Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-sh8wx Total loading time: 0 Render date: 2024-07-19T11:26:01.160Z Has data issue: false hasContentIssue false

17 - Genome Engineering Using Sleeping Beauty Transposition in Vertebrates

from Part IV - Genome Editing in Stem Cells and Regenerative Biology

Published online by Cambridge University Press:  30 July 2018

Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Genome Editing and Engineering
From TALENs, ZFNs and CRISPRs to Molecular Surgery
, pp. 249 - 269
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ammar, I, Gogol-Doring, A, Miskey, C, et al. 2012. Retargeting transposon insertions by the adeno-associated virus Rep protein. Nucleic Acids Res 40(14): 66936712.CrossRefGoogle ScholarPubMed
Aronovich, EL, Bell, JB, Khan, SA, et al. 2009. Systemic correction of storage disease in MPS I NOD/SCID mice using the sleeping beauty transposon system. Mol Ther 17(7): 11361144.CrossRefGoogle ScholarPubMed
Balciunas, D, Davidson, AE, Sivasubbu, S, et al. 2004. Enhancer trapping in zebrafish using the Sleeping Beauty transposon. BMC Genomics 5(1): 62.CrossRefGoogle ScholarPubMed
Bard-Chapeau, EA, Nguyen, AT, Rust, AG, et al. 2014. Transposon mutagenesis identifies genes driving hepatocellular carcinoma in a chronic hepatitis B mouse model. Nat Genet 46(1): 2432.CrossRefGoogle Scholar
Been, RA, Linden, MA, Hager, CJ, et al. 2014. Genetic signature of histiocytic sarcoma revealed by a sleeping beauty transposon genetic screen in mice. PLoS One 9(5): e97280.CrossRefGoogle ScholarPubMed
Belay, E, Matrai, J, Acosta-Sanchez, A, et al. 2010. Novel hyperactive transposons for genetic modification of induced pluripotent and adult stem cells: a nonviral paradigm for coaxed differentiation. Stem Cells 28(10): 17601771.CrossRefGoogle ScholarPubMed
Belcher, JD, Vineyard, JV, Bruzzone, CM, et al. 2010. Heme oxygenase-1 gene delivery by Sleeping Beauty inhibits vascular stasis in a murine model of sickle cell disease. J Mol Med (Berl) 88(7): 665675.CrossRefGoogle Scholar
Bell, JB, Podetz-Pedersen, KM, Aronovich, EL, et al. 2007. Preferential delivery of the Sleeping Beauty transposon system to livers of mice by hydrodynamic injection. Nat Protoc 2(12): 31533165.CrossRefGoogle ScholarPubMed
Bender, AM, Collier, LS, Rodriguez, FJ, et al. 2010. Sleeping beauty-mediated somatic mutagenesis implicates CSF1 in the formation of high-grade astrocytomas. Cancer Res 70(9): 35573565.CrossRefGoogle ScholarPubMed
Bowers, W, Mastrangelo, M, Howard, D, et al. 2006. Neuronal precursor-restricted transduction via in utero CNS gene delivery of a novel bipartite HSV amplicon/transposase hybrid vector. Mol Ther 13(3): 580588.CrossRefGoogle ScholarPubMed
Carlson, CM, Dupuy, AJ, Fritz, S, et al. 2003. Transposon mutagenesis of the mouse germline. Genetics 165(1): 243256.CrossRefGoogle ScholarPubMed
Chandrashekran, A, Sarkar, R, Thrasher, A, et al. 2014. Efficient generation of transgenic mice by lentivirus-mediated modification of spermatozoa. FASEB J 28(2): 569576.CrossRefGoogle ScholarPubMed
Chen, HJ, Wei, Z, Sun, J, et al. 2016. A recellularized human colon model identifies cancer driver genes. Nat Biotechnol 34(8): 845851.CrossRefGoogle ScholarPubMed
Chen, ZJ, Kren, BT, Wong, PY, Low, WC, Steer, CJ. 2005. Sleeping Beauty-mediated down-regulation of huntingtin expression by RNA interference. Biochem Biophys Res Commun 329(2): 646652.CrossRefGoogle ScholarPubMed
Ciuffi, A, Llano, M, Poeschla, E, et al. 2005. A role for LEDGF/p75 in targeting HIV DNA integration. Nat Med 11(12): 12871289.CrossRefGoogle ScholarPubMed
