Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-4hvwz Total loading time: 0 Render date: 2024-07-27T19:53:11.088Z Has data issue: false hasContentIssue false

9 - Flammability Properties of Polymer Nanocomposites

from Part Two - Multifunctional Properties and Applications

Published online by Cambridge University Press:  27 January 2017

Joseph H. Koo
Affiliation:
University of Texas, Austin
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Pinnavaia, T. J. and Beall, G. W. (Eds.) (2000). Polymer-Clay Nanocomposites. West Sussex, England: John Wiley & Sons.Google Scholar
Utracki, L. A. (2004). Clay-Containing Polymeric Nanocomposites. Shropshire, England: Rapra Technology Limited.Google Scholar
Bhattacharya, S. N., Gupta, R. K., and Kamal, M. R. (2007). Polymeric Nanocomposites-Theory and Practice. Düsseldorf: Carl Hanser Verlag.CrossRefGoogle Scholar
Gilman, J. W., Kashiwagi, T., and Lichtenhan, J. D. (1997). Nanocomposites: a revolutionary new flame retardant approach. SAMPE Journal 33(4), 4046.Google Scholar
Patel, H. A., Bocchini, S., Frache, A., and Camino, G. (2010). Platinum nanoparticle intercalated montmorillonite to enhance the char formation of polyamide 6 nanocomposites. Journal of Materials Chemistry 20, 95509558.CrossRefGoogle Scholar
Lao, S. C., Wu, C., Moon, T. J., Koo, J. H., Morgan, A., et al. (2009). Flame-retardant Polyamide 11 and 12 nanocomposites: Thermal and flammability properties. Journal of Composite Materials 43(17), 18031813.CrossRefGoogle Scholar
Lao, S. C., Yong, W., Nguyen, K., Moon, T. J., Koo, J. H., et al. (2010). Flame-retardant Polyamide 11 and 12 nanocomposites: Processing, morphology and mechanical properties. Journal of Composite Materials 44(25), 29332951.CrossRefGoogle Scholar
Lao, S. C., Koo, J. H., et al. (2011). Flame-retardant Polyamide 11 nanocomposites: Further thermal and flammability studies. Journal of Fire Sciences 29, 1-20. doi: 10.1177/07349041111404658.CrossRefGoogle Scholar
Katsoulis, C. K., Kandare, E., and Kandola, B. K. (2009). Thermal and Fire Performance of Flame-Retarded Epoxy Resin: Investigating Interaction between Resorcinol Bis (Dipenyl Phosphate) and Epoxy Nanocomposites. In Fire Retardancy of Polymers-New Strategies and Mechanisms, Hull, T. R. and Kandola, B. K. (Eds.). Cambridge: The Royal Society of Chemistry, pp. 184205.Google Scholar
Zammarano, M. (2007). Thermoset Fire Retardant Nanocomposites. In Flame Retardant Polymer Nanocomposites, A. Morgan and C. Wilkie (Eds.). Hoboken, NJ: John Wiley & Sons, pp. 235285.CrossRefGoogle Scholar
Wang, Z. and Pinnavaia, T. J. (1998). Hybrid organic-inorganic nanocomposites: exfoliation of magadiite nanoclays in an elastomeric epoxy. Polymer 10, 18201826.Google Scholar
Triantafillidis, C. S., LeBaron, P. C., and Pinnavaia, T. J. (2002). Thermoset epoxy-clay nanocomposites: The dual role of alpha, omega-diamines as clay surface modifiers and polymer curing agents. Journal of Solid State Chemistry 167, 354362.CrossRefGoogle Scholar
Camino, G., Tartaglion, G., Frache, A., Manferti, C., and Costa, G. (2005). Thermal and combustion behavior of layered silicate-epoxy nanocomposites. Polymer Degradation & Stability 90, 354362.CrossRefGoogle Scholar
Hussain, M., Varley, R. J., Mathys, Z., Cheng, Y. B., and Simon, G. P. (2004). Effect of organophosphorus and nano-clay materials on the thermal and fire performance of epoxy resins. Journal of Applied Polymer Science 91, 12331253.CrossRefGoogle Scholar
Hartwig, A., Purtz, D., Schartel, B., Bartholmai, M., and Wenschuh-Josties, M. (2003). Combustion behavior of epoxide based nanocomposites with ammonium and phosphonium bentonites. Macromolecular Chemistry & Physics 204, 22472257.CrossRefGoogle Scholar
