Skip to main content Accessibility help
×
Hostname: page-component-5d59c44645-mrcq8 Total loading time: 0 Render date: 2024-02-26T04:48:41.028Z Has data issue: false hasContentIssue false

12 - Brain Foundations for Learning to Read

from Part II - Neurobiological and Ecological Markers

Published online by Cambridge University Press:  23 November 2023

Ludo Verhoeven
Affiliation:
Radboud Universiteit Nijmegen
Sonali Nag
Affiliation:
University of Oxford
Charles Perfetti
Affiliation:
University of Pittsburgh
Kenneth Pugh
Affiliation:
Yale University, Connecticut
Get access

Summary

This chapter aims to unravel the contribution of the neuroscience of reading to the study of literacy development across languages and writing systems. The development of early literacy can be adversely impacted by neurodevelopmental disorders and socioeconomic disparities that have lasting effects on child and adolescent cognition. The goal of this chapter is to address the continuum of literacy development in two critical stages, birth-to-six and six-to-ten years old, and their respective language and brain milestones: the hardwired brain networks for speech, and the adaptation of brain regions for reading. The discussion attempts to disambiguate neurodevelopmental disorders and socioeconomic factors that influence early literacy, and the associated effects on brain function and structure. It is concluded that there is emerging evidence for a near-universal brain system that develops with learning to read across writing systems and the chapter addresses the dynamic relations among brain networks for reading, speech and writing across the two age spans. It is also claimed that the neuroscience of reading has the potential to inform prediction of reading achievement, identification of risk for reading difficulties, and possibly, choice of intervention and of the age ranges that are more amenable to treatment.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altarelli, I., Leroy, F., Monzalvo, K. et al. (2014). Planum temporale asymmetry in developmental dyslexia: Revisiting an old question. Human Brain Mapping, 35(12), 57175735. DOI: https://doi.org/10.1002/hbm.22579.Google Scholar
APA. (2014). Diagnostic and Statistical Manual of Mental Disorders, 5th Edition: DSM-5. Washington, DC: American Psychological Association.Google Scholar
Asbury, K., & Plomin, R. (2013). G Is for Genes: The Impact of Genetics on Education and Achievement. Wiley-Blackwell. DOI: https://doi.org/10.1002/9781118482766.Google Scholar
Aurino, E., Wolf, S., & Tsinigo, E. (2020). Household food insecurity and early childhood development: Longitudinal evidence from Ghana. PLoS ONE, 15(4), 120. DOI: https://doi.org/10.1371/journal.pone.0230965.Google Scholar
Bach, S., Richardson, U., Brandeis, D., Martin, E., & Brem, S. (2013). Print-specific multimodal brain activation in kindergarten improves prediction of reading skills in second grade. NeuroImage, 82, 605615. https://doi.org/10.1016/j.neuroimage.2013.05.062.Google Scholar
Beddington, J., Cooper, C. L., Field, J. et al. (2008). The mental wealth of nations. Nature, 455(7216), 10571060. DOI: https://doi.org/10.1038/4551057a.Google Scholar
Berninger, V. W., & Richards, T. L. (2002). Brain Literacy for Educators and Psychologists. Washington, DC: Academic Press.Google Scholar
Berninger, V. W., & Winn, W. D. (2006). Implications of advancements in brain research and technology for writing development, writing instruction, and educational evolution. In MacArthur, C., Graham, S., & Fitzgerald, J. (eds.), The Writing Handbook (pp. 96114). New York: The Guildford Press.Google Scholar
Bolger, D. J., Perfetti, C., & Schneider, W. (2005). Cross-cultural effect on the brain revisited: universal structures plus writing system variation. Human Brain Mapping, 25(1), 92104. DOI: https://doi.org/10.1002/hbm.20124Google Scholar
Booth, J. R., Burman, D. D., van Santen, F. W. et al. (2001). The development of specialized brain systems in reading and oral language. Child Neuropsychology: A Journal on Normal and Abnormal Development in Childhood and Adolescence, 7(3), 119141. DOI: https://doi.org/10.1080/09297049508400221.Google Scholar
Bowers, J. S. (2016). The practical and principled problems with educational neuroscience. Psychological Review, 123(5), 600612. DOI: https://doi.org/https://doi.org/10.1037/rev0000025.Google Scholar
Brem, S., Bach, S., Kucian, K. et al. (2010). Brain sensitivity to print emerges when children learn letter-speech sound correspondences. Proceedings of the National Academy of Sciences of the United States of America, 107(17), 79397944. DOI: https://doi.org/10.1073/pnas.0904402107.Google Scholar
Bruckert, L., Borchers, L. R., Dodson, C. K. et al. (2019). White matter plasticity in reading-related pathways differs in children born preterm and at term: A longitudinal analysis. Frontiers in Human Neuroscience, 13. DOI: https://doi.org/10.3389/fnhum.2019.00139.Google Scholar
Buchweitz, A., Costa, A. C., Toazza, R. et al. (2019). Decoupling of the occipitotemporal cortex and the brain’s default-mode network in dyslexia and a role for the cingulate cortex in good readers: A brain imaging study of Brazilian children. Developmental Neuropsychology, 44(1), 146157. DOI: https://doi.org/10.1080/87565641.2017.1292516.Google Scholar
Buchweitz, A., Mason, R. A., Hasegawa, M., & Just, M. A. (2009). Japanese and English sentence reading comprehension and writing systems: An fMRI study of first and second language effects on brain activation. Bilingualism, 12(2), 141151. DOI: https://doi.org/10.1017/S1366728908003970.Google Scholar
