefGoogle Scholar
Hess, H.H. (1960). Stillwater igneous complex, Montana – A quantitative mineralogical study. Geological Society of America, Memoir 80.CrossRefGoogle Scholar
Hiemstra, S. (1979). The role of collectors in the formation of the platinum deposits in the Bushveld Complex. Canadian Mineralogist, 17, 469482.Google Scholar
Higgins, M.D. (1991). The origin of laminated and massive anorthosite, Sept Iles Layered Intrusion, Québec, Canada. Contributions to Mineralogy and Petrology, 106, 340354.CrossRefGoogle Scholar
Higgins, M.D. (1998). Origin of anorthosite by textural coarsening: Quantitative measurements of a natural sequence of textural development. Journal of Petrology, 39, 13071325.CrossRefGoogle Scholar
Higgins, M.D. (2002). The role of textural coarsening in the development of the Kiglapait layered mafic intrusion, Labrador, Canada: A crystal size distribution study. Contributions to Mineralogy and Petrology, 144, 314330.CrossRefGoogle Scholar
Higgins, M.D. (2006). Quantitative Textural Measurements in Igneous and Metamorphic Petrology: Cambridge, Cambridge University Press, 275 p.CrossRefGoogle Scholar
Higgins, M.D. (2011). Textural coarsening in igneous rocks: International Geology Review, 53(3–4), 354376.CrossRefGoogle Scholar
Hoatson, D.M. (1991). The petrology and platinum-group element geochemistry of the Munni Munni and Mount Sholl layered mafic-ultramafic intrusions of the West Pilbara Block, Western Australia. Unpublished PhD Dissertation, University of Melbourne.
Hoatson, D.M. and Keays, R.R., (1989). Formation of platiniferous sulfide horizons by crystal fractionation and magma mixing in the Munni Munni layered intrusion, West Pilbara Block, Western Australia. Economic Geology, 84, 17751804.CrossRefGoogle Scholar
Hoatson, D.M., Sun, S.-S. and Keays, R.R. (1992). Petrogenesis of the west Pilbara layered mafic-ultramafic intrusions. In Petrology and Platinum-Group-Element Geochemistry of Archaean Layered Mafic-Ultramafic Intrusions, West Pilbara Block, Western Australia (Hoatson, D.M. et al., eds.). Australian Geological Survey Organization Bulletin, 242, 150–66.Google Scholar
Holland, H.D. (1972). Granites, solutions, and base metal deposits. Economic Geology, 67, 281301.CrossRefGoogle Scholar
Holland, T. and Blundy, J. (1994). Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contributions to Mineralogy and Petrology, 116, 433447.CrossRefGoogle Scholar
Holloway, J.R. and Burham, C.W. (1972). Melting relations of basalt with equilibrium water pressure less than total pressure. Journal of Petrology, 13, 129.Google Scholar
Holness, M.B., Hallworth, M.A., Woods, A. and Sides, R.E. (2007). Infiltration Metasomatism of Cumulates by Intrusive Magma Replenishment: The Wavy Horizon, Isle of Rum, Scotland. Journal of Petrology, 48, 563587.CrossRefGoogle Scholar
Holtz, F., Pichavant, M., Barbey, P. and Johannes, W. (1992). Effects of H2O on liquidus phase relations in the haplogranite system at 2 and 5 kbar. American Mineralogist, 77, 12231241.Google Scholar
Holzheid, A. and Grove, T.L. (2002) Sulfur saturation limits in silicate melts and their implications for core formation scenarios for terrestrial planets. American Mineralogist, 87, 227237.CrossRefGoogle Scholar
Hoshide, T. and Obata, M. (2010). Zoning and resorption of plagioclase in a layered gabbro, as a petrographic indicator of magmatic differentiation. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 100, 235249.CrossRefGoogle Scholar
Hovis, G.L. and Harlov, D.E. (2010). Solution calorimetric investigation of fluor-chlorapatite crystalline solutions. American Mineralogist, 95, 946952.CrossRefGoogle Scholar
Hovland, M. and Judd, A.G. (1988). Seabed Pockmarks and Seepages: Impact on Geology, Biology and the Marine Environment. London: Graham and Trotman (Kluwer).Google Scholar
Hsu, L.C., Lechler, P.J. and Nelson, J.H. (1991). Hydrothermal solubility of palladium in chloride solutions from 300° to 700°C: Preliminary results. Economic Geology, 86, 422427.CrossRefGoogle Scholar
Huber, C., Bachmann, O., Vigneresse, J.L., Dufek, J. and Parmigiani, A. (2012). A physical model for metal extraction and transport in shallow magmatic systems. Geochemistry, Geophysics, Geosystems, 13, Q08003. doi:10.1029/2012GC004042.CrossRefGoogle Scholar
Huber, C. and Parmigiani, A. (2018). A physical model for three-phase compaction in Silicic Magma Reservoirs. Journal of Geophysical research: Solid Earth, 123. doi.org/10.1002/2017JB015224Google Scholar
Hulbert, L.J., Carne, R.C., Gregoire, C.D. and Paktunc, D. (1992). Sedimentary nickel, zinc and platinum-group-element mineralization in Devonian black shales at the Nick Property, Yukon, Canada: A new deposit type. Exploration and Mining Geology, 1, 3962.Google Scholar
Hulbert, L.J. and Von Gruenewaldt, G. (1985) Textural and compositional features of chromite in the Lower and Critical zones of the Bushveld complex south of Potgietersrus. Economic Geology, 80, 872895.CrossRefGoogle Scholar
Hunter, R.H., (1987). Textural equilibrium in layered igneous rocks. In Origins of Igneous Layering (Parsons, I., ed.). NATO ASI Series C, 196, 473503.Google Scholar
Huntington, H. D. (1979). Kiglapait mineralogy I: apatite, biotite, and volatiles. Journal of Petrology, 20, 625652.CrossRefGoogle Scholar
Hurwitz, S. and Navon, O. (1994). Bubble nucleation in rhyolitic melts: Experiments at high pressure, temperature, and water content. Earth and Planetary Science Letters, 122, 267280.CrossRefGoogle Scholar
Ireland, R.H.P. and Penniston-Dorland, S.C. (2015). Chemical interactions between a sedimentary diapir and surrounding mafic magma: Evidence from the Phepane Dome and Bushveld Complex, South Africa. American Mineralogist, 100, 19852000.CrossRefGoogle Scholar
Irvine, T.N. (1965). Chromian spinel as a petrogenetic indicator. Part I: Theory. Canadian Journal of Earth Sciences, 2(6), 648672.CrossRefGoogle Scholar
Irvine, T.N. (1967). Chromian spinel as a petrogenetic indicator. Part II: Petrologic implications. Canadian Journal of Earth Sciences, 4, 71103.CrossRefGoogle Scholar
Irvine, T.N. (1974). Petrology of the Duke Island Ultramafic Complex, Southeastern Alaska. Geological Society of America Memoir 128, 240 p.Google Scholar
Irvine, T.N. (1975). Crystallization sequences in the Muskox intrusion and other layered intrusions. II. Origin of chromite layers and similar deposits of other magmatic ores. Geochimica et Cosmochimica Acta, 39, 9911020.CrossRefGoogle Scholar
Irvine, T.N. (1977). Origin of chromite layers in the Muskox intrusion and other stratiform intrusions: A new interpretation. Geology, 5, 273277.2.0.CO;2>CrossRefGoogle Scholar
Irvine, T.N. (1980). Magmatic infiltration metasomatism, double diffusive fractional crystallization and adcumulus growth in the Muskox Intrusion and other layered intrusions. In Physics of Magmatic Processes (Hargraves, R.B., ed.). Princeton: Princeton University Press, 325384.CrossRefGoogle Scholar
Irvine, T.N., Keith, D.W. and Todd, S.G. (1983). The J-M platinum-palladium reef of the Stillwater Complex, Montana: II. Origin by double-diffusive convective magma mixing and implications for the Bushveld Complex. Economic Geology, 78, 12871334.CrossRefGoogle Scholar
Jackson, E.D. (1961). Primary Textures and Mineral Associations in the Ultramafic Zone of the Stillwater Complex: Montana. United States Geological Survey Professional Paper 358.CrossRef
Jackson, E.D. (1963) Stratigraphic and lateral variation of chromite composition in the Stillwater Complex). Mineralogical Society of America Special Paper, 1, 46–54.
