Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-19T21:24:24.629Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  25 August 2018

Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aarestad, B, Frank, MR, Scott, H, et al., 2008, The ice VII-ice X phase transition with implications for planetary interiors. AGU Fall Abstracts, A1698 {569}
Aarseth, SJ, 1999, From NBODY1 to NBODY6: the growth of an industry. PASP, 111, 1333–1346 {513}CrossRefGoogle Scholar
Abbot, DS, 2015, A proposal for climate stability on H2-greenhouse planets. ApJ, 815, L3 {624}CrossRefGoogle Scholar
Abbot, DS, 2016, Analytical investigation of the decrease in the size of the habitable zone due to a limited CO2 outgassing rate. ApJ, 827, 117 {620}CrossRefGoogle Scholar
Abbot, DS, Switzer, ER, 2011, The Steppenwolf: a proposal for a habitable planet in interstellar space. ApJ, 735, L27 {447, 448}CrossRefGoogle Scholar
Abbot, DS, Voigt, A, Branson, M, et al., 2012, Clouds and snowball Earth deglaciation. Geophys. Res. Lett., 39, L20711 {676}CrossRefGoogle Scholar
Abbott, BP, Abbott, R, Abbott, TD, et al., 2016, Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett., 116(6), 061102 {356}Google ScholarPubMed
Abe, F, Airey, C, Barnard, E, et al., 2013a, Extending the planetary mass function to Earth mass by microlensing at moderately high magnification. MNRAS, 431, 2975–2985 {128}CrossRefGoogle Scholar
Abe, F, Bennett, DP, Bond, IA, et al., 2004, Search for low-mass exoplanets by gravitational microlensing at high magnification. Science, 305, 1264–1267 {129, 139}CrossRefGoogle ScholarPubMed
Abe, F, Bond, IA, Furuta, Y, et al., 2005, Candidate extrasolar planet transits discovered in the microlensing observations in astrophysics. I. Galactic bulge data. MNRAS, 364, 325–334 {166}CrossRefGoogle Scholar
Abe, L, Epchtein, N, Ansorge, W, et al., 2013b, A European vision for a Polar Large Telescope project (PLT). Astrophysics from Antarctica, volume 288 of IAU Symposium, 243–250 {347}Google Scholar
Abe, L, Gonçalves, I, Agabi, A, et al., 2013c, The secondary eclipses of WASP–19 b as seen by the ASTEP 400 telescope from Antarctica. A&A, 553, A49 {166, 169, 754}Google Scholar
Abe, L, Vakili, F, Boccaletti, A, 2001, The achromatic phase knife coronagraph. A&A, 374, 1161–1168 {334}Google Scholar
Abe, Y, Abe-Ouchi, A, Sleep, NH, et al., 2011, Habitable zone limits for dry planets. Astrobiology, 11, 443–460 {632}CrossRefGoogle ScholarPubMed
Abe, Y, Matsui, T, 1985, The formation of an impact-generated H2O atmosphere and its implications for the early thermal history of the Earth. LPI Science Conf Abstracts, volume 15, 545–59 {576, 597}Google Scholar
Abe, Y, Matsui, T, 1988, Evolution of an impact-generated H2O-CO2 atmosphere and formation of a hot proto-ocean on Earth. Journal of Atmospheric Sciences, 45, 3081–3101 {619}2.0.CO;2>CrossRefGoogle Scholar
Abe, Y, Ohtani, E, Okuchi, T, et al., 2000, Water in the early Earth, 413–433. University of Arizona Press {144, 565}Google Scholar
Aberasturi, M, Solano, E, Martín, EL, 2011, WISE/2MASS–SDSS brown dwarfs candidates using Virtual Observatory tools. A&A, 534, L7 {432}Google Scholar
Abeysekara, AU, Archambault, S, Archer, A, et al., 2016, A search for brief optical flashes associated with the SETI target KIC–8462852. ApJ, 818, L33 {232, 646, 747}CrossRefGoogle Scholar
Abramov, O, Mojzsis, SJ, 2009, Microbial habitability of the Hadean Earth during the Late Heavy Bombardment. Nature, 459, 419–422 {636}CrossRefGoogle ScholarPubMed
Abreu, JA, Beer, J, Ferriz-Mas, A, et al., 2012, Is there a planetary influence on solar activity? A&A, 548, A88 {656}Google Scholar
Absil, O, Defrère, D, Coudé du Foresto, V, et al., 2013a, A near-infrared interferometric survey of debris-disk stars. III. First statistics based on 42 stars observed with CHARA–FLUOR. A&A, 555, A104 {492}Google Scholar
Absil, O, den Hartog, R, Gondoin, P, et al., 2011a, Performance study of ground-based infrared Bracewell interferometers: application to the detection of exozodiacal dust disks with GENIE. A&A, 527, C4 {349}Google Scholar
Absil, O, Le Bouquin, JB, Berger, JP, et al., 2011b, Searching for faint companions with VLTI–PIONIER. I.Method and first results. A&A, 535, A68 {348, 714, 761}Google Scholar
Absil, O, Le Bouquin, JB, Lebreton, J, et al., 2010, Deep near-infrared interferometric search for low-mass companions around β Pic. A&A, 520, L2 {762}Google Scholar
Absil, O, Mawet, D, 2010, Formation and evolution of planetary systems: the impact of high-angular resolution optical techniques. A&A Rev., 18, 317–382 {330}Google Scholar
Absil, O, Mawet, D, Karlsson, M, et al., 2016, Three years of harvest with the vector vortex coronagraph in the thermal infrared. Ground-based and Airborne Instrumentation for Astronomy VI, volume 9908 of Proc. SPIE, 99080Q {338}
Absil, O, Mennesson, B, Le Bouquin, J, et al., 2009, An interferometric study of the Fomalhaut inner debris disk. I. Near-infrared detection of hot dust with VLTI-VINCI. ApJ, 704, 150–160 {761}CrossRefGoogle Scholar
Absil, O, Milli, J, Mawet, D, et al., 2013b, Searching for companions down to 2 au from β Pic using the L’-band AGPM coronagraph on VLT–NACO. A&A, 559, L559 {367, 762}Google Scholar
Abt, HA, 1979, The frequencies of binaries on the main sequence. AJ, 84, 1591–1597 {547}CrossRefGoogle Scholar
Abt, HA, 2010, The origin of exoplanets. PASP, 122, 1015–1019 {451}CrossRefGoogle Scholar
Abt, HA, Levy, SG, 1976, Multiplicity among solar-type stars. ApJS, 30, 273–306 {547}CrossRefGoogle Scholar
Abt, HA, Tan, H, Zhou, H, 1997, Hot inner disks that appear and disappear around rapidly rotating A-type dwarfs. ApJ, 487, 365–369 {282}CrossRefGoogle Scholar
Abubekerov, MK, Gostev, NY, Cherepashchuk, AM, 2010, Light curve analysis for eclipsing systems with exoplanets: the system HD 209458. Astronomy Reports, 54, 1105–1124 {732}CrossRefGoogle Scholar
Abubekerov, MK, Gostev, NY, Cherepashchuk, AM, 2011, Analysis of light curves of eclipsing systems with exoplanets: HD 189733. Astronomy Reports, 55, 1051–1073 {730}CrossRefGoogle Scholar
Abubekerov, MK, Gostev, NY, Cherepashchuk, AM, 2015, Limb-darkening anomalies in stars eclipsed by exoplanets. Astronomy Reports, 59, 1–11 {211}CrossRefGoogle Scholar
Abuter, R, Accardo, M, Amorim, A, et al., 2017, First light for GRAVITY: phase referencing optical interferometry for the Very Large Telescope Interferometer. A&A, 602, A94 {91}Google Scholar
Aceituno, J, Sánchez, SF, Grupp, F, et al., 2013, CAFE: Calar Alto Fiber-fed Échelle spectrograph. A&A, 552, A31 {46}Google Scholar
Acharya, BS, Actis, M, Aghajani, T, et al., 2013, Introducing the CTA concept. Astropar-ticle Physics, 43, 3–18 {354}Google Scholar
Acheson, DJ, Hide, R, 1973, Hydromagnetics of rotating fluids. Rep. Prog. Phys., 36, 159–221 {459}CrossRefGoogle Scholar
Acke, B, Min, M, Dominik, C, et al., 2012, Herschel images of Fomalhaut: an extrasolar Kuiper belt at the height of its dynamical activity. A&A, 540, A125 {761}Google Scholar
Acke, B, van den Ancker, ME, 2006, Resolving the disk rotation of HD 97048 and HD 100546 in the [O I] 630nm line: evidence for a giant planet orbiting HD 100546. A&A, 449, 267–279 {762}Google Scholar
Ackerman, AS, Marley, MS, 2001, Precipitating condensation clouds in substellar atmospheres. ApJ, 556, 872–884 {436, 438, 591}CrossRefGoogle Scholar
Adachi, I, Hayashi, C, Nakazawa, K, 1976, The gas drag effect on the elliptical motion of a solid body in the primordial solar nebula. Progress of Theoretical Physics, 56, 1756–1771 {457}CrossRefGoogle Scholar
Adamów, M, Niedzielski, A, Villaver, E, et al., 2012, BD+48 740: Li-overabundant giant star with a planet: a case of recent engulfment? ApJ, 754, L15 {401}CrossRefGoogle Scholar
Adamów, M, Niedzielski, A, Villaver, E, et al., 2014, The Penn State–Toruń Centre for Astronomy Planet Search stars. II. Lithium abundance analysis of the red giant clump sample. A&A, 569, A55 {401}Google Scholar
Adams, AD, Kane, SR, 2016, Using Kepler candidates to examine the properties of habitable zone exoplanets. AJ, 152, 4 {634}CrossRefGoogle Scholar
Adams, ER, Ciardi, DR, Dupree, AK, et al., 2012, Adaptive optics images of Kepler objects of interest. AJ, 144, 42 {197}CrossRefGoogle Scholar
Adams, ER, Dupree, AK, Kulesa, C, et al., 2013a, Adaptive optics images. II. 12 Kepler objects of interest and 15 confirmed transiting planets. AJ, 146, 9 {360}CrossRefGoogle Scholar
Adams, ER, Gulbis, AAS, Elliot, JL, et al., 2014, De-biased populations of Kuiper belt objects from the Deep Ecliptic Survey. AJ, 148, 55 {684}CrossRefGoogle Scholar
Adams, ER, Jackson, B, Endl, M, 2016, Ultra-short-period planets in K2 SuPerPiG results for Campaigns 0–5. AJ, 152, 47 {177}CrossRefGoogle Scholar
Adams, ER, Jackson, B, Endl, M, et al., 2017, Ultra-short-period planets in K2 with companions: a double transiting system for EPIC–220674823. AJ, 153, 82 {748}CrossRefGoogle Scholar
Adams, ER, López-Morales, M, Elliot, JL, et al., 2010a, Lack of transit timing variations of OGLE–TR–111 b: a re-analysis with six new epochs. ApJ, 714, 13–24 {269, 749}CrossRefGoogle Scholar
Adams, ER, López-Morales, M, Elliot, JL, et al., 2010b, Six high-precision transits of OGLE–TR–113 b. ApJ, 721, 1829–1834 {269, 749}CrossRefGoogle Scholar
Adams, ER, López-Morales, M, Elliot, JL, et al., 2011a, New light curves of OGLE–TR–56 b: new system parameters and limits on timing variations. ApJ, 741, 102 {224, 537, 749}CrossRefGoogle Scholar
Adams, ER, López-Morales, M, Elliot, JL, et al., 2011b, Transit timing variation analysis of OGLE–TR–132 b with seven new transits. ApJ, 728, 125 {749}CrossRefGoogle Scholar
Adams, ER, Seager, S, Elkins-Tanton, L, 2008, Ocean planet or thick atmosphere: on the mass–radius relationship for solid exoplanets with massive atmospheres. ApJ, 673, 1160–1164 {501, 577, 603}CrossRefGoogle Scholar
Adams, FC, 2004, Planet migration with disk torques and planet–planet scattering. KITP Conference: Planet Formation: Terrestrial and Extra Solar, 1–10 {525}Google Scholar
Adams, FC, 2010, The birth environment of the solar system. ARA&A, 48, 47–85 {650, 651}Google Scholar
Adams, FC, 2011, Magnetically-controlled outflows fromhot Jupiters. ApJ, 730, 27 {306}CrossRefGoogle Scholar
Adams, FC, Anderson, KR, Bloch, AM, 2013b, Evolution of planetary systems with time-dependent stellar mass-loss. MNRAS, 432, 438–454 {412, 414, 516, 517}CrossRefGoogle Scholar
Adams, FC, Benz, W, 1992, Gravitational instabilities in circumstellar disks and the formation of binary companions. IAU Colloq. 135: Complementary Approaches to Double and Multiple Star Research, volume 32 of ASP Conf. Ser., 185–194 {487}Google Scholar
Adams, FC, Bloch, AM, 2009, General analysis of type I planetary migration with stochastic perturbations. ApJ, 701, 1381–1397 {519}CrossRefGoogle Scholar
Adams, FC, Bloch, AM, 2013, Evolution of planetary orbits with stellar mass loss and tidal dissipation. ApJ, 777, L30 {516}CrossRefGoogle Scholar
Adams, FC, Bloch, AM, 2015, On the stability of extrasolar planetary systems and other closely orbiting pairs. MNRAS, 446, 3676–3686 {539}CrossRefGoogle Scholar
Adams, FC, Bloch, AM, 2016, The stability of tidal equilibrium for hierarchical star-planet-moon systems. MNRAS, 462, 2527–2541 {539, 540}CrossRefGoogle Scholar
Adams, FC, Cai, MJ, Lizano, S, 2009, Migration of extrasolar planets: effects from X-766 References wind accretion disks. ApJ, 702, L182–L186 {519, 521}CrossRefGoogle Scholar
Adams, FC, Coppess, KR, Bloch, AM, 2015, Planets in other universes: habitability constraints on density fluctuations and galactic structure. J. Cosm. Astro. Phys., 9, 030 {625}CrossRefGoogle Scholar
Adams, FC, Fatuzzo, M, 1996, A theory of the initial mass function for star formation in molecular clouds. ApJ, 464, 256–271 {441}CrossRefGoogle Scholar
Adams, FC, Grohs, E, 2017, On the habitability of universes without stable deuterium. Astroparticle Physics, 91, 90–104 {625}CrossRefGoogle Scholar
Adams, FC, Hollenbach, D, Laughlin, G, et al., 2004, Photoevaporation of circumstellar disks due to external far-ultraviolet radiation in stellar aggregates. ApJ, 611, 360-379 {462}CrossRefGoogle Scholar
Adams, FC, Lada, CJ, Shu, FH, 1987, Spectral evolution of young stellar objects. ApJ, 312, 788–806 {453}CrossRefGoogle Scholar
Adams, FC, Laughlin, G, 2001, Constraints on the birth aggregate of the solar system. Icarus, 150, 151–162 {650}CrossRefGoogle Scholar
Adams, FC, Laughlin, G, 2003, Migration and dynamical relaxation in crowded systems of giant planets. Icarus, 163, 290–306 {67, 525}CrossRefGoogle Scholar
Adams, FC, Laughlin, G, 2006a, Long-termevolution of close planets including the effects of secular interactions. ApJ, 649, 1004–1009 {535}Google Scholar
Adams, FC, Laughlin, G, 2006b, Relativistic effects in extrasolar planetary systems. Int. J.Mod. Phys. D, 15, 2133–2140 {259}CrossRefGoogle Scholar
Adams, FC, Lin, DNC, 1993, Transport processes and the evolution of disks. Protostars and Planets III, 721–748 {487}Google Scholar
Adams, FC, Proszkow, EM, Fatuzzo, M, et al., 2006, Early evolution of stellar groups and clusters: environmental effects on forming planetary systems. ApJ, 641, 504–525 {462, 526, 650}CrossRefGoogle Scholar
Adams, FC, Shu, FH, 1986, Infrared spectra of rotating protostars. ApJ, 308, 836–853 {455}CrossRefGoogle Scholar
Adams, FC, Spergel, DN, 2005, Lithopanspermia in star-forming clusters. Astrobiology, 5, 497–514 {637, 638}CrossRefGoogle ScholarPubMed
Adams, FC, Watkins, R, 1995, Vortices in circumstellar disks. ApJ, 451, 314 {461}CrossRefGoogle Scholar
Addison, BC, Tinney, CG, Wright, DJ, et al., 2013, A nearly polar orbit for the extra solar hot Jupiter WASP–79 b. ApJ, 774, L9 {253, 756}CrossRefGoogle Scholar
Addison, BC, Tinney, CG, Wright, DJ, et al., 2014, A spin–orbit alignment for the hot Jupiter HATS–3 b. ApJ, 792, 112 {737}CrossRefGoogle Scholar
Addison, BC, Tinney, CG, Wright, DJ, et al., 2016, Spin–orbit alignment for three transiting hot Jupiters: WASP–103 b, WASP-87 b, and WASP–66 b. ApJ, 823, 29 {253, 756}CrossRefGoogle Scholar
Ade, PAR, Aghanim, N, Armitage-Caplan, C, et al., 2014, Planck 2013 results. XIV. Zodiacal emission. A&A, 571, A14 {692}Google Scholar
Adibekyan, VZ, Delgado Mena, E, Sousa, SG, et al., 2012a, Exploring the α-enhancement of metal-poor planet-hosting stars: the Kepler and HARPS samples. A&A, 547, A36 {390, 400}Google Scholar
Adibekyan, VZ, Figueira, P, Santos, NC, et al., 2013a, Kinematics and chemical properties of the Galactic stellar populations. The HARPS FGK dwarfs sample. A&A, 554, A44 {54}Google Scholar
Adibekyan, VZ, Figueira, P, Santos, NC, 2013b, Orbital and physical properties of planets and their hosts: new insights on planet formation and evolution. A&A, 560, A51 {392}Google Scholar
Adibekyan, VZ, González Hernández, JI, DelgadoMena, E, et al., 2014, On the origin of stars with and without planets: Tc trends and clues to Galactic evolution. A&A, 564, L15 {395, 397}Google Scholar
Adibekyan, VZ, Santos, NC, Sousa, SG, et al., 2012b, Over abundance of α-elements in exoplanet host stars. A&A, 543, A89 {400}Google Scholar
Adibekyan, VZ, Sousa, SG, Santos, NC, et al., 2012c, Chemical abundances of 1111 FGK stars from the HARPS GTO planet search programme: Galactic stellar populations and planets. A&A, 545, A32 {389, 395, 397}Google Scholar
Aerts, C, 2015, The age and interior rotation of stars from asteroseismology. Astron. Nach., 336, 477 {381}CrossRefGoogle Scholar
Aerts, C, Christensen-Dalsgaard, J, Kurtz, DW, 2010, Asteroseismology. Springer {230, 407}CrossRefGoogle Scholar
Affer, L, Micela, G, Damasso, M, et al., 2016, HADES radial velocity programme with HARPS–N at TNG. I. GJ 3998, an early M-dwarf hosting a system of super-Earths. A&A, 593, A117 {717}Google Scholar
Affer, L, Micela, G, Favata, F, et al., 2012, The rotation of field stars from CoRoT data. MNRAS, 424, 11–22 {383}CrossRefGoogle Scholar
Afonso, C, Albert, JN, Alard, C, et al., 2003, Bulge microlensing optical depth from EROS–II observations. A&A, 404, 145–156 {123}Google Scholar
Afonso, C, Henning, T, 2007, The Pan-Planets project. Transiting Extra solar Planets Workshop, volume 366 of ASP Conf. Ser., 326–331 {171}Google Scholar
Afshordi, N, Mukhopadhyay, B, Narayan, R, 2005, Bypass to turbulence in hydrodynamic accretion: Lagrangian analysis of energy growth. ApJ, 629, 373–382 {457}CrossRefGoogle Scholar
Agarwal, S, Del Sordo, F, Wettlaufer, JS, 2017, Exoplanetary detection by multifractal spectral analysis. AJ, 153, 12 {731}CrossRefGoogle Scholar
Ageorges, N, Dainty, C, 2000, Laser Guide Star Adaptive Optics for Astronomy. Kluwer {332}CrossRefGoogle Scholar
Agnew, DC, 2007, Earth tides. Treatise on Geophysics: Geodesy, 163–195 {533}Google Scholar
Agnew, MT, Maddison, ST, Thilliez, E, et al., 2017, Stable habitable zones of single Jovian planet systems. MNRAS, 471, 4494–4507 {634}CrossRefGoogle Scholar
Agnor, CB, Asphaug, E, 2004, Accretion efficiency during planetary collisions. ApJ, 613, L157–L160 {476}CrossRefGoogle Scholar
Agnor, CB, Canup, RM, Levison, HF, 1999, On the character and consequences of large impacts in the late stage of terrestrial planet formation. Icarus, 142, 219–237 {667, 679}CrossRefGoogle Scholar
Agnor, CB, Hamilton, DP, 2006, Neptune's capture of its moon Triton in a binary-planet gravitational encounter. Nature, 441, 192–194 {685, 688}CrossRefGoogle Scholar
Agnor, CB, Lin, DNC, 2012, On the migration of Jupiter and Saturn: constraints from linear models of secular resonant coupling with the terrestrial planets. ApJ, 745, 143 {697}CrossRefGoogle Scholar
Agol, E, 2002, Occultation and microlensing. ApJ, 579, 430–436 {137}CrossRefGoogle Scholar
Agol, E, 2003, Microlensing of large sources. ApJ, 594, 449–455 {137, 223}CrossRefGoogle Scholar
Agol, E, 2007, Rounding up the wanderers: optimising coronagraphic searches for extra-solar planets. MNRAS, 374, 1271–1289 {338}CrossRefGoogle Scholar
Agol, E, 2011, Transit surveys for Earths in the habitable zones of white dwarfs. ApJ, 731, L31 {153, 160, 632}CrossRefGoogle Scholar
Agol, E, Cowan, NB, Knutson, HA, et al., 2010, The climate of HD 189733 b from fourteen transits and eclipses measured by Spitzer. ApJ, 721, 1861–1877 {300, 609, 730}CrossRefGoogle Scholar
Agol, E, Deck, K, 2016a, Transit timing to first order in eccentricity. ApJ, 818, 177 {267}CrossRefGoogle Scholar
Agol, E, Deck, K, 2016b, TTV Faster: first order eccentricity transit timing variations. Astrophysics Source Code Library {267}
Agol, E, Steffen, J, Sari, R, et al., 2005, On detecting terrestrial planets with timing of giant planet transits. MNRAS, 359, 567–579 {207, 261, 262, 263, 264, 265, 505}CrossRefGoogle Scholar
Agol, E, Steffen, JH, 2007, A limit on the presence of Earth-mass planets around a Sun-like star. MNRAS, 374, 941–948 {269}CrossRefGoogle Scholar
Agra-Amboage, V, Dougados, C, Cabrit, S, et al., 2011, Sub-arcsecond [Fe II] spectro-imaging of the DG Tauri jet: periodic bubbles and a dusty disk wind? A&A, 532, A59 {444}Google Scholar
Agúndez, M, Parmentier, V, Venot, O, et al., 2014a, Pseudo 2d chemical model of hot-Jupiter atmospheres: application to HD 209458 b and HD 189733 b. A&A, 564, A73 {730, 732}Google Scholar
Agúndez, M, Venot, O, Iro, N, et al., 2012, The impact of atmospheric circulation on the chemistry of the hot Jupiter HD 209458 b. A&A, 548, A73 {587, 732}Google Scholar
Agúndez, M, Venot, O, Selsis, F, et al., 2014b, The puzzling chemical composition of the GJ 436 b atmosphere: influence of tidal heating on the chemistry. ApJ, 781, 68 {729}CrossRefGoogle Scholar
Ahlers, JP, 2016, Gravity-darkened seasons: insolation around rapid rotators. ApJ, 832, 93 {599}CrossRefGoogle Scholar
Ahlers, JP, Barnes, JW, Barnes, R, 2015, Spin–orbit misalignment of two-planet-system KOI–89 via gravity darkening. ApJ, 814, 67 {746}CrossRefGoogle Scholar
Ahmic, M, Croll, B, Artymowicz, P, 2009, Dust distribution in the β Pic circumstellar disks. ApJ, 705, 529–542 {762}CrossRefGoogle Scholar
Ahrens, TJ, 1993, Impact erosion of terrestrial planetary atmospheres. Ann. Rev. Earth Plan. Sci., 21, 525–555 {600}CrossRefGoogle Scholar
Aigrain, S, Collier Cameron, A, Ollivier, M, et al., 2008, Transiting exoplanets from the CoRoT space mission. IV. CoRoT–4 b: a transiting planet in a 9.2-d synchronous orbit. A&A, 488, L43–L46 {733}Google Scholar
Aigrain, S, Favata, F, 2002, Bayesian detection of planetary transits: a modified version of the Gregory–Loredo method for Bayesian periodic signal detection. A&A, 395, 625–636 {156, 190}Google Scholar
Aigrain, S, Favata, F, Gilmore, G, 2004, Characterising stellar micro-variability for planetary transit searches. A&A, 414, 1139–1152 {187, 239}Google Scholar
Aigrain, S, Hodgkin, S, Irwin, J, et al., 2007, The Monitor project: searching for occulta-tions in young open clusters. MNRAS, 375, 29–52 {159}CrossRefGoogle Scholar
Aigrain, S, Hodgkin, ST, Irwin, MJ, et al., 2015a, Precise time series photometry for the Kepler–2.0 mission. MNRAS, 447, 2880–2893 {176}CrossRefGoogle Scholar
Aigrain, S, Irwin, M, 2004, Practical planet prospecting. MNRAS, 350, 331–345 {156}CrossRefGoogle Scholar
Aigrain, S, Llama, J, Ceillier, T, et al., 2015b, Testing the recovery of stellar rotation signals from Kepler light curves using a blind hare-and-hounds exercise. MNRAS, 450, 3211–3226 {309}CrossRefGoogle Scholar
Aigrain, S, Parviainen, H, Pope, BJS, 2016, K2SC: flexible systematics correction and detrending of K2 light curves using Gaussian process regression. MNRAS, 459, 2408–2419 {176, 177}Google Scholar
Aigrain, S, Parviainen, H, Roberts, S, et al., 2017, Robust, open-source removal of systematics in Kepler data. MNRAS, 471, 759–769 {190}CrossRefGoogle Scholar
Aigrain, S, Pont, F, 2007, On the potential of transit surveys in star clusters: impact of correlated noise and radial velocity follow-up. MNRAS, 378, 741–752 {158}CrossRefGoogle Scholar
Aigrain, S, Pont, F, Fressin, F, et al., 2009, Noise properties of the CoRoT data: a planet-finding perspective. A&A, 506, 425–429 {172}Google Scholar
Aigrain, S, Pont, F, Zucker, S, 2012, A simple method to estimate radial velocity variations due to stellar activity using photometry. MNRAS, 419, 3147–3158 {37, 730}CrossRefGoogle Scholar
Aime, C, 2005, Principle of an achromatic prolate apodised Lyot coronagraph. PASP, 117, 1012–1119 {334}CrossRefGoogle Scholar
Aime, C, 2008, Imaging with hypertelescopes: a simple modal approach. A&A, 483, 361-364 {355}Google Scholar
Aime, C, Ricort, G, Carlotti, A, et al., 2010, ARC: an achromatic rotation-shearing coro-nagraph. A&A, 517, A55 {334}Google Scholar
Aime, C, Soummer, R, 2004, Multiple-stage apodised pupil Lyot coronagraph for high-contrast imaging. SPIE Conf. Ser., volume 5490, 456–461 {334}Google Scholar
Ain, A, Kastha, S, Mitra, S, 2015, Stochastic gravitational wave background from exo-planets. Phys. Rev. D, 91(12), 124023 {356}CrossRefGoogle Scholar
Airapetian, VS, Glocer, A, Khazanov, GV, et al., 2017, How hospitable are space weather affected habitable zones? The role of ion escape. ApJ, 836, L3 {628}CrossRefGoogle Scholar
Aitken, RG, 1918, The Binary Stars. D.C.McMurtrie, New York {17, 19}Google Scholar
Aizawa, M, Uehara, S, Masuda, K, et al., 2017, Toward detection of exoplanetary rings via transit photometry: methodology and a possible candidate. AJ, 153, 193 {217}CrossRefGoogle Scholar
Akeson, RL, 2006, Recent progress at the Palomar Testbed Interferometer. SPIE Conf. Ser., volume 6268, 14 {348}Google Scholar
Akeson, RL, Chen, X, Ciardi, D, et al., 2013, The NASA Exoplanet Archive: data and tools for exoplanet research. PASP, 125, 989–999 {14}CrossRefGoogle Scholar
Akeson, RL, Koerner, DW, Jensen, ELN, 1998, A circumstellar dust disk around T Tauri N: subarcsecond imaging at λ 3mm. ApJ, 505, 358–362 {548}Google Scholar
Akgün, T, Link, B, Wasserman, I, 2006, Precession of the isolated neutron star PSR B1828–11. MNRAS, 365, 653–672 {109}CrossRefGoogle Scholar
Akhmanova, MV, Dementev, BV, Markov, MN, 1978, Water in the regolith of Mare Cri-siumfrom Luna 24. Geokhimiia, 285–288 {666}Google Scholar
Akinsanmi, B, Oshagh, M, Santos, NC, et al., 2018, Detecting transit signatures of exo-planetary rings using SOAP3.0. A&A, 609, A21 {217}Google Scholar
Akiyama, E, Hasegawa, Y, Hayashi, M, et al., 2016, Planetary system formation in the protoplanetary disk around HL Tau. ApJ, 818, 158 {466}CrossRefGoogle Scholar
Akiyama, E, Muto, T, Kusakabe, N, et al., 2015, Discovery of a disk gap candidate at 20 au in TWHya. ApJ, 802, L17 {466, 520}CrossRefGoogle Scholar
Akram, W, Schönbächler, M, 2016, Zirconium isotope constraints on the composition of Theia and current Moon-forming theories. Earth Planet. Sci. Lett., 449, 302-310 {664}CrossRefGoogle Scholar
Aksnes, K, Franklin, FA, 2001, Secular acceleration of Io derived from mutual satellite events. AJ, 122, 2734–2739 {536}CrossRefGoogle Scholar
Alapini, A, Aigrain, S, 2009, An iterative filter to reconstruct planetary transit signals in the presence of stellar variability. MNRAS, 397, 1591–1598 {172}CrossRefGoogle Scholar
Alard, C, 1996, First results of the DUO programme. Astrophysical Applications of Gravitational Lensing, volume 173 of IAU Symp., 215–220{122}CrossRefGoogle Scholar
Alard, C, 1997, Lensing of unresolved stars towards the Galactic bulge. A&A, 321, 424–433 {131}Google Scholar
Alard, C, Lupton, RH, 1998, A method for optimal image subtraction. ApJ, 503, 325-331 {131, 156}CrossRefGoogle Scholar
Albarède, F, 2009, Volatile accretion history of the terrestrial planets and dynamic implications. Nature, 461, 1227–1233 {667}CrossRefGoogle ScholarPubMed
Albers, SC, 1979, Mutual occultations of planets: 1557 to 2230. S&T, 57 {227}Google Scholar
Alberti, T, Carbone, V, Lepreti, F, et al., 2017, Comparative climates of the TRAPPIST–1 planetary system: results from a simple climate-vegetation model. ApJ, 844, 19 {750}CrossRefGoogle Scholar
Albertsson, T, Semenov, D, Henning, T, 2014, Chemodynamical deuterium fractionation in the early aolar nebula: the origin of water on Earth and in asteroids and comets. ApJ, 784, 39 {668}CrossRefGoogle Scholar
Albrecht, S, 2012, The long history of the Rossiter–McLaughlin effect and its recent applications. IAU Symp., volume 282, 379–384 {248}Google Scholar
Albrecht, S, Reffert, S, Snellen, IAG, et al., 2009, Misaligned spin and orbital axes cause the anomalous precession of DI Her. Nature, 461, 373–376 {553}CrossRefGoogle Scholar
Albrecht, S, Winn, JN, Butler, RP, et al., 2012a, A high stellar obliquity in the WASP–7 exoplanetary system. ApJ, 744, 189 {250, 253, 311, 752}CrossRefGoogle Scholar
Albrecht, S, Winn, JN, Carter, JA, et al., 2011a, The Banana Project. III. Spin–orbit alignment in the long-period eclipsing binary NY Cep. ApJ, 726, 68 {254}CrossRefGoogle Scholar
Albrecht, S, Winn, JN, Johnson, JA, et al., 2011b, Two upper limits on the Rossiter-McLaughlin effect, with differing implications: WASP–1 has a high obliquity and WASP–2 is indeterminate. ApJ, 738, 50 {253, 751}CrossRefGoogle Scholar
Albrecht, S, Winn, JN, Johnson, JA, et al., 2012b, Obliquities of hot Jupiter host stars: evidence for tidal interactions and primordial misalignments. ApJ, 757, 18 {214, 250, 251, 253, 254, 255, 525, 545, 728, 735, 736, 737, 738, 751, 752, 753, 754}CrossRefGoogle Scholar
Albrecht, S, Winn, JN,Marcy, GW, et al., 2013, Low stellar obliquities in compact multi-planet systems. ApJ, 771, 11 {252, 254, 256, 740, 742}CrossRefGoogle Scholar
Albrecht, S, Winn, JN, Torres, G, et al., 2014, The BANANA project. V. Misaligned and precessing stellar rotation axes in CV Vel. ApJ, 785, 83 {554}CrossRefGoogle Scholar
Albrow, MD, An, J, Beaulieu, J, et al., 2001a, Limits on the abundance of Galactic planets from five years of PLANET observations. ApJ, 556, L556–L116 {140}CrossRefGoogle Scholar
Albrow, MD, An, J, Beaulieu, J, et al., 2001b, PLANET observations of microlensing event OGLE–1999–BLG–23: limb-darkening measurement of the source star. ApJ, 549, 759–769 {132}CrossRefGoogle Scholar
Albrow, MD, Beaulieu, J, Birch, P, et al., 1998, The 1995 pilot campaign of PLANET: searching formicrolensing anomalies. ApJ, 509, 687–702 {140}CrossRefGoogle Scholar
Albrow, MD, Beaulieu, J, Caldwell, JAR, et al., 1999, Limb darkening of a K giant in the Galactic bulge: PLANET photometry of MACHO–1997–BLG–28. ApJ, 522, 1011-1021 {132}CrossRefGoogle Scholar
Albrow, MD, 2000a, Detection of rotation in a binary microlens: PLANET photometry of MACHO–1997–BLG–41. ApJ, 534, 894–906 {132, 133, 140}CrossRefGoogle Scholar
Albrow, MD, 2000b, Limits on stellar and planetary companions in microlensing event OGLE-1998–BUL–14. ApJ, 535, 176–189 {140}CrossRefGoogle Scholar
Alcalá, JM, Natta, A, Manara, CF, et al., 2014, X-shooter spectroscopy of young stellar objects. IV. Accretion in low-mass stars and substellar objects in Lupus. A&A, 561, A2 {309}Google Scholar
Alcock, C, Akerlof, CW, Allsman, RA, et al., 1993, Possible gravitational microlensing of a star in the LMC. Nature, 365, 621–623 {122}CrossRefGoogle Scholar
Alcock, C, Allsman, RA, Alves, D, et al., 1995, First observation of parallax in a gravitational microlensing event. ApJ, 454, L125–L128 {134}CrossRefGoogle Scholar
Alcock, C, Allsman, RA, Alves, DR, et al., 2000, The MACHO project: microlensing results from 5.7 years of LMC observations. ApJ, 542, 281–307 {122}CrossRefGoogle Scholar
Alecian, E, Kochukhov, O, Neiner, C, et al., 2011, First HARPSpol discoveries of magnetic fields in massive stars. A&A, 536, L6 {47}Google Scholar
Alecian, E, Kochukhov, O, Petit, V, et al., 2014, Discovery of new magnetic early-B stars within theMiMeS HARPSpol survey. A&A, 567, A28 {47}Google Scholar
Alencar, SHP, Teixeira, PS, Guimarães, MM, et al., 2010, Accretion dynamics and disk evolution inNGC 2264: a study based on CoRoT photometric observations. A&A, 519, A88 {466}Google Scholar
Alessi, M, Pudritz, RE, Cridland, AJ, 2017, On the formation and chemical composition of super Earths. MNRAS, 464, 428–452 {501}CrossRefGoogle Scholar
Alexander, DR, Ferguson, JW, 1994, Low-temperature Rosseland opacities. ApJ, 437, 879–891 {570}CrossRefGoogle Scholar
Alexander, JB, 1967, A possible source of lithium in the atmospheres of some red giants. The Observatory, 87, 238–240 {400}Google Scholar
Alexander, ME, 1973, The weak friction approximation and tidal evolution in close binary systems. Ap&SS, 23, 459–510 {533, 535}Google Scholar
Alexander, ME, 1987, Tidal resonances in binary star systems. MNRAS, 227, 843–861 {411}CrossRefGoogle Scholar
Alexander, R, 2012, The dispersal of protoplanetary disks around binary stars. ApJ, 757, L29 {550}CrossRefGoogle Scholar
Alexander, R, Pascucci, I, Andrews, S, et al., 2014, The dispersal of protoplanetary disks. Protostars and Planets VI, 475–496 {462}Google Scholar
Alexander, RD, Armitage, PJ, 2007, Dust dynamics during protoplanetary disk clearing. MNRAS, 375, 500–512 {465}CrossRefGoogle Scholar
Alexander, RD, Armitage, PJ, 2009, Giant planet migration, disk evolution, and the origin of transition disks. ApJ, 704, 989–1001 {465}CrossRefGoogle Scholar
Alexander, RD, Armitage, PJ, Cuadra, J, 2008, Binary formation and mass function variations in fragmenting disks with short cooling times. MNRAS, 389, 1655–1664 {490}CrossRefGoogle Scholar
Alexander, RD, Clarke, CJ, Pringle, JE, 2005, Constraints on the ionising flux emitted by T Tauri stars. MNRAS, 358, 283–290 {462}CrossRefGoogle Scholar
Alexander, RD, Clarke, CJ, Pringle, JE, 2006a, Photoevaporation of protoplanetary disks. I. Hydrodynamic models. MNRAS, 369, 216–228 {462}CrossRefGoogle Scholar
Alexander, RD, Clarke, CJ, Pringle, JE, 2006b, Photoevaporation of protoplanetary disks. II. Evolutionary models and observable properties. MNRAS, 369, 229–239 {462}CrossRefGoogle Scholar
Alexander, RD, Pascucci, I, 2012, Deserts and pile-ups in the distribution of exoplanets due to photoevaporative disk clearing. MNRAS, 422, L82 {462}CrossRefGoogle Scholar
Alexander, RD, Wynn, GA,Mohammed, H, et al., 2016, Magnetospheres of hot Jupiters: hydrodynamic models and ultraviolet absorption. MNRAS, 456, 2766–2778 {222, 732, 753, 754}CrossRefGoogle Scholar
Alexandersen, M, Gladman, B, Greenstreet, S, et al., 2013, A Uranian Trojan and the frequency of temporary giant-planet co-orbitals. Science, 341, 994–997 {690}CrossRefGoogle ScholarPubMed
Alexopoulos, T, Leontsinis, S, 2014, Benford's lawin astronomy. Journal of Astrophysics and Astronomy, 35, 639–648 {510}CrossRefGoogle Scholar
Alfvén, H, 1943, Non-solar planets and the origin of the solar system. Nature, 152, 721 {83}CrossRefGoogle Scholar
Alfvén, H, 1964, On the formation of celestial bodies. Icarus, 3, 57–62 {680}CrossRefGoogle Scholar
Ali-Dib, M, 2017, Disentangling hot Jupiters formation location from their chemical composition. MNRAS, 467, 2845–2854 {529}CrossRefGoogle Scholar
Ali-Dib, M, Johansen, A, Huang, CX, 2017, The origin of the occurrence rate profile of gas giants inside 100 d. MNRAS, 469, 5016–5022 {471}CrossRefGoogle Scholar
Ali-Dib, M, Lakhlani, G, 2018, Possible formation pathways for the low-density Neptune-mass planet HAT–P–26 b. MNRAS, 473, 1325–1331 {473, 737}CrossRefGoogle Scholar
Ali-Dib, M, Mousis, O, Petit, JM, et al., 2014a, Carbon-rich planet formation in a solar composition disk. ApJ, 785, 125 {753}CrossRefGoogle Scholar
Ali-Dib, M, Mousis, O, Petit, JM, et al., 2014b, The measured compositions of Uranus and Neptune fromtheir formation on the CO ice line. ApJ, 793, 9 {660}CrossRefGoogle Scholar
Alibert, Y, 2014, On the radius of habitable planets. A&A, 561, A41 {629}Google Scholar
Alibert, Y, 2015, A maximum radius for habitable planets. Origins of Life and Evolution of the Biosphere, 45, 319–325 {628}CrossRefGoogle ScholarPubMed
Alibert, Y, 2016, Constraining the volatile fraction of planets from transit observations. A&A, 591, A79 {728}Google Scholar
Alibert, Y, 2017, Maximum mass of planetary embryos that formed in core-accretion models. A&A, 606, A69 {475}Google Scholar
Alibert, Y, Baraffe, I, Benz, W, et al., 2006, Formation and structure of the three Neptune-mass planets system around HD 69830. A&A, 455, L25–L28 {487, 500, 720}Google Scholar
Alibert, Y, Benz, W, 2017, Formation and composition of planets around very low mass stars. A&A, 598, L5 {556}Google Scholar
Alibert, Y, Broeg, C, Benz, W, et al., 2010, Origin and formation of planetary systems. Astrobiology, 10, 19–32 {467}CrossRefGoogle ScholarPubMed
Alibert, Y, Carron, F, Fortier, A, et al., 2013, Theoretical models of planetary system formation: mass versus semi-major axis. A&A, 558, A109 {556}Google Scholar
Alibert, Y, Mordasini, C, Benz, W, 2004, Migration and giant planet formation. A&A, 417, L25–L28 {483}Google Scholar
Alibert, Y, Mordasini, C, Benz, W, 2011, Extrasolar planet population synthesis. III. Formation of planets around stars of differentmasses. A&A, 526, A63 {13, 484, 556}Google Scholar
Alibert, Y, Mordasini, C, Benz, W, et al., 2005a, Models of giant planet formation with migration and disk evolution. A&A, 434, 343–353 {62, 293, 483, 556}Google Scholar
Alibert, Y, Mousis, O, Benz, W, 2005b, Modeling the Jovian subnebula. I. Thermodynamic conditions and migration of proto-satellites. A&A, 439, 1205–1213 {687, 688}Google Scholar
Alibert, Y, Mousis, O, Benz, W, 2005c, On the volatile enrichments and composition of Jupiter. ApJ, 622, L622-L148 {661}CrossRefGoogle Scholar
Alibert, Y, Mousis, O, Mordasini, C, et al., 2005d, New Jupiter and Saturn formation models meet observations. ApJ, 626, L626–L60 {484, 578}CrossRefGoogle Scholar
Allain, S, 1998, Modeling the angular momentum evolution of low-mass stars with core-envelope decoupling. A&A, 333, 629–643 {402}Google Scholar
Allard, F, Hauschildt, PH, Alexander, DR, et al., 1997, Model atmospheres of very low mass stars and brown dwarfs. ARA&A, 35, 137–177 {570}Google Scholar
Allard, F, Hauschildt, PH, Alexander, DR, 2001, The limiting effects of dust in brown dwarf model atmospheres. ApJ, 556, 357–372 {436}CrossRefGoogle Scholar
Allard, NF, Allard, F, Hauschildt, PH, et al., 2003, A new model for brown dwarf spectra including accurate unified line shape theory for the Na I and KI resonance line profiles. A&A, 411, L473–L476 {570}Google Scholar
Allart, R, Lovis, C, Pino, L, et al., 2017, Search for water vapour in the high-resolution transmission spectrumof HD 189733 b in the visible. A&A, 606, A144 {731}Google Scholar
Allègre, C, Manhès, G, Lewin, É, 2001, Chemical composition of the Earth and the volatility control on planetary genetics. Earth Planet. Sci. Lett., 185, 49–69 {419}CrossRefGoogle Scholar
Allègre, CJ, Manhès, G, Göpel, C, 1995, The age of the Earth. Geochim. Cos-mochim. Acta, 59, 1445–1456 {652}Google Scholar
Allègre, CJ, Manhès, G, Göpel, C, 2008, The major differentiation of the Earth at 4.45Ga. Earth Planet. Sci. Lett., 267, 386–398 {665}CrossRefGoogle Scholar
Allen, L, Beijersbergen, MW, Spreeuw, RJC, et al., 1992, Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A, 45, 8185–8189 {336}CrossRefGoogle ScholarPubMed
Allende Prieto, C, 2016, Solar and stellar photospheric abundances. Living Reviews in Solar Physics, 13, 1 {649}CrossRefGoogle Scholar
Allende Prieto, C, Barklem, PS, Lambert, DL, et al., 2004, S4N: a spectroscopic survey of stars in the solar neighbourhood. The nearest 15 pc. A&A, 420, 183–205 {399}Google Scholar
Allende Prieto, C, Lambert, DL, Asplund, M, 2001, The forbidden abundance of oxygen in the Sun. ApJ, 556, L63–L66 {652}CrossRefGoogle Scholar
Allende Prieto, C, Lambert, DL, Asplund, M, 2002, A reappraisal of the solar photospheric C/O ratio. ApJ, 573, L137–L140 {652}CrossRefGoogle Scholar
Aller, KM, Kraus, AL, Liu, MC, et al., 2013, A Pan-STARRS + UKIDSS search for young, wide planetary-mass companions in Upper Scorpius. ApJ, 773, 63 {434}CrossRefGoogle Scholar
Allers, KN, Gallimore, JF, Liu, MC, et al., 2016, The radial and rotational velocities of PSO J318.5338-22.8603, a newly confirmed planetary-mass member of the β Pic moving group. ApJ, 819, 133 {43}CrossRefGoogle Scholar
Allers, KN, Kessler-Silacci, JE, Cieza, LA, et al., 2006, Young, low-mass brown dwarfs with mid-infrared excesses. ApJ, 644, 364–377 {438}CrossRefGoogle Scholar
Allington-Smith, J, 2006, Basic principles of integral field spectroscopy. New Astron. Rev., 50, 244–251 {341}CrossRefGoogle Scholar
Allington-Smith, J, Bland-Hawthorn, J, 2010, Astrophotonic spectroscopy: defining the potential advantage. MNRAS, 404, 232–238 {357}Google Scholar
Allred, JC, Kowalski, AF, Carlsson, M, 2015, A unified computational model for solar and stellar flares. ApJ, 809, 104 {427}CrossRefGoogle Scholar
Almár, I, 1992, Analogies between Olbers’ paradox and the Fermi paradox. Acta As-tron., 26, 253–256 {647}Google Scholar
Almár, I, 2011, SETI and astrobiology: the Rio Scale and the London Scale. Acta Astron., 69, 899–904 {648}CrossRefGoogle Scholar
Almeida, LA, Jablonski, F, 2011, Two bodies with high eccentricity around the cataclysmic variable QS Vir. The Astrophysics of Planetary Systems: Formation, Structure, and Dynamical Evolution, volume 276 of IAU Symposium, 495–496 {117}Google Scholar
Almeida, LA, Jablonski, F, Rodrigues, CV, 2013, Two possible circumbinary planets in the eclipsing post-common-envelope system NSVS 14256825. ApJ, 766, 11 {117}CrossRefGoogle Scholar
Almenara, JM, Astudillo-Defru, N, Bonfils, X, et al., 2015a, A HARPS view on K2–3. A&A, 581, L581 {747}Google Scholar
Almenara, JM, Bouchy, F, Gaulme, P, et al., 2013, Transiting exoplanets from the CoRoT space mission. XXIV. CoRoT–25 b and CoRoT–26 b: two low-density giant planets. A&A, 555, A118 {223, 734}Google Scholar
Almenara, JM, Damiani, C, Bouchy, F, et al., 2015b, SOPHIE velocimetry of Kepler transit candidates. XV. KOI–614 b, KOI–206 b, and KOI–680 b: a massive warm Jupiter orbiting a G0 metallic dwarf and two highly inflated planets with a distant companion around evolved F-type stars. A&A, 575, A71 {62, 223, 745}Google Scholar
Almenara, JM, Deeg, HJ, Aigrain, S, et al., 2009, Rate and nature of false positives in the CoRoT exoplanet search. A&A, 506, 337–341 {172}Google Scholar
Almenara, JM, Díaz, RF, Bonfils, X, et al., 2016, Absolute densities, masses, and radii of the WASP–47 system determined dynamically. A&A, 595, L5 {755}Google Scholar
Almenara, JM, Díaz, RF, Mardling, R, et al., 2015c, Absolute masses and radii determination in multi-planetary systems without stellar models. MNRAS, 453, 2644-2652 {322, 743}CrossRefGoogle Scholar
Alonso, R, Alapini, A, Aigrain, S, et al., 2009a, The secondary eclipse of CoRoT–1 b. A&A, 506, 353–358 {173, 718, 733}Google Scholar
Alonso, R, Auvergne, M, Baglin, A, et al., 2008a, Transiting exoplanets from the CoRoT space mission. II. CoRoT–2 b: a transiting planet around an active G star. A&A, 482, L482–L24 {172, 173, 213, 542, 733}Google Scholar
Alonso, R, Barbieri, M, Rabus, M, et al., 2008b, Limits to the planet candidate GJ 436 c. A&A, 487, L487–L8 {269, 728}Google Scholar
Alonso, R, Brown, TM, Charbonneau, D, et al., 2007, The Transatlantic Exoplanet Survey (TrES): a review. Transiting Extrasolar Planets Workshop, volume 366 of ASP Conf. Ser., 13–22 {169}Google Scholar
Alonso, R, Brown, TM, Torres, G, et al., 2004, TrES–1: the transiting planet of a bright K0V star. ApJ, 613, L153–L156 {10, 169, 750}CrossRefGoogle Scholar
Alonso, R, Deeg, HJ, Kabath, P, et al., 2010, Ground-based near-infrared observations of the secondary eclipse of CoRoT–2 b. AJ, 139, 1481–1485 {173, 733}CrossRefGoogle Scholar
Alonso, R, Guillot, T, Mazeh, T, et al., 2009b, The secondary eclipse of the transiting exoplanet CoRoT–2 b. A&A, 501, L501–L26 {173, 733}Google Scholar
Alonso, R, Moutou, C, Endl, M, et al., 2014, Transiting exoplanets fromthe CoRoT space mission. XXVI. CoRoT–24: a transiting multi-planet system. A&A, 567, A112 {173, 734}Google Scholar
Alonso, R, Rappaport, S, Deeg, HJ, et al., 2016, Grey transits of WD 1145+017 over the visible band. A&A, 589, L6 {418}Google Scholar
Alonso-Floriano, FJ, Morales, JC, Caballero, JA, et al., 2015, CARMENES input cata-logue of M dwarfs. I. Low-resolution spectroscopy with CAFOS. A&A, 577, A128 {57}Google Scholar
Alp, D, Demory, BO, 2018, Refraction in exoplanet atmospheres: photometric signatures, implications for transmission spectroscopy, and search in Kepler data. A&A, 609, A90 {223}Google Scholar
Alsubai, K, Mislis, D, Tsvetanov, ZI, et al., 2017, Qatar exoplanet survey: Qatar–3 b, Qatar–4 b, and Qatar–5 b. AJ, 153, 200 {750}CrossRefGoogle Scholar
Alsubai, K, Tsvetanov, ZI, Latham, DW, et al., 2018, Qatar exoplanet survey: Qatar–6 b, a grazing transiting hot Jupiter. AJ, 155, 52 {223, 750}CrossRefGoogle Scholar
Alsubai, KA, Parley, NR, Bramich, DM, et al., 2011, Qatar–1 b: a hot Jupiter orbiting a metal-rich K dwarf star. MNRAS, 417, 709–716 {168, 750}CrossRefGoogle Scholar
Alsubai, KA, Parley, NR, Bramich, DM, et al., 2013, The Qatar exoplanet survey. Acta Astronomica, 63, 465–480 {168}Google Scholar
Alvarado-Gómez, JD, Hussain, GAJ, Cohen, O, et al., 2016a, Simulating the environment around planet-hosting stars. I. Coronal structure. A&A, 588, A28 {722}Google Scholar
Alvarado-Gómez, JD, Hussain, GAJ, Cohen, O, et al., 2016b, Simulating the environment around planet-hosting stars. II. Stellar winds and inner astrospheres. A&A, 594, A95 {422, 722}Google Scholar
Alvarado-Montes, JA, Zuluaga, JI, Sucerquia, M, 2017, The effect of close-in giant planets’ evolution on tidal-induced migration of exomoons. MNRAS, 471, 3019–3027 {276}CrossRefGoogle Scholar
Alvarez, LW, Alvarez, W, Asaro, F, et al., 1980, Extraterrestrial cause for the Cretaceous-Tertiary (K–T) extinction. Science, 208, 1095–1108 {671}CrossRefGoogle Scholar
Alves, AJ, Michtchenko, TA, Tadeu dos Santos, M, 2016, Dynamics of the 3:1 planetary mean-motion resonance: an application to the HD 60532 b-c planetary system. Cel.Mech. Dyn. Astron., 124, 311–334 {70, 720}CrossRefGoogle Scholar
Alves, S, do Nascimento, JD, deMedeiros, JR, 2010, On the rotational behaviour of parent stars of extrasolar planets. MNRAS, 408, 1770–1777 {382, 386, 387}CrossRefGoogle Scholar
Alves de Oliveira, C, Moraux, E, Bouvier, J, et al., 2012, Spectroscopy of new brown dwarf members of ρ Oph and an updated initial mass function. A&A, 539, A151 {434}Google Scholar
Alves de Oliveira, C, Moraux, E, Bouvier, J, et al., 2013, Spectroscopy of brown dwarf candidates in IC 348 and the determination of its substellar IMF down to planetary masses. A&A, 549, A123 {434}Google Scholar
Amara, A, Quanz, SP, 2012, PYNPOINT: an image processing package for finding exo-planets. MNRAS, 427, 948–955 {340}CrossRefGoogle Scholar
Amara, A, Quanz, SP, Akeret, J, 2015, PynPoint code for exoplanet imaging. Astronomy and Computing, 10, 107–115 {340}CrossRefGoogle Scholar
Amaro-Seoane, P, Glaschke, P, Spurzem, R, 2014, Hybrid methods in planetesimal dynamics: formation of protoplanetary systems and the mill condition. MNRAS, 445, 3755–3769 {470}CrossRefGoogle Scholar
Amelin, Y, 2006, The prospect of high-precision Pb isotopic dating of meteorites. Me-teor. Plan. Sci., 41, 7–17 {652}Google Scholar
Amelin, Y, Krot, A, 2007, Pb isotopic age of the Allende chondrules. Meteor. Plan. Sci., 42, 1321–1335 {652}Google Scholar
Amelin, Y, Krot, AN, Hutcheon, ID, et al., 2002, Lead isotopic ages of chondrules and calcium-aluminum-rich inclusions. Science, 297, 1678–1683 {652}CrossRefGoogle ScholarPubMed
Ammler-von Eiff, M, Santos, NC, Sousa, SG, et al., 2009, A homogeneous spectroscopic analysis of host stars of transiting planets. A&A, 507, 523–530 {390}Google Scholar
Ammons, SM, Robinson, SE, Strader, J, et al., 2006, The N2K consortium. IV. New temperatures and metallicities for more than 100 000 FGK dwarfs. ApJ, 638, 1004-1017 {54, 379, 388}CrossRefGoogle Scholar
Amundsen, DS, Baraffe, I, Tremblin, P, et al., 2014, Accuracy tests of radiation schemes used in hot Jupiter global circulation models. A&A, 564, A59 {591}Google Scholar
Amundsen, DS, Mayne, NJ, Baraffe, I, et al., 2016, The UK Meteorological Office global circulation model with a sophisticated radiation scheme applied to the hot Jupiter HD 209458 b. A&A, 595, A36 {593, 732}Google Scholar
An, JH, Albrow, MD, Beaulieu, J, et al., 2002, First microlens mass measurement: PLANET photometry of EROS–BLG–2000–5. ApJ, 572, 521–539 {133, 134, 140}CrossRefGoogle Scholar
An, JH, Evans, NW, Kerins, E, et al., 2004, The anomaly in the candidate microlensing event PA–99–N2. ApJ, 601, 845–857 {137}CrossRefGoogle Scholar
Ananthakrishnan, S, 1995, The GiantMeterwave Radio Telescope (GMRT). Journal of Astrophysics and Astronomy Supplement, 16, 427–435 {426}Google Scholar
Anders, E, Grevesse, N, 1989, Abundances of the elements: meteoritic and solar. Geochim. Cosmochim. Acta, 53, 197–214 {401, 564, 651, 652}CrossRefGoogle Scholar
Andersen, DR, Stoesz, J, Morris, S, et al., 2006, Performance modeling of a wide-field ground-layer adaptive optics system. PASP, 118, 1574–1590 {332}CrossRefGoogle Scholar
Andersen, J, 1991, Accurate masses and radii of normal stars. A&A Rev., 3, 91–126 {379}Google Scholar
Andersen, J, 1999, Proceedings of the Twenty-third General Assembly. Transactions of the International Astronomical Union, Series B, 23 {376}Google Scholar
Andersen, JM, Korhonen, H, 2015, Stellar activity as noise in exoplanet detection. II. Application toMdwarfs.MNRAS, 448, 3053–3069 {36}CrossRefGoogle Scholar
Andersen, M, Meyer, MR, Robberto, M, et al., 2011, The low-mass initial mass function in the Orion nebula cluster based on HST–NICMOS III imaging. A&A, 534, A10 {446}Google Scholar
Anderson, DR, Barros, SCC, Boisse, I, et al., 2011a, WASP–40 b: independent discovery of the 0.6MJ transiting exoplanet HAT–P–27 b. PASP, 123, 555–560 {11, 163, 224, 737}CrossRefGoogle Scholar
Anderson, DR, Brown, DJA, Collier Cameron, A, et al., 2014a, Six newly-discovered hot Jupiters transiting F/G stars: WASP–87 b,WASP–108 b,WASP–109 b,WASP–110 b, WASP–111 b andWASP–112 b [unpublished]. ArXiv e-prints {253, 756}
Anderson, DR, Collier Cameron, A, Delrez, L, et al., 2014b, Three newly discovered sub-Jupiter-mass planets: WASP–69 b andWASP–84 b transit active K dwarfs and WASP–70A b transits the evolved primary of a G4+K3 binary. MNRAS, 445, 1114-1129 {756}CrossRefGoogle Scholar
Anderson, DR, Collier Cameron, A, Delrez, L, et al., 2017a, The discoveries of WASP–91 b, WASP–105 b and WASP–107 b: two warm Jupiters and a planet in the transition region between ice giants and gas giants. A&A, 604, A110 {756}Google Scholar
Anderson, DR, Collier Cameron, A, Gillon, M, et al., 2011b, Spin–orbit measurements and refined parameters for the exoplanet systems WASP–22 and WASP–26. A&A, 534, A16 {253, 754}Google Scholar
Anderson, DR, Collier Cameron, A, Gillon, M, et al., 2012, WASP–44 b, WASP–45 b and WASP–46 b: three short-period, transiting ex-trasolar planets. MNRAS, 422, 1988–1998 {223, 755}CrossRefGoogle Scholar
Anderson, DR, Collier Cameron, A, Hellier, C, et al., 2011c, WASP–30 b: a 61MJ brown dwarf transiting a V = 12, F8 star. ApJ, 726, L19 {439, 754}CrossRefGoogle Scholar
Anderson, DR, 2011d, WASP–31 b: a low-density planet transiting a metal-poor, late-F-type dwarf star. A&A, 531, A60 {195, 754}Google Scholar
Anderson, DR, 2015a, WASP–20 b and WASP–28 b: a hot Saturn and a hot Jupiter in near-aligned orbits around solar-type stars. A&A, 575, A61 {253, 754}Google Scholar
Anderson, DR, Gillon, M, Hellier, C, et al., 2008, WASP–5 b: a dense, very hot Jupiter transiting a 12 mag southern-hemisphere star. MNRAS, 387, L4–L7 {752}CrossRefGoogle Scholar
Anderson, DR, Gillon, M, Maxted, PFL, et al., 2010a, H-band thermal emission from the 19-hr period planetWASP–19 b. A&A, 513, L513 {166, 754}Google Scholar
Anderson, DR, Hellier, C, Gillon, M, et al., 2010b, WASP–17 b: an ultra-low density planet in a probable retrograde orbit. ApJ, 709, 159–167 {166, 253, 302, 753}CrossRefGoogle Scholar
Anderson, DR, Smith, AMS, Lanotte, AA, et al., 2011e, Thermal emission at 4.5 and 8 μm of WASP–17 b, an extremely large planet in a slightly eccentric orbit. MNRAS, 416, 2108–2122 {253, 753}CrossRefGoogle Scholar
Anderson, DR, Smith, AMS, Madhusudhan, N, et al., 2013, Thermal emission at 3.6- 8μm from WASP–19 b: a hot Jupiter without a stratosphere orbiting an active star. MNRAS, 430, 3422–3431 {590, 754}CrossRefGoogle Scholar
Anderson, DR, Triaud, AHMJ, Turner, OD, et al., 2015b, The well-aligned orbit of WASP–84 b: evidence for diskmigration of a hot Jupiter. ApJ, 800, L800 {756}CrossRefGoogle Scholar
Anderson, JD, Campbell, JK, Jacobson, RA, et al., 1987, Radio science with Voyager 2 at Uranus: results on masses and densities of the planet and five principal satellites. J. Geophys. Res., 92, 14877–14883 {658}CrossRefGoogle Scholar
Anderson, JD, Nieto, MM, 2010, Astrometric solar-system anomalies. Relativity in Fundamental Astronomy: Dynamics, Reference Frames, and Data Analysis, volume 261 of IAU Symp., 189–197 {665}Google Scholar
Anderson, JD, Slade, MA, Jurgens, RF, et al., 1991, Radar and spacecraft ranging to Mercury between 1966 and 1988. Proceedings of the Astronomical Society of Australia, 9, 324 {356}CrossRefGoogle Scholar
Anderson, KR, Adams, FC, 2012, Effects of collisions with rocky planets on the properties of hot Jupiters. PASP, 124, 809–822 {304}CrossRefGoogle Scholar
Anderson, KR, Lai, D, 2017, Moderately eccentric warm Jupiters from secular interactions with exterior companions. MNRAS, 472, 3692–3705 {530}CrossRefGoogle Scholar
Anderson, KR, Lai, D, Storch, NI, 2017b, Eccentricity and spin–orbit misalignment in short-period stellar binaries as a signpost of hidden tertiary companions. MNRAS, 467, 3066–3082 {529}CrossRefGoogle Scholar
Anderson, KR, Storch, NI, Lai, D, 2016, Formation and stellar spin–orbit misalignment of hot Jupiters from Lidov–Kozai oscillations in stellar binaries. MNRAS, 456, 3671–3701 {529}CrossRefGoogle Scholar
Anderson, WW, Ahrens, TJ, 1994, An equation of state for liquid iron and implications for the Earth's core. J. Geophys. Res., 99, 4273–4284 {566}CrossRefGoogle Scholar
Andrade-Ines, E, Michtchenko, TA, 2014, Dynamical stability of terrestrial planets in the binary α Cen system. MNRAS, 444, 2167–2177 {714}CrossRefGoogle Scholar
Andrade-Ines, E, Robutel, P, 2018, Secular dynamics of multiplanetary circumbinary systems: stationary solutions and binary-planet secular resonance. Cel. Mech. Dyn. Astron., 130, 6 {550}CrossRefGoogle Scholar
André, P, Motte, F, Bacmann, A, 1999, Discovery of an extremely young accreting pro-tostar in Taurus. ApJ, 513, L57–L60 {445}CrossRefGoogle Scholar
André, P, Ward-Thompson, D, Barsony, M, 1993, Submillimeter continuum observations of ρ Oph A: the candidate protostar VLA 1623 and prestellar clumps. ApJ, 406, 122–141 {445}CrossRefGoogle Scholar
André, P, Ward-Thompson, D, Barsony, M, 2000, From prestellar cores to protostars: the initial conditions of star formation. Protostars and Planets IV, 59–96 {453}Google Scholar
André, Q, Barker, AJ,Mathis, S, 2017, Layered semi-convection and tides in giant planet interiors. I. Propagation of internal waves. A&A, 605, A117 {302, 303}Google Scholar
André, Q, Papaloizou, JCB, 2016, On the orbital evolution of a pair of giant planets in mean motion resonance. MNRAS, 461, 4406–4418 {509, 715, 720, 722}CrossRefGoogle Scholar
Andreasen, DT, Sousa, SG, Tsantaki, M, et al., 2017, SWEET-Cat update and FASMA: a new minimisation procedure for stellar parameters using high-quality spectra. A&A, 600, A69 {376}Google Scholar
Andreeshchev, A, Scalo, J, 2004, Habitability of brown dwarf planets. Bioastronomy 2002: Life Among the Stars, volume 213 of IAU Symp., 115–118 {160}Google Scholar
Andrei, AH, Smart, RL, Penna, JL, et al., 2011, Parallaxes of southern extremely cool objects. I. Targets, proper motions, and first results. AJ, 141, 54 {434}CrossRefGoogle Scholar
Andrews, SM, Czekala, I,Wilner, DJ, et al., 2010, Truncated disks in TWHya association multiple star systems. ApJ, 710, 462–469 {495}CrossRefGoogle Scholar
Andrews, SM, Rosenfeld, KA, Kraus, AL, et al., 2013, The mass dependence between protoplanetary disks and their stellar hosts. ApJ, 771, 129 {309, 484}CrossRefGoogle Scholar
Andrews, SM, Rosenfeld, KA, Wilner, DJ, et al., 2011a, A closer look at the LkCa 15 protoplanetary disk. ApJ, 742, L742 {764}CrossRefGoogle Scholar
Andrews, SM, Williams, JP, 2005, Circumstellar dust disks in Taurus–Auriga: the sub-millimeter perspective. ApJ, 631, 1134–1160 {456}CrossRefGoogle Scholar
Andrews, SM, Williams, JP, 2007, High-resolution submillimeter constraints on circumstellar disk structure. ApJ, 659, 705–728 {456}CrossRefGoogle Scholar
Andrews, SM, Wilner, DJ, Espaillat, C, et al., 2011b, Resolved images of large cavities in protoplanetary transition disks. ApJ, 732, 42 {465, 483}CrossRefGoogle Scholar
Andrews, SM, Wilner, DJ, Hughes, AM, et al., 2009, Protoplanetary disk structures in Ophiuchus. ApJ, 700, 1502–1523 {465}CrossRefGoogle Scholar
Andrews-Hanna, JC, Asmar, SW, Head, JW, et al., 2013, Ancient igneous intrusions and early expansion of theMoon revealed by GRAIL gravity gradiometry. Science, 339, 675–678 {665, 666}CrossRefGoogle ScholarPubMed
Andronova, AA, 2000, The catalogue of the nearest stellar systems: NESSY. IAU Joint Discussion, volume 13 {375}Google Scholar
Angel, JRP, 1994, Ground-based imaging of extrasolar planets using adaptive optics. Nature, 368, 203–207 {331}CrossRefGoogle Scholar
Angel, JRP, 1998, Sensitivity of nulling interferometers to extrasolar zodiacal emission. Exo-zodiacal Dust Workshop, 209–212 {353}Google Scholar
Angel, JRP, 2003a, Direct detection of terrestrial exoplanets: comparing the potential for space and ground telescopes. Earths: Darwin/TPF and the Search for Extrasolar Terrestrial Planets, volume 539 of ESA SP, 221–230 {353}Google Scholar
Angel, JRP, 2003b, Imaging extrasolar planets from the ground. Scientific Frontiers in Research on Extrasolar Planets, volume 294 of ASP Conf. Ser., 543–556 {339}Google Scholar
Angel, JRP, 2006, Feasibility of cooling the Earth with a cloud of small spacecraft near the inner Lagrange point (L1). Proc. Nat. Acad. Sci., 103, 17184–17189 {233}CrossRefGoogle ScholarPubMed
Angel, JRP, Cheng, AYS,Woolf, NJ, 1986, A space telescope for infrared spectroscopy of Earth-like planets. Nature, 322, 341–343 {351, 638, 639}CrossRefGoogle Scholar
Angel, JRP, Codona, JL, Hinz, P, et al., 2006, Exoplanet imaging with the GiantMagellan Telescope. SPIE Conf. Ser., volume 6267, 73 {346, 349}Google Scholar
Angel, JRP, Woolf, NJ, 1996, Searching for life on other planets. Scientific American, 274, 46–52 {351}CrossRefGoogle Scholar
Angel, JRP, Woolf, NJ, 1997, An imaging nulling interferometer to study extrasolar planets. ApJ, 475, 373-379 {351}CrossRefGoogle Scholar
Angelo, I, Hu, R, 2017, A case for an atmosphere on super-Earth 55 Cnc e. AJ, 154, 232 {728}CrossRefGoogle Scholar
Angelo, I, Rowe, JF, Howell, SB, et al., 2017, Kepler–1649 b: an exo-Venus in the solar neighbourhood. AJ, 153, 162 {747}CrossRefGoogle Scholar
Angerhausen, D, DeLarme, E, Morse, JA, 2015a, A comprehensive study of Kepler phase curves and secondary eclipses: temperatures and albedos of confirmed Kepler giant planets. PASP, 127, 1113–1130 {286, 300, 301, 735, 736, 738, 739, 741, 742, 745, 751}CrossRefGoogle Scholar
Angerhausen, D, Dreyer, C, Placek, B, et al., 2017, Simultaneous multicolour optical and near-IR transit photometry of GJ 1214 b with SOFIA. A&A, 608, A120 {187, 735}Google Scholar
Angerhausen, D, Krabbe, A, Iserlohe, C, 2006, Near-infrared integral-field spectroscopy of HD 209458 b. SPIE Conf. Ser., volume 6269, 152 {341}Google Scholar
Angerhausen, D, Krabbe, A, Iserlohe, C, 2009, Phase-differential NIR integral field spectroscopy of transiting Hot Jupiters. IAU Symp., volume 253, 552–555 {341}Google Scholar
Angerhausen, D, Krabbe, A, Iserlohe, C, 2010, Observing exoplanets with SOFIA. PASP, 122, 1020–1029 {187}CrossRefGoogle Scholar
Angerhausen, D, Mandushev, G,Mandell, A, et al., 2015b, First exoplanet transit observation with the Stratospheric Observatory for Infrared Astronomy (SOFIA): confirmation of Rayleigh scattering in HD 189733 b with the High-Speed Imaging Photometer for Occultations. Journal of Astronomical Telescopes, Instruments, and Systems, 1(3), 034002 {187, 609, 731}CrossRefGoogle Scholar
Anglada, G, Amado, PJ, Ortiz, JL, et al., 2017, ALMA discovery of dust belts around Prox-ima Cen. ApJ, 850, L6 {714}CrossRefGoogle Scholar
Anglada-Escudé, G, Amado, PJ, Barnes, J, et al., 2016a, A terrestrial planet candidate in a temperate orbit around Proxima Cen. Nature, 536, 437–440 {12, 59, 634, 714}CrossRefGoogle Scholar
Anglada-Escudé, G, Arriagada, P, Tuomi, M, et al., 2014, Two planets around Kapteyn's star: a cold and a temperate super-Earth orbiting the nearest halo red dwarf. MNRAS, 443, L89–L93 {59, 61, 634, 716}CrossRefGoogle Scholar
Anglada-Escudé, G, Arriagada, P, Vogt, SS, et al., 2012a, A planetary system around the nearby Mdwarf GJ 667C with at least one super-Earth in its habitable zone. ApJ, 751, L751 {717}CrossRefGoogle Scholar
Anglada-Escudé, G, Boss, AP, Weinberger, AJ, et al., 2012b, Astrometry and radial velocities of the planet host M dwarf GJ 317: new trigonometric distance, metallicity, and upper limit to the mass of GJ 317 b. ApJ, 746, 37 {90, 716}CrossRefGoogle Scholar
Anglada-Escudé, G, Butler, RP, 2012, The HARPS–TERRA project. I. Description of the algorithms, performance, and new measurements on a few remarkable stars observed by HARPS. ApJS, 200, 15 {29, 37}CrossRefGoogle Scholar
Anglada-Escudé, G, Butler, RP, Reiners, A, et al., 2013a, Surfing the photon noise: new techniques to find low-mass planets around M dwarfs. Astron. Nach., 334, 184 {48, 58, 59}CrossRefGoogle Scholar
Anglada-Escudé, G, Klioner, SA, Soffel, M, et al., 2007, Relativistic effects on imaging by a rotating optical system. A&A, 462, 371–377 {85}Google Scholar
Anglada-Escudé, G, López-Morales, M, Chambers, JE, 2010a, How eccentric orbital solutions can hide planetary systems in 2:1 resonant orbits. ApJ, 709, 168–178 {23, 77}CrossRefGoogle Scholar
Anglada-Escudé, G, Plavchan, P, Mills, S, et al., 2012c, Design and construction of absorption cells for precision radial velocities in the K band using methane iso-topologues. PASP, 124, 586–597 {32}CrossRefGoogle Scholar
Anglada-Escudé, G, Rojas-Ayala, B, Boss, AP, et al., 2013b, GJ 1214 reviewed: parallax, stellar parameters, orbital solution, and bulk properties for the super-Earth GJ 1214 b. A&A, 551, A48 {734}Google Scholar
Anglada-Escudé, G, Shkolnik, EL, Weinberger, AJ, et al., 2010b, Strong constraints to the putative planet candidate around VB 10 using Doppler spectroscopy. ApJ, 711, L711–L29 {90}CrossRefGoogle Scholar
Anglada-Escudé, G, Tuomi, M, 2012, A planetary system with gas giants and super-Earths around the nearbyMdwarf GJ 676 A: optimising data analysis techniques for the detection of multi-planetary systems. A&A, 548, A58 {21, 23, 24, 717}Google Scholar
Anglada-Escudé, G, Tuomi, M, 2015, Comment on: Stellar activity masquerading as planets in the habitable zone of theMdwarf GJ 581. Science, 347, 1080–1080 {717}CrossRefGoogle ScholarPubMed
Anglada-Escudé, G, Tuomi, M, Arriagada, P, et al., 2016b, No evidence for activity correlations in the radial velocities of Kapteyn's Star. ApJ, 830, 74 {716}CrossRefGoogle Scholar
Anglada-Escudé, G, Tuomi, M, Gerlach, E, et al., 2013c, A dynamically-packed planetary system around GJ 667C with three super-Earths in its habitable zone. A&A, 556, A126 {24, 634, 717}Google Scholar
Angulo, C, Arnould, M, Rayet, M, et al., 1999, A compilation of charged-particle induced thermonuclear reaction rates. Nuclear Physics A, 656, 3–183 {407}CrossRefGoogle Scholar
Angus, R, Aigrain, S, Foreman-Mackey, D, et al., 2015, Calibrating gyrochronology using Kepler asteroseismic targets. MNRAS, 450, 1787–1798 {309, 380, 381}
Angus, R, Foreman-Mackey, D, Johnson, JA, 2016, Systematics-insensitive periodic signal search with K2. ApJ, 818, 109 {176}CrossRefGoogle Scholar
Anic, A, Alibert, Y, Benz, W, 2007, Giant collisions involving young Jupiter. A&A, 466, 717–728 {368}Google Scholar
Annis, J, 1999, An astrophysical explanation for the ‘great silence’. J. Br. Interplanet. Soc., 52, 19–22 {647}Google Scholar
Ansdell, M, Gaidos, E, Rappaport, SA, et al., 2016a, Young dipper stars in Upper Sco and Oph observed by K2. ApJ, 816, 69 {466}CrossRefGoogle Scholar
Ansdell, M, Gaidos, E, Williams, JP, et al., 2016b, Dipper disks not inclined towards edge-on orbits. MNRAS, 462, L101–L105 {466}CrossRefGoogle Scholar
Ansdell, M, Williams, JP, Manara, CF, et al., 2017, An ALMA survey of protoplanetary disks in the σ Ori cluster. AJ, 153, 240 {446}CrossRefGoogle Scholar
Antichi, J, Dohlen, K, Gratton, RG, et al., 2009, BIGRE: a lowcross-talk integral field unit tailored for extrasolar planets imaging spectroscopy. ApJ, 695, 1042–1057 {341}CrossRefGoogle Scholar
Antoniadou, KI, Veras, D, 2016, Linking long-termplanetary N-body simulations with periodic orbits: application to white dwarf pollution. MNRAS, 463, 4108–4120 {416}CrossRefGoogle Scholar
Antoniadou, KI, Voyatzis, G, 2013, 2:1 resonant periodic orbits in three dimensional planetary systems. Cel.Mech. Dyn. Astron., 115, 161–184 {509}CrossRefGoogle Scholar
Antoniadou, KI, Voyatzis, G, 2014, Resonant periodic orbits in the exoplanetary systems. Ap&SS, 349, 657–676 {509}Google Scholar
Antoniadou, KI, Voyatzis, G, 2016, Orbital stability of coplanar two-planet exosystemswith high eccentricities. MNRAS, 461, 3822–3834 {718, 721}CrossRefGoogle Scholar
Antoniadou, KI, Voyatzis, G, 2017, Circular periodic orbits, resonance capture and inclination excitation during type II migration. Proceedings of the First Greek-AustrianWorkshop on Extra-solar Planetary Systems, 1–20 {520}Google Scholar
Antonini, F, Hamers, AS, Lithwick, Y, 2016, Dynamical constraints on the origin of hot and warm Jupiters with close friends. AJ, 152, 174 {530}CrossRefGoogle Scholar
Antonyuk, KA, Shakhovskoi, DN, Ksanfomaliti, LV, 2013, Polarimetry of the exoplanet system 51 Peg. Solar System Research, 47, 185–188 {248, 715}CrossRefGoogle Scholar
Anugu, N, Amorim, A, Gordo, P, et al., 2018, Methods for multiple-telescope beam imaging and guiding in the near-infrared. MNRAS, 476, 459–469 {91}CrossRefGoogle Scholar
Anzellini, S, Dewaele, A, Mezouar, M, et al., 2013, Melting of iron at Earth's inner core boundary based on fast X-ray diffraction. Science, 340(6131), 464–466, ISSN 0036-8075 {663}CrossRefGoogle ScholarPubMed