Gilman, J. W., Kashiwagi, T., Nyden, M., Brown, J. E. T., Jackson, C. L., et al. (1990). Flammability Studies of Polymer-Layered Silicate Nanocomposites: Polyolefin, Epoxy, and Vinyl Ester Resins. In Chemistry and Technology of Polymer Additives, Ak-Malaika, S., Colovoy, A., and Wilkie, C. A. (Eds.). Malden, MA: Blackwell Science, pp. 249265.Google Scholar
Koo, J. H., Nguyen, K., Lee, J. C., Ho, W. K., Bruns, M. C., and Ezekoye, O. A. (2010). Flammability studies of a novel class of thermoplastic elastomer nanocomposites. Journal of Fire Sciences 28(1), 4985.CrossRefGoogle Scholar
Koo, J. H., Ezekoye, O. A., Lee, J. C., Ho, W. K., and Bruns, M. C. (2011). Rubber-Clay Nanocomposites Based on Thermoplastic Elastomers. In Rubber Clay Nanocomposites, Galimberti, M. (Ed.). New York: John Wiley & Sons, pp. 489521.CrossRefGoogle Scholar
Avila, A. F., Dias, E. C., Lopes da Cruz, D. T., Yoshida, M. I., Bracarense, A. Q., et al. (2010). An investigation on graphene and nanoclay effects on hybrid nanocomposites post fire dynamic behavior. Materials Research 13, 143150.CrossRefGoogle Scholar
Koo, J. H., Leo, H., Clay, W., and Conaway, J. (2011). Methodology to Evaluate Epoxy Nanocomposites for Fire Protection Application. AIAA Paper No. 2011-1799, Reston, VA.CrossRefGoogle Scholar
Guo, Y., Bao, C., Song, L., Yuan, B., and Hu, Y. (2011). In situ polymerization of graphene, graphite oxide, and functionalized graphite oxide into epoxy resin and comparison study of on-the-flame behavior. Industrial and Engineering Chemistry Research 50, 77727783.CrossRefGoogle Scholar
Wang, Z., Tang, X. Z., Yu, Z. Z., Guo, P., Song, H. H., and Du, X. S. (2011). Dispersion of graphene oxide and its flame retardancy effect on epoxy nanocomposites. Chinese Journal of Polymer Science 3, 368376.CrossRefGoogle Scholar
Higginbotham, A. L., Lomdea, J. R., Morgan, A. B., and Tour, J. M. (2009). Graphite oxide flame-retardant polymer nanocomposites. Applied Materials Interfaces 1, 22562261.CrossRefGoogle ScholarPubMed
Kashiwagi, T., Du, F., Winey, K. I., Groth, K. M., Shield, J. R., et al. (2005). Flammability properties of polymer nanocomposites with single-walled carbon nanotubes: Effects of nanotube dispersion and concentration. Polymer 46, 471481.CrossRefGoogle Scholar
Kashiwagi, T. (2007). Progress in Flammability Studies of Nanocomposites with New Types of Nanoparticles. In Flame Retardant Polymer Nanocomposites, Morgan, A. B. and Wilkie, C. A. (Eds.). Hoboken, NJ: Wiley & Sons, pp. 285324.CrossRefGoogle Scholar
Bocchini, S., Frache, A., Camino, G., and Claes, M. (2007). Polyethylene thermal oxidative stabilization in carbon nanotubes based nanocomposites. European Polymer Journal 43, 32223235.CrossRefGoogle Scholar
Butler, S., Kim, G., Koo, J. H., et al. (2011). Polyamide 11-Halloysite Nanotube Nanocomposites: Mechanical, Thermal, and Flammability Characterization. Proceedings of the 2011 SAMPE ISTC, SAMPE, Covina, CA.Google Scholar
Lao, S. C., Kan, M. F., Lam, C. K., Koo, J. H., Moon, T., et al. (2010). Polyamide 11-Carbon Nanotubes Nanocomposites: Processing, Morphological, and Property Characterization. Proceedings of the 2010 Solid Freeform Fabrication Symposium, The University of Texas at Austin, Austin, TX.Google Scholar
Landry, C. J. T., Coltrain, B. K., Landry, M. R., Fitzgerald, J. J., and Long, V. K. (1993). Poly(vinyl acetate) silica filled materials: Material properties of in-situ vs. fumed silica particles. Macromolecules 26, 37023712.CrossRefGoogle Scholar