Jain, A. and Juanes, R. (2009). Preferential mode of gas invasion in sediments: Grain-scale mechanistic model of coupled multiphase fluid flow and sediment mechanics. Journal of Geophysical Research – Solid Earth, 114, B08101. http://dx.doi.org/10.1029/2008JB006002.CrossRefGoogle Scholar
Jaupart, C. and Brandeis, G. (1986). The stagnant bottom layer of convecting magma chambers. Earth and Planetary Sciences Letters, 80, 183199.CrossRefGoogle Scholar
Joachim, B., Pawley, A., Lyon, I.C., Marquardt (neé Hartmann), K., Henkel, T., Clay, P.L., Ruzié, L., Burgess, R. and Ballentine, C.J. (2015). Experimental partitioning of F and Cl between olivine, orthopyroxene and silicate melt at Earth’s mantle conditions. Chemical Geology, 416, 6578.CrossRefGoogle Scholar
Johnson, J.W., Oelkers, E.H. and Helgeson, H.C. (1992). SUPCRT92: A software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species and reactions from 1 to 5000 bars and 0° to 1000 °C. Computers and Geosciences, 18, 899947.CrossRefGoogle Scholar
Johnson, B.D., Boudreau, B.P., Gardiner, B.S. and Maass, R. (2002). Mechanical response of sediments to bubble growth. Marine Geology, 187, 347363.CrossRefGoogle Scholar
Jones, M. (1994). Mechanical principles of sediment deformation. In The Geological Deformation of Sediments (Maltman, A., ed.). London: Chapman and Hall, 3771.CrossRefGoogle Scholar
Kamenetsky, V.S. (2006). Melt inclusion record of magmatic immiscibility in crustal and mantle magmas. In Melt Inclusions in Plutonic Rocks (Webster, J.D., ed.). Mineralogical Association of Canada Short Course Series, 36, 8198.Google Scholar
Kanitpanyacharoen, W. and Boudreau, A. (2013). Sulfide-associated mineral assemblages in the Bushveld Complex, South Africa: Platinum-group element enrichment by vapor refining by chloride–carbonate fluids. Mineralium Deposita, 48, 193210.CrossRefGoogle Scholar
Keays, R.R. (1982). Palladium and iridium in komatiites and associated rocks: Application to petrogenetic problems. In Komatiites (Arndt, N.T. and Nisbet, E.G., eds.). Berlin: Springer, 435457.Google Scholar
Keays, R.R. (1989). Formation of platiniferous sulfide horizons by crystal fractionation and magma mixing in the Munni Munni layered intrusion, West Pilbara Block, Western Australia. Economic Geology, 84, 17751804.Google Scholar
Keays, R.R. (1995). The role of komatiitic and picritic magmatism and S-saturation in the formation of ore deposits. Lithos, 43(1), 118.CrossRefGoogle Scholar
Keays, R.R. and Lightfoot, P.C. (2010). Crustal sulfur is required to form magmatic Ni–Cu sulfide deposits: Evidence from chalcophile element signatures of Siberian and Deccan Trap basalts. Mineralium Deposita, 45(3), 241257.CrossRefGoogle Scholar
Keays, R.R. and Tegner, C. (2016). Magma Chamber Processes in the Formation of the Low-sulphide Magmatic Au–PGE Mineralization of the Platinova Reef in the Skaergaard Intrusion, East Greenland. Journal of Petrology, 56, 23192340.CrossRefGoogle Scholar
Keays, R.R., Lightfoot, P.C. and Hamlyn, P.R. (2012). Sulfide saturation history of the Stillwater Complex, Montana: Chemostratigraphic variation in platinum group elements. Mineralium Deposita, 47, 151173.CrossRefGoogle Scholar
Kelemen, P.B., Dick, H.J.B. and Quick, J.E. (1992). Formation of harzburgite by pervasive melt/rock reaction in the upper mantle. Nature, 358, 635641.CrossRefGoogle Scholar
Kelemen, P., Hirth, G., Shimizu, N., Spiegelman, M. and Dick, H. (1997). A review of melt migration processes in the adiabatically upwelling mantle beneath oceanic spreading ridges. Philosophical Transactions of the Royal Society of London, Series A, 355, 283318.CrossRefGoogle Scholar
Kelemen, P.B., Shimizu, N. and Salters, V.J.M. (1995). Extraction of mid-ocean-ridge basalt from the upwelling mantle by focused flow of melt in dunite channels. Nature, 375, 747753.CrossRefGoogle Scholar
Keller, T. and Katz, R.F. (2016). The role of volatiles in reactive melt transport in the asthenosphere. Journal of Petrology, 57(6), 10731108.CrossRefGoogle Scholar
Keller, T., Katz, R.F. and Hirschmann, M.M. (2017). Volatiles beneath mid-ocean ridges: Deep melting, channelised transport, focusing, and metasomatism. Earth and Planetary Science Letters, 464, 5568.CrossRefGoogle Scholar
Khitarov, N.I., Lebedev, Ye.B., Dorfman, A.M. and Bagdasarov, N.Sh. (1979). Effects of temperature, pressure, and volatiles on the surface tension of molten basalt. Geochemistry International, 16(5), 7886.Google Scholar
Kinloch, E.D. (1982). Regional trends in the platinum-group mineralogy of the Critical zone of the Bushveld Complex, South Africa. Economic Geology, 77, 13281347.CrossRefGoogle Scholar
Kinloch, E.D. and Peyerl, W. (1990). Platinum-group minerals in various rock types of the Merensky Reef: Genetic implications. Economic Geology, 85, 537555.CrossRefGoogle Scholar
Konnerup-Madsen, J. and Rosew-Hansen, J. (1982). Volatiles associated with alkaline igneous rift activity: Fluid inclusions in the Ilimaussaq intrusion and Gardar granite complexes (South Greenland). Chemical Geology, 37, 7993.CrossRefGoogle Scholar
Korzhinskii, D.S. (1959). Physicochemical Basis of the Analysis of the Paragenesis of Minerals. London, Chapman and Hall.Google Scholar
Korzhinskii, D.S. (1968). The theory of metasomatic zoning. Mineralium Deposita, 3, 222231.CrossRefGoogle Scholar
Kruger, F.J. (1990). The stratigraphy of the Bushveld Complex: A reappraisal and the relocation of the Main Zone boundaries. South African Journal of Geology, 93, 376381.Google Scholar
Kruger, F.J. (1994). The Sr-isotopic stratigraphy of the western Bushveld Complex. South African Journal of Geology, 97, 393398.Google Scholar
Kruger, F.J. and Marsh, J.S. (1982). Significance of 87Sr/86Sr ratios in the Merensky cyclic unit of the Bushveld Complex. Nature, 298, 5355.CrossRefGoogle Scholar
Kusebauch, C., John, T., Whitehouse, M.J., Klemme, S. and Putnis, A. (2015). Distribution of halogens between fluid and apatite during fluid-mediated replacement processes. Geochimica et Cosmochimica Acta, 170, 225246.CrossRefGoogle Scholar
Kushiro, I. (1975). On the nature of silicate melt and its significance in magma genesis: Regularities in the shift of the liquidus boundaries involving olivine, pyroxene, and silica minerals. American Journal of Science, 275, 411431.CrossRefGoogle Scholar
Kushiro, I., Yoder, H.S. and Nishikawa, M. (1968). Effect of water on the melting of enstatite. Geological Society of America Bulletin, 79, 16851692.CrossRefGoogle Scholar
Labotka, T.C. and Kath, R.L. (2001). Petrogenesis of the contact-metamorphic rocks beneath the Stillwater Complex, Montana. Geological Society of America Bulletin, 113, 13121323.2.0.CO;2>CrossRefGoogle Scholar
Lackey, J.S. and Valley, J.W. (2004). Complex patterns of fluid flow during wollastonite formation in calcareous sandstones at Laurel Mountain, Mt. Morrison Pendant, California. Geological Society of America Bulletin, 116(1/2), 7693.CrossRefGoogle Scholar
Lake, E.T. (2013). Crystallization and saturation front propagation in silicic magma chambers. Earth and Planetary Science Letters, 383, 182193.CrossRefGoogle Scholar
Lambert, D.D. and Simmons, E.C. (1988). Magma evolution in the Stillwater Complex, Montana: II. Rare earth element evidence for the formation of the J-M Reef. Economic Geology, 83, 11091126.CrossRefGoogle Scholar
Langmuire, C.H. (1989). Geochemical consequences of in situ crystallization. Nature, 340, 199205.CrossRefGoogle Scholar
Larsen, R.B., Brooks, C.K. and Bird, D. K. (1992). Methane-bearing, aqueous, saline solutions in the Skaergaard intrusion, east Greenland. Contributions to Mineralogy and Petrology, 112, 428437.CrossRefGoogle Scholar
Latypov, R., O’Driscoll, B. and Lavrenchuk, A. (2013). Towards a model for the in situ origin of PGE reefs in layered intrusions: Insights from chromitite seams of the Rum Eastern Layered Intrusion, Scotland. Contributions to Mineralogy and Petrology, 166, 309327.CrossRefGoogle Scholar
