Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-lvtdw Total loading time: 0 Render date: 2024-08-07T09:46:11.376Z Has data issue: false hasContentIssue false

17 - Immediate–early CMV gene regulation and function

from Part II - Basic virology and viral gene effects on host cell functions: betaherpesviruses

Published online by Cambridge University Press:  24 December 2009

Mark F. Stinski
Affiliation:
Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
Jeffery L. Meier
Affiliation:
Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
Ann Arvin
Affiliation:
Stanford University, California
Gabriella Campadelli-Fiume
Affiliation:
Università degli Studi, Bologna, Italy
Edward Mocarski
Affiliation:
Emory University, Atlanta
Patrick S. Moore
Affiliation:
University of Pittsburgh
Bernard Roizman
Affiliation:
University of Chicago
Richard Whitley
Affiliation:
University of Alabama, Birmingham
Koichi Yamanishi
Affiliation:
University of Osaka, Japan
Get access

Summary

Introduction

Betaherpesviruses such as human cytomegalovirus (HCMV), human herpesvirus-6A and 6B (HHV-6), and human herpesvirus-7 (HHV-7) replicate more slowly than alphaherpesviruses, are highly species-specific for infection, and establish latency in progenitor cells of the bone marrow and monocytes of the blood. HCMV has been the prototype of the betaherpesviruses for studies of gene expression and regulation. In cell culture, HCMV strains have been adapted to preferentially infect and replicate in fibroblasts. However, low passage isolates replicate well in other cell types, such as endothelial cells, macrophages and dendritic cells. In the host, HCMV replicates in macrophages, dendritic cells, colonic and retinal pigmented epithelial cells, endothelial cells, fibroblasts, smooth muscle cells, neuronal cells, glial cells, hepatocytes, and trophoblasts (Fish et al., 1995, 1996; Hertel et al., 2003; Ibanez et al., 1991; Lathey and Spector, 1991; Maidji et al., 2002; Schmidbauer et al., 1989; Sinzger et al., 1993, 1995, 1996). In contrast, HHV-6 and HHV-7 infect CD4+ lymphocytes (Takahashi et al., 1989) as well as monocyte/macrophages. Although HCMV can be transferred into and out of polymorphonuclear leukocytes via cell-to-cell contact, these cells do not permit viral replication (Grundy et al., 1998; Sinclair and Sissons, 1996; Sinzger and Jahn, 1996).

Various animal betaherpesviruses have been used as models for HCMV infection. CMVs infecting seven different mammalian hosts (humans, chimpanzees, African green monkeys, rhesus macaques, guinea pigs, rats and mice) have been investigated in some level of detail. Murine CMV (MCMV) infection of mice has been the most widely used animal model.

Type
Chapter
Information
Human Herpesviruses
Biology, Therapy, and Immunoprophylaxis
, pp. 241 - 263
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahn, J.-H. and Hayward, G. S. (1997). The major immediate-early proteins IE1 and IE2 of human cytomegalovirus colocalize with and disrupt PML-associated nuclear bodies at very early times in infected permissive cells. J. Virol., 71, 4599–4613.Google Scholar
Ahn, J.-H., Chiou, C.-J., and Hayward, G. S. (1998a). Evaluation and mapping of the DNA binding and oligomerization domains of the IE2 regulatory protein of human cytomegalovirus using yeast one and two hybrid interaction assays. Gene, 210, 25–36.Google Scholar
Ahn, J.-H., Xu, Y., Jang, W.-J., Matunis, M., and Hayward, G. S. (1998b). Disruption of PML subnuclear domains by the acidic IE1 protein of human cytomegalovirus is mediated through interaction with PML and may modulate a RING finger-dependent cryptic transactivator function of PML. Mol. Cell. Biol., 18, 4899–4913.CrossRefGoogle Scholar
Ahn, J.-H., Xu, Y., Jang, W.-J., Matunis, M. J., and Hayward, G. S. (2001). Evaluation of interactions of human cytomegalovirus immediate-early IE2 regulatory protein with small ubiquitin-like modifiers and their conjugation enzyme Ubc9. J. Virol., 75, 3859–3872.CrossRefGoogle ScholarPubMed
Albrecht, T., Boldogh, I., Fons, M., Abubakar, S., and Deng, C. Z. (1990). Cell activation signals and the pathogenesis of human cytomegalovirus infection. Intervirology, 31, 68–75.CrossRefGoogle Scholar
Albrecht, T., Fons, M. P., Boldogh, I., Deng, S., and Millinoff, D. (1991). Metabolic and cellular effects of human cytomegalovirus infection. Transplant. Proc., 23, 48–55.Google ScholarPubMed
Anders, D. G. and McCue, L. A. (1996). The human cytomegalovirus genes and proteins required for DNA synthesis. Intervirology, 39, 378–388.CrossRefGoogle ScholarPubMed
Angulo, A., Suto, C., Boehm, M. F., Heyman, R. A., and Ghazal, P. (1995). Retinoid activation of retinoic acid receptors but not of retinoid X receptors promotes cellular differentiation and replication of human cytomegalovirus in embryonal cells. J. Virol., 69, 3831–3837.Google Scholar
Angulo, A., Suto, C., Heyman, R. A., and Ghazal, P. (1996). Characterization of the sequences of the human cytomegalovirus enhancer that mediate differential regulation by natural and synthetic retinoids. Mol. Endocrinol., 10, 781–793.Google ScholarPubMed
Angulo, A., Chandraratna, R. A. S., LeBlanc, J. F., and Ghazal, P. (1998a). Ligand induction of retinoic acid receptors alters an acute infection by murine cytomegalovirus. J. Virol., 72, 4589–4600.Google Scholar
Angulo, A., Messerle, M., Koszinowski, U. H., and Ghazal, P. (1998b). Enhancer requirement for murine cytomegalovirus growth and genetic complementation by the human cytomegalovirus enhancer. J. Virol., 72, 8502–8509.Google Scholar
Angulo, A., Ghazal, P., and Messerle, M. (2000a). The major immediate-early gene ie3 of mouse cytomegalovirus is essential for viral growth. J. Virol., 74, 11129–11136.CrossRefGoogle Scholar
Angulo, A., Kerry, D., Huang, H.et al. (2000b). Identification of a boundary domain adjacent to the potent human cytomegalovirus enhancer that represses transcription of the divergent UL127 promoter. J. Virol., 74, 2826–2839.CrossRefGoogle Scholar
Asmar, J., Wiebusch, L., Truss, M., and Hagemeier, C. (2004). The putative zinc-finger of the human cytomegalovirus IE286-kilodalton protein is dispensable for DNA-binding and autorepression thereby demarcating a concise core domain in the C-terminus of the protein. J. Virol., 78, 11853–11864.CrossRefGoogle ScholarPubMed
Awasthi, S., Isler, J. A., and Alwine, J. C. (2004). Analysis of splice variants of the immediate-early 1 region of human cytomegalovirus. J. Virol., 78, 8191–8200.CrossRefGoogle ScholarPubMed
Baldick, C. J., Marchini, A., Patterson, C. E., and Shenk, T. (1997). Human cytomegalovirus tegument protein pp71 (ppUL82) enhances the infectivity of viral DNA and accelerates the infectious cycle. J. Virol., 71, 4400–4408.Google ScholarPubMed
Barrasa, M. I., Harel, N. Y., and Alwine, J. C. (2005). The phosphorylation status of the serine-rich region of the human cytomegalovirus 86 kDa major immediate early protein IE2/IE86 affects temporal viral gene expression. J. Virol., 79, 1428–1437.CrossRefGoogle Scholar
Baskar, J. F., Smith, P. P., Ciment, G. S.et al. (1996a). Developmental analysis of the cytomegalovirus enhancer in transgenic animals. J. Virol., 70, 3215–3226.Google Scholar
Baskar, J. F., Smith, P. P., Nilauer, G.et al. (1996b). The enhancer domain of the human cytomegalovirus major immediate-early promoter determines cell type-specific expression in transgenic mice. J. Virol., 70, 3207–3214.Google Scholar
Beisser, P. S., Kaptein, S. J., Beuken, E., Bruggeman, C. A., and Vink, C. (1998). The Maastricht strain and England strain of rat cytomegalovirus represent different betaherpesvirus species rather than strains. Virology, 246, 341–351.CrossRefGoogle ScholarPubMed
Beisser, P. S., Grauls, G., Bruggeman, C. A., and Vink, C. (1999). The R33 G protein-coupled receptor gene from rat cytomegalovirus plays an essential role in the pathogenesis of viral infection. J. Virol., 72, 2352–2363.Google Scholar
Benedict, C. A., Angulo, A., Patterson, G.et al. (2004). Neutrality of the canonical NF-kB-dependent pathway for human and murine cytomegalovirus transcription and replication in vitro. J. Virol., 78, 741–750.CrossRefGoogle Scholar
Biron, K. K., Fyfe, J. A., Stanat, S. C., Leslie, K., Sorrell, J. A., and Lambe, C. U. (1986). A human cytomegalovirus mutant resistant to the nucleoside analog 9-[2-hydroxy-1-(hydroxymethyl)ethoxy] methylguanine (BW B759U) induces reduced levels of BW B759U triphosphate. Proc. Natl. Acad. Sci. USA, 83, 8769–8773.CrossRefGoogle Scholar