Aoki, W, 2014, The Subaru telescope High Dispersion Spectrograph (HDS). Astron. Nach., 335, 27 {46, 47}CrossRefGoogle Scholar
Apai, D, 2013, Protoplanetary disks and planet formation around brown dwarfs and very low-mass stars. Astron. Nach., 334, 57 {446}CrossRefGoogle Scholar
Apai, D, Connolly, HC, Lauretta, DS, 2010, Thermal processing in protoplanetary nebulae. Protoplanetary Dust: Astrophysical and Cosmochemical Perspectives, 230-262, Cambridge University Press {653}CrossRefGoogle Scholar
Apai, D, Gabor, P (eds.), 2014, Search for Life Beyond the Solar System: Exoplanets, Biosignatures and Instruments {618}
Apai, D, Janson, M, Moro-Martín, A, et al., 2008, A survey for massive giant planets in debris disks with evacuated inner cavities. ApJ, 672, 1196–1201 {62}CrossRefGoogle Scholar
Apai, D, Kasper, M, Skemer, A, et al., 2016, High-cadence, high-contrast imaging for exoplanet mapping: observations of the HR 8799 planets with VLT–SPHERE satellite-spot-corrected relative photometry. ApJ, 820, 40 {360, 365, 440, 763}CrossRefGoogle Scholar
Apai, D, Lauretta, DS, 2010, Planet formation and protoplanetary dust. Protoplanetary Dust: Astrophysical and Cosmochemical Perspectives, 1–26, Cambridge University Press {453, 456, 683}CrossRefGoogle Scholar
Apai, D, Pascucci, I, Bouwman, J, et al., 2005, The onset of planet formation in brown dwarf disks. Science, 310, 834–836 {309, 444, 446}CrossRefGoogle ScholarPubMed
Apai, D, Pascucci, I, Brandner, W, et al., 2004a, VLT–NACO polarimetric differential imaging of TW Hya: a sharp look at the closest T Tauri disk. A&A, 415, 671–676 {340, 466}Google Scholar
Apai, D, Pascucci, I, Sterzik, MF, et al., 2004b, Grain growth and dust settling in a brown dwarf disk: Gemini–T-ReCS observations of CFHT–BD–Tau 4. A&A, 426, L426–L57 {443}Google Scholar
Apai, D, Radigan, J, Buenzli, E, et al., 2013, HST spectral mapping of L/T transition brown dwarfs reveals cloud thickness variations. ApJ, 768, 121 {434, 438, 440}CrossRefGoogle Scholar
Aplin, KL, 2013, Electrifying Atmospheres: Charging, Ionisation and Lightning in the Solar System and Beyond. Springer {591}CrossRefGoogle Scholar
Applegate, JH, 1992, A mechanism for orbital period modulation in close binaries. ApJ, 385, 621–629 {114, 261}CrossRefGoogle Scholar
Applegate, JH, Douglas, MR, Gursel, Y, et al., 1986, The outer solar system for 200 million years. AJ, 92, 176–194 {677}CrossRefGoogle Scholar
Apps, K, Clubb, KI, Fischer, DA, et al., 2010, M2K. I. A Jupiter-mass planet orbiting the M3V star HIP 79431. PASP, 122, 156–161 {55, 57, 58, 725}CrossRefGoogle Scholar
Arakawa, S, Nakamoto, T, 2016, Rocky planetesimal formation via fluffy aggregates of nanograins. ApJ, 832, L19 {469}CrossRefGoogle Scholar
Arakcheev, AS, Zhilkin, AG, Kaigorodov, PV, et al., 2017, Reduction of mass loss by the hot JupiterWASP–12 b due to its magnetic field. Astronomy Reports, 61, 932–941 {753}CrossRefGoogle Scholar
Araujo, RAN, Sfair, R, Winter, OC, 2016, The rings of Chariklo under close encounters with the giant planets. ApJ, 824, 80 {691}CrossRefGoogle Scholar
Arcangeli, J, Désert, JM, Line, MR, et al., 2018, HâĂopacity and water dissociation in the day-side atmosphere of the very hot gas giant WASP–18 b. ApJ, 855, L30 {754}CrossRefGoogle Scholar
Archinal, BA, A'Hearn, MF, Bowell, E, et al., 2011, Report of the IAU Working Group on Cartographic Coordinates and Rotational Elements: 2009. Cel. Mech. Dyn. As-tron., 109, 101–135 {8}Google Scholar
Arcidiacono, C, Schreiber, L, Bregoli, G, et al., 2014, End-to-end numerical simulations of the MAORY multiconjugate adaptive optics system. Adaptive Optics Systems IV, volume 9148 of Proc. SPIE, 91486F {346}
Ardaseva, A, Rimmer, PB, Waldmann, I, et al., 2017, Lightning chemistry on Earth-like exoplanets. MNRAS, 470, 187–196 {592}CrossRefGoogle Scholar
Arentoft, T, Kjeldsen, H, Bedding, TR, et al., 2008, A multisite campaign to measure solar-like oscillations in Procyon. I. Observations, data reduction, and slow variations. ApJ, 687, 1180-1190 {36}CrossRefGoogle Scholar
Argyle, E, 1977, Chance and the origin of life. Origins of Life, 8, 287–298 {647}CrossRefGoogle ScholarPubMed
Arias, EF, Charlot, P, Feissel, M, et al., 1995, The extragalactic reference system of the International Earth Rotation Service, ICRS. A&A, 303, 604–608 {86}Google Scholar
Aristidi, E, Agabi, A, Vernin, J, et al., 2003, Antarctic site testing: first daytime seeing monitoring at Dome C. A&A, 406, L19–L22 {347}Google Scholar
Aristidi, E, Vernin, J, Fossat, E, et al., 2015, Monitoring the optical turbulence in the surface layer at Dome C, Antarctica, with sonic anemometers. MNRAS, 454, 4304-4315 {347}CrossRefGoogle Scholar
Arkani-Hamed, J, Ghods, A, 2011, Could giant impacts cripple core dynamos of small terrestrial planets? Icarus, 212, 920 {662}CrossRefGoogle Scholar
Arkhypov, OV, Khodachenko, ML, Lammer, H, et al., 2015, Short-period stellar activity cycles with Kepler photometry. ApJ, 807, 109 {411}CrossRefGoogle Scholar
Armitage, PJ, 2000, Suppression of giant planet formation in stellar clusters. A&A, 362, 968–972 {159}Google Scholar
Armitage, PJ, 2002, Magnetic activity in accretion disk boundary layers. MNRAS, 330, 895–900 {520}CrossRefGoogle Scholar
Armitage, PJ, 2003, A reduced efficiency of terrestrial planet formation following giant planet migration. ApJ, 582, L47–L50 {523}CrossRefGoogle Scholar
Armitage, PJ, 2007a, Lecture notes on the formation and early evolution of planetary systems. ArXiv Astrophysics e-prints {455, 457, 460, 474, 475, 520, 524}
Armitage, PJ, 2007b, Massive planet migration: theoretical predictions and comparison with observations. ApJ, 665, 1381–1390 {62}CrossRefGoogle Scholar
Armitage, PJ, 2011, Dynamics of protoplanetary disks. ARA&A, 49, 195–236 {454, 463}Google Scholar
Armitage, PJ, Bonnell, IA, 2002, The brown dwarf desert as a consequence of orbital migration. MNRAS, 330, L11–L14 {65, 523}CrossRefGoogle Scholar
Armitage, PJ, Eisner, JA, Simon, JB, 2016, Prompt planetesimal formation beyond the snow line. ApJ, 828, L2 {564}CrossRefGoogle Scholar
Armitage, PJ, Livio, M, Pringle, JE, 2001, Episodic accretion in magnetically layered protoplanetary disks. MNRAS, 324, 705–711 {459}CrossRefGoogle Scholar
Armitage, PJ, Rice, WKM, 2005, Planetary migration. ArXiv Astrophysics e-prints {520}
Armstrong, C, Rein, H, 2015, High-order harmonics in light curves of Kepler planets. MNRAS, 453, L98–L102 {615, 735, 739, 744}CrossRefGoogle Scholar
Armstrong, D, Martin, DV, Brown, G, et al., 2013, Placing limits on the transit timing variations of circumbinary exoplanets. MNRAS, 434, 3047–3054 {193, 739, 740}CrossRefGoogle Scholar
Armstrong, DJ, de Mooij, E, Barstow, J, et al., 2016a, Variability in the atmosphere of the hot giant planet HAT–P–7 b. Nature Astronomy, 1, 0004 {12, 616, 736}CrossRefGoogle Scholar
Armstrong, DJ, Kirk, J, Lam, KWF, et al., 2015a, K2 variable catalogue: variable stars and eclipsing binaries in K2 campaigns 1 and 0. A&A, 579, A19 {176}Google Scholar
Armstrong, DJ, Osborn, HP, Brown, DJA, et al., 2014a, On the abundance of circum-binary planets. MNRAS, 444, 1873–1883 {552, 553}CrossRefGoogle Scholar
Armstrong, DJ, Pollacco, D, Santerne, A, 2017, Transit shapes and self-organizing maps as a tool for ranking planetary candidates: application to Kepler and K2. MNRAS, 465, 2634–2642 {194}CrossRefGoogle Scholar
Armstrong, DJ, Pugh, CE, Broomhall, AM, et al., 2016b, The host stars of Kepler's habitable exoplanets: super-flares, rotation and activity. MNRAS, 455, 3110–3125 {635, 740, 741, 743, 744, 745}CrossRefGoogle Scholar
Armstrong, DJ, Santerne, A, Veras, D, et al., 2015b, One of the closest exoplanet pairs to the 3:2 mean motion resonance: K2–19 b and c. A&A, 582, A33 {176, 182, 197, 225, 506, 748}Google Scholar
Armstrong, JC, Barnes, R, Domagal-Goldman, S, et al., 2014b, Effects of extreme obliquity variations on the habitability of exoplanets. Astrobiology, 14, 277–291 {621, 631}CrossRefGoogle Scholar
Armstrong, JC, Leovy, CB, Quinn, T, 2004, A 1Gyr climate model for Mars: new orbital statistics and the importance of seasonally resolved polar processes. Icarus, 171, 255–271 {621}CrossRefGoogle Scholar
Arndt, NT, Nisbet, EG, 2012, Processes on the young Earth and the habitats of early life. Ann. Rev. Earth Plan. Sci., 40, 521–549 {637}CrossRefGoogle Scholar
Arney, G, Domagal-Goldman, SD, Meadows, VS, et al., 2016, The Pale Orange Dot: the spectrumand habitability of hazy Archean Earth. Astrobiology, 16, 873–899 {625}CrossRefGoogle Scholar
Arney, GN, Meadows, VS, Domagal-Goldman, SD, et al., 2017, Pale Orange Dots: the impact of organic haze on the habitability and detectability of Earth-like exo-planets. ApJ, 836, 49 {641, 717}CrossRefGoogle Scholar
Arnold, JR, 1979, Ice in the lunar polar regions. J. Geophys. Res., 84, 5659–5668 {666}CrossRefGoogle Scholar
Arnold, L, 2005a, On artificial transits feasibility and SETI. SF2A-2005: Semaine de l'Astrophysique Francaise, 207 {647}Google Scholar
Arnold, L, 2005b, Transit light-curve signatures of artificial objects. ApJ, 627, 534–539 {277}CrossRefGoogle Scholar
Arnold, L, 2008, Earthshine observation of vegetation and implication for life detection on other planets: a review of 2001–2006 works. Space Sci. Rev., 135, 323–333 {641}CrossRefGoogle Scholar
Arnold, L, Bréon, F, Brewer, S, 2009, The Earth as an extrasolar planet: the vegetation spectral signature today and during the last Quaternary climatic extrema. Int. J. Astrobiol., 8, 81–94 {641}CrossRefGoogle Scholar
Arnold, L, Ehrenreich, D, Vidal-Madjar, A, et al., 2014, The Earth as an extrasolar transiting planet. II. HARPS and UVES detection of water vapour, biogenic O2, and O3. A&A, 564, A58 {161}Google Scholar
Arnold, L, Gillet, S, Lardière, O, et al., 2002, A test for the search for life on extrasolar planets: looking for the terrestrial vegetation signature in the Earthshine spectrum. A&A, 392, 231–237 {351, 641}Google Scholar
Arnold, L, Schneider, J, 2004, The detectability of extrasolar planet surroundings. I. Reflected-light photometry of unresolved rings. A&A, 420, 1153–1162 {217}Google Scholar
Arras, P, Bildsten, L, 2006, Thermal structure and radius evolution of irradiated gas giant planets. ApJ, 650, 394–407 {571}CrossRefGoogle Scholar
Arras, P, Burkart, J, Quataert, E, et al., 2012, The radial velocity signature of tides raised in stars hosting exoplanets. MNRAS, 422, 1761–1766 {11, 41, 166, 167, 719, 724, 733, 734, 735, 736, 749, 750, 751, 752, 753, 754, 755, 757}CrossRefGoogle Scholar
Arras, P, Socrates, A, 2010, Thermal tides in fluid extrasolar planets. ApJ, 714, 1–12 {544}CrossRefGoogle Scholar
Arriagada, P, 2011, Chromospheric activity of southern stars from the Magellan planet search programme. ApJ, 734, 70 {420}CrossRefGoogle Scholar
Arriagada, P, Anglada-Escudé, G, Butler, RP, et al., 2013, Two planetary companions around the K7 dwarf GJ 221: a hot super-Earth and a candidate in the sub-Saturn desert range. ApJ, 771, 42 {716}CrossRefGoogle Scholar
Arriagada, P, Butler, RP, Minniti, D, et al., 2010, Five long-period extrasolar planets in eccentric orbits from the Magellan planet search programme. ApJ, 711, 1229-1235 {721, 722, 723}CrossRefGoogle Scholar
Arribas, S, Gilliland, RL, Sparks, WB, et al., 2006, Exploring the potential of integral field spectroscopy for observing extrasolar planet transits: ground-based observations of the atmospheric Na in HD 209458 b. PASP, 118, 21–36 {731}CrossRefGoogle Scholar
Arribas, S, Gilliland, RL, Sparks, WB, et al., 2007, The potential of integral field spectroscopy observing extrasolar planet transits. Science Perspectives for 3d Spectroscopy, 53–62 {341}Google Scholar
Arsenault, R, Madec, PY, Vernet, E, et al., 2017, The Adaptive Optics Facility: commissioning progress and results. TheMessenger, 168, 8–14 {332}Google Scholar
Artigau, É, Biller, BA, Wahhaj, Z, et al., 2008, NICI: combining coronagraphy, ADI, and SDI. SPIE Conf. Ser., volume 7014, 66 {340}Google Scholar
Artigau, É, Bouchard, S, Doyon, R, et al., 2009, Photometric variability of the T2.5 brown dwarf SIMP J013656.5+093347: evidence for evolving weather patterns. ApJ, 701, 1534–1539 {433, 437, 440}CrossRefGoogle Scholar
Artigau, É, Doyon, R, Lafrenière, D, et al., 2006, Discovery of the brightest T dwarf in the northern hemisphere. ApJ, 651, L57–L60 {433}CrossRefGoogle Scholar
Artigau, É, Gagné, J, Faherty, J, et al., 2015, BANYAN. VI. Discovery of a companion at the brown dwarf/planet-mass limit to a Tuc–Hor M dwarf. ApJ, 806, 254 {362, 763}CrossRefGoogle Scholar
Artymowicz, P, 1993, Disk-satellite interaction via density waves and the eccentricity evolution of bodies embedded in disks. ApJ, 419, 166–180 {522}CrossRefGoogle Scholar
Artymowicz, P, 2004a, Dynamics of gaseous disks with planets. Debris Disks and the Formation of Planets, volume 324 of ASP Conf. Ser., 39–52 {521}Google Scholar
Artymowicz, P, 2004b, Migration type III. KITP Conference: Planet Formation: Terrestrial and Extra Solar {521}
Artymowicz, P, Clampin, M, 1997, Dust around main-sequence stars: nature or nurture by the interstellar medium? ApJ, 490, 863–878 {495}CrossRefGoogle Scholar
Artymowicz, P, Clarke, CJ, Lubow, SH, et al., 1991, The effect of an external disk on the orbital elements of a central binary. ApJ, 370, L35–L38 {523}CrossRefGoogle Scholar
Artymowicz, P, Lubow, SH, 1994, Dynamics of binary-disk interaction. I. Resonances and disk gap sizes. ApJ, 421, 651–667 {518, 550}CrossRefGoogle Scholar
Artymowicz, P, Lubow, SH, 1996, Mass flow through gaps in circumbinary disks. ApJ, 467, L77–L80 {554}CrossRefGoogle Scholar
Asada, H, 2002, Perturbative approach to astrometric microlensing due to an extra-solar planet. ApJ, 573, 825–828 {138}CrossRefGoogle Scholar
Aschwanden, MJ, 2018, Self-organising systems in planetary physics: harmonic resonances of planet and moon orbits. New Astron., 58, 107–123 {510, 718, 728}CrossRefGoogle Scholar
Asghari, N, Broeg, C, Carone, L, et al., 2004, Stability of terrestrial planets in the habitable zone of GJ 777A,HD72659, GJ 614, 47UMa andHD4208. A&A, 426, 353–365 {623, 715, 716, 720}Google Scholar
Ash, ME, Shapiro, II, Smith, WB, 1967, Astronomical constants and planetary ephemerides deduced from radar and optical observations. AJ, 72, 338 {356}CrossRefGoogle Scholar
Ashton, CE, Lewis, GF, 2001, Gravitational microlensing of planets: the influence of planetary phase and caustic orientation. MNRAS, 325, 305–311 {136}CrossRefGoogle Scholar
Ashwell, JF, Jeffries, RD, Smalley, B, et al., 2005, Beryllium enhancement as evidence for accretion in a lithium-rich F dwarf. MNRAS, 363, L81–L85 {394}CrossRefGoogle Scholar
Asphaug, E, 2010, Similar-sized collisions and the diversity of planets. Chemie der Erde/Geochemistry, 70, 199–219 {664}Google Scholar
Asphaug, E, 2014, Impact origin of theMoon? Ann. Rev. Earth Plan. Sci., 42, 551–578 {664}CrossRefGoogle Scholar
Asphaug, E, Reufer, A, 2013, Late origin of the Saturn system. Icarus, 223, 544–565 {689}CrossRefGoogle Scholar
Assef, RJ, Gaudi, BS, Stanek, KZ, 2009, Detecting transits of planetary companions to giant stars. ApJ, 701, 1616–1626 {160}CrossRefGoogle Scholar
Astakhov, SA, Farrelly, D, 2004, Capture and escape in the elliptic restricted three-body problem. MNRAS, 354, 971–979 {688}CrossRefGoogle Scholar
Âström, JA, Ouchterlony, F, Linna, RP, et al., 2004, Universal dynamic fragmentation in D dimensions. Phys. Rev. Lett., 92(24), 245506 {684}CrossRefGoogle ScholarPubMed
Astudillo-Defru, N, Bonfils, X, Delfosse, X, et al., 2015, The HARPS search for southern extrasolar planets. XXXVI. Planetary systems and stellar activity of the M dwarfs GJ 3293, GJ 3341, and GJ 3543. A&A, 575, A119 {717}Google Scholar
Astudillo-Defru, N, Delfosse, X, Bonfils, X, et al., 2017a, Magnetic activity in the HARPS M dwarf sample: the rotation-activity relationship for very low-mass stars through R’(HK). A&A, 600, A13 {37}Google Scholar
Astudillo-Defru, N, Díaz, RF, Bonfils, X, et al., 2017b, The HARPS search for southern extra-solar planets. XLII. A system of Earth-mass planets around the nearby Mdwarf YZ Cet. A&A, 605, L605 {66, 715}Google Scholar
Astudillo-Defru, N, Forveille, T, Bonfils, X, et al., 2017c, The HARPS search for southern extrasolar planets. XLI. A dozen planets around the M dwarfs GJ 3138, GJ 3323, GJ 273, GJ 628, and GJ 3293. A&A, 602, A88 {716, 717}Google Scholar
Astudillo-Defru, N, Rojo, P, 2013, Ground-based detection of calcium and possibly scandium and hydrogen in the atmosphere of HD 209458 b. A&A, 557, A56 {610, 732}Google Scholar
Atkinson, D, Baranec, C, Ziegler, C, et al., 2017, Probability of the physical association of 104 blended companions to Kepler Objects of Interest using visible and near-infrared adaptive optics photometry. AJ, 153, 25 {361}CrossRefGoogle Scholar
Atobe, K, Ida, S, 2007, Obliquity evolution of extrasolar terrestrial planets. Icarus, 188, 1–17 {681, 689}CrossRefGoogle Scholar
Atobe, K, Ida, S, Ito, T, 2004, Obliquity variations of terrestrial planets in habitable zones. Icarus, 168, 223–236 {666}CrossRefGoogle Scholar
Atreya, SK, Mahaffy, PR, Niemann, HB, et al., 2003, Composition and origin of the atmosphere of Jupiter: an update, and implications for the extrasolar giant planets. Planet. Space Sci., 51, 105–112 {578, 612}CrossRefGoogle Scholar
Atreya, SK, Pollack, JB, Matthews, MS, 1989, Origin and Evolution of Planetary and Satellite Atmospheres. University of Arizona Press {651}
Atreya, SK, Trainer, MG, Franz, HB, et al., 2013, Primordial argon isotope fractionation in the atmosphere of Mars measured by the SAM instrument on Mars–Curiosity and implications for atmospheric loss. Geophys. Res. Lett., 40, 5605–5609 {683}CrossRefGoogle ScholarPubMed
Atri, D, 2017, Modelling stellar proton event-induced particle radiation dose on close-in exoplanets. MNRAS, 465, L34–L38 {428}CrossRefGoogle Scholar
Atri, D, Hariharan, B, Grießmeier, JM, 2013, Galactic cosmic ray-induced radiation dose on terrestrial exoplanets. Astrobiology, 13, 910–919 {631}CrossRefGoogle ScholarPubMed
Aubourg, E, Bareyre, P, Bréhin, S, et al., 1993, Evidence for gravitational microlensing by dark objects in the Galactic halo. Nature, 365, 623–625 {122}CrossRefGoogle Scholar
Aubry, MP, van Couvering, JA, Christie-Blick, N, et al., 2009, Terminology of geological time: establishment of a community standard. Stratigraphy, 6(2), 100–105 {7}Google Scholar
Auclair-Desrotour, P, Laskar, J, Mathis, S, 2017a, Atmospheric tides in Earth-like planets. A&A, 603, A107 {594}Google Scholar
Auclair-Desrotour, P, Laskar, J, Mathis, S, et al., 2017b, The rotation of planets hosting atmospheric tides: fromVenus to habitable super-Earths. A&A, 603, A108 {594}Google Scholar
Auclair-Desrotour, P, Le Poncin-Lafitte, C, Mathis, S, 2014, Impact of the frequency dependence of tidal Q on the evolution of planetary systems. A&A, 561, L7 {536}Google Scholar
Audit, E, González, M, Vaytet, N, et al., 2011, HERACLES: 3d hydrodynamical code to simulate astrophysical fluid flows. Astrophysics Source Code Library {462}
Augereau, JC, Nelson, RP, Lagrange, AM, et al., 2001, Dynamical modeling of large scale asymmetries in the β Pic dust disk. A&A, 370, 447–455 {495}Google Scholar
Augereau, JC, Papaloizou, JCB, 2004, Structuring the HD 141569 A circumstellar dust disk. Impact of eccentric bound stellar companions. A&A, 414, 1153–1164 {495}Google Scholar
Aumann, HH, Beichman, CA, Gillett, FC, et al., 1984, Discovery of a shell around α Lyr. ApJ, 278, L23–L27 {492}CrossRefGoogle Scholar
Aumatell, G, Wurm, G, 2011, Breaking the ice: planetesimal formation at the snow line. MNRAS, 418, L1–L5 {565}CrossRefGoogle Scholar
Auvergne, M, Bodin, P, Boisnard, L, et al., 2009, The CoRoT satellite in flight: description and performance. A&A, 506, 411–424 {171}Google Scholar
Avenhaus, H, Quanz, SP, Meyer, MR, et al., 2014a, HD 100546 multi-epoch scattered light observations. ApJ, 790, 56 {367, 466, 762}CrossRefGoogle Scholar
Avenhaus, H, Quanz, SP, Schmid, HM, et al., 2014b, Structures in the protoplanetary disk of HD 142527 seen in polarised scattered light. ApJ, 781, 87 {466}CrossRefGoogle Scholar
Avenhaus, H, Schmid, HM, Meyer, MR, 2012, The nearby population ofMdwarfs with WISE: a search for warmcircumstellar dust. A&A, 548, A105 {494}Google Scholar
Avila, G, Buzzoni, B, Casse, M, 1998, Fiber characterisation and compact scramblers at ESO. Optical Astronomical Instrumentation, volume 3355 of Proc. SPIE, 900–904 {34}Google Scholar
Avila, G, Singh, P, 2008, Optical fiber scrambling and light pipes for high accuracy radial velocities measurements. Advanced Optical andMechanical Technologies in Telescopes and Instrumentation, volume 7018 of Proc. SPIE, 70184W {34}
Awiphan, S, Kerins, E, 2013, The detectability of habitable exomoons with Kepler. MNRAS, 432, 2549–2561 {281}CrossRefGoogle Scholar
Awiphan, S, Kerins, E, Pichadee, S, et al., 2016a, Transit timing variation and transmission spectroscopy analyses of the hot Neptune GJ 3470 b. MNRAS, 463, 2574-2582 {729}CrossRefGoogle Scholar
Awiphan, S, Kerins, E, Robin, AC, 2016b, Besançon Galactic model analysis of MOA–II microlensing: evidence for a mass deficit in the inner bulge. MNRAS, 456, 1666-1680 {124}CrossRefGoogle Scholar
Ayliffe, BA, Bate, MR, 2010, Planet migration: self-gravitating radiation hydrodynamical models of protoplanets with surfaces. MNRAS, 408, 876–896 {519}CrossRefGoogle Scholar
Ayliffe, BA, Bate, MR, 2011, Migration of protoplanets with surfaces through disks with steep temperature gradients. MNRAS, 415, 576–586 {519}CrossRefGoogle Scholar
Ayliffe, BA, Bate, MR, 2012, The growth and hydrodynamic collapse of a protoplanet envelope. MNRAS, 427, 2597–2612 {482, 484}CrossRefGoogle Scholar
Ayliffe, BA, Laibe, G, Price, DJ, et al., 2012, On the accumulation of planetesimals near disk gaps created by protoplanets. MNRAS, 423, 1450–1462 {467}CrossRefGoogle Scholar
Baba, N, Murakami, N, 2003, A method to image extrasolar planets with polarised light. PASP, 115, 1363–1366 {246}CrossRefGoogle Scholar
Babcock, HW, 1953, The possibility of compensating astronomical seeing. PASP, 65, 229–236 {331}CrossRefGoogle Scholar
Babcock, HW, 1961, The topology of the Sun's magnetic field and the 22-year cycle. ApJ, 133, 572 {650}CrossRefGoogle Scholar
Bastürk, Ö, Dall, TH, Collet, R, et al., 2011, Bisectors of the HARPS cross-correlation function: the dependence on stellar atmospheric parameters. A&A, 535, A17 {40}Google Scholar
Bastürk, Ö, Hinse, TC, Özavcı, I, et al., 2014, High precision defocused observations of planetary transits. Contributions of the Astronomical Observatory Skalnate Pleso, 43, 402–407 {189}Google Scholar
Bacciotti, F, Whelan, ET, Alcalá, JM, et al., 2011, The first X-shooter observations of jets from young stars. ApJ, 737, L26 {444, 445}CrossRefGoogle Scholar
Bachelet, E, Fouqué, P, Han, C, et al., 2012a, A brown dwarf orbiting anMdwarf: MOA-2009–BLG–411L. A&A, 547, A55 {144}Google Scholar
Bachelet, E, Norbury, M, Bozza, V, et al., 2017, pyLIMA: an open-source package for microlensing modeling. I. Presentation of the software and analysis of single-lens models. AJ, 154, 203 {131}CrossRefGoogle Scholar
Bachelet, E, Shin, IG, Han, C, et al., 2012b, MOA–2010–BLG–477L b: constraining the mass of a microlensing planet from microlensing parallax, orbital motion, and detection of blended light. ApJ, 754, 73 {141, 145, 147, 759}CrossRefGoogle Scholar
Backer, DC, 1993, A pulsar timing tutorial and NRAO Green Bank observations of PSR B1257+12. Planets Around Pulsars, volume 36 of ASP Conf. Ser., 11–18 {108}Google Scholar
Backer, DC, Foster, RS, Sallmen, S, 1993, A second companion of the millisecond pulsar PSR B1620–26. Nature, 365, 817–819 {108}CrossRefGoogle Scholar
Backhaus, U, Bauer, S, Beuermann, K, et al., 2012, The quest for companions to post-common-envelope binaries. I. Searching a sample of stars from the CSS and SDSS. A&A, 538, A84 {113}Google Scholar
Backman, D, Marengo, M, Stapelfeldt, K, et al., 2009, ε Eri's planetary debris disk: structure and dynamics based on Spitzer and Caltech submillimeter observatory observations. ApJ, 690, 1522–1538 {715}CrossRefGoogle Scholar
Backus, PR, 2002, Project Phoenix: SETI observations from 1200–1750MHz with the upgraded Arecibo Telescope. Single-Dish Radio Astronomy: Techniques and Applications, volume 278 of ASP Conf. Ser., 525–527 {644}Google Scholar
Bacon, R, Adam, G, Baranne, A, et al., 1995, 3d spectrography at high spatial resolution. I. Concept and realisation of the integral field spectrograph TIGER. A&AS, 113, 347 {341}Google Scholar
Bada, JL, Bigham, C, Miller, SL, 1994, Impact melting of frozen oceans on the early Earth: implications for the origin of life. society of photo, 91, 1248–1250 {673}Google ScholarPubMed
Badescu, V, 2011, Free-floating planets as potential seats for aqueous and non-aqueous life. Icarus, 216, 485–491 {448}CrossRefGoogle Scholar
Badman, SV, Branduardi-Raymont, G, Galand, M, et al., 2015, Auroral processes at the giant planets: energy deposition, emission mechanisms, morphology and spectra. Space Sci. Rev., 187, 99–179 {426}CrossRefGoogle Scholar
Badnell, NR, Bautista, MA, Butler, K, et al., 2005, Updated opacities from the Opacity Project. MNRAS, 360, 458–464 {570}CrossRefGoogle Scholar
Bae, J, Hartmann, L, Zhu, Z, et al., 2013, The long-term evolution of photoevaporating protoplanetary disks. ApJ, 774, 57 {462}CrossRefGoogle Scholar
Bae, J, Nelson, RP, Hartmann, L, 2016a, The spiral wave instability induced by a giant planet. I. Particle stirring in the inner regions of protoplanetary disks. ApJ, 833, 126 {467}CrossRefGoogle Scholar
Bae, J, Zhu, Z, Hartmann, L, 2016b, Planetary signatures in the HD 135344B (SAO 206462) disk: a spiral armpassing through vortex? ApJ, 819, 134 {466}CrossRefGoogle Scholar
Bae, J, Zhu, Z, Hartmann, L, 2017, On the formation of multiple concentric rings and gaps in protoplanetary disks. ApJ, 850, 201 {467}CrossRefGoogle Scholar
Bagrov, AV, 2006, Russian projects of space missions for astrometry. IAU Special Session, 1 {100}Google Scholar
Bahcall, JN, 1986, Star counts and Galactic structure. ARA&A, 24, 577–611 {380}Google Scholar
Bahcall, JN, 1999, BSGMODEL: the Bahcall–Soneira Galaxy model. Astrophysics Source Code Library {380}
Bahcall, JN, Pinsonneault, MH, Wasserburg, GJ, 1995, Solar models with helium and heavy-element diffusion. Reviews ofModern Physics, 67, 781–808 {652}Google Scholar
Bahcall, JN, Soneira, RM, 1980, Star counts as an indicator of Galactic structure and quasar evolution. ApJ, 238, L17–L20 {380}CrossRefGoogle Scholar
Bai, XN, 2011, Magnetorotational-instability-driven accretion in protoplanetary disks. ApJ, 739, 50 {461}CrossRefGoogle Scholar
Bai, XN, 2015, Hall effect controlled gas dynamics in protoplanetary disks. II. Full 3d simulations toward the outer disk. ApJ, 798, 84 {461}CrossRefGoogle Scholar
Bai, XN, 2016, Towards a global evolutionary model of protoplanetary disks. ApJ, 821, 80 {461}CrossRefGoogle Scholar
Bai, XN, Goodman, J, 2009, Heat and dust in active layers of protostellar disks. ApJ, 701, 737–755 {459}CrossRefGoogle Scholar
Bai, XN, Stone, JM, 2010a, Dynamics of solids in the midplane of protoplanetary disks: implications for planetesimal formation. ApJ, 722, 1437–1459 {458}CrossRefGoogle Scholar
Bai, XN, Stone, JM, 2010b, Effect of radial pressure gradient in protoplanetary disks on planetesimal formation. ApJ, 722, L722–L223 {458}CrossRefGoogle Scholar
Bai, XN, Stone, JM, 2013, Wind-driven accretion in protoplanetary disks. I. Suppression of the mag-netorotational instability and launching of the magnetocentrifugal wind. ApJ, 769, 76 {461}CrossRefGoogle Scholar
Bai, XN, Ye, J, Goodman, J, et al., 2016, Magneto-thermal disk winds from protoplanet-ary disks. ApJ, 818, 152 {461}CrossRefGoogle Scholar
Bailer-Jones, CAL, 2009, The evidence for and against astronomical impacts on climate change andmass extinctions: a review. Int. J. Astrobiol., 8, 213–219 {654}CrossRefGoogle Scholar
Bailer-Jones, CAL, 2011, Bayesian time series analysis of terrestrial impact cratering. MNRAS, 416, 1163–1180 {654, 655, 671}CrossRefGoogle Scholar
Bailer-Jones, CAL, 2015, Close encounters of the stellar kind. A&A, 575, A35 {655}Google Scholar
Bailer-Jones, CAL, 2018, The completeness-corrected rate of stellar encounters with the Sun from the first Gaia data release. A&A, 609, A8 {655}Google Scholar
Bailer-Jones, CAL, Feng, F, 2013, Evidence for periodicities in the extinction record? Response to Melott & Bambach [unpublished]. ArXiv e-prints {654}
Bailer-Jones, CAL, Mundt, R, 2001, Variability in ultra cool dwarfs: evidence for the evolution of surface features. A&A, 367, 218–235 {439, 440, 444}Google Scholar
Bailes, M, 1996, Millisecond pulsar surveys. IAU Colloq. 160: Pulsars: Problems and Progress, volume 105 of ASP Conf. Ser., 3–10 {105}Google Scholar
Bailes, M, Bates, SD, Bhalerao, V, et al., 2011, Transformation of a star into a planet in a millisecond pulsar binary. Science, 333, 1717–1718 {105, 108}CrossRefGoogle Scholar
Bailes, M, Lyne, AG, Shemar, SL, 1991, A planet orbiting the neutron star PSR B1829–10. Nature, 352, 311–313 {109}CrossRefGoogle Scholar
Bailes, M, Lyne, AG, Shemar, SL, 1993, Limits on pulsar planetary systems from the Jodrell Bank timimg database. Planets Around Pulsars, volume 36 of ASP Conf. Ser., 19–30 {109}Google Scholar
Bailey, E, Batygin, K, Brown, ME, 2016, Solar obliquity induced by Planet Nine. AJ, 152, 126 {654}CrossRefGoogle Scholar
Bailey, J, 2000, Circular polarisation and the origin of biomolecular homochirality. Bioastronomy 99, volume 213 of ASP Conf. Ser., 349–355 {625}Google Scholar
Bailey, J, 2004, Extraterrestrial chirality. Bioastronomy 2002: Life Among the Stars, volume 213 of IAU Symp., 139–144 {625}Google Scholar
Bailey, J, 2007, Rainbows, polarisation, and the search for habitable planets. Astrobiology, 7, 320–332 {641}CrossRefGoogle Scholar
Bailey, J, 2014, The Dawes Review 3: the atmospheres of exoplanets and brown dwarfs. Publ. Astron. Soc. Australia, 31, e043 {607, 614}CrossRefGoogle Scholar
Bailey, J, Butler, RP, Tinney, CG, et al., 2009, A Jupiter-like planet orbiting the nearbyM dwarf GJ 832. ApJ, 690, 743–747 {59, 717}CrossRefGoogle Scholar
Bailey, J, Kedziora-Chudczer, L, 2012, Modelling the spectra of planets, brown dwarfs and stars using VSTAR. MNRAS, 419, 1913–1929 {606}CrossRefGoogle Scholar
Bailey, J, Lucas, PW, Hough, JH, 2010, The linear polarisation of nearby bright stars measured at the parts per million level. MNRAS, 405, 2570–2578 {245, 247}Google Scholar
Bailey, JI, White, RJ, Blake, CH, et al., 2012, Precise infrared radial velocities from Keck-NIRSPEC and the search for young planets. ApJ, 749, 16 {56, 61}CrossRefGoogle Scholar
Bailey, RL, Helling, C, Hodosán, G, et al., 2014a, Ionisation in atmospheres of brown dwarfs and extrasolar planets. VI. Properties of large-scale discharge events. ApJ, 784, 43 {591}CrossRefGoogle Scholar
Bailey, V, Meshkat, T, Reiter, M, et al., 2014b, HD 106906 b: a planetary-mass companion outside a massive debris disk. ApJ, 780, L780 {362, 763}Google Scholar
Baillié, K, Charnoz, S, 2014, Time evolution of a viscous protoplanetary disk with a free geometry: toward a more self-consistent picture. ApJ, 786, 35 {455}CrossRefGoogle Scholar
Baillié, K, Charnoz, S, Pantin, E, 2015, Time evolution of snow regions and planet traps in an evolving protoplanetary disk. A&A, 577, A65 {565}Google Scholar
Baillié, K, Charnoz, S, Pantin, E, 2016, Trapping planets in an evolving protoplanetary disk: preferred time, locations, and planet mass. A&A, 590, A60 {521}Google Scholar
Baillié, K, Colwell, JE, Esposito, LW, et al., 2013, Meter-sized moonlet population in Saturn's C ring and Cassini division. AJ, 145, 171 {690}CrossRefGoogle Scholar
Baines, EK, Armstrong, JT, 2012, Confirming fundamental properties of the exoplanet host star † Eri using the Navy Optical Interferometer. ApJ, 744, 138 {378, 715}Google Scholar
Baines, EK, Armstrong, JT, van Belle, GT, 2013, Navy Precision Optical Interferometer (NPOI) observations of the exoplanet host κ CrB and their implications for the star and planet masses and ages. ApJ, 771, L17 {378, 715}CrossRefGoogle Scholar
Baines, EK, McAlister, HA, ten Brummelaar, TA, et al., 2008, CHARA array measurements of the angular diameters of exoplanet host stars. ApJ, 680, 728–733 {183, 378, 379}CrossRefGoogle Scholar
Baines, EK, McAlister, HA, ten Brummelaar, TA, et al., 2009, Eleven exoplanet host star angular diameters from the Chara array. ApJ, 701, 154–162 {378}CrossRefGoogle Scholar
Baines, EK, McAlister, HA, ten Brummelaar, TA, et al., 2010, Ruling out possible secondary stars to exoplanet hosts using the CHARA array. AJ, 140, 167–176 {348}CrossRefGoogle Scholar
Baines, EK, McAlister, HA, ten Brummelaar, TA, et al., 2011, Fundamental parameters of the exoplanet host K giant star ¶ Dra from the CHARA array. ApJ, 743, 130 {348, 725}Google Scholar
Baines, EK, van Belle, GT, ten Brummelaar, TA, et al., 2007, Direct measurement of the radius and density of the transiting exoplanet HD 189733 b with the CHARA array. ApJ, 661, L195–L198 {183, 609, 730}CrossRefGoogle Scholar
Baines, EK, White, RJ, Huber, D, et al., 2012, The CHARA array angular diameter of HR 8799 favours planetary masses for its imaged companions. ApJ, 761, 57 {763}CrossRefGoogle Scholar
Baker, J, Bizzarro, M, Wittig, N, et al., 2005, Early planetesimal melting from an age of 4.5662Gyr for differentiated meteorites. Nature, 436, 1127–1131 {470}CrossRefGoogle ScholarPubMed
Baker, RML, 2017, High-frequency gravitational wave research and application to exoplanet studies. Space Science and Technology, 23, 47–63 {646}Google Scholar
Bakos, , 2018, The HATNet and HATSouth exoplanet surveys. ArXiv e-prints {162}
Bakos, , Afonso, C, Henning, T, et al., 2009a, HAT-South: a global network of southern hemisphere automated telescopes to detect transiting exoplanets. IAU Symp., volume 253, 354–357 {162}Google Scholar
Bakos, , Csubry, Z, Penev, K, et al., 2013, HATSouth: a global network of fully automated identical wide-field telescopes. PASP, 125, 154–182 {155, 162, 163, 191}CrossRefGoogle Scholar
Bakos, , Hartman, JD, Bhatti, W, et al., 2015a, HAT–P–54 b: a hot Jupiter transiting a 0.6M⊙ star in Field 0 of the K2mission. AJ, 149, 149 {737}CrossRefGoogle Scholar
Bakos, , Hartman, JD, Torres, G, et al., 2011a, HAT–P–20 b -HAT–P–23 b: four massive transiting extrasolar planets. ApJ, 742, 116 {231, 736}CrossRefGoogle Scholar
Bakos, , Hartman, JD, Torres, G, et al., 2011b, Planets from the HATNet project. EPJWeb Conf., volume 11, 1002 {162}Google Scholar
Bakos, , Hartman, JD, Torres, G, et al., 2012, HAT–P–34 b -HAT–P–37 b: four transiting planets more massive than Jupiter orbiting moderately bright stars. AJ, 144, 19 {737}CrossRefGoogle Scholar
Bakos, , Hartman, JD, Torres, G, et al., 2016, HAT–P–47 b and HAT–P–48 b: two low density sub-Saturn-mass transiting planets on the edge of the period–mass desert. ArXiv e-prints {737}
Bakos, , Howard, AW, Noyes, RW, et al., 2009b, HAT–P–13 b,c: a transiting hot Jupiter with a massive outer companion on an eccentric orbit. ApJ, 707, 446–456 {10, 163, 304, 736}CrossRefGoogle Scholar
Bakos, , Knutson, H, Pont, F, et al., 2006a, Refined parameters of the planet orbiting HD 189733. ApJ, 650, 1160–1171 {729}CrossRefGoogle Scholar
Bakos, , Kovács, G, Torres, G, et al., 2007a, HD 147506 b: a supermassive planet in an eccentric orbit transiting a bright star. ApJ, 670, 826–832 {163, 292, 735}CrossRefGoogle Scholar
Bakos, , Lázár, J, Papp, I, et al., 2002, System description and first light curves of the Hungarian Automated Telescope, an autonomous observatory for variability search. PASP, 114, 974–987 {162}CrossRefGoogle Scholar
Bakos, , Noyes, RW, Kovács, G, et al., 2004, Wide-field millimagnitude photometry with the HAT: a tool for extrasolar planet detection. PASP, 116, 266–277 {162}CrossRefGoogle Scholar
Bakos, , 2007b, HAT–P–1 b: a large-radius, low-density exoplanet transiting one member of a stellar binary. ApJ, 656, 552–559 {10, 163, 302, 735}CrossRefGoogle Scholar
Bakos, , Pál, A, Latham, DW, et al., 2006b, A stellar companion in the HD 189733 system with a known transiting extrasolar planet. ApJ, 641, L641–L60 {608, 729}CrossRefGoogle Scholar
Bakos, , Pál, A, Torres, G, et al., 2009c, HAT–P–10 b: a light and moderately hot Jupiter transiting a K dwarf. ApJ, 696, 1950–1955 {752}CrossRefGoogle Scholar
Bakos, , Penev, K, Bayliss, D, et al., 2015b, HATS–7 b: a hot super Neptune transiting a quiet K dwarf star. ApJ, 813, 111 {737}CrossRefGoogle Scholar
Bakos, , Shporer, A, Pál, A, et al., 2007c, HAT–P–5 b: a Jupiter-like hot Jupiter transiting a bright star. ApJ, 671, L671–L176 {735}CrossRefGoogle Scholar
Bakos, , Torres, G, Pál, A, et al., 2010, HAT–P–11 b: a super-Neptune planet transiting a bright K star in the Kepler field. ApJ, 710, 1724–1745 {156, 163, 190, 500, 736}CrossRefGoogle Scholar
Balaji, B, Croll, B, Levine, AM, et al., 2015, Tracking the stellar longitudes of star spots in short-period Kepler binaries. MNRAS, 448, 429–444 {212}CrossRefGoogle Scholar
Balan, ST, Lahav, O, 2009, EXOFIT: orbital parameters of extrasolar planets from radial velocities. MNRAS, 394, 1936–1944 {23, 24, 25}CrossRefGoogle Scholar
Balan, ST, Lahav, O, 2011, EXOFIT: Bayesian estimation of orbital parameters of extrasolar planets. ASP Conf. Ser., volume 450, 147 {25, 722}Google Scholar
Baland, RM, Ysebood, M, Van Hoolst, T, 2016, The obliquity of Enceladus. Icarus, 268, 12–31 {678, 689}CrossRefGoogle Scholar
Balashov, YV, 1991, Resource Letter AP–1: The anthropic principle. Am. J. Phys., 59, 1069–1076 {632}CrossRefGoogle Scholar
Balbus, SA, 2006, Fluid dynamics: spinning disks in the lab. Nature, 444, 281–283 {457}CrossRefGoogle Scholar
Balbus, SA, 2014, Dynamical, biological and anthropic consequences of equal lunar and solar angular radii. Phil. Trans. Soc. London A, 470, 20140263–20140263 {666, 667}Google Scholar
Balbus, SA, Hawley, JF, 1991, A powerful local shear instability in weakly magnetised disks. I. Linear analysis. ApJ, 376, 214–233 {459}CrossRefGoogle Scholar
Balbus, SA, Hawley, JF, 1998, Instability, turbulence, and enhanced transport in accretion disks. Reviews of Modern Physics, 70, 1–53 {459}CrossRefGoogle Scholar
Balbus, SA, Hawley, JF, 2006, An exact, three-dimensional, time-dependent wave solution in local Keple-rian flow. ApJ, 652, 1020–1027 {457}CrossRefGoogle Scholar
Balbus, SA, Hawley, JF, Stone, JM, 1996, Nonlinear stability, hydrodynamical turbulence, and transport in disks. ApJ, 467, 76–86 {457}CrossRefGoogle Scholar
Baldwin, JE, Tubbs, RN, Cox, GC, et al., 2001a, Diffraction-limited 800mm imaging with the 2.56-m Nordic Optical Telescope. A&A, 368, L368–L4 {333}Google Scholar
Baldwin, MP, Gray, LJ, Dunkerton, TJ, et al., 2001b, The quasi-biennial oscillation. Reviews of Geophysics, 39, 179–229 {596}CrossRefGoogle Scholar
Baldwin, RB, Wilhelms, DE, 1992, Historical review of a long-overlooked paper by R. A. Daly concerning the origin and early history of theMoon. J. Geophys. Res., 97, 3837–3843 {664}CrossRefGoogle Scholar
Baliunas, SL, Donahue, RA, Soon, WH, et al., 1995, Chromospheric variations in main-sequence stars. ApJ, 438, 269–287 {38}CrossRefGoogle Scholar
Baliunas, SL, Henry, GW, Donahue, RA, et al., 1997, Properties of Sun-like stars with planets: 55 Cnc, τ Boo, and ν And. ApJ, 474, L119 {713, 728}CrossRefGoogle Scholar
Ball, WT, Unruh, YC, Krivova, NA, et al., 2012, Reconstruction of total solar irradiance 1974–2009. A&A, 541, A27 {656}Google Scholar
Ballard, S, Chaplin, WJ, Charbonneau, D, et al., 2014, Kepler–93 b: a terrestrial world measured to within 120 km, and a test case for a new Spitzer observing mode. ApJ, 790, 12 {312, 742}CrossRefGoogle Scholar
Ballard, S, Charbonneau, D, A'Hearn, MF, et al., 2008, Preliminary results from the NASA EPOXI mission. AAS Abstracts, volume 40, 01.02 {184}Google Scholar
Ballard, S, Charbonneau, D, A'Hearn, MF, et al., 2009, Preliminary results on HAT–P–4, TrES–3, XO–2, and GJ 436 from the NASA EPOXI mission. IAU Symp., volume 253, 470–473 {184}Google Scholar
Ballard, S, Charbonneau, D, Deming, D, et al., 2010a, A search for a sub-Earth-sized companion to GJ 436 and calibrating warm Spitzer–IRAC. PASP, 122, 1341–1352 {728}CrossRefGoogle Scholar
Ballard, S, Charbonneau, D, Fressin, F, et al., 2013, Exoplanet characterisation by proxy: a transiting 2.15R⊕ planet near the habitable zone of the late K dwarf Kepler–61. ApJ, 773, 98 {741}CrossRefGoogle Scholar
Ballard, S, Christiansen, JL, Charbonneau, D, et al., 2010b, A search for additional planets in the NASA EPOXI observations of GJ 436. ApJ, 716, 1047–1059 {184, 213, 728}CrossRefGoogle Scholar
Ballard, S, Christiansen, JL, Charbonneau, D, 2011a, A search for additional planets in five of the exoplanetary systems studied by the NASA EPOXI mission. ApJ, 732, 41 {184, 735, 751}CrossRefGoogle Scholar
Ballard, S, Fabrycky, DC, Fressin, F, et al., 2011b, The Kepler–19 system: a transiting 2.2R⊕ planet and a second planet detected via transit timing variations. ApJ, 743, 200 {272, 739}CrossRefGoogle Scholar
Ballard, S, Johnson, JA, 2016, The Kepler dichotomy among the M dwarfs: half of systems contain five or more coplanar planets. ApJ, 816, 66 {290, 325}CrossRefGoogle Scholar
Ballering, NP, Rieke, GH, Su, KYL, et al., 2017, What sets the radial locations of warm debris disks? ApJ, 845, 120 {497}CrossRefGoogle Scholar
Ballering, NP, Su, KYL, Rieke, GH, et al., 2016, A comprehensive dust model applied to the resolved β Pic debris disk from optical to radio wavelengths. ApJ, 823, 108 {762}CrossRefGoogle Scholar
Ballerini, P, Micela, G, Lanza, AF, et al., 2012, Multiwavelength flux variations induced by stellar magnetic activity: effects on planetary transits. A&A, 539, A140 {188}Google Scholar
Ballester, GE, Ben-Jaffel, L, 2015, Re-visit of HST far ultraviolet observations of the hot-Jupiter system HD 209458: no Si III detection and the need for COS transit observations. ApJ, 804, 116 {610, 732}CrossRefGoogle Scholar
Ballester, GE, Sing, DK, Herbert, F, 2007, The signature of hot hydrogen in the atmosphere of the extrasolar planet HD 209458 b. Nature, 445, 511–514 {610, 731}CrossRefGoogle Scholar
Ballesteros, FJ, Arnalte-Mur, P, Fernandez-Soto, A, et al., 2018, KIC–8462852: will the Trojans return in 2021? MNRAS, 473, L21–L25 {232, 747}CrossRefGoogle Scholar
Ballot, J, Barban, C, van't Veer-Menneret, C, 2011a, Visibilities and bolometric corrections for stellar oscillation modes observed by Kepler. A&A, 531, A124 {409}Google Scholar
Ballot, J, García, RA, Lambert, P, 2006, Rotation speed and stellar axis inclination from pmodes: how CoRoT would see other suns. MNRAS, 369, 1281–1286 {385}CrossRefGoogle Scholar
Ballot, J, Gizon, L, Samadi, R, et al., 2011b, Accurate p-modemeasurements of the G0V metal-rich CoRoT target HD 52265. A&A, 530, A97 {411, 720}Google Scholar
Bally, J, Scoville, NZ, 1982, Structure and evolution of molecular clouds near HII regions. II. The disk constrained HII region, S106. ApJ, 255, 497–509 {462}CrossRefGoogle Scholar
Balog, Z, Kiss, LL, Vinkó, J, et al., 2009, Spitzer–IRAC-MIPS survey of NGC 2451A/B: debris disks at 50–80Myr. ApJ, 698, 1989–2013 {497}CrossRefGoogle Scholar
Balona, LA, 2012, Kepler observations of flaring in A–F type stars. MNRAS, 423, 3420-3429 {427}CrossRefGoogle Scholar
Balona, LA, 2014, Possible planets around A stars. MNRAS, 441, 3543–3549 {311}CrossRefGoogle Scholar
Balona, LA, Cunha, MS, Kurtz, DW, et al., 2011, Kepler observations of rapidly oscillating Ap, – Scuti and Doradus pulsations in Ap stars. MNRAS, 410, 517–524 {411}CrossRefGoogle Scholar
Balona, LA, Švanda, M, Karlický, M, 2016, Differential rotation, flares and coronae in A toMstars. MNRAS, 463, 1740–1750 {427}CrossRefGoogle Scholar
Baltz, EA, Gondolo, P, 2001, Binary events and extragalactic planets in pixel micro-lensing. ApJ, 559, 41–52 {137}CrossRefGoogle Scholar
Baluev, RV, 2008a, Assessing the statistical significance of periodogram peaks. MNRAS, 385, 1279–1285 {21}CrossRefGoogle Scholar
Baluev, RV, 2008b, Optimal strategies of radial velocity observations in planet search surveys. MNRAS, 389, 1375–1382 {27}CrossRefGoogle Scholar
Baluev, RV, 2008c, Resonances of low orders in the planetary system of HD 37124. Cel. Mech. Dyn. Astron., 102, 297–325 {719}CrossRefGoogle Scholar
Baluev, RV, 2010, Optimal planning of radial velocity observations for multi-planet extrasolar systems. EAS Pub. Ser., volume 42, 97–104 {27}CrossRefGoogle Scholar
Baluev, RV, 2011, Orbital structure of the GJ 876 extrasolar planetary system based on the latest Keck and HARPS radial velocity data. Cel.Mech. Dyn. Astron., 111, 235–266 {717}CrossRefGoogle Scholar
Baluev, RV, 2012, Distinguishing between a true period and its alias, and other tasks ofmodel discrimination. MNRAS, 422, 2372–2385 {39, 717, 720, 722, 728}CrossRefGoogle Scholar
Baluev, RV, 2013a, Detecting multiple periodicities in observational data with the multi-frequency periodogram. I. Analytic assessment of the statistical significance. MNRAS, 436, 807–818 {21}CrossRefGoogle Scholar
Baluev, RV, 2013b, Detecting multiple periodicities in observational data with the multifre-quency periodogram. II. FrequencyDecomposer, a parallelised time-series analysis algorithm. Astronomy and Computing, 3, 50–57 {24}Google Scholar
Baluev, RV, 2013c, Detecting non-sinusoidal periodicities in observational data: the von Mises periodogram for variable stars and exoplanetary transits. MNRAS, 431, 1167–1179 {196}CrossRefGoogle Scholar
Baluev, RV, 2013d, PlanetPack: a radial-velocity time-series analysis tool facilitating exo-planets detection, characterisation, and dynamical simulations. Astronomy and Computing, 2, 18–26 {24}CrossRefGoogle Scholar
Baluev, RV, 2013e, PlanetPack: radial-velocity time-series analysis tool. Astrophysics Source Code Library {24}
Baluev, RV, 2013f, The impact of red noise in radial velocity planet searches: only three planets orbiting GJ 581? MNRAS, 429, 2052–2068 {717}CrossRefGoogle Scholar
Baluev, RV, 2014, PlanetPack software tool for exoplanets detection: coming new features. Complex Planetary Systems, volume 310 of IAU Symp., 84–85 {24}Google Scholar
Baluev, RV, 2015a, Enhanced models for stellar Doppler noise reveal hints of a 13-year activity cycle of 55 Cnc. MNRAS, 446, 1493–1511 {728}CrossRefGoogle Scholar
Baluev, RV, 2015b, Keplerian periodogram for Doppler exoplanet detection: optimised computation and analytic significance thresholds. MNRAS, 446, 1478–1492 {24}CrossRefGoogle Scholar
Baluev, RV, Beaugé, C, 2014, Possible solution to the riddle of HD 82943 multi-planet system: the three-planet resonance 1:2:5? MNRAS, 439, 673–689 {70, 721}CrossRefGoogle Scholar
Baluev, RV, Shaidulin, VS, 2015, Analytic models of the Rossiter–McLaughlin effect for arbitrary eclipser/star size ratios and arbitrary multiline stellar spectra. MNRAS, 454, 4379–4399 {731}CrossRefGoogle Scholar
Baluev, RV, Sokov, EN, Shaidulin, VS, et al., 2015, Benchmarking the power of amateur observatories for TTV exoplanets detection. MNRAS, 450, 3101–3113 {729, 731, 733, 738, 750, 751, 752, 755, 757}CrossRefGoogle Scholar
Bambach, RK, 2006, Phanerozoic biodiversitymass extinctions. Ann. Rev. Earth Plan. Sci., 34, 127–155 {651}CrossRefGoogle Scholar
Ban, M, Kerins, E, Robin, AC, 2016, The microlensing rate and distribution of free-floating planets towards the Galactic bulge. A&A, 595, A53 {130}Google Scholar
Bancelin, D, Pilat-Lohinger, E, Eggl, S, et al., 2015, Asteroid flux towards circumprimary habitable zones in binary star systems. I. Statistical overview. A&A, 581, A46 {550}Google Scholar
Banit, M, Ruderman, MA, Shaham, J, et al., 1993, Formation of planets around pulsars. ApJ, 415, 779–796 {107}CrossRefGoogle Scholar
Bannister, MT, Kavelaars, JJ, Petit, JM, et al., 2016, The Outer Solar System Origins Survey. I. Design and first-quarter discoveries. AJ, 152, 70 {684}CrossRefGoogle Scholar
Bannister, MT, Schwamb, ME, Fraser, WC, et al., 2017, Col-OSSOS: colours of the interstellar planetesimal Oumuamua. ApJ, 851, L38 {693}CrossRefGoogle Scholar
Banyal, RK, Reiners, A, 2017, A dual cavity Fabry–Perot device for high precision Doppler measurements in astronomy. Journal of Astronomical Instrumentation, 6, 1750001-25420 {33}CrossRefGoogle Scholar
Banzatti, A, Pinilla, P, Ricci, L, et al., 2015, Direct imaging of the water snow line at the time of planet formation using two ALMA continuum bands. ApJ, 815, L15 {565}CrossRefGoogle Scholar
Baptista, R, Catalán, MS, Costa, L, 2000, Eclipse studies of the dwarf nova EX Dra. MNRAS, 316, 529–539 {114}CrossRefGoogle Scholar
Bar-Nun, A, Kleinfeld, I, Ganor, E, 1988, Shape and optical properties of aerosols formed by photolysis of acetylene, ethylene, and hydrogen cyanide. J. Geo-phys. Res., 93, 8383–8387 {589}CrossRefGoogle Scholar
Baraffe, I, Alibert, Y, Chabrier, G, et al., 2006, Birth and fate of hot-Neptune planets. A&A, 450, 1221–1229 {602}Google Scholar
Baraffe, I, Chabrier, G, 2010, Effect of episodic accretion on the structure and the lithium depletion of low-mass stars and planet-hosting stars. A&A, 521, A44 {402}Google Scholar
Baraffe, I, Chabrier, G, Barman, T, 2008, Structure and evolution of super-Earth to super-Jupiter exoplanets. I. Heavy element enrichment in the interior. A&A, 482, 315–332 {292, 296, 302, 485}Google Scholar
Baraffe, I, Chabrier, G, Barman, T, 2010, The physical properties of extrasolar planets. Rep. Prog. Phys., 73(1), 016901 {302}CrossRefGoogle Scholar
Baraffe, I, Chabrier, G, Barman, TS, et al., 2003, Evolutionary models for cool brown dwarfs and extrasolar giant planets: the case of HD 209458. A&A, 402, 701–712 {302, 358, 430, 569, 571, 579, 731}Google Scholar
Baraffe, I, Chabrier, G, Barman, TS, et al., 2005, Hot-Jupiters and hot-Neptunes: a common origin? A&A, 436, L47–L51 {302, 602}Google Scholar
Baraffe, I, Chabrier, G, Fortney, J, et al., 2014, Planetary internal structures. Protostars and Planets VI, 763–786 {572}Google Scholar
Baraffe, I, Homeier, D, Allard, F, et al., 2015, New evolutionarymodels for pre-main sequence and main sequence low-mass stars down to the hydrogen-burning limit. A&A, 577, A42 {364}Google Scholar
Baraffe, I, Selsis, F, Chabrier, G, et al., 2004, The effect of evaporation on the evolution of close-in giant planets. A&A, 419, L13–L16 {293, 602, 731}Google Scholar
Baran, AS, 2013, Spurious frequencies in the Kepler short cadence data. Acta Astro-nomica, 63, 203–224 {190}Google Scholar
Baran, AS, Koen, C, Pokrzywka, B, 2015a, A detection threshold in the amplitude spectra calculated from Kepler data obtained during K2 mission. MNRAS, 448, L448-L19 {176}CrossRefGoogle Scholar
Baran, AS, Zola, S, Blokesz, A, et al., 2015b, Detection of a planet in the sdB + M dwarf binary system 2MJ1938+4603. A&A, 577, A146 {105, 116, 117, 746}Google Scholar
Baranec, C, Ziegler, C, Law, NM, et al., 2016, Robo–AO Kepler Planetary Candidate Survey. II. Adaptive optics imaging of 969 Kepler exoplanet candidate host stars. AJ, 152, 18 {197, 361}CrossRefGoogle Scholar
Baranne, A, Mayor, M, Poncet, JL, 1979, CORAVEL: a new tool for radial velocity measurements. Vistas in Astronomy, 23, 279–316 {29}CrossRefGoogle Scholar
Baranne, A, Queloz, D, Mayor, M, et al., 1996, ELODIE: a spectrograph for accurate radial velocity measurements. A&AS, 119, 373–390 {28, 29, 32, 34, 35, 37, 45, 46}Google Scholar
Barber, SD, Belardi, C, Kilic, M, et al., 2016, Remnant planetary systems around bright white dwarfs. MNRAS, 459, 1415–1421 {416}CrossRefGoogle Scholar
Barber, SD, Patterson, AJ, Kilic, M, et al., 2012, The frequency of debris disks at white dwarfs. ApJ, 760, 26 {418}CrossRefGoogle Scholar
Barbieri, M, Alonso, R, Desidera, S, et al., 2009, Characterisation of the HD 17156 planetary system. A&A, 503, 601–612 {729}Google Scholar
Barbieri, M, Alonso, R, Laughlin, G, et al., 2007, HD 17156 b: a transiting planet with a 21.2-day period and an eccentric orbit. A&A, 476, L13–L16 {10, 158, 170, 729}Google Scholar
Barbieri, M, Gratton, RG, 2002, Galactic orbits of stars with planets. A&A, 384, 879–883 {375}Google Scholar
Barbieri, M, Marzari, F, Scholl, H, 2002, Formation of terrestrial planets in close binary systems: the case of α Cen A. A&A, 396, 219–224 {550, 714}Google Scholar
Barclay, T, Burke, CJ, Howell, SB, et al., 2013a, A super-Earth-sized planet orbiting near the habitable zone around a Sun-like star. ApJ, 768, 101 {12, 196, 742}CrossRefGoogle Scholar
Barclay, T, Endl, M, Huber, D, et al., 2015a, Radial velocity observations and light curve noise modeling confirm that Kepler–91 b is a giant planet orbiting a giant star. ApJ, 800, 46 {742}CrossRefGoogle Scholar
Barclay, T, Huber, D, Rowe, JF, et al., 2012, Photometrically derived masses and radii of the planet and star in the TrES–2 system. ApJ, 761, 53 {167, 238, 242, 751}CrossRefGoogle Scholar
Barclay, T, Quintana, EV, Adams, FC, et al., 2015b, The five planets in the Kepler–296 binary system all orbit the primary: a statistical and analytical analysis. ApJ, 809, 7 {744}CrossRefGoogle Scholar
Barclay, T, Quintana, EV, Raymond, SN, et al., 2017, The demographics of rocky free-floating planets and their detectability by WFIRST. ApJ, 841, 86 {143}CrossRefGoogle Scholar
Barclay, T, Rowe, JF, Lissauer, JJ, et al., 2013b, A sub-Mercury-sized exoplanet. Nature, 494, 452–454 {12, 179, 740}CrossRefGoogle Scholar
Barden, SC, Ramsey, LW, Truax, RJ, 1981, Evaluation of some fiber optical waveguides for astronomical instrumentation. PASP, 93, 154–162 {34}CrossRefGoogle Scholar
Barge, P, Baglin, A, Auvergne, M, et al., 2008, Transiting exoplanets from the CoRoT space mission. I. CoRoT–1 b: a low-density short-period planet around a G0V star. A&A, 482, L17–L20 {10, 302, 733}Google Scholar
Barge, P, Ricci, L, Carilli, CL, et al., 2017, Gaps and rings carved by vortices in proto-planetary dust. A&A, 605, A122 {467}Google Scholar
Barge, P, Sommeria, J, 1995, Did planet formation begin inside persistent gaseous vor-tices? A&A, 295, L1–L4 {461, 462}Google Scholar
Barker, AJ, 2011, Three-dimensional simulations of internal wave breaking and the fate of planets around solar-type stars. MNRAS, 414, 1365–1378 {542}CrossRefGoogle Scholar
Barker, AJ, 2016a, Non-linear tides in a homogeneous rotating planet or star: global simulations of the elliptical instability. MNRAS, 459, 939–956 {542}Google Scholar
Barker, AJ, 2016b, On turbulence driven by axial precession and tidal evolution of the spin-orbit angle of close-in giant planets. MNRAS, 460, 2339–2350 {542}CrossRefGoogle Scholar
Barker, AJ, Braviner, HJ, Ogilvie, GI, 2016, Non-linear tides in a homogeneous rotating planet or star: global modes and elliptical instability. MNRAS, 459, 924–938 {542}Google Scholar
Barker, AJ, Lithwick, Y, 2013, Non-linear evolution of the tidal elliptical instability in gaseous planets and stars. MNRAS, 435, 3614–3626 {542}CrossRefGoogle Scholar
Barker, AJ, Ogilvie, GI, 2009, On the tidal evolution of hot Jupiters on inclined orbits. MNRAS, 395, 2268–2287 {261}CrossRefGoogle Scholar
Barker, AJ, Ogilvie, GI, 2010, On internal wave breaking and tidal dissipation near the centre of a solar-type star. MNRAS, 404, 1849–1868 {542}Google Scholar
Barker, AJ, Ogilvie, GI, 2011, Stability analysis of a tidally-excited internal gravity wave near the centre of a solar-type star. MNRAS, 417, 745–761 {542}CrossRefGoogle Scholar
Barlow, BN, Wade, RA, Liss, SE, 2012, The Rømer delay and mass ratio of the sdB+dM binary 2M J1938+4603 from Kepler eclipse timings. ApJ, 753, 101 {116, 746}CrossRefGoogle Scholar
Barman, TS, 2007, Identification of absorption features in an extrasolar planet atmosphere. ApJ, 661, L191–L194 {610, 612, 613, 731}CrossRefGoogle Scholar
Barman, TS, 2008, On the presence of water and global circulation in the transiting planet HD 189733 b. ApJ, 676, L61–L64 {609, 613, 730}CrossRefGoogle Scholar
Barman, TS, Hauschildt, PH, Allard, F, 2001, Irradiated planets. ApJ, 556, 885–895 {302}CrossRefGoogle Scholar
Barman, TS, Hauschildt, PH, Allard, F, 2005, Phase-dependent properties of extrasolar planet atmospheres. ApJ, 632, 1132–1139 {285, 591, 615}CrossRefGoogle Scholar
Barman, TS, Hauschildt, PH, Schweitzer, A, et al., 2002, Non-LTE effects of Na I in the atmosphere of HD 209458 b. ApJ, 569, L51–L54 {731}CrossRefGoogle Scholar
Barman, TS, Konopacky, QM, Macintosh, B, et al., 2015, Simultaneous detection of H2O, CH4, and CO in the atmosphere of exoplanet HR 8799 b. ApJ, 804, 61 {570, 642, 763}CrossRefGoogle Scholar
Barman, TS, Macintosh, B, Konopacky, QM, et al., 2011a, Clouds and chemistry in the atmosphere of extrasolar planet HR 8799 b. ApJ, 733, 65 {436, 438, 588, 763}CrossRefGoogle Scholar
Barman, TS, Macintosh, B, Konopacky, QM, et al., 2011b, The young planet-mass object 2M J1207 b: a cool, cloudy, and methane-poor atmosphere. ApJ, 735, L735 {438, 763}CrossRefGoogle Scholar
Barnes, JR, Barman, TS, Jones, HRA, et al., 2008a, HD 179949 b: a close orbiting extra-solar giant planet with a stratosphere? MNRAS, 390, 1258–1266 {723}CrossRefGoogle Scholar
Barnes, JR, Barman, TS, Jones, HRA, et al., 2010, A search for molecules in the atmosphere of HD 189733 b. MNRAS, 401, 445–454 {609, 730}CrossRefGoogle Scholar
Barnes, JR, Barman, TS, Prato, L, et al., 2007a, Limits on the 2.2-μm contrast ratio of the close-orbiting planet HD 189733 b. MNRAS, 382, 473–480 {609, 730}CrossRefGoogle Scholar
Barnes, JR, Haswell, CA, Staab, D, et al., 2016, The origin of the excess transit absorption in the HD 189733 system: planet or star? MNRAS, 462, 1012–1028 {596, 731}CrossRefGoogle Scholar
Barnes, JR, Jeffers, SV, Anglada-Escudé, G, et al., 2017, Recovering planet radial velocity signals in the presence of starspot activity in fully convective stars. MNRAS, 466, 1733–1740 {38}CrossRefGoogle Scholar
Barnes, JR, Jeffers, SV, Jones, HRA, 2011a, The effect of M dwarf star spot activity on low-mass planet detection thresholds. MNRAS, 412, 1599–1610 {37, 47}CrossRefGoogle Scholar
Barnes, JR, Jenkins, JS, Jones, HRA, et al., 2012, Red Optical Planet Survey: a new search for habitable Earths in the southern sky. MNRAS, 424, 591–604 {55, 57}CrossRefGoogle Scholar
Barnes, JR, Jenkins, JS, Jones, HRA, et al., 2014, Precision radial velocities of 15 M5-M9 dwarfs. MNRAS, 439, 3094–3113 {37}CrossRefGoogle Scholar
Barnes, JR, Leigh, CJ, Jones, HRA, et al., 2007b, Near-infrared spectroscopic search for the close orbiting planet HD 75289 b. MNRAS, 379, 1097–1107 {720}CrossRefGoogle Scholar
Barnes, JW, 2007a, Effects of orbital eccentricity on extrasolar planet transit detectability and light curves. PASP, 119, 986–993 {204, 205}CrossRefGoogle Scholar
Barnes, JW, 2009, Transit light curves of extrasolar planets orbiting rapidly rotating stars. ApJ, 705, 683–692 {216}CrossRefGoogle Scholar
Barnes, JW, Ahlers, JP, Seubert, SA, et al., 2015a, Probable spin–orbit aligned super-Earth planet candidate KOI–2138. ApJ, 808, L808 {216, 746}CrossRefGoogle Scholar
Barnes, JW, Cooper, CS, Showman, AP, et al., 2009a, Detecting the wind-driven shapes of extrasolar giant planets from transit photometry. ApJ, 706, 877–884 {220, 221}CrossRefGoogle Scholar
Barnes, JW, Fortney, JJ, 2003, Measuring the oblateness and rotation of transiting ex-trasolar giant planets. ApJ, 588, 545–556 {216, 219, 220, 228, 259, 731}CrossRefGoogle Scholar
Barnes, JW, Fortney, JJ, 2004, Transit detectability of ring systems around extrasolar giant planets. ApJ, 616, 1193–1203 {217}CrossRefGoogle Scholar
Barnes, JW, Linscott, E, Shporer, A, 2011b, Measurement of the spin–orbit misalignment of KOI–13.01 from its gravity-darkened Kepler transit light curve. ApJS, 197, 10 {216, 217, 677, 739}CrossRefGoogle Scholar
Barnes, JW, O'Brien, DP, 2002, Stability of satellites around close-in extrasolar giant planets. ApJ, 575, 1087–1093 {277, 305, 540}CrossRefGoogle Scholar
Barnes, JW, van Eyken, JC, Jackson, BK, et al., 2013a, Measurement of spin–orbit misalignment and nodal precession for the planet around pre-main-sequence star PTFO 8–8695 from gravity darkening. ApJ, 774, 53 {12, 167, 171, 260, 261, 750}CrossRefGoogle Scholar
Barnes, R, 2008, Dynamics ofmultiple planet systems. Exoplanets: Detection, Formation, Properties, Habitability, 177–208, Springer {506, 511, 512, 513}Google Scholar
Barnes, R, 2010, Planet–planet interactions. Formation and Evolution of Exoplanets, 49–70, Wiley {525}CrossRefGoogle Scholar
Barnes, R, 2015, A method to identify the boundary between rocky and gaseous exoplanets from tidal theory and transit durations. Int. J. Astrobiol., 14, 321–333 {538}CrossRefGoogle Scholar
Barnes, R, 2017, Tidal locking of habitable exoplanets. Cel.Mech. Dyn. Astron., 129, 509–536 {621}CrossRefGoogle Scholar
Barnes, R, Deitrick, R, Greenberg, R, et al., 2015b, Long-lived chaotic orbital evolution of exoplanets in mean motion resonances with mutual inclinations. ApJ, 801, 101 {720}CrossRefGoogle Scholar
Barnes, R, Gózdziewski, K, Raymond, SN, 2008b, The successful prediction of the ex-trasolar planet HD 74156 d. ApJ, 680, L680–L60 {70, 720}CrossRefGoogle Scholar
Barnes, R, Greenberg, R, 2006a, Behaviour of apsidal orientations in planetary systems. ApJ, 652, L652–L56 {506}CrossRefGoogle Scholar
Barnes, R, Greenberg, R, 2006b, Extrasolar planetary systems near a secular separatrix. ApJ, 638, 478–487 {511, 512}CrossRefGoogle Scholar
Barnes, R, Greenberg, R, 2006c, Stability limits in extrasolar planetary systems. ApJ, 647, L647–L166 {511, 526}CrossRefGoogle Scholar
Barnes, R, Greenberg, R, 2007a, Apsidal behaviour among planetary orbits: testing the planet–planet scat-teringmodel. ApJ, 659, L659–L56 {506, 525}CrossRefGoogle Scholar
Barnes, R, Greenberg, R, 2007b, Stability limits in resonant planetary systems. ApJ, 665, L665–L70 {317, 512, 514, 721, 728}CrossRefGoogle Scholar
Barnes, R, Greenberg, R, Quinn, TR, et al., 2011c, Origin and dynamics of the mutually inclined orbits of ν And c and d. ApJ, 726, 71 {93, 713}CrossRefGoogle Scholar
Barnes, R, Heller, R, 2013, Habitable planets around white and brown dwarfs: the perils of a cooling primary. Astrobiology, 13, 279–291 {625}CrossRefGoogle Scholar
Barnes, R, Jackson, B, Greenberg, R, et al., 2009b, Tidal limits to planetary habitability. ApJ, 700, L700–L33 {626}CrossRefGoogle Scholar
Barnes, R, Jackson, B, Raymond, SN, et al., 2009c, The HD 40307 planetary system: super-Earths or mini-Neptunes? ApJ, 695, 1006–1011 {719}CrossRefGoogle Scholar
Barnes, R, Meadows, VS, Evans, N, 2015c, Comparative habitability of transiting exo-planets. ApJ, 814, 91 {634}CrossRefGoogle Scholar
Barnes, R, Mullins, K, Goldblatt, C, et al., 2013b, Tidal Venuses: triggering a climate catastrophe via tidal heating. Astrobiology, 13, 225–250 {717}CrossRefGoogle Scholar
Barnes, R, Quinn, T, 2001, A statistical examination of the short-term stability of the ν And planetary system. ApJ, 550, 884–889 {69, 713}CrossRefGoogle Scholar
Barnes, R, Quinn, T, 2004, The (in)stability of planetary systems. ApJ, 611, 494–516 {317, 512, 514}CrossRefGoogle Scholar
Barnes, R, Quinn, TR, Lissauer, JJ, et al., 2009d, N-body simulations of growth from 1km planetesimals at 0.4 au. Icarus, 203, 626–643 {474}CrossRefGoogle Scholar
Barnes, R, Raymond, SN, 2004, Predicting planets in known extrasolar planetary systems. I. Test particle simulations. ApJ, 617, 569–574 {514}CrossRefGoogle Scholar
Barnes, R, Raymond, SN, Jackson, B, et al., 2008c, Tides and the evolution of planetary habitability. Astrobiology, 8, 557–568 {536, 620, 621}CrossRefGoogle Scholar
Barnes, SA, 2001, An assessment of the rotation rates of the host stars of extrasolar planets. ApJ, 561, 1095–1106 {382}CrossRefGoogle Scholar
Barnes, SA, 2003, On the rotational evolution of solar- and late-type stars, its magnetic origins, and the possibility of stellar gyrochronology. ApJ, 586, 464–479 {380}CrossRefGoogle Scholar
Barnes, SA, 2007b, Ages for illustrative field stars using gyrochronology: viability, limitations, and errors. ApJ, 669, 1167–1189 {310, 380, 383}CrossRefGoogle Scholar
Barnes, SA, Sofia, S, Pinsonneault, M, 2001, Disk locking and the presence of slow rotators among solar-type stars in young star clusters. ApJ, 548, 1071–1080 {402}CrossRefGoogle Scholar
Baross, JA, 1983, Growth of black smoker bacteria at temperatures of at least 250 C. Nature, 303, 423–426 {626}CrossRefGoogle Scholar