Latypov, R. and 16 others (2015). A fundamental dispute: A discussion of “On some fundamentals of igneous petrology” by Bruce D. Marsh, Contributions to Mineralogy and Petrology (2013) 166: 665–690. Contributions to Mineralogy and Petrology, 169, DOI 10.1007/s00410-015-1108-9CrossRef
Latypov, R., Costin, G., Chistyakova, S., Hunt, E.J., Mukherjee, R. and Naldrett, A. (2018). Platinum-bearing chromite layers are caused by pressure reduction during magma ascent. Nature Communications. DOI: 10.1038/s41467-017-02773-wCrossRef
Laurenz, V., Fonseca, R.O.C., Ballhaus, C. and Sylvester, P.J. (2010). The solubility of palladium in picritic melts: 1. The effect of iron. Geochimica et Cosmochimica Acta, 74, 29892998.CrossRefGoogle Scholar
Laurenz, V., Fonseca, R.O.C., Ballhaus, C., Jochum, K.P., Heuser, A. and Sylvester, P.J. (2013). The solubility of palladium and ruthenium in picritic melts: 2. The effect of sulfur. Geochimica et Cosmochimica Acta, 108, 172183.CrossRefGoogle Scholar
Le Guen, Y., Renard, F., Hellmann, R., Brosse, E., Collombet, M., Tisserand, D. and Gratier, J.P. (2007). Enhanced deformation of limestone and sandstone in the presence of high PCO2 fluids. Journal of Geophysical Research – Solid Earth, 112(B5), B05421.CrossRefGoogle Scholar
Le Roux, V., Bodinier, J.-L. Alard, O., O;Reilly, S.Y. and Griffin, W.L. (2009). Isotopic decoupling during porous melt flow: A case-study in the Lherz peridotite. Earth and Planetary Science Letters, 279, 7685.CrossRefGoogle Scholar
Lee, C.A. and Butcher, A.R. (1990). Cyclicity in the Sr isotope stratigraphy through the Merensky and Bastard Reef units, Atok section, eastern Bushveld Complex. Economic Geology, 85, 877883.Google Scholar
Lee, C.-T.A. and Morton, D.M. (2015). High silica granites: Terminal porosity and crystal settling in shallow mama chambers. Earth and Planetary Science Letters, 409, 2331.CrossRefGoogle Scholar
Leeman, W.P. and Dasch, E.J. (1978). Strontium, lead, and oxygen isotopic investigation of the Skaergaard Intrusion, East Greenland. Earth and Planetary Science Letters, 41, 4759.CrossRefGoogle Scholar
Lenormand, R., Touboul, E. and Zarcone, C. (1988). Numerical models and experiments on immiscible displacements in porous media. Journal of Fluid Mechanics, 189, 165187.CrossRefGoogle Scholar
Li, C. and Boudreau, A.E. (2017). The origin of high Cu/S sulfides by shallow level degassing in the Skaergaard Intrusion, East Greenland. Geology, 45(12), 10751078.CrossRefGoogle Scholar
Li, C. and Ripley, E.M. (2005). Empirical equations to predict the sulfur content of mafic magmas at sulfide saturation and applications to magmatic sulfide deposits. Mineralium Deposita, 40, 218230.CrossRefGoogle Scholar
Li, C. and Ripley, E.M. (2009). Sulfur contents at sulfide-liquid or anhydrite saturation in silicate melts: Empirical equations and example applications. Economic Geology, 104, 405412.CrossRefGoogle Scholar
Li, C., Ripley, E.M., Oberthür, T, Miller, J.D. and Joslin, G.D. (2008). Textural, mineralogical and stable isotope studies of hydrothermal alteration in the main sulfide zone of the Great Dyke, Zimbabwe and the precious metals zone of the Sonju Lake Intrusion, Minnesota, USA. Mineralium Deposita, 43, 97110.CrossRefGoogle Scholar
Li, C., Ripley, E.M., Sarkar, A., Shin, D. and Maier, W.D. (2005). Origin of phlogopite-orthopyroxene inclusions in chromites from the Merensky Reef of the Bushveld Complex, South Africa. Contributions to Mineralogy Petrology. 150, 119130.CrossRefGoogle Scholar
Li, H. and Hermann, J. (2015). Apatite as an indicator of fluid salinity: An experimental study of chlorine and fluorine partitioning in subducted sediments. Geochimica et Cosmochimica Acta, 166, 267297.CrossRefGoogle Scholar
Liebscher, A., Barnes, J.D. and Sharp, Z.D. (2006). Chlorine isotope vapor-liquid fractionation during experimental fluid-phase separation at 400 °C/23 MPa to 450 °C/42 MPa. Chemical Geology 234, 340345.CrossRefGoogle Scholar
Lin, S. and Popp, R.K. (1984). Solubility and complexing of Ni in the system NiO-H2O-HCl. Geochimica et Cosmochimica Acta, 48, 27132722.CrossRefGoogle Scholar
Lindsley, D.H. (1983). Pyroxene thermometry. American Mineralogist, 68, 477493.Google Scholar
Lipin, B.R. (1993) Pressure increases, the formation of chromite seams, and the development of the Ultramafic series in the Stillwater Complex, Montana. Journal of Petrology, 34, 955976.CrossRefGoogle Scholar
Lipman, P.W., Banks, N.G. and Rhodes, J.M. (1985). Degassing-induced crystallization of basaltic magma and effects on lava rheology. Nature, 317, 604607CrossRefGoogle Scholar
Liu, Y., Samaha, N.-T. and Baker, D.R. (2007). Sulfur concentration at sulfide saturation (SCSS) in magmatic silicate melts. Geochimica et Cosmochimica Acta, 71, 17831799.CrossRefGoogle Scholar
Locmelis, M., Pearson, N.J., Barnes, S.J. and Fiorentini, M.L. (2011). Ruthenium in komatiitic chromite. Geochimica et Cosmochimica Acta, 75 (13), 36453661.CrossRefGoogle Scholar
Locmelis, M., Fiorentini, M.L., Barnes, S.J. and Pearson, N.J. (2013). Ruthenium variation in chromite from komatiites and komatiitic basalts – A potential mineralogical indicator for nickel sulfide mineralization. Economic Geology, 108, 355364.CrossRefGoogle Scholar
Locmelis, M., Fiorentini, M.L., Rushmer, T., Arevalo, R. Jr., Adamc, J. and Denyszyn, S.W. (2016). Sulfur and metal fertilization of the lower continental crust. Lithos, 244, 7493.CrossRefGoogle Scholar
Loferski, P.J. and Arculus, R.J. (1993). Multiphase inclusions in plagioclase from anorthosites in the Stillwater Complex, Montana: Implications for the origin of the anorthosites. Contributions to Mineralogy and Petrology, 114, 6378.CrossRefGoogle Scholar
Lofersky, P.J., Lipin, B.R. and Cooper, R.W. (1990). Petrology of chromite-bearing rocks from the lowermost cyclic units in the Stillwater Complex, Montana. U.S. Geological Survey Bulletin, 1674E, E1E25.Google Scholar
Longhi, J. (1982). Effects of fractional crystallization and cumulus processes on mineral composition trends of some lunar and terrestrial rock series. Proceedings of the 13th Lunar Planet Science Conference, Journal of Geophysical Research 87, A54A64.CrossRefGoogle Scholar
Lorand, J.-P. and Alard, O. (2001). Platinum-group element abundances in the upper mantle: New constraints from in situ and whole-rock analyses of massif central xenoliths (France). Geochimica et Cosmochimica Acta, 65, 27892805.CrossRefGoogle Scholar
Lorenz, V. (1975). Formation of phreatomagmatic maar-diatreme volcanoes and its relevance to kimberlite diatremes. Physical Chemistry of the Earth, 9, 1727.CrossRefGoogle Scholar
Løseth, H., Wensaas, L., Arntsen, B., Hanken, N.-M., Basire, C. and Graue, K. (2011). 1000 m long gas blow-out pipes. Marine and Petroleum Geology, 28, 10471060.CrossRefGoogle Scholar
Løvoll, G., Méheust, Y., Toussaint, R., Schmittbuhl, J. and Måløy, K.J. (2004). Growth activity during fingering in a porous Hele-Shaw cell. Physical Review E, 70, 02630–1. doi:10.1103/PhysRevE.70.026301CrossRefGoogle Scholar
Lowenstein, J.B. (1995). Application of silicate-melt inclusions to the study of magmatic volatiles. In Magmas, Fluids, and Ore Deposits (Thompson, J.F.H., ed.). Mineralogical Association of Canada, Short Course Series 23, 7199.Google Scholar
Lubetkin, S.D. (2003). Why is it much easier to nucleate gas bubbles than theory predicts? Langmuir, 19, 25752587.CrossRefGoogle Scholar
Luguet, A., Lorand, J.-P., Alard, O. and Cottin, J.-Y. (2004). A multi-technique study of platinum-group elements systematic in some ligurian ophiolitic peridotites, Italy. Chemical Geology, 208, 175194.CrossRefGoogle Scholar
Luguet, A., Shirey, S.B., Lorand, J.-P., Horan, M.F. and Carlson, R.W. (2007). Residual platinum-group minerals from highly depleted harzburgites of the Lherz massif (France) and their role in HSE fractionation of the mantle. Geochimica et Cosmochimica Acta, 71, 30823097.CrossRefGoogle Scholar