Buchweitz, A., Mason, R. A., Meschyan, G., Keller, T. A., & Just, M. A. (2014). Modulation of cortical activity during comprehension of familiar and unfamiliar text topics in speed reading and speed listening. Brain and Language, 139, 4957. DOI: https://doi.org/10.1016/j.bandl.2014.09.010.Google Scholar
Cao, F., Yan, X., Wang, Z. et al. (2017). Neural signatures of phonological deficits in Chinese developmental dyslexia. NeuroImage, 146(March 2016), 301311. DOI: https://doi.org/10.1016/j.neuroimage.2016.11.051.Google Scholar
Cardoso-Martins, C., & Pennington, B. F. (2004). The relationship between phoneme awareness and rapid serial naming skills and literacy acquisition: the role of developmental period and reading ability. Scientific Studies of Reading, 8(1), 2752. DOI: https://doi.org/10.1207/s1532799xssr0801_3.Google Scholar
Castles, A., Rastle, K., & Nation, K. (2018). Ending the reading wars: Reading acquisition from novice to expert. Psychological Science in the Public Interest, 19(1), 551. DOI: https://doi.org/10.1177/1529100618772271.Google Scholar
Cattinelli, I., Borghese, N. A., Gallucci, M., & Paulesu, E. (2013). Reading the reading brain: A new meta-analysis of functional imaging data on reading. Journal of Neurolinguistics, 26(1), 214238. DOI: https://doi.org/10.1016/j.jneuroling.2012.08.001.Google Scholar
Centanni, T. M., Norton, E. S., Ozernov-Palchik, O. et al. (2019). Disrupted left fusiform response to print in beginning kindergartners is associated with subsequent reading. NeuroImage: Clinical, 22, 101715. DOI: https://doi.org/10.1016/j.nicl.2019.101715.Google Scholar
Chyl, K., Kossowski, B., Dębska, A. et al. (2018). Prereader to beginning reader: Changes induced by reading acquisition in print and speech brain networks. Journal of Child Psychology and Psychiatry and Allied Disciplines, 59(1), 7687. DOI: https://doi.org/10.1111/jcpp.12774.Google Scholar
Cohen, L., Lehéricy, S., Chochon, F. et al. (2002). Language-specific tuning of visual cortex? Functional properties of the Visual Word Form Area. Brain, 125(Pt 5), 10541069. www.ncbi.nlm.nih.gov/pubmed/11960895.Google Scholar
Costa, A. C., Toazza, R., Bassôa, A., Portuguez, M. W., & Buchweitz, A. (2016). Ambulatório de aprendizagem do projeto ACERTA (Avaliação de Crianças em Risco de Transtorno da Aprendizagem): métodos e resultados em dois anos. Neuropsicologia Do Desenvolvimento, 33, 151157.Google Scholar
Cruz, L., & Loureiro, A. (2020). Achieving world-class education in adverse socioeconomic conditions: The case of Sobral in Brazil. World Bank Group Education, June, pp. 137.Google Scholar
Dehaene, S. (2009). Reading in the Brain: The New Science of How We Read. New York: Penguin Books.Google Scholar
Dehaene, S., Pegado, F., Braga, L. W. et al. (2010). How learning to read changes the cortical networks for vision and language. Science, 330(6009), 13591364. DOI: https://doi.org/10.1126/science.1194140.Google Scholar
Dehaene-Lambertz, G., Monzalvo, K., & Dehaene, S. (2018). The emergence of the visual word form: Longitudinal evolution of category-specific ventral visual areas during reading acquisition. PLoS Biology, 16(3), 134. DOI: https://doi.org/10.1371/journal.pbio.2004103/.Google Scholar
del Tufo, S. N., Frost, S. J., Hoeft, F. et al. (2018). Neurochemistry predicts convergence of written and spoken language: A proton magnetic resonance spectroscopy study of cross-modal language integration. Frontiers in Psychology, 9(SEP), 117. DOI: https://doi.org/10.3389/fpsyg.2018.01507.Google Scholar
Dickinson, D. K., Collins, M. F., Nesbitt, K. et al. (2019). Effects of teacher-delivered book reading and play on vocabulary learning and self-regulation among low-income preschool children. Journal of Cognition and Development, 20(2), 136164. DOI: https://doi.org/10.1080/15248372.2018.1483373.Google Scholar
Dikker, S., Wan, L., Davidesco, I. et al. (2017). Brain-to-brain synchrony tracks real-world dynamic group interactions in the classroom. Current Biology, 27(9), 13751380. DOI: https://doi.org/10.1016/j.cub.2017.04.002.Google Scholar
Dilnot, J., Hamilton, L., Maughan, B., & Snowling, M. J. (2016). Child and environmental risk factors predicting readiness for learning in children at high risk of dyslexia. Development and Psychopathology, 110. DOI: https://doi.org/10.1017/S0954579416000134.Google Scholar
Dufford, A. J., Kim, P., & Evans, G. W. (2020). The impact of childhood poverty on brain health: Emerging evidence from neuroimaging across the lifespan. International Review of Neurobiology, 150, 77105. DOI: https://doi.org/10.1016/bs.irn.2019.12.001.Google Scholar
Duryea, T. K. (2019). Emergent literacy including language development. In Drutz, J. E. & Augustyn, M. (eds.), UpToDate. Website. www.uptodate.com/contents/emergent-literacy-including-language-development?search=emergentGoogle Scholar
Duursma, E., Augustyn, M., & Zuckerman, B. (2008). Reading aloud to children: the evidence. Archives of Disease in Childhood, 93(7), 554557. DOI: https://doi.org/10.1136/adc.2006.106336.Google Scholar
Ece, Demir-Lira, Ö., Applebaum, L. R., Goldin-Meadow, S., & Levine, S. C. (2019). Parents’ early book reading to children: Relation to children’s later language and literacy outcomes controlling for other parent language input. Developmental Science, 22(3). DOI: https://doi.org/10.1111/desc.12764.Google Scholar
Eckert, M. (2004). Neuroanatomical markers for dyslexia: A review of dyslexia structural imaging studies. Neuroscientist, 10(4), 362371. DOI: https://doi.org/10.1177/1073858404263596.Google Scholar
Eckert, M. A., Leonard, C. M., Wilke, M. et al. (2005). Anatomical signatures of dyslexia in children: Unique information from manual and voxel based morphometry brain measures. Cortex, 41(3), 304315. DOI: https://doi.org/10.1016/S0010-9452(08)70268-5.Google Scholar