Collier, LS, Adams, DJ, Hackett, CS, et al. 2009. Whole-body sleeping beauty mutagenesis can cause penetrant leukemia/lymphoma and rare high-grade glioma without associated embryonic lethality. Cancer Res 69(21): 84298437.CrossRefGoogle ScholarPubMed
Collier, LS, Carlson, CM, Ravimohan, S, Dupuy, AJ, Largaespada, DA. 2005. Cancer gene discovery in solid tumours using transposon-based somatic mutagenesis in the mouse. Nature 436(7048): 272276.CrossRefGoogle ScholarPubMed
Cong, L, Ran, FA, Cox, D, et al. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121): 819823.CrossRefGoogle ScholarPubMed
Craig, NL. 1995. Unity in transposition reactions. Science 270(5234): 253254.CrossRefGoogle ScholarPubMed
Cui, Z, Geurts, AM, Liu, G, Kaufman, CD, Hackett, PB. 2002. Structure-function analysis of the inverted terminal repeats of the sleeping beauty transposon. J Mol Biol 318(5): 12211235.CrossRefGoogle ScholarPubMed
Davidson, AE, Balciunas, D, Mohn, D, et al. 2003. Efficient gene delivery and gene expression in zebrafish using the Sleeping Beauty transposon. Dev Biol 263(2): 191202.CrossRefGoogle ScholarPubMed
Davis, RP, Nemes, C, Varga, E, et al. 2013. Generation of induced pluripotent stem cells from human foetal fibroblasts using the Sleeping Beauty transposon gene delivery system. Differentiation 86(1–2): 3037.CrossRefGoogle ScholarPubMed
Daya, S, Berns, KI. 2008. Gene therapy using adeno-associated virus vectors. Clin Microbiol Rev 21(4): 583593.CrossRefGoogle ScholarPubMed
Dorr, C, Janik, C, Weg, M, et al. 2015. Transposon mutagenesis screen identifies potential lung cancer drivers and CUL3 as a tumor suppressor. Mol Cancer Res 13(8): 12381247.CrossRefGoogle ScholarPubMed
Elso, CM, Chu, EP, Alsayb, MA, et al. 2015. Sleeping Beauty transposon mutagenesis as a tool for gene discovery in the NOD mouse model of type 1 diabetes. G3 (Bethesda) 5(12): 29032911.CrossRefGoogle ScholarPubMed
Escobar, H, Schöwel, V, Spuler, S, Marg, A, Izsvák, Z. 2016. Full-length dysferlin transfer by the hyperactive Sleeping Beauty transposase restores dysferlin-deficient muscle. Mol Ther Nucleic Acids 5: e277.CrossRefGoogle ScholarPubMed
Eyjolfsdottir, H, Eriksdotter, M, Linderoth, B, et al. 2016. Targeted delivery of nerve growth factor to the cholinergic basal forebrain of Alzheimer’s disease patients: application of a second-generation encapsulated cell biodelivery device. Alzheimers Res Ther 8(1): 30.CrossRefGoogle Scholar
Fatima, A, Ivanyuk, D, Herms, S, et al. 2016. Generation of human induced pluripotent stem cell line from a patient with a long QT syndrome type 2. Stem Cell Res 16(2): 304307.CrossRefGoogle ScholarPubMed
Fjord-Larsen, L, Kusk, P, Emerich, DF, et al. 2012. Increased encapsulated cell biodelivery of nerve growth factor in the brain by transposon-mediated gene transfer. Gene Ther 19(10): 10101017.CrossRefGoogle ScholarPubMed
Frommolt, R, Rohrbach, F and Theobald, M. 2006. Sleeping Beauty transposon system – future trend in T-cell-based gene therapies? Future Oncol (London, England) 2(3): 345349.CrossRefGoogle ScholarPubMed
Galla, M, Schambach, A, Falk, CS, et al. 2011. Avoiding cytotoxicity of transposases by dose-controlled mRNA delivery. Nucleic Acids Res 39(16): 71477160.CrossRefGoogle ScholarPubMed
Garrels, W, Talluri, TR, Apfelbaum, R, et al. 2016. One-step multiplex transgenesis via Sleeping Beauty transposition in cattle. Sci Rep 6: 21953.CrossRefGoogle ScholarPubMed
Geurts, AM, Collier, LS, Geurts, JL, et al. 2006. Gene mutations and genomic rearrangements in the mouse as a result of transposon mobilization from chromosomal concatemers. PLoS Genet 2(9): e156.CrossRefGoogle ScholarPubMed