Blankenship, C. A. and Shenk, T. (2002). Mutant human cytomegalovirus lacking the immediate-early TRS1 coding region exhibits a late defect. J. Virol., 76, 12290–12299.CrossRefGoogle ScholarPubMed
Bolovan-Fritts, C. A., Mocarski, E. S., and Wiedeman, J. A. (1999). Peripheral blood CD14+ cells from healthy subjects carry a circular conformation of latent cytomegalovirus genome. Blood, 93, 394–398.Google ScholarPubMed
Bonin, L. R. and McDougall, J. K. (1997). Human cytomegalovirus IE2 86-kilodalton protein binds p53 but does not abrogate G1 checkpoint function. J. Virol., 71, 5861–5870.Google Scholar
Bresnahan, W. A. and Shenk, T. E. (2000). UL82 virion protein activates expression of immediate early viral genes in human cytomegalovirus-infected cells. Proc. Natl Acad. Sci. USA, 97, 14506–14511.CrossRefGoogle ScholarPubMed
Bresnahan, W. A., Boldogh, I., Thompson, E. A., and Albrecht, T. (1996). Human cytomegalovirus inhibits cellular DNA synthesis and arrests productively infected cells in late G1. Virology, 224, 150–160.CrossRefGoogle ScholarPubMed
Bresnahan, W. A., Boldogh, I., Chi, P., Thompson, E. A., and Albrecht, T. (1997). Inhibition of cellular Cdk2 activity blocks human cytomegalovirus replication. Virology, 231, 239–247.CrossRefGoogle ScholarPubMed
Bryant, L. A., Mixon, P., Davidson, M., Bannister, A. J., Kouzarides, T., and Sinclair, J. H. (2000). The human cytomegalovirus 86-kilodalton major immediate–early protein interacts physically and functionally with histone acetyltransferase P/CAF. J. Virol., 74, 7230–7237.CrossRefGoogle ScholarPubMed
Bullock, G. C., Lashmit, P. E., and Stinski, M. F. (2001). Effect of the R1 element on expression of the US3 and US6 immune evasion genes of human cytomegalovirus. Virology, 288, 164–174.CrossRefGoogle ScholarPubMed
Bullock, G. C., Thrower, A. R., and Stinski, M. F. (2002). Cellular proteins bind to sequence motifs in the R1 element between the HCMV immune evasion genes. Exp. Mol. Pathol., 72, 196–206.CrossRefGoogle ScholarPubMed
Cantrell, S. R. and Bresnahan, W. A. (2005). Interaction between the human cytomegalovirus UL82 gene product (pp71) and hDaxx regulates immediate-early gene expression and viral replication. J. Virol., 79, 7792–7802.CrossRefGoogle ScholarPubMed
Castillo, J. P., Yurochko, A. D., and Kowalik, T. F. (2000). Role of human cytomegalovirus immediate-early proteins in cell growth control. J. Virol., 74, 8028–8037.CrossRefGoogle ScholarPubMed
Castillo, J. P., Frame, F. M., Rogoff, H. A., Pickering, M. T., Yurochko, A. D., and Kowalik, T. F. (2005). Human cytomegalovirus IE1-72 activates ataxia telangiectsia mutated kinase and a p53/p21-mediated growth arrest response. J. Virol., 79, 11467–11475.CrossRefGoogle Scholar
Caswell, R., Hagemeier, C., Chiou, C.-J., Hayward, G., Kouzarides, T., and Sinclair, J. (1993). The human cytomegalovirus 86K immediate early (IE2) protein requires the basic region of the TATA-box binding protein (TBP) for binding, and interacts with TBP and transcription factor TFIIB via regions of IE2 required for transcriptional regulation. J. Gen. Virol., 74, 2691–2698.CrossRefGoogle ScholarPubMed
Chan, Y.-J., Tseng, W.-P., and Hayward, G. S. (1996). Two distinct upstream regulatory domains containing multicopy cellular transcription factor binding sites provide basal repression and inducible enhancer characteristics to the immediate-early IE (US3) promoter from human cytomegalovirus. J. Virol., 70, 5312–5328.Google ScholarPubMed
Chang, Y. N., Crawford, S., Stall, J., Rawlins, D. R., Jeang, K. T., and Hayward, G. S. (1990). The palindromic series I repeats in the simian cytomegalovirus major immediate-early promoter behave as both strong basal enhancers and cyclic-AMP response elements. J. Virol., 64, 264–277.Google Scholar
Chao, S.-H., Harada, J. N., Hyndman, F.et al. (2004). PDX1, a cellular homeoprotein, binds to and regulates the activity of human cytomegalovirus immediate early promoter. J. Biol. Chem., 279, 16111–16120.CrossRefGoogle ScholarPubMed
Chee, M. A., Bankier, A. T., Beck, S.et al. (1990). Analysis of the protein-coding content of the sequence of human cytomegalovirus strain AD169. Curr. Top. Microbiol. Immun., 154, 125–169.Google ScholarPubMed
Chen, J. and Stinski, M. F. (2002). Role of regulatory elements and the MAPK/ERK or p38 MAPK pathways for activation of human cytomegalovirus gene expression. J. Virol., 76, 4873–4885.CrossRefGoogle ScholarPubMed
Chen, Z., Knutson, E., Kurosky, A., and Albrecht, T. (2001). Degradation of p21cip1 in cells productively infected with human cytomegalovirus. J. Virol., 75(8), 3613–3625.CrossRefGoogle ScholarPubMed
Cherrington, J. M. and Mocarski, E. S. (1989). Human cytomegalovirus ie1 transactivates the α promoter-enhancer via an 18-base pair repeat element. J. Virol., 63, 1435–1440.Google ScholarPubMed
Cherrington, J. M., Khoury, E. L., and Mocarski, E. S. (1991). Human cytomegalovirus ie2 negatively regulates α gene expression via a short target sequence near the transcription start site. J. Virol., 65, 887–896.Google Scholar
Child, S. J., Child, S. J., Hakki, M., Niro, K. L., and Geballe, A. P. (2004). Evasion of cellular antiviral responses by human cytomegalovirus TRS1 and IRS1. J. Virol., 78, 197–205.CrossRefGoogle ScholarPubMed
Colberg-Poley, A. M. (1996). Functional roles of immediate early proteins encoded by the human cytomegalovirus UL36–38, UL115–119, TRS1/IRS1 and US3 loci. Intervirology, 39, 350–360.CrossRefGoogle ScholarPubMed
Colletti, K. S., Xu, Y., Cei, S. A., Tarrant, M., and Pari, G. S. (2004). Expression of human cytomegalovirus UL84 homodimerization and heterodimerization domains act as transdominant inhibitors of OriLyt-dependent DNA replication: Evidence that IE2-UL84 and UL84-UL84 interactions are required for lytic DNA replication. J. Virol., 78, 9203–9214.CrossRefGoogle Scholar
Compton, T., Kurt-Jones, E. A., Boehme, K. W.et al. (2003). Human cytomegalovirus activates inflammatory cytokine responses via CD14 and toll-like receptor 2. J. Virol., 77, 4588–4596.CrossRefGoogle ScholarPubMed
Cook, C. H., Zhang, Y., McGuinness, B. J., Lahm, M. C., Sedmak, D. D., and Ferguson, R. M. (2002). Intra-abdominal bacterial infection reactivates latent pulmonary cytomegalovirus in immunocompetent mice. J. Infect. Dis., 185, 1395–1400.CrossRefGoogle ScholarPubMed
Davis-Poynter, N. J., Lynch, D. M., Vally, H.et al. (1997). Identification and characterization of a G protein-coupled receptor homolog encoded by murine cytomegalovirus. J. Virol., 71, 1521–1529.Google Scholar
Davison, A. J., Dolan, A., Akter, P.et al. (2003). The human cytomegalovirus genome revisited: comparison with the chimpanzee cytomegalovirus genome. J. Gen. Virol., 84, 17–28.CrossRefGoogle ScholarPubMed
Deshmane, S. L. and Fraser, N. W. (1989). During latency, herpes simplex virus type 1 DNA is associated with nucleosomes in a chromatin structure. J. Virol., 63, 943–947.Google Scholar
Dittmer, D. and Mocarski, E. S. (1997). Human cytomegalovirus infection inhibits G1/S transition. J. Virol., 71, 1629–1634.Google ScholarPubMed
Dorsch-Hasler, K., Keil, G. M., Weber, F., Schaffner, J. M., and Koszinowski, U. H. (1985). A long and complex enhancer activates transcription of the gene coding for the highly abundant immediate early mRNA in murine cytomegalovirus. Proc. Natl Acad. Sci. USA, 82, 8325–8329.CrossRefGoogle ScholarPubMed
Dunn, W., Chou, C., Hong, L.et al. (2003). Functional profiling of a human cytomegalovirus genome. Proc. Natl Acad. Sci. USA, 100, 14223–14228.CrossRefGoogle ScholarPubMed
Dyson, P. J. and Farrell, P. J. (1985). Chromatin structure of Epstein Barr virus. J. Gen. Virol., 66, 1931–1940.CrossRefGoogle ScholarPubMed
Fietze, E., Prosch, S., Reinke, P.et al. (1994). Cytomegalovirus infection in transplant recipients: the role of tumor necrosis factor. Transplantation, 58, 675–680.CrossRefGoogle ScholarPubMed
Fish, K. N., Britt, W., and Nelson, J. A. (1996). A novel mechanism for persistence of human cytomegalovirus in macrophages. J. Virol., 70, 1855–1862.Google ScholarPubMed
Fish, K. N., Depto, A. S., Moses, A. V., Britt, W., and Nelson, J. A. (1995). Growth kinetics of human cytomegalovirus are altered in monocyte-derived macrophages. J. Virol., 69, 3737–3743.Google ScholarPubMed