Barr, AC, 2016, On the origin of Earth's Moon. J. Geophys. Res. (Planets), 121, 1573-1601 {664}Google Scholar
Barr, AC, Bruck Syal, M, 2017, Formation of massive rocky exomoons by giant impact. MNRAS, 466, 4868–4874 {667}Google Scholar
Barr, AC, Canup, RM, 2010, Origin of the Ganymede-Callisto dichotomy by impacts during the Late Heavy Bombardment. Nature Geoscience, 3, 164–167 {697}CrossRefGoogle Scholar
Barrado, D, Morales-Calderón, M, Palau, A, et al., 2009, A proto brown dwarf candidate in Taurus. A&A, 508, 859–867 {445}Google Scholar
Barragán, O, Gandolfi, D, Smith, AMS, et al., 2018, K2–139 b: a low-mass warm Jupiter on a 29-d orbit transiting an active K0 V star. MNRAS, 475, 1765–1776 {749}CrossRefGoogle Scholar
Barragán, O, Grziwa, S, Gandolfi, D, et al., 2016, EPIC–211391664 b (K2–98): a 32M⊕ Neptune-size planet in a 10-d orbit transiting an F8 star. AJ, 152, 193 {196, 748}CrossRefGoogle Scholar
Barranco, JA, Marcus, PS, 2005, Three-dimensional vortices in stratified protoplanet-ary disks. ApJ, 623, 1157–1170 {461}CrossRefGoogle Scholar
Barron, N, Borysow, M, Beyerlein, K, et al., 2007, Subpixel response measurement of near-infrared detectors. PASP, 119, 466–475 {187}CrossRefGoogle Scholar
Barros, SCC, Almenara, JM, Deleuil, M, et al., 2014a, Revisiting the transits of CoRoT–7b at a lower activity level. A&A, 569, A74 {173, 734}Google Scholar
Barros, SCC, Almenara, JM, Demangeon, O, et al., 2015, Photodynamical mass determination of the multi-planetary system K2–19. MNRAS, 454, 4267–4276 {272, 748}CrossRefGoogle Scholar
Barros, SCC, Boué, G, Gibson, NP, et al., 2013, Transit timing variations in WASP–10 b induced by stellar activity. MNRAS, 430, 3032–3047 {213, 752}CrossRefGoogle Scholar
Barros, SCC, Brown, DJA, Hébrard, G, et al., 2016a, WASP–113 b and WASP–114 b, two inflated hot Jupiters with contrasting densities. A&A, 593, A113 {756}Google Scholar
Barros, SCC, Demangeon, O, Deleuil, M, 2016b, New planetary and eclipsing binary candidates from campaigns 1–6 of the K2 mission. A&A, 594, A100 {177}Google Scholar
Barros, SCC, Díaz, RF, Santerne, A, et al., 2014b, SOPHIE velocimetry of Kepler transit candidates. X. KOI–142 c: first radial velocity confirmation of a non-transiting exoplanet discovered by transit timing. A&A, 561, L561 {12, 62, 179, 270, 272, 742}Google Scholar
Barros, SCC, Faedi, F, Collier Cameron, A, et al., 2011a, WASP–38 b: a transiting exo-planet in an eccentric, 6.87-d period orbit. A&A, 525, A54 {755}Google Scholar
Barros, SCC, Gosselin, H, Lillo-Box, J, et al., 2017, Precisemasses for the transiting planetary system HD 106315 with HARPS. A&A, 608, A25 {748}Google Scholar
Barros, SCC, Pollacco, DL, Gibson, NP, et al., 2011b, A lower mass for the exoplanet WASP–21 b. MNRAS, 416, 2593–2599 {754}CrossRefGoogle Scholar
Barros, SCC, Pollacco, DL, Gibson, NP, et al., 2012, High-precision transit observations of the exoplanet WASP–13 b with the RISE instrument. MNRAS, 419, 1248–1253 {183, 753}CrossRefGoogle Scholar
Barrow, JD, Tipler, FJ, 1986, The Anthropic Cosmological Principle. Oxford University Press {515, 630, 644}Google Scholar
Barry, RK, Danchi, WC, Rajagopal, J, et al., 2008a, The Fourier–Kelvin stellar interferometer: a progress report and preliminary results from our laboratory testbed. The Power of Optical/IR Interferometry: Recent Scientific Results and Second Generation, 547–550 {353}Google Scholar
Barry, RK, Danchi, WC, Traub, W, et al., 2008b, First science with the Keck interferometer nuller: high spatial resolution N-band observations of the recurrent nova RS Oph. SPIE Conf. Ser., volume 7013, 22 {349}Google Scholar
Barshay, SS, Lewis, JS, 1978, Chemical structure of the deep atmosphere of Jupiter. Icarus, 33, 593–611 {586}CrossRefGoogle Scholar
Barstow, JK, Aigrain, S, Irwin, PGJ, et al., 2013, Constraining the atmosphere of GJ 1214 b using an optimal estimation technique. MNRAS, 434, 2616–2628 {613, 734}CrossRefGoogle Scholar
Barstow, JK, Aigrain, S, Irwin, PGJ, et al., 2014, Clouds on the hot JupiterHD189733 b: constraints fromthe reflection spectrum. ApJ, 786, 154 {730}CrossRefGoogle Scholar
Barstow, JK, Aigrain, S, Irwin, PGJ, et al., 2015, Transit spectroscopy with JWST: systematics, star spots and stitching. MNRAS, 448, 2546–2561 {181}CrossRefGoogle Scholar
Barstow, JK, Aigrain, S, Irwin, PGJ, et al., 2016, Telling twins apart: exo-Earths and Venuses with transit spectroscopy. MNRAS, 458, 2657–2666 {598}CrossRefGoogle Scholar
Barstow, JK, Aigrain, S, Irwin, PGJ, et al., 2017, A consistent retrieval analysis of 10 hot Jupiters observed in transmission. ApJ, 834, 50 {606, 731, 732, 735, 736, 752, 753, 754, 755}CrossRefGoogle Scholar
Barstow, JK, Irwin, PGJ, 2016, Habitable worlds with JWST: transit spectroscopy of the TRAPPIST–1 system? MNRAS, 461, L92–L96 {750}CrossRefGoogle Scholar
Barsukov, VL, Bazilevskii, AT, Burba, GA, et al., 1986, The geology and geomorphology of the Venus surface as revealed by the radar images obtained by Veneras 15 and 16. J. Geophys. Res., 91, D378–D398 {356}CrossRefGoogle Scholar
Bartlett, JL, Lurie, JC, Riedel, A, et al., 2017, The solar neighbourhood. 40. Parallax results from the CTIOPI 0.9 m programme: new young stars near the Sun. AJ, 154, 151 {750}CrossRefGoogle Scholar
Bartuccelli, M, Deane, J, Gentile, G, 2017, Periodic and quasi-periodic attractors for the spin-orbit evolution of Mercury with a realistic tidal torque. MNRAS, 469, 127–150 {541}CrossRefGoogle Scholar
Barucci, MA, Boehnhardt, H, Cruikshank, DP, et al., 2008a, The Solar System Beyond Neptune. University of Arizona Press {651}Google Scholar
Barucci, MA, Boehnhardt, H, Cruikshank, DP, et al., 2008b, The solar system beyond Neptune: overview and perspectives, 3–10. University of Arizona Press {509}Google Scholar
Barucci, MA, Fulchignoni, M, 2017, Major achievements of the Rosetta mission in connection with the origin of the solar system. A&A Rev., 25, 3 {473}Google Scholar
Baruteau, C, Bai, X, Mordasini, C, et al., 2016, Formation, orbital and internal evolutions of young planetary systems. Space Sci. Rev., 205, 77–124 {454}CrossRefGoogle Scholar
Baruteau, C, Crida, A, Paardekooper, SJ, et al., 2014, Planet–disk interactions and early evolution of planetary systems. Protostars and Planets VI, 667–689 {480, 523}Google Scholar
Baruteau, C, Fromang, S, Nelson, RP, et al., 2011a, Corotation torques experienced by planets embedded in weaklymagnetised turbulent disks. A&A, 533, A84 {519}Google Scholar
Baruteau, C, Lin, DNC, 2010, Protoplanetary migration in turbulent isothermal disks. ApJ, 709, 759–773 {519}CrossRefGoogle Scholar
Baruteau, C, Masset, F, 2008, On the corotation torque in a radiatively inefficient disk. ApJ, 672, 1054-1067 {518}CrossRefGoogle Scholar
Baruteau, C, Masset, F, 2013, Recent developments in planet migration theory. Lecture Notes in Physics, Springer–Verlag, volume 861, 201 {517, 518}Google Scholar
Baruteau, C, Meru, F, Paardekooper, SJ, 2011b, Rapid inward migration of planets formed by gravitational instability. MNRAS, 416, 1971–1982 {489, 519}CrossRefGoogle Scholar
Baruteau, C, Papaloizou, JCB, 2013, Disk–planets interactions and the diversity of period ratios in Kepler'smulti-planetary systems. ApJ, 778, 7 {502, 504}CrossRefGoogle Scholar
Bashi, D, Helled, R, Zucker, S, et al., 2017, Two empirical regimes of the planetary mass-radius relation. A&A, 604, A83 {298}Google Scholar
Baskin, NJ, Knutson, HA, Burrows, A, et al., 2013, Secondary eclipse photometry of the exoplanet WASP–5 b with warm Spitzer. ApJ, 773, 124 {607, 752}CrossRefGoogle Scholar
Basri, G, 2000a, The discovery of brown dwarfs. Scientific American, 282(4), 57–63 {431}CrossRefGoogle Scholar
Basri, G, 2000b, Observations of brown dwarfs. ARA&A, 38, 485–519 {431}Google Scholar
Basri, G, Brown, ME, 2006, Planetesimals to brown dwarfs: what is a planet? Ann. Rev. Earth Plan. Sci., 34, 193–216 {8, 431, 477}CrossRefGoogle Scholar
Basri, G, Mohanty, S, Allard, F, et al., 2000, An effective temperature scale for late-M and L dwarfs, from resonance sbsorption lines of Cs I and Rb I. ApJ, 538, 363–385 {436}CrossRefGoogle Scholar
Basri, G, Walkowicz, LM, Batalha, N, et al., 2010, Photometric variability in Kepler target stars. I. The Sun among stars: a first look. ApJ, 713, L155–L159 {411}CrossRefGoogle Scholar
Basri, G, Walkowicz, LM, Batalha, N, et al., 2011, Photometric variability in Kepler target stars. II. Overview of amplitude, periodicity, and rotation in first quarter data. AJ, 141, 20 {307, 382, 411}CrossRefGoogle Scholar
Basri, G, Walkowicz, LM, Reiners, A, 2013, Comparison of Kepler photometric variability with the Sun on different time scales. ApJ, 769, 37 {188}CrossRefGoogle Scholar
Bass, RW, del Popolo, A, 2005, Dynamical derivation of Bode's law. Int. J.Mod. Phys. D, 14, 153–169 {510}CrossRefGoogle Scholar
Bast, JE, Brown, JM, Herczeg, GJ, et al., 2011, Single peaked CO emission line profiles from the inner regions of protoplanetary disks. A&A, 527, A119 {467}Google Scholar
Bastian, TS, Dulk, GA, Leblanc, Y, 2000, A search for radio emission from extrasolar planets. ApJ, 545, 1058–1063 {427, 713, 714, 715, 716, 722, 728}CrossRefGoogle Scholar
Bastian, U, Hefele, H, 2005, Astrometric limits set by surface structure, binarity, micro-lensing. The 3d Universe with Gaia, volume 576 of ESA SP, 215–218 {85}Google Scholar
Bastien, FA, Stassun, KG, Basri, G, et al., 2013, An observational correlation between stellar brightness variations and surface gravity. Nature, 500, 427–430 {307}CrossRefGoogle ScholarPubMed
Bastien, FA, Stassun, KG, Pepper, J, 2014a, Larger planet radii inferred from stellar ‘flicker’ brightness variations of bright planet-host stars. ApJ, 788, L788 {308}CrossRefGoogle Scholar
Bastien, FA, Stassun, KG, Pepper, J, et al., 2014b, Radial velocity variations of photometrically quiet, chromospherically inactive Kepler stars: a link between radial velocity jitter and photometric flicker. AJ, 147, 29 {37}CrossRefGoogle Scholar
Basu, S, 2016, Global seismology of the Sun. Living Reviews in Solar Physics, 13, 2 {649}CrossRefGoogle Scholar
Basu, S, Vorobyov, EI, 2012, A hybrid scenario for the formation of brown dwarfs and very low mass stars. ApJ, 750, 30 {442}CrossRefGoogle Scholar
Batalha, NE, Kempton, EMR, Mbarek, R, 2017a, Challenges to constraining exoplanet masses via transmission spectroscopy. ApJ, 836, L836 {208}CrossRefGoogle Scholar
Batalha, NE, Line, MR, 2017, Information content analysis for selection of optimal JWST observing modes for transiting exoplanet atmospheres. AJ, 153, 151 {181}CrossRefGoogle Scholar
Batalha, NE, Mandell, A, Pontoppidan, K, et al., 2017b, PandExo: a community tool for transiting exoplanet science with JWST and HST. PASP, 129(6), 064501 {181}CrossRefGoogle Scholar
Batalha, NM, 2014, Exploring exoplanet populations with NASA's Kepler Mission. Proc. Nat. Acad. Sci., 111, 12647–12654 {289}CrossRefGoogle ScholarPubMed
Batalha, NM, Borucki, WJ, Bryson, ST, et al., 2011, Kepler's first rocky planet: Kepler-10 b. ApJ, 729, 27 {11, 179, 197, 236, 288, 295, 300, 322, 575, 738}CrossRefGoogle Scholar
Batalha, NM, Borucki, WJ, Koch, DG, et al., 2010a, Selection, prioritisation, and characteristics of Kepler target stars. ApJ, 713, L713–L114 {174, 175}CrossRefGoogle Scholar
Batalha, NM, Rowe, JF, Bryson, ST, et al., 2013, Planetary candidates observed by Kepler. III. Analysis of the first 16 months. ApJS, 204, 24 {11, 179, 192, 196, 197, 291, 296, 305, 313, 314, 316, 317, 321, 742}CrossRefGoogle Scholar
Batalha, NM, Rowe, JF, Gilliland, RL, et al., 2010b, Pre-spectroscopic false-positive elimination of Kepler planet candidates. ApJ, 713, L713–L108 {197}CrossRefGoogle Scholar
Bate, MR, 2012, Stellar, brown dwarf and multiple star properties from a radiation hydrodynamical simulation of star cluster formation. MNRAS, 419, 3115–3146 {554}CrossRefGoogle Scholar
Bate, MR, Bonnell, IA, 2005, The origin of the initialmass function and its dependence on the mean Jeans mass in molecular clouds. MNRAS, 356, 1201–1221 {442}CrossRefGoogle Scholar
Bate, MR, Bonnell, IA, Bromm, V, 2002, The formation mechanism of brown dwarfs. MNRAS, 332, L65–L68 {442}CrossRefGoogle Scholar
Bate, MR, Lodato, G, Pringle, JE, 2010a, Chaotic star formation and the alignment of stellar rotation with disk and planetary orbital axes. MNRAS, 401, 1505–1513 {255, 531, 654}CrossRefGoogle Scholar
Bate, NF, Fluke, CJ, Barsdell, BR, et al., 2010b, Computational advances in gravitational microlensing: a comparison, of, CPU New Astron., 15, 726–734 {131}CrossRefGoogle Scholar
Batista, SFA, Fernandes, J, 2012, Lost siblings of the Sun: revisiting the FGK potential candidates. New Astron., 17, 514–519 {406}CrossRefGoogle Scholar
Batista, V, Beaulieu, JP, Gould, A, et al., 2014, MOA–2011–BLG–293L b: first micro-lensing planet possibly in the habitable zone. ApJ, 780, 54 {759}CrossRefGoogle Scholar
Batista, V, Gould, A, Dieters, S, et al., 2011, MOA–2009–BLG–387L b: a massive planet orbiting anMdwarf. A&A, 529, A102 {141, 145, 147, 759}Google Scholar
Batten, AH, 1973, Binary andMultiple Systems of Stars. Pergamon Press {17, 19}Google Scholar
Batygin, K, 2012, A primordial origin formisalignments between stellar spin axes and planetary orbits. Nature, 491, 418–420 {255, 311, 531, 654}CrossRefGoogle ScholarPubMed
Batygin, K, 2015, Capture of planets into mean-motion resonances and the origins of extra-solar orbital architectures. MNRAS, 451, 2589–2609 {503}CrossRefGoogle Scholar
Batygin, K, Adams, FC, 2013, Magnetic and gravitational disk–star interactions: an interdependence of PMS stellar rotation rates and spin–orbit misalignments. ApJ, 778, 169 {531}CrossRefGoogle Scholar
Batygin, K, Adams, FC, 2017, An analytic criterion for turbulent disruption of planetary resonances. AJ, 153, 120 {508}CrossRefGoogle Scholar
Batygin, K, Bodenheimer, P, Laughlin, G, 2009a, Determination of the interior structure of transiting planets in multiple-planet systems. ApJ, 704, L49–L53 {228, 259, 305}CrossRefGoogle Scholar
Batygin, K, Bodenheimer, PH, Laughlin, GP, 2016, In situ formation and dynamical evolution of hot Jupiter systems. ApJ, 829, 114 {484}CrossRefGoogle Scholar
Batygin, K, Brown, ME, 2010, Early dynamical evolution of the solar system: pinning down the initial conditions of the Nice model. ApJ, 716, 1323–1331 {697, 699}CrossRefGoogle Scholar
Batygin, K, Brown, ME, 2016a, Evidence for a distant giant planet in the solar system. AJ, 151, 22 {686, 687}CrossRefGoogle Scholar
Batygin, K, Brown, ME, 2016b, Generation of highly inclined trans-Neptunian objects by PlanetNine. ApJ, 833, L833 {687}CrossRefGoogle Scholar
Batygin, K, Brown, ME, Betts, H, 2012, Instability-driven dynamical evolution model of a primordially five-planet outer solar system. ApJ, 744, L3 {696}CrossRefGoogle Scholar
Batygin, K, Brown, ME, Fraser, WC, 2011a, Retention of a primordial cold classical Kuiper belt in an instability-driven model of solar system formation. ApJ, 738, 13 {699}CrossRefGoogle Scholar
Batygin, K, Deck, KM, Holman, MJ, 2015a, Dynamical evolution of multi-resonant systems: the case of GJ 876. AJ, 149, 167 {717}CrossRefGoogle Scholar
Batygin, K, Laughlin, G, 2011, Resolving the sini degeneracy in low-mass multi-planet systems. ApJ, 730, 95 {44, 716}CrossRefGoogle Scholar
Batygin, K, Laughlin, G, 2015, Jupiter's decisive role in the inner solar system's early evolution. Proc. Nat. Acad. Sci., 112, 4214–4217 {501}CrossRefGoogle ScholarPubMed
Batygin, K, Laughlin, G, Meschiari, S, et al., 2009b, A quasi-stationary solution to GJ 436 b's eccentricity. ApJ, 699, 23–30 {728}CrossRefGoogle Scholar
Batygin, K, Morbidelli, A, 2011, Onset of secular chaos in planetary systems: period doubling and strange attractors. Cel.Mech. Dyn. Astron., 111, 219–233 {515}CrossRefGoogle Scholar
Batygin, K, Morbidelli, A, 2013a, Analytical treatment of planetary resonances. A&A, 556, A28 {509}Google Scholar
Batygin, K, Morbidelli, A, 2013b, Dissipative divergence of resonant orbits. AJ, 145, 1 {320, 502, 504, 508}CrossRefGoogle Scholar
Batygin, K, Morbidelli, A, 2017, Dynamical evolution induced by Planet Nine. AJ, 154, 229 {687}CrossRefGoogle Scholar
Batygin, K, Morbidelli, A, Holman, MJ, 2015b, Chaotic disintegration of the inner solar system. ApJ, 799, 120 {515}CrossRefGoogle Scholar
Batygin, K, Morbidelli, A, Tsiganis, K, 2011b, Formation and evolution of planetary systems in presence of highly-inclined stellar perturbers. A&A, 533, A7 {529}Google Scholar
Batygin, K, Stanley, S, 2014, Non-axisymmetric flows on hot Jupiters with oblique magnetic fields. ApJ, 794, 10 {591}CrossRefGoogle Scholar
Batygin, K, Stanley, S, Stevenson, DJ, 2013, Magnetically controlled circulation on hot extrasolar planets. ApJ, 776, 53 {572}CrossRefGoogle Scholar
Batygin, K, Stevenson, DJ, 2010, Inflating hot Jupiters with Ohmic dissipation. ApJ, 714, L238–L243 {303, 730, 732, 751}CrossRefGoogle Scholar
Batygin, K, Stevenson, DJ, 2013, Mass–radius relationships for very low mass gaseous planets. ApJ, 769, L9 {296, 297, 603, 740}CrossRefGoogle Scholar
Batygin, K, Stevenson, DJ, Bodenheimer, PH, 2011c, Evolution ofOhmically-heated hot Jupiters. ApJ, 738, 1 {303}CrossRefGoogle Scholar
Baudino, JL, Bézard, B, Boccaletti, A, et al., 2015, Interpreting the photometry and spectroscopy of directly imaged planets: a new atmospheric model applied to β Pic b and SPHERE observations. A&A, 582, A83 {606, 762}Google Scholar
Baudoz, P, Boccaletti, A, Riaud, P, et al., 2006, Feasibility of the four-quadrant phase mask in the mid-infrared on the James Webb Space Telescope. PASP, 118, 765-773 {336, 350}CrossRefGoogle Scholar
Baudoz, P, Rabbia, Y, Gay, J, 2000, Achromatic interfero coronagraphy. I. Theoretical capabilities for ground-based observations. A&AS, 141, 319–329 {334}Google Scholar
Baudrand, J, Walker, GAH, 2001, Modal noise in high-resolution, fiber-fed spectra: a study and simple cure. PASP, 113, 851–858 {34}CrossRefGoogle Scholar
Bauer, FF, Zechmeister, M, Reiners, A, 2015, Calibrating echelle spectrographs with Fabry-Pérot etalons. A&A, 581, A117 {33}Google Scholar
Baumstark-Khan, C, Facius, R, 2002, Life under conditions of ionising radiation. As-trobiology. The Quest for the Conditions of Life, 261–284 {631}Google Scholar
Bayliss, D, Gillen, E, Eigmüller, P, et al., 2018a, NGTS–1 b: a hot Jupiter transiting an Mdwarf. MNRAS, 475, 4467–4475 {167, 223, 749}CrossRefGoogle Scholar
Bayliss, D, Hartman, JD, Bakos, , et al., 2015, HATS–8 b: a low-density transiting super-Neptune. AJ, 150, 49 {737}CrossRefGoogle Scholar
Bayliss, D, Hartman, JD, Zhou, G, et al., 2018b, HATS–36 b and 24 other transit-ing/eclipsing systems fromthe HATSouth–K2 Campaign 7 program. AJ, 155, 119 {737}CrossRefGoogle Scholar
Bayliss, D, Zhou, G, Penev, K, et al., 2013, HATS–3 b: an inflated hot Jupiter transiting an F-type star. AJ, 146, 113 {737}CrossRefGoogle Scholar
Bayliss, DDR, Sackett, PD, 2007, The Sky Mapper transit survey. Transiting Extrasolar Planets Workshop, volume 366 of ASP Conf. Ser., 320–325 {171}
Bayliss, DDR, Sackett, PD, 2011, The frequency of hot Jupiters in the Galaxy: results from the SuperLupus survey. ApJ, 743, 103 {165}CrossRefGoogle Scholar
Bayliss, DDR, Sackett, PD, Weldrake, DTF, 2009a, SuperLupus: a deep, long duration transit survey. IAU Symp., volume 253, 333–335 {165}Google Scholar
Bayliss, DDR, Weldrake, DTF, Sackett, PD, et al., 2009b, The Lupus transit survey for hot Jupiters: results and lessons. AJ, 137, 4368–4376 {165}CrossRefGoogle Scholar
Bayliss, DDR, Winn, JN, Mardling, RA, et al., 2010, Confirmation of a retrograde orbit for exoplanetWASP–17 b. ApJ, 722, L224–L227 {166, 253, 753}CrossRefGoogle Scholar
Bayo, A, Joergens, V, Liu, Y, et al., 2017, First millimeter detection of the disk around a young, isolated, planetary-mass object. ApJ, 841, L11 {444}CrossRefGoogle Scholar
Bazot, M, Bourguignon, S, Christensen-Dalsgaard, J, 2012, A Bayesian approach to the modelling of α Cen A. MNRAS, 427, 1847–1866 {714}Google Scholar
Bazot, M, Vauclair, S, 2004, Asteroseismology of exoplanets hosts stars: tests of inter-nalmetallicity. A&A, 427, 965–973 {409}Google Scholar
Bazot, M, Vauclair, S, Bouchy, F, et al., 2005, Seismic analysis of the planet-hosting star μ Ara. A&A, 440, 615–621 {409, 713}Google Scholar
Bazsó, Á, Pilat-Lohinger, E, Eggl, S, et al., 2017, Dynamics and habitability in circum-stellar planetary systems of known binary stars. MNRAS, 466, 1555–1566 {623}CrossRefGoogle Scholar
Beamín, JC, Minniti, D, Gromadzki, M, et al., 2013, One more neighbour: the first brown dwarf in the VVV survey. A&A, 557, L8 {433}Google Scholar
Beamín, JC, Minniti, D, Pullen, JB, et al., 2017, Searching for faint comoving companions to the α Cen system in the VVV survey infrared images. MNRAS, 472, 3952-3958 {714}CrossRefGoogle Scholar
Bean, JL, 2009, An analysis of the transit times of CoRoT–1 b. A&A, 506, 369–375 {269, 733}Google Scholar
Bean, JL, Abbot, DS, Kempton, EMR, 2017, A statistical comparative planetology approach to the hunt for habitable exoplanets and life beyond the solar system. ApJ, 841, L24 {635}CrossRefGoogle Scholar
Bean, JL, Benedict, GF, Charbonneau, D, et al., 2008a, A HST transit light curve for GJ 436 b. A&A, 486, 1039–1046 {269, 728}Google Scholar
Bean, JL, Benedict, GF, Endl, M, 2006, Metallicities ofMdwarf planet hosts from spectral synthesis. ApJ, 653, L65–L68 {391}CrossRefGoogle Scholar
Bean, JL, Désert, JM, Kabath, P, et al., 2011, The optical and near-infrared transmission spectrum of the super-Earth GJ 1214 b: evidence for a metal-rich atmosphere. ApJ, 743, 92 {613, 734}CrossRefGoogle Scholar
Bean, JL, Désert, JM, Seifahrt, A, et al., 2013, Ground-based transit spectroscopy of the hot-JupiterWASP–19 b in the near-infrared. ApJ, 771, 108 {754}CrossRefGoogle Scholar
Bean, JL, McArthur, BE, Benedict, GF, et al., 2007, The mass of the candidate exoplanet companion to HD 33636 from HST astrometry and high-precision radial velocities. AJ, 134, 749–758 {93}CrossRefGoogle Scholar
Bean, JL, McArthur, BE, Benedict, GF, 2008b, Detection of a third planet in theHD74156 system using the Hobby–Eberly telescope. ApJ, 672, 1202–1208 {70, 514, 720}CrossRefGoogle Scholar
Bean, JL, Miller-Ricci Kempton, E, Homeier, D, 2010a, A ground-based transmission spectrum of the super-Earth exoplanet GJ 1214 b. Nature, 468, 669–672 {613, 734}CrossRefGoogle Scholar
Bean, JL, Seifahrt, A, 2008, Observational consequences of the recently proposed super-Earth orbiting GJ 436. A&A, 487, L25–L28 {224, 728}Google Scholar
Bean, JL, Seifahrt, A, 2009, The architecture of the GJ 876 planetary system: masses and orbital copla-narity for planets b and c. A&A, 496, 249–257 {88, 92, 717}Google Scholar
Bean, JL, Seifahrt, A, Hartman, H, et al., 2010b, The CRIRES search for planets around the lowest-mass stars. I. High-precision near-infrared radial velocities with an ammonia gas cell. ApJ, 713, 410–422 {32, 46}CrossRefGoogle Scholar
Bean, JL, Seifahrt, A, Hartman, H, 2010c, The proposed giant planet orbiting VB 10 does not exist. ApJ, 711, L711–L23 {90}CrossRefGoogle Scholar
Bear, E, Kashi, A, Soker, N, 2011a, Merger-burst transients of brown dwarfs with exo-planets. MNRAS, 416, 1965–1970 {445}CrossRefGoogle Scholar
Bear, E, Soker, N, 2011a, Connecting planets around horizontal branch stars with known planets. MNRAS, 411, 1792–1802 {111}CrossRefGoogle Scholar
Bear, E, Soker, N, 2011b, Evaporation of Jupiter-like planets orbiting extreme horizontal branch stars. MNRAS, 414, 1788–1792 {111, 517}CrossRefGoogle Scholar
Bear, E, Soker, N, 2012, A tidally-destructedmassive planet as the progenitor of the two light planets around the sdB star KIC–5807616. ApJ, 749, L14 {14, 111, 161}CrossRefGoogle Scholar
Bear, E, Soker, N, 2014, First- versus second-generation planet formation in post-common-envelope binary (PCEB) planetary systems. MNRAS, 444, 1698–1704 {113}CrossRefGoogle Scholar
Bear, E, Soker, N, 2015, Planetary systems and real planetary nebulae fromplanet destruction near white dwarfs. MNRAS, 450, 4233–4239 {413}CrossRefGoogle Scholar
Bear, E, Soker, N, Harpaz, A, 2011b, Possible implications of the planet orbiting the red horizontal branch star HIP 13044. ApJ, 733, L733 {412, 724}CrossRefGoogle Scholar
Beatty, TG, Collins, KA, Fortney, J, et al., 2014, Spitzer and z’ secondary eclipse observations of the highly irradiated transiting brown dwarf KELT–1 b. ApJ, 783, 112 {607, 738}CrossRefGoogle Scholar
Beatty, TG, Gaudi, BS, 2008, Predicting the yields of photometric surveys for transiting extrasolar planets. ApJ, 686, 1302–1330 {13, 155, 291}CrossRefGoogle Scholar
Beatty, TG, Madhusudhan, N, Pogge, R, et al., 2017a, The broadband and spectrally resolved H-band eclipse of KELT–1 b and the role of surface gravity in stratospheric inversions in hot Jupiters. AJ, 154, 242 {738}CrossRefGoogle Scholar
Beatty, TG, Madhusudhan, N, Tsiaras, A, et al., 2017b, Evidence for atmospheric cold-trap processes in the non-inverted emission spectrum of Kepler–13A b using HST–WFC3. AJ, 154, 158 {739}CrossRefGoogle Scholar
Beatty, TG, Pepper, J, Siverd, RJ, et al., 2012, KELT–2A b: a hot Jupiter transiting the bright primary of a binary system. ApJ, 756, L39 {738}CrossRefGoogle Scholar
Beatty, TG, Seager, S, 2010, Transit probabilities for stars with stellar inclination constraints. ApJ, 712, 1433–1442 {205}CrossRefGoogle Scholar
Beatty, TG, Stevens, DJ, Collins, KA, et al., 2017c, Determining empirical stellar masses and radii from transits and Gaia parallaxes as illustrated by Spitzer observations of KELT–11 b. AJ, 154, 25 {738}CrossRefGoogle Scholar
Beauge, C, Aarseth, SJ, 1990, N-body simulations of planetary formation. MNRAS, 245, 30–39 {496}Google Scholar
Beaugé, C, Ferraz-Mello, S, Michtchenko, TA, 2003, Extrasolar planets in mean-motion resonance: apses alignment and asymmetric stationary solutions. ApJ, 593, 1124–1133 {506}CrossRefGoogle Scholar
Beaugé, C, Giuppone, CA, Ferraz-Mello, S, et al., 2008, Reliability of orbital fits for resonant extrasolar planetary systems: the case of HD 82943. MNRAS, 385, 2151-2160 {508, 721}CrossRefGoogle Scholar
Beaugé, C, Leiva, AM, Haghighipour, N, et al., 2010, Dynamics of planetesimals due to gas drag from an eccentric precessing disk. MNRAS, 408, 503–513 {80, 714}CrossRefGoogle Scholar
Beaugé, C, Michtchenko, TA, 2003, Modeling the high-eccentricity planetary three-body problem: application to the GJ 876 planetary system. MNRAS, 341, 760–770 {72, 717}CrossRefGoogle Scholar
Beaugé, C, Michtchenko, TA, Ferraz-Mello, S, 2006, Planetary migration and extrasolar planets in the 2:1 mean-motion resonance. MNRAS, 365, 1160–1170 {72, 506, 509, 717, 728}Google Scholar
Beaugé, C, Nesvorný, D, 2012, Multiple-planet scattering and the origin of hot Jupiters. ApJ, 751, 119 {294, 525}CrossRefGoogle Scholar
Beaugé, C, Nesvorný, D, 2013, Emerging trends in a period–radius distribution of close-in planets. ApJ, 763, 12 {294, 499}CrossRefGoogle Scholar
Beaugé, C, Sándor, Z, Érdi, B, et al., 2007, Co-orbital terrestrial planets in exoplanetary systems: a formation scenario. A&A, 463, 359–367 {76, 689}Google Scholar
Beaulieu, JP, Albrow, M, Bennett, D, et al., 2007, Hunting for frozen super-Earths via microlensing. TheMessenger, 128, 33–34 {140}Google Scholar
Beaulieu, JP, Bennett, DP, Batista, V, et al., 2010a, EUCLID: dark universe probe and microlensing planet hunter. ASP Conf. Ser., 430, 266–270 {143}Google Scholar
Beaulieu, JP, Bennett, DP, Batista, V, 2016, Revisiting the microlensing event OGLE–2012–BLG–26: a solar mass star with two cold giant planets. ApJ, 824, 83 {760}CrossRefGoogle Scholar
Beaulieu, JP, Bennett, DP, Fouqué, P, et al., 2006, Discovery of a cool planet of 5.5M⊕ through gravitationalmicrolensing. Nature, 439, 437–440 {10, 13, 141, 759}CrossRefGoogle Scholar
Beaulieu, JP, Carey, S, Ribas, I, et al., 2008, Primary transit of the planet HD 189733 b at 3.6 and 5.8μm. ApJ, 677, 1343–1347 {609, 730}CrossRefGoogle Scholar
Beaulieu, JP, Kipping, DM, Batista, V, et al., 2010b, Water in the atmosphere of HD 209458 b from 3.6-8μm IRAC photometric observations in primary transit. MNRAS, 409, 963–974 {610, 613, 732}CrossRefGoogle Scholar
Beaulieu, JP, Tinetti, G, Kipping, DM, et al., 2011, Methane in the atmosphere of the transiting hot Neptune GJ 436 b? ApJ, 731, 16 {570, 613, 728}CrossRefGoogle Scholar
Bechter, EB, Crepp, JR, Ngo, H, et al., 2014, WASP–12 b and HAT–P–8 b are members of triple star systems. ApJ, 788, 2 {307, 736, 753}CrossRefGoogle Scholar
Beck, JG, 2000, A comparison of differential solar rotation measurements. Sol. Phys., 191, 47–70 {385}CrossRefGoogle Scholar
Beck, PG, Hambleton, K, Vos, J, et al., 2014, Pulsating red giant stars in eccentric binary systems discovered from Kepler space-based photometry: a sample study and the analysis of KIC–5006817. A&A, 564, A36 {230}Google Scholar
Becker, AC, Kundurthy, P, Agol, E, et al., 2013, Observations of the WASP–2 system by the APOSTLE program. ApJ, 764, L17 {183, 751}CrossRefGoogle Scholar
Becker, JC, Adams, FC, 2016, Oscillations of relative inclination angles in compact ex-trasolar planetary systems. MNRAS, 455, 2980–2993 {325}CrossRefGoogle Scholar
Becker, JC, Adams, FC, 2017, Effects of unseen additional planetary perturbers on compact extrasolar planetary systems. MNRAS, 468, 549–563 {325, 740, 755}CrossRefGoogle Scholar
Becker, JC, Adams, FC, Khain, T, et al., 2017a, Evaluating the dynamical stability of outer solar systemobjects in the presence of Planet Nine. AJ, 154, 61 {687}CrossRefGoogle Scholar
Becker, JC, Batygin, K, 2013, Dynamical measurements of the interior structure of exo-planets. ApJ, 778, 100 {605, 736}CrossRefGoogle Scholar
Becker, JC, Vanderburg, A, Adams, FC, et al., 2015, WASP–47: a hot Jupiter system with two additional planets discovered by K2. ApJ, 812, L18 {166, 225, 270, 305, 523, 755}CrossRefGoogle Scholar
Becker, JC, Vanderburg, A, Adams, FC, 2017b, Exterior companions to hot Jupiters orbiting cool stars are coplanar. AJ, 154, 230 {529}CrossRefGoogle Scholar
Becker, TM, Colwell, JE, Esposito, LW, et al., 2016, Characterising the particle size distribution of Saturn's A ring with Cassini–UVIS occultation data. Icarus, 279, 20-35 {690}CrossRefGoogle Scholar
Beckers, JM, 1976, Reliability of sun spots as tracers of solar surface rotation. Nature, 260, 227–229 {31}CrossRefGoogle Scholar
Beckers, JM, 1993, Adaptive optics for astronomy: principles, performance, and applications. ARA&A, 31, 13–62 {331, 332}Google Scholar
Beckers, JM, 2005, Sun spots, gravitational redshift and exoplanet detection. Acta Historica As-tronomiae, 25, 285–297 {31}Google Scholar
Beckers, JM, 2007, Can variable meridional flows lead to false exoplanet detections? Astron. Nach., 328, 1084–1086 {30}CrossRefGoogle Scholar
Beckers, JM, Ulich, BL, Williams, JT, 1982, Performance of the Multiple Mirror Telescope. I. MMT, the first of the advanced technology telescopes. International Conference on Advanced Technology Optical Telescopes, volume 332 of Proc. SPIE, 2–8 {331}Google Scholar
Becklin, EE, Farihi, J, Jura, M, et al., 2005, A dusty disk around GD 362, a white dwarf with a uniquely high photospheric metal abundance. ApJ, 632, L119–L122 {415}CrossRefGoogle Scholar
Becklin, EE, Zuckerman, B, 1988, A low-temperature companion to a white dwarf star. Nature, 336, 656–658 {431}CrossRefGoogle Scholar
Beckwith, SVW, 1996, Circumstellar disks and the search for neighbouring planetary systems. Nature, 383, 139–144 {491}CrossRefGoogle ScholarPubMed
Beckwith, SVW, 2008, Detecting life-bearing extrasolar planets with space telescopes. ApJ, 684, 1404–1415 {351}CrossRefGoogle Scholar
Bedding, TR, Kjeldsen, H, Butler, RP, et al., 2004, Oscillation frequencies and mode lifetimes in α Cen A. ApJ, 614, 380–385 {408, 714}Google Scholar
Bedding, TR, Kjeldsen, H, Christensen-Dalsgaard, J, 1998, Hipparcos parallaxes for η Boo and κ1 Boo: two successes for asteroseismology. Cool Stars, Stellar Systems, and the Sun, volume 154, 741–744 {408}Google Scholar
Bedell, M, Bean, JL, Meléndez, J, et al., 2017, Kepler–11 is a solar twin: revising the masses and radii of benchmark planets via precise stellar characterisation. ApJ, 839, 94 {405, 739}CrossRefGoogle Scholar
Bedell, M, Meléndez, J, Bean, JL, et al., 2015, The solar twin planet search. II. A Jupiter twin around a solar twin. A&A, 581, A34 {12, 60, 405, 724}Google Scholar
Bednarek, W, Sitarek, J, 2013, High-energy emission from the nebula around the black widow binary system containing millisecond pulsar PST B1957+20. A&A, 550, A39 {106}Google Scholar
Bédorf, J, Gaburov, E, Portegies Zwart, S, 2012, A sparse octree gravitational N-body code that runs entirely on the GPU processor. Journal of Computational Physics, 231, 2825–2839 {513}CrossRefGoogle Scholar
Beech, M, 2011, Exploring α Cen: from planets, to a cometry cloud, and impact flares on Proxima. The Observatory, 131, 212–224 {686}Google Scholar
Beech, M, Steel, D, 1995, On the definition of the termmeteoroid. QJRAS, 36, 281–284 {682}Google Scholar
Beer, ME, King, AR, Livio, M, et al., 2004a, How special is the solar system? MNRAS, 354, 763–768 {451}CrossRefGoogle Scholar
Beer, ME, King, AR, Pringle, JE, 2004b, The planet in M4: implications for planet formation in globular clusters. MNRAS, 355, 1244–1250 {108}CrossRefGoogle Scholar
Beerer, IM, Knutson, HA, Burrows, A, et al., 2011, Secondary eclipse photometry of WASP–4 b with Spitzer. ApJ, 727, 23 {752}CrossRefGoogle Scholar
Behroozi, P, Peeples, MS, 2015, On the history and future of cosmic planet formation. MNRAS, 454, 1811–1817 {625}CrossRefGoogle Scholar
Beichman, C, Livingston, J, Werner, M, et al., 2016, Spitzer observations of exoplanets discovered with the Kepler K2Mission. ApJ, 822, 39 {747, 748}CrossRefGoogle Scholar
Beichman, CA, 1996, A Road Map for the Exploration of Neighbouring Planetary Systems (ExNPS) 96-22. Technical report, JPL {352}
Beichman, CA, 1998, Terrestrial Planet Finder: the search for life-bearing planets around other stars. SPIE Conf. Ser., volume 3350, 719–723 {352}Google Scholar
Beichman, CA, 2003, Recommended architectures for the Terrestrial Planet Finder. Hubble's Science Legacy: Future Optical/Ultraviolet Astronomy from Space, volume 291 of ASP Conf. Ser., 101–108 {352}Google Scholar
Beichman, CA, Benneke, B, Knutson, H, et al., 2014a, Observations of transiting exo-planets with JWST. PASP, 126, 1134–1173 {617}CrossRefGoogle Scholar
Beichman, CA, Bryden, G, Gautier, TN, et al., 2005a, An excess due to small grains around the nearby K0V star HD 69830: asteroid or cometary debris? ApJ, 626, 1061–1069 {77, 720}CrossRefGoogle Scholar
Beichman, CA, Bryden, G, Rieke, GH, et al., 2005b, Planets and infrared excesses: preliminary results from a Spitzer–MIPS survey of solar-type stars. ApJ, 622, 1160-1170 {402, 493, 494}CrossRefGoogle Scholar
Beichman, CA, Gelino, CR, Kirkpatrick, JD, et al., 2013, The coldest brown dwarf (or free-floating planet)? The Y dwarf WISE 1828+2650. ApJ, 764, 101 {437}CrossRefGoogle Scholar
Beichman, CA, Gelino, CR, Kirkpatrick, JD, et al., 2014b, WISE Y dwarfs as probes of the brown dwarf–exoplanet connection. ApJ, 783, 68 {434}CrossRefGoogle Scholar
Beichman, CA, Krist, JE, Trauger, JT, et al., 2010, Imaging young giant planets from ground and space. PASP, 122, 162–200 {350}CrossRefGoogle Scholar
Beichman, CA, Lisse, CM, Tanner, AM, et al., 2011, Multi-epoch observations of HD 69830: high-resolution spectroscopy and limits to variability. ApJ, 743, 85 {720}CrossRefGoogle Scholar
Beirão, P, Santos, NC, Israelian, G, et al., 2005, Abundances of Na, Mg and Al in stars with giant planets. A&A, 438, 251–256 {396, 399}Google Scholar
Beitz, E, Güttler, C, Blum, J, et al., 2011, Low-velocity collisions of cm-sized dust aggregates. ApJ, 736, 34 {458, 468}CrossRefGoogle Scholar
Béjar, VJS, Zapatero Osorio, MR, Pérez-Garrido, A, et al., 2008, Discovery of a wide companion near the deuterium-burning mass limit in the Upper Scorpius association. ApJ, 673, L185–L189 {362, 764}CrossRefGoogle Scholar
Béjar, VJS, Zapatero Osorio, MR, Rebolo, R, 1999, A search for very low mass stars and brown dwarfs in the young σ Ori cluster. ApJ, 521, 671–681 {446}CrossRefGoogle Scholar
Bekker, A, Holland, HD, Wang, P, et al., 2004, Dating the rise of atmospheric oxygen. Nature, 427, 117–120 {638}CrossRefGoogle ScholarPubMed
Béky, B, 2014, SPOTROD: semi-analytic model for transits of spotted stars. Astrophysics Source Code Library {212}
Béky, B, Bakos GÁ,Hartman, J, et al., 2011, HAT–P–27 b: a hot Jupiter transiting a G star on a 3-d orbit. ApJ, 734, 109 {163, 737}CrossRefGoogle Scholar
Béky, B, Holman, MJ, Gilliland, RL, et al., 2013, Relative photometry of HAT–P–1 b oc-cultations. AJ, 145, 166 {735}CrossRefGoogle Scholar
Béky, B, Holman, MJ, Kipping, DM, et al., 2014a, Stellar rotation-planetary orbit period commensurability in the HAT–P–11 system. ApJ, 788, 1 {163, 213, 736, 739}CrossRefGoogle Scholar
Béky, B, Kipping, DM, Holman, MJ, 2014b, SPOTROD: a semi-analytic model for transits of spotted stars. MNRAS, 442, 3686–3699 {212, 736}CrossRefGoogle Scholar
Belbruno, E, Gott JR, III, 2005, Where did the Moon come from? AJ, 129, 1724–1745 {664}CrossRefGoogle Scholar
Belbruno, E, Moro-Martín, A, Malhotra, R, et al., 2012, Chaotic exchange of solid material between planetary systems: implications for lithopanspermia. Astrobiology, 12, 754–774 {637, 638}CrossRefGoogle ScholarPubMed
Beletskii, VV, Pivovarov, ML, Starostin, EL, 1996, Regular and chaotic motions in applied dynamics of a rigid body. Chaos, 6, 155–166 {254}CrossRefGoogle ScholarPubMed
Belikov, R, Pluzhnik, E, Witteborn, FC, et al., 2012, EXCEDE technology development. I. First demonstrations of high contrast at 1.2,/D for an Explorer space telescope mission. SPIE Conf. Ser., volume 8442 {353}Google Scholar
Belkacem, K, Goupil, MJ, Dupret, MA, et al., 2011, The underlying physical meaning of the νmax- νc relation. A&A, 530, A142 {312}Google Scholar
Bell, CPM, Naylor, T, Mayne, NJ, et al., 2013, Pre-main-sequence isochrones. II. Revising star and planet formation time-scales. MNRAS, 434, 806–831 {462}CrossRefGoogle Scholar
Bell, KR, Cassen, PM, Klahr, HH, et al., 1997, The structure and appearance of proto-stellar accretion disks: limits on disk flaring. ApJ, 486, 372–387 {457, 520}CrossRefGoogle Scholar
Bell, TJ, Nikolov, N, Cowan, NB, et al., 2017, The very low albedo of WASP–12 b from spectral eclipse observations with HST. ApJ, 847, L2 {753}CrossRefGoogle Scholar
Belokurov, VA, Evans, NW, 2002, Astrometric microlensing with the Gaia satellite. MNRAS, 331, 649–665 {138}CrossRefGoogle Scholar
Belorizky, D, 1938, Le soleil, étoile variable. L'Astronomie, 52, 359–361 {157}Google Scholar
Belu, AR, Selsis, F,Morales, JC, et al., 2011, Primary and secondary eclipse spectroscopy with JWST: exploring the exoplanet parameter space. A&A, 525, A83 {617, 734}Google Scholar
Belu, AR, Selsis, F, Raymond, SN, et al., 2013, Habitable planets eclipsing brown dwarfs: strategies for detection and characterisation. ApJ, 768, 125 {445}CrossRefGoogle Scholar
Ben-Ami, S, Epps, H, Evans, I, et al., 2016, The optical design of the G–CLEF spectrograph: the first light instrument for the GMT. Ground-based and Airborne Instrumentation for Astronomy VI, volume 9908 of Proc. SPIE, 9908A0 {46}
Ben-Jaffel, L, 2007, Exoplanet HD 209458 b: inflated hydrogen atmosphere but no sign of evaporation. ApJ, 671, L61–L64 {611, 731}CrossRefGoogle Scholar
Ben-Jaffel, L, 2008, Spectral, spatial, and time properties of the hydrogen nebula around exo-planet HD 209458 b. ApJ, 688, 1352–1360 {611, 732}CrossRefGoogle Scholar
Ben-Jaffel, L, Ballester, GE, 2013, Hubble Space Telescope detection of oxygen in the atmosphere of exoplanet HD 189733 b. A&A, 553, A52 {185, 609, 730}Google Scholar
Ben-Jaffel, L, 2014, Transit of exomoon plasma tori: new diagnosis. ApJ, 785, L30 {221, 281, 730, 753}CrossRefGoogle Scholar
Ben-Jaffel, L, Sona Hosseini, S, 2010, On the existence of energetic atoms in the upper atmosphere of exoplanet HD 209458 b. ApJ, 709, 1284–1296 {428, 611, 732}CrossRefGoogle Scholar
Benardini, JN, Sawyer, J, Venkateswaran, K, et al., 2003, Spore UV and acceleration resistance of endolithic Bacillus pumilus and Bacillus subtilis isolates obtained from Sonoran desert basalt: implications for lithopanspermia. Astrobiology, 3, 709–717 {638}CrossRefGoogle ScholarPubMed
Benatti, S, Desidera, S, Damasso, M, et al., 2017, The GAPS Programme with HARPS-N at TNG. XII. Characterisation of the planetary system around HD 108874. A&A, 599, A90 {721}Google Scholar
Bender, C, Simon, M, Prato, L, et al., 2005, An upper bound on the 1.6μm flux ratio of the companion to ‰ CrB. AJ, 129, 402–408 {94, 715}CrossRefGoogle Scholar
Bender, CF, Mahadevan, S, Deshpande, R, et al., 2012, The SDSS–HET survey of Kepler eclipsing binaries: spectroscopic dynamical masses of the Kepler–16 circum-binary planet hosts. ApJ, 751, L31 {739}CrossRefGoogle Scholar
Bender, ML, 2002, Orbital tuning chronology for the Vostok climate record supported by trapped gas composition. Earth Planet. Sci. Lett., 204, 275–289 {674}CrossRefGoogle Scholar
Bender, PL, Stebbins, RT, 1996, Multi-resolution element imaging of extrasolar Earth-like planets. J. Geophys. Res., 101, 9309–9312 {355}CrossRefGoogle Scholar
Bender, R, 1990, Unraveling the kinematics of early-type galaxies: presentation of a new method and its application to NGC 4621. A&A, 229, 441–451 {29}Google Scholar
Bending, VL, Lewis, SR, Kolb, U, 2013, Benchmark experiments with global climate models applicable to extrasolar gas giant planets in the shallow atmosphere approximation. MNRAS, 428, 2874–2884 {593}CrossRefGoogle Scholar
Benedetti, LR, Nguyen, JH, Caldwell, WA, et al., 1999, Dissociation of CH4 at high pressures and temperatures: diamond formation in giant planet interiors? Science, 286, 100–102 {604}CrossRefGoogle ScholarPubMed
Benedict, GF, Harrison, TE, 2017, HD 202206: a circumbinary brown dwarf system. AJ, 153, 258 {724}CrossRefGoogle Scholar
Benedict, GF, McArthur, B, Chappell, DW, et al., 1999, Interferometric astrometry of Proxima Cen and Barnard's Star using HST–FGS3: detection limits for substellar companions. AJ, 118, 1086–1100 {92}CrossRefGoogle Scholar
Benedict, GF, McArthur, BE, Bean, JL, 2008, HST FGS astrometry: the value of fractional millisecond of arc precision. IAU Symp., volume 248, 23–29 {93}Google Scholar
Benedict, GF, McArthur, BE, Bean, JL, et al., 2010, The mass of HD 38529 c from HST astrometry and high-precision radial velocities. AJ, 139, 1844–1856 {93, 719}CrossRefGoogle Scholar
Benedict, GF, McArthur, BE, Forveille, T, et al., 2002, A mass for the extrasolar planet GJ 876 b determined from HST–FGS3 astrometry and high-precision radial velocities. ApJ, 581, L115–L118 {88, 92, 717}CrossRefGoogle Scholar
Benedict, GF, McArthur, BE, Franz, OG, et al., 2000, Interferometric astrometry of the detached white dwarf–M dwarf binary Feige 24 using HST-FGS3: white dwarf radius and component mass estimates. AJ, 119, 2382–2390 {92}CrossRefGoogle Scholar
Benedict, GF, McArthur, BE, Gatewood, G, et al., 2006, The extrasolar planet ɛr Eri b: orbit and mass. AJ, 132, 2206–2218 {10, 92, 493, 715}CrossRefGoogle Scholar
Benedict, GF, McArthur, BE, Nelan, EP, et al., 2017, Astrometry with Hubble Space Telescope Fine Guidance Sensors: a review. PASP, 129(1), 012001 {92}CrossRefGoogle Scholar
Benedict, GF, Tanner, AM, Cargile, PA, et al., 2014, A technique to derive improved proper motions for Kepler Objects of Interest (KOIs). AJ, 148, 108 {176}CrossRefGoogle Scholar
Benest, D, 1988, Planetary orbits in the elliptic restricted problem. I. The α Cen system. A&A, 206, 143–146 {549, 714}Google Scholar
Benest, D, 1989, Planetary orbits in the elliptic restricted problem. II. The Sirius system. A&A, 223, 361–364 {549}Google Scholar
Benest, D, 1993, Stable planetary orbits around one component in nearby binary stars. II. Cel. Mech. Dyn. Astron., 56, 45–50 {549}CrossRefGoogle Scholar
Benest, D, 1996, Planetary orbits in the elliptic restricted problem. III. The · CrB system. A&A, 314, 983–988 {549}Google Scholar
Benest, D, 1998, Stable planetary orbits in double star systems. Brown Dwarfs and Extrasolar Planets, volume 134 of ASP Conf. Ser., 277–279 {160}Google Scholar
Benest, D, Duvent, JL, 1995, Is Sirius a triple star? A&A, 299, 621 {91}Google Scholar
Benford, J, 2014, Introduction to the METI issues. J. Br. Interplanet. Soc., 67, 5–7 {648}Google Scholar
Bengochea, A, Galán, J, Pérez-Chavela, E, 2015, Exchange orbits in the planar 1+4 body problem. Physica D Nonlinear Phenomena, 301, 21–35 {273}Google Scholar
Benisty, M, Juhasz, A, Boccaletti, A, et al., 2015, Asymmetric features in the proto-planetary diskMWC 758. A&A, 578, L6 {367, 368}Google Scholar
Benisty, M, Stolker, T, Pohl, A, et al., 2017, Shadows and spirals in the protoplanetary disk HD 100453. A&A, 597, A42 {466}Google Scholar
Benisty, M, Tatulli, E, Ménard, F, et al., 2010, The complex structure of the disk around HD 100546: the inner few astronomical units. A&A, 511, A75 {466, 762}Google Scholar
Benítez-Llambay, P, Masset, F, Beaugé, C, 2011, The mass–period distribution of close-in exoplanets. A&A, 528, A2 {294, 554}Google Scholar
Benítez-Llambay, P, Masset, FS, 2016, FARGO3D: a new GPU-oriented MHD code. ApJS, 223, 11 {462}CrossRefGoogle Scholar
Benítez-Llambay, P, Ramos, XS, Beaugé, C, et al., 2016, Long-term and large-scale hydrodynamical simulations of migrating planets. ApJ, 826, 13 {462}CrossRefGoogle Scholar
Benneke, B, Seager, S, 2012, Atmospheric retrieval for super-Earths: uniquely constraining the atmospheric composition with transmission spectroscopy. ApJ, 753, 100 {590, 734}CrossRefGoogle Scholar
Benneke, B, Seager, S, 2013, How to distinguish between cloudy mini-Neptunes and water/volatile-dominated super-Earths. ApJ, 778, 153 {590}CrossRefGoogle Scholar
Benneke, B, Werner, M, Petigura, E, et al., 2017, Spitzer observations confirm and rescue the habitable-zone super-Earth K2–18 b for future characterisation. ApJ, 834, 187 {748}CrossRefGoogle Scholar
Benner, SA, 2010, Defining life. Astrobiology, 10, 1021–1030 {635}CrossRefGoogle ScholarPubMed
Bennett, D, 1998, Magellanic Cloud gravitational microlensing results: what do they mean? Phys. Rep., 307, 97–106 {133}CrossRefGoogle Scholar
Bennett, DP, 2008, Detection of extrasolar planets by gravitational microlensing. Exo-planets: Detection, Formation, Properties, Habitability, 47–88, Springer {133}Google Scholar
Bennett, DP, 2010, An efficient method for modeling high-magnification planetary micro-lensing events. ApJ, 716, 1408–1422 {131}CrossRefGoogle Scholar
Bennett, DP, Alcock, C, Allsman, RA, et al., 1997, Planetary microlensing from the MACHO project. ASP Conf. Ser., volume 119, 95–99 {140}Google Scholar
Bennett, DP, Anderson, J, Bond, IA, et al., 2006, Identification of the OGLE–2003–BLG–235 (MOA–2003–BLG–53) planetary host star. ApJ, 647, L171–L174 {131, 145, 759}CrossRefGoogle Scholar
Bennett, DP, Anderson, J, Gaudi, BS, 2007, Characterisation of gravitational micro-lensing planetary host stars. ApJ, 660, 781–790 {131}CrossRefGoogle Scholar
Bennett, DP, Bally, J, Bond, I, et al., 2003, The Galactic Exoplanet Survey Telescope (GEST). SPIE Conf. Ser., volume 4854, 141–157 {143}Google Scholar
Bennett, DP, Batista, V, Bond, IA, et al., 2014, MOA–2011–BLG–262L b: a sub-Earth-mass moon orbiting a gas giant primary or a high velocity planetary system in the Galactic bulge. ApJ, 785, 155 {141, 145, 148, 759}CrossRefGoogle Scholar
Bennett, DP, Bhattacharya, A, Anderson, J, et al., 2015, Confirmation of the planetary microlensing signal and star and planet mass determinations for event OGLE–2005–BLG–169. ApJ, 808, 169 {145, 759}CrossRefGoogle Scholar
Bennett, DP, Bond, I, Cheng, E, et al., 2004, The Microlensing Planet Finder: completing the census of extrasolar planets in the Milky Way. SPIE Conf. Ser., volume 5487, 1453–1464 {143}Google Scholar
Bennett, DP, Bond, IA, Abe, F, et al., 2017, MOA data reveal a new mass, distance, and relative propermotion for planetary system OGLE–2015–BLG–0954L. AJ, 154, 68 {760}CrossRefGoogle Scholar
Bennett, DP, Bond, IA, Udalski, A, et al., 2008, A low-mass planet with a possible sub-stellar-mass host in microlensing event MOA–2007–BLG–192. ApJ, 684, 663–683 {141, 759}CrossRefGoogle Scholar
Bennett, DP, Rhie, SH, 1996, Detecting Earth-mass planets with gravitational micro-lensing. ApJ, 472, 660–664 {123, 130, 132}CrossRefGoogle Scholar
Bennett, DP, Rhie, SH, 2002, Simulation of a space-based microlensing survey for terrestrial extrasolar planets. ApJ, 574, 985–1003 {143}CrossRefGoogle Scholar
Bennett, DP, Rhie, SH, Becker, AC, et al., 1999, Discovery of a planet orbiting a binary star system from gravitational microlensing. Nature, 402, 57–59 {133, 140}CrossRefGoogle Scholar
Bennett, DP, Rhie, SH, Nikolaev, S, et al., 2010, Masses and orbital constraints for the OGLE–2006–BLG–109L b, c Jupiter/Saturn analogue planetary system. ApJ, 713, 837–855 {759}CrossRefGoogle Scholar
Bennett, DP, Rhie, SH, Udalski, A, et al., 2016, The first circumbinary planet found by microlensing: OGLE–2007–BLG–349L(AB) c. AJ, 152, 125 {12, 130, 141, 145, 760}CrossRefGoogle Scholar
Bennett, DP, Sumi, T, Bond, IA, et al., 2012, Planetary and other short binary micro-lensing events from the MOA short-event analysis. ApJ, 757, 119 {141, 150, 759}CrossRefGoogle Scholar
Bennett, DP, Udalski, A, Han, C, et al., 2018, The first planetary microlensing eventwith two microlensed source stars. AJ, 155, 141 {129, 136, 141, 145, 759}CrossRefGoogle Scholar
BennettME, III, McSween, HY, 1996, Revised model calculations for the thermal histories of ordinary chondrite parent bodies. Meteor. Plan. Sci., 31, 783–792 {653}Google Scholar
Benni, P, 2017, The Galactic Plane Exoplanet Survey (GPX): an amateur designed transiting exoplanet wide-field search. Journal of the American Association of Variable Star Observers (JAAVSO), 45, 127 {170}Google Scholar
Benomar, O, Masuda, K, Shibahashi, H, et al., 2014, Determination of three-dimensional spin–orbit angle with joint analysis of asteroseismology, transit light curve, and the Rossiter–McLaughlin effect: cases of HAT–P–7 and Kepler–25. PASJ, 66, 94 {163, 250, 735, 740}CrossRefGoogle Scholar
Bensby, T, Feltzing, S, Lundström, I, 2004, A possible age-metallicity relation in the Galactic thick disk? A&A, 421, 969–976 {395}Google Scholar
Bensby, T, Feltzing, S, Lundström, I, et al., 2005, s-process element trends in the Galactic thin and thick disks. A&A, 433, 185–203 {399}Google Scholar
Bentley, SJ, Hellier, C, Maxted, PFL, et al., 2009, A stellar flare during the transit of the extrasolar planet OGLE–TR–10 b. A&A, 505, 901–902 {183, 212, 749}Google Scholar
Bento, J, Hartman, JD, Bakos GÁ, et al., 2018, HATS–39 b, HATS–40 b, HATS–41 b, and HATS–42 b: three inflated hot Jupiters and a super-Jupiter transiting F stars. MNRAS {738}
Bento, J, Schmidt, B, Hartman, JD, et al., 2017, HATS–22 b, HATS–23 b and HATS–24 b: three new transiting super-Jupiters from the HAT South project. MNRAS, 468, 835–848 {737}CrossRefGoogle Scholar
Bento, J, Wheatley, P, 2011, Optical transmission photometry of large scale height planets WASP–15 b and WASP–17 b. AAS Abstracts, 2, 4003 {753}Google Scholar
Bento, J, Wheatley, PJ, Copperwheat, CM, et al., 2014, Optical transmission photometry of the highly inflated exoplanet WASP–17 b. MNRAS, 437, 1511–1518 {165, 183, 753}CrossRefGoogle Scholar
Benvenuto, OG, Brunini, A, Fortier, A, 2007, Envelope instability in giant planet formation. Icarus, 191, 394–396 {481}CrossRefGoogle Scholar
Benvenuto, OG, De Vito, MA, Horvath, JE, 2012, Evolutionary trajectories of ultracom-pact black widow pulsars with very low mass companions. ApJ, 753, L33 {106, 108, 110}CrossRefGoogle Scholar
Benvenuto, OG, Fortier, A, Brunini, A, 2009, Forming Jupiter, Saturn, Uranus and Neptune in few million years by core accretion. Icarus, 204, 752–755 {697}CrossRefGoogle Scholar
Benz, AO, 2017, Flare observations. Living Reviews in Solar Physics, 14, 2 {427, 649}CrossRefGoogle Scholar
Benz, W, 2000, Low-velocity collisions and the growth of planetesimals. Space Sci. Rev., 92, 279–294 {454, 455}CrossRefGoogle Scholar
Benz, W, Anic, A, Horner, J, et al., 2007, The origin of Mercury. Space Sci. Rev., 132, 189–202 {476}CrossRefGoogle Scholar
Benz, W, Asphaug, E, 1999, Catastrophic disruptions revisited. Icarus, 142, 5–20 {474, 496}CrossRefGoogle Scholar
Benz, W, Cameron, AGW, Melosh, HJ, 1989, The origin of the moon and the single impact hypothesis. III. Icarus, 81, 113–131 {664}CrossRefGoogle ScholarPubMed
Benz, W, Ida, S, Alibert, Y, et al., 2014, Planet population synthesis. Protostars and Planets VI, 691–713 {556}
Benz, W, Mayor, M, 1981, A new method for determining the rotation of late spectral type stars. A&A, 93, 235–240 {29}Google Scholar
Benz, W, Mordasini, C, Alibert, Y, et al., 2008, Giant planet population synthesis: comparing theory with observations. Physica Scripta Volume T, 130(1), 014022 {556}Google Scholar
Benz, W, Slattery, WL, Cameron, AGW, 1988, Collisional stripping of Mercury's mantle. Icarus, 74, 516–528 {476, 600}CrossRefGoogle Scholar
Bérard, D, Sicardy, B, Camargo, JIB, et al., 2017, The structure of Chariklo's rings from stellar occultations. AJ, 154, 144 {691}CrossRefGoogle Scholar
Berardo, D, Cumming, A, 2017, Hot-start giant planets form with radiative interiors. ApJ, 846, L17 {482}CrossRefGoogle Scholar
Bercovici, D, 2003, The generation of plate tectonics from mantle convection. Earth Planet. Sci. Lett., 205, 107–121 {629}CrossRefGoogle Scholar
Bercovici, D, Ricard, Y, 2013, Generation of plate tectonics with two-phase grain-damage and pinning: source-sink model and toroidal flow. Earth Planet. Sci. Lett., 365, 275–288 {628}CrossRefGoogle Scholar
Berdiñas, ZM, Amado, PJ, Anglada-Escudé, G, et al., 2016, High-cadence spectroscopy of M dwarfs. I. Analysis of systematic effects in HARPS–N line profile measurements on the bright binary GJ 725A+B. MNRAS, 459, 3551–3564 {47}CrossRefGoogle Scholar
Berdyugina, SV, 2005, Star spots: a key to the stellar dynamo. Living Reviews in Solar Physics, 2, 8 {208, 649}CrossRefGoogle Scholar
Berdyugina, SV, Berdyugin, AV, Fluri, DM, et al., 2008, First detection of polarised scattered light from an exoplanetary atmosphere. ApJ, 673, L83–L86 {10, 246, 248, 730}CrossRefGoogle Scholar
Berdyugina, SV, Berdyugin, AV, Fluri, DM, 2011, Polarised reflected light from HD 189733 b: first multicolour observations and confirmation of detection. ApJ, 728, L6 {245, 246, 730}CrossRefGoogle Scholar
Berdyugina, SV, Kuhn, J, Harrington, D, et al., 2014, Detecting extraterrestrial life with the Colossus telescope using photosynthetic biosignatures. Search for Life Beyond the Solar System. Exoplanets, Biosignatures and Instruments, 4P {646}Google Scholar
Berdyugina, SV, Kuhn, JR, 2017, Surface imaging of Proxima Cen b and other exo-planets: topography, biosignatures, and artificial mega-structures. ArXiv e-prints {242, 243, 714}
Berdyugina, SV, Kuhn, JR, Harrington, DM, et al., 2016, Remote sensing of life: po-larimetric signatures of photosynthetic pigments as sensitive biomarkers. Int. J. Astrobiol., 15, 45–56 {248}CrossRefGoogle Scholar
Berger, A, Hill, TP, 2011, A basic theory of Benford's Law. Probab. Surveys, 8, 1–126 {510}CrossRefGoogle Scholar
Berger, AL, 1976, Obliquity and precession for the last 5 000 000 years. A&A, 51, 127–135 {681}Google Scholar
Berger, AL, 1977a, Long-term variations of the Earth's orbital elements. Celestial Mechanics, 15, 53–74 {681}CrossRefGoogle Scholar
Berger, AL, 1977b, Support for the astronomical theory of climatic change. Nature, 269, 44–47 {681}CrossRefGoogle Scholar
Berger, AL, 1980, The Milankovitch astronomical theory of paleoclimates: a modern review. Vistas in Astronomy, 24, 103–122 {681}CrossRefGoogle Scholar
Berger, E, 2006, Radio observations of a large sample of late M, L, and T dwarfs: the distribution of magnetic field strengths. ApJ, 648, 629–636 {101, 440, 441}CrossRefGoogle Scholar
Berger, E, Ball, S, Becker, KM, et al., 2001, Discovery of radio emission from the brown dwarf LP 944–20. Nature, 410, 338–340 {101, 441}CrossRefGoogle Scholar
Berger, JO, 1985, Statistical decision theory and Bayesian analysis. Springer {24}CrossRefGoogle Scholar
Bergeron, P, Saffer, RA, Liebert, J, 1992, A spectroscopic determination of the mass distribution of DA white dwarfs. ApJ, 394, 228–247 {413}CrossRefGoogle Scholar
Bergfors, C, Brandner, W, Daemgen, S, et al., 2013, Stellar companions to exoplanet host stars: lucky imaging of transiting planet hosts. MNRAS, 428, 182–189 {333, 736, 751, 753}CrossRefGoogle Scholar
Bergfors, C, Brandner, W, Janson, M, et al., 2011, VLT–NACO astrometry of the HR 8799 planetary system. L’-band observations of the three outer planets. A&A, 528, A134 {763}Google Scholar
Bergfors, C, Farihi, J, Dufour, P, et al., 2014, Signs of a faint disk population at polluted white dwarfs. MNRAS, 444, 2147–2156 {417}CrossRefGoogle Scholar
Bergin, EA, Du, F, Cleeves, LI, et al., 2016, Hydrocarbon emission rings in protoplanet-ary disks induced by dust evolution. ApJ, 831, 101 {463}CrossRefGoogle Scholar
Bergmann, C, Endl, M, Hearnshaw, JB, et al., 2015, Searching for Earth-mass planets around α Cen: precise radial velocities from contaminated spectra. Int. J. Astro-biol., 14, 173–176 {714}Google Scholar
Bergstralh, JT, Miner, ED, Matthews, MS, 1991, Uranus. University of Arizona Press {651, 659, 680}Google Scholar
Bernard, D, Lilensten, J, Barthélemy, M, et al., 2014, Can hydrogen coronae be inferred around a CO2-dominated exoplanetary atmosphere? Icarus, 239, 23–31 {739}CrossRefGoogle Scholar
Bernat, D, Bouchez, AH, Ireland, M, et al., 2010, A close companion search around L dwarfs using aperture masking interferometry and Palomar laser guide star adaptive optics. ApJ, 715, 724–735 {357}CrossRefGoogle Scholar
Bernath, PF, 2014, Molecular opacities for exoplanets. Phil. Trans. Soc. London A, 372, 30087 {570}Google ScholarPubMed
Berné, O, Fuente, A, Pantin, E, et al., 2015, VLT observations of Gomez's Hamburger: insights into a young protoplanet candidate. A&A, 578, L8 {490}Google Scholar
Berner, RA, 1994, GEOCARB II: a revised model of atmospheric CO2 over Phanerozoic time. American Journal of Science, 294, 56–91 {630}CrossRefGoogle Scholar
Berner, RA, 2001, Modeling atmospheric O2 over Phanerozoic time. Geochim. Cos-mochim. Acta, 65, 685–694 {674}Google Scholar
Berner, RA, 2006, Geocarbsulf: a combined model for Phanerozoic atmospheric O2 and CO2. Geochim. Cosmochim. Acta, 70, 5653–5664 {674}CrossRefGoogle Scholar
Berner, RA, Kothavala, Z, 2001, Geocarb III: a revised model of atmospheric CO2 over Phanerozoic time. AmJ Sci, 301, 182–204 {674}Google Scholar
Berner, RA, Vanden Brooks, JM, Ward, PD, 2007, Oxygen and evolution. Science, 316(5824), 557–558, ISSN 0036-8075 {629}CrossRefGoogle ScholarPubMed
Bernstein, GM, Trilling, DE, Allen, RL, et al., 2004, The size distribution of Trans-Neptunian bodies. AJ, 128, 1364–1390 {650}CrossRefGoogle Scholar
Bernstein, R, Shectman, SA, Gunnels, SM, et al., 2003, MIKE: a double echelle spectrograph for the Magellan Telescopes at Las Campanas Observatory. Instrument Design and Performance for Optical/Infrared Ground-based Telescopes, volume 4841 of Proc. SPIE, 1694–1704 {45}Google Scholar
Berry, MV, 1987, The adiabatic phase and Pancharatnam's phase for polarised light. Journal of Modern Optics, 34, 1401–1407 {337}CrossRefGoogle Scholar
Berski, F, Dybczynski, PA, 2016, GJ 710 will pass the Sun even closer: close approach parameters recalculated based on the first Gaia data release. A&A, 595, L10 {655}Google Scholar
Berta, ZK, Charbonneau, D, Bean, J, et al., 2011, The GJ 1214 super-Earth system: stellar variability, new transits, and a search for additional planets. ApJ, 736, 12 {213, 734}CrossRefGoogle Scholar
Berta, ZK, Charbonneau, D, Désert, JM, et al., 2012a, The flat transmission spectrum of the super-Earth GJ 1214 b from HST–WFC3. ApJ, 747, 35 {613, 734}CrossRefGoogle Scholar
Berta, ZK, Irwin, J, Charbonneau, D, 2013, Constraints on planet occurrence around nearby mid-to-late M dwarfs from the MEarth project. ApJ, 775, 91 {167}CrossRefGoogle Scholar
Berta, ZK, Irwin, J, Charbonneau, D, et al., 2012b, Transit detection in the MEarth survey of nearby M dwarfs: bridging the clean-first, search-later divide. AJ, 144, 145 {167}CrossRefGoogle Scholar
Berta-Thompson, ZK, Irwin, J, Charbonneau, D, et al., 2015, A rocky planet transiting a nearby low-mass star. Nature, 527, 204–207 {167, 734}CrossRefGoogle ScholarPubMed
BertelliMotta, C, Clark, PC, Glover, SCO, et al., 2016, The IMF as a function of supersonic turbulence. MNRAS, 462, 4171–4182 {452}Google Scholar
Berti, E, Ferrari, V, 2001, Excitation of g-modes of solar-type stars by an orbiting companion. Phys. Rev. D, 63(6), 064031 {411}CrossRefGoogle Scholar
Berton, A, Feldt, M, Gratton, R, et al., 2006a, The search for extrasolar giant planets using integral field spectroscopy: simulations. New Astron. Rev., 49, 661–669 {341}CrossRefGoogle Scholar
Berton, A, Feldt, M, Gratton, RG, et al., 2006b, Simulations of 3d observations of exo-planets using OWL. The Scientific Requirements for Extremely Large Telescopes, volume 232 of IAU Symp., 339–343 {345}Google Scholar
Berton, A, Gratton, RG, Feldt, M, et al., 2006c, Detecting extrasolar planets with integral field spectroscopy. PASP, 118, 1144–1164 {341}CrossRefGoogle Scholar
Besla, G, Wu, Y, 2007, Formation of narrow dust rings in circumstellar debris disks. ApJ, 655, 528–540 {495}CrossRefGoogle Scholar
Bessell, MS, 2007, Bolometric corrections to Hipparcos Hp magnitudes and UBVRI colours. msowww.anu.edu.au/»bessell/ {376, 377}
Bessell, MS, Castelli, F, Plez, B, 1998, Model atmospheres broad-band colours, bolo-metric corrections and temperature calibrations for O–M stars. A&A, 333, 231–250 {376, 377}Google Scholar
Best, WM, Liu, MC, Magnier, EA, et al., 2014, A volume-limited search for L/T transition brown dwarfs with the Pan-STARRS and WISE surveys. American Astronomical SocietyMeeting Abstracts #223, volume 223 of American Astronomical Society Meeting Abstracts, 441.19 {433}Google Scholar
Beth, A, Garnier, P, Toublanc, D, et al., 2016a, Theory for planetary exospheres. I. Radiation pressure effect on dynamical trajectories. Icarus, 266, 410–422 {601}Google Scholar
Beth, A, Garnier, P, Toublanc, D, 2016b, Theory for planetary exospheres. II. Radiation pressure effect on exo-spheric density profiles. Icarus, 266, 423–432 {601}Google Scholar
Beth, RA, 1936, Mechanical detection and measurement of the angular momentum of light. Physical Review, 50, 115–125 {336}CrossRefGoogle Scholar
Bétrémieux, Y, 2016, Effects of refraction on transmission spectra of gas giants: decrease of the Rayleigh scattering slope and breaking of retrieval degeneracies. MNRAS, 456, 4051–4060 {222, 608}CrossRefGoogle Scholar
Bétrémieux, Y, Kaltenegger, L, 2013, Transmission spectrum of Earth as a transiting exoplanet from the ultraviolet to the near-infrared. ApJ, 772, L31 {161}CrossRefGoogle Scholar
Bétrémieux, Y, Kaltenegger, L, 2014, Impact of atmospheric refraction: how deeply can we probe exo-Earth's atmospheres during primary eclipse observations? ApJ, 791, 7 {222}CrossRefGoogle Scholar
Bétrémieux, Y, Swain, MR, 2017, An analytical formalism accounting for clouds and other ‘surfaces’ for exoplanet transmission spectroscopy. MNRAS, 467, 2834–2844 {591}CrossRefGoogle Scholar
Beuermann, K, Breitenstein, P, Debski, B, et al., 2012a, The quest for companions to post-common-envelope binaries. II. NSVS 14256825 and HS 0705+6700. A&A, 540, A8 {117}Google Scholar
Beuermann, K, Buhlmann, J, Diese, J, et al., 2011, The giant planet orbiting the cataclysmic binary DP Leo. A&A, 526, A53 {11, 114}Google Scholar
Beuermann, K, Dreizler, S, Hessman, FV, 2013, The quest for companions to post-common-envelope binaries. IV. The 2:1 mean-motion resonance of the planets orbiting NN Ser. A&A, 555, A133 {115}Google Scholar
Beuermann, K, Dreizler, S, Hessman, FV, et al., 2012b, The quest for companions to post-common-envelope binaries. III. A re-examination of HW Vir. A&A, 543, A138 {114}Google Scholar
Beuermann, K, Hessman, FV, Dreizler, S, et al., 2010, Two planets orbiting the recently formed post-common-envelope binary NN Ser. A&A, 521, L60 {105, 113, 115}Google Scholar
Beust, H, 2016, Orbital clustering of distant Kuiper belt objects by hypothetical Planet Nine: secular or resonant? A&A, 590, L2 {687}Google Scholar