Gogol-Döring, A, Ammar, I, Gupta, S, et al. 2016. Genome-wide profiling reveals remarkable parallels between insertion site selection properties of the MLV retrovirus and the piggyBac transposon in primary human CD4(+) T cells. Mol Ther 24(3): 592606.CrossRefGoogle ScholarPubMed
Grabher, C, Henrich, T, Sasado, T, et al. 2003. Transposon-mediated enhancer trapping in medaka. Gene 322: 5766.CrossRefGoogle ScholarPubMed
Grabundzija, I, Irgang, M, Mátés, L, et al. 2010. Comparative analysis of transposable element vector systems in human cells. Mol Ther 18(6): 12001209.CrossRefGoogle ScholarPubMed
Grabundzija, I, Wang, J, Sebe, A, et al. 2013. Sleeping Beauty transposon-based system for cellular reprogramming and targeted gene insertion in induced pluripotent stem cells. Nucleic Acids Res 41(3): 18291847.CrossRefGoogle ScholarPubMed
Hackett, PB, Largaespada, DA, Cooper, LJ. 2010. A transposon and transposase system for human application. Mol Ther 18(4): 674683.CrossRefGoogle ScholarPubMed
Hausl, MA, Zhang, W, Muther, N, et al. 2010. Hyperactive sleeping beauty transposase enables persistent phenotypic correction in mice and a canine model for hemophilia B. Mol Ther 18(11): 18961906.CrossRefGoogle Scholar
He, X, Li, J, Long, Y, et al. 2013. Gene transfer and mutagenesis mediated by Sleeping Beauty transposon in Nile tilapia (Oreochromis niloticus). Transgenic Res 22(5): 913924.CrossRefGoogle ScholarPubMed
Henssen, AG, Henaff, E, Jiang, E, et al. 2015. Genomic DNA transposition induced by human PGBD5. Elife 4: e10565.CrossRefGoogle ScholarPubMed
Holkers, M, Maggio, I, Liu, J, et al. 2013. Differential integrity of TALE nuclease genes following adenoviral and lentiviral vector gene transfer into human cells. Nucleic Acids Res 41(5): e63.CrossRefGoogle ScholarPubMed
Horie, K, Yusa, K, Yae, K, et al. 2003. Characterization of Sleeping Beauty transposition and its application to genetic screening in mice. Mol Cell Biol 23(24): 91899207.CrossRefGoogle ScholarPubMed
Huang, X, Guo, H, Kang, J, et al. 2008. Sleeping Beauty transposon-mediated engineering of human primary T cells for therapy of CD19+ lymphoid malignancies. Mol Ther 16(3): 580589.CrossRefGoogle ScholarPubMed
Hyland, KA, Olson, ER, Clark, KJ, et al. 2011. Sleeping Beauty-mediated correction of Fanconi anemia type C. J Gene Med 13(9): 462469.CrossRefGoogle ScholarPubMed
Ivics, Z. 2016. Endogenous transposase source in human cells mobilizes piggyBac transposons. Mol Ther 24(5): 851854.CrossRefGoogle ScholarPubMed
Ivics, Z, Garrels, W, Mátés, L, et al. 2014a. Germline transgenesis in pigs by cytoplasmic microinjection of Sleeping Beauty transposons. Nat Protoc 9(4): 810827.CrossRefGoogle ScholarPubMed
Ivics, Z, Hackett, PB, Plasterk, RH, Izsvak, Z. 1997. Molecular reconstruction of Sleeping Beauty, a Tc1-like transposon from fish, and its transposition in human cells. Cell 91(4): 501510.CrossRefGoogle ScholarPubMed
Ivics, Z, Hiripi, L, Hoffmann, OI, et al. 2014b. Germline transgenesis in rabbits by pronuclear microinjection of Sleeping Beauty transposons. Nat Protoc 9(4): 794809.CrossRefGoogle ScholarPubMed
Ivics, Z, Izsvak, Z. 2015. Sleeping Beauty transposition. Microbiol Spectr 3(2): MDNA3-0042-2014.CrossRefGoogle ScholarPubMed
Ivics, Z, Izsvak, Z, Medrano, G, Chapman, KM, Hamra, FK. 2011. Sleeping Beauty transposon mutagenesis in rat spermatogonial stem cells. Nat Protoc 6(10): 15211535.CrossRefGoogle ScholarPubMed
Ivics, Z, Katzer, A, Stuwe, EE, et al. 2007. Targeted Sleeping Beauty transposition in human cells. Mol Ther 15(6): 11371144.CrossRefGoogle ScholarPubMed