Hajji, P., David, L., Gerard, J. F., Pascault, J. P., and Vigier, G. (1999). Synthesis, structure, and morphology of polymer-silica hybrid nanocomposites based on hydroxyethl methacrylate. Journal of Polymer Science B 37, 31723187.3.0.CO;2-R>CrossRefGoogle Scholar
Ou, Y., Yang, F., and Yu, Z. Z. (1998). New conception on the toughness of nylon 6/silica nanocomposite prepared via in situ polymerization. Journal of Polymer Science B 36, 789795.3.0.CO;2-G>CrossRefGoogle Scholar
Reynaud, E., Jouen, T., Gauthier, C., Vigier, G., and Varlet, J. (2001). Nanofiller in polymeric matrix: A study on silica reinforced PA6. Polymer 42, 87598768.CrossRefGoogle Scholar
Hsiue, G. H., Kuo, W. J., Huang, Y. P., and Jeng, R. J. (2000). Microstructural and morphological characteristics of PS-SiO2 nanocomposites. Polymer 41, 28132825.CrossRefGoogle Scholar
Liu, Y. L., Hsu, C. Y., Wei, W. L., and Jeng, R. J. (2003). Preparation and thermal properties of epoxy-silica nanocomposites from nanoscale colloidal silica. Polymer 44, 51595167.CrossRefGoogle Scholar
Kashiwagi, T., Gilman, J. W., Butler, K. M., Harris, R. H., and Shields, J. R. (2000). Flame retardant mechanism of silica gel/silica. Fire Materials 24(6), 277289.3.0.CO;2-A>CrossRefGoogle Scholar
Kashiwagi, T., Shields, J. R., Harris, R. H., and Davis, R. D. (2003). Flame-retardant mechanism of silica: Effect of resin molecular weight. Journal of Applied Polymer Science 87, 15411553.CrossRefGoogle Scholar
Yang, F. and Nelson, G. L. (2004). PMMA/silica nanocomposite studies: Synthesis and properties. Journal of Applied Polymer Science 91, 38443850.CrossRefGoogle Scholar
Kashiwagi, T., Morgan, A. B., Antonucci, J. M., Van Landingham, M. R., Harris, R. H., et al. (2003). Thermal and flammability properties of a silica-poly(methylmethacrylate) nanocomposite. Journal of Applied Polymer Science 89, 20722078.CrossRefGoogle Scholar
Yang, F., Yngard, R., and Nelson, G. L. (2005). Flammability of polymer-clay and polymer-silica nanocomposites. Journal of Fire Science 23, 209226.CrossRefGoogle Scholar
Lao, S. C., Koo, J. H., Moon, T. J., Hadisujoto, B., Yong, W., et al. (2009). Flammability and Thermal Properties of Polyamide 11-alumina Nanocomposites. Proceedings of the 2009 Solid Freeform Fabrication Symposium, University of Texas at Austin, Austin, TX.Google Scholar
Rallini, M., Monti, M., Natali, M., Kenny, J. M., and Torre, L. (2011). Alumina Nanoparticles as a Filler of Carbon Fibre/Epoxy Composites for Improved Fire Resistance. Proceedings of the 2011 SAMPE ISTC. Covina, CA: SAMPE.Google Scholar
Kalfus, J. and Jancar, J. (2010). Effect of particle size on the thermal stability and flammability of Mg(OH)2/EVA nanocomposites. Computer Interfaces 17, 689703.CrossRefGoogle Scholar
Vesely, K., Rychly, J., Kummer, M., and Jancar, J. (1990). Flammability of highly filled polyolefins. Polymer Degradation and Stability 30, 101105.CrossRefGoogle Scholar
Rychly, J., Vesely, K., Gal, E., Kummer, M., Jancar, J., and Rychla, L. (1990). Use of thermal methods in the characterization of the high-temperature decomposition and ignition of polyolefins and EVA copolymers filled with Mg(OH)2, Al(OH)3, and CaCO3. Polymer Degradation and Stability 30, 5762.CrossRefGoogle Scholar
Gui, H., Zhang, X. H., Gao, J. M., Dong, W. F., Song, Z. H., et al. (2007). An EVA/unmodified nano-magnesium hydroxide/silicone rubber nanocomposite with synergistic flame retardancy. Chinese Journal of Polymer Science 25, 437440.CrossRefGoogle Scholar
Ly, J. P. and Liu, W. H. (2007). Flame retardancy and mechanical properties of EVA nanocomposites based on magnesium hydroxide nanoparticles/microcapsulated red phosphorus. Journal of Applied Polymer Science 105, 333340.Google Scholar