Maier, D.W., Arndt, N.T. and Curl, E.A. (2000). Progressive crustal contamination of the Bushveld Complex: Evidence from Nd isotopic analyses of the cumulate rocks. Contributions to Mineralogy and Petrology, 140(3), 316327.CrossRefGoogle Scholar
Maier, W.D. and Barnes, S.-J. (1998). Concentrations of rare earth elements in silicate rocks of the Lower, Critical and Main Zones of the Bushveld Complex. Chemical Geology, 150, 85103.CrossRefGoogle Scholar
Maier, W.D. and Barnes, S.-J. (2004). Pt/Pd and Pt/Ir Ratios in mantle-derived magmas: A possible role for mantle metasomatism. South African Journal of Geology, 107, 333340.CrossRefGoogle Scholar
Maier, W.D. and Barnes, S.-J. (2008). Platinum-group elements in the UG1 and UG2 chromitites, and the Bastard reef, at Impala platinum mine, western Bushveld Complex, South Africa: Evidence for late magmatic cumulate instability and reef constitution. South African Journal of Geology, 111, 159176.CrossRefGoogle Scholar
Maier, W.D., Barnes, S.-J. and Groves, D.I. (2013). The Bushveld Complex, South Africa: Formation of platinum-palladium, chrome and vanadium-rich layers via hydrodynamic sorting of a mobilized cumulate slurry in a large, relatively slowly cooling, subsiding magma chamber. Mineralium Deposita, 48, 156.CrossRefGoogle Scholar
Maier, W.D., Karykowski, B.T. and Yang, S.-H. (2016). Formation of transgressive anorthosite seams in the Bushveld Complex via tectonically induced mobilisation of plagioclase-rich crystal mushes. Geoscience Frontiers, 7, 875889.CrossRefGoogle Scholar
Maier, W.D., Prichard, H.M., Barnes, S.J. and Fisher, P.C. (1999). Compositional variation of laurite at Union Section in the western Bushveld Complex. South African Journal of Geology, 102, 286292.Google Scholar
Makovicky, E. and Karup-Møller, S. (2000). Phase relations in the metal-rich portions of the phase system Pt-Ir-Fe-S at 1000°C and 1100°C. Mineralogical Magazine, 64(6), 10471056.CrossRefGoogle Scholar
Mangan, M. and Sisson, T. (2004). Delayed, disequilibrium degassing in rhyolite magma: Decompression experiments and implications for explosive volcanism. Earth and Planetary Science Letters, 183, 441455.CrossRefGoogle Scholar
Mangan, M. and Sisson, T. (2005). Evolution of melt-vapor surface tension in silicic volcanic systems: Experiments with hydrous melts. Journal of Geophysical Research, 110, B01202. doi:10.1029/2004JB003215.CrossRefGoogle Scholar
Mangan, M., Mastin, L. and Sisson, T. (2004). Gas evolution in eruptive conduits: Combining insights from high temperature and pressure decompression experiments with steady-state flow modeling. Journal of Volcanology and Geothermal Research, 129, 2336.CrossRefGoogle Scholar
Magenheima, A., Spivack, A.J., Michael, P.J. and Gieskes, J.M. (1995). Chlorine stable isotope composition of the oceanic crust: Implications for Earth’s distribution of chlorine. Earth and Planetary Science Letters, 131(3–4), 427432.CrossRefGoogle Scholar
Manning, C. E. (1994). The solubility of quartz in the lower crust and upper mantle. Geochimica et Cosmochimica Acta, 58(22), 48314839.CrossRefGoogle Scholar
Marsh, B.D. (2004). A magmatic mush column Rosetta stone: The McMurdo Dry Valleys of Antarctica. EOS, 85, 497502.CrossRefGoogle Scholar
Marsh, B.D. (2013). On some fundamentals of igneous petrology. Contributions to Mineralogy and Petrology, 166(3), 665690.CrossRefGoogle Scholar
Mather, T.A., Witt, M.L.I., Pyle, D.M., Quayle, B.M., Aiuppa, A., Bagnato, E., Martin, R.S., Sims, K.W.W., Edmonds, M., Sutton, A.J. and Ilyinskaya, E. (2012). Halogens and trace metal emissions from the ongoing 2008 summit eruption of Kīlauea volcano, Hawai`i. Geochemica et Cosmochimica Acta, 83, 292323.CrossRefGoogle Scholar
Mathez, E.A. (1995). Magmatic metasomatism and formation of the Merensky reef, Bushveld Complex. Contributions to Mineralogy and Petrology, 119, 277286.CrossRefGoogle Scholar
Mathez, E.A. and Marcantonio, F. (1995). Sr isotopes and magma mixing in the Bushveld Complex. EOS Transactions, American Geophysical Union, 76, F641.Google Scholar
Mathez, E.A. and Waight, T.E. (2003). Lead isotopic disequilibrium between sulfide and plagioclase in the Bushveld Complex and the chemical evolution of large layered intrusions. Geochimica et Cosmochimica Acta, 67, 18751888.CrossRefGoogle Scholar
Mathez, E.A. and Webster, J. D. (2005). Partitioning behavior of chlorine and fluorine in the system apatite-silicate melt-fluid. Geochimica et Cosmochimica Acta, 69, 12751286.CrossRefGoogle Scholar
Mathez, E.A. and Kent, A.J.R. (2007). Variable initial Pb isotopic compositions of rocks associated with the UG2 chromitite, eastern Bushveld Complex. Geochimica et Cosmochimica Acta, 71, 55145527.CrossRefGoogle Scholar
Mathez, E.A. and Kinzler, R.J. (2017). Metasomatic chromitite seams in the Bushveld and Rum Layered Intrusions. Elements, 13(6), 397402.CrossRefGoogle Scholar
Mathez, E.A., Dietrich, V.J., Holloway, J.R. and Boudreau, A.E. (1989). Carbon distribution in the Stillwater Complex and evolution of vapour during crystallization of Stillwater and Bushveld magmas. Journal of Petrology, 30(1), 153173.Google Scholar
Mathez, E.A., Agrinier, P. and Hutchinson, R. (1994). Hydrogen isotopic composition of the Merensky reef and related rocks, Atok section, Bushveld Complex. Economic Geology, 89, 791802.CrossRefGoogle Scholar
Mazzini, A., Svensen, H.H., Forsberg, C.F., Linge, H., Lauritzen, S.-E., Haflidason, H., Hammer, Ø., Planke, S. and Tjelta, T.I. (2017). A climatic trigger for the giant Troll pockmark field in the northern North Sea. Earth and Planetary Science Letters, 464, 2434.CrossRefGoogle Scholar
McBirney, A.R. (1975). Differentiation of the Skaergaard Intrusion. Nature, 253, 691694.CrossRefGoogle Scholar
McBirney, A.R. (1987). Constitutional zone refining of layered intrusions. In Origins of Igneous Layering (Parsons, I., ed.). NATO ASI Series C, 196, 437452.Google Scholar
McBirney, A.R., (1996). The Skaergaard Intrusion. In Developments in Petrology 15 – Layered Intrusions (Cawthorn, R.G., ed.). Amsterdam: Elsevier Science, 147180.CrossRefGoogle Scholar
McBirney, A.R. (2009). Factors governing the textural development of Skaergaard gabbros: A review. Lithos, 111, 15.CrossRefGoogle Scholar
McBirney, A.R. and Creaser, R.A. (2003). The Skaergaard Layered Series, Part VII: Sr and Nd isotopes. Journal of Petrology, 44(4), 757771.CrossRefGoogle Scholar
McBirney, A.R. and Hunter, R.H. (1995). The cumulate paradigm reconsidered. The Journal of Geology, 103, 114122.CrossRefGoogle Scholar
McBirney, A.R. and Noyes, R.M. (1979). Crystallization and layering of the Skaergaard Intrusion. Journal of Petrology, 20, 487564.CrossRefGoogle Scholar
McBirney, A.R. and Sonnenthal, E.L. (1990). Metasomatic replacement in the Skaergaard Intrusion, East Greenland: Preliminary observations. Chemical Geology, 88, 245260.CrossRefGoogle Scholar
McCallum, I.S. (1996). The Stillwater Complex. In Developments in Petrology 15 – Layered Intrusions (Cawthorn, R.G., ed.). Amserdam: Elsevier Science, 441484.CrossRefGoogle Scholar
McCallum, I.S., Raedeke, L.D. and Mathez, E.A. (1977). Stratigraphy and petrology of the Banded zone of the Stillwater Complex, Montana. EOS, 58, 1245.Google Scholar
McCallum, I.S., Raedeke, L.D. and Mathez, E.A. (1980). Investigations in the Stillwater Complex: Part I. Stratigraphy and structure of the Banded zone. In The Jackson Volume, vol. 280-A of American Journal of Science (Irving, A. and Dungan, M., eds.). New Haven, Connecticut, Kline Geology Laboratory, Yale University, 5987.Google Scholar
McCallum, I.S., Thurber, D.W., O’Brien, H.E. and Nelson, B.K. (1999). Lead isotopes in sulfides from the Stillwater Complex, Montana: Evidence for subsolidus remobilization. Contributions to Mineralogy and Petrology, 137, 206219.CrossRefGoogle Scholar
McCallum, M.E. (1985). Experimental evidence for fluidization processes in breccia pipe formation. Economic Geology, 80, 15231543.CrossRefGoogle Scholar