Ivics, Z, Li, MA, Mates, L, et al. 2009. Transposon-mediated genome manipulation in vertebrates. Nat Methods 6(6): 415422.CrossRefGoogle ScholarPubMed
Ivics, Z, Mátés, L, Yau, TY, et al. 2014c. Germline transgenesis in rodents by pronuclear microinjection of Sleeping Beauty transposons. Nat Protoc 9(4): 773793.CrossRefGoogle ScholarPubMed
Izsvak, Z, Frohlich, J, Grabundzija, I, et al. 2010a. Generating knockout rats by transposon mutagenesis in spermatogonial stem cells. Nat Methods 7(6): 443445.CrossRefGoogle ScholarPubMed
Izsvak, Z, Hackett, PB, Cooper, LJ, Ivics, Z. 2010b. Translating Sleeping Beauty transposition into cellular therapies: victories and challenges. Bioessays 32(9): 756767.CrossRefGoogle ScholarPubMed
Izsvak, Z, Ivics, Z, Plasterk, RH. 2000. Sleeping Beauty, a wide host-range transposon vector for genetic transformation in vertebrates. J Mol Biol 302(1): 93102.CrossRefGoogle ScholarPubMed
Izsvak, Z, Stuwe, EE, Fiedler, D, et al. 2004. Healing the wounds inflicted by Sleeping Beauty transposition by double-strand break repair in mammalian somatic cells. Mol Cell 13(2): 279290.CrossRefGoogle ScholarPubMed
Jin, Z, Maiti, S, Huls, H, et al. 2011 The hyperactive Sleeping Beauty transposase SB100X improves the genetic modification of T cells to express a chimeric antigen receptor. Gene Ther 18(9): 849856.CrossRefGoogle ScholarPubMed
Johnen, S, Djalali-Talab, Y, Kazanskaya, O, et al. 2015. Antiangiogenic and neurogenic activities of sleeping beauty-mediated PEDF-transfected RPE cells in vitro and in vivo. BioMed Res Int 2015: 863845.CrossRefGoogle ScholarPubMed
Johnen, S, Izsvák, Z, Stöcker, M, et al. 2012. Sleeping Beauty transposon-mediated transfection of retinal and iris pigment epithelial cells. Invest Ophthalmol Vis Sci 53(8): 47874796.CrossRefGoogle ScholarPubMed
Katter, K, Geurts, AM, Hoffmann, O, et al. 2013. Transposon-mediated transgenesis, transgenic rescue, and tissue-specific gene expression in rodents and rabbits. FASEB J 27(3): 930941.CrossRefGoogle ScholarPubMed
Kebriaei, P, Huls, H, Jena, B, et al. 2012. Infusing CD19-directed T cells to augment disease control in patients undergoing autologous hematopoietic stem-cell transplantation for advanced B-lymphoid malignancies. Hum Gene Ther 23(5): 444450.CrossRefGoogle ScholarPubMed
Kebriaei, P, Singh, H, Huls, MH, et al. 2016. Phase I trials using Sleeping Beauty to generate CD19-specific CAR T cells. J Clin Invest 126(9): 33633376.CrossRefGoogle ScholarPubMed
Keng, VW, Villanueva, A, Chiang, DY, et al. 2009. A conditional transposon-based insertional mutagenesis screen for genes associated with mouse hepatocellular carcinoma. Nat Biotechnol 27(3): 264274.CrossRefGoogle ScholarPubMed
Kren, BT, Unger, GM, Sjeklocha, L, et al. 2009. Nanocapsule-delivered Sleeping Beauty mediates therapeutic Factor VIII expression in liver sinusoidal endothelial cells of hemophilia A mice. J Clin Invest 119(7): 20862099.Google ScholarPubMed
Kues, WA, Herrmann, D, Barg-Kues, B, et al. 2013. Derivation and characterization of Sleeping Beauty transposon-mediated porcine induced pluripotent stem cells. Stem Cells Dev 22(1): 124135.CrossRefGoogle ScholarPubMed
Liu, L, Liu, >H, Visner, G, Fletcher, BS. 2006a. Sleeping Beauty-mediated eNOS gene therapy attenuates monocrotaline-induced pulmonary hypertension in rats. FASEB Journal 20(14): 25942596.CrossRefGoogle ScholarPubMed
Liu, L, Mah, C, Fletcher, B. 2006b. Sustained FVIII expression and phenotypic correction of hemophilia A in neonatal mice using an endothelial-targeted Sleeping Beauty transposon. Mol Ther 13(5): 10061015.CrossRefGoogle ScholarPubMed