Beust, H, Augereau, JC, Bonsor, A, et al., 2014, An independent determination of Fomalhaut b's orbit and the dynamical effects on the outer dust belt. A&A, 561, A43 {761}Google Scholar
Beust, H, Bonfils, X, Delfosse, X, et al., 2008, Dynamical evolution of the GJ 581 planetary system. A&A, 479, 277–282 {77, 716}Google Scholar
Beust, H, Bonfils, X, Montagnier, G, et al., 2012, Dynamical evolution of the GJ 436 planetary system: Kozai migration as a source for the eccentricity of GJ 436 b. A&A, 545, A88 {11, 529, 728}Google Scholar
Beust, H, Bonneau, D, Mourard, D, et al., 2011, On the use of the Virtual Observatory to select calibrators for phase-referenced astrometry of exoplanet-host stars. MNRAS, 414, 108–115 {91}CrossRefGoogle Scholar
Beust, H, Bonnefoy, M, Maire, AL, et al., 2016, Orbital fitting of imaged planetary com-panionswith high eccentricities and unbound orbits: their application to Fomalhaut b and PZ Tel B. A&A, 587, A89 {761}Google Scholar
Beust, H, Morbidelli, A, 1996, Mean-motion resonances as a source for infalling comets toward β Pic. Icarus, 120, 358–370 {282}CrossRefGoogle Scholar
Beust, H, Morbidelli, A, 2000, Falling evaporating bodies as a clue to outline the structure of the β Pic young planetary system. Icarus, 143, 170–188 {493}CrossRefGoogle Scholar
Beust, H, Vidal-Madjar, A, Ferlet, R, et al., 1990, The β Pic circumstellar disk. X. Numer-ical simulations of infalling evaporating bodies. A&A, 236, 202–216 {282}Google Scholar
Beust, H, Vidal-Madjar, A, Ferlet, R, 1994, Cometary-like bodies in the protoplanetary disk around β Pic. Ap&SS, 212, 147–157 {493, 762}Google Scholar
Beuther, H, Klessen, RS, Dullemond, CP, et al., 2014, Protostars and Planets VI. Univ. Arizona Press {454, 651}Google Scholar
Beuzit, J, Feldt, M, Dohlen, K, et al., 2008, VLT–SPHERE: a planet finder instrument for the VLT. SPIE Conf. Ser., volume 7014, 41 {343}Google Scholar
Beuzit, JL, Feldt, M, Dohlen, K, et al., 2006, VLT–SPHERE: a planet finder instrument for the VLT. The Messenger, 125, 29 {247}Google Scholar
Bevilacqua, R, Menchi, O, Milani, A, et al., 1980, Resonances and close approaches. I. The Titan–Hyperion case. Moon and Planets, 22, 141–152 {509}CrossRefGoogle Scholar
Bewick, R, Sanchez, JP, McInnes, CR, 2012, The feasibility of using an L1 positioned dust cloud as a method of space-based geoengineering. Adv. Space Res., 49, 1212–1228 {233}CrossRefGoogle Scholar
Bhandare, A, Breslau, A, Pfalzner, S, 2016, Effects of inclined star–disk encounter on protoplanetary disk size. A&A, 594, A53 {526}Google Scholar
Bhathal, R, 2000, The case for optical SETI. Astronomy and Geophysics, 41(1), 25–26 {643}Google Scholar
Bhathal, R, 2001, Optical SETI in Australia. SPIE Conf. Ser., volume 4273, 144–152 {646}Google Scholar
Bhattacharya, A, Bennett, DP, Anderson, J, et al., 2017, The star blended with the MOA–2008–BLG–310 source is not the exoplanet host star. AJ, 154, 59 {759}CrossRefGoogle Scholar
Bhattacharya, A, Bennett, DP, Bond, IA, et al., 2016, Discovery of a gas giant planet in microlensing event OGLE–2014–BLG–1760. AJ, 152, 140 {141, 760}CrossRefGoogle Scholar
Bhatti, W, Bakos, , Hartman, JD, et al., 2017, HATS–19 b, HATS–20 b, HATS–21 b: three transiting hot-Saturns discovered by the HAT South survey. ApJ {737}
Biazzo, K, Gratton, R, Desidera, S, et al., 2015, The GAPS programme with HARPS–N at TNG. X. Differential abundances in the XO–2 planet-hosting binary. A&A, 583, A135 {757}Google Scholar
Biddle, LI, Johns-Krull, CM, Llama, J, et al., 2018, K2 reveals pulsed accretion driven by the 2 Myr old hot Jupiter CI Tau b. ApJ, 853, L34 {715}CrossRefGoogle Scholar
Biddle, LI, Pearson, KA, Crossfield, IJM, et al., 2014, Warm ice giant GJ 3470 b. II. Revised planetary and stellar parameters from optical to near-infrared transit photometry. MNRAS, 443, 1810–1820 {729}CrossRefGoogle Scholar
Bienaymé, O, 1999, The local stellar velocity distribution of the Galaxy: Galactic structure and potential. A&A, 341, 86–97 {654}Google Scholar
Biersteker, J, Schlichting, H, 2017, Determining exoplanetary oblateness using transit depth variations. AJ, 154, 164 {221, 741, 745}CrossRefGoogle Scholar
Bieryla, A, Collins, K, Beatty, TG, et al., 2015, KELT–7 b: a hot Jupiter transiting a bright V = 8.54 rapidly rotating F star. AJ, 150, 12 {249, 738}CrossRefGoogle Scholar
Bieryla, A, Hartman, JD, Bakos GÁ, et al., 2014, HAT–P–49 b: a 1.7MJ planet transiting a bright 1.5Mfl⊙ F star. AJ, 147, 84 {737}CrossRefGoogle Scholar
Biesiadzinski, T, Lorenzon, W, Newman, R, et al., 2011, Reciprocity failure in HgCdTe detectors: measurements and mitigation. PASP, 123, 958–963 {187}Google Scholar
Bihain, G, Rebolo, R, Zapatero Osorio, MR, et al., 2009, Candidate free-floating super-Jupiters in the young σ Ori open cluster. A&A, 506, 1169–1182 {446}Google Scholar
Bildsten, L, Cutler, C, 1992, Tidal interactions of inspiraling compact binaries. ApJ, 400, 175–180 {533}CrossRefGoogle Scholar
Biller, B, 2017, The time domain for brown dwarfs and directly imaged giant exo-planets: the power of variability monitoring. The Astronomical Review, 13, 1–27 {439}CrossRefGoogle Scholar
Biller, B, Lacour, S, Juhász, A, et al., 2012, A likely close-in low-mass stellar companion to the transition disk star HD 142527. ApJ, 753, L38 {466}CrossRefGoogle Scholar
Biller, BA, Allers, K, Liu, M, et al., 2011, A Keck LGS adaptive optics search for brown dwarf and planetary mass companions to Upper Scorpius brown dwarfs. ApJ, 730, 39 {358}CrossRefGoogle Scholar
Biller, BA, Close, LM, 2007, A direct distance and luminosity determination for a self-luminous giant exoplanet: the trigonometric parallax to 2M J1207. ApJ, 669, L41–L44 {763}CrossRefGoogle Scholar
Biller, BA, Close, LM, Masciadri, E, et al., 2007, An imaging survey for extrasolar planets around 45 close, young stars with the simultaneous differential imager at the VLT and MMT. ApJS, 173, 143–165 {361}CrossRefGoogle Scholar
Biller, BA, Crossfield, IJM, Mancini, L, et al., 2013a, Weather on the nearest brown dwarfs: resolved simultaneousmulti-wavelength variability monitoring of WISE J104915.57–531906.1AB. ApJ, 778, L10 {440}CrossRefGoogle Scholar
Biller, BA, Kasper, M, Close, LM, et al., 2006, Discovery of a brown dwarf very close to the Sun: a methane-rich brown dwarf companion to the low-mass star SCR J1845–6357. ApJ, 641, L141–L144 {340}CrossRefGoogle Scholar
Biller, BA, Liu, MC, Wahhaj, Z, et al., 2010, The Gemini–NICI planet-finding campaign: discovery of a close substellar companion to the young debris disk star PZ Tel. ApJ, 720, L82–L87 {358}CrossRefGoogle Scholar
Biller, BA, Liu, MC, Wahhaj, Z, 2013b, The Gemini–NICI planet-finding campaign: the frequency of planets around young moving group stars. ApJ, 777, 160 {358}CrossRefGoogle Scholar
Biller, BA, Males, J, Rodigas, T, et al., 2014, An enigmatic point-like feature within the HD 169142 transition disk. ApJ, 792, L22 {467}CrossRefGoogle Scholar
Billings, L, Cameron, V, Claire, M, et al., 2006, The astrobiology primer: an outline of general knowledge (version 1, 2006). Astrobiology, 6, 735–813 {619}Google ScholarPubMed
Bills, BG, 1994, Obliquity–oblateness feedback: are climatically sensitive values of obliquity dynamically unstable? Geophys. Res. Lett., 21, 177–180 {622, 681}CrossRefGoogle Scholar
Bills, BG, 2005, Free and forced obliquities of the Galilean satellites of Jupiter. Icarus, 175, 233–247 {678, 681}CrossRefGoogle Scholar
Bin, J, Tian, F, Lin, Y, et al., 2018, Low probability of tropical cyclones on ocean planets in the habitable zones of M dwarfs. Icarus, 299, 364–369 {621}CrossRefGoogle Scholar
Binder, AB, 1974, On the origin of the Moon by rotational fission. Moon, 11, 53–76 {664}CrossRefGoogle Scholar
Binnendijk, L, 1960, Properties of Double Stars: A Survey of Parallaxes and Orbits. Uni-versity of Pennsylvania Press, Philadelphia {17, 19, 88}CrossRefGoogle Scholar
Binney, J, Tremaine, S, 2008, Galactic Dynamics. Princeton University Press, Second Edition {517}Google Scholar
Binnington, T, Poisson, E, 2009, Relativistic theory of tidal Love numbers. Phys. Rev. D, 80(8), 084018 {533}CrossRefGoogle Scholar
Biraud, F, 1983, SETI at the Nançay radiotelescope. Acta Astron., 10, 759–760 {644}CrossRefGoogle ScholarPubMed
Birch, F, 1952, Elasticity and constitution of the Earth's interior. J. Geophys. Res., 57, 227–286 {603}CrossRefGoogle Scholar
Birkby, JL, Cappetta, M, Cruz, P, et al., 2014, WTS–2 b: a hot Jupiter orbiting near its tidal destruction radius around a K dwarf. MNRAS, 440, 1470–1489 {167, 169, 260, 753, 757}CrossRefGoogle Scholar
Birkby, JL, de Kok, RJ, Brogi, M, et al., 2013, Detection of water absorption in the day-side atmosphere of HD 189733 b using ground-based high-resolution spectroscopy at 3.2μm. MNRAS, 436, L35–L39 {609, 642, 730}CrossRefGoogle Scholar
Birkby, JL, de Kok, RJ, Brogi, M, 2017, Discovery of water at high spectral resolution in the atmosphere of 51 Peg b. AJ, 153, 138 {715}CrossRefGoogle Scholar
Birnbaum, G, Borysow, A, Orton, GS, 1996, Collision-induced absorption of H2–H2 and H2–He in the rotational and fundamental bands for planetary applications. Icarus, 123, 4–22 {599}CrossRefGoogle Scholar
Birnstiel, T, Andrews, SM, 2014, On the outer edges of protoplanetary dust disks. ApJ, 780, 153 {496}CrossRefGoogle Scholar
Birnstiel, T, Andrews, SM, Ercolano, B, 2012a, Can grain growth explain transition disks? A&A, 544, A79 {465, 469}Google Scholar
Birnstiel, T, Dullemond, CP, Pinilla, P, 2013, Lopsided dust rings in transition disks. A&A, 550, L8 {466}Google Scholar
Birnstiel, T, FangM, Johansen, A, 2016, Dust evolution and the formation of planetes-imals. Space Sci. Rev., 205, 41–75 {454}CrossRefGoogle Scholar
Birnstiel, T, Klahr, H, Ercolano, B, 2012b, A simple model for the evolution of the dust population in protoplanetary disks. A&A, 539, A148 {458, 469}Google Scholar
Birnstiel, T, Ormel, CW, Dullemond, CP, 2011, Dust size distributions in coagulation/fragmentation equilibrium: numerical solutions and analytical fits. A&A, 525, A11 {458, 469}Google Scholar
Birnstiel, T, Ricci, L, Trotta, F, et al., 2010, Testing the theory of grain growth and fragmentation by millimeter observations of protoplanetary disks. A&A, 516, L14 {469}Google Scholar
Bisikalo, DV, Cherenkov, AA, 2016, The influence of coronal mass ejections on the gas dynamics of the atmosphere of a hot Jupiter exoplanet. Astronomy Reports, 60, 183–192 {428}CrossRefGoogle Scholar
Bisikalo, DV, Kaigorodov, PV, Konstantinova, NI, 2015, The maximum size of a stationary, quasi-closed gaseous envelope around the hot Jupiter WASP–12 b. Astronomy Reports, 59, 829–835 {753}CrossRefGoogle Scholar
Bisikalo, DV, Kaygorodov, P, Ionov, D, et al., 2013, Three-dimensional gas dynamic simulation of the interaction betweenWASP–12 b and its host star. ApJ, 764, 19 {753}CrossRefGoogle Scholar
Bisikalo, DV, Shematovich, VI, 2015, Precipitation of electrons into the upper atmosphere of a hot Jupiter exoplanet. Astronomy Reports, 59, 836–842 {303}CrossRefGoogle Scholar
Bitsch, B, Boley, A, Kley, W, 2013a, Influence of viscosity and the adiabatic index on planetary migration. A&A, 550, A52 {519}Google Scholar
Bitsch, B, Crida, A, Libert, AS, et al., 2013b, Highly inclined and eccentric massive planets. I. Planet-disk interactions. A&A, 555, A124 {523}Google Scholar
Bitsch, B, Crida, A, Morbidelli, A, et al., 2013c, Stellar irradiated disks and implications onmigration of embedded planets. I. Equilibriumdisks. A&A, 549, A124 {462}Google Scholar
Bitsch, B, Johansen, A, 2016, Influence of the water content in protoplanetary disks on planet migration and formation. A&A, 590, A101 {501}Google Scholar
Bitsch, B, Johansen, A, Lambrechts, M, et al., 2015, The structure of protoplanetary disks around evolving young stars. A&A, 575, A28 {519}Google Scholar
Bitsch, B, Kley, W, 2010, Orbital evolution of eccentric planets in radiative disks. A&A, 523, A30 {519}Google Scholar
Bitsch, B, Kley, W, 2011a, Evolution of inclined planets in three-dimensional radiative disks. A&A, 530, A41 {462}Google Scholar
Bitsch, B, Kley, W, 2011b, Range of outward migration and influence of disk mass on the migration of giant planet cores. A&A, 536, A77 {519}Google Scholar
Bixel, A, Apai, D, 2017, Probabilistic constraints on the mass and composition of Prox-ima Cen b. ApJ, 836, L31 {714}CrossRefGoogle Scholar
Bizzarro, M, Ulfbeck, D, Trinquier, A, et al., 2007, Evidence for a late supernova injection of 60Fe into the protoplanetary disk. Science, 316, 1178–1181 {653}CrossRefGoogle ScholarPubMed
Black, DC, 1980a, Detection of other planetary systems. Mercury, 9, 105 {83}Google Scholar
Black, DC, 1980b, In search of other planetary systems. Space Sci. Rev., 25, 35–81 {83}CrossRefGoogle Scholar
Black, DC, 1982, A simple criterion for determining the dynamical stability of three-body systems. AJ, 87, 1333–1337 {548}CrossRefGoogle Scholar
Black, DC, 1985, A review of the scientific rationale and methods used in the search for other planetary systems. The Search for Extraterrestrial Life: Recent Developments, volume 112 of IAU Symp., 33–41 {83}Google Scholar
Black, DC, Brunk, WE, 1980, An assessment of ground-based techniques for detecting other planetary systems. Workshop held at Cambridge, Mass., Nov. 1979 {83}
Black, DC, Scargle, JD, 1982, On the detection of other planetary systems by astrometric techniques. ApJ, 263, 854–869 {83, 87}CrossRefGoogle Scholar
Black, GJ, Campbell, DB, Carter, LM, 2011, Ground-based radar observations of Titan: 2000-2008. Icarus, 212, 300–320 {356}CrossRefGoogle Scholar
Blackett, PMS, 1947, The magnetic field of massive rotating bodies. Nature, 159, 658–666 {426}CrossRefGoogle ScholarPubMed
Blackman, RT, Szymkowiak, AE, Fischer, DA, et al., 2017, Accounting for chromatic atmospheric effects on barycentric corrections. ApJ, 837, 18 {30, 35}CrossRefGoogle Scholar
Blaes, OM, Balbus, SA, 1994, Local shear instabilities in weakly ionised, weakly mag-netised disks. ApJ, 421, 163–177 {459}CrossRefGoogle Scholar
Blaes, OM, Lee, MH, Socrates, A, 2002, The Kozai mechanism and the evolution of binary supermassive black holes. ApJ, 578, 775–786 {529}CrossRefGoogle Scholar
Blake, CH, Bloom, JS, Latham, DW, et al., 2008, Near-infrared monitoring of ultracool dwarfs: prospects for searching for transiting companions. PASP, 120, 860–871 {160}CrossRefGoogle Scholar
Blake, CH, Charbonneau, D, White, RJ, 2010, The NIRSPEC ultracool dwarf radial velocity survey. ApJ, 723, 684–706 {55}CrossRefGoogle Scholar
Blanc, M, Kallenbach, R, Erkaev, NV, 2005, Solar system magnetospheres. Space Sci. Rev., 116, 227–298 {426}CrossRefGoogle Scholar
Blandford, RD, Haynes, MP, Huchra, JP, et al., 2010, New Worlds, New Horizons in Astronomy and Astrophysics: Committee for a Decadel Survey. National Academies Press, Washington {100, 143}Google Scholar
Blandford, RD, Payne, DG, 1982, Hydromagnetic flows from accretion disks and the production of radio jets. MNRAS, 199, 883–903 {456}CrossRefGoogle Scholar
Blecic, J, Dobbs-Dixon, I, Greene, T, 2017, The implications of 3d thermal structure on 1d atmospheric retrieval. ApJ, 848, 127 {731}CrossRefGoogle Scholar
Blecic, J, Harrington, J, Bowman, MO, 2015, TEA: Thermal Equilibrium Abundances. Astrophysics Source Code Library {606}
Blecic, J, Harrington, J, Bowman, MO, 2016, TEA: a code calculating thermochemical equilibrium abundances. ApJS, 225, 4 {606}CrossRefGoogle Scholar
Blecic, J, Harrington, J, Madhusudhan, N, et al., 2013, Thermal emission of WASP–14 b revealed with three Spitzer eclipses. ApJ, 779, 5 {753}CrossRefGoogle Scholar
Blecic, J, Harrington, J, Madhusudhan, N, 2014, Spitzer observations of the thermal emission from WASP–43 b. ApJ, 781, 116 {615, 755}CrossRefGoogle Scholar
Blind, N, Eisenhauer, F, Gillessen, S, et al., 2015, GRAVITY: the VLTI 4-beam combiner for narrow-angle astrometry and interferometric imaging [unpublished]. ArXiv e-prints {91}
Bloemen, S, Marsh, TR, Degroote, P, et al., 2012, Mass ratio from Doppler beaming and Rømer delay versus ellipsoidal modulation in the Kepler data of KOI–74. MNRAS, 422, 2600–2608 {242}CrossRefGoogle Scholar
Bloemen, S, Marsh, TR, Østensen RH, et al., 2011, Kepler observations of the beaming binary KPD 1946+4340. MNRAS, 410, 1787–1796 {238, 239}Google Scholar
Bloemhof, EE, 2003, Suppression of speckle noise by speckle pinning in adaptive optics. ApJ, 582, L59–L62 {339}CrossRefGoogle Scholar
Bloemhof, EE, 2004, Remnant speckles in highly corrected coronagraphs. ApJ, 610, L69–L72 {339}CrossRefGoogle Scholar
Bloemhof, EE, 2007, Feasibility of symmetry-based speckle noise reduction for faint companion detection. Optics Express, 15, 4705–4710 {339}CrossRefGoogle ScholarPubMed
Blum, J, 2000, Laboratory experiments on preplanetary dust aggregation. Space Sci. Rev., 92, 265–278 {468}CrossRefGoogle Scholar
Blum, J, 2010, Dust growth in protoplanetary disks: a comprehensive experimental/theoretical approach. Res. Astron. Astrophys., 10, 1199–1214 {469}CrossRefGoogle Scholar
Blum, J, Gundlach, B, Krause, M, et al., 2017, Evidence for the formation of comet 67P/Churyumov–Gerasimenko through gravitational collapse of a bound clump of pebbles. MNRAS, 469, S755–S773 {473}CrossRefGoogle Scholar
Blum, J, Münch, M, 1993, Experimental investigations on aggregate–aggregate collisions in the early solar nebula. Icarus, 106, 151 {469}CrossRefGoogle Scholar
Blum, J, Wurm, G, 2000, Experiments on sticking, restructuring, and fragmentation of preplanetary dust aggregates. Icarus, 143, 138–146 {468}CrossRefGoogle Scholar
Blum, J, Wurm, G, 2008, The growth mechanisms of macroscopic bodies in protoplanetary disks. ARA&A, 46, 21–56 {458, 468, 469}Google Scholar
Blum, J, Wurm, G, Kempf, S, et al., 2000, Growth and form of planetary seedlings: results from a microgravity aggregation experiment. Phys. Rev. Lett., 85, 2426–2429 {468}CrossRefGoogle ScholarPubMed
Blunt, S, Nielsen, EL, De Rosa, RJ, et al., 2017, Orbits for the impatient: a Bayesian rejection-sampling method for quickly fitting the orbits of long-period exoplanets. AJ, 153, 229 {341, 761}CrossRefGoogle Scholar
Bobra, MG, Couvidat, S, 2015, Solar flare prediction using SDO–HMI vector magnetic field data with amachine-learning algorithm. ApJ, 798, 135 {427}CrossRefGoogle Scholar
Bobylev, VV, Bajkova, AT, 2017, Searching for stars closely encountering with the solar system based on data from the Gaia DR1 and RAVE5 catalogues. Astronomy Letters, 43, 559–566 {655}CrossRefGoogle Scholar
Bobylev, VV, Bajkova, AT, Mylläri, A, et al., 2011, Searching for possible siblings of the sun from a common cluster based on stellar space velocities. Astronomy Letters, 37, 550–562 {406}CrossRefGoogle Scholar
Boccaletti, A, Abe, L, Baudrand, J, et al., 2008a, Prototyping coronagraphs for exoplanet characterisation with VLT–SPHERE. SPIE Conf. Ser., volume 7015, 34 {336, 343}Google Scholar
Boccaletti, A, Abe, L, Baudrand, J, 2008b, Prototyping coronagraphs for exoplanet characterisation with VLT–SPHERE. Adaptive Optics Systems, volume 7015 of Proc. SPIE, 70151B {343}Google Scholar
Boccaletti, A, Augereau, J, Baudoz, P, et al., 2009, VLT–NACO coronagraphic observations of fine structures in the disk of β Pic. A&A, 495, 523–535 {334, 762}Google Scholar
Boccaletti, A, Baudoz, P, Baudrand, J, et al., 2005, Imaging exoplanets with the corona-graph of JWST–MIRI. Adv. Space Res., 36, 1099–1106 {350}CrossRefGoogle Scholar
Boccaletti, A, Lagage, PO, Baudoz, P, et al., 2015, The mid-infrared instrument for JWST. V. Predicted performance of the MIRI coronagraphs. PASP, 127, 633–645 {181}CrossRefGoogle Scholar
Boccaletti, A, Lagrange, AM, Bonnefoy, M, et al., 2013, Independent confirmation of β Pic b imaging with NICI. A&A, 551, L14 {367, 762}Google Scholar
Boccaletti, A, Moutou, C, Labeyrie, A, et al., 1998, Present performance of the dark-speckle coronagraph. A&AS, 133, 395–402 {339}Google Scholar
Boccaletti, A, Riaud, P, Baudoz, P, et al., 2004, The four-quadrant phase mask corona-graph. IV. First light at the VLT. PASP, 116, 1061–1071 {336}CrossRefGoogle Scholar
Boccaletti, A, Schneider, J, Traub, W, et al., 2012, SPICES: spectro-polarimetric imaging and characterisation of exoplanetary systems. From planetary disks to nearby super Earths. Exp. Astron., 34, 355–384 {182, 247, 353}CrossRefGoogle Scholar
Boccippio, DJ, Williams, ER, Heckman, SJ, et al., 1995, Sprites, ELF transients, and positive ground strokes. Science, 269, 1088–1091 {591}CrossRefGoogle ScholarPubMed
Bochinski, JJ, Haswell, CA, Marsh, TR, et al., 2015, Direct evidence for an evolving dust cloud from the exoplanet KIC–12557548 b. ApJ, 800, L21 {232, 747}CrossRefGoogle Scholar
Bodaghee, A, Santos, NC, Israelian, G, et al., 2003, Chemical abundances of planet-host stars. Results for alpha and Fe-group elements. A&A, 404, 715–727 {388, 396, 399}Google Scholar
Boden, AF, Shao, M, van Buren, D, 1998, Astrometric observation of MACHO gravita-tionalmicrolensing. ApJ, 502, 538–549 {138}CrossRefGoogle Scholar
Bodenheimer, P, 1998, Formation of substellar objects orbiting stars. Brown Dwarfs and Extrasolar Planets, volume 134 of ASP Conf. Ser., 115–127 {442}Google Scholar
Bodenheimer, P, 2006, Historical notes on planet formation. Planet Formation, 1–13, Cambridge University Press {467}Google Scholar
Bodenheimer, P, D'Angelo, G, Lissauer, JJ, et al., 2013, Deuterium burning in massive giant planets and low-mass brown dwarfs formed by core-nucleated accretion. ApJ, 770, 120 {430, 480, 481, 482}CrossRefGoogle Scholar
Bodenheimer, P, Grossman, AS, Decampli, WM, et al., 1980a, Calculations of the evolution of the giant planets. Icarus, 41, 293–308 {487}CrossRefGoogle Scholar
Bodenheimer, P, Hubickyj, O, Lissauer, JJ, 2000, Models of the in situ formation of detected extrasolar giant planets. Icarus, 143, 2–14 {480, 482, 484, 485, 502, 517}CrossRefGoogle Scholar
Bodenheimer, P, Laughlin, G, Lin, DNC, 2003, On the radii of extrasolar giant planets. ApJ, 592, 555–563 {302, 303, 545, 565, 720, 723, 724, 731}CrossRefGoogle Scholar
Bodenheimer, P, Lin, DNC, Mardling, RA, 2001, On the tidal inflation of short-period extrasolar planets. ApJ, 548, 466–472 {302, 303}CrossRefGoogle Scholar
Bodenheimer, P, Lissauer, JJ, 2014, Accretion and evolution of ~ 2.5MEarth planets with voluminous H/He envelopes. ApJ, 791, 103 {502, 503, 739}CrossRefGoogle Scholar
Bodenheimer, P, Pollack, JB, 1986, Calculations of the accretion and evolution of giant planets: the effects of solid cores. Icarus, 67, 391–408 {480, 485, 486}CrossRefGoogle Scholar
Bodenheimer, P, Tohline, JE, Black, DC, 1980b, Criteria for fragmentation in a collapsing rotating cloud. ApJ, 242, 209–218 {431}CrossRefGoogle Scholar
Bodman, EHL, Quillen, A, 2016, KIC–8462852: transit of a large comet family. ApJ, 819, L34 {232, 233, 747}CrossRefGoogle Scholar
Bodman, EHL, Quillen, AC, 2014, Stability boundaries for resonant migrating planet pairs. MNRAS, 440, 1753–1762 {507}CrossRefGoogle Scholar
Bodman, EHL, Quillen, AC, AnsdellM, et al., 2017, Dippers and dusty disk edges: new diagnostics and comparison to model predictions. MNRAS, 470, 202–223 {466}CrossRefGoogle Scholar
Boehm, C, Krone-Martins, A, Amorim, A, et al., 2017, Theia: faint objects in motion or the new astrometry frontier. ArXiv e-prints {100}
Boekholt, TCN, Pelupessy, FI, Heggie, DC, et al., 2016, The origin of chaos in the orbit of comet 1P/Halley. MNRAS, 461, 3576–3584 {515}CrossRefGoogle Scholar
Boesgaard, AM, Armengaud, E, King, JR, et al., 2004, The correlation of lithium and berylliumin F and G field and cluster dwarf stars. ApJ, 613, 1202–1212 {403}CrossRefGoogle Scholar
Boffin, HMJ, Pourbaix, D, Mužic, K, et al., 2014, Possible astrometric discovery of a sub-stellar companion to the closest binary brown dwarf system WISE J104915.57-531906.1. A&A, 561, L4 {91, 433, 435}Google Scholar
Bognár, Z, Paparó, M, 2012, Ground-based photometric support for the CoRoT mission by the CoRoT–Hungarian asteroseismology group. Astron. Nach., 333, 1069 {409}CrossRefGoogle Scholar
Böhm-Vitense, E, 1958, Über die Wasserstoffkonvektionszone in Sternen ver-schiedener Effektivtemperaturen und Leuchtkräfte. Zeitschrift fur Astrophysik, 46, 108 {407}Google Scholar
Böhm-Vitense, E, 1995, White dwarf companions to Hyades F stars. AJ, 110, 228 {418}CrossRefGoogle Scholar
Bohr, J, Olsen, K, 2010, Long-range order between the planets in the solar system. MNRAS, 403, L59–L63 {510}CrossRefGoogle Scholar
Bohren, CF, Huffman, DR, 1983, Absorption and Scattering of Light by Small Particles. Wiley, New York {495}Google Scholar
Bois, E, Kiseleva-Eggleton, L, Rambaux, N, et al., 2003, Conditions of dynamical stability for the HD 160691 planetary system. ApJ, 598, 1312–1320 {71, 516, 713}CrossRefGoogle Scholar
Boisse, I, Bonfils, X, Santos, NC, 2012a, SOAP: a tool for the fast computation of photometry and radial velocity induced by star spots. A&A, 545, A109 {37, 38, 212}Google Scholar
Boisse, I, Bouchy, F, Hébrard, G, et al., 2011, Disentangling between stellar activity and planetary signals. A&A, 528, A4 {37, 38, 717, 725, 730, 733}Google Scholar
Boisse, I, Eggenberger, A, Santos, NC, et al., 2010, The SOPHIE search for northern extrasolar planets. III. A Jupiter-mass companion around HD 109246. A&A, 523, A88 {721}Google Scholar
Boisse, I, Hartman, JD, Bakos GÁ, et al., 2013, HAT–P–42 b and HAT–P–43 b: two inflated transiting hot Jupiters from the HATNet survey. A&A, 558, A86 {737}Google Scholar
Boisse, I, Moutou, C, Vidal-Madjar, A, et al., 2009, Stellar activity of planetary host star HD 189733. A&A, 495, 959–966 {37, 38, 730}Google Scholar
Boisse, I, Pepe, F, Perrier, C, et al., 2012b, The SOPHIE search for northern extrasolar planets. V. Follow-up of ELODIE candidates: Jupiter-analogues around Sun-like stars. A&A, 545, A55 {55, 60, 719, 721, 722, 724}Google Scholar
Böker, T, Allen, RJ, 1999, Imaging and nulling with the Space Interferometry Mission. ApJS, 125, 123–142 {353}CrossRefGoogle Scholar
Bolatto, AD, Falco, EE, 1994, The detectability of planetary companions of compact Galactic objects from their effects on microlensed light curves of distant stars. ApJ, 436, 112–116 {123}CrossRefGoogle Scholar
Boley, AC, 2009, The two modes of gas giant planet formation. ApJ, 695, L53–L57 {489}CrossRefGoogle Scholar
Boley, AC, 2017, On the origin of banded structure in dusty protoplanetary disks: HL Tau and TW Hya. ApJ, 850, 103 {466}CrossRefGoogle Scholar
Boley, AC, Durisen, RH, 2010, On the possibility of enrichment and differentiation in gas giants during birth by disk instability. ApJ, 724, 618–639 {488}CrossRefGoogle Scholar
Boley, AC, Durisen, RH, Nordlund Å, et al., 2007, Three-dimensional radiative hydrodynamics for disk stability simulations: a proposed testing standard and new results. ApJ, 665, 1254–1267 {488, 490}CrossRefGoogle Scholar
Boley, AC, Granados Contreras, AP, Gladman, B, 2016, The in situ formation of giant planets at short orbital periods. ApJ, 817, L17 {484}CrossRefGoogle Scholar
Boley, AC, Hayfield, T, Mayer, L, et al., 2010, Clumps in the outer disk by disk instability: why they are initially gas giants and the legacy of disruption. Icarus, 207, 509–516 {489}CrossRefGoogle Scholar
Boley, AC, Helled, R, Payne, MJ, 2011, The heavy-element composition of disk instability planets can range from sub- to super-nebular. ApJ, 735, 30 {488, 728, 729, 736}CrossRefGoogle Scholar
Boley, AC, Mejía, AC, Durisen, RH, et al., 2006, The thermal regulation of gravitational instabilities in protoplanetary disks. III. Simulations with radiative cooling and realistic opacities. ApJ, 651, 517–534 {488}CrossRefGoogle Scholar
Boley, AC, Morris, MA, Ford, EB, 2014, Overcoming the meter barrier and the formation of systems with tightly packed inner planets. ApJ, 792, L27 {309, 473}CrossRefGoogle Scholar
Boley, AC, Payne, MJ, Corder, S, et al., 2012a, Constraining the planetary system of Fomalhaut using high-resolution ALMA observations. ApJ, 750, L21 {761}CrossRefGoogle Scholar
Boley, AC, Payne, MJ, Ford, EB, 2012b, Interactions between moderate- and long-period giant planets: scattering experiments for systems in isolation and with stellar fly-bys. ApJ, 754, 57 {526}CrossRefGoogle Scholar
Bolin, BT, Weaver, HA, Fernandez, YR, et al., 2018, APO time-resolved colour photometry of highly elongated interstellar object Oumuamua. ApJ, 852, L2 {693}CrossRefGoogle Scholar
Bolmont, E, Gallet, F, Mathis, S, et al., 2017a, Tidal dissipation in rotating low-mass stars and implications for the orbital evolution of close-in massive planets. II. Effect of stellarmetallicity. A&A, 604, A113 {392, 537}Google Scholar
Bolmont, E, Libert, AS, Leconte, J, et al., 2016, Habitability of planets on eccentric orbits: limits of the mean flux approximation. A&A, 591, A106 {620}Google Scholar
Bolmont, E, Mathis, S, 2016, Effect of the rotation and tidal dissipation history of stars on the evolution of close-in planets. Cel. Mech. Dyn. Astron., 126, 275–296 {542}CrossRefGoogle Scholar
Bolmont, E, Raymond, SN, Leconte, J, 2011, Tidal evolution of planets around brown dwarfs. A&A, 535, A94 {542}Google Scholar
Bolmont, E, Raymond, SN, Leconte, J, et al., 2012, Effect of the stellar spin history on the tidal evolution of close-in planets. A&A, 544, A124 {310, 542}Google Scholar
Bolmont, E, Raymond, SN, Leconte, J, 2015, Mercury-T: a new code to study tidally evolving multi-planet systems. Applications to Kepler–62. A&A, 583, A116 {513, 546, 741}Google Scholar
Bolmont, E, Raymond, SN, von Paris, P, et al., 2014, Formation, tidal evolution, and habitability of the Kepler–186 system. ApJ, 793, 3 {744}CrossRefGoogle Scholar
Bolmont, E, Selsis, F, Owen, JE, et al., 2017b, Water loss from terrestrial planets orbiting ultracool dwarfs: implications for the planets of TRAPPIST–1. MNRAS, 464, 3728–3741 {750}CrossRefGoogle Scholar
Bolmont, E, Selsis, F, Raymond, SN, et al., 2013, Tidal dissipation and eccentricity pumping: implications for the depth of the secondary eclipse of 55 Cnc e. A&A, 556, A17 {728}Google Scholar
Bolton, SJ, Lunine, J, Stevenson, D, et al., 2017, The Juno mission. Space Sci. Rev., 213, 5–37 {659}CrossRefGoogle Scholar
Boltzmann, L, 1895, On certain questions of the theory of gases. Nature, 51, 413–415 {630}CrossRefGoogle Scholar
BonacciniCalia, D, Allaert, E, Araujo, C, et al., 2003, VLT laser guide star facility. SPIE Conf. Ser., volume 4839, 381–392 {332}Google Scholar
BonacciniCalia, D, Feng, Y, Hackenberg, W, et al., 2010, Laser development for sodium laser guide stars at ESO. The Messenger, 139, 12–19 {332}Google Scholar
Bonanno, A, Schlattl, H, Paternò, L, 2002, The age of the Sun and the relativistic corrections in the equation of state. A&A, 390, 1115–1118 {652}Google Scholar
Bonavita, M, Chauvin, G, Boccaletti, A, et al., 2010, Searching for the sub-stellar companions in the LkCa 15 protoplanetary disk. A&A, 522, A2 {467, 764}Google Scholar
Bonavita, M, Chauvin, G, Desidera, S, et al., 2011, MESS:Multi-purpose Exoplanet Simulation System. Astrophysics Source Code Library, 11009 {558}Google Scholar
Bonavita, M, Chauvin, G, Desidera, S, 2012, MESS (multi-purpose exoplanet simulation system): a Monte Carlo tool for the statistical analysis and prediction of exoplanet search results. A&A, 537, A67 {558}Google Scholar
Bonavita, M, de Mooij, EJW, Jayawardhana, R, 2013, Quick-MESS: a fast statistical tool for exoplanet imaging surveys. PASP, 125, 849–856 {338}CrossRefGoogle Scholar
Bonavita, M, Desidera, S, 2007, The frequency of planets in multiple systems. A&A, 468, 721–729 {79}Google Scholar
Bonavita, M, Desidera, S, Thalmann, C, et al., 2016, SPOTS: the Search for Planets Orbiting Two Stars. II. First constraints on the frequency of sub-stellar companions on wide circumbinary orbits. A&A, 593, A38 {338, 358, 361}Google Scholar
Bond, DP, Wignall, PB, 2014, Large igneous provinces and mass extinctions: an update. Geological Society of America Special Papers, 505, 29–55 {670}Google Scholar
Bond, HE, Henden, A, Levay, ZG, et al., 2003, An energetic stellar outburst accompanied by circumstellar light echoes. Nature, 422, 405–408 {370}CrossRefGoogle ScholarPubMed
Bond, HE, Schaefer, GH, Gilliland, RL, et al., 2017a, The Sirius system and its astrophysical puzzles: Hubble Space Telescope and ground-based astrometry. ApJ, 840, 70 {416}CrossRefGoogle Scholar
Bond, IA, 2012, The first extrasolar planet detected via gravitational microlensing. New Astron. Rev., 56, 25–32 {759}CrossRefGoogle Scholar
Bond, IA, Abe, F, Dodd, RJ, et al., 2001, Real-time difference imaging analysis of MOA Galactic bulge observations during 2000. MNRAS, 327, 868–880 {139}CrossRefGoogle Scholar
Bond, IA, Abe, F, Dodd, RJ, 2002a, Improving the prospects for detecting extrasolar planets in gravitational microlensing events in 2002. MNRAS, 331, L19–L23 {129, 139}CrossRefGoogle Scholar
Bond, IA, Bennett, DP, Sumi, T, et al., 2017b, The lowest mass ratio planetary microlens: OGLE–2016–BLG–1195L b. MNRAS, 469, 2434–2440 {141, 760}CrossRefGoogle Scholar
Bond, IA, Rattenbury, NJ, Skuljan, J, et al., 2002b, Study by MOA of extrasolar planets in gravitational microlensing events of high magnification. MNRAS, 333, 71–83 {140}CrossRefGoogle Scholar
Bond, IA, Udalski, A, Jaroszyński, M, et al., 2004, OGLE–2003–BLG–235 (MOA–2003–BLG–53): a planetary microlensing event. ApJ, 606, L155–L158 {10, 141, 145, 146, 759}CrossRefGoogle Scholar
Bond, JC, Lauretta, DS, Tinney, CG, et al., 2008, Beyond the iron peak: r- and s-process elemental abundances in stars with planets. ApJ, 682, 1234–1247 {388, 392, 393, 399}CrossRefGoogle Scholar
Bond, JC, O'Brien, DP, Lauretta, DS, 2010, The compositional diversity of extrasolar terrestrial planets. I. In situ simulations. ApJ, 715, 1050–1070 {419, 573}CrossRefGoogle Scholar
Bond, JC, Tinney, CG, Butler, RP, et al., 2006, The abundance distribution of stars with planets. MNRAS, 370, 163–173 {388}CrossRefGoogle Scholar
Bondi, H, 1952, On spherically symmetrical accretion. MNRAS, 112, 195 {481}CrossRefGoogle Scholar
Boneberg, DM, Panic, O, Haworth, TJ, et al., 2016, Determining the mid-plane conditions of circumstellar disks using gas and dust modelling: a study of HD 163296. MNRAS, 461, 385–401 {463}CrossRefGoogle Scholar
Bonfanti, A, Ortolani, S, Nascimbeni, V, 2016, Age consistency between exoplanet hosts and field stars. A&A, 585, A5 {381}Google Scholar
Bonfils, X, Almenara, JM, Jocou, L, et al., 2015, ExTrA: Exoplanets in Transit and their Atmospheres. Techniques and Instrumentation for Detection of Exoplanets VII, volume 9605 of SPIE Conf. Ser., 96051L {182}Google Scholar
Bonfils, X, Astudillo-Defru, N, Díaz, R, et al., 2017, A temperate exo-Earth around a quiet M dwarf at 3.4 pc. ArXiv e-prints {716}
Bonfils, X, Delfosse, X, Udry, S, et al., 2004, A radial velocity survey for planets around M-dwarfs. Spectroscopically and Spatially Resolving the Components of the Close Binary Stars, volume 318 of ASP Conf. Ser., 286–287 {55}Google Scholar
Bonfils, X, Delfosse, X, Udry, S, 2005a, Metallicity of M dwarfs. I. A photometric calibration and the impact on the mass-luminosity relation at the bottom of the main sequence. A&A, 442, 635–642 {391}Google Scholar
Bonfils, X, Delfosse, X, Udry, S, 2013a, The HARPS search for southern extrasolar planets. XXXI. The M-dwarf sample. A&A, 549, A109 {13, 55, 57, 58, 144, 149, 291, 632, 634, 717}Google Scholar
Bonfils, X, Forveille, T, Delfosse, X, et al., 2005b, The HARPS search for southern ex-trasolar planets. VI. A Neptune-mass planet around the nearby M dwarf GJ 581. A&A, 443, L15–L18 {77, 716}Google Scholar
Bonfils, X, Gillon, M, Forveille, T, et al., 2011, A short-period super-Earth orbiting the M2.5 dwarf GJ 3634: detection with HARPS velocimetry and transit search with Spitzer photometry. A&A, 528, A111 {717}Google Scholar
Bonfils, X, Gillon, M, Udry, S, et al., 2012, A hot Uranus transiting the nearby M dwarf GJ 3470 detected with HARPS velocimetry, captured in transit with TRAPPIST photometry. A&A, 546, A27 {170, 729}Google Scholar
Bonfils, X, Lo Curto, G, Correia, ACM, et al., 2013b, The HARPS search for southern extrasolar planets. XXXIV. A planetary systemaround the nearby M dwarf GJ 163, with a super-Earth possibly in the habitable zone. A&A, 556, A110 {635, 716}Google Scholar
Bonfils, X, Mayor, M, Delfosse, X, et al., 2007, The HARPS search for southern extrasolar planets. X. An 11M' planet around the nearby spotted M dwarf GJ 674. A&A, 474, 293–299 {38, 57, 59, 213, 717}Google Scholar
Bonneau, D, Josse, M, Labyrie, A, 1975, Lock-in image subtraction detectability of circumstellar planets with the Large Space Telescope. Image Processing Techniques in Astronomy, volume 54 of Astrophys. Space Sci. Lib., 403–409 {351}Google Scholar
Bonnefoy, M, Boccaletti, A, Lagrange, AM, et al., 2013, The near-infrared energy distribution of β Pic b. A&A, 555, A107 {430, 762}Google Scholar
Bonnefoy, M, Chauvin, G, Rojo, P, et al., 2010, Near-infrared integral-field spectra of the planet/brown dwarf companion AB Pic b. A&A, 512, A52 {762}Google Scholar
Bonnefoy, M, Currie, T, Marleau, GD, et al., 2014a, Characterisation of the gaseous companion k And b: new Keck and LBTI high-contrast observations. A&A, 562, A111 {761}Google Scholar
Bonnefoy, M, Lagrange, AM, Boccaletti, A, et al., 2011, High angular resolution detection of β Pic b at 2.18μm. A&A, 528, L15 {367, 762}Google Scholar
Bonnefoy, M, Marleau, GD, Galicher, R, et al., 2014b, Physical and orbital properties of β Pic b. A&A, 567, L9 {367, 762}Google Scholar
Bonnefoy, M, Zurlo, A, Baudino, JL, et al., 2016, First light of the VLT planet finder SPHERE. IV. Physical and chemical properties of the planets around HR 8799. A&A, 587, A58 {360, 365, 763}Google Scholar
Bonnell, IA, Bate, MR, 1994, Massive circumbinary disks and the formation of multiple systems. MNRAS, 269, L45–L48 {551}CrossRefGoogle Scholar
Bonnell, IA, Bate, MR, Clarke, CJ, et al., 1997, Accretion and the stellar mass spectrum in small clusters. MNRAS, 285, 201–208 {451}CrossRefGoogle Scholar
Bonnell, IA, Clark, P, Bate, MR, 2008, Gravitational fragmentation and the formation of brown dwarfs in stellar clusters. MNRAS, 389, 1556–1562 {442}CrossRefGoogle Scholar
Bonnell, IA, Smith, KW, Davies, MB, et al., 2001, Planetary dynamics in stellar clusters. MNRAS, 322, 859–865 {159, 526}CrossRefGoogle Scholar
Bonnet-Bidaud, JM, Pantin, E, 2008, ADONIS high contrast infrared imaging of Sirius B. A&A, 489, 651–655 {416}Google Scholar
Bonomo, AS, Chabaud, PY, Deleuil, M, et al., 2012a, Detection of Neptune-size planetary candidates with CoRoT data: comparison with the planet occurrence rate derived from Kepler. A&A, 547, A110 {174}Google Scholar
Bonomo, AS, Desidera, S, Benatti, S, et al., 2017a, The GAPS Programme with HARPS-N at TNG. XIV. Investigating giant planet migration history via improved eccentricity and mass determination for 231 transiting planets. A&A, 602, A107 {62, 499, 733, 734, 735, 736, 737, 751, 755}Google Scholar
Bonomo, AS, Hébrard, G, Raymond, SN, et al., 2017b, A deeper view of the CoRoT–9 planetary system: a small non-zero eccentricity for CoRoT–9 b likely generated by planet–planet scattering. A&A, 603, A43 {734}Google Scholar
Bonomo, AS, Hébrard, G, Santerne, A, et al., 2012b, SOPHIE velocimetry of Kepler transit candidates. V. The three hot Jupiters KOI–135 b (Kepler–43 b), KOI–204 b (Kepler–44 b), and KOI–203 b (Kepler–17 b). A&A, 538, A96 {61, 739, 741}Google Scholar
Bonomo, AS, Lanza, AF, 2008, Modeling solar-like variability for the detection of Earth-like planetary transits. I. Performance of the three-spot modeling and harmonic function fitting. A&A, 482, 341–347 {187, 191}Google Scholar
Bonomo, AS, Lanza, AF, 2012, Star spot activity and rotation of the planet-hosting star Kepler–17. A&A, 547, A37 {213, 386, 739}Google Scholar
Bonomo, AS, Santerne, A, Alonso, R, et al., 2010, Transiting exoplanets from the CoRoT space mission. X. CoRoT–10 b: a giant planet in a 13.24 day eccentric orbit. A&A, 520, A65 {734}Google Scholar
Bonomo, AS, Sozzetti, A, Lovis, C, et al., 2014, Characterisation of the planetary system Kepler–101 with HARPS-N: a hot super-Neptune with an Earth-sized low-mass companion. A&A, 572, A2 {743}Google Scholar
Bonomo, AS, Sozzetti, A, Santerne, A, et al., 2015, Improved parameters of seven Kepler giant companions characterised with SOPHIE and HARPS–N. A&A, 575, A85 {741, 742, 746}Google Scholar
Bonsor, A, Augereau, JC, Thébault, P, 2012, Scattering of small bodies by planets: a potential origin for exozodiacal dust? A&A, 548, A104 {497}Google Scholar
Bonsor, A, Farihi, J, Wyatt, MC, et al., 2017, Infrared observations of white dwarfs and the implications for the accretion of dusty planetary material. MNRAS, 468, 154–164 {417}CrossRefGoogle Scholar
Bonsor, A, Kennedy, GM, Crepp, JR, et al., 2013a, Spatially resolved images of dust belt(s) around the planet-hosting subgiant k CrB. MNRAS, 431, 3025–3035 {493, 715}CrossRefGoogle Scholar
Bonsor, A, Kennedy, GM, Wyatt, MC, et al., 2014a, Herschel observations of debris disks orbiting planet-hosting subgiants. MNRAS, 437, 3288–3297 {493, 497}CrossRefGoogle Scholar
Bonsor, A, Leinhardt, ZM, Carter, PJ, et al., 2015, A collisional origin to Earth's non-chondritic composition? Icarus, 247, 291–300 {664}CrossRefGoogle Scholar
Bonsor, A, Mustill, AJ, Wyatt, MC, 2011, Dynamical effects of stellar mass-loss on a Kuiper-like belt. MNRAS, 414, 930–939 {416}CrossRefGoogle Scholar
Bonsor, A, Raymond, SN, Augereau, JC, 2013b, The short-lived production of exo-zodiacal dust in the aftermath of a dynamical instability in planetary systems. MNRAS, 433, 2938–2945 {497}CrossRefGoogle Scholar
Bonsor, A, Raymond, SN, Augereau, JC, et al., 2014b, Planetesimal-driven migration as an explanation for observations of high levels of warm, exozodiacal dust. MNRAS, 441, 2380–2391 {497}CrossRefGoogle Scholar
Bonsor, A, Wyatt, MC, 2010, Post-main-sequence evolution of A star debris disks. MNRAS, 409, 1631–1646 {497}CrossRefGoogle Scholar
Bonsor, A, Wyatt, MC, 2012, The scattering of small bodies in planetary systems: constraints on the possible orbits of cometary material. MNRAS, 420, 2990–3002 {477}CrossRefGoogle Scholar
Booth, M, Dent, WRF, Jordán, A, et al., 2017a, The northern arc of the ɛr Eri debris ring as seen by ALMA. MNRAS, 469, 3200–3212 {715}CrossRefGoogle Scholar
Booth, M, Jordán, A, Casassus, S, et al., 2016, Resolving the planetesimal belt of HR 8799 with ALMA. MNRAS, 460, L10–L14 {763}CrossRefGoogle Scholar
Booth, M, Kennedy, GM, Sibthorpe, B, et al., 2013, Resolved debris disks around A stars in the Herschel DEBRIS survey. MNRAS, 428, 1263–1280 {493}CrossRefGoogle Scholar
Boot, M, Wyatt, MC, Morbidelli, A, et al., 2009, The history of the solar system's debris disk: observable properties of the Kuiper belt. MNRAS, 399, 385–398 {496, 497, 685, 691, 697}Google Scholar
Booth, RA, Clarke, CJ, 2016, Collision velocity of dust grains in self-gravitating proto-planetary disks. MNRAS, 458, 2676–2693 {469}CrossRefGoogle Scholar
Booth, RA, Clarke, CJ, Madhusudhan, N, et al., 2017b, Chemical enrichment of giant planets and disks due to pebble drift. MNRAS, 469, 3994–4011 {471}CrossRefGoogle Scholar
Bora, K, Saha, S, Agrawal, S, et al., 2016, CD-HPF: new habitability score via data analytic modeling. Astronomy and Computing, 17, 129–143 {634}CrossRefGoogle Scholar
Bordé, P, Fressin, F, OllivierM, et al., 2007, Transdet: a matched-filter based algorithm for transit detection: application to simulated COROT light curves. Transiting Extrapolar PlanetsWorkshop, volume 366 of ASP Conf. Ser., 145 {190}Google Scholar
Bordé, PJ, Bouchy, F, Deleuil, M, et al., 2010, Transiting exoplanets from the CoRoT space mission. XI. CoRoT–8 b: a hot and dense sub-Saturn around a K1 dwarf. A&A, 520, A66 {734}Google Scholar
Bordé, PJ, Traub, WA, 2006, High-contrast imaging from space: speckle nulling in a low-aberration regime. ApJ, 638, 488–498 {339}CrossRefGoogle Scholar
Borg, L, Drake, MJ, 2005, A review of meteorite evidence for the timing of magmatism and of (near-)surface liquid water onMars. J. Geophys. Res., 110, 12–21 {652}CrossRefGoogle Scholar
Borgniet, S, Boisse, I, Lagrange, AM, et al., 2014, Extrasolar planets and brown dwarfs around A-F type stars. VIII. A giant planet orbiting the young star HD 113337. A&A, 561, A65 {721}Google Scholar
Borgniet, S, Lagrange, AM, Meunier, N, et al., 2017, Extrasolar planets and brown dwarfs around AF-type stars. IX. The HARPS southern sample. A&A, 599, A57 {64, 721}Google Scholar
Borgniet, S, Meunier, N, Lagrange, AM, 2015, Using the Sun to estimate Earth-like planets detection capabilities. V. Parameterising the impact of solar activity components on radial velocities. A&A, 581, A133 {37, 38, 86}Google Scholar
Borkovits, T, Csizmadia, S, Forgács-Dajka, E, et al., 2011, Transit timing variations in eccentric hierarchical triple exoplanetary systems. I. Perturbations on the time scale of the orbital period of the perturber. A&A, 528, A53 {263, 729, 734}Google Scholar
Borkovits, T, Érdi, B, Forgács-Dajka, E, et al., 2003, On the detectability of long period perturbations in close hierarchical triple stellar systems. A&A, 398, 1091–1102 {263}Google Scholar
Born, M, Wolf, E, 1999, Principles of Optics. Cambridge University Press {357}CrossRefGoogle Scholar
Borra, EF, 2010, Spectral signatures of ultra-rapidly varying objects in spectroscopic surveys. A&A, 511, L6 {646}Google Scholar
Borra, EF, 2012a, Magnetic liquid deformable mirrors for astronomical applications: active correction of aberrations from lower-grade optics and support system. ApJS, 201, 8 {357}CrossRefGoogle Scholar
Borra, EF, 2012b, Searching for extraterrestrial intelligence signals in astronomical spectra, including existing data. AJ, 144, 181 {646}CrossRefGoogle Scholar
Borra, EF, Trottier, E, 2016, Discovery of peculiar periodic spectral modulations in a small fraction of solar-type stars. PASP, 128(11), 114201 {646}CrossRefGoogle Scholar
Borsa, F, Poretti, E, 2013, An analysis of CoRoT multicolour photometry of exoplanets. MNRAS, 428, 891–896 {191}CrossRefGoogle Scholar
Borsa, F, Rainer, M, Poretti, E, 2016, Chromatic line-profile tomography to reveal exo-planetary atmospheres: application to HD 189733 b. A&A, 590, A84 {731}Google Scholar
Borsa, F, Scandariato, G, Rainer, M, et al., 2015, The GAPS programme with HARPS–N at TNG. VII. Putting exoplanets in the stellar context: magnetic activity and asteroseismology of τ Boo A. A&A, 578, A64 {47, 714}Google Scholar
Borsato, L, 2016, TRADES: TRAnsits and Dynamics of Exoplanetary Systems. Astrophysics Source Code Library {267}
Borsato, L, Marzari, F, Nascimbeni, V, et al., 2014, TRADES: a new software to derive orbital parameters from observed transit times and radial velocities: revisiting Kepler–11 and Kepler–9. A&A, 571, A38 {267, 738, 739}Google Scholar
Borucki, WJ, 2016, KeplerMission: development and overview. Rep. Prog. Phys., 79(3), 036901 {174}CrossRefGoogle Scholar
Borucki, WJ, 2017, Kepler: a brief discussion of the mission and exoplanet results. Proceedings of the American Philosophical Society, 161, 38–65 {174}Google Scholar
Borucki, WJ, Agol, E, Fressin, F, et al., 2013, Kepler–62: a five-planet systemwith planets of 1.4 and 1.6R⊕ in the habitable zone. Science, 340, 587–590 {12, 179, 634, 741}CrossRefGoogle Scholar
Borucki, WJ, Koch, D, Basri, G, et al., 2010a, Kepler planet-detection mission: introduction and first results. Science, 327, 977–980 {174}CrossRefGoogle Scholar
Borucki, WJ, Koch, D, Jenkins, J, et al., 2009, Kepler's optical phase curve of the exo-planet HAT–P–7 b. Science, 325, 709–{163, 239, 615, 735}CrossRefGoogle Scholar
Borucki, WJ, Koch, DG, Basri, G, et al., 2011a, Characteristics of Kepler planetary candidates based on the first data set. ApJ, 728, 117 {197}CrossRefGoogle Scholar
Borucki, WJ, Koch, DG, Basri, G, 2011b, Characteristics of planetary candidates observed by Kepler. II. Analysis of the first fourmonths. ApJ, 736, 19 {9, 196, 197, 288, 633, 739}CrossRefGoogle Scholar
Borucki, WJ, Koch, DG, Batalha, N, et al., 2012, Kepler–22 b: a 2.4R⊕ planet in the habitable zone of a Sun-like star. ApJ, 745, 120 {11, 296, 740}CrossRefGoogle Scholar
Borucki, WJ, Koch, DG, Brown, TM, et al., 2010b, Kepler–4 b: a hot Neptune-like planet of a G0 star near main-sequence turnoff. ApJ, 713, L126–L130 {11, 738}CrossRefGoogle Scholar
Borucki, WJ, Koch, DG, Lissauer, J, et al., 2007, Kepler mission status. Transiting Ex-trapolar PlanetsWorkshop, volume 366 of ASP Conf. Ser., 309 {174}Google Scholar
Borucki, WJ, Scargle, JD, Hudson, HS, 1985, Detectability of extrasolar planetary transits. ApJ, 291, 852–854 {157}CrossRefGoogle Scholar
Borucki, WJ, Summers, AL, 1984, The photometric method of detecting other planetary systems. Icarus, 58, 121–134 {153, 157, 193}CrossRefGoogle Scholar
Borysow, A, 2002, Collision-induced absorption coefficients of H2 pairs at temperatures from 60K to 1000 K. A&A, 390, 779–782 {570}Google Scholar
Boschi, R, Lucarini, V, Pascale, S, 2013, Bistability of the climate around the habitable zone: a thermodynamic investigation. Icarus, 226, 1724–1742 {620}CrossRefGoogle Scholar
Boschi, S, Schmitz, B, Heck, PR, et al., 2017, Late Eocene 3He and Ir anomalies associated with ordinary chondritic spinels. Geochim. Cosmochim. Acta, 204, 205–218 {672}CrossRefGoogle Scholar
Boss, AP, 1995, Proximity of Jupiter-like planets to low-mass stars. Science, 267, 360–362 {63, 487, 517}CrossRefGoogle ScholarPubMed
Boss, AP, 1996a, A concise guide to chondrule formation models. Chondrules and the Proto-planetary Disk, 257–263 {653}
Boss, AP, 1996b, Evolution of the solar nebula. III. Protoplanetary disks undergoing mass accretion. ApJ, 469, 906 {667}CrossRefGoogle Scholar
Boss, AP, 1997, Giant planet formation by gravitational instability. Science, 276, 1836–1839 {487, 488}CrossRefGoogle Scholar
Boss, AP, 1998, Evolution of the solar nebula. IV. Giant gaseous protoplanet formation. ApJ, 503, 923–927 {487, 490}CrossRefGoogle Scholar
Boss, AP, 2001, Formation of planetary-mass objects by protostellar collapse and fragmentation. ApJ, 551, L167–L170 {431, 442}CrossRefGoogle Scholar
Boss, AP, 2002, Stellar metallicity and the formation of extrasolar gas giant planets. ApJ, 567, L149–L153 {392, 431}CrossRefGoogle Scholar
Boss, AP, 2003, Rapid formation of outer giant planets by disk instability. ApJ, 599, 577–581 {487}CrossRefGoogle Scholar
Boss, AP, 2005, Evolution of the solar nebula. VII. Formation and survival of protoplanets formed by disk instability. ApJ, 629, 535–548 {293, 487}CrossRefGoogle Scholar
Boss, AP, 2006a, Gas giant protoplanets formed by disk instability in binary star systems. ApJ, 641, 1148–1161 {79, 487, 550}CrossRefGoogle Scholar
Boss, AP, 2006b, On the formation of gas giant planets on wide orbits. ApJ, 637, L137–L140 {487}CrossRefGoogle Scholar
Boss, AP, 2006c, Rapid formation of gas giant planets around M dwarf stars. ApJ, 643, 501–508 {144, 487}CrossRefGoogle Scholar
Boss, AP, 2006d, Rapid formation of super-Earths aroundM dwarf stars. ApJ, 644, L79–L82 {487}CrossRefGoogle Scholar
Boss, AP, 2007a, Evolution of the solar nebula. VIII. Spatial and temporal heterogeneity of short-lived radioisotopes and stable oxygen isotopes. ApJ, 660, 1707–1714 {652}CrossRefGoogle Scholar
Boss, AP, 2007b, Testing disk instability models for giant planet formation. ApJ, 661, L73–L76 {487}CrossRefGoogle Scholar
Boss, AP, 2008, Rapid formation of gas giants, ice giants and super-Earths. Physica Scripta Volume T, 130(1), 014020 {487}Google Scholar
Boss, AP, 2010, Giant planet formation by disk instability in low-mass disks? ApJ, 725, L145–L149 {487}CrossRefGoogle Scholar
Boss, AP, 2011a, Evolution of the solar nebula. IX. Gradients in the spatial heterogeneity of the short-lived radioisotopes 60Fe and 26Al and the stable oxygen isotopes. ApJ, 739, 61 {651}CrossRefGoogle Scholar
Boss, AP, 2011b, Formation of giant planets by disk instability on wide orbits around pro-tostars with varied masses. ApJ, 731, 74 {447, 489, 761, 763}CrossRefGoogle Scholar
Boss, AP, 2012a, Giant planet formation by disk instability: flux-limited radiative diffusion and protostellar wobbles. MNRAS, 419, 1930–1936 {488, 490}CrossRefGoogle Scholar
Boss, AP, 2012b, Mixing and transport of isotopic heterogeneity in the early solar system. Ann. Rev. Earth Plan. Sci., 40, 23–43 {651}CrossRefGoogle Scholar
Boss, AP, 2013a, Mixing and transport of short-lived and stable isotopes and refractory grains in protoplanetary disks. ApJ, 773, 5 {460}CrossRefGoogle Scholar
Boss, AP, 2013b, Orbital migration of protoplanets in a marginally gravitationally unstable disk. ApJ, 764, 194 {520}CrossRefGoogle Scholar
Boss, AP, Basri, G, Kumar, SS, et al., 2003, Nomenclature: brown dwarfs and gas giant planets. Brown Dwarfs, volume 211 of IAU Symp., 529–537 {431}Google Scholar
Boss, AP, Durisen, RH, 2005, Chondrule-forming shock fronts in the solar nebula: a possible unified scenario for planet and chondrite formation. ApJ, 621, L137–L140 {653}CrossRefGoogle Scholar
Boss, AP, Fisher, RT, Klein, RI, et al., 2000, The Jeans condition and collapsing molecular cloud cores: filaments or binaries? ApJ, 528, 325–335 {442}CrossRefGoogle Scholar
Boss, AP, Keiser, SA, 2014, Triggering collapse of the presolar dense cloud core and injecting short-lived radioisotopes with a shock wave. III. Rotating three-dimensional cloud cores. ApJ, 788, 20 {651}CrossRefGoogle Scholar
Boss, AP, Weinberger, AJ, Anglada-Escudé, G, et al., 2009, The Carnegie astrometric planet search programme. PASP, 121, 1218–1231 {90}CrossRefGoogle Scholar
Boss, AP, Weinberger, AJ, Keiser, SA, et al., 2017, Astrometric constraints on the masses of long-period gas giant planets in the TRAPPIST–1 planetary system. AJ, 154, 103 {750}CrossRefGoogle Scholar
Boss, AP, Wetherill, GW, Haghighipour, N, 2002, Rapid formation of ice giant planets. Icarus, 156, 291–295 {487}CrossRefGoogle Scholar
Bott, K, Bailey, J, Kedziora-Chudczer, L, et al., 2016, The polarisation of HD 189733. MNRAS, 459, L109–L113 {246, 247, 731}CrossRefGoogle Scholar
Bottke, WF, Levison, HF, Nesvorný, D, et al., 2007, Can planetesimals left over from terrestrial planet formation produce the lunar LateHeavy Bombardment? Icarus, 190, 203–223 {669}CrossRefGoogle Scholar
Bottke, WF, Nesvorný, D, Vokrouhlický, D, et al., 2010, The irregular satellites: the most collisionally evolved populations in the solar system. AJ, 139, 994–1014 {688}CrossRefGoogle Scholar
Bottke, WF, Nolan, MC, Greenberg, R, et al., 1994, Velocity distributions among colliding asteroids. Icarus, 107, 255–268 {474}CrossRefGoogle Scholar
Bottke, WF, Norman, MD, 2017, The Late Heavy Bombardment. Ann. Rev. Earth Plan. Sci., 45, 619–647 {669}CrossRefGoogle Scholar
Bottke, WF, Vokrouhlický, D, Marchi, S, et al., 2015, Dating the Moon-forming impact event with asteroidal meteorites. Science, 348, 321–323 {665}CrossRefGoogle ScholarPubMed
Bottke, WF, Vokrouhlický, D, Minton, D, et al., 2012, An Archaean heavy bombardment from a destabilised extension of the asteroid belt. Nature, 485, 78–81 {669}CrossRefGoogle Scholar
Bottke, WF Jr, Vokrouhlický, D, Rubincam, DP, et al., 2006, The Yarkovsky and YORP effects: implications for asteroid dynamics. Ann. Rev. Earth Plan. Sci., 34, 157–191 {261}CrossRefGoogle Scholar
Bottom, M, Muirhead, PS, Asher Johnson, J, et al., 2013, Optimising Doppler surveys for planet yield. PASP, 125, 240–251 {27}CrossRefGoogle Scholar
Bottom, M, Wallace, JK, Bartos, RD, et al., 2017, Speckle suppression and companion detection using coherent differential imaging. MNRAS, 464, 2937–2951 {340}CrossRefGoogle Scholar
Bouchy, F, Bazot, M, Santos, NC, et al., 2005a, Asteroseismology of the planet-hosting star μ Ara. I. The acoustic spectrum. A&A, 440, 609–614 {409, 713}Google Scholar
Bouchy, F, Bonomo, AS, Santerne, A, et al., 2011a, SOPHIE velocimetry of Kepler transit candidates. III. KOI–423 b: an 18MJ transiting companion. A&A, 533, A83 {61, 740, 741}Google Scholar
Bouchy, F, Connes, P, Bertaux, JL, 1999, A new spectrograph dedicated to precise stellar radial velocities. IAU Colloq. 170: Precise Stellar Radial Velocities, volume 185 of ASP Conf. Ser., 22–28 {50}Google Scholar
Bouchy, F, Deleuil, M, Guillot, T, et al., 2011b, Transiting exoplanets from the CoRoT space mission. XV. CoRoT–15 b: a brown-dwarf transiting companion. A&A, 525, A68 {540, 734}Google Scholar
Bouchy, F, Díaz, RF, Hébrard, G, et al., 2013, SOPHIE: first results of an octagonal-section fiber for high-precision radial velocity measurements. A&A, 549, A49 {34, 46}Google Scholar
Bouchy, F, Hebb, L, Skillen, I, et al., 2010, WASP–21 b: a hot-Saturn exoplanet transiting a thick disk star. A&A, 519, A98 {166, 754}Google Scholar
Bouchy, F, Mayor, M, Lovis, C, et al., 2009, The HARPS search for southern extrasolar planets. XVII. Super-Earth and Neptune-mass planets inmultiple planet systems HD 47186 and HD 181433. A&A, 496, 527–531 {720, 723}Google Scholar
Bouchy, F, Pepe, F, Queloz, D, 2001, Fundamental photon noise limit to radial velocity measurements. A&A, 374, 733–739 {28, 35}Google Scholar
Bouchy, F, Pont, F, Melo, C, et al., 2005b, Doppler follow-up of OGLE transiting companions in the Galactic bulge. A&A, 431, 1105–1121 {168, 379}Google Scholar
Bouchy, F, Pont, F, Santos, NC, et al., 2004, Two new very hot Jupiters among the OGLE transiting candidates. A&A, 421, L13–L16 {168, 749}Google Scholar
Bouchy, F, Queloz, D, Deleuil, M, et al., 2008, Transiting exoplanets from the CoRoT space mission. III. The spectroscopic transit of CoRoT–2 b with SOPHIE and HARPS. A&A, 482, L25–L28 {195, 733}Google Scholar
Bouchy, F, Ségransan, D, Díaz, RF, et al., 2016, The SOPHIE search for northern extra-solar planets. VIII. Follow-up of ELODIE candidates: long-period brown-dwarf companions. A&A, 585, A46 {64}Google Scholar
Bouchy, F, Udry, S, Mayor, M, et al., 2005c, ELODIE metallicity-biased search for transiting hot Jupiters. II. A very hot Jupiter transiting the bright K star HD 189733. A&A, 444, L15–L19 {157, 170, 184, 185, 186, 542, 729}Google Scholar
Boué, G, Fabrycky, DC, 2014a, Compact planetary systems perturbed by an inclined companion. I. Vectorial representation of the secular model. ApJ, 789, 110 {511}CrossRefGoogle Scholar
Boué, G, Fabrycky, DC, 2014b, Compact planetary systems perturbed by an inclined companion. II. Stellar spin–orbit evolution. ApJ, 789, 111 {511}CrossRefGoogle Scholar
Boué, G, Figueira, P, Correia, ACM, et al., 2012a, Orbital migration induced by anisotropic evaporation: can hot Jupiters formhotNeptunes? A&A, 537, L3 {305, 500}Google Scholar
Boué, G, Laskar, J, 2010, A collisionless scenario for Uranus tilting. ApJ, 712, L44–L47 {680}CrossRefGoogle Scholar
Boué, G, Laskar, J, Farago, F, 2012b, A simple model of the chaotic eccentricity of Mer-cury. A&A, 548, A43 {678}Google Scholar
Boué, G, MontaltoM, Boisse, I, et al., 2013, New analytical expressions of the Rossiter–McLaughlin effect adapted to different observation techniques. A&A, 550, A53 {249, 250}Google Scholar
Boué, G, Oshagh, M, Montalto, M, et al., 2012c, Degeneracy in the characterisation of non-transiting planets from transit timing variations. MNRAS, 422, L57 {265}CrossRefGoogle Scholar
Boufleur, RC, Emilio, M, Janot-Pacheco, E, et al., 2018, A modified CoRoT detrend algorithm and the discovery of a new planetary companion. MNRAS, 473, 710–720 {190, 734}CrossRefGoogle Scholar
Bougher, SW, Hunten, DM, Phillips, RJ, 1997, Venus II. University of Arizona Press {651}Google Scholar
Bounama, C, von Bloh, W, Franck, S, 2007, How rare is complex life in the Milky Way? Astrobiology, 7, 745–756 {625}CrossRefGoogle ScholarPubMed
Bourassa, RR, Kantowski, R, Norton, TD, 1973, The spheroidal gravitational lens. ApJ, 185, 747–756 {130}CrossRefGoogle Scholar
Bourne, R, Gary, BL, Plakhov, A, 2018, Recent photometric monitoring of KIC–8462852, the detection of a potential repeat of the Kepler day 1540 dip and a plausible model. MNRAS, 475, 5378–5384 {747}CrossRefGoogle Scholar
Bourrier, V, Cegla, HM, Lovis, C, et al., 2017a, Refined architecture of the WASP–8 system: a cautionary tale for traditional Rossiter–McLaughlin analysis. A&A, 599, A33 {252, 253, 752}Google Scholar
Bourrier, V, de Wit, J, Bolmont, E, et al., 2017b, Temporal evolution of the high-energy irradiation and water content of TRAPPIST–1 exoplanets. AJ, 154, 121 {750}CrossRefGoogle Scholar
Bourrier, V, Ehrenreich, D, Allart, R, et al., 2017c, Strong HI Lyman-α variations from an 11 Gyr-old host star: a planetary origin? A&A, 602, A106 {746}Google Scholar
Bourrier, V, Ehrenreich, D, King, G, et al., 2017d, No hydrogen exosphere detected around the super-Earth HD 97658 b. A&A, 597, A26 {729}Google Scholar
Bourrier, V, Ehrenreich, D, Wheatley, PJ, et al., 2017e, Reconnaissance of the TRAPPIST–1 exoplanet system in the Lyman-α line. A&A, 599, L3 {750}Google Scholar
Bourrier, V, Hébrard, G, 2014, Detecting the spin–orbit misalignment of the super-Earth 55 Cnc e. A&A, 569, A65 {12, 728}Google Scholar
Bourrier, V, Lecavelier des Etangs, A, 2013, 3d model of hydrogen atmospheric escape from HD 209458 b and HD 189733 b: radiative blow-out and stellar wind interactions. A&A, 557, A124 {730, 732}Google Scholar
Bourrier, V, Lecavelier des Etangs, A, Dupuy, H, et al., 2013, Atmospheric escape from HD 189733 b observed in HI Lyman-α: detailed analysis of HST–STIS September 2011 observations. A&A, 551, A63 {730}Google Scholar
Bourrier, V, Lecavelier des Etangs, A, Ehrenreich, D, et al., 2016, An evaporating planet in the wind: stellar wind interactions with the radiatively braked exosphere of GJ 436 b. A&A, 591, A121 {729}Google Scholar
Bourrier, V, Lecavelier des Etangs, A, Hébrard, G, et al., 2015a, SOPHIE velocimetry of Kepler transit candidates. XVI. Tomographic measurement of the low obliquity of KOI–12 b, a warmJupiter transiting a fast rotator. A&A, 579, A55 {62, 252, 746}Google Scholar
Bourrier, V, Lecavelier des Etangs, A, Vidal-Madjar, A, 2014, Modeling magnesium escape from HD 209458 b atmosphere. A&A, 565, A105 {732}Google Scholar
Bourrier, V, Lecavelier des Etangs, A, Vidal-Madjar, A, 2015b, The Mg I line: a new probe of the atmospheres of evaporating exoplanets. A&A, 573, A11 {732}Google Scholar
Boutle, IA, Mayne, NJ, Drummond, B, et al., 2017, Exploring the climate of Proxima Cen b with the Met Office UnifiedModel. A&A, 601, A120 {714}Google Scholar
Boutreux, T, Gould, A, 1996, Monte Carlo simulations of MACHO parallaxes from a satellite. ApJ, 462, 705–711 {134}CrossRefGoogle Scholar
Bouvier, J, 2008, Lithium depletion and the rotational history of exoplanet host stars. A&A, 489, L53–L56 {400, 402}Google Scholar
Bouvier, J, Forestini, M, Allain, S, 1997, The angular momentumevolution of low-mass stars. A&A, 326, 1023–1043 {402}Google Scholar
Bouwman, J, Lawson, WA, Juhász, A, et al., 2010, The protoplanetary disk around the M4 star RECX 5: witnessing the influence of planet formation? ApJ, 723, L243–L247 {464}CrossRefGoogle Scholar
Bouy, H, Huélamo, N, Pinte, C, et al., 2008, Structural and compositional properties of brown dwarf disks: the case of 2M J04442713+2512164. A&A, 486, 877–890 {443}Google Scholar
Bouyeron, L, Olivier, S, Delage, L, et al., 2010, First experimental demonstration of temporal hypertelescope operation with a laboratory prototype. MNRAS, 408, 1886–1896 {355}CrossRefGoogle Scholar
Bovaird, T, Lineweaver, CH, 2013, Exoplanet predictions based on the generalised Titius–Bode relation. MNRAS, 435, 1126–1138 {510}CrossRefGoogle Scholar
Bovaird, T, Lineweaver, CH, 2017, A flat inner disk model as an alternative to the Kepler dichotomy in the Q1–Q16 planet population. MNRAS, 468, 1493–1504 {325}CrossRefGoogle Scholar
Bovaird, T, Lineweaver, CH, Jacobsen, SK, 2015, Using the inclinations of Kepler systems to prioritise new Titius–Bode-based exoplanet predictions. MNRAS, 448, 3608–3627 {510}CrossRefGoogle Scholar
Bovensmann, H, Burrows, JP, Buchwitz, M, et al., 1999, SCIAMACHY: mission objectives and measurement modes. Journal of Atmospheric Sciences, 56, 127–150 {287}2.0.CO;2>CrossRefGoogle Scholar
Bowell, E, Holt, HE, Levy, DH, et al., 1990, 1990 MB: the first Mars Trojan. BAAS, volume 22 of BAAS, 1357 {690}Google Scholar
Bowen, GJ, Maibauer, BJ, Kraus, MJ, et al., 2014, Two massive, rapid releases of carbon during the onset of the Palaeocene–Eocene thermal maximum. Nature Geo-science, 8, 44 {675}CrossRefGoogle Scholar