McCandless, T.E. and Ruiz, J. (1991). Osmium isotopes and crustal sources for platinum-group element mineralization in the Bushveld Complex, South Africa. Geology, 19, 12251228.2.3.CO;2>CrossRefGoogle Scholar
McCandless, T.E., Ruiz, J., Adair, B.I. and Freydier, C. (1999). Re–Os isotope and Pd/Ru variations in chromitites from the Critical zone, Bushveld Complex, South Africa. Geochimica et Cosmochimica Acta, 63, 911923.CrossRefGoogle Scholar
McCubbin, F.M., Vander Kaaden, K.E., Tartese, R., Boyce, J.W., Mikhail, S., Whitson, E.S., Bell, A.S., Anand, M., Franchi, I.A., Wang, J. and Hauri, E.H. (2015). Experimental investigation of F, Cl and OH partitioning between apatite and Fe-rich basaltic melt at 1.0–1.2 GPa and 950–1000 °C. American Mineralogist, 100(8–9), 17901802.CrossRefGoogle Scholar
McDonald, I., Holwell, D.A. and Armitage, P.E.B. (2005) Geochemistry and Mineralogy of the Platreef and “Critical Zone” of the Northern Lobe of the Bushveld Complex, South Africa: Implications for Bushveld Stratigraphy and the Development of PGE Mineralization. Mineralium Deposita, 40, 526549.CrossRefGoogle Scholar
McDonough, W.F., Sun, S.-S. (1995). The composition of the Earth. Chemical Geology, 120, 223253.CrossRefGoogle Scholar
Mcllveen, C.L. (1996). Anomalous platinum-group element occurrence below the JM Reef, Stillwater Complex, Montana. M.S. Thesis, University of Montana.Google Scholar
McInnes, B.I.A., McBride, J.S., Evans, N.J., Lambert, D.D. and Andrew, A.S. (1999). Osmium isotope constraints on ore metal recycling in subduction zones. Science, 286, 512516.CrossRefGoogle ScholarPubMed
McKenzie, D. (1984). The generation and compaction of partially molten rock. Journal of Petrology, 25, 713765.CrossRefGoogle Scholar
McKenzie, D. (2011). Compaction and crystallization in magma chambers: Towards a model of the Skaergaard Intrusion. Journal of Petrology, 52, 905930.CrossRefGoogle Scholar
Médard, E. and Grove, T.L. (2007). Water in basaltic melts: Effect on the liquidus temperature, olivine-melt thermometry and mantle melting. In Workshop on Water in Planetary Basalts, 2627. LPI Contribution 373, Lunar and Planetary Institute, Houston.Google Scholar
Melcher, F., Grum, W., Simon, G., Thalhammer, T.V. and Stumpfl, E.F. (1997). Petrogenesis of the Ophiolitic Giant Chromite Deposits of Kempirsai, Kazakhstan: A Study of Solid and Fluid Inclusions in Chromite. Journal of Petrology, 38, 14191458.CrossRefGoogle Scholar
Mei, Y., Etschmann, B., Liu, W., Sherman, D.M., Barnes, S.J., Fiorentini, M.L., Seward, T.M., Tesemale, D. and Brugger, J. (2015). Palladium complexation in chloride- and bisulfide-rich fluids: Insights from ab initio molecular dynamics simulations and X-ray absorption spectroscopy. Geochimica et Cosmochimica Acta, 161, 128145.CrossRefGoogle Scholar
Merkle, R.K.W. (1992). Platinum-group minerals in the middle group of chromitite layers at Marikana, western Bushveld Complex: Indications for collection mechanisms and post-magmatic modification. Canadian Journal of Earth Sciences, 29, 209221.CrossRefGoogle Scholar
Métrich, N. and Wallace, P. (2008). Volatile abundances in basaltic magmas and their degassing paths tracked by melt inclusions. In Minerals, Inclusions and Volcanic Processes (Putirka, K. and Tepley, F., eds,). Mineralogical Society of America, Reviews in Mineralogy and Geochemistry, 69, 363402CrossRefGoogle Scholar
Métrich, N. and Rutherford, M. J. (1992). Experimental study of chlorine behavior in hydrous silicic melts. Geochimica et Cosmochimica Acta, 57, 607616.CrossRefGoogle Scholar
Métrich, N., Bertagnini, A., Landi, P. and Rosi, M. (2001). Crystallization driven by decompression and water loss at Stromboli volcano (Aeolian Islands, Italy). Journal of Petrology, 42(8), 14711490.CrossRefGoogle Scholar
Meurer, W.P. and Boudreau, A.E. (1996). Compaction of density-stratified cumulates: Effect on trapped-liquid distribution. Journal of Geology, 104, 115120.CrossRefGoogle Scholar
Meurer, W.P. and Boudreau, A.E. (1998a). Compaction of Igneous Cumulates Part I: Geochemical Consequences for Cumulates and Liquid Fractionation Trends. Journal of Geology, 106, 281292.CrossRefGoogle Scholar
Meurer, W.P. and Boudreau, A.E. (1998b). Compaction of igneous cumulates. Part II – Compaction and the development of igneous foliation. Journal of Geology, 106, 293304.CrossRefGoogle Scholar
Meurer, W.P., Klaber, S.A. and Boudreau, A.E. (1997). Discordant bodies from Olivine-Bearing zones III and IV of the Stillwater complex, Montana – Evidence for post-cumulus fluid migration in layered intrusions. Contributions to Mineralogy and Petrology, 130, 8192.CrossRefGoogle Scholar
Meurer, W.P. and Meurer, M.E.S. (2006). Using apatite to dispel the ‘‘trapped liquid’’ concept and to understand the loss of interstitial liquid by compaction in mafic cumulates: An example from the Stillwater Complex, Montana. Contributions to Mineralogy Petrology, 151, 187201.Google Scholar
Meurer, W.P., Willmore, C.C. and Boudreau, A. E. (1998). Metal redistribution during fluid exsolution and migration in the Middle Banded series of the Stillwater complex, Montana. Lithos, 47, 143156.CrossRefGoogle Scholar
Modal, S.K. and Mathez, E.A. (2007). Origin of the UG2 chromitite layer, Bushveld Complex. Journal of Petrology, 48(3), 495510.CrossRefGoogle Scholar
Morse, S.A. (1980). Basalts and Phase Diagrams. New York: Springer, 493.CrossRefGoogle Scholar
Morse, S.A. (1983). Strontium isotope fractionation in the Kiglapait Intrusion. Science, 220, 193195.CrossRefGoogle ScholarPubMed
Mourtada-Bonnefoi, C.C. and Laporte, D. (1999). Kinetics of bubble nucleation in a rhyolitic melt: An experimental study of the effect of ascent rate. Earth and Planetary Science Letters, 218, 521537.CrossRefGoogle Scholar
Mukherjee, R., Latypov, R. and Balakrishna, A. (2017). An intrusive origin of some UG-1 chromitite layers in the Bushveld Igneous Complex, South Africa: Insights from field relationships. Ore Geology Reviews, 90, 94109.CrossRefGoogle Scholar
Mungall, J.E. (2002). Kinetic controls on the partitioning of trace elements between silicate and sulfide liquids. Journal of Petrology, 43(5), 749768.CrossRefGoogle Scholar
Mungall, J.E. (2015). Physical controls of nucleation, growth and migration of vapor bubbles in partially molten cumulates. In Layered Intrusions (Charlier, B., Namur, O., Latypov, R. and Tegner, C., eds.). Dordrecht: Springer Geology, 331378.CrossRefGoogle Scholar
Munoz, J.L. and Swenson, A. (1981). Chloride-hydroxyl exchange in biotite and estimate of relative HCl/HF activities in hydrothermal fluids. Economic Geology, 76, 22122221.CrossRefGoogle Scholar
Murase, T. and McBirney, A.R. (1973). Properties of some common igneous rocks and their melts at high temperatures. Geological Society of America Bulletin, 84, 35633592.2.0.CO;2>CrossRefGoogle Scholar
Mutanen, T., Törnroos, R. and Johanson, B. (1988). The Significance of Cumulus Chlorapatite and High-temperature Dashkesanite to the Genesis of PGE Mineralization in the Koitelainen and Keivitsa-Satovaara Complexes, Northern Finland. In Geo-Platinum 87 (Prichard, H.M., Potts, P.J., Bowles, J.F.W. and Cribb, S.J., eds.). Dordrecht: Springer,Google Scholar
Mysen, B.O. and Boettcher, A.L. (1975). Melting of a hydrous mantle: I. Phase relations of natural peridotite at high pressures and temperatures with controlled activities of water, hydrogen, and carbon dioxide. Journal of Petrology, 16, 520548.CrossRefGoogle Scholar
Nakagawa, M. and Franco, H.E.A. (1997). An assessment of placer Os–Ir–Ru alloys and sulfides as an indicator of sulfur fugacity in a primitive stage of ophiolite mantle. Journal of Asian Earth Sciences, 15, 311315.Google Scholar
Naldrett, A.J. and Wilson, A.H. (1990). Horizontal and vertical variations in noble metals in the Great Dyke of Zimbabwe: A model for the origin of PGE mineralization by fractional segregation. Chemical Geology, 88, 279300.CrossRefGoogle Scholar