Flebbe-Rehwaldt, L. M., Wood, C., and Chandran, B. (2000). Characterization of transcripts expressed from human herpesvirus 6A strain GS immediate–early region B U16-U17 open reading frames. J. Virol., 74, 11040–11054.CrossRefGoogle Scholar
Fortunato, E. A. and Spector, D. H. (1998). p53 and RPA are sequestered in viral replication centers in the nuclei of cells infected with human cytomegalovirus. J. Virol., 72, 2033–2039.Google ScholarPubMed
Fortunato, E. A. and Spector, D. H. (1999). Regulation of human cytomegalovirus gene expression. Adv. Virus Res., 54, 61–128.CrossRefGoogle ScholarPubMed
Fortunato, E. A., Sommer, M. H., Yoder, K., and Spector, D. H. (1997). Identification of domains within the human cytomegalovirus major immediate–early 86-kilodalton protein and the retinoblastoma protein required for physical and functional interaction with each other. J. Virol., 71, 8176–8185.Google ScholarPubMed
Fortunato, E., Sanchez, V., Yen, J. Y., and Spector, D. H. (2002). Infection of cells with human cytomegalovirus during S phase results in a blockade to immediate–early gene expression that can be overcome by inhibition of the proteasome. J. Virol., 76, 5369–5379.CrossRefGoogle Scholar
Gawn, J. M. and Greaves, R. F. (2002). Absence of IE1 p72 protein function during low-multiplicity infection by human cytomegalovirus results in a broad block to viral delayed-early gene expression. J. Virol., 76, 4441–4455.CrossRefGoogle Scholar
Gebert, S., Schmolke, S., Sorg, G., Floss, S., Plachter, B., and Stamminger, T. (1997). The UL84 protein of human cytomegalovirus acts as a transdominant inhibitor of immediate-early-mediated transactivation that is able to prevent viral replication. J. Virol., 71, 7048–7060.Google ScholarPubMed
Geng, Y., Chandran, B., Josephs, S. F., and Wood, C. (1992). Identification and characterization of a human herpesvirus 6 gene segment that trans activates the human immunodeficiency virus type 1 promoter. J. Virol., 66, 1564–1570.Google ScholarPubMed
Gompels, U. A., Nicholas, J., Lawrence, G.et al. (1995). The DNA sequence of human herpesvirus-6: structure, coding content, and genome evolution. Virology, 209, 29–51.CrossRefGoogle ScholarPubMed
Gonczol, E., Andrews, P. W., and Plotkin, S. A. (1984). Cytomegalovirus replicates in differentiated but not in undifferentiated human embryonal carcinoma cells. Science, 224, 159–161.CrossRefGoogle ScholarPubMed
Gravel, A., Gosselin, J., and Flamand, L. (2002). Human herpesvirus 6 immediate-early 1 protein is a sumoylated nuclear phosphoprotein colocalizing with promyelocytic leukemia protein-associated nuclear bodies. J. Biol. Chem., 277, 19679–19687.CrossRefGoogle ScholarPubMed
Greaves, R. F. and Mocarski, E. S. (1998). Defective growth correlates with reduced accumulation of viral DNA replication protein after low-multiplicity infection by a human cytomegalovirus ie1 mutant. J. Virol., 72, 366–379.Google ScholarPubMed
Gribaudo, F., Riera, L., Lembo, D.et al. (2000). Murine cytomegalovirus stimulates cellular thymidylate synthetase gene expression in quiescent cells and requires the enzyme for replication. J. Virol., 74, 4979–4987.CrossRefGoogle ScholarPubMed
Gruijthuijsen, Y. K., Casarosa, P., Kaptein, S. J. F., et al. (2002). The rat cytomegalovirus R33-encoded G protein-coupled receptor signals in a constitutive fashion. J. Virol., 76, 1328–1338.CrossRefGoogle Scholar
Grundy, J. E., Lawson, K. M., MacCormac, L. P., Fletcher, J. M., and Yong, K. L. (1998). Cytomegalovirus-infected endothelial cells recruit neutrophils by the secretion of C-X-C chemokines and transmit virus by direct neutrophil- endothelial cell contact and during neutrophil transendothelial migration. J. Infect. Dis., 177, 1465–1474.CrossRefGoogle ScholarPubMed
Grzimek, N. K. A., Podlech, J., Steffens, H.-P., Holtappels, R., Schmalz, S., and Reddehase, M. J. (1999). In vivo replication of recombinant murine cytomegalovirus driven by the paralogous major immediate-early promoter-enhancer of human cytomegalovirus. J. Virol., 73, 5043–5055.Google ScholarPubMed
Grzimek, N. K. A., Dreis, D., Schmalz, S., and Reddehase, M. J. (2001). Random, asynchronous, and asymmetic transcriptional activity of enhancer-flanking major immediate-early genes ie1/3 and ie2 during murine cytomegalovirus latency in the lungs. J. Virol., 75, 2692–2705.CrossRefGoogle Scholar
Hagemeier, C., Walker, S., Caswell, R., Kouzarides, T., and Sinclair, J. (1992a). The human cytomegalovirus 80-kilodalton but not the 72-kilodalton immediate–early protein transactivates heterologous promoters in a TATA box-dependent mechanism and interacts directly with TFIID. J. Virol., 66, 4452–4456.Google Scholar
Hagemeier, C., Walker, S. M., Sissons, P. J., and Sinclair, J. H. (1992b). The 72K IE1 and 80K IE2 proteins of human cytomegalovirus independently trans-activate the c-fos, c-myc and hsp70 promoters via basal promoter elements. J. Gen. Virol., 73(9), 2385–2393.CrossRefGoogle Scholar
Hagemeier, C., Caswell, R., Hayhurst, G., Sinclair, J., and Kouzarides, T. (1994). Functional interaction between the HCMV IE2 transactivator and the retinoblastoma protein. EMBO J., 13, 2897–2903.Google ScholarPubMed
Hahn, G., Jores, R. and Mocarski, E. S. (1998). Cytomegalovirus remains latent in a common precursor of dendritic and myeloid cells. Proc. Natl Acad. Sci., 95, 3937–3942.CrossRefGoogle Scholar
Hakki, M. and Geballe, A. P. (2005). Double-stranded RNA binding by human cytomegalovirus pTRS1. J. Virol., 79, 7311–7318.CrossRefGoogle ScholarPubMed
Hanson, S. G., Strelow, L. I., Franchi, D. C., Anders, D. G., and Wong, S. W. (2003). Complete sequence and genomic analysis of rhesus cytomegalovirus. J. Virol., 77, 6620–6636.CrossRefGoogle Scholar
Harel, N. Y. and Alwine, J. C. (1998). Phosphorylation of the human cytomegalovirus 86-kilodalton immediate-early protein IE2. J. Virol., 72, 5481–5492.Google ScholarPubMed
Hayhurst, G. P., Bryant, L. A., Caswell, R. C., Walker, S. M., and Sinclair, J. H. (1995). CCAAT box-dependent activation of the TATA-less human DNA polymerase alpha promoter by the human cytomegalovirus 72-kilodalton major immediate-early protein. J. Virol., 69, 182–188.Google ScholarPubMed
Hensel, G. M., Meyer, H. H., Buchman, I.et al. (1996). Intracellular localization and expression of the human cytomegalovirus matrix protein pp71 (UL82). J. Gen. Virol., 77, 3087–3097.CrossRefGoogle Scholar
Hertel, L. and Mocarski, E. S. (2004). Global analysis of host cell gene expression late during cytomegalovirus infection reveals extensive dysregulation of cell cycle expression and induction of pseudomitosis independent of US28 function. J. Virol., 78, 11988–12011.CrossRefGoogle ScholarPubMed
Hertel, L., Lacaille, V. G., Strobl, H., Mellins, E. D., and Mocarski, E. S. (2003). Susceptibility of immature and mature Langerhans cell-type dendritic cells to infection and immunomodulation by human cytomegalovirus. J. Virol., 77, 7563–7574.CrossRefGoogle ScholarPubMed
Hofmann, H., Floss, S., and Stamminger, T. (2000). Covalent modification of the transactivator protein IE2-p86 of human cytomegalovirus by conjugation to the ubiquitin-homologous proteins SUMO-1 and hSMT3b. J. Virol., 74, 2510–2524.CrossRefGoogle ScholarPubMed
Hofmann, H., Sindre, H., and Stamminger, T. (2002). Functional interaction between the pp71 protein of human cytomegalovirus and the PML-interacting protein human Daxx. J. Virol., 76, 5769–5783.CrossRefGoogle ScholarPubMed
Homer, E. G., Rinaldi, A., Nicholi, M. J., and Preston, C. M. (1999). Activation of herpesvirus gene expression by the human cytomegalovirus protein pp71. J. Virol., 73, 8512–8518.Google ScholarPubMed
Huang, T. H., Oka, T., Asai, T.et al. (1996). Repression by a differentiation-specific factor of the human cytomegalovirus enhancer. Nucl. Acids Res., 24, 1695–1701.CrossRefGoogle ScholarPubMed
Hudson, J. B. (1979). The murine cytomegalovirus as a model for the study of viral pathogenesis and persistent infections. Arch. Virol., 62, 1–29.CrossRefGoogle Scholar
Hummel, M., Zheng, Z., Yan, S.et al. (2001). Allogeneic transplantation induces expression of cytomegalovirus immediate–early genes in vivo: a model for reactivation from latency. J. Virol., 75, 4814–4822.CrossRefGoogle ScholarPubMed
Hummel, M., Yan, S., Varghese, T. K., Li, Z., and Abecassis, M. (2003). Transcriptional activation of MCMV IE gene expression by 5-axa-2′-deoxycytidine in latently infected spleen explants. 28th International Herpesvirus Workshop, Madison, WI.