Bower, GC, Bolatto, A, Ford, EB, et al., 2009, Radio interferometric planet search. I. First constraints on planetary companions for nearby, low-mass stars from radio astrometry. ApJ, 701, 1922–1939 {101}CrossRefGoogle Scholar
Bower, GC, Bolatto, A, Ford, EB, 2011, Radio interferometric planet search. II. Constraints on sub-Jupiter-mass companions to GJ 896 A. ApJ, 740, 32 {101}CrossRefGoogle Scholar
Bower, GC, Loinard, L, Dzib, S, et al., 2016, Variable radio emission from the young stellar host of a hot Jupiter. ApJ, 830, 107 {715}CrossRefGoogle Scholar
Bower, GC, Plambeck, RL, Bolatto, A, et al., 2003, A giant outburst at millimeter wavelengths in the Orion Nebula. ApJ, 598, 1140–1150 {101}CrossRefGoogle Scholar
Bowler, BP, 2016, Imaging extrasolar giant planets. PASP, 128(10), 102001 {329, 330, 364}CrossRefGoogle Scholar
Bowler, BP, Johnson, JA, Marcy, GW, et al., 2010a, Retired A stars and their companions. III. Comparing the mass-period distributions of planets around A-type stars and Sun-like stars. ApJ, 709, 396–410 {57}CrossRefGoogle Scholar
Bowler, BP, Kraus, AL, Bryan, ML, et al., 2017a, The young substellar companion ROXs 12 b: near-infrared spectrum, system architecture, and spin-orbit misalignment. AJ, 154, 165 {764}CrossRefGoogle Scholar
Bowler, BP, Liu, MC, Dupuy, TJ, et al., 2010b, Near-infrared spectroscopy of the exo-planet HR 8799 b. ApJ, 723, 850–868 {763}CrossRefGoogle Scholar
Bowler, BP, Liu, MC, Kraus, AL, et al., 2011, A disk around the planetary-mass companion GSC 06214–00210 b: clues about the formation of gas giants on wide orbits. ApJ, 743, 148 {150, 764}CrossRefGoogle Scholar
Bowler, BP, Liu, MC, Kraus, AL, 2014, Spectroscopic confirmation of young planetary-mass companions on wide orbits. ApJ, 784, 65 {764}CrossRefGoogle Scholar
Bowler, BP, Liu, MC, Mawet, D, et al., 2017b, Planets around low-mass stars (PALMS). VI. Discovery of a remarkably red planetary-mass companion to the AB Dormov-ing group candidate 2MASS J22362452+4751425. AJ, 153, 18 {358, 362, 764}CrossRefGoogle Scholar
Bowler, BP, Liu, MC, Shkolnik, EL, et al., 2012a, Planets around low-mass stars (PALMS). I. A substellar companion to the young M dwarf 1RXS J235133.3+312720. ApJ, 753, 142 {160, 358}CrossRefGoogle Scholar
Bowler, BP, Liu, MC, Shkolnik, EL, 2012b, Planets around low-mass stars (PALMS). II. A low-mass companion to the youngM dwarf GJ 3629 separated by 0.2 arcsec. ApJ, 756, 69 {358}CrossRefGoogle Scholar
Bowler, BP, Liu, MC, Shkolnik, EL, 2013, Planets around low-mass stars (PALMS). III. A young dusty L dwarf companion at the deuterium-burning limit. ApJ, 774, 55 {362, 763}CrossRefGoogle Scholar
Bowler, BP, Liu, MC, Shkolnik, EL, 2015, Planets around low-mass stars (PALMS). IV. The outer architecture of M dwarf planetary systems. ApJS, 216, 7 {149, 358}CrossRefGoogle Scholar
Box, GEP, Tiao, GC, 1992, Bayesian Inference in Statistical Analysis. Wiley {24}CrossRefGoogle Scholar
Boyajian, TS, LaCourse, DM, Rappaport, SA, et al., 2016, Planet Hunters. IX. KIC–8462852: where's the flux? MNRAS, 457, 3988–4004 {12, 179, 232, 233, 747}CrossRefGoogle Scholar
Boyajian, TS, van Belle, G, von Braun, K, 2014, Stellar diameters and temperatures. IV. Predicting stellar angular diameters. AJ, 147, 47 {378}CrossRefGoogle Scholar
Boyajian, TS, von Braun, K, Feiden, GA, et al., 2015, Stellar diameters and temperatures. VI. High angular resolution measurements of the transiting exoplanet host stars HD 189733 and HD 209458 and implications for models of cool dwarfs. MNRAS, 447, 846–857 {731, 732}CrossRefGoogle Scholar
Boyajian, TS, von Braun, K, van Belle, G, et al., 2013, Stellar diameters and temperatures. III. Main-sequence A, F, G ApJ, 771, 40 {378, 718, 724}CrossRefGoogle Scholar
Boyarchuk, AA, Shustov, BM, Savanov, IS, et al., 2016, Scientific problems addressed by the Spektr–UV space project (World Space Observatory–Ultraviolet). Astronomy Reports, 60, 1–42 {428}CrossRefGoogle Scholar
Boyce, JW, Tomlinson, SM, McCubbin, FM, et al., 2014, The lunar apatite paradox. Science, 344, 400–402 {666}CrossRefGoogle ScholarPubMed
Boynton, WV, 1975, Fractionation in the solar nebula: condensation of yttrium and the rare earth elements. Geochim. Cosmochim. Acta, 39, 569–584 {562}CrossRefGoogle Scholar
Boynton, WV, Feldman, WC, Squyres, SW, et al., 2002, Distribution of hydrogen in the near surface of Mars: evidence for subsurface ice deposits. Science, 297, 81–85 {667}CrossRefGoogle ScholarPubMed
Bozorgnia, N, Fortney, JJ, McCarthy, C, et al., 2006, The search for an atmospheric signature of the transiting exoplanet HD 149026 b. PASP, 118, 1249–1256 {729}CrossRefGoogle Scholar
Bozza, V, 2000, Caustics in special multiple lenses. A&A, 355, 423–432 {123}Google Scholar
Bozza, V, 2010, Microlensing with an advanced contour integration algorithm. MNRAS, 408, 2188–2200 {131}CrossRefGoogle Scholar
Bracewell, RN, 1976, Refinements to Drake's equation. Anaheim International Astronautical Federation Congress {644}
Bracewell, RN, 1978, Detecting nonsolar planets by a spinning infrared interferometer. Nature, 274, 780–781 {349, 351}CrossRefGoogle Scholar
Bracewell, RN, 1981, Manifestations of advanced civilisations. Life in the Universe, 343–350 {647}
Bracewell, RN, MacPhie, RH, 1979, Searching for nonsolar planets. Icarus, 38, 136–147 {349, 351}CrossRefGoogle Scholar
Brack, A, Horneck, G, Cockell, CS, et al., 2010, Origin and evolution of life on terrestrial planets. Astrobiology, 10, 69–76 {635}CrossRefGoogle ScholarPubMed
Bradley, JP, Harvey, RP, McSween, HY, et al., 1997, No ‘nanofossils’ in martian meteorite. Nature, 390, 454–456 {636}CrossRefGoogle ScholarPubMed
Braga-Ribas, F, Sicardy, B, Ortiz, JL, et al., 2014, A ring system detected around the Centaur (10199) Chariklo. Nature, 508, 72–75 {691}CrossRefGoogle Scholar
Brahm, R, Hartman, JD, Jordán, A, et al., 2018, HATS–43 b, HATS–44 b, HATS–45 b, and HATS–46 b: four short-period transiting giant planets in the Neptune–Jupiter mass range. AJ, 155, 112 {738}CrossRefGoogle Scholar
Brahm, R, Jones, M, Espinoza, N, et al., 2016a, An independent discovery of two hot Jupiters from the K2 mission. PASP, 128(12), 124402 {748}CrossRefGoogle Scholar
Brahm, R, Jordán, A, Bakos GÁ, et al., 2016b, HATS–17 b: a transiting compact warm Jupiter in a 16.3-day circular orbit. AJ, 151, 89 {737}CrossRefGoogle Scholar
Brahm, R, Jordán, A, Hartman, JD, et al., 2015, HATS–9 b and HATS–10 b: two compact hot Jupiters mission. AJ, 150, 33 {737}CrossRefGoogle Scholar
Brakensiek, J, Ragozzine, D, 2016, Efficient geometric probabilities of multi-transiting exoplanetary systems from CORBITS. ApJ, 821, 47 {197, 225}CrossRefGoogle Scholar
Bramall, DG, Schmoll, J, Tyas, LMG, et al., 2012, The SALT HRS spectrograph: instrument integration and laboratory test results. Ground-based and Airborne Instrumentation for Astronomy IV, volume 8446 of Proc. SPIE, 84460A {46}Google Scholar
Bramich, DM, Horne, K, 2006, Upper limits on the hot Jupiter fraction in the field of NGC 7789. MNRAS, 367, 1677–1685 {159}CrossRefGoogle Scholar
Bramich, DM, Horne, K, Bond, IA, et al., 2005, A survey for planetary transits in the field of NGC 7789. MNRAS, 359, 1096–1116 {159}CrossRefGoogle Scholar
Brandeker, A, 2011, Exposing the gas-braking mechanism of the β Pic disk. ApJ, 729, 122 {762}CrossRefGoogle Scholar
Brandenburg, A, Nordlund, A, Stein, RF, et al., 1995, Dynamo-generated turbulence and large-scale magnetic fields in a Keplerian shear flow. ApJ, 446, 741–754 {460}CrossRefGoogle Scholar
Brandl, BR, Feldt, M, Glasse, A, et al., 2014, METIS: the mid-infrared E–ELT imager and spectrograph. Ground-based and Airborne Instrumentation for Astronomy V, volume 9147 of Proc. SPIE, 914721 {346}Google Scholar
Brandl, BR, Lenzen, R, Pantin, E, et al., 2008, METIS: the mid-infrared E–ELT imager and spectrograph. SPIE Conf. Ser., volume 7014, 55 {346}Google Scholar
Brandner, W, Zinnecker, H, Alcalá, JM, et al., 2000, Time scales of disk evolution and planet formation: HST, adaptive optics, and ISO observations of weak-line and post-T Tauri stars. AJ, 120, 950–962 {441}CrossRefGoogle Scholar
Brandt, TD, Kuzuhara, M, McElwain, MW, et al., 2014a, The moving group targets of the SEEDS high-contrast imaging survey of exoplanets and disks: results and observations from the first three years. ApJ, 786, 1 {359}CrossRefGoogle Scholar
Brandt, TD, McElwain, MW, Turner, EL, et al., 2013, New techniques for high-contrast imaging with ADI: the ACORNS–ADI SEEDS data reduction pipeline. ApJ, 764, 183 {359}CrossRefGoogle Scholar
Brandt, TD, McElwain, MW, Turner, EL, 2014b, A statistical analysis of SEEDS and other high-contrast exoplanet surveys: massive planets or low-mass brown dwarfs? ApJ, 794, 159 {359}CrossRefGoogle Scholar
Brandt, TD, Spiegel, DS, 2014, Prospects for detecting oxygen, water, and chlorophyll on an exo-Earth [unpublished]. Proc. Nat. Acad. Sci., 111, 13278–13283 {353, 641}CrossRefGoogle ScholarPubMed
Branham, RL, 2012, Is Comet C/1853 E1 (Secchi) extrasolar? Astron. Nach., 333, 118 {693}CrossRefGoogle Scholar
Brassard, P, Fontaine, G, Wesemael, F, et al., 1992, Adiabatic properties of pulsating DA white dwarfs. IV. An extensive survey of the period structure of evolutionary models. ApJS, 81, 747–794 {407}CrossRefGoogle Scholar
Brasser, R, 2013, The formation of Mars: building blocks and accretion time scale. Space Sci. Rev., 174, 11–25 {657}CrossRefGoogle Scholar
Brasser, R, Bitsch, B, Matsumura, S, 2017, Saving super-Earths: interplay between pebble accretion and type I migration. AJ, 153, 222 {472}CrossRefGoogle Scholar
Brasser, R, Duncan, MJ, Levison, HF, 2006, Embedded star clusters and the formation of the Oort cloud. Icarus, 184, 59–82 {686}CrossRefGoogle Scholar
Brasser, R, Duncan, MJ, Levison, HF, et al., 2012a, Reassessing the formation of the inner Oort cloud in an embedded star cluster. Icarus, 217, 1–19 {686}CrossRefGoogle Scholar
Brasser, R, Heggie, DC, Mikkola, S, 2004, One to one resonance at high inclination. Cel. Mech. Dyn. Astron., 88, 123–152 {318}CrossRefGoogle Scholar
Brasser, R, Ida, S, Kokubo, E, 2013a, A dynamical study on the habitability of terrestrial exoplanets. I. Tidally evolved planet-satellite pairs. MNRAS, 428, 1673–1685 {621}CrossRefGoogle Scholar
Brasser, R, Ida, S, Kokubo, E, 2014, A dynamical study on the habitability of terrestrial exoplanets. II. The super-Earth HD 40307 g. MNRAS, 440, 3685–3700 {635, 719}CrossRefGoogle Scholar
Brasser, R, Matsumura, S, Ida, S, et al., 2016, Analysis of terrestrial planet formation by the Grand Tack Model: system architecture and tack location. ApJ, 821, 75 {698, 699}CrossRefGoogle Scholar
Brasser, R, Morbidelli, A, 2011, The terrestrial Planet V hypothesis as the mechanism for the origin of the late heavy bombardment. A&A, 535, A41 {669}Google Scholar
Brasser, R, Morbidelli, A, 2013, Oort cloud and scattered disk formation during a late dynamical instability in the solar system. Icarus, 225, 40–49 {697}CrossRefGoogle Scholar
Brasser, R, Morbidelli, A, Gomes, R, et al., 2009, Constructing the secular architecture of the solar system. II. The terrestrial planets. A&A, 507, 1053–1065 {696, 697}Google Scholar
Brasser, R, Schwamb, ME, Lykawka, PS, et al., 2012b, An Oort cloud origin for the high-inclination, high-perihelion Centaurs. MNRAS, 420, 3396–3402 {684, 687}CrossRefGoogle Scholar
Brasser, R, Walsh, KJ, Nesvorný, D, 2013b, Constraining the primordial orbits of the terrestrial planets. MNRAS, 433, 3417–3427 {697}CrossRefGoogle Scholar
Braude, SY, Sidorchuk, KM, Sidorchuk, MA, et al., 2006, Decameter discrete sources survey of the northern sky using the UTR–2 radio telescope. IAU Joint Discussion, volume 12, 44 {426}Google Scholar
Brauer, F, Dullemond, CP, Henning, T, 2007a, Dust particle growth in protoplanetary disks. Astron. Nach., 328, 654 {457}Google Scholar
Brauer, F, Dullemond, CP, Henning, T, 2008a, Coagulation, fragmentation and radial motion of solid particles in proto-planetary disks. A&A, 480, 859–877 {457, 458, 468, 471}Google Scholar
Brauer, F, Dullemond, CP, Johansen, A, et al., 2007b, Survival of the mm-cm size grain population observed in protoplanetary disks. A&A, 469, 1169–1182 {457}Google Scholar
Brauer, F, Henning, T, Dullemond, CP, 2008b, Planetesimal formation near the snow line inMRI-driven turbulent protoplanetary disks. A&A, 487, L1–L4 {460}Google Scholar
Bravo, JP, Roque, S, Estrela, R, et al., 2014, Wavelets: a powerful tool for studying rotation, activity, and pulsation in Kepler and CoRoT stellar light curves. A&A, 568, A34 {188}Google Scholar
Breckinridge, JB, Oppenheimer, BR, 2004, Polarisation effects in reflecting corona-graphs for white-light applications in astronomy. ApJ, 600, 1091–1098 {334}CrossRefGoogle Scholar
Breitschwerdt, D, Feige, J, Schulreich, MM, et al., 2016, The locations of recent supernovae near the Sun from modelling 60Fe transport. Nature, 532, 73–76 {651}CrossRefGoogle Scholar
Brenan, J, 2012, Planetary science: ubiquitous late veneer. Nature Geoscience, 5, 591–592 {669}CrossRefGoogle Scholar
Breslau, A, Steinhausen, M, Vincke, K, et al., 2014, Sizes of protoplanetary disks after star–disk encounters. A&A, 565, A130 {526}Google Scholar
Breslau, A, Vincke, K, Pfalzner, S, 2017, From star-disk encounters to numerical solutions for a subset of the restricted three-body problem. A&A, 599, A91 {526}Google Scholar
Breton, RP, Rappaport, SA, van Kerkwijk, MH, et al., 2012, KOI–1224: a fourth bloated hot white dwarf companion found with Kepler. ApJ, 748, 115 {239}CrossRefGoogle Scholar
Bretthorst, GL, 2001, Generalising the Lomb–Scargle periodogram: the nonsinusoidal case. Bayesian Inference and Maximum Entropy Methods in Science and Engineering, volume 568 of Amer. Inst. Phys. Conf. Ser., 246–251 {21}Google Scholar
Breuer, D, Plesa, AC, Tosi, N, et al., 2016, Water in the Martian interior: the geodynamical perspective. Meteor. Plan. Sci., 51, 1959–1992 {658}Google Scholar
Brewer, BJ, Donovan, CP, 2015, Fast Bayesian inference for exoplanet discovery in radial velocity data. MNRAS, 448, 3206–3214 {24, 715, 717}CrossRefGoogle Scholar
Brewer, JM, Fischer, DA, Madhusudhan, N, 2017, C/O and O/H ratios suggest some hot Jupiters originate beyond the snow line. AJ, 153, 83 {583, 732}CrossRefGoogle Scholar
Briceño, C, Luhman, KL, Hartmann, L, et al., 2002, The initial mass function in the Taurus star forming region. ApJ, 580, 317–335 {434}CrossRefGoogle Scholar
Brin, GD, 1983, The great silence: the controversy concerning extraterrestrial intelligent life. QJRAS, 24, 283–309 {647}Google Scholar
Brinkworth, CS, Marsh, TR, Dhillon, VS, et al., 2006, Detection of a period decrease in NN Ser with ULTRACAM: evidence for strong magnetic braking or an unseen companion. MNRAS, 365, 287–295 {114}CrossRefGoogle Scholar
Briot, D, 2012, A possible first use of the word astrobiology? Astrobiology, 12, 1154–1156 {618}CrossRefGoogle ScholarPubMed
Briot, D, Schneider, J, François, P, 2015, Pre-history of planet detections: focus on transits 1620–1995. Proceedings of colloquium ’Twenty years of giant exoplanets’, 113–116 {157}
Brisset, J, Heißelmann, D, Kothe, S, et al., 2016, Submillimeter-sized dust aggregate collision and growth properties: experimental study of a multi-particle system on a suborbital rocket. A&A, 593, A3 {468}Google Scholar
Brisset, J, Heißelmann, D, Kothe, S, 2017, Low-velocity collision behaviour of clusters composed of sub-millimetre sized dust aggregates. A&A, 603, A66 {468}Google Scholar
Brittain, SD, Carr, JS, Najita, JR, et al., 2014, NIR spectroscopy of the Herbig AeBe star HD 100546. III. Further evidence of an orbiting companion? ApJ, 791, 136 {762}CrossRefGoogle Scholar
Broeg, C, 2009, The full set of gas giant structures. I. On the origin of planetary masses and the planetary initial mass function. Icarus, 204, 15–31 {554}CrossRefGoogle Scholar
Broeg, C, BenzW, 2012, Giant planet formation: episodic impacts versus gradual core growth. A&A, 538, A90 {482}Google Scholar
Broeg, C, Wuchterl, G, 2007, The formation of HD 149026 b. MNRAS, 376, L62–L66 {729}CrossRefGoogle Scholar
Brogan, CL, Pérez, LM, Hunter, TR, et al., 2015, The 2014 ALMA Long Baseline Campaign: first results from high angular resolution observations toward the HL Tau region. ApJ, 808, L3 {371, 466, 520}Google Scholar
Brogi, M, de Kok, RJ, Albrecht, S, et al., 2016, Rotation and winds of exoplanet HD 189733 b measured with high-dispersion transmission spectroscopy. ApJ, 817, 106 {609, 731}CrossRefGoogle Scholar
Brogi, M, de Kok, RJ, Birkby, JL, et al., 2014, CO and H2O-vapour in the atmosphere of the non-transiting exoplanet HD 179949 b. A&A, 565, A124 {42, 43, 723}Google Scholar
Brogi, M, Keller, CU, de Juan Ovelar, M, et al., 2012a, Evidence for the disintegration of KIC–12557548 b. A&A, 545, L5 {231, 232, 747}Google Scholar
Brogi, M, Line, M, Bean, J, et al., 2017, A framework to combine low- and high-resolution spectroscopy for the atmospheres of transiting exoplanets. ApJ, 839, L2 {732}CrossRefGoogle Scholar
Brogi, M, Marzari, F, Paolicchi, P, 2009, Dynamical stability of the inner belt around ɛ r Eri. A&A, 499, L13–L16 {715}Google Scholar
Brogi, M, Snellen, IAG, de Kok, RJ, et al., 2012b, The signature of orbital motion from the day-side of the planet τ Boo b. Nature, 486, 502–504 {11, 42, 43, 613, 714}CrossRefGoogle Scholar
Brogi, M, Snellen, IAG, de Kok, RJ, 2013, Detection of molecular absorption in the day-side of exoplanet 51 Peg b? ApJ, 767, 27 {42, 43, 715}CrossRefGoogle Scholar
Bromley, BC, 1992, Detecting faint echoes in stellar-flare light curves. PASP, 104, 1049–1053 {234}CrossRefGoogle Scholar
Bromley, BC, Kenyon, SJ, 2006, A hybrid N-body-coagulation code for planet formation. AJ, 131, 2737–2748 {469, 476}CrossRefGoogle Scholar
Bromley, BC, Kenyon, SJ, 2011a, Migration of planets embedded in a circumstellar disk. ApJ, 735, 29 {519}CrossRefGoogle Scholar
Bromley, BC, Kenyon, SJ, 2011b, A new hybrid N-body coagulation code for the formation of gas giant planets. ApJ, 731, 101 {476, 481}CrossRefGoogle Scholar
Bromley, BC, Kenyon, SJ, 2013, Migration of small moons in Saturn's rings. ApJ, 764, 192 {476}CrossRefGoogle Scholar
Bromley, BC, Kenyon, SJ, 2014, The fate of scattered planets. ApJ, 796, 141 {525, 687}CrossRefGoogle Scholar
Bromley, BC, Kenyon, SJ, 2015, Planet formation around binary stars: Tatooine made easy. ApJ, 806, 98 {549, 550, 551, 552}CrossRefGoogle Scholar
Bromley, BC, Kenyon, SJ, 2016, Making Planet Nine: a scattered giant in the outer solar system. ApJ, 826, 64 {687}CrossRefGoogle Scholar
Bromley, BC, Kenyon, SJ, 2017, Terrestrial planet formation: dynamical shake-up and the lowmass of Mars. AJ, 153, 216 {694}CrossRefGoogle Scholar
Brosch, N, Balabanov, V, Behar, E, 2014, Small observatories for the ultraviolet. Ap&SS, 354, 205–209 {187}Google Scholar
Brothwell, RD, Watson, CA, Hébrard, G, et al., 2014, A window on exoplanet dynamical histories: Rossiter–McLaughlin observations of WASP–13 b and WASP–32 b. MNRAS, 440, 3392–3401 {253, 753, 754}CrossRefGoogle Scholar
Broucke, RA, 2001, Stable orbits of planets of a binary star system in the three-dimensional restricted problem. Cel. Mech. Dyn. Astron., 81, 321–341 {549}CrossRefGoogle Scholar
Brouwer, D, Clemence, GM, 1961, Methods of Celestial Mechanics. Academic Press, New York {511, 693}Google Scholar
Brouwer, D, vanWoerkom, AJJ, 1950, The secular variations of the orbital elements of the principal planets. Astronomical papers prepared for the use of the American Ephemeris and Nautical Almanac, 13, 81–107 {693}Google Scholar
Brovchenko, I, Oleinikova, A, 2008, Multiple phases of liquid water. ChemPhysChem, 9(18), 2660–2675 {567}CrossRefGoogle ScholarPubMed
Brown, AGA, Portegies Zwart, SF, Bean, J, 2010a, The quest for the Sun's siblings: an exploratory search in the Hipparcos Catalogue. MNRAS, 407, 458–464 {406}CrossRefGoogle Scholar
Brown, DJA, 2014a, Discrepancies between isochrone fitting and gyrochronology for exoplanet host stars? MNRAS, 442, 1844–1862 {383}CrossRefGoogle Scholar
Brown, DJA, Collier Cameron, A, Anderson, DR, et al., 2012a, Rossiter–McLaughlin effect measurements for WASP–16, WASP–25 and WASP–31. MNRAS, 423, 1503–1520 {253, 753, 754}CrossRefGoogle Scholar
Brown, DJA, Collier Cameron, A, Díaz, RF, et al., 2012b, Analysis of spin–orbit alignment in theWASP–32, WASP–38, and HAT–P–27/WASP–40 systems. ApJ, 760, 139 {252, 737, 754, 755}CrossRefGoogle Scholar
Brown, DJA, Collier Cameron, A, Hall, C, et al., 2011a, Are falling planets spinning up their host stars? MNRAS, 415, 605–618 {166, 542, 753, 754}CrossRefGoogle Scholar
Brown, DJA, Triaud, AHMJ, Doyle, AP, et al., 2017a, Rossiter–McLaughlin models and their effect on estimates of stellar rotation, illustrated using six WASP systems. MNRAS, 464, 810–839 {249, 253, 755, 756}CrossRefGoogle Scholar
Brown, EW, 1900, A possible explanation of the sun spot period. MNRAS, 60, 599–605 {656}CrossRefGoogle Scholar
Brown, JC, Veras, D, Gänsicke, BT, 2017b, Deposition of steeply infalling debris around white dwarf stars. MNRAS, 468, 1575–1593 {417}CrossRefGoogle Scholar
Brown, JM, Blake, GA, Dullemond, CP, et al., 2007, Cold disks: Spitzer spectroscopy of disks around young stars with large gaps. ApJ, 664, L107–L110 {465}CrossRefGoogle Scholar
Brown, JM, Blake, GA, Qi, C, et al., 2009, Evidence for dust clearing through resolved submillimeter imaging. ApJ, 704, 496–502 {465}CrossRefGoogle Scholar
Brown, ME, 2001a, The inclination distribution of the Kuiper belt. AJ, 121, 2804–2814 {685}CrossRefGoogle Scholar
Brown, ME, 2013, The density of mid-sized Kuiper belt object 2002 UX25 and the formation of the dwarf planets. ApJ, 778, L34 {685}CrossRefGoogle Scholar
Brown, ME, Batygin, K, 2016, Observational constraints on the orbit and location of Planet Nine in the outer solar system. ApJ, 824, L23 {687}CrossRefGoogle Scholar
Brown, ME, Trujillo, C, Rabinowitz, D, 2004, Discovery of a candidate inner Oort cloud planetoid. ApJ, 617, 645–649 {686}CrossRefGoogle Scholar
Brown, RA, 2004, New information from radial velocity data sets. ApJ, 610, 1079–1092 {23}CrossRefGoogle Scholar
Brown, RA, 2005, Single-visit photometric and obscurational completeness. ApJ, 624, 1010–1024 {338}CrossRefGoogle Scholar
Brown, RA, 2009a, On the completeness of reflex astrometry on extrasolar planets near the sensitivity limit. ApJ, 699, 711–715 {100}CrossRefGoogle Scholar
Brown, RA, 2009b, Photometric orbits of extrasolar planets. ApJ, 702, 1237–1249 {237}CrossRefGoogle Scholar
Brown, RA, 2011, Density estimation for projected exoplanet quantities. ApJ, 733, 68 {44}CrossRefGoogle Scholar
Brown, RA, 2014b, Faint detection of exoplanets in microlensing surveys. ApJ, 788, 192 {131}CrossRefGoogle Scholar
Brown, RA, 2015a, Science parametrics for missions to search for Earth-like exoplanets by direct imaging. ApJ, 799, 87 {353}CrossRefGoogle Scholar
Brown, RA, 2015b, Truemasses of radial velocity exoplanets. ApJ, 805, 188 {44}CrossRefGoogle Scholar
Brown, RA, 2017, On the eccentricity of Proxima Cen b. ApJ, 844, 100 {714}CrossRefGoogle Scholar
Brown, RA, Burrows, CJ, Casertano, S, et al., 2003, The 4-m space telescope for investigating extrasolar Earth-like planets in starlight: TPF is HST2. SPIE Conf. Ser., volume 4854, 95–107 {353}Google Scholar
Brown, RA, Soummer, R, 2010, New completeness methods for estimating exoplanet discoveries by direct detection. ApJ, 715, 122–131 {339, 358}CrossRefGoogle Scholar
Brown, RH, Twiss, RQ, 1958, Interferometry of the intensity fluctuations in light. III. Applications to astronomy. Phil. Trans. Soc. London A, 248, 199–221 {353}Google Scholar
Brown, SP, Mead, AJ, Forgan, DH, et al., 2014, Photosynthetic potential of planets in 3:2 spin–orbit resonances. Int. J. Astrobiol., 13, 279–289 {629}CrossRefGoogle Scholar
Brown, TM, 2001b, Transmission spectra as diagnostics of extrasolar giant planet atmospheres. ApJ, 553, 1006–1026 {250, 284, 591, 731}CrossRefGoogle Scholar
Brown, TM, 2003, Expected detection and false alarm rates for transiting Jovian planets. ApJ, 593, L125–L128 {155}CrossRefGoogle Scholar
Brown, TM, 2010, Radii of rapidly rotating stars, with application to transiting-planet hosts. ApJ, 709, 535–545 {307}CrossRefGoogle Scholar
Brown, TM, Baliber, N, Bianco, FB, et al., 2013, Las Cumbres Observatory Global Telescope Network. PASP, 125, 1031–1055 {140}CrossRefGoogle Scholar
Brown, TM, Charbonneau, D, 2000, The STARE project: a transit search for hot Jupiters. Disks, Planetesimals, and Planets, volume 219 of ASP Conf. Ser., 584–589 {169}
Brown, TM, Charbonneau, D, Gilliland, RL, et al., 2001, HST time-series photometry of the transiting planet of HD 209458. ApJ, 552, 699–709 {185, 187, 213, 217, 269, 278, 281, 378, 608, 610, 731}CrossRefGoogle Scholar
Brown, TM, Gilliland, RL, 1994, Asteroseismology. ARA&A, 32, 37–82 {407}Google Scholar
Brown, TM, Gilliland, RL, Noyes, RW, et al., 1991, Detection of possible p-mode oscillations on Procyon. ApJ, 368, 599–609 {312}CrossRefGoogle Scholar
Brown, TM, Kotak, R, Horner, SD, et al., 1998a, Exoplanets or dynamic atmospheres? The radial velocity and line shape variations of 51 Peg and τ Boo. ApJS, 117, 563–585 {51, 713, 715}CrossRefGoogle Scholar
Brown, TM, Kotak, R, Horner, SD, 1998b, A search for line shape and depth variations in 51 Peg and τ Boo. ApJ, 494, L85–L88 {51, 713, 715}CrossRefGoogle Scholar
Brown, TM, Latham, DW, Everett, ME, et al., 2011b, Kepler Input Catalog: photometric calibration and stellar classification. AJ, 142, 112 {175, 176, 307, 390}CrossRefGoogle Scholar
Brown, TM, Libbrecht, KG, Charbonneau, D, 2002, A search for CO absorption in the transmission spectrumof HD 209458 b. PASP, 114, 826–832 {609, 610, 731}CrossRefGoogle Scholar
Brown, TM, Noyes, RW, Nisenson, P, et al., 1994, The AFOE: a spectrograph for precise Doppler studies. PASP, 106, 1285–1297 {46}CrossRefGoogle Scholar
Brown, TM, Sahu, K, Anderson, J, et al., 2010b, The WFC3 Galactic bulge treasury program: metallicity estimates for the stellar population and exoplanet hosts. ApJ, 725, L19–L23 {388}CrossRefGoogle Scholar
Brucalassi, A, Grupp, F, Kellermann, H, et al., 2016a, Stability of the FOCES spectrograph using an astro-frequency comb as calibrator. Ground-based and Airborne Instrumentation for Astronomy VI, volume 9908 of Proc. SPIE, 99085W {33}Google Scholar
Brucalassi, A, Koppenhoefer, J, Saglia, R, et al., 2017, Search for giant planets in M67. IV. Survey results. A&A, 603, A85 {61, 725}Google Scholar
Brucalassi, A, Pasquini, L, Saglia, R, et al., 2014, Three planetary companions around M67 stars. A&A, 561, L9 {56, 725}Google Scholar
Brucalassi, A, Pasquini, L, Saglia, R, 2016b, Search for giant planets in M67. III. Excess of hot Jupiters in dense open clusters. A&A, 592, L1 {61, 725}Google Scholar
Brucato, JR, Nuth JA, III, 2010, Laboratory studies of simple dust analogues in astrophysical environments. Protoplanetary Dust: Astrophysical and Cosmochemical Perspectives, 128–160, Cambridge University Press {468}Google Scholar
BruckSyal, M, Rovny, J, Owen, JM, et al., 2016, Excavating Stickney crater at Phobos. Geophys. Res. Lett., 43, 10 {689}Google Scholar
Brugamyer, E, Dodson-Robinson, SE, Cochran, WD, et al., 2011, Si and O abundances in planet-host stars. ApJ, 738, 97 {389, 397}CrossRefGoogle Scholar
Brugger, B, Mousis, O, Deleuil, M, et al., 2016, Possible internal structures and compositions of Proxima Cen b. ApJ, 831, L16 {714}CrossRefGoogle Scholar
Brugger, B, Mousis, O, Deleuil, M, 2017, Constraints on super-Earth interiors from stellar abundances. ApJ, 850, 93 {714, 734, 739}CrossRefGoogle Scholar
Brune, RA, Cobb, CL, Dewitt, BS, et al., 1976, Gravitational deflection of light: solar eclipse of 30 June 1973. I. Description of procedures and final result. AJ, 81, 452–454 {120}Google Scholar
Brunini, A, 2006, Origin of the obliquities of the giant planets in mutual interactions in the early solar system. Nature, 440, 1163–1165 {681}CrossRefGoogle ScholarPubMed
Brunini, A, Benvenuto, OG, 2008, On oligarchic growth of planets in protoplanetary disks. Icarus, 194, 800–810 {475}CrossRefGoogle Scholar
Brunini, A, Cionco, RG, 2005, The origin and nature of Neptune-like planets orbiting close to solar type stars. Icarus, 177, 264–268 {500}CrossRefGoogle Scholar
Brunngräber, R, Wolf, S, Kirchschlager, F, et al., 2017, The influence of dust grain porosity on the analysis of debris disk observations. MNRAS, 464, 4383–4389 {495}CrossRefGoogle Scholar
Brunngräber, R, Wolf, S, Ratzka, T, et al., 2016, DR Tau: temporal variability of the brightness distribution in the potential planet-forming region. A&A, 585, A100 {463}Google Scholar
Bruno, G, Almenara, JM, Barros, SCC, et al., 2015, SOPHIE velocimetry of Kepler transit candidates. XIV. A joint photometric, spectroscopic, and dynamical analysis of the Kepler–117 system. A&A, 573, A124 {62, 743}Google Scholar
Bruno, G, Deleuil, M, Almenara, JM, et al., 2016, Disentangling planetary and stellar activity features in the CoRoT–2 light curve. A&A, 595, A89 {197, 733}Google Scholar
Bruno, G, Lewis, NK, Stevenson, KB, et al., 2018, A comparative study of WASP–67 b and HAT–P–38 b from HST–WFC3 data. AJ, 155, 55 {737, 756}CrossRefGoogle Scholar
Bruntt, H, Basu, S, Smalley, B, et al., 2012, Fundamental parameters and detailed abundance patterns from spectroscopy of 93 solar-type Kepler targets. MNRAS, 423, 122–131 {390}CrossRefGoogle Scholar
Bruntt, H, Deleuil, M, Fridlund, M, et al., 2010, Improved stellar parameters of CoRoT–7: a star hosting two super Earths. A&A, 519, A51 {733}Google Scholar
Bruntt, H, Grundahl, F, Tingley, B, et al., 2003, A search for planets in the old open cluster NGC 6791. A&A, 410, 323–335 {159}Google Scholar
Brush, SG, 1990, Theories of the origin of the solar system 1956–1985. Reviews of Mod-ern Physics, 62, 43–112 {450}Google Scholar
Bryan, ML, Alsubai, KA, Latham, DW, et al., 2012, Qatar–2: a K dwarf orbited by a transiting hot Jupiter and a more massive companion in an outer orbit. ApJ, 750, 84 {168, 304, 750}CrossRefGoogle Scholar
Bryan, ML, Bowler, BP, Knutson, HA, et al., 2016a, Searching for scatterers: high-contrast imaging of young stars hosting wide-separation planetary-mass companions. ApJ, 827, 100 {764}CrossRefGoogle Scholar
Bryan, ML, Knutson, HA, Howard, AW, et al., 2016b, Statistics of long-period gas giant planets in known planetary systems. ApJ, 821, 89 {60}CrossRefGoogle Scholar
Bryden, G, Beichman, CA, Rieke, GH, et al., 2006, Spitzer–MIPS limits on asteroidal dust in the pulsar planetary systemPSR B1257+12. ApJ, 646, 1038–1042 {107}CrossRefGoogle Scholar
Bryden, G, Chen, X, Lin, DNC, et al., 1999, Tidally-induced gap formation in proto-stellar disks: gap clearing and suppression of protoplanetary growth. ApJ, 514, 344–367 {493}CrossRefGoogle Scholar
Bryden, G, Rozyczka, M, Lin, DNC, et al., 2000, On the interaction between protoplan-ets and protostellar disks. ApJ, 540, 1091–1101 {507}CrossRefGoogle Scholar
Bryson, ST, Jenkins, JM, Gilliland, RL, et al., 2013, Identification of background false positives from Kepler data. PASP, 125, 889–923 {197}CrossRefGoogle Scholar
Bryson, ST, Jenkins, JM, Klaus, TC, et al., 2010a, Selecting pixels for Kepler down-link. Software and Cyberinfrastructure for Astronomy, volume 7740 of Proc. SPIE, 77401D {175}Google Scholar
Bryson, ST, Tenenbaum, P, Jenkins, JM, et al., 2010b, The Kepler pixel response function. ApJ, 713, L97–L102 {175}CrossRefGoogle Scholar
Bu, DF, Shang, H, Yuan, F, 2013, The effects of viscosity on circumplanetary disks. Res. Astron. Astrophys., 13, 71–86 {463}CrossRefGoogle Scholar
Buccino, AP, Lemarchand, GA, Mauas, PJD, 2006, Ultraviolet radiation constraints around the circumstellar habitable zones. Icarus, 183, 491–503 {628}CrossRefGoogle Scholar
Buccino, AP, Lemarchand, GA, Mauas, PJD, 2007, Ultraviolet habitable zones around M stars. Icarus, 192, 582–587 {627, 628}CrossRefGoogle Scholar
Buccino, AP, Mauas, PJD, Lemarchand, GA, 2002, Ultraviolet radiation and habitable zones. Origins Life Evol. Biosphere, 32(542-548) {628}Google Scholar
Buccino, AP, Mauas, PJD, Lemarchand, GA, 2004, Ultraviolet radiation in different stellar systems. Bioastronomy 2002: Life Among the Stars, volume 213 of IAU Symp., 97–100 {628}Google Scholar
Buchhave, LA, Bakos GÁ, Hartman, JD, et al., 2010, HAT–P–16 b: a 4 Jupiter-mass planet transiting a bright star on an eccentric orbit. ApJ, 720, 1118–1125 {736}CrossRefGoogle Scholar
Buchhave, LA, Bakos GÁ, Hartman, JD, 2011a, HAT–P–28 b and HAT–P–29 b: two sub-Jupiter mass transiting planets. ApJ, 733, 116 {737}CrossRefGoogle Scholar
Buchhave, LA, Bizzarro, M, Latham, DW, et al., 2014, Three regimes of extrasolar planet radius inferred from host star metallicities. Nature, 509, 593–595 {308, 463}CrossRefGoogle ScholarPubMed
Buchhave, LA, Dressing, CD, Dumusque, X, et al., 2016, A 1.9R⊕ rocky planet and the discovery of a non-transiting planet in the Kepler–20 system. AJ, 152, 160 {602, 740}CrossRefGoogle Scholar
Buchhave, LA, Latham, DW, 2015, The metallicities of starswith and without transiting planets. ApJ, 808, 187 {378}CrossRefGoogle Scholar
Buchhave, LA, Latham, DW, Carter, JA, et al., 2011b, Kepler–14 b: a massive hot Jupiter transiting an F star in a close visual binary. ApJS, 197, 3 {739}CrossRefGoogle Scholar
Buchhave, LA, Latham, DW, Johansen, A, et al., 2012, An abundance of small exo-planets around stars with a wide range of metallicities. Nature, 486, 375–377 {177, 290, 296, 308, 463}CrossRefGoogle Scholar
Budaj, J, 2011, The reflection effect in interacting binaries or in planet–star systems. AJ, 141, 59 {234, 730, 752, 753, 754}CrossRefGoogle Scholar
Budaj, J, 2013, Light-curve analysis of KIC–12557548 b: an extrasolar planet with a comet-like tail. A&A, 557, A72 {232, 747}Google Scholar
Budaj, J, 2014, Light-curve analysis of KIC–12557548 b: an exoplanetwith a comet-like tail. Contributions of the Astronomical Observatory Skalnate Pleso, 43, 409–409 {232, 747}Google Scholar
Budaj, J, Hubeny, I, Burrows, A, 2012, Day- and night-side core cooling of a strongly irradiated giant planet. A&A, 537, A115 {591}Google Scholar
Budaj, J, Kocifaj, M, Salmeron, R, et al., 2015, Tables of phase functions, opacities, albe-dos, equilibriumtemperatures, and radiative accelerations of dust grains in exo-planets. MNRAS, 454, 2–27 {570}CrossRefGoogle Scholar
Budding, E, 1977, The interpretation of cyclical photometric variations in certain dwarf ME-type stars. Ap&SS, 48, 207–223 {212}Google Scholar
Budding, E, Püsküllü Ç, Rhodes, MD, et al., 2016a, Analysis of the exoplanet containing system Kepler–91. Ap&SS, 361, 17 {742}Google Scholar
Budding, E, Rhodes, MD, Püsküllü Ç, et al., 2016b, Photometric analysis of the system Kepler–1. Ap&SS, 361, 346 {751}Google Scholar
Budyko, MI, 1969, The effect of solar radiation variations on the climate of the Earth. Tellus, 21, 611–619 {630}CrossRefGoogle Scholar
Buenzli, E, Schmid, HM, 2009, A grid of polarisation models for Rayleigh scattering planetary atmospheres. A&A, 504, 259–276 {246}Google Scholar
Buffington, A, Crawford, FS, Muller, RA, et al., 1977, First observatory results with an image-sharpening telescope. J. Opt. Soc. Amer., 67, 304–305 {331}Google Scholar
Buhler, PB, Knutson, HA, Batygin, K, et al., 2016, Dynamical constraints on the core mass of hot Jupiter HAT–P–13 b. ApJ, 821, 26 {736}CrossRefGoogle Scholar
BukhariSyed, M, Blum, J, Wahlberg Jansson, K, et al., 2017, The role of pebble fragmentation in planetesimal formation. I. Experimental study. ApJ, 834, 145 {472}Google Scholar
Bulger, J, Hufford, T, Schneider, A, et al., 2013, Submillimeter observations of IRAS and WISE debris disk candidates. A&A, 556, A119 {493}Google Scholar
Bullard, E, Gellman, H, 1954, Homogeneous dynamos and terrestrial magnetism. Phil. Trans. Soc. London A, 247, 213–278 {663}Google Scholar
Bundy, KA, Marcy, GW, 2000, A search for transit effects in spectra of 51 Peg and HD 209458. PASP, 112, 1421–1425 {715, 731}CrossRefGoogle Scholar
Burbidge, EM, Burbidge, GR, Fowler, WA, et al., 1957, Synthesis of the elements in stars. Reviews of Modern Physics, 29, 547–650 {398, 400, 630}CrossRefGoogle Scholar
Burdanov, AY, Benni, P, Krushinsky, VV, et al., 2016, First results of the Kourovka Planet Search: discovery of transiting exoplanet candidates in the first three target fields. MNRAS, 461, 3854–3863 {182}CrossRefGoogle Scholar
Burdanov, AY, Popov, AA, Krushinsky, VV, et al., 2013, Two transiting exoplanet candidates in Cygnus from the MASTER project. Peremennye Zvezdy, 33, 2 {182}Google Scholar
Burgasser, AJ, 2007, The physical properties of HD3651 b: an extrasolar nemesis? ApJ, 658, 617–621 {718}CrossRefGoogle Scholar
Burgasser, AJ, Cruz, KL, Cushing, M, et al., 2010a, SpeX spectroscopy of unresolved very low mass binaries. I. Identification of 17 candidate binaries straddling the L dwarf/T dwarf transition. ApJ, 710, 1142–1169 {437, 438}CrossRefGoogle Scholar
Burgasser, AJ, Kirkpatrick, JD, Brown, ME, et al., 2002a, The spectra of T dwarfs. I. Near-infrared data and spectral classification. ApJ, 564, 421–451 {436}CrossRefGoogle Scholar
Burgasser, AJ, Kirkpatrick, JD, Burrows, A, et al., 2003a, The first sub-stellar subdwarf? Discovery of a metal-poor L dwarf with halo kinematics. ApJ, 592, 1186–1192 {435}CrossRefGoogle Scholar
Burgasser, AJ, Kirkpatrick, JD, Cruz, KL, et al., 2006, HST–NICMOS observations of T dwarfs: brown dwarf multiplicity and new probes of the L/T transition. ApJS, 166, 585–612 {437}CrossRefGoogle Scholar
Burgasser, AJ, Kirkpatrick, JD, McElwain, MW, et al., 2003b, The 2MASS wide-field T dwarf search. I. Discovery of a bright T dwarf within 10 pc of the Sun. AJ, 125, 850–857 {432}CrossRefGoogle Scholar
Burgasser, AJ, Kirkpatrick, JD, McGovern, MR, et al., 2004, S Ori 70: just a foreground field brown dwarf? ApJ, 604, 827–831 {447}CrossRefGoogle Scholar
Burgasser, AJ, Kirkpatrick, JD, Reid, IN, et al., 2003c, Binarity in brown dwarfs: T dwarf binaries discovered with the HST–WFPC2. ApJ, 586, 512–526 {435}CrossRefGoogle Scholar
Burgasser, AJ, Logsdon, SE, Gagné, J, et al., 2015, The brown dwarf kinematics project (BDKP). IV. Radial velocities of 85 late-M and L dwarfs. ApJS, 220, 18 {434, 435}CrossRefGoogle Scholar
Burgasser, AJ, Looper, DL, Kirkpatrick, JD, et al., 2008, Clouds, gravity, and metallicity in blue L dwarfs: the case of 2MASS J11263991-5003550. ApJ, 674, 451-465 {438}CrossRefGoogle Scholar
Burgasser, AJ, Lopez, MA, Mamajek, EE, et al., 2016, The first brown dwarf/planetary-mass object in the 32 Ori group. ApJ, 820, 32 {446}CrossRefGoogle Scholar
Burgasser, AJ, Marley, MS, Ackerman, AS, et al., 2002b, Evidence of cloud disruption in the L/T dwarf transition. ApJ, 571, L151–L154 {437, 438}CrossRefGoogle Scholar
Burgasser, AJ, Sheppard, SS, Luhman, KL, 2013, Resolved near-infrared spectroscopy of WISE 1049–5319AB: a flux-reversal binary at the L dwarf/T dwarf transition. ApJ, 772, 129 {437, 440}CrossRefGoogle Scholar
Burgasser, AJ, Simcoe, RA, Bochanski, JJ, et al., 2010b, Clouds in the coldest brown dwarfs: FIRE spectroscopy of Ross 458C. ApJ, 725, 1405–1420 {362, 436, 764}CrossRefGoogle Scholar
Burgdorf, MJ, Bramich, DM, Dominik, M, et al., 2007, Exoplanet detection via micro-lensing with RoboNet–1.0. Planet. Space Sci., 55, 582–588 {140}CrossRefGoogle Scholar
Burkart, J, Quataert, E, Arras, P, et al., 2012, Tidal asteroseismology: Kepler's KOI–54. MNRAS, 421, 983–1006 {230}CrossRefGoogle Scholar
Burke, BF, Franklin, KL, 1955, Observations of a variable radio source associated with the planet Jupiter. J. Geophys. Res., 60, 213–217 {426}CrossRefGoogle Scholar
Burke, CJ, 2008, Impact of orbital eccentricity on the detection of transiting extrasolar planets. ApJ, 679, 1566–1573 {205, 209}CrossRefGoogle Scholar
Burke, CJ, Bryson, ST, Mullally, F, et al., 2014, Planetary candidates observed by Kepler. IV. Planet sample from Q1–Q8 (22months). ApJS, 210, 19 {196, 197, 291}CrossRefGoogle Scholar
Burke, CJ, Christiansen, JL, Mullally, F, et al., 2015, Terrestrial planet occurrence rates for the Kepler GK dwarf sample. ApJ, 809, 8 {290}CrossRefGoogle Scholar
Burke, CJ, Gaudi, BS, DePoy, DL, et al., 2004, Survey for Transiting Extrasolar Planets in Stellar Systems (STEPSS). I. Fundamental parameters of the open cluster NGC 1245. AJ, 127, 2382–2397 {158, 159}CrossRefGoogle Scholar
Burke, CJ, Gaudi, BS, DePoy, DL, 2006, Survey for transiting extrasolar planets in stellar systems. III. A limit on the fraction of stars with planets in the open cluster NGC 1245. AJ, 132, 210–230 {159}CrossRefGoogle Scholar
Burke, CJ, McCullough, PR, 2014, Transit and radial velocity survey efficiency comparison for a habitable zone Earth. ApJ, 792, 79 {634}CrossRefGoogle Scholar
Burke, CJ, McCullough, PR, Bergeron, LE, et al., 2010, NICMOS observations of the transiting hot Jupiter XO–1 b. ApJ, 719, 1796–1806 {757}CrossRefGoogle Scholar
Burke, CJ, McCullough, PR, Valenti, JA, et al., 2007, XO–2 b: transiting hot Jupiter in a metal-rich common proper motion binary. ApJ, 671, 2115–2128 {169, 195, 210, 757}CrossRefGoogle Scholar
Burke, CJ, McCullough, PR, Valenti, JA, 2008, XO–5 b: a transiting Jupiter-sized planetwith a 4-day period. ApJ, 686, 1331–1340 {757}CrossRefGoogle Scholar
Burkert, A, Bate, MR, Bodenheimer, P, 1997, Protostellar fragmentation in a power-law density distribution. MNRAS, 289, 497–504 {442}CrossRefGoogle Scholar
Burkert, A, Ida, S, 2007, The separation/period gap in the distribution of extrasolar planets around stars with masses > 1.2M. ApJ, 660, 845–849 {259}CrossRefGoogle Scholar
Burkert, A, Lin, DNC, Bodenheimer, PH, et al., 2005, On the surface heating of synchronously spinning short-period Jovian planets. ApJ, 618, 512–523 {593}CrossRefGoogle Scholar
Burkhart, B, Loeb, A, 2017, The detectability of radio auroral emission from Proxima Cen b. ApJ, 849, L10 {714}CrossRefGoogle Scholar
Burleigh, MR, Clarke, FJ, Hodgkin, ST, 2002, Imaging planets around nearby white dwarfs. MNRAS, 331, L41–L45 {110, 412}CrossRefGoogle Scholar
Burleigh, MR, Hogan, E, Clarke, F, 2006, Direct imaging searches for planets around white dwarf stars. The Scientific Requirements for Extremely Large Telescopes, volume 232 of IAU Symp., 344–349 {415}Google Scholar
Burningham, B, 2014, Who wants a million brown dwarfs? Mem. Soc. Astron. Italiana, 85, 745 {431, 433}Google Scholar
Burningham, B, Cardoso, CV, Smith, L, et al., 2013, 76 T dwarfs from the UKIDSS LAS: kinematics and an updated space density. MNRAS, 433, 457–497 {432}CrossRefGoogle Scholar
Burningham, B, Leggett, SK, Homeier, D, et al., 2011, The properties of the T8.5p dwarf Ross 458C. MNRAS, 414, 3590–3598 {434, 438, 764}CrossRefGoogle Scholar
Burningham, B, Pinfield, DJ, Leggett, SK, et al., 2008, Exploring the substellar temperature regime down to ~550K. MNRAS, 391, 320–333 {436}CrossRefGoogle Scholar
Burns, BA, Campbell, DB, 1985, Radar evidence for cratering on Venus. J. Geo-phys. Res., 90, 3037–3047 {356}CrossRefGoogle Scholar
Burns, JA, 1975, The angularmomenta of solar system bodies: implications for asteroid strengths. Icarus, 25, 545–554 {679}CrossRefGoogle Scholar
Burns, JA, Lamy, PL, Soter, S, 1979, Radiation forces on small particles in the solar system. Icarus, 40, 1–48 {692}CrossRefGoogle Scholar
Burns, JA, Matthews, MS, 1986, Satellites. University of Arizona Press {651}Google Scholar
Burrows, A, 2005, A theoretical look at the direct detection of giant planets outside the solar system. Nature, 433, 261–268 {591}CrossRefGoogle Scholar
Burrows, A, 2014a, Highlights in the study of exoplanet atmospheres. Nature, 513, 345–352 {607, 614}CrossRefGoogle Scholar
Burrows, A, 2014b, Spectra as windows into exoplanet atmospheres. Proc. Nat. Acad. Sci., 111, 12601–12609 {284, 580, 581, 584, 588, 589, 590, 607, 614}CrossRefGoogle Scholar
Burrows, A, Budaj, J, Hubeny, I, 2008a, Theoretical spectra and light curves of close-in extrasolar giant planets and comparison with data. ApJ, 678, 1436–1457 {42, 243, 285, 579, 580, 585}CrossRefGoogle Scholar
Burrows, A, Burgasser, AJ, Kirkpatrick, JD, et al., 2002, Theoretical spectral models of T dwarfs at short wavelengths and their comparisonwith data. ApJ, 573, 394–417 {586}CrossRefGoogle Scholar
Burrows, A, Guillot, T, HubbardWB, et al., 2000a, On the radii of close-in giant planets. ApJ, 534, L97–L100 {302, 579}CrossRefGoogle Scholar
Burrows, A, Heng, K, Nampaisarn, T, 2011, The dependence of brown dwarf radii on atmospheric metallicity and clouds: theory and comparison with observations. ApJ, 736, 47 {198, 438}CrossRefGoogle Scholar
Burrows, A, Hubbard, WB, Lunine, JI, et al., 2001, The theory of brown dwarfs and extrasolar giant planets. Reviews of Modern Physics, 73, 719–765 {284, 340, 430, 436, 438, 579, 591}CrossRefGoogle Scholar
Burrows, A, Hubbard, WB, Saumon, D, et al., 1993, An expanded set of brown dwarf and very low mass star models. ApJ, 406, 158–171 {430, 452}CrossRefGoogle Scholar
Burrows, A, Hubeny, I, Budaj, J, et al., 2007a, Possible solutions to the radius anomalies of transiting giant planets. ApJ, 661, 502–514 {293, 303, 304, 485, 544, 579}CrossRefGoogle Scholar
Burrows, A, Hubeny, I, Budaj, J, 2007b, Theoretical spectral models of the planet HD 209458 b with a thermal inversion and water emission bands. ApJ, 668, L171–L174 {285, 579, 585, 590, 731}CrossRefGoogle Scholar
Burrows, A, Hubeny, I, Hubbard, WB, et al., 2004a, Theoretical radii of transiting giant planets: the case of OGLE–TR–56 b. ApJ, 610, L53–L56 {571, 749}CrossRefGoogle Scholar
Burrows, A, Hubeny, I, Sudarsky, D, 2005, A theoretical interpretation of the measurements of the secondary eclipses of TrES–1 and HD209458 b. ApJ, 625, L135–L138 {579, 731, 750}CrossRefGoogle Scholar
Burrows, A, Ibgui, L, Hubeny, I, 2008b, Optical albedo theory of strongly irradiated giant planets: the case of HD 209458 b. ApJ, 682, 1277–1282 {302, 591, 732}CrossRefGoogle Scholar
Burrows, A, Liebert, J, 1993, The science of brown dwarfs. Reviews of Modern Physics, 65, 301–336 {291, 438}CrossRefGoogle Scholar
Burrows, A, Marley, M, Hubbard, WB, et al., 1997, A nongray theory of extrasolar giant planets and brown dwarfs. ApJ, 491, 856–875 {330, 425, 430, 442, 446, 569, 579, 591}CrossRefGoogle Scholar
Burrows, A, Marley, MS, Sharp, CM, 2000b, The near-infrared and optical spectra of methane dwarfs and brown dwarfs. ApJ, 531, 438–446 {569, 570}CrossRefGoogle Scholar
Burrows, A, Rauscher, E, Spiegel, DS, et al., 2010, Photometric and spectral signatures of three-dimensional models of transiting giant exoplanets. ApJ, 719, 341–350 {579, 591, 615, 732}CrossRefGoogle Scholar
Burrows, A, Sharp, CM, 1999, Chemical equilibrium abundances in brown dwarf and extrasolar giant planet atmospheres. ApJ, 512, 843–863 {436, 578, 579, 586, 591}CrossRefGoogle Scholar
Burrows, A, Sudarsky, D, Hubbard, WB, 2003a, A theory for the radius of the transiting giant planet HD 209458 b. ApJ, 594, 545–551 {303, 595, 731}CrossRefGoogle Scholar
Burrows, A, Sudarsky, D, Hubeny, I, 2004b, Spectra and diagnostics for the direct detection of wide-separation extrasolar giant planets. ApJ, 609, 407–416 {330, 579, 591}CrossRefGoogle Scholar
Burrows, A, Sudarsky, D, Hubeny, I, 2006a, L and T dwarf models and the L to T transition. ApJ, 640, 1063–1077 {437, 438}CrossRefGoogle Scholar
Burrows, A, Sudarsky, D, Hubeny, I, 2006b, Theory for the secondary eclipse fluxes, spectra, atmospheres, and light curves of transiting extrasolar giant planets. ApJ, 650, 1140–1149 {285, 287, 579, 591}CrossRefGoogle Scholar
Burrows, A, Sudarsky, D, Lunine, JI, 2003b, Beyond the T dwarfs: theoretical spectra, colours, and detectability of the coolest brown dwarfs. ApJ, 596, 587–596 {340, 436, 437, 579, 589}CrossRefGoogle Scholar
Burrows, A, Volobuyev, M, 2003, Calculations of the far-wing line profiles of sodium and potassium in the atmospheres of substellar-mass objects. ApJ, 583, 985–995 {570}CrossRefGoogle Scholar
Burrows, JP, Weber, M, Buchwitz, M, et al., 1999, The Global Ozone Monitoring Experiment (GOME): mission concept and first scientific results. Journal of Atmospheric Sciences, 56, 151–175 {287}2.0.CO;2>CrossRefGoogle Scholar
Bursa, M, 1986, The Sun's flattening and its influence on planetary orbits. Bulletin of the Astronomical Institutes of Czechoslovakia, 37, 312–313 {258}Google Scholar
Burt, J, Vogt, SS, Butler, RP, et al., 2014, The Lick–Carnegie exoplanet survey: GJ 687 b: a Neptune-mass planet orbiting a nearby red dwarf. ApJ, 789, 114 {47, 717}CrossRefGoogle Scholar
Burton, JR, Watson, CA, Fitzsimmons, A, et al., 2014, Tidally distorted exoplanets: density corrections for short-period hot-Jupiters based solely on observable parameters. ApJ, 789, 113 {227, 754}CrossRefGoogle Scholar
Burton, JR, Watson, CA, Littlefair, SP, et al., 2012, z’-band ground-based detection of the secondary eclipse of WASP–19 b. ApJS, 201, 36 {166, 754}CrossRefGoogle Scholar
Burton, JR, Watson, CA, Rodríguez-Gil, P, et al., 2015a, Defocused transmission spectroscopy: a potential detection of sodium in the atmosphere of WASP–12 b. MNRAS, 446, 1071–1082 {189, 753}CrossRefGoogle Scholar
Burton, MG, 2010, Astronomy in Antarctica. A&A Rev., 18, 417–469 {347}Google Scholar
Burton, MG, Yang, J, Ichikawa, T, 2015b, Astronomy from the High Antarctic Plateau. Publication of Korean Astronomical Society, 30, 611–616 {347}CrossRefGoogle Scholar
Buscher, DF, Bakker, EJ, Coleman, TA, et al., 2006a, The Magdalena Ridge Observatory Interferometer: a high-sensitivity imaging array. SPIE Conf. Ser., volume 6307, 11 {348}Google Scholar
Buscher, DF, Boysen, RC, Dace, R, et al., 2006b, Design and testing of an innovative delay line for the MROI. SPIE Conf. Ser., volume 6268, 78 {348}Google Scholar
Bush, RI, Emilio, M, Kuhn, JR, 2010, On the constancy of the solar radius. III. ApJ, 716, 1381–1385 {40}CrossRefGoogle Scholar
Busse, FH, 1976, A simple model of convection in the Jovian atmosphere. Icarus, 29, 255–260 {595}CrossRefGoogle Scholar
Butkevich, AG, 2017, Astrometric exoplanet detectability and the Earth orbital motion. ArXiv e-prints {87}
Butkevich, AG, Lindegren, L, 2014, Rigorous treatment of barycentric stellar motion: perspective and light-time effects in astrometric and radial velocity data. A&A, 570, A62 {90}Google Scholar
Butler, BJ, Muhleman, DO, Slade, MA, 1993, Mercury: full-disk radar images and the detection and stability of ice at the north pole. J. Geophys. Res., 98, 15 {356}CrossRefGoogle Scholar
Butler, BJ, Wootten, A, Brown, RL, 2004a, Observing extrasolar planetary systems with ALMA. Planetary Systems in the Universe, volume 202 of IAU Symp., 442–444 {370, 371}Google Scholar
Butler, RP, Howard, AW, Vogt, SS, et al., 2009, Non-detection of the Neptune-mass planet reported around GJ 176. ApJ, 691, 1738–1743 {724}CrossRefGoogle Scholar
Butler, RP, Johnson, JA, Marcy, GW, et al., 2006a, A long-period Jupiter-mass planet orbiting the nearby M dwarf GJ 849. PASP, 118, 1685–1689 {57, 717}Google Scholar
Butler, RP, Marcy, GW, 1996, A planet orbiting 47 UMa. ApJ, 464, L153–156 {10, 50, 716}CrossRefGoogle Scholar
Butler, RP, Marcy, GW, 1998, The near term future of extrasolar planet searches. Brown Dwarfs and Extrasolar Planets, volume 134 of ASP Conf. Ser., 162–168 {36, 54}Google Scholar
Butler, RP, Marcy, GW, Fischer, DA, et al., 1999, Evidence for multiple companions to À And. ApJ, 526, 916–927 {25, 67, 69, 516, 713}CrossRefGoogle Scholar
Butler, RP, Marcy, GW, Vogt, SS, et al., 1998, A planet with a 3.1 d period around a solar twin. PASP, 110, 1389–1393 {723}CrossRefGoogle Scholar
Butler, RP, Marcy, GW, Vogt, SS, 2002, On the double-planet system around HD 83443. ApJ, 578, 565–572 {721}CrossRefGoogle Scholar
Butler, RP, Marcy, GW, Vogt, SS, 2003, Seven new Keck planets orbiting G and K dwarfs. ApJ, 582, 455–466 {70, 72, 75, 715, 719, 720, 721, 722}CrossRefGoogle Scholar
Butler, RP, Marcy, GW, Williams, E, et al., 1996, Attaining Doppler precision of 3ms-1. PASP, 108, 500–509 {31, 34}CrossRefGoogle Scholar
Butler, RP, Marcy, GW, Williams, E, 1997, Three new 51 Peg-type planets. ApJ, 474, L115–L118 {69, 71, 170, 713, 728}CrossRefGoogle Scholar
Butler, RP, Tinney, CG, Marcy, GW, et al., 2001, Two new planets from the Anglo–Australian planet search. ApJ, 555, 410–417 {71, 713, 719}CrossRefGoogle Scholar
Butler, RP, Vogt, SS, Laughlin, G, et al., 2017, The LCES Keck–HIRES precision radial velocity exoplanet survey. AJ, 153, 208 {54, 716}CrossRefGoogle Scholar
Butler, RP, Vogt, SS, Marcy, GW, et al., 2000, Planetary companions to the metal-rich stars BD–10 3166 and HD 52265. ApJ, 545, 504–511 {716, 720}CrossRefGoogle Scholar
Butler, RP, Vogt, SS, Marcy, GW, 2004b, A Neptune-mass planet orbiting the nearby M dwarf GJ 436. ApJ, 617, 580–588 {170, 500, 728}CrossRefGoogle Scholar
Butler, RP, Wright, JT, Marcy, GW, et al., 2006b, Catalogue of nearby exoplanets. ApJ, 646, 505–522 {27, 37, 50, 53, 63, 421, 718, 720, 721, 722, 723, 725}CrossRefGoogle Scholar
Butterley, T, Love, GD, Wilson, RW, et al., 2006, A Shack–Hartmann wavefront sensor projected on to the sky with reduced focal anisoplanatism. MNRAS, 368, 837–843 {332}CrossRefGoogle Scholar
Butters, OW, West, RG, Anderson, DR, et al., 2010, The first WASP public data release. A&A, 520, L10 {164}Google Scholar
Butterworth, AL, Aballain, O, Chappellaz, J, et al., 2004, Combined element (H and C) stable isotope ratios of methane in carbonaceous chondrites. MNRAS, 347, 807–812 {597}CrossRefGoogle Scholar
Butusov, KP, 1973, Svojstva simmetrii solnechnoj sistemy. Nekotoryje Problemy Issle-dovanija Vselennoj (Akademya Nauk SSSR, Leningrad) {510}
Buzasi, D, 2013, Stellar magnetic fields as a heating source for extrasolar giant planets. ApJ, 765, L25 {303}CrossRefGoogle Scholar
Buzasi, D, Lezcano, A, Preston, HL, 2016, Rotation, activity, and stellar obliquities in a large uniform sample of Kepler solar analogues. Journal of Space Weather and Space Climate, 6(27), A38 {310}CrossRefGoogle Scholar
Behounková, M, Tobie, G, Choblet, G, et al., 2011, Tidally-induced thermal runaways on extrasolar Earths: impact on habitability. ApJ, 728, 89 {544}CrossRefGoogle Scholar
Caballero, JA, 2010, Stars and brown dwarfs in the σ Orionis cluster. II. A proper motion study. A&A, 514, A18 {434}Google Scholar
Caballero, JA, Béjar, VJS, Rebolo, R, 2003, Variability of L dwarfs in the near infrared. Brown Dwarfs, volume 211 of IAU Symp., 455–458 {160}Google Scholar
Caballero, JA, Béjar, VJS, Rebolo, R, et al., 2004, Photometric variability of young brown dwarfs in the σ Ori open cluster. A&A, 424, 857–872 {444}Google Scholar
Caballero, JA, Cabrera-Lavers, A, García-ÁlvarezD, et al., 2012, Stars and brown dwarfs in the σ Orionis cluster. III. OSIRIS/GTC low-resolution spectroscopy of variable sources. A&A, 546, A59 {434}Google Scholar
Caballero, JA, Martín, EL, Dobbie, PD, et al., 2006, Are isolated planetary-mass objects really isolated? A brown dwarf-exoplanet system candidate in the σ Ori cluster. A&A, 460, 635–640 {447}Google Scholar
Caballero, JA, Rebolo, R, 2002, Variability in brown dwarfs: atmospheres and transits. Stellar Structure and Habitable Planet Finding, volume 485 of ESA SP, 261–264 {160}Google Scholar
Cabrera, B, Clarke, RM, Colling, P, et al., 1998, Detection of single infrared, optical, and ultraviolet photons using superconducting transition edge sensors. Applied Physics Letters, 73, 735–737 {183}CrossRefGoogle Scholar
Cabrera, J, Barros, SCC, Armstrong, D, et al., 2017, Disproving the validated planets K2-78b, K2-82b, and K2-92b. The importance of independently confirming planetary candidates. A&A, 606, A75 {748}Google Scholar
Cabrera, J, Bruntt, H, Ollivier, M, et al., 2010, Transiting exoplanets from the CoRoT space mission. XIII. CoRoT–13 b: a dense hot Jupiter in transit around a star with solar metallicity and super-solar lithiumcontent. A&A, 522, A110 {734}Google Scholar
Cabrera, J, Csizmadia, S, Erikson, A, et al., 2012, A study of the performance of the transit detection tool DST in space-based surveys: application of the CoRoT pipeline to Kepler data. A&A, 548, A44 {191}Google Scholar
Cabrera, J, Csizmadia, S, Lehmann, H, et al., 2014, The planetary system to KIC–11442793: a compact analogue to the solar system. ApJ, 781, 18 {12, 179, 270, 314, 321, 742}CrossRefGoogle Scholar
Cabrera, J, Csizmadia, S, Montagnier, G, et al., 2015, Transiting exoplanets from the CoRoT space mission. XXVII. CoRoT–28 b, a planet orbiting an evolved star, and CoRoT–29 b, a planet showing an asymmetric transit. A&A, 579, A36 {173, 216, 218, 734}Google Scholar
Cabrera, J, Fridlund, M, Ollivier, M, et al., 2009, Planetary transit candidates in CoRoT LRc01 field. A&A, 506, 501–517 {172, 191}Google Scholar
Cabrera, J, Schneider, J, 2007, Detecting companions to extrasolar planets using mutual events. A&A, 464, 1133–1138 {225, 276, 277, 280}Google Scholar
Cabrol, NA, 2016, Alien mindscapes: a perspective on the Search for Extraterrestrial Intelligence. Astrobiology, 16, 661–676 {643}CrossRefGoogle ScholarPubMed
Cáceres, C, Ivanov, VD, Minniti, D, et al., 2009, High cadence near infrared timing observations of extrasolar planets. I. GJ 436 b and XO–1 b. A&A, 507, 481–486 {269, 728, 757}Google Scholar
Cáceres, C, Ivanov, VD, Minniti, D, 2011, A ground-based Ks-band detection of the thermal emission from the transiting exoplanet WASP–4 b. A&A, 530, A5 {752}Google Scholar
Cáceres, C, Kabath, P, Hoyer, S, et al., 2014, Ground-based transit observations of the super-Earth GJ 1214 b. A&A, 565, A7 {735}Google Scholar
Cady, E, 2012, Design of mirrors and apodisation functions in phase-induced amplitude apodisation. ApJS, 201, 25 {335}CrossRefGoogle Scholar
Cady, E, Macintosh, B, Kasdin, NJ, et al., 2009, Shaped pupil design for the Gemini planet imager. ApJ, 698, 938–943 {334}CrossRefGoogle Scholar
Cady, E, McElwain, M, Kasdin, NJ, et al., 2011, A dual-mask coronagraph for observing faint companions to binary stars. PASP, 123, 333–340 {338}CrossRefGoogle Scholar
Cahoy, KL, Marley, MS, Fortney, JJ, 2010, Exoplanet albedo spectra and colours as a function of planet phase, separation, and metallicity. ApJ, 724, 189–214 {234}CrossRefGoogle Scholar
Cai, K, Pickett, MK, Durisen, RH, et al., 2010, Giant planet formation by disk instability: a comparison simulation with an improved radiative scheme. ApJ, 716, L176–L180 {488}CrossRefGoogle Scholar
Cai, MX, Kouwenhoven, MBN, Portegies Zwart, SF, et al., 2017, Stability of multi-planetary systems in star clusters. MNRAS, 470, 4337–4353 {526}Google Scholar
Cai, MX, Portegies Zwart, S, van Elteren, A, 2018, The signatures of the parental cluster on field planetary systems. MNRAS, 474, 5114–5121 {526}CrossRefGoogle Scholar
Cairns, IH, 2004, Solar, interplanetary, planetary, and related extrasolar system science for LOFAR. Planet. Space Sci., 52, 1423–1434 {426}CrossRefGoogle Scholar
Cajori, F, 1934, Newton's Principia, Book III, Proposition XIII. University of California Press {86}Google Scholar
Calandra, MF, Gil-Hutton, R, 2017, Cratering rate on Pluto produced by the inner trans-Neptunian population. A&A, 601, A116 {671}Google Scholar
CalchiNovati, S, Dall'Ora, M, Gould, A, et al., 2010, M31 pixel lensing event OAB–N2: a study of the lens proper motion. ApJ, 717, 987–994 {137}Google Scholar
CalchiNovati, S, Gould, A, Udalski, A, et al., 2015, Pathway to the Galactic distribution of planets: combined Spitzer and ground-based microlens parallax measurements of 21 single-lens events. ApJ, 804, 20 {134, 143}Google Scholar
CalchiNovati, S, Scarpetta, G, 2016, Microlensing parallax for observers in heliocentric motion. ApJ, 824, 109 {134}Google Scholar
Caldeira, K, Kasting, JF, 1992, The life span of the biosphere revisited. Nature, 360, 721–723 {624}CrossRefGoogle ScholarPubMed
Caldwell, DA, Borucki, WJ, Showen, RL, et al., 2004, Detecting extrasolar planet transits from the south pole. Bioastronomy 2002: Life Among the Stars, volume 213 of IAU Symp., 93–96 {171}Google Scholar
Caldwell, DA, Kolodziejczak, JJ, Van Cleve, JE, et al., 2010, Instrument performance in Kepler's first months. ApJ, 713, L92 {175, 196}CrossRefGoogle Scholar
Callebaut, DK, de Jager, C, Duhau, S, 2012, The influence of planetary attractions on the solar tachocline. J. Atmos. Sol. Terr. Phys., 80, 73–78 {656}CrossRefGoogle Scholar
Callegari, N, Ferraz-Mello, S, Michtchenko, TA, 2006, Dynamics of two planets in the 3:2 mean-motion resonance: application to the planetary system of the pulsar PSR B1257+12. Cel. Mech. Dyn. Astron., 94, 381–397 {107}CrossRefGoogle Scholar
Callegari, N, Rodríguez Á, 2013, Dynamics of rotation of super-Earths. Cel. Mech. Dyn. Astron., 116, 389–416 {605, 728}CrossRefGoogle Scholar
Calvet, N, D'Alessio, P, Hartmann, L, et al., 2002, Evidence for a developing gap in a 10 Myr old protoplanetary disk. ApJ, 568, 1008–1016 {465}CrossRefGoogle Scholar
Calvet, N, D'Alessio, P, Watson, DM, et al., 2005, Disks in transition in the Taurus population: Spitzer IRS spectra of GM Aur and DM Tau. ApJ, 630, L185–L188 {465}CrossRefGoogle Scholar
Cameron, AGW, 1966, The accumulation of chondritic material. Earth Planet. Sci. Lett., 1, 93–96 {653}CrossRefGoogle Scholar
Cameron, AGW, 1973, Accumulation processes in the primitive solar nebula. Icarus, 18, 407–450 {467}Google Scholar
Cameron, AGW, 1978a, Physics of the primitive solar accretion disk. Moon and Planets, 18, 5–40 {487}CrossRefGoogle Scholar
Cameron, AGW, 1978b, The primitive solar accretion disk and the formation of the planets. Origin of the Solar System, 49–74, Wiley {653}Google Scholar
Cameron, AGW, 1983, Origin of the atmospheres of the terrestrial planets. Icarus, 56, 195–201 {597, 600}CrossRefGoogle Scholar
Cameron, AGW, Benz, W, 1991, The origin of the moon and the single impact hypothesis. IV. Icarus, 92, 204–216 {664}CrossRefGoogle Scholar
Cameron, AGW, Decampli, WM, Bodenheimer, P, 1982, Evolution of giant gaseous protoplanets embedded in the primitive solar nebula. Icarus, 49, 298–312 {489}CrossRefGoogle Scholar
Cameron, AGW, Ward, WR, 1976, The origin of the Moon. LPI Science Conf Abstracts, volume 7, 120–122 {664}Google Scholar
Cameron, PB, Britton, MC, Kulkarni, SR, 2009, Precision astrometry with adaptive optics. AJ, 137, 83–93 {83}CrossRefGoogle Scholar
Cameron, RH, Schüssler, M, 2013, No evidence for planetary influence on solar activity. A&A, 557, A83 {656}Google Scholar
Campanella, G, 2011, Treating dynamical stability as an observable: a 5:2 mean motion resonance configuration for the extrasolar system HD 181433. MNRAS, 418, 1028–1038 {723}CrossRefGoogle Scholar
Campanella, G, Nelson, RP, Agnor, CB, 2013, Possible scenarios for eccentricity evolution in the extrasolar planetary system HD 181433. MNRAS, 433, 3190–3207 {723}CrossRefGoogle Scholar
Campante, TL, Barclay, T, Swift, JJ, et al., 2015, An ancient extrasolar system with five sub-Earth-size planets. ApJ, 799, 170 {179, 746}CrossRefGoogle Scholar
Campante, TL, Chaplin, WJ, Lund, MN, et al., 2014, Limits on surface gravities of Kepler planet-candidate host stars from non-detection of solar-like oscillations. ApJ, 783, 123 {410}CrossRefGoogle Scholar
Campante, TL, Lund, MN, Kuszlewicz, JS, et al., 2016a, Spin–orbit alignment of exo-planet systems: ensemble analysis using asteroseismology. ApJ, 819, 85 {736, 740, 741}CrossRefGoogle Scholar
Campante, TL, Santos, NC, Monteiro, MJPFG, 2018, Asteroseismology and exoplanets: listening to the stars and searching for new worlds. Asteroseismology and Exo-planets: Listening to the Stars and Searching for New Worlds, 49 {409}Google Scholar
Campante, TL, Schofield, M, Kuszlewicz, JS, et al., 2016b, The asteroseismic potential of TESS: exoplanet-host stars. ApJ, 830, 138 {411}CrossRefGoogle Scholar
Campante, TL, Veras, D, North, TSH, et al., 2017, Weighing in on the masses of retired A stars with asteroseismology: K2 observations of the exoplanet-host star HD 212771. MNRAS, 469, 1360–1368 {724}CrossRefGoogle Scholar
Campbell, B, Walker, GAH, 1979, Precision radial velocities with an absorption cell. PASP, 91, 540–545 {31}CrossRefGoogle Scholar
Campbell, B, Walker, GAH, Yang, S, 1988, A search for substellar companions to solar-type stars. ApJ, 331, 902–921 {1, 10, 46, 50, 714}CrossRefGoogle Scholar
Campbell, DB, Black, GJ, Carter, LM, et al., 2003, Radar evidence for liquid surfaces on Titan. Science, 302, 431–434 {356}CrossRefGoogle ScholarPubMed
Campbell, DB, Campbell, BA, Carter, LM, et al., 2006, No evidence for thick deposits of ice at the lunar south pole. Nature, 443, 835–837 {666}CrossRefGoogle ScholarPubMed