Ehri, L. C. (2005). Learning to read words: Theory, findings, and issues. Scientific Studies of Reading, 9(2), 167188. DOI: https://doi.org/10.1207/s1532799xssr0902.Google Scholar
Ehri, L. C., Nunes, S. R., Willows, D. M. et al. (2001). Phonemic awareness instruction helps children learn to read: evidence from the national reading panel’s meta‐analysis. Reading Research Quarterly, 36(3), 250287. DOI: https://doi.org/10.1598/RRQ.36.3.2.Google Scholar
Ekerdt, C. E. M., Kühn, C., Anwander, A., Brauer, J., & Friederici, A. D. (2020). Word learning reveals white matter plasticity in preschool children. Brain Structure and Function, 225(2), 607619. DOI: https://doi.org/10.1007/s00429-020-02024-7.Google Scholar
Farah, R., Dudley, J., Hutton, J., & Horowitz-Kraus, T. (2020). Maternal reading and fluency abilities are associated with diffusion properties of ventral and dorsal white matter tracts in their preschool-age children. Brain and Cognition, 140(January), 105532. DOI: https://doi.org/10.1016/j.bandc.2020.105532.Google Scholar
Ferstl, E. C., Neumann, J., Bogler, C., von Cramon, D. Y., & Cramon, D. Y. von. (2008). The extended language network: a meta-analysis of neuroimaging studies on text comprehension. Human Brain Mapping, 29(5), 581593. DOI: https://doi.org/10.1002/hbm.20422.Google Scholar
Franco, A. R., Mannell, M. V., Calhoun, V. D., & Mayer, A. R. (2013). Impact of analysis methods on the reproducibility and reliability of resting-state networks. Brain Connectivity, 3(4), 363374. DOI: https://doi.org/10.1089/brain.2012.0134.Google Scholar
Friederici, A. D. (2012). The cortical language circuit: From auditory perception to sentence comprehension. Trends in Cognitive Sciences, 16(5), 262268. DOI: https://doi.org/10.1016/j.tics.2012.04.001.Google Scholar
Frith, U. (1985). Surface dyslexia: Neurological and cognitive studies of phonological reading. In Patterson, K., Marshall, J., & Coltheart, M. (eds.), Surface Dyslexia (pp. 301330). Erlbaum.Google Scholar
Frost, S. J., Landi, N., Mencl, W. E. et al. (2009). Phonological awareness predicts activation patterns for print and speech. Annals of Dyslexia, 59(1), 7897. DOI: https://doi.org/10.1007/s11881-009-0024-y.Google Scholar
Frye, R. E., Liederman, J., Malmberg, B. et al. (2010). surface area accounts for the relation of gray matter volume to reading-related skills and history of dyslexia. Cerebral Cortex, 20(11), 26252635. DOI: https://doi.org/10.1093/cercor/bhq010.Google Scholar
Gabrieli, J. D. E. (2009). Dyslexia: A new synergy between education and cognitive neuroscience. Science, 325(5938), 280283. DOI: https://doi.org/10.1126/science.1171999.Google Scholar
Galaburda, A., & Eidelberg, D. (1982). Symmetry and asymmetry in the human posterior thalamus: II. Thalamic lesions in a case of developmental dyslexia. Archives of Neurology, 39(6), 333336. DOI: https://doi.org/10.1001/archneur.1982.00510180011002.Google Scholar
Galaburda, A., & Kemper, T. L. (1979). Cytoarchitectonic abnormalities in developmental dyslexia: a case study. Annals of Neurology, 6(2), 94100. DOI: https://doi.org/10.1002/ana.410060203.Google Scholar
Galaburda, A., Sherman, G. F., Rosen, G. D., Aboitiz, F., & Geschwind, N. (1985). Developmental dyslexia: Four consecutive patients with cortical anomalies. Annals of Neurology, 18(2), 222233. DOI: https://doi.org/10.1002/ana.410180210.Google Scholar
Gracco, V. L., Tremblay, P., & Pike, B. (2005). Imaging speech production using fMRI. NeuroImage, 26(1), 294301. DOI: https://doi.org/10.1016/j.neuroimage.2005.01.033.Google Scholar
Greenwood, P., Hutton, J., Dudley, J., & Horowitz-Kraus, T. (2019). Maternal reading fluency is associated with functional connectivity between the child’s future reading network and regions related to executive functions and language processing in preschool-age children. Brain and Cognition, 131(November 2018), 8793. https://doi.org/10.1016/j.bandc.2018.11.010.Google Scholar
Hancock, R., Pugh, K. R., & Hoeft, F. (2017). Neural noise hypothesis of developmental dyslexia. Trends in Cognitive Sciences, 21(6), 434448. DOI: https://doi.org/10.1016/j.tics.2017.03.008.Google Scholar
Heckman, J. J. (2006). Skill formation and the economics of investing in disadvantaged children. Science, 312(5782), 19001902. DOI; https://doi.org/10.1126/science.1128898.Google Scholar
Heckman, J. J., & Mosso, S. (2014). The economics of human development and social mobility. Annual Review of Economics, 6(1), 689733. DOI: https://doi.org/10.1146/annurev-economics-080213-040753.Google Scholar
Hier, D. B., LeMay, M., Rosenberger, P. B., & Perlo, V. P. (1978). Developmental dyslexia: Evidence for a subgroup with a reversal of cerebral asymmetry. Archives of Neurology, 35(2), 9092. DOI: https://doi.org/10.1001/archneur.1978.00500260028005.Google Scholar
Higuchi, H., Moriguchi, Y., Murakami, H. et al. (2015). Neural basis of hierarchical visual form processing of Japanese Kanji characters. Brain and Behavior, 5(12), e00413. DOI: https://doi.org/10.1002/brb3.413.Google Scholar
Hirsch, J., Noah, J. A., Zhang, X., Dravida, S., & Ono, Y. (2018). A cross-brain neural mechanism for human-to-human verbal communication. Social Cognitive and Affective Neuroscience, 13(9), 907920. DOI: https://doi.org/10.1093/scan/nsy070.Google Scholar
Hjetland, H. N., Lervåg, A., Lyster, S. A. H. et al. (2019). Pathways to reading comprehension: A longitudinal study from 4 to 9 years of age. Journal of Educational Psychology, 111(5), 751763. DOI: https://doi.org/10.1037/edu0000321.Google Scholar