Luo, G, Ivics, Z, Izsvák, Z, Bradley, A. 1998. Chromosomal transposition of a Tc1/mariner-like element in mouse embryonic stem cells. Proc Natl Acad Sci USA 95(18): 1076910773.CrossRefGoogle ScholarPubMed
Luo, W-Y, Shih, Y-S, Hung, C-L, et al. 2011. Development of the hybrid Sleeping Beauty-baculovirus vector for sustained gene expression and cancer therapy. Gene Ther 19(8): 844851.CrossRefGoogle Scholar
Ma, K, Wang, DD, Lin, Y, et al. 2013. Synergetic targeted delivery of Sleeping-Beauty transposon system to mesenchymal stem cells using LPD nanoparticles modified with a phage-displayed targeting peptide. Adv Funct Mater 23(9): 11721181.CrossRefGoogle ScholarPubMed
Mali, P, Yang, L, Esvelt, KM, et al. 2013. RNA-guided human genome engineering via Cas9. Science 339(6121): 823826.CrossRefGoogle ScholarPubMed
Mandal, PK, Kazazian, HH. 2008. SnapShot: vertebrate transposons. Cell 135(1): 192192.CrossRefGoogle ScholarPubMed
Mátés, L, Chuah, MK, Belay, E, et al. 2009. Molecular evolution of a novel hyperactive Sleeping Beauty transposase enables robust stable gene transfer in vertebrates. Nat Genet 41(6): 753761.CrossRefGoogle ScholarPubMed
Mikkelsen, JG, Yant, SR, Meuse, L, et al. 2003. Helper-independent Sleeping Beauty transposon-transposase vectors for efficient nonviral gene delivery and persistent gene expression in vivo. Mol Ther 8(4): 654665.CrossRefGoogle ScholarPubMed
Moldt, B, Miskey, C, Staunstrup, NH, et al. 2011. Comparative genomic integration profiling of Sleeping Beauty transposons mobilized with high efficacy from integrase-defective lentiviral vectors in primary human cells. Mol Ther 19(8): 14991510.CrossRefGoogle ScholarPubMed
Moldt, B, Yant, SR, Andersen, PR, Kay, MA, Mikkelsen, JG. 2007. Cis-acting gene regulatory activities in the terminal regions of Sleeping Beauty DNA transposon-based vectors. Hum Gene Ther 18(12): 11931204.CrossRefGoogle ScholarPubMed
Molina-Estevez, FJ, Lozano, ML, Navarro, S, et al. 2013. Brief report: impaired cell reprogramming in nonhomologous end joining deficient cells. Stem Cells 31(8): 17261730.CrossRefGoogle ScholarPubMed
Molyneux, SD, Waterhouse, PD, Shelton, D, et al. 2014. Human somatic cell mutagenesis creates genetically tractable sarcomas. Nat Genet 46(9): 964972.CrossRefGoogle ScholarPubMed
Monjezi, R, Miskey, C, Gogishvili, T, et al. 2016. Enhanced CAR T-cell engineering using non-viral Sleeping Beauty transposition from minicircle vectors. Leukemia 31(1): 186194.CrossRefGoogle ScholarPubMed
Montini, E. 2002. In vivo correction of murine tyrosinemia type I by DNA-mediated transposition. Mol Ther 6(6): 759769.CrossRefGoogle ScholarPubMed
Moriarity, BS, Largaespada, DA. 2015. Sleeping Beauty transposon insertional mutagenesis based mouse models for cancer gene discovery. Curr Opin Genet Dev 30: 6672.CrossRefGoogle ScholarPubMed
Moriarity, BS, Otto, GM, Rahrmann, EP, et al. 2015. A Sleeping Beauty forward genetic screen identifies new genes and pathways driving osteosarcoma development and metastasis. Nat Genet 47(6): 615624.CrossRefGoogle ScholarPubMed
Muenthaisong, S, Ujhelly, O, Polgar, Z, et al. 2012. Generation of mouse induced pluripotent stem cells from different genetic backgrounds using Sleeping beauty transposon mediated gene transfer. Exp Cell Res 318(19): 24822489.CrossRefGoogle ScholarPubMed
Munoz-Lopez, M, Garcia-Perez, JL. 2010. DNA transposons: nature and applications in genomics. Curr Genom 11(2): 115128.CrossRefGoogle Scholar
Muses, S, Morgan, JE, Wells, DJ. 2011. Restoration of dystrophin expression using the Sleeping Beauty transposon. PLoS Curr 3: RRN1296.CrossRefGoogle ScholarPubMed