Campbell, JK, Anderson, JD, 1989, Gravity field of the Saturnian system from Pioneer and Voyager tracking data. AJ, 97, 1485–1495 {658}Google Scholar
Campbell, JK, Synnott, SP, 1985, Gravity field of the Jovian system from Pioneer and Voyager tracking data. AJ, 90, 364–372 {658}CrossRefGoogle Scholar
Campo, CJ, Harrington, J, Hardy, RA, et al., 2011, On the orbit of exoplanet WASP–12 b. ApJ, 727, 125 {258, 752}CrossRefGoogle Scholar
Campo, PP, Docobo, JA, 2014, Analytical study of a four-body configuration in exo-planet scenarios. Astronomy Letters, 40, 737–748 {511}CrossRefGoogle Scholar
Canganella, F, Wiegel, J, 2011, Extremophiles: from abyssal to terrestrial ecosystems and possibly beyond. Naturwissenschaften, 98, 253–279 {637}CrossRefGoogle ScholarPubMed
Canovas, H, Caceres, C, Schreiber, MR, et al., 2016, A ring-like concentration of mm-sized particles in Sz 91. MNRAS, 458, L29–L33 {466}CrossRefGoogle Scholar
Canovas, H, Rodenhuis, M, Jeffers, SV, et al., 2011, Data-reduction techniques for high-contrast imaging polarimetry: applications to ExPo. A&A, 531, A102 {247}Google Scholar
Canovas, H, Schreiber, MR, Cáceres, C, et al., 2015, Gas inside the 97 au cavity around the transition disk Sz 91. ApJ, 805, 21 {466}CrossRefGoogle Scholar
Cantalloube, F, Mouillet, D, Mugnier, LM, et al., 2015, Direct exoplanet detection and characterisation using the ANDROMEDA method: performance on VLT–NACO data. A&A, 582, A89 {340}Google Scholar
CantoMartins, BL, Das Chagas, ML, Alves, S, et al., 2011, Chromospheric activity of stars with planets. A&A, 530, A73 {420}Google Scholar
Cantrell, JR, Henry, TJ, White, RJ, 2013, The solar neighbourhood. 29. The habitable real estate of our nearest stellar neighbours. AJ, 146, 99 {634}CrossRefGoogle Scholar
Canty, JI, Lucas, PW, Roche, PF, et al., 2013, Towards precise ages and masses of free-floating planetary mass brown dwarfs. MNRAS, 435, 2650–2664 {447}CrossRefGoogle Scholar
Canty, JI, Lucas, PW, Yurchenko, SN, et al., 2015, Methane and ammonia in the near-infrared spectra of late-T dwarfs. MNRAS, 450, 454–480 {570}CrossRefGoogle Scholar
Canup, RM, 2004a, Dynamics of lunar formation. ARA&A, 42, 441–475 {664, 665}Google Scholar
Canup, RM, 2004b, Simulations of a late lunar-forming impact. Icarus, 168, 433–456 {664}CrossRefGoogle Scholar
Canup, RM, 2005, A giant impact origin of Pluto–Charon. Science, 307, 546–550 {682}CrossRefGoogle ScholarPubMed
Canup, RM, 2011, On a giant impact origin of Charon, Nix, and Hydra. AJ, 141, 35 {682}CrossRefGoogle Scholar
Canup, RM, 2012, Forming a moon with an Earth-like composition via a giant impact. Science, 338, 1052–1055 {664}CrossRefGoogle Scholar
Canup, RM, Asphaug, E, 2001, Origin of the Moon in a giant impact near the end of the Earth's formation. Nature, 412, 708–712 {664}CrossRefGoogle Scholar
Canup, RM, Levison, HF, Stewart, GR, 1999, Evolution of a terrestrial multiple-moon system. AJ, 117, 603–620 {664, 689}CrossRefGoogle Scholar
Canup, RM, Pierazzo, E, 2006, Retention of water during planet-scale collisions. 37th Annual Lunar and Planetary Science Conference, volume 37 {668}Google Scholar
Canup, RM, Righter, K, 2000, Origin of the Earth and Moon. University of Arizona Press {651, 664}Google Scholar
Canup, RM, Ward, WR, 2002, Formation of the Galilean satellites: conditions of accretion. AJ, 124, 3404–3423 {688}CrossRefGoogle Scholar
Canup, RM, Ward, WR, 2006, A common mass scaling for satellite systems of gaseous planets. Nature, 441, 834–839 {687, 688}CrossRefGoogle ScholarPubMed
Canup, RM, Ward, WR, Cameron, AGW, 2001, A scaling relationship for satellite-forming impacts. Icarus, 150, 288–296 {689}CrossRefGoogle Scholar
Cao, H, Stevenson, DJ, 2017, Zonal flow magnetic field interaction in the semi-conducting region of giant planets. Icarus, 296, 59–72 {591}CrossRefGoogle Scholar
Capelo, HL, Herbst, W, Leggett, SK, et al., 2012, Locating the trailing edge of the circum-binary ring in the KH 15D system. ApJ, 757, L18 {554}CrossRefGoogle Scholar
Capitaine, N, Klioner, S, McCarthy, D, 2012, The re-definition of the astronomical unit of length: reasons and consequences. IAU Joint Discussion, volume 7 {701}Google Scholar
Capobianco, CC, Duncan, M, Levison, HF, 2011, Planetesimal-driven planetmigration in the presence of a gas disk. Icarus, 211, 819–831 {524}CrossRefGoogle Scholar
Cappetta, M, Saglia, RP, Birkby, JL, et al., 2012, The first planet detected in the WTS: an inflated hot Jupiter in a 3.35-d orbit around a late F star. MNRAS, 427, 1877–1890 {167, 169, 757}CrossRefGoogle Scholar
Capuzzo-Dolcetta, R, Mastrobuono-Battisti, A, Maschietti, D, 2011, NBSymple, a double parallel, symplectic N-body code running on GPUs. New Astron., 16, 284–295 {513}CrossRefGoogle Scholar
Caracas, R, 2008, Dynamical instabilities of ice X. Phys. Rev. Lett., 101(8), 085502 {569}CrossRefGoogle ScholarPubMed
Carballido, A, Fromang, S, Papaloizou, J, 2006, Mid-plane sedimentation of large solid bodies in turbulent protoplanetary disks. MNRAS, 373, 1633–1640 {461}CrossRefGoogle Scholar
Carballido, A, Matthews, LS, Hyde, TW, 2016, Dust coagulation in the vicinity of a gap-opening Jupiter-mass planet. ApJ, 823, 80 {467}CrossRefGoogle Scholar
Carballido, A, Matthews, LS, Hyde, TW, 2017, The magnetic field inside a protoplanetary disk gap opened by planets of different masses. MNRAS, 472, 3277–3287 {467}CrossRefGoogle Scholar
Carballido, A, Stone, JM, Pringle, JE, 2005, Diffusion coefficient of a passive contaminant in a local magnetohydrodynamic model of a turbulent accretion disk. MNRAS, 358, 1055–1060 {468}CrossRefGoogle Scholar
Carbillet, M, Bendjoya, P, Abe, L, et al., 2011, Apodised Lyot coronagraph for VLT–SPHERE. I. Detailed numerical study. Exp. Astron., 30, 39–58 {343}CrossRefGoogle Scholar
Carbillet, M, Maire, A, Le Roux, B, et al., 2010, Adaptive optics and ground-layer adaptive optics for Dome C: numerical simulation results. EAS Pub. Ser., volume 40, 157–164 {347}CrossRefGoogle Scholar
Carciofi, AC, Magalhães, AM, 2005, The polarisation signature of extrasolar planet transiting cool dwarfs. ApJ, 635, 570–577 {244, 245}CrossRefGoogle Scholar
Cardoso, SSS, Cartwright, JHE, 2017, On the differing growth mechanisms of black-smoker and Lost City-type hydrothermal vents. Proceedings of the Royal Society of London Series A, 473, 20170387 {637}CrossRefGoogle ScholarPubMed
Carigi, L, García-Rojas, J, Meneses-Goytia, S, 2013, Chemical evolution and the Galactic habitable zone of M31. Rev. Mex. Astron. Astrofis., 49, 253–273 {625}Google Scholar
Carlberg, JK, Cunha, K, Smith, VV, et al., 2013, Li-enrichment in red giant rapid rotators: planet engulfment versus extra mixing. Astron. Nach., 334, 120 {401}CrossRefGoogle Scholar
Carlomagno, B, Absil, O, Kenworthy, M, et al., 2016, End-to-end simulations of the E–ELT–METIS coronagraphs. SPIE Conf. Ser., volume 9909 of Proc. SPIE, 990973 {346}Google Scholar
Carlos, M, Nissen, PE, Meléndez, J, 2016, Correlation between lithium abundances and ages of solar twin stars. A&A, 587, A100 {401}Google Scholar
Carlson, RW, Garnero, E, Harrison, TM, et al., 2014, How did early Earth become our modern world? Ann. Rev. Earth Plan. Sci., 42, 151–178 {663}CrossRefGoogle Scholar
Carmona, A, Pinte, C, Thi, WF, et al., 2014, Constraining the structure of the transition disk HD 135344B (SAO 206462) by simultaneous modeling of multiwavelength gas and dust observations. A&A, 567, A51 {466}Google Scholar
Carney, BW, Latham, DW, Stefanik, RP, et al., 2003, Spectroscopic binaries, velocity jitter, and rotation in field metal-poor red giant and red horizontal-branch stars. AJ, 125, 293–321 {66}CrossRefGoogle Scholar
Carone, L, Gandolfi, D, Cabrera, J, et al., 2012, Planetary transit candidates in the CoRoT LRa01 field. A&A, 538, A112 {191}Google Scholar
Carone, L, Keppens, R, Decin, L, 2014, Connecting the dots: a versatile model for the atmospheres of tidally-locked super-Earths. MNRAS, 445, 930–945 {621, 717}CrossRefGoogle Scholar
Carone, L, Keppens, R, Decin, L, 2015, Connecting the dots. II. Phase changes in the climate dynamics of tidally-locked terrestrial exoplanets. MNRAS, 453, 2412–2437 {599}CrossRefGoogle Scholar
Carone, L, Keppens, R, Decin, L, 2016, Connecting the dots. III. Night-side cooling and surface friction affect climates of tidally-locked terrestrial planets. MNRAS, 461, 1981–2002 {599}CrossRefGoogle Scholar
Carone, L, Keppens, R, Decin, L, et al., 2018, Stratosphere circulation on tidally locked exo-Earths. MNRAS, 473, 4672–4685 {714, 717, 750}CrossRefGoogle Scholar
Carone, L, Pätzold, M, 2007, Constraints on the tidal dissipation factor of a main sequence star: the case of OGLE–TR–56 b. Planet. Space Sci., 55, 643–650 {167, 536, 749}CrossRefGoogle Scholar
Carpano, S, Cabrera, J, Alonso, R, et al., 2009, Planetary transit candidates in CoRoT IRa01 field. A&A, 506, 491–500 {191}Google Scholar
Carpano, S, Fridlund, M, 2008, Detecting transits from Earth-sized planets around Sun-like stars. A&A, 485, 607–613 {157, 191}Google Scholar
Carpenter, JM, Bouwman, J, Mamajek, EE, et al., 2009, Formation and evolution of planetary systems: properties of debris dust around solar-type stars. ApJS, 181, 197–226 {493}CrossRefGoogle Scholar
Carr, B, 2007, Universe or Multiverse? Cambridge University Press {632}CrossRefGoogle Scholar
Carr, MH, Belton, MJS, Chapman, CR, et al., 1998, Evidence for a subsurface ocean on Europa. Nature, 391, 363–365 {599}CrossRefGoogle ScholarPubMed
Carrasco, JM, Catalán, S, Jordi, C, et al., 2014, Gaia photometry for white dwarfs. A&A, 565, A11 {413, 415}Google Scholar
Carrasco-González, C, Henning, T, Chandler, CJ, et al., 2016, The VLA view of the HL Tau disk: disk mass, grain evolution, and early planet formation. ApJ, 821, L16 {466}CrossRefGoogle Scholar
Carrera, D, Davies, MB, Johansen, A, 2016, Survival of habitable planets in unstable planetary systems. MNRAS, 463, 3226–3238 {624}CrossRefGoogle Scholar
Carrera, D, Gorti, U, Johansen, A, et al., 2017, Planetesimal formation by the streaming instability in a photoevaporating disk. ApJ, 839, 16 {458}CrossRefGoogle Scholar
Carrillo-Sánchez, JD, Nesvorný, D, Pokorný, P, et al., 2016, Sources of cosmic dust in the Earth's atmosphere. Geophys. Res. Lett., 43, 11 {691}CrossRefGoogle ScholarPubMed
Carrington, RC, 1858, On the distribution of the solar spots in latitudes since the beginning of the year 1854, with amap. MNRAS, 19, 1–3 {213}CrossRefGoogle Scholar
Carrington, RC, 1859, Description of a singular appearance seen in the Sun on 1 September 1859. MNRAS, 20, 13–15 {628}CrossRefGoogle Scholar
Carroll-Nellenback, J, Frank, A, Liu, B, et al., 2017, Hot planetary winds near a star: dynamics, wind-wind interactions, and observational signatures. MNRAS, 466, 2458–2473 {422}CrossRefGoogle Scholar
Carruba, V, Burns, JA, Nicholson, PD, et al., 2002, On the inclination distribution of the Jovian irregular satellites. Icarus, 158, 434–449 {529, 689}CrossRefGoogle Scholar
Carson, J, Thalmann, C, Janson, M, et al., 2013, Direct imaging discovery of a super-Jupiter around the late B-type star k And. ApJ, 763, L32 {12, 359, 361, 362, 761}CrossRefGoogle Scholar
Carson, JC, Eikenberry, SS, Brandl, BR, et al., 2005, The Cornell high-order adaptive optics survey for brown dwarfs in stellar systems. I. Observations, data reduction, and detection analyses. AJ, 130, 1212–1220 {441}CrossRefGoogle Scholar
Carson, JC, Hiner, KD, Villar GG, III, et al., 2009, A distance-limited imaging survey of substellar companions to solar neighbourhood stars. AJ, 137, 218-225 {357}CrossRefGoogle Scholar
Carter, B, 1974, Large number coincidences and the anthropic principle in cosmology. Confrontation of Cosmological Theories with Observational Data, volume 63 of IAU Symp., 291 {630}Google Scholar
Carter, B, 1983, The anthropic principle and its implications for biological evolution. Phil. Trans. Soc. London A, 310, 347–363 {630}Google Scholar
Carter, B, 2007, The significance of numerical coincidences in nature (unpublished transcript of 1967 preprint). ArXiv e-prints {630}
Carter, BD, Butler, RP, Tinney, CG, et al., 2003, A planet in a circular orbit with a 6-yr period. ApJ, 593, L43–L46 {720}CrossRefGoogle Scholar
Carter, JA, Agol, E, 2013, The Quasi-periodic Automated Transit Search algorithm (QATS). ApJ, 765, 132 {191, 193, 275}CrossRefGoogle Scholar
Carter, JA, Agol, E, Chaplin, WJ, et al., 2012, Kepler–36: a pair of planets with neigh-bouring orbits and dissimilar densities. Science, 337, 556–559 {11, 179, 191, 266, 267, 274, 275, 288, 740}CrossRefGoogle Scholar
Carter, JA, Fabrycky, DC, Ragozzine, D, et al., 2011a, KOI–126: a triply eclipsing hierarchical triple with two low-mass stars. Science, 331, 562–565 {225, 327}CrossRefGoogle Scholar
Carter, JA, Rappaport, S, Fabrycky, D, 2011b, A third hot white dwarf companion detected by Kepler. ApJ, 728, 139 {233, 239, 242}CrossRefGoogle Scholar
Carter, JA, Winn, JN, 2009, Parameter estimation from time-series datawith correlated errors: a wavelet-based method and its application to transit light curves. ApJ, 704, 51–67 {157, 195, 606}CrossRefGoogle Scholar
Carter, JA, Winn, JN, 2010a, The detectability of transit depth variations due to exoplanetary oblateness and spin precession. ApJ, 716, 850–856 {219, 221, 262}CrossRefGoogle Scholar
Carter, JA, Winn, JN, 2010b, Empirical constraints on the oblateness of an exoplanet. ApJ, 709, 1219–1229 {219, 220, 221, 225, 228, 259}CrossRefGoogle Scholar
Carter, JA, Winn, JN, Gilliland, R, et al., 2009, Near-infrared transit photometry of the exoplanet HD 149026 b. ApJ, 696, 241–253 {9, 729}CrossRefGoogle Scholar
Carter, JA, Winn, JN, Holman, MJ, et al., 2011c, The Transit Light Curve Project. XIII. Sixteen transits of the super-Earth GJ 1214 b. ApJ, 730, 82 {25, 184, 211, 212, 213, 272, 734}CrossRefGoogle Scholar
Carter, JA, Yee, JC, Eastman, J, et al., 2008, Analytic approximations for transit light-curve observables, uncertainties, and covariances. ApJ, 689, 499–512 {203}CrossRefGoogle Scholar
Carter, PJ, Leinhardt, ZM, Elliott, T, et al., 2018, Collisional stripping of planetary crusts. Earth Planet. Sci. Lett., 484, 276–286 {477}CrossRefGoogle Scholar
Carter-Bond, JC, O'Brien, DP, Delgado Mena, E, et al., 2012a, Low Mg/Si planetary host stars and their Mg-depleted terrestrial planets. ApJ, 747, L2 {397}CrossRefGoogle Scholar
Carter-Bond, JC, O'Brien, DP, Raymond, SN, 2012b, The compositional diversity of ex-trasolar terrestrial planets. II. Migration simulations. ApJ, 760, 44 {572, 718, 724}CrossRefGoogle Scholar
Cartier, KMS, Beatty, TG, Zhao, M, et al., 2017, Near-infrared emission spectrum of WASP–103 b using HST–WFC3. AJ, 153, 34 {756}CrossRefGoogle Scholar
Cartier, KMS, Gilliland, RL, Wright, JT, et al., 2015, Revision of Earth-sized Kepler planet candidate properties with high-resolution imaging by HST. ApJ, 804, 97 {361}CrossRefGoogle Scholar
Cartwright, DE, 1999, Tides: A Scientific History. Cambrige University Press {531}Google Scholar
Caruso, F, Moreira Xavier, R, 2012, On the physical problem of spatial dimensions: an alternative procedure to stability arguments [unpublished]. ArXiv e-prints {515}
Carvalho, JPS, Mourão, DC, de Moraes, RV, et al., 2016, Exoplanets in binary star systems: on the switch from prograde to retrograde orbits. Cel. Mech. Dyn. Astron., 124, 73–96 {529}CrossRefGoogle Scholar
Casagrande, L, Portinari, L, Flynn, C, 2006, Accurate fundamental parameters for lower main-sequence stars. MNRAS, 373, 13–44 {377}CrossRefGoogle Scholar
Casasayas-Barris, N, Palle, E, Nowak, G, et al., 2017, Detection of sodium in the atmosphere of WASP–69 b. A&A, 608, A135 {253, 731, 756}Google Scholar
Casassus, S, 2016, Resolved observations of transition disks. Publ. Astron. Soc. Australia, 33, e013 {466}CrossRefGoogle Scholar
Casassus, S, Marino, S, Pérez, S, et al., 2015a, Accretion kinematics through the warped transition disk in HD 142527 from resolved CO(6-5) observations. ApJ, 811, 92 {371}CrossRefGoogle Scholar
Casassus, S, Wright, CM, Marino, S, et al., 2015b, A compact concentration of large grains in the HD 142527 protoplanetary dust trap. ApJ, 812, 126 {371}CrossRefGoogle Scholar
Casertano, S, Lattanzi, MG, Sozzetti, A, et al., 2008, Double-blind test programme for astrometric planet detection with Gaia. A&A, 482, 699–729 {87, 96, 160}Google Scholar
Cash, W, 2006, Detection of Earth-like planets around nearby stars using a petal-shaped occulter. Nature, 442, 51–53 {339}CrossRefGoogle ScholarPubMed
Cash, W, 2011, Analyticmodeling of starshades. ApJ, 738, 76 {339}CrossRefGoogle Scholar
Cash, W, Kasdin, J, Seager, S, et al., 2005, Direct studies of exoplanets with the New Worlds Observer. SPIE Conf. Ser., volume 5899, 274–285 {339}Google Scholar
Casoli, J, Masset, FS, 2009, On the horseshoe drag of a low-mass planet. I. Migration in isothermal disks. ApJ, 703, 845–856 {519}CrossRefGoogle Scholar
Cassan, A, 2008, An alternative parameterisation for binary-lens caustic-crossing events. A&A, 491, 587–595 {126, 127}Google Scholar
Cassan, A, 2017, Fast computation of quadrupole and hexadecapole approximations in microlensing with a single point-source evaluation. MNRAS, 468, 3993–3999 {128}CrossRefGoogle Scholar
Cassan, A, Kubas, D, Beaulieu, JP, et al., 2012, One or more bound planets per Milky Way star from microlensing observations. Nature, 481, 167–169 {144, 148, 149}CrossRefGoogle ScholarPubMed
Cassan, A, Ranc, C, 2016, Interferometric observation of microlensing events. MNRAS, 458, 2074–2079 {135}CrossRefGoogle Scholar
Cassen, P, Reynolds, RT, Peale, SJ, 1979, Is there liquid water on Europa. Geo-phys. Res. Lett., 6, 731–734 {599}CrossRefGoogle Scholar
Cassen, P, Smith, BF, Miller, RH, et al., 1981, Numerical experiments on the stability of preplanetary disks. Icarus, 48, 377–392 {487}CrossRefGoogle Scholar
Cassidy, TA, Mendez, R, Arras, P, et al., 2009, Massive satellites of close-in gas giant exoplanets. ApJ, 704, 1341–1348 {305}CrossRefGoogle Scholar
Castan, T, Menou, K, 2011, Atmospheres of hot super-Earths. ApJ, 743, L36 {591, 728, 733, 738}CrossRefGoogle Scholar
Castellano, T, Jenkins, J, Trilling, DE, et al., 2000, Detection of planetary transits of the star HD 209458 in the Hipparcos data set. ApJ, 532, L51–L53 {170, 185, 731}CrossRefGoogle Scholar
Castillo-Rogez, JC, Johnson, TV, Thomas, PC, et al., 2012, Geophysical evolution of Saturn's satellite Phoebe, a large planetesimal in the outer solar system. Icarus, 219, 86–109 {688, 689}CrossRefGoogle Scholar
Castro, M, Vauclair, S, Richard, O, et al., 2008, Lithium abundances in exoplanet-host stars. Mem. Soc. Astron. Ital., 79, 679–681 {402}Google Scholar
Castro, M, Vauclair, S, Richard, O, 2009, Lithium abundances in exoplanet-host stars: modeling. A&A, 494, 663–668 {402}Google Scholar
Catala, C, 2009a, PLATO: PLAnetary Transits and Oscillations of stars. Communications in Asteroseismology, 158, 330 {180}Google Scholar
Catala, C, 2009b, PLATO: PLAnetary Transits and Oscillations of stars. Exp. Astron., 23, 329–356 {180}CrossRefGoogle Scholar
Catala, C, Donati, J, Shkolnik, E, et al., 2007, The magnetic field of the planet-hosting star τ Boo. MNRAS, 374, L42–L46 {10, 256, 421, 542, 714}CrossRefGoogle Scholar
Cataldi, G, Brandeker, A, Olofsson, G, et al., 2015, Constraints on the gas content of the Fomalhaut debris belt: can gas-dust interactions explain the belt's morphology? A&A, 574, L1 {761}Google Scholar
Cataldi, G, Brandeker, A, Thébault, P, et al., 2017, Searching for biosignatures in exo-planetary impact ejecta. Astrobiology, 17, 721–746 {641}CrossRefGoogle Scholar
Catanzarite, J, Law, N, Shao, M, 2008, Astrometric detection of exo-Earths in the presence of stellar noise. SPIE Conf. Ser., volume 7013, 77 {85}Google Scholar
Catanzarite, J, Shao, M, 2011a, Exo-Earth/super-Earth yield of JWST plus a starshade external occulter. PASP, 123, 171–178 {339, 342}CrossRefGoogle Scholar
Catanzarite, J, Shao, M, 2011b, The occurrence rate of Earth analogue planets orbiting Sun-like stars. ApJ, 738, 151 {308, 632}CrossRefGoogle Scholar
Catanzarite, J, Shao, M, Tanner, A, et al., 2006, Astrometric detection of terrestrial planets in the habitable zones of nearby stars with SIM Planet Quest. PASP, 118, 1319–1339 {100}CrossRefGoogle Scholar
Catling, DC, Glein, CR, Zahnle, KJ, et al., 2005, Why O2 is required by complex life on habitable planets and the concept of planetary oxygenation time. Astrobiology, 5, 415–438 {640}CrossRefGoogle ScholarPubMed
Caton, DB, Davis, SA, Kluttz, KA, 2000, A search for Trojan extrasolar planets: planets in V442 Cas and YZ Aql? AAS Bulletin, volume 32, 1416 {79}Google Scholar
Caughlan, GR, Fowler, WA, 1988, Thermonuclear reaction rates. V. Atomic Data and Nuclear Data Tables, 40, 283–334 {400, 403}CrossRefGoogle Scholar
Cauley, PW, Redfield, S, Jensen, AG, 2017a, A decade of Hα transits for HD 189733 b: stellar activity versus absorption in the extended atmosphere. AJ, 153, 217 {609, 731}CrossRefGoogle Scholar
Cauley, PW, Redfield, S, Jensen, AG, 2017b, A search for Hα absorption around KELT–3 b and GJ 436 b. AJ, 153, 81 {729, 738}CrossRefGoogle Scholar
Cauley, PW, Redfield, S, Jensen, AG, 2017c, Evidence for abnormal Hα variability during near-transit observations of HD 189733 b. AJ, 153, 185 {731}CrossRefGoogle Scholar
Cauley, PW, Redfield, S, Jensen, AG, et al., 2015, Optical hydrogen absorption consistent with a thin bowshock leading the hot Jupiter HD189733 b. ApJ, 810, 13 {609, 731}CrossRefGoogle Scholar
Cauley, PW, Redfield, S, Jensen, AG, 2016, Variation in the pre-transit Balmer line signal around the hot Jupiter HD 189733 b. AJ, 152, 20 {731}CrossRefGoogle Scholar
Cauquoin, A, Raisbeck, GM, Jouzel, J, et al., 2014, No evidence for planetary influence on solar activity 330 000 years ago. A&A, 561, A132 {656}Google Scholar
Cavalié, T, Feuchtgruber, H, Lellouch, E, et al., 2013, Spatial distribution of water in the stratosphere of Jupiter from Herschel–HIFI and PACS observations. A&A, 553, A21 {667}Google Scholar
Cavarroc, C, Boccaletti, A, Baudoz, P, et al., 2006, Fundamental limitations on Earth-like planet detection with extremely large telescopes. A&A, 447, 397–403 {345}Google Scholar
Cavarroc, C, Moutou, C, Gandolfi, D, et al., 2012, Transiting exoplanets from the CoRoT space mission: resolving the nature of transit candidates for the LRa03 and SRa03 fields. Ap&SS, 337, 511–529 {191}Google Scholar
Cavazzoni, C, Chiarotti, GL, Scandolo, S, et al., 1999, Superionic and metallic states of water and ammonia at giant planet conditions. Science, 283, 44–46 {568, 577}CrossRefGoogle ScholarPubMed
Cavendish, H, 1798, Experiments to determine the density of Earth. Phil. Trans. Soc. London A, 88(469-479) {663}Google Scholar
Cavicchioli, R, 2002, Extremophiles and the search for extraterrestrial life. Astrobiol-ogy, 2, 281–292 {637}Google ScholarPubMed
Cayrel de Strobel, G, 1996, Stars resembling the Sun. A&A Rev., 7, 243–288 {376, 405, 702}Google Scholar
Cayrel de Strobel, G, Soubiran, C, Ralite, N, 2001, Catalogue of [Fe/H] determinations for FGK stars. A&A, 373, 159–163 {388}Google Scholar
Cébron, D, Le Bars, M, Le Gal, P, et al., 2013, Elliptical instability in hot Jupiter systems. Icarus, 226, 1642–1653 {542}CrossRefGoogle Scholar
Cébron, D, Le Bars, M, Leontini, J, et al., 2010, A systematic numerical study of the tidal instability in a rotating triaxial ellipsoid. Physics of the Earth and Planetary Interiors, 182, 119–128 {542}CrossRefGoogle Scholar
Cebron, D, Le Bars, M, Moutou, C, et al., 2012, Elliptical instability in terrestrial planets and moons. A&A, 539, A78 {542, 728, 733, 734}Google Scholar
Cecchi-Pestellini, C, Ciaravella, A, Micela, G, 2006, Stellar X-ray heating of planet atmospheres. A&A, 458, L13–L16 {619}Google Scholar
Cegla, HM, Lovis, C, Bourrier, V, et al., 2016a, The Rossiter–McLaughlin effect reloaded: probing the 3d spin–orbit geometry, differential stellar rotation, and the spatially-resolved stellar spectrum of star–planet systems. A&A, 588, A127 {252, 253, 731}Google Scholar
Cegla, HM, Lovis, C, Bourrier, V, 2017, A cautionary tale: limitations of a brightness-based spectroscopic approach to chromatic exoplanet radii. A&A, 598, L3 {731}Google Scholar
Cegla, HM, Oshagh, M, Watson, CA, et al., 2016b, Modeling the Rossiter–McLaughlin effect: impact of the convective centre-to-limb variations in the stellar photosphere. ApJ, 819, 67 {250}CrossRefGoogle Scholar
Cegla, HM, Shelyag, S, Watson, CA, et al., 2013, Stellar surface magneto-convection as a source of astrophysical noise. I. Multi-component parameterisation of absorption line profiles. ApJ, 763, 95 {85, 188}CrossRefGoogle Scholar
Cegla, HM, Stassun, KG, Watson, CA, et al., 2014, Estimating stellar radial velocity variability from Kepler and GALEX: implications for the radial velocity confirmation of exoplanets. ApJ, 780, 104 {37}CrossRefGoogle Scholar
Cegla, HM, Watson, CA, Marsh, TR, et al., 2012, Stellar jitter from variable gravitational redshift: implications for radial velocity confirmation of habitable exoplanets. MNRAS, 421, L54 {37, 40, 42, 114}CrossRefGoogle Scholar
Ceillier, T, van Saders, J, García, RA, et al., 2016, Rotation periods and seismic ages of KOIs: comparison with stars without detected planets from Kepler observations. MNRAS, 456, 119–125 {380, 383}CrossRefGoogle Scholar
Celletti, A, Chierchia, L, 2008, Measures of basins of attraction in spin–orbit dynamics. Cel. Mech. Dyn. Astron., 101, 159–170 {541}CrossRefGoogle Scholar
Cenadelli, D, Bernagozzi, A, 2015, Youth plus experience: the discovery of 51 Peg b. European Physical Journal H, 40 {51, 715}CrossRefGoogle Scholar
Cersullo, F, Wildi, F, Chazelas, B, et al., 2017, A new infrared Fabry–Pérot-based radial velocity reference module for the SPIRou radial velocity spectrograph. A&A, 601, A102 {33}Google Scholar
Cha, SH, Nayakshin, S, 2011, A numerical simulation of a super-Earth core delivery from 100 to 8 au. MNRAS, 415, 3319–3334 {489, 490}CrossRefGoogle Scholar
Chabrier, G, Baraffe, I, 2000, Theory of low-mass stars and substellar objects. ARA&A, 38, 337–377 {291, 430, 579}Google Scholar
Chabrier, G, Baraffe, I, 2007, Heat transport in giant (exo)planets: a new perspective. ApJ, 661, L81–L84 {303, 567, 591}CrossRefGoogle Scholar
Chabrier, G, Baraffe, I, Allard, F, et al., 2000, Evolutionary models for very low-mass stars and brown dwarfs with dusty atmospheres. ApJ, 542, 464–472 {330, 358, 430, 442}CrossRefGoogle Scholar
Chabrier, G, Baraffe, I, Leconte, J, et al., 2009, The mass-radius relationship from solar-type stars to terrestrial planets: a review. Amer. Inst. Phys. Conf. Ser., volume 1094, 102–111 {291, 292, 302, 438, 602, 603}Google Scholar
Chabrier, G, Barman, T, Baraffe, I, et al., 2004, The evolution of irradiated planets: application to transits. ApJ, 603, L53–L56 {302}CrossRefGoogle Scholar
Chabrier, G, Johansen, A, Janson, M, et al., 2014, Giant planet and brown dwarf formation. Protostars and Planets VI, 619–642 {8, 429, 442}
Chabrier, G, Saumon, D, Hubbard, WB, et al., 1992, The molecular-metallic transition of hydrogen and the structure of Jupiter and Saturn. ApJ, 391, 817–826 {567, 658, 659, 660}CrossRefGoogle Scholar
Chabrier, G, Saumon, D, Winisdoerffer, C, 2007, Hydrogen and helium at high density and astrophysical implications. Ap&SS, 307, 263–267 {567}Google Scholar
Chabrier, G, Segretain, L, M'era, D, 1996, Contribution of brown dwarfs and white dwarfs to recent microlensing observations and to the halo mass budget. ApJ, 468, L21 {431}CrossRefGoogle Scholar
Chadney, JM, Galand, M, Koskinen, TT, et al., 2016, EUV-driven ionospheres and electron transport on extrasolar giant planets orbiting active stars. A&A, 587, A87 {601}Google Scholar
Chadney, JM, Galand, M, Unruh, YC, et al., 2015, Extreme ultraviolet-driven mass loss from extrasolar giant planets orbiting active stars. Icarus, 250, 357–367 {715}CrossRefGoogle Scholar
Chadney, JM, Koskinen, TT, Galand, M, et al., 2017, Effect of stellar flares on the upper atmospheres of HD 189733 b and HD 209458 b. A&A, 608, A75 {428, 731, 732}Google Scholar
Chakrabarti, S, Mendillo, CB, Cook, TA, et al., 2016, Planet imaging coronagraphic technology using a reconfigurable experimental base (PICTURE-B): the second in the series of suborbital exoplanet experiments. Journal of Astronomical Instrumentation, 5, 1640004-595 {350, 715}CrossRefGoogle Scholar
Chakraborty, A, 2008, Extrasolar planets. Bull. Astron. Soc. India, 25, 28–33 {46}Google Scholar
Chakraborty, A, Mahadevan, S, Richardson, EH, 2008, PRL Advanced Radial-velocity All-sky Search (PARAS). Extreme Solar Systems, volume 398 of ASP Conf. Ser., 41 {47}Google Scholar
Chakraborty, A, Mahadevan, S, Roy, A, et al., 2010, First light results from PARAS: the PRL Echelle Spectrograph. Ground-based and Airborne Instrumentation for Astronomy III, volume 7735 of Proc. SPIE, 77354N {46}Google Scholar
Chaloner, WG, 1989, Fossil charcoal as an indicator of palaeoatmospheric oxygen level. J. Geol. Soc. London, 14, 171–174 {674}Google Scholar
Chamberlain, JW, Hunten, DM, 1987, Theory of Planetary Atmospheres: an Introduction to their Physics and Chemistry, volume 36. Orlando Academic Press, Second Edition {579}
Chamberlin, RV, 1932, Life in Other Worlds: A Study in the History of Opinion. Bulletin of the University of Utah, Vol. 22(3) {639}Google Scholar
Chamberlin, TC, 1901, On a possible function of disruptive approach in the formation of meteorites, comets, and nebulae. ApJ, 14, 17–39 {450}CrossRefGoogle Scholar
Chambers, J, 2017, Steamworlds: atmospheric structure and critical mass of planets accreting icy pebbles. ApJ, 849, 30 {471}CrossRefGoogle Scholar
Chambers, JE, 1999, A hybrid symplectic integrator that permits close encounters between massive bodies. MNRAS, 304, 793–799 {512, 513}CrossRefGoogle Scholar
Chambers, JE, 2001, Making more terrestrial planets. Icarus, 152, 205–224 {476, 477, 513}CrossRefGoogle Scholar
Chambers, JE, 2004, Planetary accretion in the inner solar system. Earth Planet. Sci. Lett., 223, 241–252 {451}CrossRefGoogle Scholar
Chambers, JE, 2006a, Planet formation with migration. ApJ, 652, L133–L136 {483}CrossRefGoogle Scholar
Chambers, JE, 2006b, A semi-analytic model for oligarchic growth. Icarus, 180, 496–513 {475}CrossRefGoogle Scholar
Chambers, JE, 2007, On the stability of a planet between Mars and the asteroid belt: implications for the Planet V hypothesis. Icarus, 189(Late Heavy Bombardment), 386–400 {669}CrossRefGoogle Scholar
Chambers, JE, 2008, Oligarchic growth with migration and fragmentation. Icarus, 198, 256–273 {475, 483}CrossRefGoogle Scholar
Chambers, JE, 2009, An analytic model for the evolution of a viscous, irradiated disk. ApJ, 705, 1206–1214 {462}CrossRefGoogle Scholar
Chambers, JE, 2010, Stellar elemental abundance patterns: implications for planet formation. ApJ, 724, 92–97 {405}CrossRefGoogle Scholar
Chambers, JE, 2014, Giant planet formation with pebble accretion. Icarus, 233, 83–100 {471, 472}CrossRefGoogle Scholar
Chambers, JE, 2016, Pebble accretion and the diversity of planetary systems. ApJ, 825, 63 {472}CrossRefGoogle Scholar
Chambers, JE, O'Brien, DP, Davis, AM, 2010, Accretion of planetesimals and the formation of rocky planets. Protoplanetary Dust: Astrophysical and Cosmochemical Perspectives, 299–335, Cambridge University Press {652}Google Scholar
Chambers, JE, Quintana, EV, Duncan, MJ, et al., 2002, Symplectic integrator algorithms for modeling planetary accretion in binary star systems. AJ, 123, 2884–2894 {513, 548}CrossRefGoogle Scholar
Chambers, JE, Wetherill, GW, 1998, Making the terrestrial planets: N-body integrations of planetary embryos in three dimensions. Icarus, 136, 304–327 {476, 694}CrossRefGoogle Scholar
Chameides, WL, Walker, JCG, 1981, Rates of fixation by lightning of carbon and nitrogen in possible primitive atmospheres. Origins of Life, 11, 291–302 {673}CrossRefGoogle ScholarPubMed
Chametla, RO, Sánchez-Salcedo, FJ, Masset, FS, et al., 2017, Gap formation by inclined massive planets in locally isothermal three-dimensional disks. MNRAS, 468, 4610–4624 {467}CrossRefGoogle Scholar
Champion, DJ, Hobbs, GB, Manchester, RN, et al., 2010, Measuring the mass of solar system planets using pulsar timing. ApJ, 720, L201–L205 {110, 687}CrossRefGoogle Scholar
Champion, J, Berné, O, Vicente, S, et al., 2017, Herschel survey and modelling of externally-illuminated photoevaporating protoplanetary disks. A&A, 604, A69 {462}Google ScholarPubMed
Chan, T, Ingemyr, M, Winn, JN, et al., 2011, The Transit Light Curve Project. XIV. Confirmation of anomalous radii for the exoplanets TrES–4 b, HAT–P–3 b, and WASP–12 b. AJ, 141, 179 {184, 735, 751, 752}CrossRefGoogle Scholar
Chan, T, Ingemyr, M, Winn, JN, 2012, The Transit Light Curve Project. XIV. Confirmation of anomalous radii for the exoplanets TrES–4 b, HAT–P–3 b, and WASP–12 b (Erratum to: 2011AJ….141.179C). AJ, 144, 90 {735, 751, 752}CrossRefGoogle Scholar
Chancia, RO, Hedman, MM, 2016, Are theremoonlets near the Uranian α and β rings? AJ, 152, 211 {690}CrossRefGoogle Scholar
Chandler, CO, McDonald, I, Kane, SR, 2016, The Catalog of Earth-Like Exoplanet Survey Targets (CELESTA): a database of habitable zones around nearby stars. AJ, 151, 59 {634}CrossRefGoogle Scholar
Chandrasekhar, S, 1933a, The equilibrium of distorted polytropes. I. The rotational problem. MNRAS, 93, 390–406 {227}Google Scholar
Chandrasekhar, S, 1933b, The equilibriumof distorted polytropes. II. The tidal problem. MNRAS, 93, 449 {227}CrossRefGoogle Scholar
Chandrasekhar, S, 1946a, On the radiative equilibriumof a stellar atmosphere. X. ApJ, 103, 351 {244}CrossRefGoogle Scholar
Chandrasekhar, S, 1946b, On the radiative equilibrium of a stellar atmosphere. XI. ApJ, 104, 110 {244}CrossRefGoogle Scholar
Chandrasekhar, S, 1960a, Radiative Transfer. Dover, New York {245}Google Scholar
Chandrasekhar, S, 1960b, The stability of non-dissipative Couette flowin hydromagnetics. Proc. Nat. Acad. Sci., 46, 253–257 {459}CrossRefGoogle Scholar
Chandrasekhar, S, 1969, Ellipsoidal Figures of Equilibrium. The Silliman Foundation Lectures, Yale University Press {228, 545}Google Scholar
Chang, H, 2010, Titius–Bode's relation and distribution of exoplanets. Journal of Astronomy and Space Sciences, 27, 1–10 {510}CrossRefGoogle Scholar
Chang, HY, Han, C, 2002, Variation of spot-induced anomalies in caustic-crossing binary microlensing event light curves. MNRAS, 335, 195–200 {136, 137}CrossRefGoogle Scholar
Chang, YL, Bodenheimer, PH, Gu, PG, 2012, Coupled evolutions of the stellar obliquity, orbital distance, and planet's radius due to Ohmic dissipation induced in a diamagnetic hot Jupiter around a magnetic T Tauri star. ApJ, 757, 118 {303}CrossRefGoogle Scholar
Chaplin, M, 2010, Water structure and science. www.lsbu.ac.uk/water/ {567, 568}
Chaplin, WJ, Basu, S, Huber, D, et al., 2014, Asteroseismic fundamental properties of solar-type stars observed by the NASA Kepler mission. ApJS, 210, 1 {312}CrossRefGoogle Scholar
Chaplin, WJ, Houdek, G, Appourchaux, T, et al., 2008, Challenges for asteroseismic analysis of Sun-like stars. A&A, 485, 813–822 {312}Google Scholar
Chaplin, WJ, Miglio, A, 2013, Asteroseismology of solar-type and red giant stars. ARA&A, 51, 353–392 {311, 406, 407}Google Scholar
Chaplin, WJ, Sanchis-Ojeda, R, Campante, TL, et al., 2013, Asteroseismic determination of obliquities of the exoplanet systems Kepler–50 and Kepler–65. ApJ, 766, 101 {198, 254, 312, 410, 741, 742}CrossRefGoogle Scholar
Chapman, CR, 1994, Impacts on the Earth by asteroids and comets: assessing the hazard. Nature, 367, 33–40 {661, 662}CrossRefGoogle Scholar
Chapman, S, 1939, Notes on atmospheric sodium. ApJ, 90, 309–316 {332}CrossRefGoogle Scholar
Charbonneau, D, 2003, HD 209458 and the power of the dark side. Scientific Frontiers in Research on Extrasolar Planets, volume 294 of ASP Conf. Ser., 449–456 {207}Google Scholar
Charbonneau, D, Allen, LE, Megeath, ST, et al., 2005, Detection of thermal emission from an extrasolar planet. ApJ, 626, 523–529 {10, 187, 284, 286, 750}CrossRefGoogle Scholar
Charbonneau, D, Berta, ZK, Irwin, J, et al., 2009, A super-Earth transiting a nearby low-mass star. Nature, 462, 891–894 {9, 10, 13, 160, 167, 577, 734}CrossRefGoogle ScholarPubMed
Charbonneau, D, Brown, TM, Latham, DW, et al., 2000, Detection of planetary transits across a Sun-like star. ApJ, 529, L45–L48 {10, 153, 154, 170, 185, 608, 610, 731}CrossRefGoogle ScholarPubMed
Charbonneau, D, Brown, TM, Noyes, RW, et al., 2002, Detection of an extrasolar planet atmosphere. ApJ, 568, 377–384 {185, 609, 610, 612, 731}CrossRefGoogle Scholar
Charbonneau, D, Jha, S, Noyes, RW, 1998, Spectral line distortions in the presence of a close-in planet. ApJ, 507, L153–L156 {234}CrossRefGoogle Scholar
Charbonneau, D, Knutson, HA, Barman, T, et al., 2008, The broad-band infrared emission spectrum of the exoplanet HD 189733 b. ApJ, 686, 1341–1348 {608, 609, 611, 613, 730}CrossRefGoogle Scholar
Charbonneau, D, Noyes, RW, Korzennik, SG, et al., 1999, An upper limit on the reflected light from the planet orbiting the star τ Boo. ApJ, 522, L145–L148 {235, 236, 285, 713}CrossRefGoogle Scholar
Charbonneau, D, Winn, JN, Everett, ME, et al., 2007a, Precise radius estimates for the exoplanets WASP–1 b and WASP–2 b. ApJ, 658, 1322–1327 {751}CrossRefGoogle Scholar
Charbonneau, D, Winn, JN, Latham, DW, et al., 2006, Transit photometry of the core-dominated planet HD 149026 b. ApJ, 636, 445–452 {729}CrossRefGoogle Scholar
Charbonneau, P, 1995, Genetic algorithms in astronomy and astrophysics. ApJS, 101, 309–334 {25}CrossRefGoogle Scholar
Charbonneau, P, 2010, Dynamo models of the solar cycle. Living Reviews in Solar Physics, 7, 3 {649, 650, 656}CrossRefGoogle Scholar
Charbonneau, P, Beaubien, G, St-Jean, C, 2007b, Fluctuations in Babcock–Leighton dynamos. II. Revisiting the Gnevyshev–Ohl rule. ApJ, 658, 657–662 {656}CrossRefGoogle Scholar
Charbonnel, C, Primas, F, 2005, The lithium content of the Galactic halo stars. A&A, 442, 961–992 {400}Google Scholar
Charnay, B, Meadows, V, Leconte, J, 2015a, 3dmodeling of GJ 1214 b atmosphere: ver-ticalmixing driven by an anti-Hadley circulation. ApJ, 813, 15 {613, 735}CrossRefGoogle Scholar
Charnay, B, Meadows, V, Misra, A, et al., 2015b, 3d modeling of GJ 1214 b atmosphere: formation of inhomogeneous high clouds and observational implications. ApJ, 813, L1 {588, 613, 735}CrossRefGoogle Scholar
Charnoz, S, Canup, RM, Crida, A, et al., 2017, The origin of planetary ring systems. ArXiv e-prints {690}
Charnoz, S, Morbidelli, A, Dones, L, et al., 2009, Did Saturn's rings formduring the Late Heavy Bombardment? Icarus, 199, 413–428 {690}CrossRefGoogle Scholar
Charnoz, S, Taillifet, E, 2012, A method for coupling dynamical and collisional evolution of dust in circumstellar disks: the effect of a dead zone. ApJ, 753, 119 {459}CrossRefGoogle Scholar
Charpinet, S, Fontaine, G, Brassard, P, et al., 2011, A compact system of small planets around a former red giant star. Nature, 480, 496–499 {11, 14, 111, 112, 161, 742}CrossRefGoogle ScholarPubMed
Charvátová, I, 1990, On the relation between solar motion and solar activity in the years 1730–80 and 1910–60 AD. Bull. Astron. Institutes of Czechoslovakia, 41, 200–204 {656}Google Scholar
Charvátová, I, 2000, Can origin of the 2400-year cycle of solar activity be caused by solar inertial motion? Annales Geophysicae, 18, 399–405 {656}CrossRefGoogle Scholar
Chase, MW, 1998, NIST–JANAF Thermochemical Tables. American Chemical Society, Fourth Edition {562}
Chatterjee, S, Ford, EB, 2015, Planetesimal interactions can explain the mysterious period ratios of small near-resonant planets. ApJ, 803, 33 {320, 502, 508}CrossRefGoogle Scholar
Chatterjee, S, Ford, EB, Geller, AM, et al., 2012, Planets in open clusters detectable by Kepler. MNRAS, 427, 1587–1602 {158}CrossRefGoogle Scholar
Chatterjee, S, Ford, EB, Matsumura, S, et al., 2008, Dynamical outcomes of planet–planet scattering. ApJ, 686, 580–602 {499, 508, 525}CrossRefGoogle Scholar
Chatterjee, S, Tan, JC, 2014, Inside-out planet formation. ApJ, 780, 53 {473}CrossRefGoogle Scholar
Chatterjee, S, Tan, JC, 2015, Vulcan planets: inside-out formation of the innermost super-Earths. ApJ, 798, L32 {473}CrossRefGoogle Scholar
Chauvin, G, Beust, H, Lagrange, AM, et al., 2011, Planetary systems in close binary stars: the case of HD 196885. Combined astrometric and radial velocity study. A&A, 528, A8 {724}Google Scholar
Chauvin, G, Desidera, S, Lagrange, AM, et al., 2017, Discovery of a warm, dusty giant planet around HIP 65426. A&A, 605, L9 {360, 362, 763}Google Scholar
Chauvin, G, Faherty, J, Boccaletti, A, et al., 2012a, Deep search for companions to probable young browndwarfs. VLT–NACOadaptive optics imaging using IR wavefront sensing. A&A, 548, A33 {434}Google Scholar
Chauvin, G, Lagrange, AM, Beust, H, et al., 2012b, Orbital characterisation of the β Pic b giant planet. A&A, 542, A41 {367, 762}Google Scholar
Chauvin, G, Lagrange, AM, Bonavita, M, et al., 2010, Deep imaging survey of young, nearby austral stars: VLT–NACO near-infrared Lyot-coronographic observations. A&A, 509, A52 {358}Google Scholar
Chauvin, G, Lagrange, AM, Dumas, C, et al., 2004, A giant planet candidate near a young brown dwarf: direct VLT–NACO observations using infrared wavefront sensing. A&A, 425, L29–L32 {763}Google Scholar
Chauvin, G, Lagrange, AM, Dumas, C, 2005a, Giant planet companion to 2M J1207. A&A, 438, L25–L28 {10, 361, 362, 363, 438, 445, 447, 763}Google Scholar
Chauvin, G, Lagrange, AM, Udry, S, et al., 2006, Probing long-period companions to planetary hosts: VLT and CFHT near infrared coronagraphic imaging surveys. A&A, 456, 1165–1172 {361}Google Scholar
Chauvin, G, Lagrange, AM, Udry, S, 2007, Characterisation of the long-period companions of the exoplanet host stars: HD 196885, HD 1237 and HD 27442. VLT–NACO and SINFONI near-infrared, follow-up imaging and spectroscopy. A&A, 475, 723–727 {719, 724}Google Scholar
Chauvin, G, Lagrange, AM, Zuckerman, B, et al., 2005b, A companion to AB Pic at the planet/brown dwarf boundary. A&A, 438, L29–L32 {361, 362, 363, 447, 762}Google Scholar
Chauvin, G, Vigan, A, Bonnefoy, M, et al., 2015, The VLT–NACO large programme to probe the occurrence of exoplanets and brown dwarfs at wide orbits. II. Survey description, results, and performances. A&A, 573, A127 {358}Google Scholar
Chavanis, PH, 2000, Trapping of dust by coherent vortices in the solar nebula. A&A, 356, 1089–1111 {461}Google Scholar
Chavero, C, de La Reza, R, Domingos, RC, et al., 2010, Distribution of refractory and volatile elements in CoRoT exoplanet host stars. A&A, 517, A40 {733}Google Scholar
Chavez, CE, Georgakarakos, N, Prodan, S, et al., 2015, A dynamical stability study of Kepler circumbinary planetary systems with one planet. MNRAS, 446, 1283–1292 {550, 739, 740, 742, 745}CrossRefGoogle Scholar
Chavez, CE, Tovmassian, G, Aguilar, LA, et al., 2012, A dynamical explanation for a long-term modulation in the light curve of FS Aur: a possible triple cataclysmic variable system. A&A, 538, A122 {114}Google Scholar
Chazelas, B, Pepe, F, Wildi, F, 2012a, Optical fibers for precise radial velocities: an update. Modern Technologies in Space- and Ground-based Telescopes and Instrumentation II, volume 8450 of Proc. SPIE, 845013 {34}Google Scholar
Chazelas, B, Pollacco, D, Queloz, D, et al., 2012b, NGTS: a robotic transit survey to detect Neptune and super-Earth mass planets. SPIE Conf. Ser., volume 8444 {167}Google Scholar
Checlair, J, Menou, K, Abbot, DS, 2017, No snowball on habitable tidally locked planets. ApJ, 845, 132 {621}CrossRefGoogle Scholar
Chela-Flores, J, 2017, Instrumentation for testing whether the icy moons of the gas and ice giants are inhabited. Astrobiology, 17, 958–961 {636}CrossRefGoogle ScholarPubMed
Chelli, A, 2000, Optimising Doppler estimates for extrasolar planet detection. I. A specific algorithmfor shifted spectra. A&A, 358, L59–L62 {56}Google Scholar
Chelli, A, 2005, Imaging Earth-like planets with extremely large telescopes. A&A, 441, 1205–1210 {345}Google Scholar
Chen, CH, Mittal, T, Kuchner, M, et al., 2014a, The Spitzer infrared spectrograph debris disk catalogue. I. Continuumanalysis of unresolved targets. ApJS, 211, 25 {492}CrossRefGoogle Scholar
Chen, CH, Pecaut, M, Mamajek, EE, et al., 2012, A Spitzer–MIPS study of 2.5¡2.0Mfl⊙ stars in Sco–Cen. ApJ, 756, 133 {465}CrossRefGoogle Scholar
Chen, D, 2014, STEP mission: high-precision space astrometry to search for terrestrial exoplanets. Journal of Instrumentation, 9(04), C04040 {100}CrossRefGoogle Scholar
Chen, D, Wu, J, Li, B, 2013a, STEP mission: search for terrestrial exoplanets. Eur. Plan. Sci. Congr., 8, 1102 {100}Google Scholar
Chen, EMA, Nimmo, F, 2011, Obliquity tides do not significantly heat Enceladus. Icarus, 214, 779–781 {627}CrossRefGoogle Scholar
Chen, EMA, Nimmo, F, 2016, Tidal dissipation in the lunar magma ocean and its effect on the early evolution of the Earth-Moon system. Icarus, 275, 132–142 {665}CrossRefGoogle Scholar
Chen, G, Guenther, EW, Pallé, E, et al., 2017a, The GTC exoplanet transit spectroscopy survey. V. A spectrally-resolved Rayleigh scattering slope in GJ 3470 b. A&A, 600, A138 {729}Google Scholar
Chen, G, Pallé, E, Nortmann, L, et al., 2017b, The GTC exoplanet transit spectroscopy survey. VI. Detection of sodium in WASP–52 b's cloudy atmosphere. A&A, 600, L11 {755}Google Scholar
Chen, G, van Boekel, R, Madhusudhan, N, et al., 2014b, Ground-based detection of the near-infrared emission from the day-side of WASP–5 b. A&A, 564, A6 {165, 752}Google Scholar
Chen, G, van Boekel, R, Wang, H, et al., 2014c, Broad-band transmission spectrum and K-band thermal emission of WASP–43 b as observed from the ground. A&A, 563, A40 {588, 755}Google Scholar
Chen, G, van Boekel, R, Wang, H, 2014d, Observed spectral energy distribution of the thermal emission from the day-side of WASP–46 b. A&A, 567, A8 {165, 755}Google Scholar
Chen, J, Kipping, D, 2017, Probabilistic forecasting of the masses and radii of other worlds. ApJ, 834, 17 {298}CrossRefGoogle Scholar
Chen, J, Kipping, DM, 2018, Forecasted masses for 7000 Kepler Objects of Interest. MNRAS, 473, 2753–2759 {176}CrossRefGoogle Scholar
Chen, M, Blankenship, RE, 2011, Expanding the solar spectrumused by photosynthesis. Trends in Plant Science, 16(8), 427–431 {629}CrossRefGoogle ScholarPubMed
Chen, PF, 2011, Coronal mass ejections: models and their observational basis. Living Reviews in Solar Physics, 8, 1 {428}CrossRefGoogle Scholar
Chen, YQ, Nissen, PE, Benoni, T, et al., 2001, Lithium abundances for 185 main-sequence stars: Galactic evolution and stellar depletion of lithium. A&A, 371, 943–951 {400, 401, 402}Google Scholar
Chen, YQ, Zhao, G, 2006, A comparative study on lithium abundances in solar-type stars with and without planets. AJ, 131, 1816–1821 {400, 402}CrossRefGoogle Scholar
Chen, YT, Lin, HW, Holman, MJ, et al., 2016, Discovery of a new retrograde trans-Neptunian object: hint of a common orbital plane for low semimajor axis, high-inclination TNOs and Centaurs. ApJ, 827, L24 {687}CrossRefGoogle Scholar
Chen, YY, 2015, The dynamics of tide and resonances in exoplanetary systems. Acta Astronomica Sinica, 56, 314–316 {719}Google Scholar
Chen, YY, Liu, HG, Zhao, G, et al., 2013b, Mechanism for exciting planetary inclination and eccentricity through a residual gas disk. ApJ, 769, 26 {529}CrossRefGoogle Scholar
Cheng, KP, Bruhweiler, FC, Neff, JE, 1997, Detection of β Pic-like gaseous infall in 2 And. ApJ, 481, 866–871 {282}CrossRefGoogle Scholar
Chennamangalam, J, MacMahon, D, Cobb, J, et al., 2017, SETIBURST: a robotic, com-mensal, realtime multi-science backend for the Arecibo telescope. ApJS, 228, 21 {644}CrossRefGoogle Scholar
Cherenkov, A, Bisikalo, D, Fossati, L, et al., 2017, The influence of coronal mass ejections on the mass-loss rates of hot-Jupiters. ApJ, 846, 31 {428, 732}CrossRefGoogle Scholar
Cherenkov, AA, Bisikalo, DV, Kaigorodov, PV, 2014, Mass-loss rates of hot-Jupiter exo-planetswith various types of gaseous envelopes. Astronomy Reports, 58, 679–687 {601, 732}CrossRefGoogle Scholar
Cherenkov, AA, Bisikalo, DV, Kosovichev, AG, 2018, Influence of stellar radiation pressure on flow structure in the envelope of hot-Jupiter HD 209458 b. MNRAS, 475, 605–613 {733}CrossRefGoogle Scholar
Chernov, SV, 2017, Change in the orbital period of a binary system due to dynamical tides for main-sequence stars. Astronomy Letters, 43, 186–201 {536}CrossRefGoogle Scholar
Chernov, SV, Ivanov, PB, Papaloizou, JCB, 2017, Dynamical tides in exoplanetary systems containing hot Jupiters: confronting theory and observations. MNRAS, 470, 2054–2068 {742, 749, 753, 754, 755}CrossRefGoogle Scholar
Cheung, AC, Rank, DM, Townes, CH, et al., 1969, Detection of water in interstellar regions by its microwave radiation. Nature, 221, 626–628 {642}CrossRefGoogle Scholar
Chevalier, RA, 2000, Young circumstellar disks near evolved massive stars and supernovae. ApJ, 538, L151–L154 {650}CrossRefGoogle Scholar
Chiang, E, Fung, J, 2017, Stellar winds and dust avalanches in the AU Mic debris disk. ApJ, 848, 4 {494}CrossRefGoogle Scholar
Chiang, E, Laughlin, G, 2013, The minimum-mass extrasolar nebula: in situ formation of close-in super-Earths. MNRAS, 431, 3444–3455 {309, 476, 501, 502}CrossRefGoogle Scholar
Chiang, E, Murray-Clay, R, 2007, Inside-out evacuation of transition protoplanetary disks by the magnetorotational instability. Nature Physics, 3, 604–608 {465}CrossRefGoogle Scholar
Chiang, E, Youdin, AN, 2010, Forming planetesimals in solar and extrasolar nebulae. Ann. Rev. Earth Plan. Sci., 38, 493–522 {501}CrossRefGoogle Scholar
Chiang, EI, Goldreich, P, 1997, Spectral energy distributions of T Tauri stars with passive circumstellar disks. ApJ, 490, 368–376 {455}CrossRefGoogle Scholar
Chiang, EI, Jordan, AB, 2002, On the Plutinos and Twotinos of the Kuiper belt. AJ, 124, 3430–3444 {685}CrossRefGoogle Scholar
Chiang, EI, Jordan, AB, Millis, RL, et al., 2003, Resonance occupation in the Kuiper belt: case examples of the 5:2 and Trojan resonances. AJ, 126, 430–443 {685, 690}CrossRefGoogle Scholar
Chiang, EI, Kite, E, Kalas, P, et al., 2009, Fomalhaut's debris disk and planet: constraining the mass of Fomalhaut b from disk morphology. ApJ, 693, 734–749 {495, 761}CrossRefGoogle Scholar
Chiang, EI, Lithwick, Y, 2005, Neptune Trojans as a test bed for planet formation. ApJ, 628, 520–532 {273}CrossRefGoogle Scholar
Chiang, EI, Lithwick, Y, Murray-Clay, R, et al., 2007, A brief history of trans-Neptunian space. Protostars and Planets V, 895–911 {684}
Chiang, EI, Murray, N, 2002, Eccentricity excitation and apsidal resonance capture in the planetary system À And. ApJ, 576, 473–477 {69, 507, 511, 713}CrossRefGoogle Scholar
Chiang, EI, Tabachnik, S, Tremaine, S, 2001, Apsidal alignment in À And. AJ, 122, 1607–1615 {69, 507, 713}CrossRefGoogle Scholar
Chiavassa, A, Bigot, L, Kervella, P, et al., 2012, Three-dimensional interferometric, spectrometric, and planetary views of Procyon. A&A, 540, A5 {378}Google Scholar
Chiavassa, A, Caldas, A, Selsis, F, et al., 2017, Measuring stellar granulation during planet transits. A&A, 597, A94 {188}Google Scholar
Chiavassa, A, Ligi, R, Magic, Z, et al., 2014, Planet transit and stellar granulation detection with interferometry: using the three-dimensional stellar atmosphere Stagger-grid simulations. A&A, 567, A115 {188}Google Scholar
Chiavassa, A, Pere, C, Faurobert, M, et al., 2015, New view on exoplanet transits: transit of Venus described using three-dimensional solar atmosphere STAGGER-grid simulations. A&A, 576, A13 {161}Google Scholar
Chilcote, J, Pueyo, L, De Rosa, RJ, et al., 2017, 1–2.4μm near-infrared spectrum of the giant planet β Pic b obtained with Gemini–GPI. AJ, 153, 182 {762}CrossRefGoogle Scholar
Chilcote, JK, 2014, Direct observation of exoplanets and the development of the Gemini Planet Imager (GPI) integral field spectrograph. Ph. D. thesis, University of California, Los Angeles {344}Google Scholar
Chilcote, JK, Barman, T, Fitzgerald, MP, et al., 2015, The first H-band spectrum of the giant planet β Pic b. ApJ, 798, L3 {588, 762}CrossRefGoogle Scholar
Chin, CW, Stothers, R, 1971, Low-mass white dwarfs and the cooling sequences in the Hyades cluster. ApJ, 163, 555 {418}CrossRefGoogle Scholar
Chin, SL, François, V, Watson, JM, et al., 1992, Spectral modulation of two coherently separated femtosecond laser pulses. Appl. Opt., 31, 3383–3384 {646}CrossRefGoogle ScholarPubMed
Chirikov, BV, 1979, A universal instability of many-dimensional oscillator systems. Phys. Rep., 52, 263–379 {694}CrossRefGoogle Scholar
Cho, JYK, Menou, K, Hansen, BMS, et al., 2003, The changing face of the extrasolar giant planet HD 209458 b. ApJ, 587, L117–L120 {440, 593, 595, 731}CrossRefGoogle Scholar
Cho, JYK, Menou, K, Hansen, BMS, 2008, Atmospheric circulation of close-in extrasolar giant planets. I. Global, barotropic, adiabatic simulations. ApJ, 675, 817–845 {591, 593}CrossRefGoogle Scholar
Cho, JYK, Polichtchouk, I, Thrastarson, HT, 2015, Sensitivity and variability redux in hot-Jupiter flow simulations. MNRAS, 454, 3423–3431 {591}CrossRefGoogle Scholar
Choi, J, McCarthy, C, Marcy, GW, et al., 2013a, Precise Doppler monitoring of Barnard's star. ApJ, 764, 131 {30, 59, 83}CrossRefGoogle Scholar
Choi, JY, Han, C, Udalski, A, et al., 2013b, Microlensing discovery of a population of very tight, very low mass binary brown dwarfs. ApJ, 768, 129 {144}CrossRefGoogle Scholar
Chollet, F, Sinceac, V, 1999, Analysis of solar radius determination obtained by the modern CCD astrolabe of the Calern Observatory: a new approach of the solar limb definition. A&AS, 139, 219–229 {701}Google Scholar
Chou, CL, 1978, Fractionation of siderophile elements in the Earth's upper mantle. Lunar and Planetary Science Conference Proceedings, volume 9 of Lunar and Planetary Science Conference Proceedings {669}Google Scholar
Chou, TL, Takakuwa, S, Yen, HW, et al., 2014, Transition from the infalling envelope to the Keplerian disk around L1551 IRS5. ApJ, 796, 70 {464}CrossRefGoogle Scholar
Choudhuri, AR, 2007, An elementary introduction to solar dynamo theory. Kodai School on Solar Physics, volume 919, 49–73 {656}Google Scholar
Chrenko, O, Brož, M, Lambrechts, M, 2017, Eccentricity excitation and merging of planetary embryos heated by pebble accretion. A&A, 606, A114 {472}Google Scholar
Christensen, UR, Holzwarth, V, Reiners, A, 2009a, Energy flux determines magnetic field strength of planets and stars. Nature, 457, 167–169 {425, 439}CrossRefGoogle Scholar
Christensen, UR, Schmitt, D, Rempel, M, 2009b, Planetary dynamos from a solar perspective. Space Sci. Rev., 144, 105–126 {425}CrossRefGoogle Scholar
Christensen-Dalsgaard, J, 1984, What will asteroseismology teach us? Space Research in Stellar Activity and Variability, 11–18 {407}
Christensen-Dalsgaard, J, 2002, Helioseismology. Reviews of Modern Physics, 74, 1073–1129 {407}CrossRefGoogle Scholar
Christensen-Dalsgaard, J, 2004, Physics of solar-like oscillations. Sol. Phys., 220, 137–168 {406, 407, 408}CrossRefGoogle Scholar
Christensen-Dalsgaard, J, 2008a, ADIPLS: the Aarhus adiabatic oscillation package. Ap&SS, 316, 113–120 {407}Google Scholar
Christensen-Dalsgaard, J, 2008b, ASTEC: the Aarhus STellar Evolution Code. Ap&SS, 316, 13–24 {407}Google Scholar
Christensen-Dalsgaard, J, 2013, The new era of asteroseismology. EAS Publications Series, volume 63 of EAS Publications Series, 91–104 {406}CrossRefGoogle Scholar
Christensen-Dalsgaard, J, Duvall, TL, Gough, DO, et al., 1985, Speed of sound in the solar interior. Nature, 315, 378–382 {570}CrossRefGoogle Scholar
Christensen-Dalsgaard, J, Kjeldsen, H, Brown, TM, et al., 2010, Asteroseismic investigation of known planet hosts in the Kepler field. ApJ, 713, L164–L168 {163, 410, 411, 735}CrossRefGoogle Scholar
Christian, DJ, Gibson, NP, Simpson, EK, et al., 2009, WASP–10 b: a 3MJ, gas-giant planet transiting a late-type K star. MNRAS, 392, 1585–1590 {752}CrossRefGoogle Scholar
Christian, DJ, Pollacco, DL, Skillen, I, et al., 2006, The Super WASP wide-field exo-planetary transit survey: candidates from fields 23 h<RA<03 h. MNRAS, 372, 1117–1128 {164}CrossRefGoogle Scholar
Christiansen, JL, Ballard, S, Charbonneau, D, et al., 2010, Studying the atmosphere of the exoplanet HAT–P–7 b via secondary eclipse measurements with EPOXI, Spitzer, and Kepler. ApJ, 710, 97–104 {184, 735}CrossRefGoogle Scholar
Christiansen, JL, Ballard, S, Charbonneau, D, 2011, System parameters, transit times, and secondary eclipse constraints of the exoplanet systems HAT–P–4, TrES–2, TrES–3, and WASP–3 from the NASA EPOXI mission of opportunity. ApJ, 726, 94 {184, 735, 751}CrossRefGoogle Scholar
Christiansen, JL, Clarke, BD, Burke, CJ, et al., 2013, Measuring transit signal recovery in the Kepler pipeline. I. Individual events. ApJS, 207, 35 {289}CrossRefGoogle Scholar
Christiansen, JL, Clarke, BD, Burke, CJ, 2015, Measuring transit signal recovery in the Kepler pipeline. II. Detection efficiency as calculated in one year of data. ApJ, 810, 95 {191, 289}CrossRefGoogle Scholar
Christiansen, JL, Clarke, BD, Burke, CJ, 2016, Measuring transit signal recovery in the Kepler Pipeline. III. Completeness of the Q1–Q17 DR24 planet candidate catalogue with important caveats for occurrence rate calculations. ApJ, 828, 99 {289}CrossRefGoogle Scholar
Christiansen, JL, Crossfield, IJM, Barentsen, G, et al., 2018, The K2–138 system: a near-resonant chain of five sub-Neptune planets discovered by citizen scientists. AJ, 155, 57 {321, 749}CrossRefGoogle Scholar
Christiansen, JL, Jenkins, JM, Caldwell, DA, et al., 2012, The derivation, properties, and value of Kepler's combined differential photometric precision. PASP, 124, 1279–1287 {175}CrossRefGoogle Scholar
Christiansen, JL, Vanderburg, A, Burt, J, et al., 2017, Three's company: an additional non-transiting super-Earth in the bright HD 3167 system, and masses for all three planets. AJ, 154, 122 {748}CrossRefGoogle Scholar
Christie, D, Arras, P, Li, ZY, 2016, Axisymmetric simulations of hot Jupiter–stellar wind hydrodynamic interaction. ApJ, 820, 3 {591}CrossRefGoogle Scholar
Christou, AA, Asher, DJ, 2011, A long-lived horseshoe companion to the Earth. MNRAS, 414, 2965–2969 {690}CrossRefGoogle Scholar
Christy, JW, Harrington, RS, 1980, The discovery and orbit of Charon. Icarus, 44, 38–40 {682}CrossRefGoogle Scholar
Chu, YH, Dunne, BC, Gruendl, RA, et al., 2001, A search for Jovian planets around hot white dwarfs. ApJ, 546, L61–L64 {414}CrossRefGoogle Scholar
Chun, M, Toomey, D, Wahhaj, Z, et al., 2008, Performance of the near-infrared coron-agraphic imager on Gemini-South. SPIE Conf. Ser., volume 7015, 49 {334, 340}Google Scholar
Chung, SJ, 2009, Characterisation of the resonant caustic perturbation. ApJ, 705, 386–390 {126, 759}CrossRefGoogle Scholar
Chung, SJ, Han, C, Park, BG, et al., 2005, Properties of central caustics in planetary microlensing. ApJ, 630, 535–542 {123}CrossRefGoogle Scholar
Chung, SJ, Hwang, KH, Ryu, YH, et al., 2012, A planetary lensing feature in caustic-crossing high-magnification microlensing events. ApJ, 751, 37 {128}CrossRefGoogle Scholar
Chung, SJ, Kim, D, Darnley, MJ, et al., 2006, The possibility of detecting planets in the Andromeda galaxy. ApJ, 650, 432–437 {137}CrossRefGoogle Scholar
Chung, SJ, Lee, CU, 2011a, Distinguishing central perturbations by binary stellar and planetary systems under the moderately strong finite-source effect. ApJ, 741, 118 {132}CrossRefGoogle Scholar
Chung, SJ, Lee, CU, 2011b, Properties of the planetary caustic perturbation. MNRAS, 411, 151–154 {127}CrossRefGoogle Scholar
Chung, SJ, Lee, CU, Koo, JR, 2014, Detection of planets in extremely weak central perturbation microlensing events via next-generation ground-based surveys. ApJ, 785, 128 {142}CrossRefGoogle Scholar
Chung, SJ, Ryu, YH, 2016, Properties of microlensing events by wide-separation planets with a moon. ApJ, 826, 90 {135}CrossRefGoogle Scholar
Chwolson, O, 1924, Über eine mögliche Form fiktiver Doppelsterne. Astron. Nach., 221, 329 {120}CrossRefGoogle Scholar
Chyba, CF, 1990, Impact delivery and erosion of planetary oceans in the early inner solar system. Nature, 343, 129–133 {597, 667, 668}CrossRefGoogle Scholar
Chyba, CF, 1997, Catastrophic impacts and the Drake equation. IAU Colloq. 161, 157–164 {644}
Chyba, CF, 2000, Energy for microbial life on Europa. Nature, 403, 381–382 {626}CrossRefGoogle ScholarPubMed
Chyba, CF, Hand, KP, 2005, Astrobiology: the study of the living universe. ARA&A, 43, 31–74 {618}Google Scholar
Chyba, CF, Phillips, CB, 2002, Europa as an abode of life. Origins of Life and Evolution of the Biosphere, 32, 47–67 {626}CrossRefGoogle ScholarPubMed
Chyba, CF, Sagan, C, 1992, Endogenous production, exogenous delivery and impact-shock synthesis of organic molecules: an inventory for the origins of life. Nature, 355, 125–132 {673}CrossRefGoogle ScholarPubMed
Chylek, P, Perez, MR, 2007, Considerations for the habitable zone of super-Earth planets in GJ 581 [unpublished]. ArXiv e-prints {78}
Ciardi, DR, Beichman, CA, Horch, EP, et al., 2015a, Understanding the effects of stellar multiplicity on the derived planet radii from transit surveys: implications for Kepler, K2, and TESS. ApJ, 805, 16 {202, 360}CrossRefGoogle Scholar
Ciardi, DR, Crossfield, IJM, Feinstein, AD, et al., 2018, K2–136: a binary system in the Hyades cluster hosting a Neptune-sized planet. AJ, 155, 10 {159, 749}CrossRefGoogle Scholar
Ciardi, DR, Fabrycky, DC, Ford, EB, et al., 2013, On the relative sizes of planets within Kepler multiple-candidate systems. ApJ, 763, 41 {315}CrossRefGoogle Scholar
Ciardi, DR, van Eyken, JC, Barnes, JW, et al., 2015b, Follow-up observations of PTFO 8–8695: a 3 Myr old T Tauri star hosting a Jupiter-mass planetary candidate. ApJ, 809, 42 {260, 750}CrossRefGoogle Scholar
Ciardi, DR, von Braun, K, Bryden, G, et al., 2011, Characterising the variability of stars with early-release Kepler data. AJ, 141, 108 {411}CrossRefGoogle Scholar
Ciceri, S, Lillo-Box, J, Southworth, J, et al., 2015a, Kepler–432 b: a massive planet in a highly eccentric orbit transiting a red giant. A&A, 573, L5 {745}Google Scholar
Ciceri, S, Mancini, L, Henning, T, et al., 2016a, HATS–15 b and HATS–16 b: two massive planets transiting old G dwarf stars. PASP, 128(7), 074401 {737}CrossRefGoogle Scholar
Ciceri, S, Mancini, L, Southworth, J, et al., 2013, Simultaneous follow-up of planetary transits: revised physical properties for the systems HAT–P–16 and WASP–21. A&A, 557, A30 {736, 754}Google Scholar
Ciceri, S, Mancini, L, Southworth, J, 2015b, Physical properties of the HAT–P–23 and WASP–48 planetary systems from multi-colour photometry. A&A, 577, A54 {736, 755}Google Scholar
Ciceri, S, Mancini, L, Southworth, J, 2016b, Physical properties of the planetary systems WASP–45 and WASP–46 from simultaneous multiband photometry. MNRAS, 456, 990–1002 {755}CrossRefGoogle Scholar
Ciesla, FJ, 2014, The phases of water ice in the solar nebula. ApJ, 784, L1 {569}CrossRefGoogle Scholar
Ciesla, FJ, Dullemond, CP, 2010, Evolution of protoplanetary disk structures. Proto-planetary Dust: Astrophysical and Cosmochemical Perspectives, 66–96, Cambridge University Press {454}Google Scholar
Ciesla, FJ, Hood, LL, 2002, The nebular shock wave model for chondrule formation: shock processing in a particle-gas suspension. Icarus, 158, 281–293 {653}CrossRefGoogle Scholar
Ciesla, FJ, Mulders, GD, Pascucci, I, et al., 2015, Volatile delivery to planets from water-rich planetesimals around low mass stars. ApJ, 804, 9 {597}CrossRefGoogle Scholar
Cieza, LA, Cochran, WD, Augereau, JC, 2008, Spitzer observations of the Hyades: circumstellar debris disks at 625Myr of age. ApJ, 679, 720-731 {418}CrossRefGoogle Scholar
Cieza, LA, Olofsson, J, Harvey, PM, et al., 2011, Herschel observations of the T Cha transition disk: constraining the outer disk properties. ApJ, 741, L25 {467}CrossRefGoogle Scholar
Cincotta, PM, Simó, C, 2000, Simple tools to study global dynamics in non-axisymmetric galactic potentials. A&AS, 147, 205–228 {515, 516}Google Scholar
Cionco, RG, Abuin, P, 2016, On planetary torque signals and sub-decadal frequencies in the discharges of large rivers. Adv. Space Res., 57, 1411–1425 {656}CrossRefGoogle Scholar
Cionco, RG, Compagnucci, RH, 2012, Dynamical characterisation of the last prolonged solar minima. Adv. Space Res., 50, 1434–1444 {656}CrossRefGoogle Scholar