Hoeft, F., McCandliss, B. D., Black, J. M. et al. (2011). Neural systems predicting long-term outcome in dyslexia. Proceedings of the National Academy of Sciences of the United States of America, 108(1), 361366. DOI: https://doi.org/10.1073/pnas.1008950108.Google Scholar
Hoeft, F., Meyler, A., Hernandez, A. et al. (2007). Functional and morphometric brain dissociation between dyslexia and reading ability. Proceedings of the National Academy of Sciences of the United States of America, 104(10), 42344239. DOI: https://doi.org/10.1073/pnas.0609399104.Google Scholar
Hoeft, F., Ueno, T., Reiss, A. L. et al. (2007). Prediction of children’s reading skills using behavioral, functional, and structural neuroimaging measures. Behavioral Neuroscience, 121(3), 602613. DOI: https://doi.org/10.1037/0735-7044.121.3.602.Google Scholar
Hoff, E. (2003). The specificity of environmental influence: Socioeconomic status affects early vocabulary development via maternal speech. Child Development, 74(5), 13681378. DOI: https://doi.org/10.1111/1467-8624.00612.Google Scholar
Hoff, E., & Tian, C. (2005). Socioeconomic status and cultural influences on language. Journal of Communication Disorders, 38(4), 271278. DOI: https://doi.org/10.1016/j.jcomdis.2005.02.003.Google Scholar
Houdé, O., Rossi, S., Lubin, A., & Joliot, M. (2010). Mapping numerical processing, reading, and executive functions in the developing brain: an fMRI meta-analysis of 52 studies including 842 children. Developmental Science, 13(6), 876885. DOI: https://doi.org/10.1111/j.1467-7687.2009.00938.x.Google Scholar
House of Commons. (2009). “House of Commons – Evidence Check 1: Early Literacy Interventions – Science and Technology Committee” (2009 HC). https://publications.parliament.uk/pa/cm200910/cmselect/cmsctech/44/4402.htm.Google Scholar
Huber, E., Donnelly, P. M., Rokem, A., & Yeatman, J. D. (2018). Rapid and widespread white matter plasticity during an intensive reading intervention. Nature Communications, 9(1), 113. https://doi.org/10.1038/s41467-018-04627-5.Google Scholar
Huey, E. B. (1908). The Psychology and Pedagogy of Reading. New York: Macmillan.Google Scholar
Humphreys, P., Kaufmann, W. E., & Galaburda, A. M. (1990). Developmental dyslexia in women: Neuropathological findings in three patients. Annals of Neurology, 28(6), 727738. DOI: https://doi.org/10.1002/ana.410280602.Google Scholar
INEP. (2017). Avaliação Nacional da Alfabetização. Ministério da Educacao. http://portal.mec.gov.br/docman/outubro-2017-pdf/75181-resultados-ana-2016-pdf/file.Google Scholar
Irwin, J., & Moore, D. (2015). Preparing Children for Reading Success (1st edition). New York: Rowman & Littlefield.Google Scholar
James, K. H., & Gauthier, I. (2006). Letter processing automatically recruits a sensory-motor brain network. Neuropsychologia, 44(14), 29372949. DOI: https://doi.org/10.1016/j.neuropsychologia.2006.06.026.Google Scholar
Kadmon Harpaz, N., Flash, T., & Dinstein, I. (2014). Scale-invariant movement encoding in the human motor system. Neuron, 81(2), 452462. DOI: https://doi.org/10.1016/j.neuron.2013.10.058.Google Scholar
Kamykowska, J., Haman, E. W. A., Latvala, J.-M., Richardson, U., & Lyytinen, H. (2013). Developmental changes of early reading skills in six-year-old Polish children and GraphoGame as a computer-based intervention to support them. L1 Educational Studies in Language and Literature, 13, 117. DOI: https://doi.org/10.17239/L1ESLL-2013.01.05.Google Scholar
Katanoda, K., Yoshikawa, K., & Sugishita, M. (2001). A functional MRI study on the neural substrates for writing. Human Brain Mapping, 13(1), 3442. DOI: https://doi.org/10.1002/hbm.1023.Google Scholar
Katz, L., & Frost, R. (1992). The reading process is different for different orthographies: The orthographic depth hypothesis. Advances in Psychology, 64, 6784.Google Scholar
Kautz, T., Heckman, J. J., Diris, R., Weel, B. ter, & Borghans, L. (2014). Fostering and Measuring Skills: Improving Cognitive and Non-cognitive Skills to Promote Lifetime Success. Paris: OECD. DOI: https://doi.org/10.1787/5jxsr7vr78f7-en.Google Scholar
Keller, T. A., Carpenter, P. A., & Just, M. A. (2001). The neural bases of sentence comprehension: A fMRI examination of syntactic and lexical processing. Cerebral Cortex, 11(3), 223237. www.ncbi.nlm.nih.gov/pubmed/11230094.Google Scholar
Krafnick, A. J., Tan, L. H., Flowers, D. L. et al. (2016). Chinese character and English word processing in children’s ventral occipitotemporal cortex: FMRI evidence for script invariance. NeuroImage, 133, 302312. DOI: https://doi.org/10.1016/j.neuroimage.2016.03.021.Google Scholar
Kronbichler, M., Hutzler, F., Staffen, W. et al. (2006). Evidence for a dysfunction of left posterior reading areas in German dyslexic readers. Neuropsychologia, 44(10), 18221832. DOI: https://doi.org/10.1016/j.neuropsychologia.2006.03.010.Google Scholar
Kubota, E. C., Joo, S. J., Huber, E., & Yeatman, J. D. (2019). Word selectivity in high-level visual cortex and reading skill. Developmental Cognitive Neuroscience, 36(April 2018), 100593. DOI: https://doi.org/10.1016/j.dcn.2018.09.003.Google Scholar
Kuhl, U., Neef, N. E., Kraft, I. et al. (2020). The emergence of dyslexia in the developing brain. NeuroImage, 211(January). https://doi.org/10.1016/j.neuroimage.2020.116633.Google Scholar
LaMarca, K., Gevirtz, R., Lincoln, A. J., & Pineda, J. A. (2018). Facilitating neurofeedback in children with autism and intellectual impairments using TAGteach. Journal of Autism and Developmental Disorders, 48(6), 20902100. DOI: https://doi.org/10.1007/s10803-018-3466-4.Google Scholar
Langer, N., Peysakhovich, B., Zuk, J. et al. (2017). White matter alterations in infants at risk for developmental dyslexia. Cerebral Cortex, 27(2), 1027–36. DOI: https://doi.org/10.1093/cercor/bhv281.Google Scholar