Hunninghake, G. W., Monick, M. M., Liu, B., and Stinski, M. F. (1989). The promoter-regulatory region of the major immediate–early gene of human cytomegalovirus responds to T-lymphocyte stimulation and contains functional cyclic AMP-response elements. J. Virol., 63, 3026–3033.Google ScholarPubMed
Ibanez, C. E., Schrier, R., Ghazal, P., Wiley, C., and Nelson, J. A. (1991). Human cytomegalovirus productively infects primary differentiated macrophages. J. Virol., 65, 6581–6588.Google ScholarPubMed
Ippolito, A. J., Spengler, M. L., Chang, K. S., Berkowitz, J. L., and Azizkhan-Clifford, J. (2003). Kinase activity of human cytomegalovirus protein IE1/IE72 correlates with POD disruption and desumoylation of PML. 28th International Herpesvirus Workshop, Madison, WI.
Ishov, A. M., Stenberg, R. M., and Maul, G. G. (1997). Human cytomegalovirus immediate early interaction with host nuclear structures: definition of an immediate transcript environment. J. Cell Biol., 138, 5–16.CrossRefGoogle ScholarPubMed
Ishov, A. M., Vladimirova, O. V., and Maul, G. G. (2002). Daxx-mediated accumulation of human cytomegalovirus tegument protein pp71 at ND10 facilitates initiation of viral infection at these nuclear domains. J. Virol., 76, 7705–7712.CrossRefGoogle ScholarPubMed
Isomura, H. and Stinski, M. F. (2003). Effect of substitution of the human cytomegalovirus enhancer or promoter with the murine cytomegalovirus enhancer or promoter on replication in human fibroblasts. J. Virol., 77, 3602–3614.CrossRefGoogle ScholarPubMed
Isomura, H., Tatsuya, T., and Stinski, M. F. (2004). The role of the proximal enhancer of the major immediate early promoter in human cytomegalovirus replication. J. Virol., 78, 12788–12799.CrossRefGoogle ScholarPubMed
Isomura, H., Stinski, M. F., Kudoh, A., Daikoku, T., Shirata, N., and Tatsuya, T. (2005). Two Sp1/Sp3 binding sites in the major immediate-early proximal enhancer of human cytomegalovirus have a significant role in viral replication. J. Virol., 79, 9597–9607.CrossRefGoogle ScholarPubMed
Jault, F. M., Jault, J.-M., Ruchti, F.et al. (1995). Cytomegalovirus infection induces high levels of cyclins, phosphorylated RB, and p53, leading to cell cycle arrest. J. Virol., 69, 6697–6704.Google ScholarPubMed
Jenuwein, T. and Allis, C. D. (2001). Translating the histone code. Science, 293, 1074–1080.CrossRefGoogle ScholarPubMed
Johnson, R. A., Huong, S. M., and Huang, E. S. (2000). Activation of the mitogen-activated protein kinase p38 by human cytomegalovirus infection through two distinct pathways: a novel mechanism for activation of p38. J. Virol., 74, 1158–1167.CrossRefGoogle ScholarPubMed
Johnson, R. A., Wang, X., Ma, X. L., Huong, S. M., and Huang, E. S. (2001). Human cytomegalovirus up-regulates the phosphatidylinositol 3-kinase (PI3-K) pathway: inhibition of PI3-K activity inhibits viral replication and virus-induced signaling. J. Virol., 75, 6022–6032.CrossRefGoogle ScholarPubMed
Jordan, M. C. (1983). Latent infection and the elusive cytomegalovirus. Rev. Infect. Dis., 5, 205–215.CrossRefGoogle ScholarPubMed
Kalejta, R. F. and Shenk, T. (2002). Manipulation of the cell cycle by human cytomegalovirus. Frontiers in Biosci., 7, 295–306.CrossRefGoogle ScholarPubMed
Kalejta, R. F. and Shenk, T. (2003a). The human cytomegalovirus UL82 gene product (pp71) accelerates progression through the G1 phase of the cell cycle. J. Virol., 77, 3451–3459.CrossRefGoogle Scholar
Kalejta, R. F. and Shenk, T. (2003b). Proteasome-dependent, ubiquitin-independent degradation of the Rb family of tumor suppressors by the human cytomegalovirus pp71 protein. Proc. Natl Acad. Sci. USA, 100, 3263–3268.CrossRefGoogle Scholar
Keller, M. J., Wheeler, D. G., Cooper, E., and Meier, J. L. (2003). Role of the human cytomegalovirus major immediate-early promoter's 19-base-pair-repeat cyclic AMP-response element in acutely infected cells. J. Virol., 77, 6666–6675.CrossRefGoogle ScholarPubMed
Kerry, J. A., Sehgal, A., Barlow, S. W., Gavanaugh, V. J., Fish, K., and Nelson, J. A. (1995). Isolation and characterization of a low-abundance splice variant from the human cytomegalovirus major immediate-early gene region. J. Virol., 69, 3868–3872.Google ScholarPubMed
Kline, J. N., Hunninghake, G. M., He, B., and Monick, M. M. (1998). Synergistic activation of the human cytomegalovirus major immediate early promoter by prostaglandin E2 and cytokines. Exp. Lung Res., 1, 3–14.CrossRefGoogle Scholar
Koffron, A. J., Hummel, M., Patterson, B. K.et al. (1998). Cellular localization of latent murine cytomegalovirus. J. Virol., 72, 95–103.Google ScholarPubMed
Kondo, K., Kaneshima, H., and Mocarski, E. S. (1994). Human cytomegalovirus latent infection of granulocyte-macrophage progenitors. Proc. Natl Acad. Sci. USA, 91, 11879–11883.CrossRefGoogle ScholarPubMed
Kondo, K., Xu, J., and Mocarski, E. S. (1996). Human cytomegalovirus latent gene expression in granulocyte–macrophage progenitors in culture and in seropositive individuals. Proc. Natl Acad. Sci. USA, 93, 11137–11142.CrossRefGoogle ScholarPubMed
Kothari, S. K., Baillie, J., Sissons, J. G. P., and Sinclair, J. H. (1991). The 21 bp repeat element of the human cytomegalovirus major immediate early enhancer is a negative regulator of gene expression in undifferentiated cells. Nucl. Acids Res., 19, 1767–1771.CrossRefGoogle Scholar
Kurz, S. K. and Reddehase, M. J. (1999). Patchwork pattern of transcriptional reactivation in the lungs indicates sequential checkpoints in the transition from murine cytomegalovirus latency to recurrence. J. Virol., 73, 8612–8622.Google Scholar
Kurz, S. K., Rapp, M., Steffens, H.-P., Grzimek, N. K. A., Schmalz, S., and Reddehase, M. J. (1999). Focal transcriptional activity of murine cytomegalovirus during latency in the lungs. J. Virol., 73, 482–494.Google ScholarPubMed
LaFemina, R. and Hayward, G. S. (1986). Constitutive and retinoic acid-inducible expression of cytomegalovirus immediate-early genes in human teratocarcinoma cells. J. Virol., 58, 434–440.Google ScholarPubMed
Lang, D. and Stamminger, T. (1994). Minor groove contacts are essential for an interaction of the human cytomegalovirus IE2 protein with its DNA target. Nucl. Acids Res., 22, 3331–3338.CrossRefGoogle ScholarPubMed
Lang, D., Gebert, S., Arlt, H., and Stamminger, T. (1995). Functional interaction between the human cytomegalovirus 86-kilodalton IE2 protein and the cellular transcription factor CREB. J. Virol., 69, 6030–6037.Google ScholarPubMed
LaPierre, L. A. and Biegalke, B. J. (2001). Identification of a novel transcriptional repressor encoded by human cytomegalovirus. J. Virol., 75, 6062–6069.CrossRefGoogle ScholarPubMed
Lashmit, P. E., Stinski, M. F., Murphy, E. A., and Bullock, G. C. (1998). A cis-repression sequence adjacent to the transcription start site of the human cytomegalovirus US3 gene is required to down regulate gene expression at early and late times after infection. J. Virol., 72, 9575–9584.Google Scholar
Lashmit, P. E., Lundquist, C. A., Meier, J. L., and Stinski, M. F. (2004). A cellular repressor inhibits human cytomegaloviurs transcription from the UL127 promoter. J. Virol., 78, 5113–5123.CrossRefGoogle Scholar
Lathey, J. L. and Spector, S. A. (1991). Unrestricted replication of human cytomegalovirus in hydrocortisone-treated macrophages. J. Virol., 65, 6371–6375.Google ScholarPubMed
Lee, H. and Ahn, J. (2004). The sumoylation of HCMV (Towne) IE2 is not required for viral growth in cultured human fibroblast. 29th International Herpesvirus Workshop, Reno, Nevada.