Mishra, S., Sonawane, S. H., Singh, R. P., Bendale, A., and Patil, K. (2004). Effect of nano-Mg(OH)2 on the mechanical and flame-retarding properties of polypropylene composites. Journal of Applied Polymer Science 94, 116122.CrossRefGoogle Scholar
Zhang, Q., Tian, M., Wu, Y., Lin, G., and Zhang, L. (2004). Effect of particle size on the properties of Mg(OH)2-filled rubber composites. Journal of Applied Polymer Science 94, 23412346.CrossRefGoogle Scholar
Song, G., Ma, S., Tang, G., Yin, Z., and Wang, X. (2010). Preparation and characterization of flame retardant form-stable phase change materials composed by EPDM, paraffin and nano-magnesium hydroxide. Energy 35, 21792183.CrossRefGoogle Scholar
Cao, H., Zheng, H., Yin, J., Lu, Y., Wu, S., et al. (2010). Mg(OH)2 complex nanostructures with superhydrophobicity and flame retardant effects. Journal of Physics and Chemistry C 114, 1736217368.CrossRefGoogle Scholar
Patil, C. B., Kapadi, U. R., Hundiwale, D. G., and Mahulikar, P. P. (2008). Effect of nano-magnesium hydroxide on mechanical and flame-retarding properties of SBR and PBR: A comparative study. Polymer-Plastics Technology and Engineering 47, 11741178.CrossRefGoogle Scholar
Suihkonen, R., Nevalainen, K., Orell, O., Honkanen, M., Tang, L., et al. (2012). Performance of epoxy filled with nano- and micro-sized magnesium hydroxide. Journal of Materials Science 47(3), 14801488.CrossRefGoogle Scholar
Hybrid Plastics, Inc. “Home page.” Last modified 2010. http://www.hybridplastics.com.Google Scholar
Mantz, R. A., Jones, P. F., Chaffee, K. P., Lichtenhan, J. D., Gilman, J. W., et al. (1996). Thermolysis of polyhedral oligomeric silsequioxane (POSS) macromers and POSS-siloxane copolymers. Chemistry of Materials 8, 12501259.CrossRefGoogle Scholar
Schwab, J. J., and Lichtenhan, J. D. (1998). Polyhedral oligomeric silsesquioxane (POSS)-based polymers. Applied Orgaometallic Chemistry 12, 707713.3.0.CO;2-1>CrossRefGoogle Scholar
Kashiwagi, T. and Gilman, J. W. (2000). Silicon-Based Flame Retardants. In Fire Retardancy of Polymeric Materials, Grand, A. F. and Wilkie, C. A. (Eds.). New York: Marcel Dekker, pp. 353389.Google Scholar
Fina, A., Tabuani, D., Frache, A., and Camino, G. (2005). Polypropylene-polyhedral oligermeric silsesquioxanes (POSS) nanocomposites. Polymer 46, 78557866.CrossRefGoogle Scholar
Baldi, F., Bignotti, F., Fina, A., Tabuani, D., and Ricco, T. (2007). Mechanical characterization of polyhedral oligomeric silsesquioxane/polypropylene blends. Journal of Applied Polymer Science 105, 935943.CrossRefGoogle Scholar
Fina, A., Bocchini, S., and Camino, G. (2008). Catalytic fire retardant nanocomposites. Polymer Degradation and Stability 93, 16471655.CrossRefGoogle Scholar
Monticelli, O., Fina, A., Ullah, A., and Waghmare, P. (2009). Preparation, characterization, and properties of novel PSMA-POSS systems by reactive blending. Macromolecules 42, 66146623.CrossRefGoogle Scholar
Fina, A., Tabuani, D., Peijs, T., and Camino, G. (2009). POSS grafting on PPgMA by on-step reactive blending. Polymer 50, 218226.CrossRefGoogle Scholar
Fina, A., Monticelli, O., and Camino, G. (2010). POSS-based hybrids by melt/reactive blending. Journal of Materials Chemistry 20, 92979305.CrossRefGoogle Scholar
Herbert, M. J. and Brown, S. C. (1992). New Developments in ATH Technology and Applications. Paper presented at Flame Retardants ‘92 Conference, London, CT, January 12–13, pp. 100–119.Google Scholar
Beyer, G. (2007). Flame Retardant Properties of Organoclays and Carbon Nanotubes and Their Combinations with Alumina Tri Hydrate. In Flame Retardant Polymer Nanocomposites, Morgan, A. B. and Wilkie, C. A. (Eds.). Hoboken, NJ: Wiley & Sons, pp. 163190.CrossRefGoogle Scholar