Naldrett, A.J., Kinnaird, J., Wilson, A. and Chunnett, G. (2008). The concentration of PGE in the Earth’s crust with special reference to the Bushveld Complex. Earth Science Frontiers, 15(5), 264297.CrossRefGoogle Scholar
Naldrett, A.J., Wilson, A., Kinnaird, J. and Chunnett, G. (2009). PGE tenor and metal ratios within and below the Merensky Reef, Bushveld Complex: Implications for its genesis. Journal of Petrology, 50, 625659.CrossRefGoogle Scholar
Naldrett, A.J., Wilson, A., Kinnaird, J., Yudovskaya, M. and Chunnett, G. (2012). The origin of chromitites and related PGE mineralization in the Bushveld Complex: New mineralogical and petrological constraints. Mineralium Deposita, 47, 209232.CrossRefGoogle Scholar
Nash, W.P. (1976). Fluorine chlorine and OH-bearing minerals in the Skaergaard Intrusion. American Journal of Science, 276, 546–57.CrossRefGoogle Scholar
Naslund, H.R. (1986). Disequilibrium partial melting and rheomorphic layer formation in the contact aureole of the Basistoppen sill, East Greenland. Contributions to Mineralogy and Petrology, 93, 359367.CrossRefGoogle Scholar
Navon, O. and Lyakhovsky, V. (1998). Vesiculation processes in silicic magmas. Geological Society Special Publication, 145, 2750.CrossRefGoogle Scholar
Newton, R.C., Aranovich, L.Ya., Hansen, E.C. and Vandenheuvel, B.A. (1998). Hypersaline fluids in Precambrian deep-crustal metamorphism. Precambrain Research, 91(1–2), 4163.CrossRefGoogle Scholar
Newton, R.C. and Manning, C.E. (2000). Quartz solubility in H2O-NaCl and H2O-CO2 solutions at deep crust-upper mantle pressures and temperatures: 2–15 kbar and 500–900°C. Geochimica et Cosmochimica Acta, 64(17), 29933005.CrossRefGoogle Scholar
Newton, R.C. and Manning, C.E. (2002). Experimental determination of calref solubility in H2O-NaCl solutions at deep crust/upper mantle pressures and temperatures: Implications for metasomatic processes in shear zones. American Mineralogist, 87, 14011409CrossRefGoogle Scholar
Newton, R.S., Cunningham, R.C. and Schubert, C.E. (1980). Mud volcanoes and pockmarks: Seafloor engineering hazards or geological curiosities? Proceedings 12th Offshore Technical Conference, Houston Texas, 3729, 425–429.CrossRef
Nicholson, D.M. and Mathez, E.A. (1991). Petrogenesis of the Merensky Reef in the Rustenburg section of the Bushveld Complex. Contributions to Mineralogy and Petrology, 107, 293309.CrossRefGoogle Scholar
Nielsen, T.F.D. (2004). The shape and volume of the Skaergaard Intrusion, Greenland: Implications for mass balance and bulk composition. Journal of Petrology, 45, 507530.CrossRefGoogle Scholar
Nielsen, T.F.D., Andersen, J.C.Ø., Holness, M.B., Keidin, J.K., Rudashevsky, N.S., Rudashevsky, V.N., Salmonsen, L.P., Tegner, C. and Veksler, I.V. (2015). The Skaergaard PGE and Gold Deposit: The Result of in situ Fractionation, Sulphide Saturation, and Magma Chamber-scale Precious Metal Redistribution by Immiscible Fe-rich Melt, Journal of Petrology, 56, 16431676.CrossRefGoogle Scholar
O’Driscoll, B., Emeleus, C.H., Donaldson, C.H. and Daly, J.S. (2010). Cr-spinel seam petrogenesis in the Rum Layered Suite, NW Scotland: Cumulate assimilation and in situ crystallization in a deforming crystal mush. Journal of Petrology, 51(6), 11711201.CrossRefGoogle Scholar
O’Driscoll, B. and González-Jiménez, J.M. (2016). Petrogenesis of the Platinum-Group Minerals. Reviews in Mineralogy and Geochemistry, 81, 489578.CrossRefGoogle Scholar
O’Neill, H.St.C. and Mavrogenes, J.A. (2002). The sulfide capacity and the sulfur content at sulfide saturation of silicate melts at 1400 °C and 1 bar. Journal of Petrology, 43, 10491087.CrossRefGoogle Scholar
Oberthür, T. (2011). Platinum-group element mineralization of the Main Sulfide Zone, Great Dyke, Zimbabwe. Reviews in Economic Geology, 17, 329349.Google Scholar
Oberthür, T., Cabri, L.J., Weiser, T.W., McMahon, G. and Müller, P. (1997). Pt, Pd and other trace elements in sulfides of the Main Sulfide Zone, Great Dyke, Zimbabwe – A reconnaissance study. Canadian Mineralogist, 35, 597609.Google Scholar
Oberthür, T., Weiser, T.W., Müller, P., Lodziak, J. and Cabri, L.J. (1998). New observations on the distribution of platinum group elements (PGE) and minerals (PGM) in the MSZ at Hartley Mine, Great Dyke, Zimbabwe. In 8th Intl Pt Symposium Abstracts, South African Institute of Mining and Metallurgy, Johannesburg, 293296.Google Scholar
Oberthür, T., Davis, D.W., Blenkinsop, T.G. and Höhndorf, A. (2002). Precise U–Pb mineral ages, Rb–Sr and Sm–Nd systematics for the Great Dyke, Zimbabwe – Constraints on late Archean events in the Zimbabwe Craton and Limpopo Belt. Precambrian Research, 113, 293305.CrossRefGoogle Scholar
Oberthür, T., Weiser, T.W., Gast, L. and Kojonen, K. (2003). Geochemistry and mineralogy of platinum-group elements at Hartley Platinum Mine, Zimbabwe. Mineralium Deposita, 38, 327343.CrossRefGoogle Scholar
O’Neill, H.St.C., Dingwell, D.B., Borisov, A., Spettle, B. and Palme, H. (1995). Experimental petrochemistry of some high siderophile elements at high temperatures and some implications for core formation and the mantle’s early history. Chemical Geology, 120, 255273.CrossRefGoogle Scholar
Oppenheimer, J., Rust, A.C., Cashman, K.V. and Sandnes, B. (2015). Gas migration regimes and outgassing in particle-rich suspensions. Frontiers in Physics, 3: 115.CrossRefGoogle Scholar
Orville, P.M. (1972). Plagioclase cation exchange equilibria with aqueous chloride solution: Results at 700 °C and 2000 bars in the presence of quartz. American Journal of Science, 272, 234272.CrossRefGoogle Scholar
Page, N.J, Shimek, R. and Huffman, C. (1972). Grain-size variations within an olivine cumulate, Stillwater Complex, Montana. United State Geological Survey Professional Paper, 800-C, C29-C37.Google Scholar
Page, N.J. and Zientek, M.L. (1987). Composition of primary postcumulus amphibole and phlogopite within an olivine cumulate in the Stillwater Complex, Montana. United States Geological Survey Bulletin, 1674-A.Google Scholar
Pagé, P. and Barnes, S.-J. (2013). Improved in-situ determination of PGE concentration of chromite by LA-ICP-MS: Towards a better understanding. Ore deposits associated with mafic and ultramafic rocks, 12th SGA Biennial Meeting 2013. Proceedings, 3, 10501053.Google Scholar
Pagé, P. and Barnes, S.-J., (2016). The influence of chromite on osmium, iridium, ruthenium and rhodium distribution during early magmatic processes. Chemical Geology, 420, 5168.CrossRefGoogle Scholar
Pagé, P., Barnes, S.J. and Zientek, M.L. (2011). Formation and evolution of the chromitites of the Stillwater Complex: A trace element study. In Let‘s Talk Ore Deposits: Proceedings of the 11th SGA Biennial Meeting, Antofagasta, Chile (Barra, F., ed.). Society for Geology Applied to Mineral Deposits, 678680.Google Scholar
Pagé, P., Barnes, S.-J., Bedard, J.H. and Zientek, M.L. (2012). In situ determination of Os, Ir and Ru in chromites formed from komatiite, tholeiite and boninite magmas: Implications for chromite control of Os, Ir and Ru during partial melting and crystal fractionation. Chemical Geology, 302–303, 315.CrossRefGoogle Scholar
Pagé, P., Barnes, S.-J., Méric, J. and Houlé, M.G. (2015). Geochemical composition of chromite from Alexo komatiite in the western Abitibi greenstone belt: Implications for mineral exploration, In Targeted Geoscience Initiative 4: Canadian Nickel-Copper-Platinum Group Elements-Chromium Ore Systems — Fertility, Pathfinders, New and Revised Models, (Ames, D.E. and Houlé, M.G., eds.). Geological Survey of Canada, Open File 7856, 187195.Google Scholar
Palacz, Z.A. and Tait, S.R. (1985). Isotopic and geochemical investigation of unit 10 from the Eastern Layered Series of the Rhum Intrusion, northwest Scotland. Geological Magazine, 122, 485490.CrossRefGoogle Scholar
Palme, H. and O’Neill, H.St.C. (2003). Cosmochemical Estimates of Mantle Composition. In Treatise on Geochemistry, Volume 2 (Carlson, R.W., ed). Oxford: Elsevier-Pergamon, 138.Google Scholar