Lillywhite, L. M., Saling, M. M., Demutska, A. et al. (2010). The neural architecture of discourse compression. Neuropsychologia, 48(4), 873879. https://doi.org/10.1016/j.neuropsychologia.2009.11.004.Google Scholar
Lo, J. C. M., McBride, C., Ho, C. S., & Maurer, U. (2019). Event-related potentials during Chinese single-character and two-character word reading in children. Brain and Cognition, 136, 103589. DOI: https://doi.org/10.1016/j.bandc.2019.103589.Google Scholar
Marks, R. A., Kovelman, I., Kepinska, O. et al. (2019). Spoken language proficiency predicts print-speech convergence in beginning readers. NeuroImage, 201(February), 116021. DOI: https://doi.org/10.1016/j.neuroimage.2019.116021.Google Scholar
Martin, A., Schurz, M., Kronbichler, M., & Richlan, F. (2015). Reading in the brain of children and adults: A meta-analysis of 40 functional magnetic resonance imaging studies. Human Brain Mapping, 36(5), 19631981. https://doi.org/10.1002/hbm.22749.Google Scholar
Mason, R. A., & Just, M. A. (2006). Neuroimaging contributions to the understanding of discourse processes. In Traxler, M. & Gernsbacher, M. A. (eds.), Handbook of {Psycholinguistics} (pp. 765799). New York: Elsevier.Google Scholar
McBride, C. A. (2016). Is Chinese special? Four aspects of Chinese literacy acquisition that might distinguish learning Chinese from learning alphabetic orthographies. Educational Psychology Review, 28, 523549. DOI: https://doi.org/10.1007/s10648-015-9318-2.Google Scholar
McCandliss, B. D., Cohen, L., & Dehaene, S. (2003). The visual word form area: Expertise for reading in the fusiform gyrus. Trends in Cognitive Sciences, 7(7), 293299. DOI: https://doi.org/10.1016/S1364-6613(03)00134-7.Google Scholar
Menon, V., & Desmond, J. E. (2001). Left superior parietal cortex involvement in writing: Integrating fMRI with lesion evidence. Cognitive Brain Research, 12(2), 337340. DOI: https://doi.org/10.1016/S0926-6410(01)00063-5.Google Scholar
Merz, E. C., Maskus, E. A., Melvin, S. A., He, X., & Noble, K. G. (2020). Socioeconomic disparities in language input are associated with children’s language-related brain structure and reading skills. Child Development, 91(3), 846860. DOI: https://doi.org/10.1111/cdev.13239.Google Scholar
Merz, E. C., Wiltshire, C. A., & Noble, K. G. (2019). Socioeconomic inequality and the developing brain: Spotlight on language and executive function. Child Development Perspectives, 13(1), 1520. DOI: https://doi.org/10.1111/cdep.12305.Google Scholar
Meyler, A., Keller, T. A., Cherkassky, V. L., Gabrieli, J. D. E. E., & Just, M. A. (2009). Modifying the brain activation of poor readers during sentence comprehension with extended remedial instruction: A longitudinal study of neuroplasticity. Neuropsychologia, 46(10), 25802592. DOI: https://doi.org/10.1016/j.neuropsychologia.2008.03.012.Google Scholar
Meyler, A., Keller, T. A., Cherkassky, V. L. et al. (2007). Brain activation during sentence comprehension among good and poor readers. Cerebral Cortex, 17(12), 27802787. DOI: https://doi.org/10.1093/cercor/bhm006.Google Scholar
Mitchell, K. J. (2014). The genetic architecture of neurodevelopmental disorders. Preprint. bioRxiv DOI: https://doi.org/10.1101/009449.Google Scholar
Mitchell, K. J. (2018). Innate: How the Wiring of Our Brains Shapes Who We Are. Princeton, NJ: Princeton University Press. https://press.princeton.edu/titles/13255.html.Google Scholar
Morais, J. (2013). Criar leitores – para professores e educadores. Barueri, SP: Minha editora.Google Scholar
Moulton, E., Bouhali, F., Monzalvo, K. et al. (2019). Connectivity between the visual word form area and the parietal lobe improves after the first year of reading instruction: A longitudinal MRI study in children. Brain Structure and Function, 224(4), 15191536. DOI: https://doi.org/10.1007/s00429-019-01855-3.Google Scholar
Nag, S., Vagh, S. B. Dulay, K. M & Snowling, M. J. (2019). Context and Implications: Home language, school language and children’s literacy attainments: A systematic review of evidence from low- and middle-income countries. Review of Education, 7(1), 151155. DOI: https://doi.org/10.1002/rev3.3132.Google Scholar
Nag, S., Snowling, M. J., & Asfaha, Y. M. (2016). Classroom literacy practices in low- and middle-income countries: An interpretative synthesis of ethnographic studies. Oxford Review of Education, 42(1), 115. DOI: https://doi.org/10.1080/03054985.2015.1135115.Google Scholar
National Reading Panel. (2000). Teaching children to read: An evidence-based assessment of the scientific research literature on reading and its implications for reading instruction. NIH Publication No. 00–4769, 7, 35. DOI: https://doi.org/10.1002/ppul.1950070418.Google Scholar
Nieto-Ruiz, A., Diéguez, E., Sepúlveda-Valbuena, N. et al. (2020). Influence of a functional nutrients-enriched infant formula on language development in healthy children at four years old. Nutrients, 12(2). DOI: https://doi.org/10.3390/nu12020535.Google Scholar
Noble, K. G., Houston, S. M., Brito, N. H. et al. (2015). Family income, parental education and brain structure in children and adolescents. Nature Neuroscience, 18(5), 773778. DOI: https://doi.org/10.1038/nn.3983.Google Scholar
OECD. (2019). PISA 2018 Assessment and Analytical Framework: Vol. I. Paris: OECD. DOI: https://doi.org/10.1787/b25efab8-en.Google Scholar
Olulade, O. A., Flowers, D. L., Napoliello, E. M., & Eden, G. F. (2013). Developmental differences for word processing in the ventral stream. Brain and Language, 125(2), 134145. DOI: https://doi.org/10.1016/j.bandl.2012.04.003.Google Scholar