Cionco, RG, Soon, W, 2015, A phenomenological study of the timing of solar activity minima of the last millennium through a physical modeling of the Sun–planets interaction. New Astron., 34, 164–171 {656}CrossRefGoogle Scholar
Cirilo-Lombardo, DJ, Mayochi, M, Minotti, FO, et al., 2017, About superrotation in Venus. ArXiv e-prints {596}
Ćirković, MM, 2004a, A comment on tectonics and the future of life on terrestrial planets. Precambrian Research, 130, 289 {628}CrossRefGoogle Scholar
Ćirković, MM, 2004b, The temporal aspect of the Drake equation and SETI. Astrobiology, 4, 225–231 {644}CrossRefGoogle Scholar
Ćirković, MM, 2009, Fermi's paradox: the last challenge for Copernicanism? Serbian Astronomical Journal, 178, 1–20 {635, 647}Google Scholar
Ćirković, MM, 2013, Who are the SETI sceptics? Acta Astron., 89, 38–45 {643}CrossRefGoogle Scholar
Ćirković, MM, 2015, Kardashev's classification at 50+: a fine vehicle with room for improvement. Serbian Astronomical Journal, 191, 1–15 {646}Google Scholar
Ćirković, MM, Bradbury, RJ, 2006, Galactic gradients, postbiological evolution and the apparent failure of SETI. New Astron., 11, 628–639 {625}CrossRefGoogle Scholar
Claeskens, JF, Smette, A, Vandenbulcke, L, et al., 2006, Identification and redshift determination of quasi-stellar objects with medium-band photometry: application to Gaia. MNRAS, 367, 879–904 {92}CrossRefGoogle Scholar
Clampin, M, 2007, Extrasolar planetary imaging coronagraph (EPIC). In the Spirit of Bernard Lyot: The Direct Detection of Planets and Circumstellar Disks in the 21st Century, 37 {352, 353}Google Scholar
Clampin, M, 2008, The Transit Characterisation Explorer (TRACER). SPIE Conf. Ser., volume 7010 {182}Google Scholar
Clampin, M, 2009, Comparative Planetology: Transiting Exoplanet Science with JWST. As-tro2010: The Astronomy and Astrophysics Decadal Survey, Astronomy, 46–53 {181}
Clanton, C, 2013, Ice lines in circumbinary protoplanetary disks. ApJ, 768, L15 {551}CrossRefGoogle Scholar
Clanton, C, Beichman, C, Vasisht, G, et al., 2012, Precision near-infrared photometry for exoplanet transit observations. I. Ensemble spot photometry for an all-sky survey. PASP, 124, 700–713 {187}CrossRefGoogle Scholar
Clanton, C, Gaudi, BS, 2014a, Synthesising exoplanet demographics from radial velocity and microlensing surveys. I. Methodology. ApJ, 791, 90 {127, 144}CrossRefGoogle Scholar
Clanton, C, Gaudi, BS, 2014b, Synthesising exoplanet demographics from radial velocity and micro-lensing surveys. II. The frequency of planets orbiting M dwarfs. ApJ, 791, 91 {9, 144}CrossRefGoogle Scholar
Clanton, C, Gaudi, BS, 2016, Synthesising exoplanet demographics: a single population of long-period planetary companions to M dwarfs consistent with microlensing, radial velocity, and direct imaging surveys. ApJ, 819, 125 {149, 555}CrossRefGoogle Scholar
Clanton, C, Gaudi, BS, 2017, Constraining the frequency of free-floating planets from a synthesis of microlensing, radial velocity, and direct imaging survey results. ApJ, 834, 46 {150}CrossRefGoogle Scholar
Claret, A, 1995, Stellar models for a wide range of initial chemical compositions until heliumburning. I. From X = 0.60 to X = 0.80 for Z = 0.02. A&AS, 109, 441–446 {258}Google Scholar
Claret, A, 2000, A new non-linear limb-darkening law for LTE stellar atmosphere models. A&A, 363, 1081–1190 {132, 195, 211}Google Scholar
Claret, A, 2004, A new non-linear limb-darkening law for LTE stellar atmosphere models III. Sloan filters: calculations for -5.0≤log[M/H]≤1, 2000K≤ T ≤50 000K at several surface gravities. A&A, 428, 1001–1005 {195}Google Scholar
Claret, A, 2009, Does the HD 209458 planetary system pose a challenge to the stellar atmosphere models? A&A, 506, 1335–1340 {732}Google Scholar
Claret, A, 2017, Limb and gravity-darkening coefficients for the TESS satellite at several metallicities, surface gravities, and microturbulent velocities. A&A, 600, A30 {211}Google Scholar
Claret, A, Bloemen, S, 2011, Gravity and limb-darkening coefficients for the Kepler, CoRo, T, Spitzer, uvby, UBVRIJHK, and Sloan photometric systems. A&A, 529, A75 {211}Google Scholar
Claret, A, Hauschildt, PH, Witte, S, 2012, New limb-darkening coefficients for Phoenix 1d model atmospheres. I. Calculations for 1500K≪4800K Kepler, Teff CoRot, Spitzer, uvby, UBVRIJHK A&A, 546, A14 {211}Google Scholar
Clark, BJM, Anderson, DR, Hellier, C, et al., 2018, An analysis of transiting hot Jupiters observed with K2: WASP–55 b and WASP–75 b. PASP, 130(3), 034401 {755, 756}CrossRefGoogle Scholar
Clark, EE, 1972, The uniformtransparent gravitational lens. MNRAS, 158, 233 {137}CrossRefGoogle Scholar
Clarke, CJ, 2007, The photoevaporation of disks around young stars in massive clusters. MNRAS, 376, 1350–1356 {465}CrossRefGoogle Scholar
Clarke, CJ, 2009, Pseudo-viscous modeling of self-gravitating disks and the formation of low mass ratio binaries. MNRAS, 396, 1066–1074 {488, 490}CrossRefGoogle Scholar
Clarke, CJ, Alexander, RD, 2016, A self-similar solution for thermal disk winds. MNRAS, 460, 3044–3051 {461}CrossRefGoogle Scholar
Clarke, CJ, Gendrin, A, Sotomayor, M, 2001, The dispersal of circumstellar disks: the role of the ultraviolet switch. MNRAS, 328, 485–491 {462}CrossRefGoogle Scholar
Clarke, CJ, Harper-Clark, E, Lodato, G, 2007, The response of self-gravitating protostel-lar disks to slow reduction in cooling time-scale: the fragmentation boundary revisited. MNRAS, 381, 1543–1547 {442, 488}CrossRefGoogle Scholar
Clarke, CJ, Owen, JE, 2013, Evolutionary constraints on the planetary hypothesis for transition disks. MNRAS, 433, L69–L73 {465}CrossRefGoogle Scholar
Clarke, FJ, Burleigh, MR, 2004, Imaging planets around white dwarfs: first results. Ex-trasolar Planets: Today and Tomorrow, volume 321 of ASP Conf. Ser., 76–83 {415}Google Scholar
Clarke, FJ, Hodgkin, ST, Oppenheimer, BR, et al., 2008, A search for J-band variability from late-L and T brown dwarfs. MNRAS, 386, 2009–2014 {440}CrossRefGoogle Scholar
Clarkson, WI, Enoch, B, Haswell, CA, et al., 2007, Super WASP-north extrasolar planet candidates between 03h<RA<06h. MNRAS, 381, 851–864 {164}CrossRefGoogle Scholar
Claudi, RU, 2016, Direct imaging of faint companions. Methods of Detecting Exo-planets, volume 428 of Astrophys. Space Sci. Lib., 183 {329}CrossRefGoogle Scholar
Claudi, RU, Benatti, S, Carleo, I, et al., 2016, GIARPS: the unique VIS–NIR high precision radial velocity facility in this world. Ground-based and Airborne Instrumentation for Astronomy VI, volume 9908 of Proc. SPIE, 99081A {46, 48}Google Scholar
Claudi, RU, Turatto, M, Gratton, RG, et al., 2008, VLT–SPHERE IFS: the spectro differential imager of the VLT for exoplanets search. Ground-based and Airborne Instrumentation for Astronomy II, volume 7014 of Proc. SPIE, 70143E {344}Google Scholar
Clayton, RN, Mayeda, TK, 1996, Oxygen isotope studies of achondrites. Geochim. Cos-mochim. Acta, 60, 1999–2017 {477}Google Scholar
Cleeves, LI, Bergin, EA, Alexander, C, et al., 2014, The ancient heritage of water ice in the solar system. Science, 345, 1590–1593 {667}CrossRefGoogle ScholarPubMed
Cleland, CE, Chyba, CF, 2002, Defining ‘Life’. Origins of Life and Evolution of the Biosphere, 32, 387–393 {635}CrossRefGoogle Scholar
Clemence, GM, 1947, The relativity effect in planetary motions. Reviews of Modern Physics, 19, 361–364 {258}CrossRefGoogle Scholar
Clemens, DP, Sanders, DB, Scoville, NZ, 1988, The large-scale distribution of molecular gas in the first Galactic quadrant. ApJ, 327, 139–155 {395}CrossRefGoogle Scholar
Cliver, EW, Dietrich, WF, 2013, The 1859 space weather event revisited: limits of extreme activity. Journal of Space Weather and Space Climate, 3(27), A31 {628}CrossRefGoogle Scholar
Cliver, EW, Svalgaard, L, 2004, The 1859 solar–terrestrial disturbance and the current limits of extreme space weather activity. Sol. Phys., 224, 407–422 {628}CrossRefGoogle Scholar
Cliver, EW, Tylka, AJ, Dietrich, WF, et al., 2014, On a solar origin for the cosmogenic nuclide event of 775 AD. ApJ, 781, 32 {628}CrossRefGoogle Scholar
Close, LM, 2007, Extrasolar planet imaging with the Giant Magellan Telescope. In the Spirit of Bernard Lyot: The Direct Detection of Planets and Circumstellar Disks in the 21st Century {346}
Close, LM, Males, JR, 2010, A search for wide companions to the extrasolar planetary system HR 8799. ApJ, 709, 342–348 {763}CrossRefGoogle Scholar
Close, LM, Zuckerman, B, Song, I, et al., 2007, The wide brown dwarf binary Oph 1622–2405 and discovery of a wide, low-mass binary in Ophiuchus (Oph 1623–2402): a new class of young evaporating wide binaries? ApJ, 660, 1492–1506 {362, 764}CrossRefGoogle Scholar
Cloud, P, 1972, A working model of the primitive Earth. AmJ Sci, 272, 537–548 {674}Google Scholar
Cloutier, R, Astudillo-Defru, N, Doyon, R, et al., 2017a, Characterisation of the K2–18 multi-planetary system with HARPS: a habitable zone super-Earth and discovery of a second, warmsuper-Earth on a non-coplanar orbit. A&A, 608, A35 {748}Google Scholar
Cloutier, R, Doyon, R, Menou, K, et al., 2017b, On the radial velocity detection of additional planets in transiting, slowly rotating Mdwarf systems: the case of GJ 1132. AJ, 153, 9 {734}CrossRefGoogle Scholar
Cloutier, R, Lin, MK, 2013, Orbital migration of giant planets induced by gravitationally unstable gaps: the effect of planet mass. MNRAS, 434, 621–632 {520, 521}CrossRefGoogle Scholar
Cloutier, R, Triaud, AHMJ, 2016, Prospects for detecting the Rossiter–McLaughlin effect of Earth-like planets: the test case of TRAPPIST–1 b and c. MNRAS, 462, 4018–4027 {249, 750}CrossRefGoogle Scholar
Clyde, MA, Berger, JO, Bullard, F, et al., 2007, Current challenges in Bayesian model choice. Statistical Challenges in Modern Astronomy IV, volume 371 of ASP Conf. Ser., 224 {23}Google Scholar
Cocconi, G, Morrison, P, 1959, Searching for interstellar communications. Nature, 184, 844–846 {643}CrossRefGoogle Scholar
Cochran, WD, Endl, M, McArthur, B, et al., 2004, The first Hobby–Eberly telescope planet: a companion to HD 37605. ApJ, 611, L133–L136 {719}CrossRefGoogle Scholar
Cochran, WD, Endl, M, Wittenmyer, RA, et al., 2007, A planetary system around HD 155358: the lowest metallicity planet host star. ApJ, 665, 1407–1412 {46, 77, 722}CrossRefGoogle Scholar
Cochran, WD, Fabrycky, DC, Torres, G, et al., 2011, Kepler–18 b, c, and d: a system of three planets confirmed by transit timing variations, light curve validation, warm Spitzer photometry, and radial velocity measurements. ApJS, 197, 7 {270, 272, 739}CrossRefGoogle Scholar
Cochran, WD, Hatzes, AP, 1994, A high-precision radial-velocity survey for other planetary systems. Ap&SS, 212, 281–291 {46}Google Scholar
Cochran, WD, Hatzes, AP, Butler, RP, et al., 1997, The discovery of a planetary companion to 16 Cyg B. ApJ, 483, 457–463 {715}CrossRefGoogle Scholar
Cochran, WD, Hatzes, AP, Hancock, TJ, 1991, Constraints on the companion object to HD 114762. ApJ, 380, L35–L38 {50, 722}CrossRefGoogle Scholar
Cochran, WD, Hatzes, AP, Paulson, DB, 2002, Searching for planets in the Hyades. I. The Keck radial velocity survey. AJ, 124, 565–571 {56, 61}CrossRefGoogle Scholar
Cochran, WD, Redfield, S, Endl, M, et al., 2008, The spin–orbit alignment of the HD 17156 transiting eccentric planetary system. ApJ, 683, L59–L62 {729}CrossRefGoogle Scholar
Cockell, CS, 1999, Carbon biochemistry and the ultraviolet radiation environments of F, G, and K main sequence stars. Icarus, 141, 399–407 {628}CrossRefGoogle Scholar
Cockell, CS, 2015, Astrobiology: Understanding Life in the Universe. Wiley-Blackwell {619}Google Scholar
Cockell, CS, Herbst, T, Léger, A, et al., 2009a, Darwin: an Exp. Astron.mission to search for extrasolar planets. Exp. Astron., 23, 435–461 {352}CrossRefGoogle Scholar
Cockell, CS, Léger, A, Fridlund, M, et al., 2009b, Darwin: a mission to detect and search for life on extrasolar planets. Astrobiology, 9, 1–22 {352}CrossRefGoogle Scholar
Codona, JL, 2004, Exoplanet imaging with the Giant Magellan Telescope. SPIE Conf. Ser., volume 5490, 379–388 {346}Google Scholar
Codona, JL, Angel, JRP, 2004, Imaging extrasolar planets by stellar halo suppression in separately corrected colour bands. ApJ, 604, L117–L120 {339}CrossRefGoogle Scholar
Cody, AM, Sasselov, DD, 2002, HD 209458: physical parameters of the parent star and the transiting planet. ApJ, 569, 451–458 {731}CrossRefGoogle Scholar
Cody, AM, Sasselov, DD, 2005, Stellar evolution with enriched surface convection zones. I. General effects of planet consumption. ApJ, 622, 704–713 {393}CrossRefGoogle Scholar
Cody, AM, Stauffer, J, Baglin, A, et al., 2014, CSI 2264: simultaneous optical and infrared light curves of young disk-bearing stars in NGC 2264 with CoRoT and Spitzer: evidence for multiple origins of variability. AJ, 147, 82 {466}CrossRefGoogle Scholar
Coe, RS, Prévot, M, Camps, P, 1995, New evidence for extraordinarily rapid change of the geomagnetic field during a reversal. Nature, 374, 687–692 {663}CrossRefGoogle Scholar
Cohen, BA, Swindle, TD, Kring, DA, 2000, Support for the lunar cataclysm hypothesis from lunar meteorite impact melt ages. Science, 290, 1754–1756 {669}CrossRefGoogle ScholarPubMed
Cohen, N, 1988, The pros and cons of gravitational lenses in CETI. IAU Colloq. 99: Bioastronomy - The Next Steps, volume 144 of Astrophys. Space Sci. Lib., 395 {646}Google Scholar
Cohen, O, Drake, JJ, Glocer, A, et al., 2014, Magnetospheric structure and atmospheric Joule heating of habitable planets orbiting M-dwarf stars. ApJ, 790, 57 {622}CrossRefGoogle Scholar
Cohen, O, Drake, JJ, Kashyap, VL, et al., 2009, Interactions of the magnetospheres of stars and close-in giant planets. ApJ, 704, L85–L88 {243, 424}CrossRefGoogle Scholar
Cohen, O, Drake, JJ, Kashyap, VL, 2010, The impact of hot Jupiters on the spin-down of their host stars. ApJ, 723, L64–L67 {387, 424, 543}CrossRefGoogle Scholar
Cohen, O, Drake, JJ, Kóta, J, 2012, The cosmic-ray intensity near the Archean Earth. ApJ, 760, 85 {631}CrossRefGoogle Scholar
Cohen, O, Glocer, A, 2012, Ambipolar electric field, photoelectrons, and their role in atmospheric escape from hot Jupiters. ApJ, 753, L4 {306}CrossRefGoogle Scholar
Cohen, O, Kashyap, VL, Drake, JJ, et al., 2011a, Dynamics of stellar coronae harbouring hot Jupiters. I. A time-dependent magnetohydrodynamic simulation of the interplanetary environment in the HD 189733 planetary system. ApJ, 733, 67 {387, 730}CrossRefGoogle Scholar
Cohen, O, Kashyap, VL, Drake, JJ, 2011b, Dynamics of stellar coronae harbouring hot Jupiters. II. A space weather event on a hot Jupiter. ApJ, 738, 166 {428}CrossRefGoogle Scholar
Coker, CT, Gaudi, BS, Pogge, RW, et al., 2017, A search for binary star companions to the KELT planet hosts and a comparison sample. I. Results of DSSI observations. AJ, 155, 27 {332, 360}CrossRefGoogle Scholar
Colaprete, A, Elphic, RC, Heldmann, J, et al., 2012, An overview of the Lunar Crater Observation and Sensing Satellite (LCROSS). Space Sci. Rev., 167, 3–22 {238}CrossRefGoogle Scholar
Colaprete, A, Schultz, P, Heldmann, J, et al., 2010, Detection of water in the LCROSS ejecta plume. Science, 330, 463 {666}CrossRefGoogle ScholarPubMed
Colavita, MM, Serabyn, E, Millan-Gabet, R, et al., 2009, Keck interferometer nuller data reduction and on-sky performance. PASP, 121, 1120–1138 {349}CrossRefGoogle Scholar
Colavita, MM, Wizinowich, PL, Akeson, RL, et al., 2013, The Keck Interferometer. PASP, 125, 1226 {348}CrossRefGoogle Scholar
Cole, GHA, 2006, Observed exoplanets and intelligent life. Surveys in Geophysics, 27, 365–382 {625}CrossRefGoogle Scholar
Cole, GHA, Woolfson, MM, 2002, Planetary Science: The Science of Planets Around Stars. Institute of Physics Publishing, UK {17, 703}CrossRefGoogle Scholar
Coleman, GAL, Nelson, RP, 2014, On the formation of planetary systems via oligarchic growth in thermally evolving viscous disks. MNRAS, 445, 479–499 {475}CrossRefGoogle Scholar
Coleman, GAL, Nelson, RP, 2016a, Giant planet formation in radially structured protoplanetary disks. MNRAS, 460, 2779–2795 {481}CrossRefGoogle Scholar
Coleman, GAL, Nelson, RP, 2016b, On the formation of compact planetary systems via concurrent core accretion and migration. MNRAS, 457, 2480–2500 {501}CrossRefGoogle Scholar
Coleman, GAL, Nelson, RP, Paardekooper, SJ, et al., 2017, Exploring plausible formation scenarios for the planet candidate orbiting Proxima Cen. MNRAS, 467, 996–1007 {714}Google Scholar
Colley, WN, Schild, RE, 2003, A rapid microlensing event in the Q0957+561 gravitational lens system. ApJ, 594, 97–100 {151}CrossRefGoogle Scholar
CollierCameron, A, 2016, Extrasolar planetary transits. Methods of Detecting Exo-planets, volume 428 of Astrophys. Space Sci. Lib., 89 {178}CrossRefGoogle Scholar
CollierCameron, A, Bouchy, F, Hébrard, G, et al., 2007a, WASP–1 b and WASP–2 b: two new transiting exoplanets detected with Super WASP and SOPHIE. MNRAS, 375, 951–957 {10, 195, 751}Google Scholar
CollierCameron, A, Bruce, VA, Miller, GRM, et al., 2010a, Line-profile tomography of exoplanet transits. I. The Doppler shadow of HD189733 b. MNRAS, 403, 151–158 {252, 253, 730}Google Scholar
CollierCameron, A, Davidson, VA, Hebb, L, et al., 2009a, The main-sequence rotation-colour relation in the Coma Ber open cluster. MNRAS, 400, 451–462 {381}Google Scholar
CollierCameron, A, Guenther, E, Smalley, B, et al., 2010b, Line-profile tomography of exoplanet transits. II. A gas-giant planet transiting a rapidly rotating A5 star. MNRAS, 407, 507–514 {11, 166, 230, 251, 252, 259, 300, 543, 601, 754}Google Scholar
CollierCameron, A, Horne, K, Penny, A, et al., 1999, Probable detection of starlight reflected from the giant planet orbiting τ Boo. Nature, 402, 751–755 {234, 236, 714}Google Scholar
CollierCameron, A, Horne, K, Penny, A, 2002, A search for starlight reflected from the À And innermost planet. MNRAS, 330, 187–204 {234, 235, 236, 243, 301, 713}Google Scholar
CollierCameron, A, Pollacco, D, Hellier, C, et al., 2009b, The WASP transit surveys. IAU Symp., volume 253, 29–35 {164}Google Scholar
CollierCameron, A, Pollacco, D, Street, RA, et al., 2006, A fast hybrid algorithm for exo-planetary transit searches. MNRAS, 373, 799–810 {156, 157, 190}Google Scholar
CollierCameron, A, Wilson, DM, West, RG, et al., 2007b, Efficient identification of exo-planetary transit candidates from Super WASP light curves. MNRAS, 380, 1230–1244 {157, 190, 195}Google Scholar
Collins, BF, Sari, R, 2010, A unified theory for the effects of stellar perturbations and Galactic tides on Oort cloud comets. AJ, 140, 1306–1312 {655, 686}CrossRefGoogle Scholar
Collins, KA, Eastman, JD, Beatty, TG, et al., 2014, KELT–6 b: a 7.9-d hot Saturn transiting a metal-poor star with a long-period companion. AJ, 147, 39 {738}CrossRefGoogle Scholar
Collins, KA, Kielkopf, JF, Stassun, KG, 2017a, Transit timing variation measurements of WASP–12 b and Qatar–1 b: no evidence of additional planets. AJ, 153, 78 {750, 753}CrossRefGoogle Scholar
Collins, KA, Kielkopf, JF, Stassun, KG, et al., 2017b, Astro Image J: image processing and photometric extraction for ultra-precise astronomical light curves. AJ, 153, 77 {188}CrossRefGoogle Scholar
Colombo, G, 1966, Cassini's second and third laws. AJ, 71, 891 {678}CrossRefGoogle Scholar
Colombo, G, Franklin, FA, Shapiro, II, 1974, On the formation of the orbit–orbit resonance of Titan and Hyperion. AJ, 79, 61 {509}CrossRefGoogle Scholar
Colón, KD, Ford, EB, 2009, Benefits of ground-based photometric follow-up for transiting extrasolar planets discovered with Kepler and CoRoT. ApJ, 703, 1086–1095 {172, 262}CrossRefGoogle Scholar
Colón, KD, Ford, EB, Lee, B, et al., 2010, Characterising transiting extrasolar planets with narrow-band photometry and GTC–OSIRIS. MNRAS, 408, 1494–1501 {751}CrossRefGoogle Scholar
Colón, KD, Ford, EB, Morehead, RC, 2012a, Constraining the false positive rate for Kepler planet candidates with multicolour photometry from the GTC. MNRAS, 426, 342–353 {197}CrossRefGoogle Scholar
Colón, KD, Ford, EB, Redfield, S, et al., 2012b, Probing potassium in the atmosphere of HD 80606 b with tunable filter transit spectrophotometry from the Gran Telesco-pio Canarias. MNRAS, 419, 2233–2250 {729}CrossRefGoogle Scholar
Colón, KD, Gaidos, E, 2013, Narrow K-band observations of the GJ 1214 system. ApJ, 776, 49 {613, 734}CrossRefGoogle Scholar
Colón, KD, Morehead, RC, Ford, EB, 2015, Vetting Kepler planet candidates in the sub-Jovian desert with multiband photometry. MNRAS, 452, 3001–3009 {294, 745, 746}CrossRefGoogle Scholar
Comerón, F, Neuhäuser, R, Kaas, AA, 2000, Probing the brown dwarf population of the Chamaeleon I star forming region. A&A, 359, 269–288 {434, 443}Google Scholar
Comerón, F, Rieke, GH, Claes, P, et al., 1998, ISO observations of candidate young brown dwarfs. A&A, 335, 522–532 {434, 443}Google Scholar
Comins, ML, Romanova, MM, Koldoba, AV, et al., 2016, The effects of a magnetic field on planetary migration in laminar and turbulent disks. MNRAS, 459, 3482–3497 {521}CrossRefGoogle Scholar
Compère, A, Farrelly, D, Lemaître, A, et al., 2013, A possible mechanism to explain the lack of binary asteroids among the Plutinos. A&A, 558, A4 {684}Google Scholar
Connelly, JN, Bizzarro, M, Krot, AN, et al., 2012, The absolute chronology and thermal processing of solids in the solar protoplanetary disk. Science, 338, 651–654 {653}CrossRefGoogle ScholarPubMed
Connerney, JEP, 1993, Magnetic fields of the outer planets. J. Geophys. Res., 98, 18659–18679 {426}CrossRefGoogle Scholar
Connes, P, 1985, Absolute astronomical accelerometry. Ap&SS, 110, 211–255 {49, 50}Google Scholar
Connes, P, 1994, Development of absolute accelerometry. Ap&SS, 212, 357–367 {50}Google Scholar
Connes, P, Martic, M, Schmitt, J, 1996, Demonstration of photon-noise limit in stellar radial velocities. Ap&SS, 241, 61–76 {34, 35}Google Scholar
Connolly, HC, Desch, SJ, Ash, RD, et al., 2006, Transient heating events in the proto-planetary nebula. Meteorites and the Early Solar System II, 383–397, University of Arizona Press {653}Google Scholar
Connors, M, Chodas, P, Mikkola, S, et al., 2002, Discovery of an asteroid and quasi-satellite in an Earth-like horseshoe orbit. Meteor. Plan. Sci., 37, 1435–1441 {690}Google Scholar
Connors, M, Wiegert, P, Veillet, C, 2011, Earth's Trojan asteroid. Nature, 475, 481–483 {690}CrossRefGoogle ScholarPubMed
Conod, U, Blind, N, Wildi, F, et al., 2016, Adaptive optics for high resolution spectroscopy: a direct application with the future NIRPS spectrograph. Adaptive Optics Systems V, volume 9909 of Proc. SPIE, 990941 {46, 48}Google Scholar
Conroy, KE, Prša, A, Stassun, KG, et al., 2014a, Kepler eclipsing binary stars. IV. Precise eclipse times for close binaries and identification of candidate three-body systems. AJ, 147, 45 {411}CrossRefGoogle Scholar
Conroy, KE, Prša, A, Stassun, KG, 2014b, Kepler eclipsing binary stars. V. Identification of 31 candidate eclipsing binaries in the K2 engineering dataset. PASP, 126, 914–922 {178, 411}CrossRefGoogle Scholar
Conti, DM, 2016, The role of amateur astronomers in exoplanet research. Society for Astronomical Sciences Annual Symposium, 35, 1–10 {191}Google Scholar
Contro, B, Horner, J, Wittenmyer, RA, et al., 2016, Modelling the inner debris disk of HR 8799. MNRAS, 463, 191–204 {763}CrossRefGoogle Scholar
Cook, NV, Ragozzine, D, Granvik, M, et al., 2016, Realistic detectability of close interstellar comets. ApJ, 825, 51 {693}CrossRefGoogle Scholar
Cooper, CS, Showman, AP, 2005, Dynamic meteorology at the photosphere of HD 209458 b. ApJ, 629, L45–L48 {584, 587, 593, 596, 731}CrossRefGoogle Scholar
Cooper, CS, Showman, AP, 2006, Dynamics and disequilibriumcarbon chemistry in hot Jupiter atmospheres, with application to HD 209458 b. ApJ, 649, 1048–1063 {42, 584, 591, 593, 731}CrossRefGoogle Scholar
Cooray, V, Rachidi, F, 2017, Advances in lightning research. Journal of Atmospheric and Solar-Terrestrial Physics, 154, 181–181 {591}CrossRefGoogle Scholar
Copi, CJ, Starkman, GD, 2000, The Big Occulting Steerable Satellite (BOSS). ApJ, 532, 581–592 {339, 353}CrossRefGoogle Scholar
Coppari, F, Smith, RF, Eggert, JH, et al., 2013, Experimental evidence for a phase transition in magnesium oxide at exoplanet pressures. Nature Geoscience, 6, 926–929 {567}CrossRefGoogle Scholar
Copperwheat, CM, Wheatley, PJ, Southworth, J, et al., 2013, Transmission photometry of WASP–12 b: simultaneous measurement of the planetary radius in three bands. MNRAS, 434, 661–670 {753}CrossRefGoogle Scholar
Coraddu, M, Lissia, M, Mezzorani, G, et al., 2002, Deuterium burning in Jupiter interior. Physica A Statistical Mechanics and its Applications, 305, 282–286 {302}CrossRefGoogle Scholar
Corbet, RHD, 1999, The use of gamma-ray bursts as direction and time markers in SETI strategies. PASP, 111, 881–885 {646}CrossRefGoogle Scholar
Corbet, RHD, 2003, Synchronised SETI: the case for opposition. Astrobiology, 3, 305–315 {647}CrossRefGoogle Scholar
Cordes, JM, 1993, The detectability of planetary companions to radio pulsars. Planets Around Pulsars, volume 36 of ASP Conf. Ser., 43–60 {109}Google Scholar
Cordes, JM, Downs, GS, 1985, JPL pulsar timing observations. III. Pulsar rotation fluctuations. ApJS, 59, 343–382 {109}CrossRefGoogle Scholar
Correa-Otto, JA, Gil-Hutton, RA, 2017, Galactic perturbations on the population of wide binary stars with exoplanets. A&A, 608, A116 {526}Google Scholar
Correa-Otto, JA, Michtchenko, TA, Beaugé, C, 2013, A new scenario for the origin of the 3:2 resonant system HD 45364. A&A, 560, A65 {70, 720}Google Scholar
Correia, ACM, 2006, The core mantle friction effect on the secular spin evolution of terrestrial planets. Earth Planet. Sci. Lett., 252, 398–412 {541}CrossRefGoogle Scholar
Correia, ACM, 2014, Transit light curve and inner structure of close-in planets. A&A, 570, L5 {227, 228, 229, 258}Google Scholar
Correia, ACM, Boué, G, Laskar, J, 2012, Pumping the eccentricity of exoplanets by tidal effect. ApJ, 744, L23 {309, 544}CrossRefGoogle Scholar
Correia, ACM, Boué, G, Laskar, J, 2016, Secular and tidal evolution of circumbinary systems. Cel. Mech. Dyn. As-tron., 126, 189–225 {550}Google Scholar
Correia, ACM, Boué, G, Laskar, J, et al., 2013, Tidal damping of the mutual inclination in hierarchical systems. A&A, 553, A39 {544}Google Scholar
Correia, ACM, Boué, G, Laskar, J, 2014, Deformation and tidal evolution of close-in planets and satellites using a Maxwell viscoelastic rheology. A&A, 571, A50 {541}Google Scholar
Correia, ACM, Couetdic, J, Laskar, J, et al., 2010, The HARPS search for southern ex-trasolar planets. XIX. Characterisation and dynamics of the GJ 876 planetary system. A&A, 511, A21 {717}Google Scholar
Correia, ACM, Laskar, J, 2001, The four final rotation states of Venus. Nature, 411, 767–770 {679}CrossRefGoogle ScholarPubMed
Correia, ACM, Laskar, J, 2004, Mercury's capture into the 3:2 spin-orbit resonance as a result of its chaotic dynamics. Nature, 429, 848–850 {541}CrossRefGoogle ScholarPubMed
Correia, ACM, Laskar, J, 2009, Mercury's capture into the 3:2 spin-orbit resonance including the effect of core-mantle friction. Icarus, 201, 1–11 {541}CrossRefGoogle Scholar
Correia, ACM, Laskar, J, 2012, Impact cratering on Mercury: consequences for the spin evolution. ApJ, 751, L43 {541, 671, 678}CrossRefGoogle Scholar
Correia, ACM, Laskar, J, de Surgy, ON, 2003, Long-termevolution of the spin of Venus. I. Theory. Icarus, 163, 1–23 {544}CrossRefGoogle Scholar
Correia, ACM, Laskar, J, Farago, F, et al., 2011, Tidal evolution of hierarchical and inclined systems. Cel. Mech. Dyn. Astron., 111, 105–130 {544, 718, 729}CrossRefGoogle Scholar
Correia, ACM, Levrard, B, Laskar, J, 2008a, On the equilibrium rotation of Earth-like extrasolar planets. A&A, 488, L63–L66 {541}Google Scholar
Correia, ACM, Robutel, P, 2013, Spin–orbit coupling and chaotic rotation for coorbital bodies in quasi-circular orbits. ApJ, 779, 20 {541}CrossRefGoogle Scholar
Correia, ACM, Rodríguez, A, 2013, On the equilibrium figure of close-in planets and satellites. ApJ, 767, 128 {545}CrossRefGoogle Scholar
Correia, ACM, Udry, S, Mayor, M, et al., 2005, The CORALIE survey for southern extra-solar planets. XIII. A pair of planets around HD 202206 or a circumbinary planet? A&A, 440, 751–758 {70, 75, 79, 724}Google Scholar
Correia, ACM, Udry, S, Mayor, M, 2008b, The ELODIE survey for northern extrasolar planets. IV. HD 196885, a close binary star with a 3.7-year planet. A&A, 479, 271–275 {551, 724}Google Scholar
Correia, ACM, Udry, S, Mayor, M, 2009, The HARPS search for southern extrasolar planets. XVI. HD 45364, a pair of planets in a 3:2 meanmotion resonance. A&A, 496, 521–526 {70, 75, 720}Google Scholar
Cosentino, R, Lovis, C, Pepe, F, et al., 2012, HARPS–N: the new planet hunter at TNG. SPIE Conf. Ser., volume 8446 {34, 46, 47}Google Scholar
Cosmovici, C, Pogrebenko, S, Montebugnoli, S, et al., 2000, The 22GHz water maser line: a new diagnostic tool for extrasolar planet search. Bioastronomy 99, volume 213 of ASP Conf. Ser., 151–157 {642}Google Scholar
Cosmovici, CB, Bowyer, S, Werthimer, D (eds.), 1997, Astronomical and Biochemical Origins and the Search for Life in the Universe, IAU Colloq. 161 {618}Google Scholar
Cosmovici, CB, Montebugnoli, S, Orfei, A, et al., 1996, First evidence of planetary water maser emission induced by the comet/Jupiter catastrophic impact. Planet. Space Sci., 44, 735–739 {642}CrossRefGoogle Scholar
Cosmovici, CB, Pogrebenko, S, 2018, Water maser emission from exoplanetary systems. Int. J. Astrobiol., 17, 70–76 {642, 715, 716, 717}CrossRefGoogle Scholar
Cossins, P, Lodato, G, Clarke, C, 2010, The effects of opacity on gravitational stability in protoplanetary disks. MNRAS, 401, 2587–2598 {488}CrossRefGoogle Scholar
Cossou, C, Raymond, SN, Hersant, F, et al., 2014, Hot super-Earths and giant planet cores from different migration histories. A&A, 569, A56 {501}Google Scholar
Cossou, C, Raymond, SN, Pierens, A, 2013, Convergence zones for type Imigration: an inward shift for multiple planet systems. A&A, 553, L2 {519}Google Scholar
Costa, AD, CantoMartins, BL, Bravo, JP, et al., 2015, Kepler rapidly rotating giant stars. ApJ, 807, L21 {383}CrossRefGoogle Scholar
Cottenier, S, Probert, MIJ, van Hoolst, T, et al., 2011, Crystal structure prediction for iron as inner core material in heavy terrestrial planets. Earth Planet. Sci. Lett., 312, 237–242 {566, 663}CrossRefGoogle Scholar
Cottin, H, Kotler, JM, Bartik, K, et al., 2017, Astrobiology and the possibility of life on Earth and elsewhere. Space Sci. Rev., 209, 1–42 {619}CrossRefGoogle Scholar
Couetdic, J, Laskar, J, Correia, ACM, et al., 2010, Dynamical stability analysis of the HD 202206 systemand constraints to the planetary orbits. A&A, 519, A10 {724}Google Scholar
Coughenour, CL, Archer, AW, Lacovara, KJ, 2009, Tides, tidalites, and secular changes in the Earth–Moon system. Earth Science Reviews, 97, 59–79 {665}CrossRefGoogle Scholar
Coughlin, JL, López-Morales, M, 2012a, A uniformsearch for secondary eclipses of hot Jupiters in Kepler Q2 light curves. AJ, 143, 39 {300}CrossRefGoogle Scholar
Coughlin, JL, López-Morales, M, 2012b, Modeling multi-wavelength stellar astrometry. III. Determination of the absolute masses of exoplanets and their host stars. ApJ, 750, 100 {89, 728, 730, 732, 734, 752}CrossRefGoogle Scholar
Coughlin, JL, López-Morales, M, Harrison, TE, et al., 2011, Low-mass eclipsing binaries in the initial Kepler data release. AJ, 141, 78 {411}CrossRefGoogle Scholar
Coughlin, JL, Mullally, F, Thompson, SE, et al., 2016, Planetary candidates observed by Kepler. VII. The first fully uniform catalogue based on the entire 48-month data set (Q1–Q17 DR24). ApJS, 224, 12 {194, 196}CrossRefGoogle Scholar
Coughlin, JL, Stringfellow, GS, Becker, AC, et al., 2008, New observations and a possible detection of parameter variations in the transits of GJ 436 b. ApJ, 689, L149–L152 {224, 269, 728}CrossRefGoogle Scholar
Coughlin, JL, Thompson, SE, Bryson, ST, et al., 2014, Contamination in the Kepler field: identification of 685 KOIs as false positives via ephemeris matching based on Q1–Q12 data. AJ, 147, 119 {174, 196, 197, 223}CrossRefGoogle Scholar
Counselman, CC, 1973, Outcomes of tidal evolution. ApJ, 180, 307–316 {538}CrossRefGoogle Scholar
Courcol, B, Bouchy, F, Deleuil, M, 2016, An upper boundary in the mass-metallicity plane of exo-Neptunes. MNRAS, 461, 1841–1849 {485}CrossRefGoogle Scholar
Courcol, B, Bouchy, F, Pepe, F, et al., 2015, The SOPHIE search for northern extrasolar planets. VII. A warmNeptune orbiting HD 164595. A&A, 581, A38 {723}Google Scholar
Court, RW, Sephton, MA, 2009, Meteorite ablation products and their contribution to the atmospheres of terrestrial planets: an experimental study using pyrolysis-FTIR. Geochim. Cosmochim. Acta, 73, 3512–3521 {597}CrossRefGoogle Scholar
Court, RW, Sephton, MA, 2012, Extrasolar planets and false atmospheric biosignatures: the role of microm-eteoroids. Planet. Space Sci., 73, 233–242 {640}CrossRefGoogle Scholar
Courtillot, V, 1994, Mass extinctions in the last 300 million years: one impact and seven flood basalts? Isr. J. Earth Sci., 43, 255–266 {670}Google Scholar
Courtillot, V, Fluteau, F, Chenet, AL, et al., 2010, Environmental impact of sub-aerial Large Igneous Provinces. EGU General Assembly Conference Abstracts, volume 12, 4027 {670}Google Scholar
Courtillot, V, Olson, P, 2007, Mantle plumes linkmagnetic superchrons to Phanerozoic mass depletion events. Earth Planet. Sci. Lett., 260, 495–504 {663, 670}CrossRefGoogle Scholar
Courtillot, V, Renne, PR, 2003, Sur l’âge des trapps basaltiques. Comptes Rendus Geo-science, 335, 113–140 {670}Google Scholar
Couteau, P, Pecker, JC, 1964, Space astrometry. Bulletin d'Information de l'ADION, Nice Observatory, 1(17) {83}Google Scholar
Covas, E, Moss, D, Tavakol, R, 2005, Dynamo models and differential rotation in late-type rapidly rotating stars. A&A, 429, 657–665 {423}Google Scholar
Covino, E, Esposito, M, Barbieri, M, et al., 2013, The GAPS programme with HARPS–N at TNG. I. Observations of the Rossiter–McLaughlin effect and characterisation of the transiting system Qatar–1. A&A, 554, A28 {750}Google Scholar
Cowan, D, Grady, M, Penny, A, 1999, Astrobiology in the UK, Community Report to the British National Space Centre. Technical report, BNSC {618}
Cowan, NB, Abbot, DS, 2014, Water cycling between ocean and mantle: super-Earths need not be waterworlds. ApJ, 781, 27 {577}CrossRefGoogle Scholar
Cowan, NB, Abbot, DS, Voigt, A, 2012a, A false positive for ocean glint on exoplanets: the latitude-albedo effect. ApJ, 752, L3 {237}CrossRefGoogle Scholar
Cowan, NB, Agol, E, 2008, Inverting phase functions to map exoplanets. ApJ, 678, L129–L132 {595}CrossRefGoogle Scholar
Cowan, NB, Agol, E, 2011a, A model for thermal phase variations of circular and eccentric exoplanets. ApJ, 726, 82 {591, 615, 617, 728, 729, 730, 735, 736, 753, 757}CrossRefGoogle Scholar
Cowan, NB, Agol, E, 2011b, The statistics of albedo and heat recirculation on hot exoplanets. ApJ, 729, 54 {234, 286, 301, 302, 616, 728, 729}CrossRefGoogle Scholar
Cowan, NB, Agol, E, Charbonneau, D, 2007, Hot nights on extrasolar planets: mid-infrared phase variations of hot Jupiters. MNRAS, 379, 641–646 {236, 615, 731}CrossRefGoogle Scholar
Cowan, NB, Agol, E, Meadows, VS, et al., 2009, Alien maps of an ocean-bearing world. ApJ, 700, 915–923 {641}CrossRefGoogle Scholar
Cowan, NB, Chayes, V, Bouffard É, et al., 2017, Odd harmonics in exoplanet photometry: weather or artifact? MNRAS, 467, 747–757 {591, 615, 616}Google Scholar
Cowan, NB, Fuentes, PA, Haggard, HM, 2013, Light curves of stars and exoplanets: estimating inclination, obliquity and albedo. MNRAS, 434, 2465–2479 {234, 236, 591, 615, 616}CrossRefGoogle Scholar
Cowan, NB, Greene, T, Angerhausen, D, et al., 2015, Characterising transiting planet atmospheres through 2025. PASP, 127, 311–327 {180}CrossRefGoogle Scholar
Cowan, NB, Machalek, P, Croll, B, et al., 2012b, Thermal phase variations of WASP–12 b: defying predictions. ApJ, 747, 82 {240, 615, 752}CrossRefGoogle Scholar
Cowan, NB, Strait, TE, 2013, Determining reflectance spectra of surfaces and clouds on exoplanets. ApJ, 765, L17 {184}CrossRefGoogle Scholar
Cowan, NB, Voigt, A, Abbot, DS, 2012c, Thermal phases of Earth-like planets: estimating thermal inertia from eccentricity, obliquity, and diurnal forcing. ApJ, 757, 80 {615}CrossRefGoogle Scholar
Cowley, CR, 1995, An Introduction to Cosmochemistry. Cambridge University Press {396, 563}CrossRefGoogle Scholar
Cowling, TG, 1941, The non-radial oscillations of polytropic stars. MNRAS, 101, 367 {230, 542}CrossRefGoogle Scholar
Cox, AN, 2000, Allen's Astrophysical Quantities. AIP Press; Springer, Fourth Edition {203, 376, 677, 680, 701, 703}Google Scholar
Cox, AN, Livingston, WC, Matthews, MS, 1991, Solar interior and atmosphere. Univ. Arizona Press {651}Google Scholar
Craddock, RA, 2011, Are Phobos and Deimos the result of a giant impact? Icarus, 211, 1150–1161 {689}CrossRefGoogle Scholar
Crampton, D, Simard, L, Silva, D, 2009, TMT science and instruments. Science with the VLT in the ELT Era, 279–288 {346}
Crane, JD, Shectman, SA, Butler, RP, et al., 2008, The Carnegie planet finder spectrograph: a status report. SPIE Conf. Ser., volume 7014 {46}Google Scholar
Crane, JD, Shectman, SA, Butler, RP, 2010, The Carnegie Planet Finder Spectrograph: integration and commissioning. SPIE Conf. Ser., volume 7735 {45, 46, 47, 254}Google Scholar
Cranmer, SR, 2008, Winds of main-sequence stars: observational limits and a path to theoretical prediction. 14th Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun, volume 384 of ASP Conf. Ser., 317–326 {425}Google Scholar
Cranmer, SR, Bastien, FA, Stassun, KG, et al., 2014, Stellar granulation as the source of high-frequency flicker in Kepler light curves. ApJ, 781, 124 {188, 307}CrossRefGoogle Scholar
Crary, FJ, 1997, On the generation of an electron beam by Io. J. Geophys. Res., 102, 37–50 {281}CrossRefGoogle Scholar
Crawford, IA, 2016, Project Icarus: preliminary thoughts on the selection of probes and instruments for an Icarus-style interstellar mission. J. Br. Interplanet. Soc., 69, 4–10 {648}Google Scholar
Crawford, IA, Beust, H, Lagrange, AM, 1998, Detection of a strong transient blueshifted absorption component in the β Pic disk. MNRAS, 294, L31–L34 {282}CrossRefGoogle Scholar
Creech-Eakman, MJ, Romero, V, Payne, I, et al., 2012, The Magdalena Ridge Observatory Interferometer: a status update. Optical and Infrared Interferometry III, volume 8445 of Proc. SPIE, 84450P {348}Google Scholar
Creech-Eakman, MJ, Romero, V, Westpfahl, D, et al., 2008, Magdalena Ridge Observatory Interferometer: progress toward first light. SPIE Conf. Ser., volume 7013, 26 {348}Google Scholar
Creevey, OL, Thévenin, F, Basu, S, et al., 2013, A large sample of calibration stars for Gaia: log g from Kepler and CoRoT fields. MNRAS, 431, 2419–2432 {390}CrossRefGoogle Scholar
Crepp, JR, 2014, Improving planet-finding spectrometers. Science, 346, 809–810 {34}CrossRefGoogle ScholarPubMed
Crepp, JR, Crass, J, King, D, et al., 2016, iLocater: a diffraction-limited Doppler spectrometer for the Large Binocular Telescope (LBT). SPIE Conf. Ser., volume 9908 of Proc. SPIE, 990819 {34, 45, 46, 49, 79}Google Scholar
Crepp, JR, Johnson, JA, 2011, Estimates of the planet yield from ground-based high-contrast imaging observations as a function of stellar mass. ApJ, 733, 126 {358, 364}CrossRefGoogle Scholar
Crepp, JR, Pueyo, L, Brenner, D, et al., 2011, Speckle suppression with the Project 1640 integral field spectrograph. ApJ, 729, 132 {340, 343}CrossRefGoogle Scholar
Crepp, JR, Vanden Heuvel, AD, Ge, J, 2007, Comparative Lyot coronagraphy with extreme adaptive optics systems. ApJ, 661, 1323–1331 {334}CrossRefGoogle Scholar
Cresswell, P, Dirksen, G, Kley, W, et al., 2007, On the evolution of eccentric and inclined protoplanets embedded in protoplanetary disks. A&A, 473, 329–342 {518}Google Scholar
Cresswell, P, Nelson, RP, 2006, On the evolution of multiple protoplanets embedded in a protostellar disk. A&A, 450, 833–853 {475}Google Scholar
Cresswell, P, Nelson, RP, 2009, On the growth and stability of Trojan planets. A&A, 493, 1141–1147 {508}Google Scholar
Crick, FHC, Orgel, LE, 1973, Directed panspermia. Icarus, 19, 341–346 {638, 647}CrossRefGoogle Scholar
Crida, A, 2009, Minimummass solar nebulae and planetary migration. ApJ, 698, 606–614 {483}CrossRefGoogle Scholar
Crida, A, Baruteau, C, Kley, W, et al., 2009a, The dynamical role of the circumplanetary disk in planetary migration. A&A, 502, 679–693 {519}Google Scholar
Crida, A, Batygin, K, 2014, Spin–orbit angle distribution and the origin of (mis)aligned hot Jupiters. A&A, 567, A42 {385, 530}Google Scholar
Crida, A, Bitsch, B, 2017, Runaway gas accretion and gap opening versus type Imigra-tion. Icarus, 285, 145–154 {520}CrossRefGoogle Scholar
Crida, A, Masset, F, Morbidelli, A, 2009b, Long range outward migration of giant planets, with application to Fomalhaut b. ApJ, 705, L148–L152 {492, 522, 687, 761}CrossRefGoogle Scholar
Crida, A, Morbidelli, A, 2007, Cavity opening by a giant planet in a protoplanetary disk and effects on planetary migration. MNRAS, 377, 1324–1336 {520}CrossRefGoogle Scholar
Crida, A, Morbidelli, A, Masset, F, 2006, On the width and shape of gaps in protoplanet-ary disks. Icarus, 181, 587–604 {557}CrossRefGoogle Scholar
Crida, A, Morbidelli, A, Masset, F, 2007, Simulating planetmigration in globally evolving disks. A&A, 461, 1173–1183 {483}Google Scholar
Crida, A, Papaloizou, JCB, Rein, H, et al., 2010a, Migration of a moonlet in a ring of solid particles: theory and application to Saturn's propellers. AJ, 140, 944–953 {691}CrossRefGoogle Scholar
Crida, A, Sándor, Z, Kley, W, 2008, Influence of an inner disk on the orbital evolution of massive planets migrating in resonance. A&A, 483, 325–337 {522}Google Scholar
Crida, A, Sándor, Z, Kley, W, 2010b, Planetary migration in resonance: the question of the eccentricities. EAS Pub. Ser., volume 41, 387–390 {72}CrossRefGoogle Scholar
Cridland, AJ, Pudritz, RE, Alessi, M, 2016, Composition of early planetary atmospheres. I. Connecting disk astrochemistry to the formation of planetary atmospheres. MNRAS, 461, 3274–3295 {599}CrossRefGoogle Scholar
Crifo, F, Soubiran, C, Jasniewicz, G, et al., 2017, HIP 21539 is not a past very close neigh-bour of the Sun. A&A, 601, L6 {655}Google Scholar
Crockett, CJ, Mahmud, NI, Prato, L, et al., 2011, Precision radial velocities with CSHELL. ApJ, 735, 78 {46}CrossRefGoogle Scholar
Crockett, CJ, Mahmud, NI, Prato, L, 2012, A search for giant planet companions to T Tauri stars. ApJ, 761, 164 {48, 56, 61, 716}CrossRefGoogle Scholar
Croll, B, Albert, L, Jayawardhana, R, et al., 2011a, Broad-band transmission spectroscopy of the super-Earth GJ 1214 b suggests a low meanmolecular weight atmosphere. ApJ, 736, 78 {613, 734}CrossRefGoogle Scholar
Croll, B, Albert, L, Jayawardhana, R, 2015a, Near-infrared thermal emission detections of a number of hot Jupiters and the systematics of ground-based near-infrared photometry. ApJ, 802, 28 {738, 750, 752, 753}CrossRefGoogle Scholar
Croll, B, Albert, L, Lafreniere, D, et al., 2010a, Near-infrared thermal emission from the hot Jupiter TrES–2 b: ground-based detection of the secondary eclipse. ApJ, 717, 1084–1091 {751}CrossRefGoogle Scholar
Croll, B, Dalba, PA, Vanderburg, A, et al., 2017, Multiwavelength transit observations of the candidate disintegrating planetesimals orbiting WD 1145+017. ApJ, 836, 82 {418}CrossRefGoogle Scholar
Croll, B, Jayawardhana, R, Fortney, JJ, et al., 2010b, Near-infrared thermal emission from TrES–3 b: a Ks-band detection and an upper limit on the secondary eclipse. ApJ, 718, 920–927 {751}CrossRefGoogle Scholar
Croll, B, Lafreniere, D, Albert, L, et al., 2011b, Near-infrared thermal emission from WASP–12 b: detections of the secondary eclipse in Ks, H, and J. AJ, 141, 30 {165, 752}CrossRefGoogle Scholar
Croll, B, Matthews, JM, Rowe, JF, et al., 2007a, Looking for giant Earths in the HD209458 system: a search for transits in MOST space-based photometry. ApJ, 658, 1328–1339 {186, 187, 610, 731}CrossRefGoogle Scholar
Croll, B, Matthews, JM, Rowe, JF, 2007b, Looking for super-Earths in the HD 189733 system: a search for transits in MOST space-based photometry. ApJ, 671, 2129–2138 {186, 730}CrossRefGoogle Scholar
Croll, B, Rappaport, S, DeVore, J, et al., 2014, Multiwavelength observations of the candidate disintegrating sub-Mercury KIC–12557548 b. ApJ, 786, 100 {232, 747}CrossRefGoogle Scholar
Croll, B, Rappaport, S, Levine, AM, 2015b, The relation between the transit depths of KIC–12557548 b and the stellar rotation period. MNRAS, 449, 1408–1421 {232, 747}CrossRefGoogle Scholar
Croll, B, Walker, GAH, Kuschnig, R, et al., 2006, Differential rotation of є Eri detected by MOST. ApJ, 648, 607–613 {213, 715}CrossRefGoogle Scholar
Crooke, JA, Roberge, A, Domagal-Goldman, SD, et al., 2016, Status and path forward for the large ultraviolet/optical/infrared surveyor (LUVOIR) mission concept study. Space Telescopes and Instrumentation 2016: Optical, Infrared, and Millimeter Wave, volume 9904 of Proc. SPIE, 99044R {353}Google Scholar
Cropper, M, Katz, D, Sartoretti, P, et al., 2018, The Gaia Radial Velocity Spectrometer. A&A, submitted {96}
Cross, NJG, Collins, RS, Mann, RG, et al., 2012, The VISTA science archive. A&A, 548, A119 {433}Google Scholar
Crossfield, IJM, 2012, ACME stellar spectra. I. Absolutely calibrated, mostly empirical flux densities of 55 Cnc and its transiting planet 55 Cnc e. A&A, 545, A97 {728}Google Scholar
Crossfield, IJM, 2013, On high-contrast characterisation of nearby, short-period exoplanets with giant segmented-mirror telescopes. A&A, 551, A99 {346, 347, 714, 717}Google Scholar
Crossfield, IJM, 2014, Doppler imaging of exoplanets and brown dwarfs. A&A, 566, A130 {440}Google Scholar
Crossfield, IJM, 2015, Observations of exoplanet atmospheres. PASP, 127, 941–960 {607}CrossRefGoogle Scholar
Crossfield, IJM, Barman, T, Hansen, BMS, 2011, High-resolution, differential, near-infrared transmission spectroscopy of GJ 1214 b. ApJ, 736, 132 {613, 734}CrossRefGoogle Scholar
Crossfield, IJM, Barman, T, Hansen, BMS, et al., 2012a, Re-evaluating WASP–12 b: strong emission at 2.315μm, deeper occultations, and an isothermal atmosphere. ApJ, 760, 140 {614, 752}CrossRefGoogle Scholar
Crossfield, IJM, Barman, T, Hansen, BMS, 2013, Warm ice giant GJ 3470 b. I. A flat transmission spectrum indicates a hazy, low-methane, and/or metal-rich atmosphere. A&A, 559, A33 {588, 729}Google Scholar
Crossfield, IJM, Biller, B, Schlieder, JE, et al., 2014, A global cloud map of the nearest known brown dwarf. Nature, 505, 654–656 {440, 441}CrossRefGoogle ScholarPubMed
Crossfield, IJM, Ciardi, DR, Isaacson, H, et al., 2017, Two small transiting planets and a possible third body orbiting HD 106315. AJ, 153, 255 {748}CrossRefGoogle Scholar
Crossfield, IJM, Ciardi, DR, Petigura, EA, et al., 2016, 197 candidates and 104 validated planets in K2's first five fields. ApJS, 226, 7 {747, 748, 756}CrossRefGoogle Scholar
Crossfield, IJM, Hansen, BMS, Barman, T, 2012b, Ground-based, near-infrared ex-ospectroscopy. II. Tentative detection of emission from the extremely hot Jupiter WASP–12 b. ApJ, 746, 46 {752}CrossRefGoogle Scholar
Crossfield, IJM, Hansen, BMS, Harrington, J, et al., 2010, A new 24 micron phase curve for À And b. ApJ, 723, 1436–1446 {70, 236, 237, 616, 713}CrossRefGoogle Scholar
Crossfield, IJM, Knutson, H, Fortney, J, et al., 2012c, Spitzer–MIPS 24μm observations of HD 209458 b: three eclipses, two and a half transits, and a phase curve corrupted by instrumental sensitivity variations. ApJ, 752, 81 {610, 732}CrossRefGoogle Scholar
Crossfield, IJM, Kreidberg, L, 2017, Trends in atmospheric properties of Neptune-size exoplanets. AJ, 154, 261 {617}CrossRefGoogle Scholar
Crossfield, IJM, Petigura, E, Schlieder, JE, et al., 2015, A nearby M star with three transiting super-Earths discovered by K2. ApJ, 804, 10 {635, 747}CrossRefGoogle Scholar
Croswell, K, 1988, Does Barnard's star have planets? Astronomy, 16, 6–17 {83}Google Scholar
Crouzet, N, Agabi, K, Blazit, A, et al., 2009, ASTEP south: an Antarctic search for transiting planets around the celestial south pole. IAU Symp., volume 253, 336–339 {171}Google Scholar
Crouzet, N, Guillot, T, Agabi, A, et al., 2010a, ASTEP south: an Antarctic search for transiting exoplanets around the celestial south pole. A&A, 511, A36 {169}Google Scholar
Crouzet, N, Guillot, T, Agabi, A, 2010b, Photometric quality of Dome C for the winter 2008 from ASTEP south. EAS Pub. Ser., volume 40, 367–373 {171}CrossRefGoogle Scholar
Crouzet, N, McCullough, PR, Burke, C, et al., 2012, Transmission spectroscopy of exo-planet XO–2 b observed with HST–NICMOS. ApJ, 761, 7 {612, 757}CrossRefGoogle Scholar
Crouzet, N, McCullough, PR, Deming, D, et al., 2014, Water vapour in the spectrum of the exoplanet HD 189733 b. II. The eclipse. ApJ, 795, 166 {609, 730}CrossRefGoogle Scholar
Crouzet, N, McCullough, PR, Long, D, et al., 2017, Discovery of XO–6 b: a hot Jupiter transiting a fast rotating F5 star on an oblique orbit. AJ, 153, 94 {252, 757}CrossRefGoogle Scholar
Crow, CA, McFadden, LA, Robinson, T, et al., 2011, Views from EPOXI: colours in our solar system as an analogue for extrasolar planets. ApJ, 729, 130 {184}CrossRefGoogle Scholar
Crowe, MJ, 1986, The Extraterrestrial Life Debate 1750–1900. The Idea of a Plurality of Worlds from Kant to Lowell. Cambridge University Press {618, 619, 638, 639}Google Scholar
Cruikshank, DP, 1983, The development of studies of Venus. Venus, 1–9 {222}
Cruikshank, DP, Matthews, MS, Schumann, AM, 1995, Neptune and Triton. University of Arizona Press {651}Google Scholar
Cruz, KL, Kirkpatrick, JD, Burgasser, AJ, 2009, Young L dwarfs identified in the field: a preliminary low-gravity, optical spectral sequence from L0 to L5. AJ, 137, 3345–3357 {438}CrossRefGoogle Scholar
Cruz, KL, Reid, IN, Kirkpatrick, JD, et al., 2007, Meeting the Cool Neighbours. IX. The luminosity function of M7–L8 ultracool dwarfs in the field. AJ, 133, 439–467 {438}CrossRefGoogle Scholar
Cruz, P, Barrado, D, Lillo-Box, J, et al., 2015, Detection of the secondary eclipse of WASP–10 b in the Ks-band. A&A, 574, A103 {752}Google Scholar
Cruz, P, Barrado, D, Lillo-Box, J, 2016, Detection of the secondary eclipse of Qatar–1 b in the Ks band. A&A, 595, A61 {750}Google Scholar
Csák, B, Kovács, J, Szabó, GM, et al., 2014, Affordable spectroscopy for 1m-class telescopes: recent developments and applications. Contributions of the Astronomical Observatory Skalnate Pleso, 43, 183–189 {47}Google Scholar
Csizmadia, S, Hatzes, A, Gandolfi, D, et al., 2015, Transiting exoplanets from the CoRoT space mission. XXVIII. CoRoT–33 b, an object in the brown dwarf desert with 2:3 commensurability with its host star. A&A, 584, A13 {65, 213, 223, 540, 734}Google Scholar
Csizmadia, S, Moutou, C, Deleuil, M, et al., 2011, Transiting exoplanets from the CoRoT spacemission. XVII. The hot Jupiter CoRoT–17 b: a very old planet. A&A, 531, A41 {734}Google Scholar
Csizmadia, S, Pasternacki, T, Dreyer, C, et al., 2013, The effect of stellar limb darkening values on the accuracy of the planet radii derived from photometric transits. A&A, 549, A9 {211}Google Scholar
Csizmadia, S, Renner, S, Barge, P, et al., 2010, Transit timing analysis of CoRoT–1 b. A&A, 510, A94 {733}Google Scholar
Cuartas-Restrepo, PA, Melita, M, Zuluaga, JI, et al., 2016, Spin–orbit evolution of the GJ 667C system: the effect of composition and other planets’ perturbations. MNRAS, 463, 1592–1604 {717}CrossRefGoogle Scholar
Cubillos, P, Blecic, J, Harrington, J, et al., 2016a, BART: Bayesian Atmospheric Radiative Transfer fitting code. Astrophysics Source Code Library {606}
Cubillos, P, Blecic, J, Harrington, J, 2017a, Transit: radiative-transfer code for planetary atmospheres. Astrophysics Source Code Library {606}
Cubillos, P, Erkaev, NV, Juvan, I, et al., 2017b, An overabundance of low-density Neptune-like planets. MNRAS, 466, 1868–1879 {601}CrossRefGoogle Scholar
Cubillos, P, Harrington, J, Loredo, TJ, et al., 2017c, On correlated-noise analyses applied to exoplanet light curves. AJ, 153, 3 {25}CrossRefGoogle Scholar
Cubillos, P, Harrington, J, Lust, N, et al., 2016b, MC3: Multi-core Markov-chain Monte Carlo code. Astrophysics Source Code Library {25}
Cubillos, P, Harrington, J, Madhusudhan, N, et al., 2013, WASP–8 b: characterisation of a cool and eccentric exoplanet with Spitzer. ApJ, 768, 42 {752}CrossRefGoogle Scholar
Cubillos, P, Harrington, J, Madhusudhan, N, 2014, A Spitzer five-band analysis of the Jupiter-sized planet TrES–1. ApJ, 797, 42 {750}CrossRefGoogle Scholar
Cubillos, P, Rojo, P, Fortney, JJ, 2011, High-resolution spectroscopic search for the thermal emission of the extrasolar planet HD 217107 b. A&A, 529, A88 {236, 724}Google Scholar
Cubillos, PE, 2017, An algorithm to compress line-transition data for radiative-transfer calculations. ApJ, 850, 32 {570}CrossRefGoogle Scholar
Cubillos, PE, Fossati, L, Erkaev, NV, et al., 2017d, Aerosol constraints on the atmosphere of the hot Saturn-mass planet WASP–49 b. ApJ, 849, 145 {606, 755}CrossRefGoogle Scholar
Cuello, N, Gonzalez, JF, Pignatale, FC, 2016, Effects of photophoresis on the dust distribution in a 3d protoplanetary disk. MNRAS, 458, 2140–2149 {458}CrossRefGoogle Scholar
Ćuk, M, 2012, Chronology and sources of lunar impact bombardment. Icarus, 218, 69–79 {671}CrossRefGoogle Scholar
Ćuk, M, 2018, Oumuamua as a tidal disruption fragment from a binary star system. ApJ, 852, L15 {693}CrossRefGoogle Scholar
Ćuk, M, Dones, L, Nesvorný, D, 2016a, Dynamical evidence for a late formation of Saturn's moons. ApJ, 820, 97 {627, 688}CrossRefGoogle Scholar
Ćuk, M, Gladman, BJ, Stewart, ST, 2010, Constraints on the source of lunar cataclysm impactors. Icarus, 207, 590–594 {669}CrossRefGoogle Scholar
Ćuk, M, Hamilton, DP, Holman, MJ, 2012, Long-term stability of horseshoe orbits. MNRAS, 426, 3051–3056 {274}CrossRefGoogle Scholar
Ćuk, M, Hamilton, DP, Lock, SJ, et al., 2016b, Tidal evolution of the Moon from a high-obliquity, high-angular-momentum Earth. Nature, 539, 402–406 {664, 665}CrossRefGoogle Scholar
Ćuk, M, Stewart, ST, 2012, Making the Moon from a fast-spinning Earth: a giant impact followed by resonant despinning. Science, 338, 1047–1049 {509, 664, 665, 679}CrossRefGoogle ScholarPubMed
Cullum, J, Stevens, D, Joshi, M, 2014, The importance of planetary rotation period for ocean heat transport. Astrobiology, 14, 645–650 {620}CrossRefGoogle ScholarPubMed
Cumming, A, 2004, Detectability of extrasolar planets in radial velocity surveys. MNRAS, 354, 1165–1176 {21, 26, 35, 60}CrossRefGoogle Scholar
Cumming, A, Butler, RP, Marcy, GW, et al., 2008, The Keck planet search: detectability and the minimum mass and orbital period distribution of extrasolar planets. PASP, 120, 531–554 {13, 26, 57, 62, 149, 259, 404, 547, 552}CrossRefGoogle Scholar
Cumming, A, Dragomir, D, 2010, An integrated analysis of radial velocities in planet searches. MNRAS, 401, 1029–1042 {23}CrossRefGoogle Scholar
Cumming, A, Marcy, GW, Butler, RP, 1999, The Lick planet search: detectability and mass thresholds. ApJ, 526, 890–915 {20, 21, 46}CrossRefGoogle Scholar
Cunha, D, Correia, ACM, Laskar, J, 2015, Spin evolution of Earth-sized exoplanets, including atmospheric tides and core-mantle friction. Int. J. Astrobiol., 14, 233–254 {541}CrossRefGoogle Scholar
Cunha, D, Figueira, P, Santos, NC, et al., 2013, Impact of stellar companions on precise radial velocities. A&A, 550, A75 {34}Google Scholar
Cunha, D, Santos, NC, Figueira, P, et al., 2014, Impact of micro-telluric lines on precise radial velocities and its correction. A&A, 568, A35 {34}Google Scholar
Cunha, MS, 2018, Theory of stellar oscillations. Asteroseismology and Exoplanets: Listening to the Stars and Searching for New Worlds, 49, 27 {406}Google Scholar
Cunningham, CR, 2009, Future technologies for optical and infrared telescopes and instruments. Exp. Astron., 26, 179–199 {357}CrossRefGoogle Scholar
Cunningham, CR, Evans, CJ, Molster, F, et al., 2012, Innovative technology for optical and infrared astronomy. Modern Technologies in Space- and Ground-based Telescopes and Instrumentation II, volume 8450 of Proc. SPIE, 845031 {357}Google Scholar
Cuntz, M, 2012, Application of the Titius–Bode rule to the 55 Cnc system: tentative prediction of a possibly habitable planet. PASJ, 64, 73 {510, 728}CrossRefGoogle Scholar
Cuntz, M, 2014, S-type and P-type habitability in stellar binary systems: a comprehensive approach. I. Method and applications. ApJ, 780, 14 {550, 623}CrossRefGoogle Scholar
Cuntz, M, 2015, S-type and P-type habitability in stellar binary systems: a comprehensive approach. II. Elliptical orbits. ApJ, 798, 101 {550, 623}CrossRefGoogle Scholar
Cuntz, M, Eberle, J, Musielak, ZE, 2007, Stringent criteria for stable and unstable planetary orbits in stellar binary systems. ApJ, 669, L105–L108 {549}CrossRefGoogle Scholar
Cuntz, M, Guinan, EF, 2016, About exobiology: the case for dwarf K stars. ApJ, 827, 79 {628, 634}CrossRefGoogle Scholar
Cuntz, M, Quarles, B, Eberle, J, et al., 2013, On the possibility of habitable moons in the system of HD 23079: results from orbital stability studies. Publ. Astron. Soc. Australia, 30, e033 {627, 719}CrossRefGoogle Scholar
Cuntz, M, Saar, SH, Musielak, ZE, 2000, On stellar activity enhancement due to interactions with extrasolar giant planets. ApJ, 533, L151–L154 {421, 425}CrossRefGoogle ScholarPubMed
Cuntz, M, Shkolnik, E, 2002, Chromospheres, flares and exoplanets. Astron. Nach., 323, 387–391 {425}3.0.CO;2-6>CrossRefGoogle Scholar
Cuntz, M, von Bloh, W, Bounama, C, et al., 2003, On the possibility of Earth-type habitable planets around 47 UMa. Icarus, 162, 214–221 {716}CrossRefGoogle Scholar
Cuntz, M, von Bloh, W, Schröder, KP, et al., 2012, Habitability of super-Earth planets around main-sequence stars including red giant branch evolution: models based on the integrated systemapproach. Int. J. Astrobiol., 11, 15–23 {629}CrossRefGoogle Scholar
Cuntz, M, Yeager, KE, 2009, On the validity of the Hill radius criterion for the ejection of planets from stellar habitable zones. ApJ, 697, L86–L90 {512, 623}CrossRefGoogle Scholar
Curiel, S, Cantó, J, Georgiev, L, et al., 2011, A fourth planet orbiting À And. A&A, 525, A78 {11, 69, 70, 514, 713}Google Scholar
Currie, T, 2009, On the semimajor axis distribution of extrasolar gas giant planets: why hot Jupiters are rare around high-mass stars. ApJ, 694, L171–L176 {259}CrossRefGoogle Scholar
Currie, T, Brittain, S, Grady, CA, et al., 2017, Clarifying the status of HD 100546 as observed by the Gemini Planet Imager. RNAAS, 1, 40 {763}Google Scholar
Currie, T, Burrows, A, Daemgen, S, 2014a, A first-look atmospheric modeling study of the young directly imaged planet-mass companion, ROXs 42B b. ApJ, 787, 104 {764}CrossRefGoogle Scholar
Currie, T, Burrows, A, Girard, JH, et al., 2014b, Deep thermal infrared imaging of HR 8799 bcde: new atmospheric constraints and limits on a fifth planet. ApJ, 795, 133 {365, 588, 763}CrossRefGoogle Scholar
Currie, T, Burrows, A, Itoh, Y, et al., 2011a, A combined Subaru–VLT–MMT 1-5μm study of planets orbiting HR 8799: implications for atmospheric properties, masses, and formation. ApJ, 729, 128 {436, 763}CrossRefGoogle Scholar
Currie, T, Burrows, A, Madhusudhan, N, et al., 2013a, A combined VLT–Gemini study of the atmosphere of the directly imaged planet, β Pic b. ApJ, 776, 15 {762}CrossRefGoogle Scholar
Currie, T, Cloutier, R, Brittain, S, et al., 2015, Resolving the HD 100546 protoplanet-ary system with the Gemini Planet Imager (GPI): evidence for multiple forming, accreting planets. ApJ, 814, L27 {360, 466, 762}CrossRefGoogle Scholar
Currie, T, Cloutier, R, Debes, JH, et al., 2013b, A deep Keck–NIRC2 search for thermal emission from planetary companions orbiting Fomalhaut. ApJ, 777, L6 {761}CrossRefGoogle Scholar
Currie, T, Daemgen, S, Debes, J, et al., 2014c, Direct imaging and spectroscopy of a candidate companion below/near the deuterium-burning limit in the young binary star system, ROXs 42B. ApJ, 780, L30 {362, 764}CrossRefGoogle Scholar
Currie, T, Debes, J, Rodigas, TJ, et al., 2012a, Direct imaging confirmation and char-acterisation of a dust-enshrouded candidate exoplanet orbiting Fomalhaut. ApJ, 760, L32 {365, 761}CrossRefGoogle Scholar
Currie, T, Fukagawa, M, Thalmann, C, et al., 2012b, Direct detection and orbital analysis of the exoplanets HR 8799 bcd from archival 2005 Keck–NIRC2 data. ApJ, 755, L34 {763}CrossRefGoogle Scholar
Currie, T, Hansen, B, 2007, The evolution of protoplanetary disks around millisecond pulsars: the PSR B1257+12 system. ApJ, 666, 1232–1244 {107}CrossRefGoogle Scholar
Currie, T, Lada, CJ, Plavchan, P, et al., 2009, The last gasp of gas giant planet formation: a Spitzer study of the 5Myr old cluster NGC 2362. ApJ, 698, 1–27 {462, 464, 483}CrossRefGoogle Scholar
Currie, T, Muto, T, Kudo, T, et al., 2014d, Recovery of the candidate protoplanet HD 100546 b with Gemini–NICI and detection of additional (planet-induced?) disk structure at small separations. ApJ, 796, L30 {358, 762}CrossRefGoogle Scholar
Currie, T, Sicilia-Aguilar, A, 2011, The transition protoplanetary disk frequency as a function of age: disk evolution in the Coronet cluster, Taurus, and other 1–8Myr old regions. ApJ, 732, 24 {465}CrossRefGoogle Scholar
Currie, T, Thalmann, C, Matsumura, S, et al., 2011b, A 5μm image of β Pic b at a sub-Jupiter projected separation: evidence for a misalignment between the planet and the inner, warped disk. ApJ, 736, L33 {342, 762}CrossRefGoogle Scholar
Curtis, JE, Grier, DG, 2003, Structure of optical vortices. Phys. Rev. Lett., 90(13), 3901–3904 {337}CrossRefGoogle ScholarPubMed
Curtis, JE, Koss, BA, Grier, DG, 2002, Dynamic holographic optical tweezers. Optics Communications, 207, 169–175 {336}CrossRefGoogle Scholar
Curtis, JL, Vanderburg, A, Torres, G, et al., 2018, K2–231 b: a sub-Neptune exoplanet transiting a solar twin in Ruprecht 147. AJ, 155, 173 {749}CrossRefGoogle Scholar
Cushing, MC, Kirkpatrick, JD, Gelino, CR, et al., 2011, The discovery of Y dwarfs using data from the Wide-field Infrared Survey Explorer (WISE). ApJ, 743, 50 {433, 436, 570}CrossRefGoogle Scholar
Cushing, MC, Saumon, D, Marley, MS, 2010, SDSS J141624.08+134826.7: blue L dwarfs and non-equilibriumchemistry. AJ, 140, 1428–1432 {438}CrossRefGoogle Scholar
Cutri, RM, Skrutskie, MF, Van Dyk, S, et al., 2008, Explanatory Supplement to the 2MASS All Sky Data Release. www.ipac.caltech.edu {432}
Cutri, RM, et al., 2012, WISE All-Sky Data Release. Data Catalog, 2311 {607}Google Scholar
Cuzzi, JN, Burns, JA, Charnoz, S, et al., 2010, An evolving view of Saturn's dynamic rings. Science, 327, 1470 {690}CrossRefGoogle ScholarPubMed
Cuzzi, JN, Dobrovolskis, AR, Champney, JM, 1993, Particle-gas dynamics in the mid-plane of a protoplanetary nebula. Icarus, 106, 102–134 {460}CrossRefGoogle Scholar
Cuzzi, JN, Estrada, PR, Davis, SS, 2014, Utilitarian opacity model for aggregate particles in protoplanetary nebulae and exoplanet atmospheres. ApJS, 210, 21 {469, 570}CrossRefGoogle Scholar
Cuzzi, JN, Hogan, RC, Paque, JM, et al., 2001, Size-selective concentration of chon-drules and other small particles in protoplanetary nebula turbulence. ApJ, 546, 496–508 {460}CrossRefGoogle Scholar
Cuzzi, JN, Hogan, RC, Shariff, K, 2008, Toward planetesimals: dense chondrule clumps in the protoplanetary nebula. ApJ, 687, 1432–1447 {460}CrossRefGoogle Scholar
Cuzzi, JN, Weidenschilling, SJ, 2006, Particle-gas dynamics and primary accretion. Me-teorites and the Early Solar SystemII, 353–381 {460}
Cuzzi, JN, Zahnle, KJ, 2004, Material enhancement in protoplanetary nebulae by particle drift through evaporation fronts. ApJ, 614, 490–496 {458}CrossRefGoogle Scholar
Cyncynates, D, Dimastrogiovanni, E, Kumar, S, et al., 2017, Could Oumuamua be macroscopic dark matter? ArXiv e-prints {693}
Czekaj, MA, Robin, AC, Figueras, F, et al., 2014, The Besançon Galaxy model renewed. I. Constraints on the local star formation history from Tycho data. A&A, 564, A102 {380}Google Scholar
Czekala, I, Andrews, SM, Mandel, KS, et al., 2015, Constructing a flexible likelihood function for spectroscopic inference. ApJ, 812, 128 {753}CrossRefGoogle Scholar
Czesla, S, Huber, KF, Wolter, U, et al., 2009, Howstellar activity affects the size estimates of extrasolar planets. A&A, 505, 1277–1282 {209, 211, 213}Google Scholar