Beyer, G. (2005). Flame retardancy of nanocomposites: from research to technical products. Journal of Fire Science 23, 7587.CrossRefGoogle Scholar
Beyer, G. (2002). Carbon nanotubes as flame retardants for polymers. Fire Materials 26, 291293.CrossRefGoogle Scholar
Beyer, G. (2002). Improvements of the Fire Performance of Nanocomposites. Paper presented at the 13th Annual BCC Conference on Flame Retardancy for Polymers, Stamford, CT, June 3–6.Google Scholar
Beyer, G. (2005). Filler blend of carbon nanotubes and organoclays with improved char as a few flame retardant system for polymers and cable application. Fire Materials 29, 6169.CrossRefGoogle Scholar
Beyer, G., Gao, F., and Yuan, Q. (2005). A mechanistic study of fire retardancy of carbon nanotube/ethylene vinyl acetate copolymers and their clay composites. Polymer Degradation and Stability 89, 559564.Google Scholar
Johnson, B., Allcorn, E., Baek, M. G., and Koo, J. H. (2011). Combined Effects of Montmorillonite Clay, Carbon Nanofiber, and Fire Retardant on Mechanical and Flammability Properties of Polyamide 11 Nanocomposites. Proceedings of the 2011 SAMPE ISTC, SAMPE, Covina, CA.Google Scholar
Gao, F., Beyer, G., and Yuan, Q. (2005). A mechanistic study of fire retardancy of carbon nanotube/ethylene vinyl acetate copolymers and their clay composites. Polymer Degradation and Stability 89(3), 559564.CrossRefGoogle Scholar
Peeterbroeck, M., Alexandre, J., J. B. Nagy, et al. (2004). Polymer-layered silicate–carbon nanotube nanocomposites: Unique nanofiller synergistic effect. Composites Science and Technology 64(15), 23172323.CrossRefGoogle Scholar
Gilman, J. W. (2007). Flame Retardant Mechanism of Polymer-Clay Nanocomposites. In Flame Retardant Polymer Nanocomposites, Morgan, A. B. and Wilkie, C. A. (Eds.). Hoboken, NJ: Wiley & Sons, pp. 6787.CrossRefGoogle Scholar
Kashiwagi, T., Harris, R. H., Zhang, X., Briber, R. M., Cipriano, B. H., et al. (2004). Flame retardant mechanism of polyamide 6-clay nanocomposites. Polymer 45, 881891.CrossRefGoogle Scholar
Lewin, M., E. M. Pearce, K. Levon, et al. (2006). Nanocomposites at elevated temperatures: migration and structural changes. Polymer for Advanced Technology 17, 226234. doi:10.1002/pat.684.CrossRefGoogle Scholar
Kashiwagi, T., Du, F., Winey, K. I., Groth, K. M., Shields, J. R., et al. (2005). Flammability properties of polymer nanocomposites with single-walled carbon nanotubes: Effects of nanotube dispersion and concentration. Polymer 46, 471481.CrossRefGoogle Scholar
Fina, A., Bocchini, S., and Camino, G. (2009). Thermal Behavior of Nanocomposites and Fire Testing Performance. In Fire and Polymers, Wilkie, C.A., Morgan, A. B., and Nelson, G. L. (Eds.). Washington, DC: American Chemical Society, pp. 1024.CrossRefGoogle Scholar
Fina, A., Canta, F., Castrovinci, A., and Camino, G. (2009). Significant Assessment of Nanocomposites’ Combustion Behaviour by the Appropriate Use of the Cone Calorimeter. In Fire Retardancy of Polymer – New Strategies and Mechanism, Hull, T. R., and Kandola, B. K. (Eds.). Cambridge: RSC Publishing, pp. 147159.Google Scholar
Morgan, A. B. and Wilkie, C. A. (2007). Practical Issues and Future Trends in Polymer Nanocomposite Flammability Research. In Flame Retardant Polymer Nanocomposites, Morgan, A. B. and Wilkie, C. A. (Eds.). Hoboken, NJ: Wiley & Sons, pp. 355399.CrossRefGoogle Scholar
Alongi, J., Carosio, F., and Malucelli, G. (2013). Current emerging techniques to impart flame retardancy to fabrics: An overview. Polymer Degradation and Stability 106, 138-149. doi: 10.1016/j.polymdegradstab.2013.07.012.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×