Ozernov-Palchik, O., & Gaab, N. (2016). Tackling the “dyslexia paradox”: Reading brain and behavior for early markers of developmental dyslexia. Wiley Interdisciplinary Reviews Cognitive Science, 7(2), 156176. DOI: https://doi.org/10.1002/wcs.1383.Google Scholar
Palmis, S., Danna, J., Velay, J.-L., & Longcamp, M. (2017). Motor control of handwriting in the developing brain: A review. Cognitive Neuropsychology, 34(3–4), 187204. DOI: https://doi.org/10.1080/02643294.2017.1367654.Google Scholar
Paulesu, E., Danelli, L., & Berlingeri, M. (2014). Reading the dyslexic brain: Multiple dysfunctional routes revealed by a new meta-analysis of PET and fMRI activation studies. Frontiers in Human Neuroscience, 8. DOI: https://doi.org/10.3389/fnhum.2014.00830.Google Scholar
Paulesu, E., Démonet, J. F., & Fazio, F. (2001). Dyslexia: Cultural diversity and biological unity. Science, 291(5511), 21652167. DOI: https://doi.org/10.1126/science.1057179.Google Scholar
Paulesu, E., McCrory, E., Fazio, F. et al. (2000). A cultural effect on brain function. Nature Neuroscience, 3(1), 9196. DOI: https://doi.org/10.1038/71163.Google Scholar
Pavlakis, A. E., Noble, K., Pavlakis, S. G., Ali, N., & Frank, Y. (2015). Brain imaging and electrophysiology biomarkers: Is there a role in poverty and education outcome research? Pediatric Neurology, 52(4), 383388. DOI: https://doi.org/10.1016/j.pediatrneurol.2014.11.005.Google Scholar
Pegado, F., Nakamura, K., Braga, L. W. et al. (2014). Literacy breaks mirror invariance for visual stimuli: A behavioral study with adult illiterates. Journal of Experimental Psychology General, 143(2), 887894. DOI: https://doi.org/10.1037/a0033198.Google Scholar
Perfetti, C. A. (1992). The representation problem in reading acquisition. In Gough, P. B., Ehri, L. C., & Treiman, R. (eds.), Reading Acquisition (pp. 145174). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
Perfetti, C. A., Liu, Y., Fiez, J. et al. (2007). Reading in two writing systems: Accommodation and assimilation of the brain’s reading network. Bilingualism, 10(2), 131146. DOI: https://doi.org/10.1017/S1366728907002891Google Scholar
Perfetti, C. A., & Tan, L. H. (1998). The time course of graphic, phonological, and semantic activation in Chinese character identification. Journal of Experimental Psychology: Learning, Memory, and Cognition, 24(1), 101118. DOI: https://doi.org/10.1037/0278-7393.24.1.101.Google Scholar
Piccolo, L. R., Merz, E. C., He, X., Sowell, E. R., & Noble, K. G. (2016). Age-related differences in cortical thickness vary by socioeconomic status. PLoS One, 11(9), e0162511. DOI: https://doi.org/10.1371/journal.pone.0162511.Google Scholar
Planton, S., Longcamp, M., Péran, P., Démonet, J. F., & Jucla, M. (2017). How specialized are writing-specific brain regions? An fMRI study of writing, drawing and oral spelling. Cortex, 88, 6680. DOI: https://doi.org/10.1016/j.cortex.2016.11.018.Google Scholar
Pleisch, G., Karipidis, I. I., Brauchli, C. et al. (2019). Emerging neural specialization of the ventral occipitotemporal cortex to characters through phonological association learning in preschool children. Neuroimage, 189, 813831. DOI: https://doi.org/10.1016/j.neuroimage.2019.01.046.Google Scholar
Preston, J. L., Frost, S. J., Mencl, W. E. et al. (2010). Early and late talkers: School-age language, literacy and neurolinguistic differences. Brain, 133(8), 21852195. DOI: https://doi.org/10.1093/brain/awq163.Google Scholar
Preston, J. L., Molfese, P. J., Frost, S. J. et al. (2015). Print-speech convergence predicts future reading outcomes in early readers. Psychological Science, 27(1), 7584. https://doi.org/10.1177/0956797615611921.Google Scholar
Pugh, K. R., Frost, S. J., Rothman, D. L. et al. (2014). Glutamate and choline levels predict individual differences in reading ability in emergent readers. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 34(11), 40824089. DOI: https://doi.org/10.1523/JNEUROSCI.3907-13.2014.Google Scholar
Pugh, K. R., Mencl, W. E., Jenner, A. R. et al. (2001). Neurobiological studies of reading and reading disability. Journal of Communication Disorders, 34(6), 479492. DOI: https://doi.org/10.1016/S0021-9924(01)00060-0.Google Scholar
Pugh, K. R., Sandak, R., Frost, S. J., Moore, D., & Mencl, W. E. (2006). Examining reading development and reading disability in diverse languages and cultures: Potential contributions from functional neuroimaging Journal of American Indian Education, 45(3), 6076.Google Scholar
Purcell, J. J., Jiang, X., & Eden, G. F. (2017). Shared orthographic neuronal representations for spelling and reading. Neuroimage, 147, 554567. DOI: https://doi.org/10.1016/j.neuroimage.2016.12.054.Google Scholar
Ramus, F., Altarelli, I., Jednoróg, K., Zhao, J., & Scotto di Covella, L. (2018). Neuroanatomy of developmental dyslexia: Pitfalls and promise. Neuroscience and Biobehavioral Reviews, 84(August 2017), 434452. DOI: https://doi.org/10.1016/j.neubiorev.2017.08.001.Google Scholar
Raschle, N. M., Chang, M., & Gaab, N. (2011). Structural brain alterations associated with dyslexia predate reading onset. Neuroimage, 57(3), 742749. DOI: https://doi.org/10.1016/j.neuroimage.2010.09.055.Google Scholar
Raschle, N. M., Zuk, J., & Gaab, N. (2012). Functional characteristics of developmental dyslexia in left-hemispheric posterior brain regions predate reading onset. Proceedings of the National Academy of Sciences of the United States of America, 109(6), 21562161. DOI: https://doi.org/10.1073/pnas.1107721109.Google Scholar
Richards, T. L., Berninger, V. W., & Fayol, M. (2009). fMRI activation differences between 11-year-old good and poor spellers’ access in working memory to temporary and long-term orthographic representations. Journal of Neurolinguistics, 22(4), 327353. DOI: https://doi.org/10.1016/j.jneuroling.2008.11.002.Google Scholar