Pan, P. and Wood, S.A. (1994). Solubility of Pt and Pd sulfides and Au metal in aqueous bisulfide solutions. Mineralium Deposita, 29(5), 373390.CrossRefGoogle Scholar
Park, J.-W., Campbell, I.H. and Eggins, S.M. (2012). Enrichment of Rh, Ru, Ir and Os in Cr spinels from oxidized magmas: Evidence from the Ambae volcano, Vanuatu. Geochimica et Cosmochimica Acta, 78, 2850.CrossRefGoogle Scholar
Parmigiani, A., Huber, C., Bachmann, O. and Chopard, B. (2011). Pore-scale mass and reactant transport in multiphase porous media flow. Journal of Fluid Mechanics, 686, 4076.CrossRefGoogle Scholar
Patten, C., Barnes, S.-J. and Mathez, E.A. (2012). Textural variations in MORB sulfide droplets due to differences in crystallization history. Canadian Mineralogist, 50, 675692.CrossRefGoogle Scholar
Peach, C.L, Mathez, E.A. and Keays, R.R. (1990). Sulfide melt-silicate melt distribution coefficients for noble metals and other chacophile elements as deduced from MORB: Implications for partial melting. Geochimica et Cosmochimica Acta, 54, 33793389.CrossRefGoogle Scholar
Peach, C.L., Mathez, E.A., Keays, R.R. and Reeves, S.J. (1994). Experimentally determined sulfide melt‐silicate melt partition coefficients for iridium and palladium. Chemical Geology, 117, 361377.CrossRefGoogle Scholar
Pebane, M. and Latypov, R. (2017). The significance of magmatic erosion for bifurcation of UG1 chromitite layers in the Bushveld Complex. Ore Geology Reviews, 90, 6593.CrossRefGoogle Scholar
Peck, D.C. and Keays, R.R. (1990). Geology, geochemistry and origin of platinum-group element-chromitite occurrences in the Heazlewood River Complex, Tasmania. Economic Geology, 85, 765793.CrossRefGoogle Scholar
Peck, D.C, Keays, R.R. and Ford, R.J. (1992). Direct crystallization of refractory platinum-group elements alloys from boninitic magmas: Evidence form western Tasmania. Australian Journal of Earth Sciences, 39, 373387.CrossRefGoogle Scholar
Pedersen, A.K., Watt, M., Watt, W.S. and Larsen, L.M. (1997). Structure and stratigraphy of early Tertiary basalts of the Blosseville Kyst, East Greenland. Journal of the Geological Society, London, 154(3), 565570.CrossRefGoogle Scholar
Pelch, M.A., Appold, M.S., Emsbo, P. and Bodnar, R.J. (2015). Constraints from fluid inclusion compositions on the origin of Mississippi valley-type mineralization in the Illinois-Kentucky District. Economic Geology, 110, 787808.CrossRefGoogle Scholar
Peslier, A.H. (2010). A review of water contents of nominally anhydrous natural minerals in the mantles of Earth, Mars and the Moon. Journal of Volcanology and Geothermal Research, 197, 239258.CrossRefGoogle Scholar
Petford, N. and Mirhadizadeh, S. (2017). Image-based modelling of lateral magma flow: The Basement Sill, Antarctica. Royal Society Open Science, 4, 161083). http://dx.doi.org/10.1098/rsos.161083.CrossRef
Peyerl, W. (1982). The influence of the Driekop dunite pipe on the platinum-group mineralogy of the UG-2 chromtite in its vicinity. Economic Geology, 77, 14321438.CrossRefGoogle Scholar
Philpotts, A.R., Brustman, C.M., Shi, J., Carlson, W.D. and Denison, C. (1999). Plagioclase-chain networks in slowly cooled basaltic magma. American Mineralogist, 84, 18191829.CrossRefGoogle Scholar
Philpotts, A.R., Shi, J. and Brustman, C. (1998). Role of plagioclase crystal chains in the differentiation of partly crystallized basaltic magma. Nature, 395, 343346.CrossRefGoogle Scholar
Philpotts, A.R., Carroll, M. and Hill, J.M. (1996). Crystal-mush compaction and the origin of pegmatitic segregation sheets in a thick flood-basalt flow in the Mesozoic Hartford Basin, Connecticut. Journal of Petrology, 37, 811836.CrossRefGoogle Scholar
Piccoli, P.M. and Candela, P.A. (1994). Apatite in felsic rocks; a model for the estimation of initial halogen concentrations in the Bishop Tuff (Long Valley) and Tuolumne Intrusive Suite (Sierra Nevada Batholith) magmas. American Journal of Science, 294, 92135.CrossRefGoogle Scholar
Piccoli, P.M. and Candela, P.A. (2002). Apatite in igneous systems. Reviews in Mineralogy and Geochemistry, 48, 255292.CrossRefGoogle Scholar
Podmore, F. and Wilson, A.H. (1987). A reappraisal of the structure, geology and emplacement of the Great Dyke, Zimbabwe. In Mafic Dyke Swarms (Halls, H.C. and Fahrig, W.F., eds.). Geological Association of Canada Special Paper, 34, 317330.Google Scholar
Polacci, M., Corsaro, R.A. and Andronico, D. (2006). Coupled textural and compositional characterization of basaltic scoria: Insights into the transition from Strombolian to fire fountain activity at Mount Etna, Italy. Geology, 34(3), 201204.CrossRefGoogle Scholar
Prendergast, M.D. (1988). The geology and economic potential of the PGE-rich Main Sulphide Zone of the Great Dyke, Zimbabwe. In Geo-Platinum’87 (Prichard, H.M., Potts, P.J., Bowles, J.F.W. and Cribb, S.J., eds). Barking, Essex, Elsevier Applied Science, 281302.CrossRefGoogle Scholar
Prendergast, M.D. and Keays, R.R. (1989). Controls of platinum-group element mineralisation and the origin of the PGE-rich Main Sulphide Zone in the Wedza Subchamber of the Great Dyke, Zimbabwe: Implications for the genesis of, and exploration for, stratiform PGE mineralisation in layered intrusions. In Magmatic Sulphides – The Zimbabwe Volume (Prendergast, M.D. and Jones, M.J., eds). London, The Institution of Mining and Metallurgy, 4369.Google Scholar
Prendergast, M.D. and Wilson, A.H. (1989). The Great Dyke of Zimbabwe - II: Mineralisation and mineral deposits. In Magmatic Sulphides – The Zimbabwe Volume (Prendergast, M.D. and Jones, M.J., eds). London: The Institution of Mining and Metallurgy, 2142.Google Scholar
Prevec, S.A., Ashwal, L.D. and Makaza, M.S. (2005). Mineral disequilibrium in the Merensky Reef, western Bushveld Complex, South Africa: New Sm–Nd isotopic evidence. Contributions to Mineralogy and Petrology, 149(3), 306315.CrossRefGoogle Scholar
Prichard, H.M., Potts, P.J. and Neary, C.R. (1981). Platinum group element minerals in the Unst chromite, Shetland Isles. Transactions of the Institute of Mining and Metallurgy, Section B, 90, 186188.Google Scholar
Prichard, H.M., Sa, J.H.S. and Fisher, P.C. (2001). Platinum-group mineral assemblages and chromite composition in the altered and deformed Bacuri complex, Amapa, northeastern Brazil. Canadian Mineralogist, 39, 377396.CrossRefGoogle Scholar
Proenza, J.A., Zaccarini, F., Lewis, J.F., Longo, F. and Garuti, G. (2007). Chromian spinel composition and the platinum-group minerals of the PGE-rich Loma Peguera chromitites, Loma Caribe peridotite, Dominican Republic. The Canadian Mineralogist, 45, 631648.CrossRefGoogle Scholar
Proussevitch, A.A. and Sahagian, D.L. (1998). Dynamics and energetics of bubble growth in magmas: Analytical formulation and numerical modeling. Journal of Geophysical Research, 103, 1822318251.CrossRefGoogle Scholar
Puchtel, I.S. and Humayun, M. (2001). Platinum group element fractionation in a komatiitic basalt lava lake. Geochimica et Cosmochimica Acta, 65, 29792993.CrossRefGoogle Scholar
Raedeke, L.D. (1982). Petrogenesis of the Stillwater Complex. Ph.D. Dissertation, University of Washington.Google Scholar
Raedeke, L.D. and McCallum, I.S. (1980). A comparison of fractionation trends in the lunar crust and the Stillwater Complex. In Proceedings of the conference on the lunar highlands crust (Merrill, R.B. and Papike, J.J. eds.). Geochimica et Cosmochimica Acta, supplement 12, 133153.Google Scholar
Raedeke, L.D. and McCallum, I.S. (1984). Investigations in the Stillwater Complex: Part II. Petrology and petrogenesis of the ultramafic series. Journal of Petrology, 25, 395420.CrossRefGoogle Scholar
Raedeke, L.D. and Vian, R.W. (1986). A three dimensional view of mineralization in the Stillwater J-M Reef. Economic Geology, 81, 11871195.CrossRefGoogle Scholar