Narayanavari, SA, Chilkunda, SS, Ivics, Z, Izsvak, Z. 2016. Sleeping Beauty transposition: from biology to applications. Crit Rev Biochem Mol Bio 52(1): 1844.CrossRefGoogle ScholarPubMed
Nikitidou, L, Torp, M, Fjord-Larsen, L, et al. 2014. Encapsulated galanin-producing cells attenuate focal epileptic seizures in the hippocampus. Epilepsia 55(1): 167174.CrossRefGoogle ScholarPubMed
Ohlfest, JR. 2005. Phenotypic correction and long-term expression of factor VIII in hemophilic mice by immunotolerization and nonviral gene transfer using the Sleeping Beauty transposon system. Blood 105(7): 26912698.CrossRefGoogle ScholarPubMed
Ortiz-Urda, S, Lin, Q, Yant, SR, et al. 2003. Sustainable correction of junctional epidermolysis bullosa via transposon-mediated nonviral gene transfer. Gene Ther 10(13): 10991104.CrossRefGoogle ScholarPubMed
Padeken, J, Zeller, P, Gasser, SM. 2015. Repeat DNA in genome organization and stability. Curr Opin Genet Dev 31: 1219.CrossRefGoogle ScholarPubMed
Park, J-S, Kim, B-H, Park, SG, et al. 2013. Induction of rat liver tumor using the Sleeping Beauty transposon and electroporation. Biochem Biophys Res Commun 434(3): 589593.CrossRefGoogle ScholarPubMed
Perna, D, Karreth, FA, Rust, AG, et al. 2015. BRAF inhibitor resistance mediated by the AKT pathway in an oncogenic BRAF mouse melanoma model. Proc Natl Acad Sci USA 112(6): E536E545.CrossRefGoogle Scholar
Peterson, EB, Mastrangelo, MA, Federoff, HJ, Bowers, WJ. 2007. Neuronal specificity of HSV/Sleeping Beauty amplicon transduction in utero is driven primarily by tropism and cell type composition. Mol Ther 15(10): 18481855.CrossRefGoogle ScholarPubMed
Plasterk, RH, Izsvak, Z, Ivics, Z. 1999. Resident aliens: the Tc1/mariner superfamily of transposable elements. Trends Genet 15(8): 326332.CrossRefGoogle ScholarPubMed
Quintana, RM, Dupuy, AJ, Bravo, A, et al. 2013. A transposon-based analysis of gene mutations related to skin cancer development. J Invest Dermatol 133(1): 239248.CrossRefGoogle ScholarPubMed
Rahrmann, EP, Collier, LS, Knutson, TP, et al. 2009. Identification of PDE4D as a proliferation promoting factor in prostate cancer using a Sleeping Beauty transposon-based somatic mutagenesis screen. Cancer Res 69(10): 43884397.CrossRefGoogle ScholarPubMed
Rahrmann, EP, Watson, AL, Keng, VW, et al. 2013. Forward genetic screen for malignant peripheral nerve sheath tumor formation identifies new genes and pathways driving tumorigenesis. Nat Genet 45(7): 756766.CrossRefGoogle ScholarPubMed
Ren, J, Stroncek, DF. 2016. Gene therapy simplified. Blood 128(18): 21942195.CrossRefGoogle ScholarPubMed
Richter, M, Saydaminova, K, Yumul, R, et al. 2016. In vivo transduction of primitive hematopoietic stem cells after mobilization and intravenous injection of integrating adenovirus vectors. Blood 128(18): 22062217.CrossRefGoogle ScholarPubMed
Rostovskaya, M, Fu, J, Obst, M, et al. 2012. Transposon-mediated BAC transgenesis in human ES cells. Nucleic Acids Res 40(19): e150e150.CrossRefGoogle ScholarPubMed
Schröder, ARW, Shinn, P, Chen, H, et al. 2002. HIV-1 integration in the human genome favors active genes and local hotspots. Cell 110(4): 521529.CrossRefGoogle ScholarPubMed
Sebe, A, Ivics, Z. 2016. Reprogramming of human fibroblasts to induced pluripotent stem cells with Sleeping Beauty transposon-based stable gene delivery. Methods Mol Biol 1400: 419427.CrossRefGoogle ScholarPubMed
Silva, SD, Mastrangelo, MA, Lotta, LT, et al. 2009. Extending the transposable payload limit of Sleeping Beauty (SB) using the Herpes Simplex Virus (HSV)/SB amplicon-vector platform. Gene Ther 17(3): 424431.CrossRefGoogle Scholar