Richards, T. L., Berninger, V. W., Stock, P. et al. (2011). Differences between good and poor child writers on fMRI contrasts for writing newly taught and highly practiced letter forms. Reading and Writing, 24(5), 493516. DOI: https://doi.org/10.1007/s11145-009-9217-3.Google Scholar
Richlan, F. (2012). Developmental dyslexia: Dysfunction of a left hemisphere reading network. Frontiers in Human Neuroscience, 6 (May 2012), 15. DOI: https://doi.org/10.3389/fnhum.2012.00120.Google Scholar
Richlan, F. (2014). Functional neuroanatomy of developmental dyslexia: The role of orthographic depth. Frontiers in Human Neuroscience, 8(MAY), 113. DOI: https://doi.org/10.3389/fnhum.2014.00347.Google Scholar
Richlan, F., Kronbichler, M., & Wimmer, H. (2009). Functional abnormalities in the dyslexic brain: A quantitative meta-analysis of neuroimaging studies. Human Brain Mapping, 30(10), 32993308. DOI: https://doi.org/10.1002/hbm.20752.Google Scholar
Richlan, F., Kronbichler, M., & Wimmer, H. (2011). Meta-analyzing brain dysfunctions in dyslexic children and adults. NeuroImage, 56(3), 17351742. DOI: https://doi.org/10.1016/j.neuroimage.2011.02.040.Google Scholar
Rose, J. (2006). Independent Review of the Teaching of Early Reading: Final Report. London: Department for Education and Skills.Google Scholar
Rueckl, J. G., Paz-Alonso, P. M., Molfese, P. J. et al. (2015). Universal brain signature of proficient reading: Evidence from four contrasting languages. Proceedings of the National Academy of Sciences of the United States of America, 112(50), 1551015515. DOI: https://doi.org/10.1073/pnas.1509321112.Google Scholar
Rumsey, J. M., Dorwart, R., Vermess, M. et al. (1986). Magnetic resonance imaging of brain anatomy in severe developmental dyslexia. Archives of Neurology, 43(10), 10451046. DOI: https://doi.org/10.1001/archneur.1986.00520100053014.Google Scholar
Saiegh-Haddad, E., Shahbari-kassem, A., & Schiff, R. (2020). Phonological awareness in Arabic: The role of phonological distance, phonological-unit size, and SES. Reading and Writing, 33(6), 16491674. DOI: https://doi.org/10.1007/s11145-020-10019-3.Google Scholar
Sandak, R., Mencl, W. E., Frost, S. J., & Pugh, K. R. (2004). The neurobiological basis of skilled and impaired reading: Recent findings and new directions. Scientific Studies of Reading, 8(3), 273292. DOI: https://doi.org/10.1207/s1532799xssr0803.Google Scholar
Saygin, Z. M., Osher, D. E., Norton, E. S. et al. (2016). Connectivity precedes function in the development of the visual word form area. Nature Neuroscience, 19(9), 12501255. DOI: https://doi.org/10.1038/nn.4354.Google Scholar
Scarborough, H. S., Dobrich, W., & Hager, M. (1991). Preschool literacy experience and later reading achievement. Journal of Learning Disabilities, 24(8), 508511. DOI: https://doi.org/10.1177/002221949102400811.Google Scholar
Schiff, R., & Saiegh-Haddad, E. (2018). Development and relationships between phonological awareness, morphological awareness and word reading in spoken and standard Arabic. Frontiers in Psychology, 9, 113. DOI: https://doi.org/10.3389/fpsyg.2018.00356.Google Scholar
Seidenberg, M. (2017). Language at the Speed of Sight: How We Read, Why So Many Can’t, and What Can Be Done About It. New York: Basic Books.Google Scholar
Seidenberg, M., Borkenhagen, M. C., & Kearns, D. M. (2020). Lost in translation? Challenges in connecting reading science and educational practice. Preprint. PsyArxiv DOI: https://doi.org/10.31234/osf.io/sq4fr.Google Scholar
Seki, A., Koeda, T., Sugihara, S. et al. (2001). A functional magnetic resonance imaging study during sentence reading in Japanese dyslexic children. Brain and Development, 23(5), 312316. DOI: https://doi.org/10.1016/S0387-7604(01)00228-5.Google Scholar
Seymour, P. H. K. K., Aro, M., Erskine, J. M. et al. (2003). Foundation literacy acquisition in European orthographies. British Journal of Psychology, 94(Pt 2), 143174. DOI: https://doi.org/10.1348/000712603321661859.Google Scholar
Shanahan, T., & Lonigan, C. J. (2010). The National Early Literacy Panel: A summary of the process and the report. Educational Researcher, 39(4), 279285. DOI: https://doi.org/10.3102/0013189X10369172.Google Scholar
Shaywitz, B. A., Shaywitz, S. E., Pugh, K. R. et al. (2002). Disruption of posterior brain systems for reading in children with developmental dyslexia. Society of Biological Psychiatry, 3223(02), 101110. DOI: https://doi.org/10.1016/S0006-3223(02)01365-3.Google Scholar
Shonkoff, J. P. (2000). Science, policy, and practice: Three cultures in search of a shared mission. Child Development, 71(1), 181187. DOI: https://doi.org/10.1111/1467-8624.00132.Google Scholar
Snow, C. E., & Ninio, A. (1986). The contracts of literacy: What children learn from learning to read books. In Teale, W. H. & Sulzby, E. (eds.), Emergent literacy: Writing and reading (pp. 116138). Norwood, NJ: Ablex.Google Scholar
Soodla, P., Tammik, V., & Kikas, E. (2019). Is part-time special education beneficial for children at risk for reading difficulties? An example from Estonia. Dyslexia. DOI: https://doi.org/10.1002/dys.1643.Google Scholar
Spann, M. N., Bansal, R., Hao, X., Rosen, T. S., & Peterson, B. S. (2020). Prenatal socioeconomic status and social support are associated with neonatal brain morphology, toddler language and psychiatric symptoms. Child Neuropsychology, 26(2), 170188. DOI: https://doi.org/10.1080/09297049.2019.1648641.Google Scholar
Szwed, M., Qiao, E., Jobert, A., Dehaene, S., & Cohen, L. (2014). Effects of literacy in early visual and occipitotemporal areas of Chinese and French readers. Journal of Cognitive Neuroscience, 26(3), 459475. DOI: https://doi.org/10.1162/jocn_a_00499.Google Scholar