Reid, D.L. and Basson, I.J. (2002). Iron-rich ultramafic pegmatite replacement bodies within the Upper Critical Zone, Rustenburg Layered Suite, Northam Platinum Mine, South Africa. Mineralogical Magazine, 66(6), 895914.CrossRefGoogle Scholar
Reisberg, L., Tredoux, M., Harris, C., Coftier, A. and Chaumba, J. (2011). Re and Os distribution and Os isotope composition of the Platreef at the Sandsloot–Mogolakwena mine, Bushveld complex, South Africa. Chemical Geology, 24(3–4), 352363.CrossRefGoogle Scholar
Ribe, N.M. (1985). The generation and composition of partial melts in the earth’s mantle. Earth and Planetary Science Letters, 73, 361376.CrossRefGoogle Scholar
Righter, K., Campbell, A.J., Humayun, M. and Hervig, R.L. (2004). Partitioning of Ru, Rh, Pd, Ir and Au between Cr-bearing spinel, olivine, pyroxene and silicate melts. Geochimica et Cosmochimica Acta, 68, 867880.CrossRefGoogle Scholar
Righter, K., Humayun, M. and Danielson, L. (2008). Partitioning of palladium at high pressures and temperatures during core formation. Nature Geoscience, 1, doi:10.1038/ngeo180.CrossRefGoogle Scholar
Ripley, E.M. (2005). Re/Os isotopic and fluid inclusion studies of fluid-rock interaction in the contact aureole of the Duluth Complex, Minnesota. Geochimica et Cosmochimica Acta, 69(10) Supplement, 332.Google Scholar
Rivalta, E. and Dahm, T. (2006). Acceleration of buoyancy-driven fractures and magmatic dikes beneath the free surface. Geophysical Journal International, 166, 14241439.CrossRefGoogle Scholar
Roelofse, F. and Ashwal, L.D. (2012). The Lower Main Zone in the northern limb of the Bushveld complex – A >1.3 km thick sequence of intruded and variably contaminated crystal mushes. Journal of Petrology, 53(7), 14491476.CrossRefGoogle Scholar
Roelofse, F., Ashwal, L.D. and Romer, R.L (2015). Multiple, isotopically heterogeneous plagioclase populations in the Bushveld Complex suggest mush intrusion. Chemie der Erde, 75, 357364.CrossRefGoogle Scholar
Rudashevsky, N.S., Avdontsev, S.N. and Dneprovskaya, M.B. (1992). Evolution of PGE mineralization in hortonolitic Ddunites of the Mooihoek and Onverwacht Pipes, Bushveld Complex. Mineralogy and Petrology, 47, 3754.CrossRefGoogle Scholar
Rüpke, L.H., Morgan, J.P., Hort, M. and Connolly, J.A.D. (2004). Serpentine and the subduction zone water cycle. Earth and Planetary Science Letters, 223, 1734.CrossRefGoogle Scholar
Rust, A.C. and Cashman, K.V. (2004). Permeability of vesicular silicic magma: Inertial and hysteresis effects. Earth and Planetary Science Letters, 228, 93107.CrossRefGoogle Scholar
Ryder, G. and Spettel, B. (1985). The parental magma for some rocks from the Norite 1 subzone of the Stillwater Complex: A lunar analog study. Proceedings of the 15th Lunar and Planetary Science Conference, Part 2, Journal of Geophysical research 90 (supplement), C545C559.CrossRefGoogle Scholar
Ryerson, F.J. and Watson, E.B. (1987). Rutile saturation in magmas, implications for Ti-Nb-Ta depletion in island-arc basalts. Earth Planetary Science Letters, 86, 225239.CrossRefGoogle Scholar
Sahagian, D.L., Proussevitch, A.A. and Carlson, W.D. (2002). Analysis of vesicular basalts and lava emplacement processes for application as a paleobarometer/Ppaleoaltimeter. Journal of Geology, 110: 671685.CrossRefGoogle Scholar
Salpas, P.A., Haskin, L.A. and McCallum, I.S. (1983). Stillwater Anorthosites: A lunar analog? Proceedings of the 14th Lunar and Planetary Science Conference, Part 1. Journal of Geophysical Research, 88(suppl), B27-B39.Google Scholar
Sassani, D.C. and Shock, E.L. (1998). Solubility and transport of platinum-group elements in supercritical fluids: Summary and estimates of thermodynamic properties for ruthenium, rhodium, palladium, and platinum solids, aqueous ions, and complexes to 1000 °C and 5 kbar. Geochimica et Cosmochimica Acta, 62, 26432671.CrossRefGoogle Scholar
Sato, H., Holtz, F., Behrens, H., Botcharnikov, R. and Nakada, S. (2005). Experimental petrology of the 1991–1995 Unzen daref, Part II: Cl/OH partitioning between hornblende and melt and its implications for the origin of oscillatory zoning of hornblende Phenocrysts. Journal of Petrology, 46, 339354.CrossRefGoogle Scholar
Schannor, M., Veksler, I.V., Hecht, L., Harris, C. and Romer, R.L. (2018). Small-scale Sr and O isotope variations through the UG2 in the eastern Bushveld Complex: The role of crustal fluids. Chemical Geology, 485, 9099.CrossRefGoogle Scholar
Schiffries, C.M. (1982). The petrogenesis of a platiniferous dunite pipe in the Bushveld complex: Chloride complexing and cation exchange metasomatism. Economic Geology, 77, 14391453.CrossRefGoogle Scholar
Schiffries, C.M. (1990). Liquid absent aqueous fluid inclusions and phase equilibria in the system CaCl2-NaCl-H2O. Geochimica et Cosmochimica Acta, 54, 611619.CrossRefGoogle Scholar
Schiffries, C.M. and Rye, D.M. (1989). Stable isotopic systematics of the Bushveld Complex: I. Constraints of magmatic processes in layered intrusions. American Journal of Science, 289, 841873.CrossRefGoogle Scholar
Schiffries, C.M. and Rye, D.M. (1990). Stable isotopic systematics of the Bushveld Complex: II. Constraints on hydrothermal processes in layered intrusions. American Journal of Sciences, 290, 209245.Google Scholar
Schiffries, C.M. and Skinner, B.J. (1987). The Bushveld hydrothermal system: Field and petrologic evidence. American Journal of Sciences, 287, 566595.Google Scholar
Schisa, P., Boudreau, A.E., Djon, L., Ychalikian, A. and Corkery, J. (2015). The Lac des Iles palladium deposit, Ontario, Canada. Part II. Halogen variations in apatite. Mineralium Deposita, 50, 339355.CrossRefGoogle Scholar
Schmidberger, S.S., Simonetti, A. and Francis, D. (2003). Small-scale Sr isotope investigation of clinopyroxenes from peridotite xenoliths by laser ablation MC-ICP-MS – Implications for mantle metasomatism. Chemical Geology, 199, 317329.CrossRefGoogle Scholar
Schoenberg, R., Kruger, F.J., Nägler, T.F., Meisel, T. and Kramers, J.D. (1999). PGE enrichment in chromitite layers and the Merensky Reef of the western Bushveld Complex; a Re–Os and Rb–Sr isotope study. Earth and Planetary Science Letters, 172, 4964.CrossRefGoogle Scholar
Scholten, L., Watenphulb, A., Beermanna, O., Testemale, D., Ames, D. and Schmidt, C. (2018). Nickel and platinum in high-temperature H2O + HCl fluids: Implications for hydrothermal mobilization. Geochimica et Cosmochimica Acta, 224, 187199.CrossRefGoogle Scholar
Scoates, J.S. (2000). The plagioclase-magma density paradox re-examined and the crystallization of Proterozoic anorthosites. Journal of Petrology, 41, 627649.CrossRefGoogle Scholar
Scoates, J.S. and Friedman, R.M. (2008). Precise age of the platiniferous Merensky reef, Bushveld Complex, South Africa, by the U–Pb zircon chemical abrasion ID–TIMS technique. Economic Geology, 103, 465471.CrossRefGoogle Scholar
Scoon, R.N. (1987). Metasomatism of cumulus magnesian olivine by iron-rich postcumulus liquids in the upper Critical Zone of the Bushveld Complex. Mineralogical Magazine, 51, 389396.CrossRefGoogle Scholar
Scoon, R.N. and Mitchell, A.A. (1994). Discordant Iron-rich ultramafic pegmatites and their relationship to iron-rich intercumulus and residual liquids. Journal of Petrology, 35, 881917.Google Scholar
Scoon, R.N. and Mitchell, A.A. (2004a). The platiniferous dunite pipes in the eastern limb of the Bushveld Complex: Review and comparison with unmineralized discordant ultramafic bodies. South African Journal of Geology, 107, 505520.CrossRefGoogle Scholar
Scoon, R.N. and Mitchell, A.A., (2004b). Petrogenesis of discordant magnesian dunites from the central sector of the Eastern Bushveld Complex with emphasis on the Winnaarshoek pipe and disruption of the Merensky Reef. Economic Geology, 99, 517541.CrossRefGoogle Scholar
Scoon, R.N. and Mitchell, A.A. (2009). A multi-stage orthomagmatic and partial melting hypothesis for the Driekop platiniferous dunite pipe, eastern limb of the Bushveld Complex, South Africa. South African Journal of Geology, 112, 187196.CrossRefGoogle Scholar