Silva, SD, Mastrangelo, MA, Lotta, LT, et al. 2010. Herpes simplex virus/Sleeping Beauty vector-based embryonic gene transfer using the HSB5 mutant: loss of apparent transposition hyperactivity in vivo. Hum Gene Ther 21(11): 16031613.CrossRefGoogle ScholarPubMed
Singh, H, Huls, H, Kebriaei, P, Cooper, LJN. 2014. A new approach to gene therapy using Sleeping Beauty to genetically modify clinical-grade T cells to target CD19. Immunol Rev 257(1): 181190.CrossRefGoogle ScholarPubMed
Singh, H, Moyes, JS, Huls, MH, Cooper, LJ. 2015. Manufacture of T cells using the Sleeping Beauty system to enforce expression of a CD19-specific chimeric antigen receptor. Cancer Gene Ther 22(2): 95100.CrossRefGoogle ScholarPubMed
Sinzelle, L, Vallin, J, Coen, L, et al. 2006. Generation of trangenic Xenopus laevis using the Sleeping Beauty transposon system. Transgenic Res 15(6): 751760.CrossRefGoogle ScholarPubMed
Starr, TK, Allaei, R, Silverstein, KA, et al. 2009. A transposon-based genetic screen in mice identifies genes altered in colorectal cancer. Science 323(5922): 17471750.CrossRefGoogle ScholarPubMed
Staunstrup, NH, Moldt, B, Mátés, L, et al. 2009. Hybrid lentivirus-transposon vectors with a random integration profile in human cells. Mol Ther 17(7): 12051214.CrossRefGoogle ScholarPubMed
Staunstrup, NH, Sharma, N, Bak, RO, et al. 2011. A Sleeping Beauty DNA transposon-based genetic sensor for functional screening of vitamin D3 analogues. BMC Biotechnol 11: 33.CrossRefGoogle ScholarPubMed
Swierczek, M, Izsvak, Z, Ivics, Z. 2012. The Sleeping Beauty transposon system for clinical applications. Exp Opin Biol Ther 12(2): 139153.CrossRefGoogle ScholarPubMed
Szebenyi, K, Furedi, A, Kolacsek, O, et al. 2015. Visualization of calcium dynamics in kidney proximal tubules. J Am Soc Nephrol 26(11): 27312740.CrossRefGoogle ScholarPubMed
Talluri, TR, Herrmann, D, Barg-Kues, B, et al. 2013. Transposon-mediated reprogramming of livestock somatic cells to induced pluripotent stem cells. Reprod Biol 13: 21.CrossRefGoogle Scholar
Talluri, TR, Kumar, D, Glage, S, et al. 2015. Derivation and characterization of bovine induced pluripotent stem cells by transposon-mediated reprogramming. Cell Reprog 17(2): 131140.CrossRefGoogle ScholarPubMed
Turunen, TA, Kurkipuro, J, Heikura, T, et al. 2016. Sleeping Beauty transposon vectors in liver-directed gene delivery of LDLR and VLDLR for gene therapy of familial hypercholesterolemia. Mol Ther 24(3): 620635.CrossRefGoogle ScholarPubMed
Turunen, TAK, Laakkonen, J, Alasaarela, L, Airenne, KJ, Ylä-Herttuala, S. 2014. Sleeping Beauty–baculovirus hybrid vectors for long-term gene expression in the eye. J Gene Med 16(1–2): 4053.CrossRefGoogle ScholarPubMed
van der Weyden, L, Giotopoulos, G, Rust, AG, et al. 2011. Modeling the evolution of ETV6-RUNX1-induced B-cell precursor acute lymphoblastic leukemia in mice. Blood 118(4): 10411051.CrossRefGoogle ScholarPubMed
Vigdal, TJ, Kaufman, CD, Izsvak, Z, Voytas, DF, Ivics, Z. 2002. Common physical properties of DNA affecting target site selection of sleeping beauty and other Tc1/mariner transposable elements. J Mol Biol 323(3): 441452.CrossRefGoogle ScholarPubMed
Vink, CA, Gaspar, HB, Gabriel, R, et al. 2009. Sleeping Beauty transposition from nonintegrating lentivirus. Mol Ther 17(7): 11971204.CrossRefGoogle ScholarPubMed
Voigt, F, Wiedemann, L, Zuliani, C, et al. 2016. Sleeping Beauty transposase structure allows rational design of hyperactive variants for genetic engineering. Nat Commun 7: 11126.CrossRefGoogle ScholarPubMed