Lee, H.-R., Kim, D.-J., Lee, J.-M.et al. (2004). Ability of the human cytomegalovirus IE1 protein to modulate sumoylation of PML correlates with its functional activities in transcriptional regulation and infectivity in cultured fibroblast cells. J. Virol., 78, 6527–6542.CrossRefGoogle ScholarPubMed
Liu, B. and Stinski, M. F. (1992). Human cytomegalovirus contains a tegument protein that enhances transcription from promoters with upstream ATF and AP-1 cis-acting elements. J. Virol., 66, 4434–4444.Google ScholarPubMed
Liu, B., Hermiston, T. W., and Stinski, M. F. (1991). A cis-acting element in the major immediate early (IE) promoter of human cytomegalovirus is required for negative regulation by IE2. J. Virol., 65, 897–903.Google ScholarPubMed
Liu, R., Baillie, J., Sissons, J. G. P., and Sinclair, J. H. (1994). The transcription factor YY1 binds to negative regulatory elements in the human cytomegalovirus major immediate early enhancer/promoter and mediates repression in nonpermissive cells. Nucl. Acids Res., 22, 2453–2459.CrossRefGoogle Scholar
Hayashi, Lu M., Blankenship, C., and Shenk, T. (2000). Human cytomegalovirus UL69 protein is required for efficient accumulation of infected cells in the G1 phase of the cell cycle. Proc. Natl Acad. Sci. USA, 97, 2692–2696.CrossRefGoogle ScholarPubMed
Lu, M. and Shenk, T. (1996). Human cytomegalovirus infection inhibits cell cycle progression at multiple points including the transition from G1 to S. J. Virol., 70, 8850–8857.Google ScholarPubMed
Lukac, D. M. and Alwine, J. C. (1997). Effects of the human cytomegalovirus major immediate–early proteins in controlling the cell cycle and inhibiting apoptosis: studies with ts13 cells. J. Virol., 73, 2825–2831.Google Scholar
Lukac, D. M., Manuppello, J. R., and Alwine, J. C. (1994). Transcriptional activation by the human cytomegalovirus immediate–early proteins: Requirements for simple promoter structures and interactions with multiple components of the transcription complex. J. Virol., 68, 5184–5193.Google ScholarPubMed
Lukac, D. M., Harel, N. Y., Tanese, N., and Alwine, J. C. (1997). TAF-like functions of human cytomegalovirus immediate–early proteins. J. Virol., 71, 7227–7239.Google ScholarPubMed
Lundquist, C. A., Meier, J. L., and Stinski, M. F. (1999). A strong negative transcriptional regulatory region between the human cytomegalovirus UL127 gene and the major immediate early enhancer. J. Virol., 73, 9039–9052.Google ScholarPubMed
Macias, M. P. and Stinski, M. F. (1993). An in vitro system for human cytomegalovirus immediate early 2 protein (IE2)-mediated site-dependent repression of transcription and direct binding of IE2 to the major immediate early promoter. Proc. Natl Acad. Sci. USA, 90, 707–711.CrossRefGoogle Scholar
Macias, M. P.Huang, L., Lashmit, P. E., and Stinski, M. F. (1996). Cellular and viral protein binding to a cytomegalovirus promoter transcription initiation site: Effects on transcription. J. Virol., 70, 3628–3635.Google ScholarPubMed
Maidji, E., Percivalle, E., Gerna, G., Fisher, S., and Pereira, L. (2002). Transmission of human cytomegalovirus from infected uterine microvascular endothelial cells to differentiating placental cytotrophoblasts. Virology, 304, 53–69.CrossRefGoogle ScholarPubMed
Malone, C. L., Vesole, D. H., and Stinski, M. F. (1990). Transactivation of a human cytomegalovirus early promoter by gene products from the immediate–early gene IE2 and augmentation by IE1: mutational analysis of the viral proteins. J. Virol., 64, 1498–1506.Google ScholarPubMed
Marchini, A., Liu, H., and Ahu, H. (2001). Human cytomegalovirus with IE-2 (UL122) deleted fails to express early lytic genes. J. Virol., 75, 1870–1878.CrossRefGoogle ScholarPubMed
Margolis, M. J., Pajovic, S., Wong, E. L.et al. (1995). Interaction of the 72-kilodalton human cytomegalovirus IE1 gene product with E2F, coincides with E2F-dependent activation of dihrofolate reductase transcription. J. Virol., 69, 7759–7767.Google ScholarPubMed
McElroy, A. K., Dwarakanath, R. S., and Spector, D. H. (2000). Dysregulation of cyclin E gene expression in human cytomegalovirus-infected cells requires viral early gene expression and is associated with changes in the Rb-related protein p130. J. Virol., 74, 4192–4206.CrossRefGoogle ScholarPubMed
Meier, J. L. (2001). Reactivation of the human cytomegalovirus major immediate-early regulatory region and viral replication in embryonal NTera2 cells: role of trichostatin A, retinoic acid, and deletion of the 21-base-pair repeats and modulator. J. Virol., 75, 1581–1593.CrossRefGoogle ScholarPubMed
Meier, J. L. and Pruessner, J. A. (2000). The human cytomegalovirus major immediate–early distal enhancer region is required for efficient viral replication and immediate–early expression. J. Virol., 74, 1602–1613.CrossRefGoogle Scholar
Meier, J. L. and Stinski, M. F. (1996). Regulation of human cytomegalovirus immediate-early gene expression. Intervirology, 39, 331–342.CrossRefGoogle ScholarPubMed
Meier, J. L. and Stinski, M. F. (2006). Major immediate–early enhancer and its gene products. In Cytomegalovirus Molecular Biology and Immunology, ed. Reddehase, M. J., pp. 151–166. Norfolk, UK: Caister Academic Press.Google Scholar
Meier, J. L., Keller, M. J., and McCoy, J. J. (2002). Requirement of multiple cis-acting elements in the human cytomegalovirus major immediate–early distal enhancer for viral gene expression and replication. J. Virol., 76, 313–326.CrossRefGoogle Scholar
Melnychuk, R. M., Streblow, D. N., Lordanov, M., and Nelson, J. A. (2003). Efficient replication of MCMV is dependent on AP-1. 28th International Herpesvirus Workshop, Madison, WI.