Tan, L. H., Liu, H.-L., Perfetti, C. A. et al. (2001). The neural system underlying Chinese logograph reading. NeuroImage, 13(5), 836846. DOI: https://doi.org/10.1006/nimg.2001.0749.Google Scholar
Temple, E., Deutsch, G. K., Poldrack, R. A. et al. (2003). Neural deficits in children with dyslexia ameliorated by behavioral remediation: Evidence from functional MRI. Proceedings of the National Academy of Sciences of the United States of America, 100(5), 28602865. DOI: https://doi.org/10.1073/pnas.0030098100.Google Scholar
The World Bank Group. (2020). DataBank. The World Bank Group (web page). https://databank.worldbank.org/reports.aspx?source=2&series=SE.PRM.AGES&country=.Google Scholar
Tilanus, E. A. T., Segers, E., & Verhoeven, L. (2016). Responsiveness to intervention in children with dyslexia. Dyslexia, 22(3), 214232. DOI: https://doi.org/10.1002/dys.1533.Google Scholar
Tokunaga, H., Nishikawa, T., Ikejiri, Y. et al. (1999). Different neural substrates for Kanji and Kana writing: A PET study. NeuroReport: An International Journal for the Rapid Communication of Research in Neuroscience, 10(16), 33153319. DOI: https://doi.org/10.1097/00001756-199911080-00012.Google Scholar
Torgesen, J. K. (2000). Individual differences in response to early interventions in reading: The lingering problem of treatment resisters. Learning Disabilities Research & Practice, 15(1), 5564. www.tandfonline.com/doi/abs/10.1207/SLDRP1501_6#.VXH15s-jNcY.Google Scholar
Torgesen, J. K. (2002). The prevention of reading difficulties. Journal of School Psychology, 40(1), 726. DOI: https://doi.org/10.1016/S0022-4405(01)00092-9.Google Scholar
Torres, A. R., Mota, N. B., Adamy, N. et al. (2020). Selective inhibition of mirror invariance for letters consolidated by sleep doubles reading fluency. Current Biology, 31, 111. DOI: https://doi.org/10.1016/j.cub.2020.11.031.Google Scholar
Twomey, T., Kawabata Duncan, K. J., Hogan, J. S. et al. (2013). Dissociating visual form from lexical frequency using Japanese. Brain and Language, 125(2), 184193. DOI: https://doi.org/10.1016/j.bandl.2012.02.003.Google Scholar
van den Bunt, M. R., Groen, M. A., Ito, T. et al. (2016). Increased response to altered auditory feedback in dyslexia: A weaker sensorimotor magnet implied in the phonological deficit. Journal of Speech, Language, and Hearing Research, 60(3): 654667. DOI: https://doi.org/10.1044/2016_JSLHR-L-16-0201.Google Scholar
van den Bunt, M. R., Groen, M. A., van der Kleij, S. W. et al. (2018). Deficient response to altered auditory feedback in dyslexia. Developmental Neuropsychology, 43(7), 622641. DOI: https://doi.org/10.1080/87565641.2018.1495723. PMID: 28257585; PMCID: PMC5544192.Google Scholar
Verhoeven, L., & van Leeuwe, J. (2012). The simple view of second language reading throughout the primary grades. Reading and Writing, 25(8), 18051818. DOI: https://doi.org/10.1007/s11145-011-9346-3.Google Scholar
Wandell, B. A., & Yeatman, J. D. (2013). Biological development of reading circuits. Current Opinion in Neurobiology, 23(2), 261268. DOI: https://doi.org/10.1016/j.conb.2012.12.005.Google Scholar
Wang, J., Joanisse, M. F., & Booth, J. R. (2018). Reading skill related to left ventral occipitotemporal cortex during a phonological awareness task in 5–6-year old children. Developmental Cognitive Neuroscience, 30, 116122. DOI: https://doi.org/10.1016/j.dcn.2018.01.011.Google Scholar
Wang, J., Joanisse, M. F., & Booth, J. R. (2020). Neural representations of phonology in temporal cortex scaffold longitudinal reading gains in 5- to 7-year-old children. NeuroImage, 207(June 2019), 116359. DOI: https://doi.org/10.1016/j.neuroimage.2019.116359.Google Scholar
Watanabe, T., Sasaki, Y., Shibata, K., & Kawato, M. (2018). Advances in fMRI real-time neurofeedback. Trends in Cognitive Sciences, 22(8), P738. DOI: https://doi.org/https://doi.org/10.1016/j.tics.2018.05.007.Google Scholar
Whitehurst, G. J., & Lonigan, C. J. (1998). Child development and emergent literacy. Child Development, 69(3), 848872. DOI: https://doi.org/10.1111/j.1467-8624.1998.tb06247.x.Google Scholar
Wolf, S., & McCoy, D. C. (2019). Household socioeconomic status and parental investments: Direct and indirect relations with school readiness in Ghana. Child Development, 90(1), 260278. DOI: https://doi.org/10.1111/cdev.12899.Google Scholar
Yamada, Y., Stevens, C., Dow, M. et al. (2011). Emergence of the neural network for reading in five-year-old beginning readers of different levels of pre-literacy abilities: An fMRI study. NeuroImage, 57(3), 704713. DOI: https://doi.org/10.1016/j.neuroimage.2010.10.057.Google Scholar
Yap, M. J., & Balota, D. A. (2015). Visual word recognition. In Pollatsek, A. & Treiman, R. (Eds.), The Oxford Handbook of Reading (pp. 2643). Oxford: Oxford University Press.Google Scholar
Yeatman, J. D., Dougherty, R. F., Ben-Shachar, M., & Wandell, B. A. (2012). Development of white matter and reading skills. Proceedings of the National Academy of Sciences of the United States of America, 109(44), E3045–53. DOI: https://doi.org/10.1073/pnas.1206792109.Google Scholar
Yu, X., Raney, T., Perdue, M. V. et al. (2018). Emergence of the neural network underlying phonological processing from the prereading to the emergent reading stage: A longitudinal study. Human Brain Mapping, 39(5), 20472063. DOI: https://doi.org/10.1002/hbm.23985.Google Scholar
Ziegler, J. C., Bertrand, D., Tóth, D. et al. (2010). Orthographic depth and its impact on universal predictors of reading: A cross-language investigation. Psychological Science, 21(4), 551559. DOI: https://doi.org/10.1177/0956797610363406.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×