Voigt, K, Gogol-Doring, A, Miskey, C, et al. 2012. Retargeting sleeping beauty transposon insertions by engineered zinc finger DNA-binding domains. Mol Ther 20(10): 18521862.CrossRefGoogle ScholarPubMed
Walisko, O, Schorn, A, Rolfs, F, et al. 2008. Transcriptional activities of the Sleeping Beauty transposon and shielding its genetic cargo with insulators. Mol Ther 16(2): 359369.CrossRefGoogle ScholarPubMed
Wang, J, Singh, M, Sun, C, et al. 2016. Isolation and cultivation of naive-like human pluripotent stem cells based on HERVH expression. Nat Protoc 11(2): 327346.CrossRefGoogle ScholarPubMed
Wang, J, Xie, G, Singh, M, et al., 2014. Primate-specific endogenous retrovirus-driven transcription defines naive-like stem cells. Nature 516(7531): 405409.CrossRefGoogle ScholarPubMed
Wang, X, Sarkar, DP, Mani, P, et al. 2009. Long-term reduction of jaundice in Gunn rats by nonviral liver-targeted delivery of Sleeping Beauty transposon. Hepatology 50(3): 815824.CrossRefGoogle ScholarPubMed
Wang, Y. 2016. Regulated complex assembly safeguards the fidelity of Sleeping Beauty transposition. Nucleic Acids Res 45(1): 311326.CrossRefGoogle ScholarPubMed
Wang, Y, Wang, J, Devaraj, A, et al. 2014. Suicidal autointegration of sleeping beauty and piggyBac transposons in eukaryotic cells. PLoS Genet 10(3): e1004103.CrossRefGoogle ScholarPubMed
Wilber, A, Wangensteen, KJ, Chen, Y, et al. 2006. Correction of the murine model of hereditary tyrosinemia type I using messenger RNA as a source of transposase for Sleeping Beauty mediated integration of the FAH gene. Mol Ther 13: S155S156.CrossRefGoogle Scholar
Wilber, A, Wangensteen, KJ, Chen, Y, et al. 2007. Messenger RNA as a source of transposase for Sleeping Beauty transposon-mediated correction of hereditary tyrosinemia type I. Mol Ther 15(7): 12801287.CrossRefGoogle ScholarPubMed
Williams, DA. 2008. Sleeping beauty vector system moves toward human trials in the United States. Mol Ther 16(9): 15151516.CrossRefGoogle ScholarPubMed
Wilson, MH, Coates, CJ, George, AL. 2007. PiggyBac transposon-mediated gene transfer in human cells. Mol Ther 15(1): 139145.CrossRefGoogle ScholarPubMed
Woodard, LE, Wilson, MH. 2015. piggyBac-ing models and new therapeutic strategies. Trends Biotechnol 33(9): 525533.CrossRefGoogle ScholarPubMed
Wuestefeld, T, Pesic, M, Rudalska, R, et al. 2013. A direct in vivo RNAi screen identifies MKK4 as a key regulator of liver regeneration. Cell 153(2): 389401.CrossRefGoogle ScholarPubMed
Xiao, J, Meng, X-M, Huang, XR, et al. 2012. miR-29 inhibits bleomycin-induced pulmonary fibrosis in mice. Mol Ther 20(6): 12511260.CrossRefGoogle ScholarPubMed
Yant, SR, Ehrhardt, A, Mikkelsen, JG, et al. 2002. Transposition from a gutless adeno-transposon vector stabilizes transgene expression in vivo. Nat Biotechnol 20(10): 9991005.CrossRefGoogle ScholarPubMed
Yant, SR, Huang, Y, Akache, B, Kay, MA. 2007. Site-directed transposon integration in human cells. Nucleic Acids Res 35(7): e50.CrossRefGoogle ScholarPubMed
Yant, SR, Meuse, L, Chiu, W, et al. 2000. Somatic integration and long-term transgene expression in normal and haemophilic mice using a DNA transposon system. Nat Genet 25(1): 3541.CrossRefGoogle ScholarPubMed
Zhang, W, Solanlu, M, Müther, N, et al. 2013. Hybrid adeno-associated viral vectors utilizing transpose-mediated somatic integration for stable transgene expression in human cells. PLoS One 8(10): e76771.CrossRefGoogle Scholar
Zayed, H, Izsvak, Z, Walisko, O, Ivics, Z. 2004. Development of hyperactive sleeping beauty transposon vectors by mutational analysis. Mol Ther 9(2): 292304.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×