Mocarski, E. S., Kemble, G., Lyle, J., and Greaves, R. F. (1996). A deletion mutant in the human cytomegalovirus gene encoding IE1 491aa is replication defective due to a failure in autoregulation. Proc. Natl Acad. Sci. USA, 93, 11321–11326.CrossRefGoogle ScholarPubMed
Muller, S. and Dejean, A. (1999). Viral immediate-early proteins abrogate the modification by SUMO-1 of PML and Sp100 proteins, correlating with nuclear body disruption. J. Virol., 73, 5137–5143.Google ScholarPubMed
Murphy, E., Dong, Y., Grimwood, J., Schmutz, J.et al. (2003a). Coding potential of laboratory and clinical stains of human cytomegalovirus. Proc. Natl Acad. Sci. USA, 100, 14976–14981.CrossRefGoogle Scholar
Murphy, E., Rigoutsos, I., Shibuya, T., and Shenk, T. (2003b). Reevaluation of human cytomegalovirus coding potential. Proc. Natl Acad. Sci. USA, 100, 13585–13590.CrossRefGoogle Scholar
Murphy, E. A., Streblow, D. N., Nelson, J. A., and Stinski, M. F. (2000). The human cytomegalovirus IE86 protein can block cell cycle progression after inducing transition into the S-phase of permissive cells. J. Virol., 74, 7108–7118.CrossRefGoogle ScholarPubMed
Murphy, J., Fischle, W., Verdin, E., and Sinclair, J. (2002). Control of cytomegalovirus lytic gene expression by histone acetylation. EMBO J., 21, 1112–1120.CrossRefGoogle ScholarPubMed
Mutimer, D., Mirza, D., Shaw, J., O'Donnell, K., and Elias, E. (1997). Enhanced (cytomegalovirus) viral replication associated with septic bacterial complications in liver transplant recipients. Transplantation, 63, 1411–1415.CrossRefGoogle ScholarPubMed
Neipel, F., Ellinger, K., and Fleckenstein, B. (1991). The unique region of the human herpesvirus 6 genome is essentially collinear with the UL segment of human cytomegalovirus. J. Gen. Virol., 72, 2293–2297.CrossRefGoogle ScholarPubMed
Nelson, J. A. and Groudine, M. (1986). Transcriptional regulation of the human cytomegalovirus major immediate–early gene is associated with induction of DNase I-hypersensitive sites. Mol. Cell. Biol., 6, 452–461.CrossRefGoogle ScholarPubMed
Nelson, J. A., Reynolds-Kohler, C., and Smith, B. (1987). Negative and positive regulation by a short segment in the 5′-flanking region of the human cytomegalovirus major immediate–early gene. Mol. Cell. Biol., 7, 4125–4129.CrossRefGoogle ScholarPubMed
Netterwald, J., Yang, S., Wang, W.et al. (2005). Two gamma interferon-activated site-like elements in the human cytomegalovirus major immediate-early promoter/enhancer are important for virus replication. J. Virol., 79, 5035–5046.CrossRefGoogle Scholar
Nevels, M., Brune, W., and Shenk, T. (2004). SUMOylation of the human cytomegalovirus 72-kilodalton IE1 protein facilitates expression of the 86-kilodalton IE2 protein and promotes viral replication. J. Virol., 78, 7803–7812.CrossRefGoogle ScholarPubMed
Nevins, J. R. (1992). E2F: a link between the Rb tumor suppressor and viral oncoproteins. Science, 258, 424–429.CrossRefGoogle ScholarPubMed
Nicholas, J. (1994). Nucleotide sequence analysis of a 21-kbp region of the genome of human herpesvirus-6 containing homologues of human cytomegalovirus major immediate–early and replication genes. Virology, 204, 738–750.CrossRefGoogle ScholarPubMed
Nicholas, J. (1996). Determination and analysis of the complete nucleotide sequence of human herpesvirus 7. J. Virol., 70, 5975–5989.Google Scholar
Nicholas, J. and Martin, M. (1994). Nucleotide sequence analysis of a 38.5-kilobase-pair region of the genome of human herpesvirus 6 encoding human cytomegalovirus immediate–early gene homologs and transactivating functions. J. Virol., 68, 597–610.Google ScholarPubMed
Noris, E., Zannetti, C., Demurtas, A.et al. (2002). Cell cycle arrest by human cytomegalovirus 86-kDa IE2 protein resembles premature senescence. J. Virol., 76, 12135–12148.CrossRefGoogle ScholarPubMed
Pajovic, S., Wong, E. L., Black, A. R., and Azizkhan, J. C. (1997). Identification of a viral kinase that phosphorylates specific E2Fs and pocket proteins. Mol. Cell. Biol., 17, 6459–6464.CrossRefGoogle ScholarPubMed
Papanikolaou, E., Kouvatsis, V., Dimitriadis, G., Inoue, N., and Arsenakis, M. (2002). Identification and characterization of the gene products of open reading frame U86/87 of human herpesvirus 6. Virus Res., 89, 89–101.CrossRefGoogle ScholarPubMed
Pari, G. S. and Anders, D. G. (1993). Eleven loci encoding trans-acting factors are required for transient complementation of human cytomegalovirus oriLyt-dependent DNA replication. J. Virol., 67, 6979–6988.Google ScholarPubMed
Pari, G. S., Kacica, M. A., and Anders, D. G. (1993). Open reading frames UL44, IRS1/TRS1, and UL36–38 are required for transient complementation of human cytomegalovirus oriLyt-dependent DNA synthesis. J. Virol., 67, 2575–2582.Google ScholarPubMed
Petrik, D. T., Schmitt, K. P., and Stinski, M. F. (2006). Recombinant human cytomegalovirus containing a site specific mutation in the IE86 protein is unable to inhibit cellular DNA synthesis or arrest cell cycle progression. J. Virol., 80, 3872–3883.CrossRefGoogle Scholar
Pizzorno, M. C. and Hayward, G. S. (1990). The IE2 gene products of human cytomegalovirus specifically down-regulate expression from the major immediate–early promoter through a target located near the cap site. J. Virol., 64, 6154–6165.Google ScholarPubMed
Pizzorno, M. C., Mullen, M. A., Chang, Y. N., and Hayward, G. S. (1991). The functionally active IE2 immediate–early regulatory protein of human cytomegalovirus is an 80-kilodalton polypeptide that contains two distinct activator domains and a duplicated nuclear localization signal. J. Virol., 65(7), 3839–3852.Google Scholar
Plachter, B., Britt, W., Vornhagen, R., Stamminger, T., and Jahn, G. (1993). Analysis of proteins encoded by IE regions 1 and 2 of human cytomegalovirus using monoclonal antibodies generated against recombinant antigens. Virology, 193, 642–652.CrossRefGoogle ScholarPubMed
Prosch, S., Staak, K., Stein, J.et al. (1995). Stimulation of the human cytomegalovirus IE enhancer/promoter in HL-60 cells by TNFalpha is mediated via induction of NF-kappaB. Virology, 208(1), 197–206.CrossRefGoogle ScholarPubMed
Puchtler, E. and Stamminger, T. (1991). An inducible promoter mediates abundant expression from the immediate-early 2 gene region of human cytomegalovirus at late times after infection. J. Virol., 65, 6301–6303.Google ScholarPubMed
Rawlinson, W. D., Farrell, H. E., and Barrell, B. G. (1996). Analysis of the complete DNA sequence of murine cytomegalovirus. J. Virol., 70, 8833–8849.Google ScholarPubMed
Reeves, M., Murphy, J. Greaves, R., Fairly, J. Brehm, A., and Sinclair, J. (2006). Auto-repression of the HCMV major immediate early promoter/enhancer at late times of infection is mediated by the recruitment of chromatin remodeling enzymes by IE86. J. Virol. (In press).
Rodems, S. M. and Spector, D. H. (1998). Extracellular signal-regulated kinase activity is sustained early during human cytomegalovirus infection. J. Virol., 72, 9173–9180.Google ScholarPubMed
Romanowski, M. J. and Shenk, T. (1997). Characterization of the human cytomegalovirus irs1 and trs1 genes: a second immediate–early transcription unit within irs1 whose product antagonizes transcription activation. J. Virol., 71, 1485–1496.Google Scholar
Romanowski, M. J., Garrido-Guerrero, E., and Shenk, T. (1997). pIRS1 and pTRS1 are present in human cytomegalovirus virions. J. Virol., 71, 5703–5705.Google ScholarPubMed
Rue, C. A., Jarvis, A., Knocke, A. J.et al. (2004). A cyclooxygenase-2 homologue encoded by rhesus cytomegalovirus is a determinant for endothelial cell tropism. J. Virol., 78, 12529–12536.CrossRefGoogle ScholarPubMed
Saffert, R. T. and Kalejta, R. F. (2006). Inactivating a cellular intrinsic immune defense mediated by Daxx is the mechanism through which the human cytomegalovirus pp71 protein stimulates viral immediate–early gene expression. J. Virol., 80, 3863–3871.CrossRefGoogle ScholarPubMed
Salvant, B. S., Fortunato, E. A., and Spector, D. H. (1998). Cell cycle dysregulation by human cytomegalovirus: Influence of the cell cycle phase at the time of infection and effects on cyclin transcription. J. Virol., 72, 3729–3741.Google ScholarPubMed
Samaniego, L. A., Tevethia, M. J., and Spector, D. J. (1994). The human cytomegalovirus 86-kilodalton immediate-early 2 protein: Synthesis as a precursor polypeptide and interaction with a 75-kilodalton protein of probable viral origin. J. Virol., 68, 720–729.Google ScholarPubMed
Sambucetti, L. C., Cherrington, J. M., Wilkinson, G. W. G., and Mocarski, E. S. (1989). NF-kappa B activation of the cytomegalovirus enhancer is mediated by a viral transactivator and by T cell stimulation. EMBOJ., 8, 4251–4258.Google ScholarPubMed
Sanchez, V., Clark, C. L., Yen, J. Y., Dwarakanath, R., and Spector, D. H. (2002). Viable human cytomegalovirus recombinant virus with an internal deletion of the IE2 86 gene affects late stages of viral replication. J. Virol., 76, 2973–2989.CrossRefGoogle ScholarPubMed
Sanchez, V., Elroy, Mc A. K., Yen, J.et al. (2004). Cyclin-dependent kinase activity is required at early times for accurate processing and accumulation of the human cytomegalovirus UL122–123 and UL37 immediate–early transcripts and at later times for virus production. J. Virol., 78, 11219–11232.CrossRefGoogle Scholar
Sandford, G. R. and Burns, W. H. (1996). Rat cytomegalovirus has a unique immediate early gene enhancer. Virology, 222, 310–317.CrossRefGoogle Scholar
Sarisky, R. T. and Hayward, G. S. (1996). Evidence that the UL84 gene product of human cytomegalvorus is essential for promoting oriLyt-dependent DNA replication and formation of replication compartments in cotransfection assays. J. Virol., 70, 7398–7413.Google Scholar
Schierling, K., Stamminger, T., Mertens, T., and Winkler, M. (2004). Human cytomegalovirus tegument proteins ppUL82(pp71) and ppUL35 interact and co-operatively activate the major immediate-early enhancer. J. Virol., 78, 9512–9523.CrossRefGoogle Scholar
Schiewe, U., Neipel, F., Schreiner, D., and Fleckenstein, B. (1994). Structure and transcription of an immediate–early region in the human herpesvirus 6 genome. J. Virol., 68, 2978–2985.Google ScholarPubMed
Schmidbauer, M., Budka, H., Ulrich, W., and Ambros, P. (1989). Cytomegalovirus (CMV) disease of the brain in AIDS and connatal infection: a comparative study by histology, immunocytochemistry, and in situ DNA hybridization. Acta Neuropathol. Berlin, 79, 286–293.CrossRefGoogle ScholarPubMed
Shelbourn, S. L., Kothari, S. K., Sissons, J. G. P., and Sinclair, J. H. (1989). Repression of human cytomegalovirus gene espression associated with a novel immediate early regulatory region binding factor. Nucl. Acid Res., 17, 9165–9171.CrossRefGoogle Scholar
Shen, Y. H., Utama, B., Wang, J.et al. (2004). Human cytomegalovirus causes endothelial injury through the ataxia telangiectasia mutant and p53 DNA damage signaling pathways. Circ. Res., 94, 1310–1317.CrossRefGoogle ScholarPubMed
Shirakata, M., Terauchi, M., Ablikim, M.et al. (2002). Novel immediate–early protein IE19 of human cytomegalovirus activates the origin recognition complex I promoter in a cooperative manner with IE72. J. Virol., 76, 3158–3167.CrossRefGoogle Scholar
Sinclair, J. and Sissons, P. (1996). Latent and persistent infections of monocytes and macrophages. Intervirology, 39, 293–301.CrossRefGoogle ScholarPubMed
Sinclair, J. H., Baillie, J., Bryant, L. A., Taylor-Wiedeman, J. A., and Sissons, J. G. P. (1992). Repression of human cytomegalovirus major immediate early gene expression in a monocytic cell line. J. Gen. Virol., 73, 433–435.CrossRefGoogle Scholar
Singh, J. and Compton, T. (2004). The IE1 protein of human cytomegalovirus is a key component of host innate immune repression. 29th International Herpesvirus Workshop, Reno, Nevada.
Sinzger, C. and Jahn, G. (1996). Human cytomegalovirus cell tropisim and pathogenesis. Intervirology, 39, 302–319.CrossRefGoogle ScholarPubMed
Sinzger, C., Muntefering, H., Loning, T., Stoss, H., Placther, B., and Jahn, G. (1993). Cell types infected in human cytomegalovirus placentitis identified by immunohistochemical double staining. Virchows Arch. A. Pathol. Anat. Histopathol., 4233, 249–256.CrossRefGoogle Scholar
Sinzger, C., Grefte, A., Plachter, B., Gouw, A. S. H., The, Hauw T., and Jahn, G. (1995). Fibroblasts, epithelial cells, endothelial cells, and smooth muscle cells are the major targets of human cytomegalovirus infection in lung and gastrointestinal tissues. J. Gen. Virol., 76, 741–750.CrossRefGoogle ScholarPubMed
Sinzger, C., Plachter, B., Grefte, A., Gouw, A. S. H., The, T. H., and Jahn, G. (1996). Tissue macrophages are infected by human cytomegalovirus. J. Infect. Dis., 173, 240–245.CrossRefGoogle ScholarPubMed
Slobedman, B. and Mocarski, E. S. (1999). Quantitative analysis of latent human cytomegalovirus. J. Virol., 73, 4806–4812.Google ScholarPubMed
Soderberg-Naucler, C., Fish, K. N., and Nelson, J. A. (1997a). Interferon-gamma and tumor necrosis factor-alpha specifically induce formation of cytomegalovirus-permissive monocyte-derived macrophages that are refractory to the antiviral activity of these cytokines. J. Clin. Invest., 100, 3154–3163.CrossRefGoogle Scholar
Soderberg-Naucler, C., Fish, K. N., and Nelson, J. A. (1997b). Reactivation of latent human cytomegalovirus by allogeneic stimulation of blood cells from healthy donors. Cell, 91, 119–126.CrossRefGoogle Scholar
Soderberg-Naucler, C., Streblow, D. N., Fish, K. N., Allan-Yorke, J., Smith, P. P., and Nelson, J. A. (2001). Reactivation of latent human cytomegalovirus in CD14+ monocytes is differentiation dependent. J. Virol., 75, 7543–7554.CrossRefGoogle ScholarPubMed
Sommer, M. H., Scully, A. L., and Spector, D. H. (1994). Transactivation by the human cytomegalovirus IE2 86-kilodalton protein requires a domain that binds to both the TATA box-binding protein and the retinoblastoma protein. J. Virol., 68, 6223–6231.Google ScholarPubMed
Song, Y.-J. and Stinski, M. F. (2002). Effect of the human cytomegalovirus IE86 protein on expression of E2F-responsive genes: A DNA microarray analysis. Proc. Natl Acad. of Sci. USA, 99, 2836–2841.CrossRefGoogle ScholarPubMed
Song, Y.-J. and Stinski, M. F. (2005). Inhibition of cell division by the human cytomegalovirus IE86 protein: Role of the p53 pathway or cdk1/cyclin B1. J. Virol., 79, 2597–2603.CrossRefGoogle ScholarPubMed
Spector, D. H. (1996). Activation and regulation of human cytomegalovirus early genes. Intervirology, 39, 361–377.CrossRefGoogle ScholarPubMed
Spector, D. J. and Tevethia, M. J. (1994). Protein–protein interactions between human cytomegalovirus IE2–580aa and pUL84 in lytically infected cells. J. Virol., 68, 7549–7553.Google ScholarPubMed
Speir, E., Modali, R., Huang, E.-S., Leon, M. B., Shawl, F., Finkel, T., and Epstein, S. E. (1994). Potential role of human cytomegalovirus and p53 interaction in coronary restenosis. Science, 265, 391–394.CrossRefGoogle ScholarPubMed
Speir, E., Yu, Z.-X., Ferrans, V. J., Huang, E.-S., and Epstein, S. E. (1998). Aspirin attenuates cytomegalovirus infectivity and gene expression mediated by cyclooxygenase-2 in coronary artery smooth muscle cells. Circ. Res., 83, 210–216.CrossRefGoogle ScholarPubMed
Spengler, M. L., Kurapatwinski, K., Black, A. R., and Azizkhan-Clifford, J. (2002). SUMO-1 modification of human cytomegalovirus IE1/IE72. J. Virol., 76, 2990–2996.CrossRefGoogle ScholarPubMed
Stamminger, T., Puchtler, E., and Fleckenstein, B. (1991). Discordant expression of the immediate-early 1 and 2 gene regions of human cytomegalovirus at early times after infection involves posttranscriptional processing events. J. Virol., 65, 2273–2282.Google Scholar
Stein, J., Volk, H., Liebenthal, C., Kruger, D. H., and Prosch, S. (1993). Tumour necrosis factor α stimulates the activity of the human cytomegalovirus major immediate early enhancer/promoter in immature monocytic cells. J. Gen. Virol., 74, 2333–2338.CrossRefGoogle ScholarPubMed
Stenberg, R. M. (1996). The human cytomegalovirus major immediate-early gene. Intervirology, 39, 343–349.CrossRefGoogle ScholarPubMed
Stenberg, R. M., Thomsen, D. R., and Stinski, M. F. (1984). Structural analysis of the major immediate early gene of human cytomegalovirus. J. Virol., 49, 190–199.Google ScholarPubMed
Stenberg, R. M., Witte, P. R., and Stinski, M. F. (1985). Multiple spliced and unspliced transcripts from human cytomegalovirus immediate-early region 2 and evidence for a common initiation site within immediate-early region 1. J. Virol., 56, 665–675.Google Scholar
Stenberg, R. M., Depto, A. S., Fortney, J., and Nelson, J. (1989). Regulated expression of early and late RNAs and proteins from the human cytomegalovirus immediate-early gene region. J. Virol., 63, 2699–2708.Google ScholarPubMed
Stinski, M. F. (1999). Cytomegalovirus promoter for expression in mammalian cells. In Gene Expression Systems: Using Nature for the Art of Expression, San Diego, CA: ed. Ferandez, J. M. and Hoeffler, J. P., pp. 211–233 Academic Press.Google Scholar
Su, Y., Adair, R., Davis, C. N., DiFronzo, N. L., and Colberg-Poley, A. M. (2003). Convergence of RNA cis elemets and cellular polyadenylation factors in the regulation of human cytomegalovirus UL37 exon 1 unspliced RNA production. J. Virol., 77, 12729–12741.CrossRefGoogle Scholar
Takahashi, K., Sonoda, S., Higashi, K.et al. (1989). Predominant CD4 T-lymphocyte tropism of human herpesvirus 6-related virus. J. Virol., 63, 3161–3163.Google ScholarPubMed
Takemoto, M., Shimamoto, T., Isegawa, Y., and Yamanishi, K. (2001). The R3 region, one of three major repetitive regions of human herpesvirus 6, is a strong enhancer of immediate-early gene U95. J. Virol., 75, 10149–10160.CrossRefGoogle Scholar
Tang, Q. and Maul, G. G. (2003). Mouse cytomegalovirus immediate-early protein 1 binds with host cell repressors to relieve suppressive effects on viral transcription and replication during lytic infection. J. Virol., 77, 1357–1367.CrossRefGoogle ScholarPubMed
Tang, Q., Li, L., and Maul, G. G. (2005). Mouse cytomegalovirus early M112/113 proteins control the repressive effect of IE3 on the major immediate-early promoter. J. Virol., 79, 257–263.CrossRefGoogle ScholarPubMed
Taylor, R. T. and Bresnahan, W. A. (2005). Human cytomegalovirus immediate-early 2 gene expression blocks virus-induced beta interferon production. J. Virol., 79, 3873–3877.CrossRefGoogle ScholarPubMed
Taylor, R. T. and Bresnahan, W. A. (2006). Human cytomegalovirus immediate-early 2 protein IE86 blocks virus-induced chemokine expression. J. Virol. 80, 920–928.CrossRefGoogle ScholarPubMed
Taylor-Wiedeman, J. A., Sissons, J. G. P., and Sinclair, J. H. (1994). Induction of endogenous human cytomegalovirus gene expression after differentiation of monocytes from healthy carriers. J. Virol., 68, 1597–1604.Google ScholarPubMed
Thomsen, D. R., Stenberg, R. M., Goins, W. F., and Stinski, M. F. (1984). Promoter-regulatory region of the major immediate early gene of human cytomegalovirus. Proc. Natl Acad. Sci. USA, 81, 659–663.CrossRefGoogle ScholarPubMed
Thrower, A. R., Bullock, G. C., Bissell, J. E., and Stinski, M. F. (1996). Regulation of a human cytomegalovirus immediate early gene (US3) by a silencer/enhancer combination. J. Virol., 70, 91–100.Google ScholarPubMed
Vink, C., Beuken, E., and Bruggeman, C. A. (2000). Complete DNA sequence of the rat cytomegalovirus genome. J. Virol., 74, 7656–7665.CrossRefGoogle ScholarPubMed
Wade, M., Kowalik, T. F., Mudryj, M., Huang, E. S., and Asiskhan, J. C. (1992). E2F mediates dihydrofolate reductase promoter activation and multiprotein complex formation in human cytomegalovirus infection. Mol. Cell. Biol., 12, 4364–4374.CrossRefGoogle ScholarPubMed
Waheed, I., Chiou, C., Ahn, J., and Hayward, G. S. (1998). Binding of the human cytomegalovirus 80-kDa immediate–early protein (IE2) to minor groove A/T-rich sequences bounded by CG dinucleotides is regulated by protein oligomerization and phosphorylation. Virology, 252, 235–257.CrossRefGoogle ScholarPubMed
Waldhoer, M., Kledal, T. N., Farrell, H., and Schwartz, T. W. (2002). Murine cytomegalovirus (CMV) M33 and human CMV US28 receptors exhibit similar constitutive signaling activities. J. Virol., 76, 8161–8168.CrossRefGoogle ScholarPubMed
Wang, X. L., Huong, S. M., Chiu, M. L., Raab-Traub, N., and Huang, E. S. (2003). Epidermal growth factor receptor is a cellular receptor for human cytomegalovirus. Nature, 424, 456–461.CrossRefGoogle ScholarPubMed
Weinberg, R. A. (1995). The retinoblastoma protein and cell cycle control. Cell, 81(3), 323–330.CrossRefGoogle ScholarPubMed
Weston, K. (1988). An enhancer element in the short unique region of human cytomegalovirus regulates the production of a group of abundant immediate early transcripts. Virology, 162, 406–416.CrossRefGoogle ScholarPubMed
White, E. A., Clark, C. L., Sanchez, V., and Spector, D. H. (2004). Small internal deletions in the human cytomegalovirus IE2 gene result in nonviable recombinant viruses with differential defects in viral gene expression. J. Virol., 78, 1817–1830.CrossRefGoogle ScholarPubMed
Wiebusch, L., Asmar, J., Uecker, R., and Hagemeier, C. (2003). Human cytomegalovirus immediate-early protein 2 (IE2)-mediated activation of cyclin E is cell-cycle-independent and forces S-phase entry in IE2-arrested cells. J. Gen. Virol., 84, 51–60.CrossRefGoogle ScholarPubMed
Wiebusch, L. and Hagemeier, C. (1999). Human cytomegalovirus 86-kiodalton IE2 protein blocks cell cycle progression in G1. J. Virol., 73, 9274–9283.Google Scholar
Wiebusch, L. and Hagemeier, C. (2001). The human cytomegalovirus immediate early 2 protein dissociates cellular DNA synthesis from cyclin-dependent kinase activation. EMBO J., 20, 1086–1098.CrossRefGoogle ScholarPubMed
Wilkinson, G. W., Kelly, C., Sinclair, J. H., and Richards, C. (1998). Disruption of PML-associated nuclear bodies mediated by the human cytomegalovirus major immediate early gene product. J. Gen. Virol., 79, 1233–1245.CrossRefGoogle ScholarPubMed
Winkler, M., Rice, S. A., and Stamminger, T. (1994). UL69 of human cytomegalovirus, an open reading frame with homology to ICP27 of herpes simplex virus, encodes a transactivator of gene expression. J. Virol., 68, 3943–3954.Google ScholarPubMed
Wright, E., Bain, M., Teague, L., Murphy, J., and Sinclair, J. (2005). Ets-2 repressor factor recruits deacetylases to silence human cytomegalovirus immediate-early gene expression in non-permissive cells. J. Gen. Virol., 86, 535–544.CrossRefGoogle ScholarPubMed
Xu, Y., Ahn, J.-H., Cheng, M.et al. (2001). Proteasome-independent disruption of PML oncogenic domains (PODS), but not covalent modification by SUMO-1, is required for human cytomegalovirus immediate-early protein IE1 to inhibit PML-mediated transcriptional repression. J. Virol., 75, 10683–10695.CrossRefGoogle Scholar
Xu, Y., Cei, S. A., Huete, A. R., Colletti, K. S., and Pari, G. S. (2004a). Human cytomegalovirus DNA replication requires transcriptional activation via an IE2- and UL84-responsive bidirectional promoter element within oriLyt. J. Virol., 78, 11664–11677.CrossRefGoogle Scholar
Xu, Y., Cei, S. A., Huete, A. R., and Pari, G. S. (2004b). Human cytomegalovirus UL84 insertion mutant defective for viral DNA synthesis and growth. J. Virol., 78, 10360–10369.CrossRefGoogle Scholar
Yeung, K. C., Stoltzfus, C. M., and Stinski, M. F. (1993). Mutations of the cytomegalovirus immediate–early 2 protein defines regions and amino acid motifs important in transactivation of transcription from the HIV-1 LTR promoter. Virology, 195, 786–792.CrossRefGoogle ScholarPubMed
Yoo, Y. D., Chiou, C.-J., Choi, K. S.et al. (1996). The IE2 regulatory protein of human cytomegalovirus induces expression of the human transforming growth factor beta 1 gene through an Egr-1 binding site. J. Virol., 70, 7062–7070.Google Scholar
Zhang, X. Y., Ni, Y. S., Saifudeen, Z., Asiedu, C. K., Supakar, P. C., and Ehrlich, M. (1995). Increasing binding of a transcription factor immediately downstream of the cap site of a cytomegalovirus gene represses expression. Nucl. Acids Res., 23, 3026–3033.CrossRefGoogle ScholarPubMed
Zhang, Z., Evers, D. L., McCarville, J. F., Dantonel, J-C., Huong, S-M., and Huang, E-S., (2006). Evidence that the human cytomegalovirus IE2-86 protein binds mdm2 and facilitates mdm2 degradation. J. Virol., 80, 3833–3843.CrossRefGoogle ScholarPubMed
Zhang, Z., Huong, S.-M., Wang, X., Huang, D. Y., and Huang, E.-S. (2003). Interactions between human cytomegalovirus IE1–72 and cellular p107: functional domains and mechanisms of up-regulation of cyclin E/cdk2 kinase activity. J. Virol., 77, 12660–12670.CrossRefGoogle ScholarPubMed
Zhu, H., Shen, Y., and Shenk, T. (1995). Human cytomegalovirus IE1 and IE2 proteins block apoptosis. J. Virol., 69, 7960–7970.Google ScholarPubMed
Zhu, H., Cong, J. P., Mamtora, G., Gingeras, T., and Shenk, T. (1998). Cellular gene expression altered by human cytomegalovirus: global monitoring with oligonucleotide arrays. Proc. Natl Acad. Sci. USA, 95, 14470–14475.CrossRefGoogle ScholarPubMed
Zhu, H., Cong, J. P., Yu, D., Bresnahan, W. A., and Shenk, T. E. (2002). Inhibition of cyclooxygenase 2 blocks human cytomegalovirus replication. Proc. Natl Acad. Sci. USA, 99, 3932–3937.CrossRefGoogle ScholarPubMed
Zweidler-McKay, P. A., Grimes, H. L., Flubacher, M. M., and Tsichlis, P. N. (1996). Gfi-1 encodes a nuclear zinc finger protein that binds DNA and functions as a transcriptional repressor. Mol. Cell. Biol., 16, 4024–4034.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×