Czesla, S, Klocová, T, Khalafinejad, S, et al., 2015, The centre-to-limb variation across the Fraunhofer lines of HD 189733: sampling the stellar spectrum using a transiting planet. A&A, 582, A51 {731}Google Scholar
Czesla, S, Salz, M, Schneider, PC, et al., 2013, X-ray irradiation and mass-loss of the hot Jupiter WASP–43 b. A&A, 560, A17 {166, 755}Google Scholar
Czesla, S, Salz, M, Schneider, PC, 2017, Coronal X-ray emission and planetary irradiation in HD 209458. A&A, 607, A101 {732}Google Scholar
Czesla, S, Schröter, S, Wolter, U, et al., 2012, The extended chromosphere of CoRoT–2A: discovery and analysis of the chromospheric Rossiter–McLaughlin effect. A&A, 539, A150 {11, 249, 733}Google Scholar
daSilva, R, Milone, AC, Reddy, BE, 2011, Homogeneous photospheric parameters and C abundances in G and K nearby stars with and without planets. A&A, 526, A71 {398}Google Scholar
daSilva, R, Silva-Valio, A, 2011, A method to identify and characterise binary candidates: a study of CoRoT data. PASP, 123, 536–546 {190}Google Scholar
daSilva, R, Udry, S, Bouchy, F, et al., 2006, ELODIE metallicity-biased search for transiting hot Jupiters. I. Two hot Jupiters orbiting the slightly evolved stars HD 118203 and HD 149143. A&A, 446, 717–722 {54, 55, 157, 722}Google Scholar
daSilva, R, Udry, S, Bouchy, F, 2007, ELODIE metallicity-biased search for transiting hot Jupiters. IV. Intermediate period planets orbiting the stars HD 43691 and HD 132406. A&A, 473, 323–328 {54, 719, 722}Google Scholar
Daban, J, Gouvret, C, Guillot, T, et al., 2010, ASTEP 400: a telescope designed for exo-planet transit detection from Dome C, Antarctica. SPIE Conf. Ser., volume 7733, 151 {169}Google Scholar
Daemgen, S, Hormuth, F, Brandner, W, et al., 2009, Binarity of transit host stars: implications for planetary parameters. A&A, 498, 567–574 {160, 750, 751}Google Scholar
Daemgen, S, Todorov, K, Quanz, SP, et al., 2017a, High signal-to-noise spectral charac-terisation of the planetary-mass object HD 106906 b. A&A, 608, A71 {483, 763}Google Scholar
Daemgen, S, Todorov, K, Silva, J, et al., 2017b, Mid-infrared characterisation of the planetary-mass companion ROXs 42Bb. A&A, 601, A65 {764}Google Scholar
Dahn, CC, Harris, HC, Vrba, FJ, et al., 2002, Astrometry and photometry for cool dwarfs and brown dwarfs. AJ, 124, 1170–1189 {434}CrossRefGoogle Scholar
Dai, F, Winn, JN, 2017, The oblique orbit of WASP–107 b from K2 photometry. AJ, 153, 205 {214, 253, 255, 756}CrossRefGoogle Scholar
Dai, F, Winn, JN, Albrecht, S, et al., 2016, Doppler monitoring of five K2 transiting planetary systems. ApJ, 823, 115 {272, 747, 748}CrossRefGoogle Scholar
Dai, F, Winn, JN, Arriagada, P, et al., 2015, Doppler monitoring of the WASP–47 multi-planet system. ApJ, 813, L9 {755}CrossRefGoogle Scholar
Dai, F, Winn, JN, Gandolfi, D, et al., 2017a, The discovery and mass measurement of a new ultra-short-period planet: K2–131 b. AJ, 154, 226 {749}CrossRefGoogle Scholar
Dai, F, Winn, JN, Yu, L, et al., 2017b, The stellar obliquity, planet mass, and very low albedo of Qatar–2 from K2 photometry. AJ, 153, 40 {214, 750}CrossRefGoogle Scholar
Dai, X, Guerras, E, 2018, Probing planets in extragalactic galaxies using quasar micro-lensing. ApJ, 853, L27 {151}CrossRefGoogle Scholar
Dai, Y, Wilner, DJ, Andrews, SM, et al., 2010a, Millimeter dust emission in the GQ Lup system. AJ, 139, 626–629 {762}CrossRefGoogle Scholar
Dai, ZB, Qian, SB, Fernández Lajús E, et al., 2010b, Orbital period analyses for two cataclysmic variables: UZ For and V348 Pup inside the period gap. MNRAS, 409, 1195–1202 {116}CrossRefGoogle Scholar
Dalba, PA, 2017, Out-of-transit refracted light in the atmospheres of transiting and non-transiting exoplanets. ApJ, 848, 91 {222, 223}CrossRefGoogle Scholar
Dalba, PA, Muirhead, PS, 2016, No timing variations observed in third transit of snow-line exoplanet Kepler–421 b. ApJ, 826, L7 {745}CrossRefGoogle Scholar
Dalba, PA, Muirhead, PS, Croll, B, et al., 2017, Kepler transit depths contaminated by a phantom star. AJ, 153, 59 {746}CrossRefGoogle Scholar
Dalba, PA, Muirhead, PS, Fortney, JJ, et al., 2015, The transit transmission spectrum of a cold gas giant planet. ApJ, 814, 154 {162, 222}CrossRefGoogle Scholar
Dale, CW, Kruijer, TS, Burton, KW, 2017, Highly siderophile element and 182W evidence for a partial late veneer in the source of 3.8Ga rocks from Isua, Greenland. Earth Planet. Sci. Lett., 458, 394–404 {669}CrossRefGoogle Scholar
D'Alessio, P, Hartmann, L, Calvet, N, et al., 2005, The truncated disk of CoKu Tau/4. ApJ, 621, 461–472 {465}Google Scholar
Dall, TH, Santos, NC, Arentoft, T, et al., 2006, Bisectors of the cross-correlation function applied to stellar spectra: discriminating stellar activity, oscillations and planets. A&A, 454, 341–348 {40}Google Scholar
Dall, TH, Schmidtobreick, L, Santos, NC, et al., 2005, Outbursts on normal stars: FH Leo misclassified as a nova-like variable. A&A, 438, 317–324 {370}Google Scholar
Dalrymple, GB, 1991, The Age of the Earth. Stanford University Press {652}Google Scholar
Daly, RA, 1946, Origin of the Moon and its topography. Proc. Am. Phil. Soc., 104–119 {664}
Damasso, M, Biazzo, K, Bonomo, AS, et al., 2015a, The GAPS programme with HARPS–Nat TNG. V. A comprehensive analysis of the XO–2 stellar and planetary systems. A&A, 575, A111 {757}Google Scholar
Damasso, M, Del Sordo, F, 2017, Proxima Cen reloaded: unravelling the stellar noise in radial velocities. A&A, 599, A126 {714}Google Scholar
Damasso, M, Esposito, M, Nascimbeni, V, et al., 2015b, The GAPS programme with HARPS–N at TNG. IX. The multi-planet system KELT–6: detection of the planet KELT–6 c and measurement of the Rossiter–McLaughlin effect for KELT–6 b. A&A, 581, L6 {738}Google Scholar
Damiani, C, Díaz, RF, 2016, Can brown dwarfs survive on close orbits around convective stars? A&A, 589, A55 {65}Google Scholar
Damiani, C, Lanza, AF, 2011, Prospecting transit duration variations in extrasolar planetary systems. A&A, 535, A116 {260, 262, 272, 273, 733, 734, 735, 736, 737, 738, 749, 751, 752, 753, 754, 755, 757}Google Scholar
Damiani, C, Lanza, AF, 2015, Evolution of angular-momentum-losing exoplanetary systems: revisiting Darwin stability. A&A, 574, A39 {540}Google Scholar
Damiano, M, Morello, G, Tsiaras, A, et al., 2017, Near-infrared transmission spectrum of HAT–P–32 b using HST–WFC3. AJ, 154, 39 {737}CrossRefGoogle Scholar
Danby, JMA, 1964a, Stability of the triangular points in the elliptic restricted problem of three bodies. AJ, 69, 165–172 {74}Google Scholar
Danby, JMA, 1964b, The stability of the triangular Lagrangian points in the general problem of three bodies. AJ, 69, 294–296 {74}Google Scholar
Danchi, WC, Bailey, V, Bryden, G, et al., 2016, Enabling the direct detection of Earth-sized exoplanets with the LBTI HOSTS project: a progress report. Optical and Infrared Interferometry and Imaging V, volume 9907 of Proc. SPIE, 990713 {348}Google Scholar
Danchi, WC, Barry, RK, Lawson, PR, et al., 2008, The Fourier–Kelvin Stellar Interferometer: a review, progress report, and update. SPIE Conf. Ser., volume 7013, 83 {353}Google Scholar
Danchi, WC, Deming, D, Kuchner, MJ, et al., 2003, Detection of close-in extrasolar giant planets using the Fourier–Kelvin stellar interferometer. ApJ, 597, L57–L60 {353}CrossRefGoogle Scholar
Danchi, WC, Lopez, B, 2007, The Fourier–Kelvin Stellar Interferometer: a practical infrared space interferometer on the path to the discovery and characterisation of Earth-like planets around nearby stars. Comptes Rendus Physique, 8, 396–407 {353}CrossRefGoogle Scholar
Danchi, WC, Lopez, B, 2013, Effect of metallicity on the evolution of the habitable zone from pre-main sequence to the asymptotic giant branch and the search for life. ApJ, 769, 27 {625}CrossRefGoogle Scholar
Danchi, WC, Rajagopal, J, Kuchner, M, et al., 2006, The importance of phase in nulling interferometry and a three-telescope closure-phase nulling interferometer concept. ApJ, 645, 1554–1559 {349}CrossRefGoogle Scholar
Dang, L, Cowan, NB, Schwartz, JC, et al., 2018, Detection of a westward hotspot offset in the atmosphere of hot gas giant CoRoT–2b. Nature Astronomy, 2, 220–227 {173, 616, 733}CrossRefGoogle Scholar
D'Angelo, G, Bate, MR, Lubow, SH, 2005, The dependence of protoplanet migrationrates on co-orbital torques. MNRAS, 358, 316–332 {521}CrossRefGoogle Scholar
D'Angelo, G, Bodenheimer, P, 2016, In situ and ex situ formation models of Kepler–11 planets. ApJ, 828, 33 {503, 739}CrossRefGoogle Scholar
D'Angelo, G, Durisen, RH, Lissauer, JJ, 2010, Giant planet formation. Exoplanets (ed. Seager S), 319–346, Princeton University Press {481}Google Scholar
D'Angelo, G, Henning, T, Kley, W, 2002, Nested-grid calculations of disk–planet interaction. A&A, 385, 647–670 {484}Google Scholar
D'Angelo, G, Lubow, SH, 2008, Evolution of migrating planets undergoing gas accretion. ApJ, 685, 560–583 {483}Google Scholar
D'Angelo, G, Marzari, F, 2012, Outward migration of Jupiter and Saturn in evolved gaseous disks. ApJ, 757, 50 {698}CrossRefGoogle Scholar
D'Angelo, G, Podolak, M, 2015, Capture and evolution of planetesimals in circumjo-vian disks. ApJ, 806, 203 {565}CrossRefGoogle Scholar
Dangi, BB, Kim, YS, Krasnokutski, SA, et al., 2015, Toward the formation of carbonaceous refractory matter in high temperature hydrocarbon-rich atmospheres of exoplanets upon micrometeoroid Iimpact. ApJ, 805, 76 {729}CrossRefGoogle Scholar
Danielski, C, Deroo, P, Waldmann, IP, et al., 2014, 0.94–2.42μm ground-based transmission spectra of the hot Jupiter HD 189733 b. ApJ, 785, 35 {609, 612, 730}CrossRefGoogle Scholar
D'Antona, F, Mazzitelli, I, 1985, Evolution of very low mass stars and brown dwarfs. I. The minimummain-sequence mass and luminosity. ApJ, 296, 502–513 {430}Google Scholar
Danek, K, Heyrovský, D, 2015, Critical curves and caustics of triple-lens models. ApJ, 806, 99 {130}CrossRefGoogle Scholar
Darwin, GH, 1879a, A tidal theory of the evolution of satellites. The Observatory, 3, 79–84 {538}Google Scholar
Darwin, GH, 1879b, On the precession of a viscous spheroid, and on the remote history of the Earth. Phil. Trans. Soc. London A, 170(447-538) {533, 664}Google Scholar
Darwin, GH, 1880, On the secular changes in the elements of the orbit of a satellite revolving about a tidally distorted planet. Philosophical Transactions of the Royal Society of London Series I, 171, 713–891 {533, 535, 538}Google Scholar
Darwin, GH, 1898, The tides and kindred phenomena in the solar system. Houghton & Mifflin {664}Google Scholar
Darwin, GH, 1908, Scientific Papers Volume II. Cambridge University Press {534}Google Scholar
DasChagas, ML, Bravo, JP, Costa, AD, et al., 2016, New Suns in the cosmos. II. Differential rotation in Kepler Sun-like stars. MNRAS, 463, 1624–1631 {386}Google Scholar
Datchi, F, Loubeyre, P, Letoullec, R, 2000, Extended and accurate determination of the melting curves of argon, helium, water ice, and hydrogen. Phys. Rev. B, 61, 6535–6546 {567, 568}CrossRefGoogle Scholar
Daubar, IJ, McEwen, AS, Byrne, S, et al., 2013, The current Martian cratering rate. Icarus, 225, 506–516 {672}CrossRefGoogle Scholar
Dauphas, N, Chaussidon, M, 2011, A perspective from extinct radionuclides on a young stellar object: the Sun and its accretion disk. Ann. Rev. Earth Plan. Sci., 39, 351–386 {651}CrossRefGoogle Scholar
Dauphas, N, Pourmand, A, 2011, Hf-W-Th evidence for rapid growth of Mars and its status as a planetary embryo. Nature, 473, 489–492 {657, 694}CrossRefGoogle ScholarPubMed
Dauphas, N, Robert, F, Marty, B, 2000, The late asteroid and cometary bombardment of Earth as recorded in water deuterium/protium ratio. Icarus, 148, 508–512 {668}CrossRefGoogle Scholar
Davenport, JRA, 2016, The Kepler catalogue of stellar flares. ApJ, 829, 23 {428}CrossRefGoogle Scholar
Davenport, JRA, 2017, Rotating stars from Kepler observed with Gaia DR1. ApJ, 835, 16 {383}CrossRefGoogle Scholar
Davenport, JRA, Covey, KR, Clarke, RW, et al., 2018, The GALEX view of Boyajian's star (KIC–8462852). ApJ, 853, 130 {747}CrossRefGoogle Scholar
David, EM, Quintana, EV, Fatuzzo, M, et al., 2003, Dynamical stability of Earth-like planetary orbits in binary systems. PASP, 115, 825–836 {549}CrossRefGoogle Scholar
David, TJ, Hillenbrand, LA, Petigura, EA, et al., 2016, A Neptune-sized transiting planet closely orbiting a 5–10Myr-old star. Nature, 534, 658–661 {159, 748}CrossRefGoogle ScholarPubMed
David, TJ, Petigura, EA, Hillenbrand, LA, et al., 2017, A transient transit signature associated with the young star RIK 210. ApJ, 835, 168 {217}CrossRefGoogle Scholar
Davidson, JM, 2011, Utilising astrometric orbits to obtain coronagraphic images of extrasolar planets. PASP, 123, 923–941 {342}CrossRefGoogle Scholar
Davies, GF, 1999, Dynamic Earth. Cambridge University Press {544}CrossRefGoogle Scholar
Davies, GR, Chaplin, WJ, Farr, WM, et al., 2015, Asteroseismic inference on rotation, gyrochronology and planetary system dynamics of 16 Cyg. MNRAS, 446, 2959–2966 {715}CrossRefGoogle Scholar
Davies, MB, Adams, FC, Armitage, P, et al., 2014, The long-term dynamical evolution of planetary systems. Protostars and Planets VI, 787–808 {467}
Davies, MB, Malmberg, D, Chambers, JE, et al., 2008, Is our Sun a singleton? Physica Scripta Volume T, 130(1), 014030 {651}Google Scholar
Davies, MB, Sigurdsson, S, 2001, Planets in 47 Tuc. MNRAS, 324, 612–616 {159}CrossRefGoogle Scholar
Davies, ME, Abalakin, VK, Bursa, M, et al., 1986, Report of the IAU–IAG COSPAR working group on cartographic coordinates and rotational elements of the planets and satellites: 1985. Celestial Mechanics, 39, 102–113 {658}CrossRefGoogle Scholar
Davies, PCW, 2010, The Eerie Silence. Penguin {647}Google Scholar
Davies, R, Kasper, M, 2012, Adaptive optics for astronomy. ARA&A, 50, 305–351 {331}Google Scholar
Davis, AB, Cisewski, J, Dumusque, X, et al., 2017, Insights on the spectral signatures of stellar activity and planets from PCA. ApJ, 846, 59 {38}CrossRefGoogle Scholar
Davis, J, Ireland, MJ, Jacob, AP, et al., 2006, SUSI: an update on instrumental developments and science. SPIE Conf. Ser., volume 6268, 4 {348}Google Scholar
Davis, SS, 2005, Condensation front migration in a protoplanetary nebula. ApJ, 620, 994–1001 {564}CrossRefGoogle Scholar
Davis, TA, Wheatley, PJ, 2009, Evidence for a lost population of close-in exoplanets. MNRAS, 396, 1012–1017 {293, 423}CrossRefGoogle Scholar
Dawson, RI, 2014, On the tidal origin of hot Jupiter stellar obliquity trends. ApJ, 790, L31 {256}CrossRefGoogle Scholar
Dawson, RI, Chiang, E, 2014, A class of warm Jupiters withmutually inclined, apsidally misaligned close friends. Science, 346, 212–216 {305, 322}CrossRefGoogle ScholarPubMed
Dawson, RI, Chiang, E, Lee, EJ, 2015a, A metallicity recipe for rocky planets. MNRAS, 453, 1471–1483 {485, 603}CrossRefGoogle Scholar
Dawson, RI, Fabrycky, DC, 2010, Radial velocity planets de-aliased: a new, short period for super-Earth 55 Cnc e. ApJ, 722, 937–953 {77, 728}CrossRefGoogle Scholar
Dawson, RI, Johnson, JA, 2012, The photo-eccentric effect and proto-hot Jupiters. I. Measuring photometric eccentricities of individual transiting planets. ApJ, 756, 122 {11, 209, 210, 289, 323, 729}CrossRefGoogle Scholar
Dawson, RI, Johnson, JA, Fabrycky, DC, et al., 2014, Large eccentricity, low mutual inclination: the three-dimensional architecture of a hierarchical system of giant planets. ApJ, 791, 89 {305, 322, 745}CrossRefGoogle Scholar
Dawson, RI, Johnson, JA, Morton, TD, et al., 2012, The photo-eccentric effect and proto-hot Jupiters. II. KOI–1474.01, a candidate eccentric planet perturbed by an unseen companion. ApJ, 761, 163 {210, 289, 305, 745}CrossRefGoogle Scholar
Dawson, RI, Lee, EJ, Chiang, E, 2016, Correlations between compositions and orbits established by the giant impact era of planet formation. ApJ, 822, 54 {476, 502}CrossRefGoogle Scholar
Dawson, RI, Murray-Clay, R, 2012, Neptune's wild days: constraints from the eccentricity distribution of the classical Kuiper belt. ApJ, 750, 43 {685}CrossRefGoogle Scholar
Dawson, RI, Murray-Clay, RA, 2013, Giant planets orbiting metal-rich stars show signatures of planet–planet interactions. ApJ, 767, L24 {290}CrossRefGoogle Scholar
Dawson, RI, Murray-Clay, RA, Fabrycky, DC, 2011, On the misalignment of the directly imaged planet β Pic b with the system's warped inner disk. ApJ, 743, L17 {762}CrossRefGoogle Scholar
Dawson, RI, Murray-Clay, RA, Johnson, JA, 2015b, The photo-eccentric effect and proto-hot Jupiters. III. A paucity of proto-hot Jupiters on super-eccentric orbits. ApJ, 798, 66 {210, 289, 531}CrossRefGoogle Scholar
Day, JMD, Walker, RJ, Qin, L, et al., 2012, Late accretion as a natural consequence of planetary growth. Nature Geoscience, 5, 614–617 {669}CrossRefGoogle Scholar
Dayal, P, Cockell, C, Rice, K, et al., 2015, The quest for cradles of life: using the fundamental metallicity relation to hunt for the most habitable type of galaxy. ApJ, 810, L2 {625}CrossRefGoogle Scholar
deAzarevich, VLL, Azarevich, MB, 2017, Lunar recession encoded in tidal rhythmites: a selective overview with examples from Argentina. Geo-Marine Letters, 37, 333–344 {665}Google Scholar
deBeule, C, Kelling, T, Wurm, G, et al., 2013, From planetesimals to dust: low-gravity experiments on recycling solids at the inner edges of protoplanetary disks. ApJ, 763, 11 {458}CrossRefGoogle Scholar
deBoer, J, Salter, G, Benisty, M, et al., 2016, Multiple rings in the transition disk and companion candidates around RX J1615.3–3255: high contrast imaging with VLT–SPHERE. A&A, 595, A114 {466, 520}Google Scholar
deBruijne, JHJ, Reynolds, AP, Perryman, MAC, et al., 2002, Direct determination of quasar redshifts. A&A, 381, L57–L60 {183}Google Scholar
DeCaprio, V, Giro, E, Claudi, RU, et al., 2012, VLT–SPHERE/IFS: the spectro differential imager of the VLT for exoplanet search. Mem. Soc. Astron. Ital., 19, 376 {344}Google Scholar
DeCat, P, Aerts, C, De Ridder, J, et al., 2000, A study of bright southern slowly pulsating B stars. I. Determination of the orbital parameters and of the main frequency of the spectroscopic binaries. A&A, 355, 1015–1030 {230}Google Scholar
DeCat, P, Fu, JN, Ren, AB, et al., 2015, LAMOST observations in the Kepler field. I. Data-base of low-resolution spectra. ApJS, 220, 19 {390}Google Scholar
de Elía, GC, di Sisto, RP, 2011, Impactor flux and cratering on Ceres and Vesta: implications for the early solar system. A&A, 534, A129 {681}Google Scholar
deFelice, F, Crosta, MT, Vecchiato, A, et al., 2004, A general relativistic model of light propagation in the gravitational field of the solar system: the static case. ApJ, 607, 580–595 {84}Google Scholar
deForster, PM, Blackburn, M, Glover, R, et al., 2000, An examination of climate sensitivity for idealised climate change experiments in an intermediate general circu-lationmodel. Climate Dynamics, 16, 833–849 {593}Google Scholar
de Juan Ovelar, M, Kruijssen, JMD, Bressert, E, et al., 2012, Can habitable planets form in clustered environments? A&A, 546, L1 {625}Google Scholar
deKleer, K, Skrutskie, M, Leisenring, J, et al., 2017, Multi-phase volcanic resurfacing at Loki Patera on Io. Nature, 545, 199–202 {227}Google Scholar
deKok, RJ, Birkby, J, Brogi, M, et al., 2014, Identifying new opportunities for exoplanet characterisation at high spectral resolution. A&A, 561, A150 {42}Google Scholar
deKok, RJ, Brogi, M, Snellen, IAG, et al., 2013, Detection of CO in the high-resolution day-side spectrum of the exoplanet HD 189733 b. A&A, 554, A82 {42, 43, 609, 613, 730}Google Scholar
deKok, RJ, Helling, C, Stam, DM, et al., 2011a, The influence of non-isotropic scattering of thermal radiation on spectra of brown dwarfs and hot exoplanets. A&A, 531, A67 {591}Google Scholar
deKok, RJ, Stam, DM, Karalidi, T, 2011b, Characterising exoplanetary atmospheres through infrared polarimetry. ApJ, 741, 59 {246}CrossRefGoogle Scholar
de la Fuente Marcos, C, de La Fuente Marcos, R, 1997, Eccentric giant planets in open star clusters. A&A, 326, L21–L24 {499}Google Scholar
de la Fuente Marcos, C, de la Fuente Marcos, R, 2010, Drag-induced resonant capture in a multi-planet scenario: an application to 55 Cnc. New Astron., 15, 260–273 {728}CrossRefGoogle Scholar
de la Fuente Marcos, C, de la Fuente Marcos, R, 2013a, A resonant family of dynamically cold small bodies in the near-Earth asteroid belt. MNRAS, 434, L1–L5 {690}CrossRefGoogle Scholar
de la Fuente Marcos, C, de la Fuente Marcos, R, 2013b, Three new stable L5Mars Trojans. MNRAS, 432, L31 {690}CrossRefGoogle Scholar
de la Fuente Marcos, C, de la Fuente Marcos, R, 2014, Extreme trans-Neptunian objects and the Kozai mechanism: signalling the presence of trans-Plutonian planets. MNRAS, 443, L59–L63 {529, 684, 686, 687}CrossRefGoogle Scholar
de la Fuente Marcos, C, de la Fuente Marcos, R, 2016a, Finding Planet Nine: a Monte Carlo approach. MNRAS, 459, L66–L70 {687}Google Scholar
de la Fuente Marcos, C, de la Fuente Marcos, R, 2016b, Finding Planet Nine: apsidal anti-alignment Monte Carlo results. MNRAS, 462, 1972–1977 {687}CrossRefGoogle Scholar
de la Fuente Marcos, C, de la Fuente Marcos, R, 2017a, Evidence for a possible bimodal distribution of the nodal distances of the extreme trans-Neptunian objects: avoiding a trans-Plutonian planet or just plain bias? MNRAS, 471, L61–L65 {684}CrossRefGoogle Scholar
de la Fuente Marcos, C, de la Fuente Marcos, R, 2017b, Pole, pericentre, and nodes of the interstellar minor body Oumuamua. RNAAS, 1, 5 {693}Google Scholar
de la Fuente Marcos, C, de la Fuente Marcos, R, Aarseth, SJ, 2015, Flippingminor bodies: what comet 96P/Machholz 1 can tell us about the orbital evolution of extreme trans-Neptunian objects and the production of near-Earth objects on retrograde orbits. MNRAS, 446, 1867–1873 {684}CrossRefGoogle Scholar
de la Fuente Marcos, C, de la Fuente Marcos, R, Aarseth, SJ, 2016, Dynamical impact of the Planet Nine scenario: N-body experiments. MNRAS, 460, L123–L127 {687}CrossRefGoogle Scholar
de la Fuente Marcos, C, de la Fuente Marcos, R, Aarseth, SJ, 2017, Binary stripping as a plausible origin of correlated pairs of extreme trans-Neptunian objects. Ap&SS, 362, 198 {684}Google Scholar
DeLee, N, Ge, J, Crepp, JR, et al., 2013, Very lowmass stellar and substellar companions to solar-like stars from MARVELS. V. A low eccentricity brown dwarf from the driest part of the desert, MARVELS–6 b. AJ, 145, 155 {50}CrossRefGoogle Scholar
DeMarco, O, Soker, N, 2011, The role of planets in shaping planetary nebulae. PASP, 123, 402–411 {414}CrossRefGoogle Scholar
deMedeiros, JR, Setiawan, J, Hatzes, AP, et al., 2009, A planet around the evolved intermediate-mass star HD 110014. A&A, 504, 617–623 {721}Google Scholar
deMooij, EJW, Brogi, M, de Kok, RJ, et al., 2012, Optical to near-infrared transit observations of super-Earth GJ 1214 b: water-world or mini-Neptune? A&A, 538, A46 {613, 734}Google Scholar
deMooij, EJW, Brogi, M, de Kok, RJ, 2013a, Search for Rayleigh scattering in the atmosphere of GJ 1214 b. ApJ, 771, 109 {613, 734}CrossRefGoogle Scholar
deMooij, EJW, Brogi, M, de Kok, RJ, 2013b, The GROUSE project. III. Ks-band observations of the thermal emission from WASP–33 b. A&A, 550, A54 {184, 754}Google Scholar
deMooij, EJW, de Kok, RJ, Nefs, SV, et al., 2011, The GROUSE project. II. Detection of the Ks-band secondary eclipse of exoplanet HAT–P–1 b. A&A, 528, A49 {163, 184, 735}Google Scholar
deMooij, EJW, López-Morales, M, Karjalainen, R, et al., 2014, Ground-based transit observations of the super-Earth 55 Cnc e. ApJ, 797, L21 {728}CrossRefGoogle Scholar
deMooij, EJW, Snellen, IAG, 2009, Ground-based K-band detection of thermal emission from the exoplanet TrES–3 b A&A, 493, L35–L38 {184, 751}Google Scholar
deMooij, EJW, Watson, CA, Kenworthy, MA, 2017, Characterising exo-ring systems around fast-rotating stars using the Rossiter–McLaughlin effect. MNRAS, 472, 2713–2721 {217, 250}Google Scholar
dePater, I, Lissauer, JJ, 2010, Planetary Sciences. Cambridge University Press {302}CrossRefGoogle Scholar
DeRosa, RJ, Nielsen, EL, Blunt, SC, et al., 2015, Astrometric confirmation and preliminary orbital parameters of the young exoplanet 51 Eri b with the Gemini Planet Imager (GPI). ApJ, 814, L3 {360, 761}Google Scholar
DeRosa, RJ, Rameau, J, Patience, J, et al., 2016, Spectroscopic characterisation of HD 95086 b with the Gemini Planet Imager (GPI)). ApJ, 824, 121 {493, 762}CrossRefGoogle Scholar
DeSanctis, MC, Ammannito, E, Capria, MT, et al., 2013, Vesta's mineralogical composition as revealed by Dawn–VIS. Meteor. Plan. Sci., 48, 2166–2184 {684}Google Scholar
de Val-Borro, M, Artymowicz, P, D'Angelo, G, et al., 2007, Vortex generation in proto-planetary disks with an embedded giant planet. A&A, 471, 1043–1055 {467}Google Scholar
de Val-Borro, M, Bakos GÁ, Brahm, R, et al., 2016, HATS–31 b through HATS–35 b: five transiting hot Jupiters discovered by the HATSouth Survey. AJ, 152, 161 {737}CrossRefGoogle Scholar
deWit, J, Gillon, M, Demory, BO, et al., 2012, Towards consistent mapping of distant worlds: secondary-eclipse scanning of the exoplanet HD 189733 b. A&A, 548, A128 {300, 609, 615, 730}Google Scholar
deWit, J, Lewis, NK, Knutson, HA, et al., 2017, Planet-induced stellar pulsations in the HAT–P–2 eccentric system. ApJ, 836, L17 {230, 735}Google Scholar
deWit, J, Lewis, NK, Langton, J, et al., 2016a, Direct measure of radiative and dynamical properties of an exoplanet atmosphere. ApJ, 820, L33 {617, 729}Google Scholar
deWit, J, Seager, S, 2013, Constraining exoplanet mass from transmission spectroscopy. Science, 342, 1473–1477 {208, 730}Google Scholar
deWit, J, Wakeford, HR, Gillon, M, et al., 2016b, A combined transmission spectrumof the Earth-sized exoplanets TRAPPIST–1 b and c. Nature, 537, 69–72 {225, 750}Google Scholar
deWit, J, Wakeford, HR, Lewis, NK, et al., 2018, Atmospheric reconnaissance of the habitable-zone Earth-sized planets orbiting TRAPPIST–1. Nature Astronomy, 2, 214–219 {750}Google Scholar
Deacon, NR, Liu, MC, Magnier, EA, et al., 2012a, HIP 38939B: a new benchmark T dwarf in the Galactic plane discovered with Pan-STARRS1. ApJ, 755, 94 {433}CrossRefGoogle Scholar
Deacon, NR, Liu, MC, Magnier, EA, 2012b, LHS 2803B: a very wide mid-T dwarf companion to an old M dwarf identified from Pan-STARRS1. ApJ, 757, 100 {433}CrossRefGoogle Scholar
Deacon, NR, Liu, MC, Magnier, EA, 2014, Wide cool and ultracool companions to nearby stars from Pan-STARRS 1. ApJ, 792, 119 {433}CrossRefGoogle Scholar
Deal, M, Deheuvels, S, Vauclair, G, et al., 2013a, Accretion from debris disks onto white dwarfs: fingering (thermohaline) instability and derived accretion rates. A&A, 557, L12 {394, 417}Google Scholar
Deal, M, Escobar, ME, Vauclair, S, et al., 2017, Asteroseismology of the exoplanet-host F-type star 94 Cet: Impact of atomic diffusion on the stellar parameters. A&A, 601, A127 {410, 718}Google Scholar
Deal, M, Vauclair, S, Vauclair, G, 2013b, Thermohaline instabilities induced by heavy element accretion onto white dwarfs: consequences on the derived accretion rates. 18th European White Dwarf Workshop, volume 469 of ASP Conf. Ser., 435 {417}Google Scholar
Debes, JH, Ge, J, Chakraborty, A, 2002, First high-contrast imaging using a Gaussian aperture pupil mask. ApJ, 572, L165–L168 {334}CrossRefGoogle Scholar
Debes, JH, Ge, J, Kuchner, MJ, et al., 2004, Using notch-filter masks for high-contrast imaging of extrasolar planets. ApJ, 608, 1095–1099 {334}CrossRefGoogle Scholar
Debes, JH, Hoard, DW, Kilic, M, et al., 2011a, The WIRED Survey. I. A bright infrared excess due to dust around the heavily polluted white dwarf Galex J193156.8+011745. ApJ, 729, 4 {415, 417}CrossRefGoogle Scholar
Debes, JH, Hoard, DW, Wachter, S, et al., 2011b, The WIREDsurvey. II. Infrared excesses in the SDSS DR7White Dwarf Catalogue. ApJS, 197, 38 {415}CrossRefGoogle Scholar
Debes, JH, Jackson, B, 2010, Too little, too late: how the tidal evolution of hot Jupiters affects transit surveys of clusters. ApJ, 723, 1703–1710 {159}CrossRefGoogle Scholar
Debes, JH, Jang-Condell, H, Schneider, G, 2016, The inner structure of the TWHya disk as revealed in scattered light. ApJ, 819, L1 {466}CrossRefGoogle Scholar
Debes, JH, Jang-Condell, H, Weinberger, AJ, et al., 2013, The 0.5¡2.22μm scattered light spectrumof the disk around TWHya: detection of a partially filled disk gap at 80 au. ApJ, 771, 45 {466}CrossRefGoogle Scholar
Debes, JH, Poteet, CA, Jang-Condell, H, et al., 2017, Chasing shadows: rotation of the azimuthal asymmetry in the TWHya disk. ApJ, 835, 205 {466, 764}CrossRefGoogle Scholar
Debes, JH, Sigurdsson, S, 2002, Are there unstable planetary systems around white dwarfs? ApJ, 572, 556–565 {110, 412, 415, 416}CrossRefGoogle Scholar
Debes, JH, Sigurdsson, S, 2007, The survival rate of ejected terrestrial planets with moons. ApJ, 668, L167–L170 {599, 627}CrossRefGoogle Scholar
Debes, JH, Sigurdsson, S, Woodgate, BE, 2005a, Cool customers in the stellar graveyard. I. Limits to extrasolar planets around the white dwarf G29–38. ApJ, 633, 1168–1174 {111, 415}CrossRefGoogle Scholar
Debes, JH, Sigurdsson, S, Woodgate, BE, 2005b, Cool customers in the stellar graveyard. II. Limits to substellar objects around nearby DAZ white dwarfs. AJ, 130, 1221–1230 {415}CrossRefGoogle Scholar
Debes, JH, Walsh, KJ, Stark, C, 2012, The link between planetary systems, dusty white dwarfs, and metal-polluted white dwarfs. ApJ, 747, 148 {416}CrossRefGoogle Scholar
Debes, JH, Weinberger, AJ, Kuchner, MJ, 2009, Interstellar medium sculpting of the HD 32297 debris disk. ApJ, 702, 318–326 {495}CrossRefGoogle Scholar
Debes, JH, Weinberger, AJ, Schneider, G, 2008, Complex organic materials in the circumstellar disk of HR 4796A. ApJ, 673, L191–L194 {464}CrossRefGoogle Scholar
Debosscher, J, Blomme, J, Aerts, C, et al., 2011, Global stellar variability study in the field-of-view of the Kepler satellite. A&A, 529, A89 {411}Google Scholar
Deck, K, Agol, E, Holman, M, et al., 2014a, TTVFast: transit timing inversion. Astrophysics Source Code Library {267}
Deck, KM, Agol, E, 2015, Measurement of planetmasses with transit timing variations due to synodic ‘chopping’ effects. ApJ, 802, 116 {266, 289}CrossRefGoogle Scholar
Deck, KM, Agol, E, 2016, Transit timing variations for planets near eccentricity-type mean motion resonances. ApJ, 821, 96 {268}CrossRefGoogle Scholar
Deck, KM, Agol, E, Holman, MJ, et al., 2014b, TTVFast: an efficient and accurate code for transit timing inversion problems. ApJ, 787, 132 {266, 267, 271}CrossRefGoogle Scholar
Deck, KM, Batygin, K, 2015, Migration of two massive planets into (and out of) first order mean motion resonances. ApJ, 810, 119 {502}CrossRefGoogle Scholar
Deck, KM, Holman, MJ, Agol, E, et al., 2012, Rapid dynamical chaos in an exoplanetary system. ApJ, 755, L21 {179, 504, 511, 740}CrossRefGoogle Scholar
Deck, KM, Payne, M, Holman, MJ, 2013, First-order resonance overlap and the stability of close two-planet systems. ApJ, 774, 129 {509}CrossRefGoogle Scholar
Deckers, J, Teiser, J, 2013, Colliding decimeter dust. ApJ, 769, 151 {468}CrossRefGoogle Scholar
Deckers, J, Teiser, J, 2014, Macroscopic dust in protoplanetary disks: from growth to destruction. ApJ, 796, 99 {468}CrossRefGoogle Scholar
Deckers, J, Teiser, J, 2016, Collisions of solid ice in planetesimal formation. MNRAS, 456, 4328–4334 {468}CrossRefGoogle Scholar
DeConto, RM, Pollard, D, 2003, Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2. Nature, 421, 245–249 {676}CrossRefGoogle ScholarPubMed
Dederick, E, Jackiewicz, J, 2017, A possible mechanism for driving oscillations in hot giant planets. ApJ, 837, 148 {591}CrossRefGoogle Scholar
Deeg, HJ, 1998, Photometric detection of extrasolar planets by the transit-method. Brown Dwarfs and Extrasolar Planets, volume 134 of ASP Conf. Ser., 216–223 {157}Google Scholar
Deeg, HJ, 2002, Detection of terrestrial planets and moons with the photometric transit method. Earth-like Planets and Moons, volume 514 of ESA SP, 237–243 {277}Google Scholar
Deeg, HJ, 2009, UTM, a universal simulator for light curves of transiting systems. IAUSymp., volume 253, 388–391 {196}Google Scholar
Deeg, HJ, 2014, UTM: Universal Transit Modeller. Astrophysics Source Code Library {196}
Deeg, HJ, Doyle, LR, Kozhevnikov, VP, et al., 1998, Near-termdetectability of terrestrial extrasolar planets: TEP network observations of CM Dra. A&A, 338, 479–490 {79, 160}Google Scholar
Deeg, HJ, Doyle, LR, Kozhevnikov, VP, 2000, A search for Jovian-mass planets around CM Dra using eclipse minima timing. A&A, 358, L5–L8 {160}Google Scholar
Deeg, HJ, Garrido, R, Claret, A, 2001, Probing the stellar surface of HD 209458 from multicolour transit observations. New Astron., 6, 51–60 {211, 610, 731}CrossRefGoogle Scholar
Deeg, HJ, Gillon, M, Shporer, A, et al., 2009, Ground-based photometry of space-based transit detections: photometric follow-up of the CoRoT mission. A&A, 506, 343–352 {172}Google Scholar
Deeg, HJ, Moutou, C, Erikson, A, et al., 2010, A transiting giant planet with a temperature between 250K and 430 K. Nature, 464, 384–387 {173, 734}CrossRefGoogle Scholar
Deeg, HJ, Ocaña, B, Kozhevnikov, VP, et al., 2008, Extrasolar planet detection by binary stellar eclipse timing: evidence for a third body around CM Dra. A&A, 480, 563–571 {117, 159}Google Scholar
Deeg, HJ, Tingley, B, 2017, TEE, an estimator for the precision of eclipse and transit minimum times. A&A, 599, A93 {196}Google Scholar
Deer, WA, Howie, RA, Zussman, J, 1996, An Introduction to the Rock-Forming Minerals. Prentice–Hall, Second Edition {561}Google Scholar
Defaÿ, C, Deleuil, M, Barge, P, 2001, A Bayesian method for the detection of planetary transits. A&A, 365, 330–340 {190}Google Scholar
Defrère, D, Absil, O, Augereau, JC, et al., 2011, Hot exozodiacal dust resolved around Vega with IOTA/IONIC. A&A, 534, A5 {492}Google Scholar
Defrère, D, Absil, O, Hinz, P, et al., 2014, L’-band AGPM vector vortex coronagraph first light on LBTI–LMIRCAM. Search for Life Beyond the Solar System. Exoplanets, Biosignatures and Instruments, 4P {338, 343}Google Scholar
Defrère, D, Hinz, P, Skemer, A, et al., 2015, Exoplanet science with the LBTI: instrument status and plans. Techniques and Instrumentation for Detection of Exoplanets VII, volume 9605 of Proc. SPIE, 96051G {348}Google Scholar
Defrère, D, Hinz, PM, Mennesson, B, et al., 2016, Nulling data reduction and on-sky performance of the Large Binocular Telescope Interferometer (LBTI). ApJ, 824, 66 {348, 349}CrossRefGoogle Scholar
Defrère, D, Lebreton, J, Le Bouquin, JB, et al., 2012, Hot circumstellar material resolved around β Pic with VLTI–PIONIER. A&A, 546, L9 {183, 348, 762}Google Scholar
Degroote, P, Aerts, C, Samadi, R, et al., 2010, Asteroseismology of OB stars with CoRoT. Astron. Nach., 331, 1065–1071 {409}CrossRefGoogle Scholar
DehghanFiroozabadi, A, Diaz, A, Rojo, P, et al., 2017, Unsupervised method for correlated noise removal for multi-wavelength exoplanet transit observations. PASP, 129(7), 074502 {194, 735, 754}Google Scholar
Dehnen, W, Binney, J, 1998, Mass models of the Milky Way. MNRAS, 294, 429–438 {395}CrossRefGoogle Scholar
Deienno, R, Morbidelli, A, Gomes, RS, et al., 2017, Constraining the giant planets’ initial configuration from their evolution: implications for the timing of the planetary instability. AJ, 153, 153 {697}CrossRefGoogle Scholar
Deienno, R, Nesvorný, D, Vokrouhlický, D, et al., 2014, Orbital perturbations of the Galilean satellites during planetary encounters. AJ, 148, 25 {697}CrossRefGoogle Scholar
Deienno, R, Yokoyama, T, Nogueira, EC, et al., 2011, Effects of planetary migration on some primordial satellites of the outer planets. I. Uranus. A&A, 536(Nice model), A57 {697}Google Scholar
Deines, SD, Williams, CA, 2016, Earth's rotational deceleration: determination of tidal friction independent of time scales. AJ, 151, 103 {679}CrossRefGoogle Scholar
Deitrick, R, Barnes, R, McArthur, B, et al., 2015, The three-dimensional architecture of the À And planetary system. ApJ, 798, 46 {69, 70, 93, 713}CrossRefGoogle Scholar
Deitrick, R, Barnes, R, Quinn, TR, et al., 2018, Exo-Milankovitch cycles. I. Orbits and rotation states. AJ, 155, 60 {621, 741}CrossRefGoogle Scholar
Dekany, R, Roberts, J, Burruss, R, et al., 2013, PALM–3000: exoplanet adaptive optics for the 5-m Hale telescope. ApJ, 776, 130 {343}CrossRefGoogle Scholar
Dekker, H, D'Odorico, S, Kaufer, A, et al., 2000, Design, construction, and performance of UVES. SPIE Conf. Ser., volume 4008, 534–545 {45, 46}Google Scholar
delBurgo, C, Allende Prieto, C, 2016, Accurate parameters for HD 209458 and its planet from HST spectrophotometry. MNRAS, 463, 1400–1408 {732}Google Scholar
delGenio, AD, Zhou, W, Eichler, TP, 1993, Equatorial superrotation in a slowly rotating GCM: implications for Titan and Venus. Icarus, 101, 1–17 {596}Google Scholar
DelMoro, D, 2004, Solar granulation properties derived from three different time series. A&A, 428, 1007–1015 {36}Google Scholar
DelMoro, D, Berrilli, F, Duvall TL Jr, et al., 2004, Dynamics and structure of supergran-ulation. Sol. Phys., 221, 23–32 {36}Google Scholar
DelSanto, M, Nucita, AA, Lodato, G, et al., 2014, The puzzling source IGR J17361–4441 in NGC 6388: a possible planetary tidal disruption event. MNRAS, 444, 93–101 {231, 424}Google Scholar
Delacroix, C, Absil, O, Forsberg, P, et al., 2013, Laboratory demonstration of a mid-infrared AGPM vector vortex coronagraph. A&A, 553, A98 {337}Google Scholar
Deleuil, M, 2012, The CoRoT exoplanet programme: status and results. COSPAR Scientific Assembly, volume 39, 437 {171}Google Scholar
Deleuil, M, Almenara, JM, Santerne, A, et al., 2014, SOPHIE velocimetry of Kepler transit candidates XI. Kepler–412 system: probing the properties of a new inflated hot Jupiter. A&A, 564, A56 {62, 745}Google Scholar
Deleuil, M, Bonomo, AS, Ferraz-Mello, S, et al., 2012, Transiting exoplanets from the CoRoT space mission. XX. CoRoT–20 b: A very high density, high eccentricity transiting giant planet. A&A, 538, A145 {173, 540, 734}Google Scholar
Deleuil, M, Deeg, HJ, Alonso, R, et al., 2008, Transiting exoplanets from the CoRoT space mission. VI. CoRoT–3 b: the first secure inhabitant of the brown-dwarf desert. A&A, 491, 889–897 {65, 173, 292, 439, 733}Google Scholar
Deleuil, M, Meunier, JC, Moutou, C, et al., 2009, Exo-Dat: an information system in support of the CoRoT exoplanet science. AJ, 138, 649–663 {172}CrossRefGoogle Scholar
Delfosse, X, Bonfils, X, Forveille, T, et al., 2013a, The HARPS search for southern extra-solar planets. XXXIII. Super-Earths around the M-dwarf neighbours GJ 433 and GJ 667C. A&A, 553, A8 {716, 717}Google Scholar
Delfosse, X, Donati, JF, Kouach, D, et al., 2013b, World-leading sciencewith SPIRou: the near infrared spectropolarimeter/high-precision velocimeter for CFHT. SF2A-2013: Proceedings of the Annual meeting of the French Society of Astronomy and Astrophysics, 497–508 {46, 48}
Delfosse, X, Forveille, T, 2001, Brown dwarfs and very low mass stars with DENIS. SF2A-2001: Semaine de l'Astrophysique Francaise, 91–94 {432}
Delfosse, X, Forveille, T, Beuzit, J, et al., 1999a, New neighbours. I. 13 new companions to nearby Md warfs. A&A, 344, 897–910 {55}Google Scholar
Delfosse, X, Forveille, T, Mayor, M, et al., 1998, The closest extrasolar planet: a giant planet around the M4 dwarf GJ 876. A&A, 338, L67–L70 {59, 71, 717}Google Scholar
Delfosse, X, Tinney, CG, Forveille, T, et al., 1999b, Searching for very low-mass stars and brown dwarfs with DENIS. A&AS, 135, 41–56 {432}Google Scholar
DelgadoMena, E, Bertrán de Lis S, Adibekyan, VZ, et al., 2015, Li abundances in F stars: planets, rotation, and Galactic evolution. A&A, 576, A69 {401}Google Scholar
DelgadoMena, E, Israelian, G, González Hernández, JI, et al., 2011, Measuring Be depletion in cool stars with exoplanets. ApJ, 728, 148 {403, 718, 719, 720, 722, 723, 724}CrossRefGoogle Scholar
DelgadoMena, E, Israelian, G, González Hernández, JI, 2012, Be abundances in cool main-sequence stars with exoplanets. ApJ, 746, 47 {403}CrossRefGoogle Scholar
DelgadoMena, E, Israelian, G, González Hernández, JI, 2014, Li depletion in solar analogues with exoplanets: extending the sample. A&A, 562, A92 {401}Google Scholar
DelgadoMena, E, Tsantaki, M, Adibekyan, VZ, et al., 2017, Chemical abundances of 1111 FGK stars from the HARPS GTO planet search programme. II. Cu, Zn, Sr, Y, Zr, Ba, Ce, Nd, and Eu. A&A, 606, A94 {397}Google Scholar
Del'Haye, P, Coillet, A, Fortier, T, et al., 2016, Phase-coherent microwave-to-optical link with a self-referenced microcomb. Nature Photonics, 10, 516–520 {33}CrossRefGoogle Scholar
Delisle, JB, 2017, Analytical model of multi-planetary resonant chains and constraints onmigration scenarios. A&A, 605, A96 {321, 744}Google Scholar
Delisle, JB, Correia, ACM, Leleu, A, et al., 2017, Spin dynamics of close-in planets exhibiting large transit timing variations. A&A, 605, A37 {271, 742}Google Scholar
Delisle, JB, Laskar, J, 2014, Tidal dissipation and the formation of Kepler near-resonant planets. A&A, 570, L7 {508}Google Scholar
Delisle, JB, Laskar, J, Correia, ACM, 2014, Resonance breaking due to dissipation in planar planetary systems. A&A, 566, A137 {508}Google Scholar
Delisle, JB, Laskar, J, Correia, ACM, et al., 2012, Dissipation in planar resonant planetary systems. A&A, 546, A71 {320, 502}Google Scholar
Delisle, JB, Ségransan, D, Buchschacher, N, et al., 2016, Analytical determination of orbital elements using Fourier analysis. I. The radial velocity case. A&A, 590, A134 {22}Google Scholar
Deliyannis, CP, Cunha, K, King, JR, et al., 2000, Beryllium and iron abundances of the solar twins 16 Cyg A and B. AJ, 119, 2437–2444 {403, 715}CrossRefGoogle Scholar
Delorme, JR, N'Diaye, M, Galicher, R, et al., 2016, Laboratory validation of the dual-zone phase mask coronagraph in broadband light at the high-contrast imaging THD testbed. A&A, 592, A119 {336}Google Scholar
Delorme, P, Albert, L, Forveille, T, et al., 2010, Extending the Canada-France brown dwarfs survey to the near-infrared: first ultracool brown dwarfs from CFBDSIR. A&A, 518, A39 {433}Google Scholar
Delorme, P, Cameron, AC, Hebb, L, et al., 2011, Stellar rotation in the Hyades and Prae-sepe: gyrochronology and braking time scale. 16th Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun, volume 448 of ASP Conf. Ser., 841 {381}Google Scholar
Delorme, P, Delfosse, X, Albert, L, et al., 2008a, CFBDS J005910.90–011401.3: reaching the T–Y brown dwarf transition? A&A, 482, 961–971 {432, 436}Google Scholar
Delorme, P, Gagné, J, Malo, L, et al., 2012a, CFBDSIR2149–0403: a 4–7 Jupiter-mass free-floating planet in the young moving group AB Dor? A&A, 548, A26 {446}Google Scholar
Delorme, P, Lagrange, AM, Chauvin, G, et al., 2012b, High-resolution imaging of young M-type stars of the solar neighbourhood: probing for companions down to the mass of Jupiter. A&A, 539, A72 {358}Google Scholar
Delorme, P, Schmidt, T, Bonnefoy, M, et al., 2017, In-depth study of moderately young but extremely red, very dusty substellar companion HD 206893B. A&A, 608, A79 {360, 367, 763}Google Scholar
Delorme, P, Willott, CJ, Forveille, T, et al., 2008b, Finding ultracool brown dwarfs with Mega Cam on CFHT: method and first results. A&A, 484, 469–478 {432}Google Scholar
Delplancke, F, 2008, The PRIMA facility phase-referenced imaging and micro-arcsec astrometry. New Astron. Rev., 52, 199–207 {91}CrossRefGoogle Scholar
Delporte, E, 1930, Delimitation scientifique des constellations. Cambridge University Press {86}Google Scholar
Delrez, L, Gillon, M, Triaud, AHMJ, et al., 2018a, Early 2017 observations of TRAPPIST–1 with Spitzer. MNRAS, 475, 3577–3597 {750}CrossRefGoogle Scholar
Delrez, L, Madhusudhan, N, Lendl, M, et al., 2018b, High-precision multiwavelength eclipse photometry of the ultra-hot gas giant exoplanet WASP–103 b. MNRAS, 474, 2334–2351 {756}CrossRefGoogle Scholar
Delrez, L, Santerne, A, Almenara, JM, et al., 2016, WASP–121 b: a hot Jupiter close to tidal disruption transiting an active F star. MNRAS, 458, 4025–4043 {231, 253, 757}CrossRefGoogle Scholar
Delrez, L, Van Grootel, V, Anderson, DR, et al., 2014, Transiting planets from WASP–South, Euler, and TRAPPIST: WASP–68 b, WASP–73 b, and WASP–88 b, three hot Jupiters transiting evolved solar-type stars. A&A, 563, A143 {168, 756}Google Scholar
Delsemme, AH, 1998, The deuterium enrichment observed in recent comets is consistent with the cometary origin of seawater. Planet. Space Sci., 47, 125–131 {668}CrossRefGoogle Scholar
Demangeon, ODS, Faedi, F, Hébrard, G, et al., 2018, The discovery of WASP–151 b, WASP–153 b, WASP–156 b: Insights on giant planet migration and the upper boundary of the Neptunian desert. A&A, 610, A63 {757}Google Scholar
Demarcus, WC, 1958, The constitution of Jupiter and Saturn. AJ, 63, 2 {660}CrossRefGoogle Scholar
Demarque, P, Woo, J, Kim, Y, et al., 2004, Yonsei–Yale isochrones with an improved core overshoot treatment. ApJS, 155, 667–674 {379}CrossRefGoogle Scholar
Demianski, M, Proszynski, M, 1979, Does PSR B0329+54 have companions. Nature, 282, 383–385 {109}CrossRefGoogle Scholar
Demidova, TV, Shevchenko, II, 2015, Spiral patterns in planetesimal circumbinary disks. ApJ, 805, 38 {551}CrossRefGoogle Scholar
Demidova, TV, Shevchenko, II, 2016, Three-lane and multilane signatures of planets in planetesimal disks. MNRAS, 463, L22–L25 {466}CrossRefGoogle Scholar
Deming, D, Brown, TM, Charbonneau, D, et al., 2005a, A new search for CO absorption in the transmission spectrum of the extrasolar planet HD 209458 b. ApJ, 622, 1149–1159 {610, 731}CrossRefGoogle Scholar
Deming, D, Espenak, F, Jennings, DE, et al., 1987, On the apparent velocity of integrated sunlight. I. 1983–1985. ApJ, 316, 771–787 {32}CrossRefGoogle Scholar
Deming, D, Fraine, JD, Sada, PV, et al., 2012, Infrared eclipses of the strongly irradiated planet WASP–33 b, and oscillations of its host star. ApJ, 754, 106 {754}CrossRefGoogle Scholar
Deming, D, Harrington, J, Laughlin, G, et al., 2007a, Spitzer transit and secondary eclipse photometry of GJ 436 b. ApJ, 667, L199–L202 {207, 728}CrossRefGoogle Scholar
Deming, D, Harrington, J, Seager, S, et al., 2006, Strong infrared emission from the ex-trasolar planet HD 189733 b. ApJ, 644, 560–564 {187, 609, 729}CrossRefGoogle Scholar
Deming, D, Knutson, H, Agol, E, et al., 2011a, Warm Spitzer photometry of the transiting exoplanets CoRoT–1 and CoRoT–2 at secondary eclipse. ApJ, 726, 95 {614, 733}CrossRefGoogle Scholar
Deming, D, Knutson, H, Kammer, J, et al., 2015, Spitzer secondary eclipses of the dense, modestly-irradiated, giant exoplanet HAT–P–20 b using pixel-level decorrelation. ApJ, 805, 132 {736}CrossRefGoogle Scholar
Deming, D, Richardson, LJ, Harrington, J, 2007b, 3.8-μm photometry during the secondary eclipse of the extrasolar planet HD 209458 b. MNRAS, 378, 148–152 {610, 732}CrossRefGoogle Scholar
Deming, D, Sada, PV, Jackson, B, et al., 2011b, Kepler and ground-based transits of the exo-Neptune HAT–P–11 b. ApJ, 740, 33 {736}CrossRefGoogle Scholar
Deming, D, Seager, S, Richardson, LJ, et al., 2005b, Infrared radiation from an extraso-lar planet. Nature, 434, 740–743 {10, 187, 285, 610}CrossRefGoogle Scholar
Deming, D, Seager, S, Winn, J, et al., 2009, Discovery and characterisation of transiting super Earths using an all-sky transit survey and follow-up by JWST. PASP, 121, 952–967 {180, 617}CrossRefGoogle Scholar
Deming, D, Sheppard, K, 2017, Spectral resolution-linked bias in transit spectroscopy of extrasolar planets. ApJ, 841, L3 {750}CrossRefGoogle Scholar
Deming, D, Wilkins, A, McCullough, P, et al., 2013, Infrared transmission spectroscopy of the exoplanets HD 209458 b and XO–1 b using the HST–WFC3. ApJ, 774, 95 {580, 588, 610, 612, 732, 757}CrossRefGoogle Scholar
Deming, LD, Seager, S, 2017, Illusion and reality in the atmospheres of exoplanets. J. Geophys. Res. (Planets), 122, 53–75 {353, 614}Google Scholar
Demkov, YN, Puchkov, AM, 2000, Gravitational focusing of cosmic neutrinos by the solar interior. Phys. Rev. D, 61(8), 083001 {137}CrossRefGoogle Scholar
Demory, BO, 2014, The albedos of Kepler's close-in super-Earths. ApJ, 789, L20 {300}CrossRefGoogle Scholar
Demory, BO, de Wit, J, Lewis, N, et al., 2013a, Inference of inhomogeneous clouds in an exoplanet atmosphere. ApJ, 776, L25 {588, 590, 615, 616, 738}CrossRefGoogle Scholar
Demory, BO, Ehrenreich, D, Queloz, D, et al., 2015, HST search for the transit of the Earth-mass exoplanet α Cen Bb. MNRAS, 450, 2043–2051 {552, 714}CrossRefGoogle Scholar
Demory, BO, Gillon, M, Barman, T, et al., 2007, Characterisation of the hot Neptune GJ 436 bwith Spitzer and ground-based observations. A&A, 475, 1125–1129 {212, 728}Google Scholar
Demory, BO, Gillon, M, de Wit, J, et al., 2016a, A map of the large day-night temperature gradient of a super-Earth exoplanet. Nature, 532, 207–209 {596, 602}CrossRefGoogle Scholar
Demory, BO, Gillon, M, Deming, D, et al., 2011a, Detection of a transit of the super-Earth 55 Cnc e with warm Spitzer. A&A, 533, A114 {728}Google Scholar
Demory, BO, Gillon, M, Madhusudhan, N, et al., 2016b, Variability in the super-Earth55 Cnc e. MNRAS, 455, 2018–2027 {615, 728}CrossRefGoogle Scholar
Demory, BO, Gillon, M, Seager, S, et al., 2012, Detection of thermal emission from a super-Earth. ApJ, 751, L28 {187, 728}CrossRefGoogle Scholar
Demory, BO, Queloz, D, Alibert, Y, et al., 2016c, Probing TRAPPIST–1-like systems with K2. ApJ, 825, L25 {750}CrossRefGoogle Scholar
Demory, BO, Seager, S, 2011, Lack of inflated radii for Kepler giant planet candidates receiving modest stellar irradiation. ApJS, 197, 12 {303, 304}CrossRefGoogle Scholar
Demory, BO, Seager, S, Madhusudhan, N, et al., 2011b, The high albedo of the hot Jupiter Kepler–7 b. ApJ, 735, L12 {286, 302, 738}CrossRefGoogle Scholar
Demory, BO, Torres, G, Neves, V, et al., 2013b, Spitzer observations of GJ 3470 b: a very low-density Neptune-size planet orbiting a metal-rich M dwarf. ApJ, 768, 154 {729}CrossRefGoogle Scholar
denHartog, R, Absil, O, Gondoin, P, et al., 2006, The prospects of detecting exoplanets with the Ground-based European Nulling Interferometer Experiment (GENIE). IAU Colloq. 200: Direct Imaging of Exoplanets: Science and Techniques, 233–239 {353}
Denis, C, Rybicki, KR, Schreider, AA, et al., 2011, Length of the day and evolution of the Earth's core in the geological past. Astron. Nach., 332, 24 {679}CrossRefGoogle Scholar
Denissenkov, PA, Pinsonneault, M, Terndrup, DM, et al., 2010, Angular momentum transport in solar-type stars: testing the time scale for core-envelope coupling. ApJ, 716, 1269–1287 {311}CrossRefGoogle Scholar
Dent, WRF, Thi, WF, Kamp, I, et al., 2013, GASPS: a Herschel survey of gas and dust in protoplanetary disks: summary and initial statistics. PASP, 125, 477–505 {493}CrossRefGoogle Scholar
Deparis, V, Legros, H, Souchay, J, 2013, Investigations of tides from the antiquity to Laplace. Lecture Notes in Physics, volume 861, 31, Springer Verlag {531}CrossRefGoogle Scholar
Dermott, SF, 1979, Shapes and gravitational moments of satellites and asteroids. Icarus, 37, 575–586 {227}CrossRefGoogle Scholar
Dermott, SF, Jayaraman, S, Xu, YL, et al., 1994, A circumsolar ring of asteroidal dust in resonant lock with the Earth. Nature, 369, 719–723 {218, 691, 692}CrossRefGoogle Scholar
Dermott, SF, Malhotra, R, Murray, CD, 1988, Dynamics of the Uranian and Saturnian satellite systems: a chaotic route to melting Miranda? Icarus, 76, 295–334 {689}CrossRefGoogle Scholar
Dermott, SF, Murray, CD, 1981a, The dynamics of tadpole and horseshoe orbits. I. Theory. Icarus, 48, 1–11 {74}CrossRefGoogle Scholar
Dermott, SF, Murray, CD, 1981b, The dynamics of tadpole and horseshoe orbits. II. The coorbital satellites of Saturn. Icarus, 48, 12–22 {74}CrossRefGoogle Scholar
Dermott, SF, Nicholson, PD, Burns, JA, et al., 1984, Origin of the solar system dust bands discovered by IRAS. Nature, 312, 505–509 {691}CrossRefGoogle Scholar
Deroo, P, Swain, MR, Tinetti, G, et al., 2010, THESIS: a combined-light mission for exo-planet molecular spectroscopy. AAS Bulletin, volume 41, 424 {182}Google Scholar
Des Marais, DJ (ed.), 1997, The Blue Dot Workshop: spectroscopic search for life on extrasolar planets {618}
DesMarais, DJ, 1998, Earth's early biosphere and its environment. Origins, volume 148 of ASP Conf. Ser., 415–434 {618}Google Scholar
DesMarais, DJ, Allamandola, LJ, Benner, SA, et al., 2003, The NASA astrobiology roadmap. Astrobiology, 3, 219–235 {618}Google Scholar
DesMarais, DJ, Harwit, MO, Jucks, KW, et al., 2002, Remote sensing of planetary properties and biosignatures on extrasolar terrestrial planets. Astrobiology, 2, 153–181 {641}Google Scholar
DesMarais, DJ, Nuth JA, III, Allamandola, LJ, et al., 2008, The NASA astrobiology roadmap. Astrobiology, 8, 715–730 {618}Google Scholar
Desch, MD, 1992, Lightning at planets in the outer solar system. Planetary Radio Emissions III, 371 {591}Google Scholar
Desch, MD, Kaiser, ML, 1984, Predictions for Uranus from a radiometric Bode's law. Nature, 310, 755–757 {424}CrossRefGoogle Scholar
Desch, SJ, 2004, Linear analysis of the magnetorotational instability, including am-bipolar diffusion, with application to protoplanetary disks. ApJ, 608, 509–525 {459}CrossRefGoogle Scholar
Desch, SJ, 2007, Mass distribution and planet formation in the solar nebula. ApJ, 671, 878–893 {463, 483, 697}CrossRefGoogle Scholar
Desch, SJ, Ciesla, FJ, Hood, LL, et al., 2005, Heating of chondritic materials in solar nebula shocks. Chondrites and the Protoplanetary Disk, volume 341 of ASP Conf. Ser., 849–872 {653}Google Scholar
Desch, SJ, Connolly, HC, 2002, A model of the thermal processing of particles in solar nebula shocks: application to the cooling rates of chondrules. Meteor. Plan. Sci., 37, 183–207 {653}Google Scholar
Desch, SJ, Cuzzi, JN, 2000, The generation of lightning in the solar nebula. Icarus, 143, 87–105 {653}CrossRefGoogle Scholar
Désert, J, Lecavelier des Etangs A, Hébrard, G, et al., 2009, Search for CO in the atmosphere of the transiting exoplanet HD 189733 b. ApJ, 699, 478–485 {285, 609, 730}CrossRefGoogle Scholar
Désert, JM, Bean, J, Miller-Ricci Kempton E, et al., 2011a, Observational evidence for a metal-rich atmosphere on the super-Earth GJ 1214 b. ApJ, 731, L40 {613, 734}CrossRefGoogle Scholar
Désert, JM, Charbonneau, D, Demory, BO, et al., 2011b, The hot-Jupiter Kepler–17 b: discovery, obliquity from stroboscopic star spots, and atmospheric characterisa-tion. ApJS, 197, 14 {11, 214, 272, 273, 739}CrossRefGoogle Scholar
Désert, JM, Charbonneau, D, Fortney, JJ, et al., 2011c, The atmospheres of the hot Jupiters Kepler–5 b and Kepler–6 b observed during occultations with warm Spitzer and Kepler. ApJS, 197, 11 {738}CrossRefGoogle Scholar
Désert, JM, Charbonneau, D, Torres, G, et al., 2015, Low false positive rate of Kepler candidates estimated from a combination of Spitzer and follow-up observations. ApJ, 804, 59 {198}CrossRefGoogle Scholar
Désert, JM, Sing, D, Vidal-Madjar, A, et al., 2011d, Transit spectrophotometry of the exoplanet HD 189733 b. II. New Spitzer observations at 3.6μm. A&A, 526, A12 {609, 730}Google Scholar
Désert, JM, Vidal-Madjar, A, Lecavelier Des Etangs A, et al., 2008, TiO and VO broad band-absorption features in the optical spectrum of the atmosphere of the hot-Jupiter HD 209458 b. A&A, 492, 585–592 {610, 732}Google Scholar
Desidera, S, Barbieri, M, 2007, Properties of planets in binary systems: the role of binary separation. A&A, 462, 345–353 {78, 79}Google Scholar
Desidera, S, Bonomo, AS, Claudi, RU, et al., 2014, The GAPS programme with HARPS–N at TNG. IV. A planetary system around XO–2 S. A&A, 567, L6 {757}Google Scholar
Desidera, S, Carolo, E, Gratton, R, et al., 2011, A giant planet in the triple system HD 132563. A&A, 533, A90 {722}Google Scholar
Desidera, S, Covino, E, Messina, S, et al., 2015, The VLT–NACO large programme to probe the occurrence of exoplanets and brown dwarfs in wide orbits. I. Sample definition and characterisation. A&A, 573, A126 {358}Google Scholar
Desidera, S, Gratton, R, Carolo, E, et al., 2012, A long-period massive planet around HD 106515A. A&A, 546, A108 {721}Google Scholar
Desidera, S, Gratton, RG, Endl, M, et al., 2003, A search for planets in the metal-enriched binary HD 219542. A&A, 405, 207–221 {36, 393}Google Scholar
Desidera, S, Gratton, RG, Endl, M, 2004a, No planet around HD 219542B. A&A, 420, L27–L30 {36}Google Scholar
Desidera, S, Gratton, RG, Lucatello, S, et al., 2006, Abundance difference between components of wide binaries. II. The southern sample. A&A, 454, 581–593 {394}Google Scholar
Desidera, S, Gratton, RG, Scuderi, S, et al., 2004b, Abundance difference between components of wide binaries. A&A, 420, 683–697 {394}Google Scholar
Desidera, S, Sozzetti, A, Bonomo, AS, et al., 2013, The GAPS programme with HARPS–N at TNG. II. No giant planets around the metal-poor star HIP 11952. A&A, 554, A29 {39, 724}Google Scholar
Desort, M, Lagrange, A, Galland, F, et al., 2009a, Extrasolar planets and brown dwarfs around A–F type stars. V. A planetary system found with HARPS around the F6IV–V star HD 60532. A&A, 499, 623–625 {70, 720}Google Scholar
Desort, M, Lagrange, A, Galland, F, 2009b, Extrasolar planets and brown dwarfs around A-F type stars. VII. µ Cyg radial velocity variations: planets or stellar phenomenon? A&A, 506, 1469–1476 {55, 56}Google Scholar
Desort, M, Lagrange, A, Galland, F, 2010, Planets and brown dwarfs around A–F main-sequence stars: performances of radial-velocity surveys with HARPS and first detections. EAS Pub. Ser., volume 41, 99–102 {56}CrossRefGoogle Scholar
Desort, M, Lagrange, AM, Galland, F, et al., 2007, Search for exoplanets with the radial-velocity technique: quantitative diagnostics of stellar activity. A&A, 473, 983–993 {36, 38, 47}Google Scholar
Desort, M, Lagrange, AM, Galland, F, 2008, Extrasolar planets and brown dwarfs around A-F type stars. V. A planetary system found with HARPS around the F6IV-V star HD 60532. A&A, 491, 883–888 {70, 74, 720}Google Scholar
Detweiler, S, 1979, Pulsar timing measurements and the search for gravitational waves. ApJ, 234, 1100–1104 {109}CrossRefGoogle Scholar
Devaney, N, Thiébaut É, 2017, PEX. I. Multispectral expansion of residual speckles for planet detection. MNRAS, 472, 3734–3748 {340}CrossRefGoogle Scholar
DeVore, J, Rappaport, S, Sanchis-Ojeda, R, et al., 2016, On the detection of non-transiting exoplanets with dusty tails. MNRAS, 461, 2453–2460 {232}CrossRefGoogle Scholar
Dhaliwal, JK, Day, JMD, Moynier, F, 2018, Volatile element loss during planetary magma ocean phases. Icarus, 300, 249–260 {576}CrossRefGoogle Scholar
Dhillon, VS, Marsh, TR, Stevenson, MJ, et al., 2007, ULTRACAM: an ultrafast, triple-beam CCD camera for high-speed astrophysics. MNRAS, 378, 825–840 {183}CrossRefGoogle Scholar
DiFrancia, GT, 1952, Super-gain antennas and optical resolving power. Il Nuovo Ci-mento, 9, 426–438 {357}Google Scholar
DiGloria, E, Snellen, IAG, Albrecht, S, 2015, Using the chromatic Rossiter–McLaughlin effect to probe the broadband signature in the optical transmission spectrum of HD 189733 b. A&A, 580, A84 {249, 250, 731}Google Scholar
diSisto, RP, Brunini, A, 2011, Origin of craters on Phoebe: comparison with Cassini's data. A&A, 534, A68 {689}Google Scholar
DiStefano, R, 2008a, Mesolensing explorations of nearby masses: from planets to black holes. ApJ, 684, 59–67 {138}Google Scholar
DiStefano, R, 2008b, Mesolensing: high-probability lensing without large optical depth. ApJ, 684, 46–58 {138}Google Scholar
DiStefano, R, 2012a, Discovering habitable Earths, hot Jupiters, and other close planets with microlensing. ApJ, 752, 105 {128}CrossRefGoogle Scholar
DiStefano, R, 2012b, Short-duration lensing events. I. Wide-orbit planets, free-floating low-mass objects, or high-velocity stars? ApJS, 201, 20 {129, 130}CrossRefGoogle Scholar
DiStefano, R, 2012c, Short-duration lensing events. II. Expectations and protocols. ApJS, 201, 21 {129}CrossRefGoogle Scholar
DiStefano, R, Howell, SB, Kawaler, SD, 2010, A search for asteroids, moons, and rings orbiting white dwarfs. ApJ, 712, 142 {160}CrossRefGoogle Scholar
DiStefano, R, Matthews, J, Lépine, S, 2013, Nearby planetary systems as lenses during predicted close passages to background stars. ApJ, 771, 79 {138}CrossRefGoogle Scholar
DiStefano, R, Ray, A, 2016, Globular clusters as cradles of life and advanced civilisations. ApJ, 827, 54 {625}CrossRefGoogle Scholar
DiStefano, R, Scalzo, RA, 1999a, A new channel for the detection of planetary systems through microlensing. I. Isolated events due to planet lenses. ApJ, 512, 564–578 {130}Google Scholar
DiStefano, R, Scalzo, RA, 1999b, A new channel for the detection of planetary systems through micro-lensing. II. Repeating events. ApJ, 512, 579–600 {123, 130}Google Scholar
Diamond-Lowe, H, Stevenson, KB, Bean, JL, et al., 2014, New analysis indicates no thermal inversion in the atmosphere of HD 209458 b. ApJ, 796, 66 {610, 732}CrossRefGoogle Scholar
Díaz, RF, 2018, Modelling light and velocity curves of exoplanet hosts. Asteroseismol-ogy and Exoplanets: Listening to the Stars and Searching for New Worlds, 49, 199 {53}Google Scholar
Díaz, RF, Almenara, JM, Santerne, A, et al., 2014a, PASTIS: Bayesian extrasolar planet validation. I. General framework, models, and performance. MNRAS, 441, 983–1004 {197}CrossRefGoogle Scholar
Díaz, RF, Damiani, C, Deleuil, M, et al., 2013, SOPHIE velocimetry of Kepler transit candidates. VIII. KOI–205 b: a brown-dwarf companion to a K-type dwarf. A&A, 551, L9 {62, 746}Google Scholar
Díaz, RF, Hébrard, G, Bouchy, F, et al., 2011, Three new massive companions in the planet-brown dwarf boundary detected with SOPHIE. EPJWeb Conf., volume 11, 2006 {719}CrossRefGoogle Scholar
Díaz, RF, Montagnier, G, Leconte, J, et al., 2014b, SOPHIE velocimetry of Kepler transit candidates. XIII. KOI–189 b and KOI–686 b: two very low-mass stars in long-period orbits. A&A, 572, A109 {62}Google Scholar
Díaz, RF, Ramírez, S, Fernández, JM, et al., 2007, Millimagnitude photometry for transiting exoplanet candidates. II. Transits of OGLE–TR–113 b in the optical and near-infrared. ApJ, 660, 850–857 {749}CrossRefGoogle Scholar
Díaz, RF, Rey, J, Demangeon, O, et al., 2016a, The SOPHIE search for northern extraso-lar planets. XI. Three new companions and an orbit update: giant planets in the habitable zone. A&A, 591, A146 {718, 723, 724}Google Scholar
Díaz, RF, Rojo, P, Melita, M, et al., 2008, Detection of period variations in extrasolar transiting planet OGLE–TR–111 b. ApJ, 682, L49–L52 {269, 749}CrossRefGoogle Scholar
Díaz, RF, Santerne, A, Sahlmann, J, et al., 2012, The SOPHIE search for northern ex-trasolar planets. IV. Massive companions in the planet-brown dwarf boundary. A&A, 538, A113 {64, 65, 719, 722}Google Scholar
Díaz, RF, Ségransan, D, Udry, S, et al., 2016b, The HARPS search for southern extra-solar planets. XXXVIII. Bayesian re-analysis of three systems. New super-Earths, unconfirmed signals, and magnetic cycles. A&A, 585, A134 {37, 718, 719, 724}Google Scholar
Dick, SJ, 1982, Plurality of Worlds: The Origins of the Extraterrestrial Life Debate from Democritus to Kant. Cambridge University Press {639}Google Scholar
Dick, SJ, 1996, The Biological Universe. Cambridge University Press {618}Google Scholar
Dick, SJ, 2012, Cosmic evolution: the context for astrobiology and its cultural implications. Int. J. Astrobiol., 11, 203–216 {618}CrossRefGoogle Scholar
Dicke, RH, 1961, Dirac's Cosmology and Mach's Principle. Nature, 192, 440–441 {630}CrossRefGoogle Scholar
Dickey, JO, Bender, PL, Faller, JE, et al., 1994, Lunar laser ranging: a continuing legacy of the Apollo programme. Science, 265, 482–490 {536, 665}CrossRefGoogle Scholar
Dickin, AP, 2005, Radiogenic Isotope Geology. Cambridge University Press, Second Edition {653}CrossRefGoogle Scholar
Diego, F, Fish, AC, Barlow, MJ, et al., 1995, The Ultra-High-Resolution Facility at the Anglo–Australian Telescope. MNRAS, 272, 323–332 {28}CrossRefGoogle Scholar
Dieterich, SB, Henry, TJ, Golimowski, DA, et al., 2012, The solar neighbourhood. 28. The multiplicity fraction of nearby stars from 5–70 au and the brown dwarf desert around Mdwarfs. AJ, 144, 64 {65, 375}CrossRefGoogle Scholar
Dimitrov, DP, Kjurkchieva, DP, Iliev, IK, 2017, Simultaneous solutions of Kepler light curves and radial velocity curves of seven heartbeat variables. MNRAS, 469, 2089–2101 {230}CrossRefGoogle Scholar
Dindar, S, Ford, EB, Jurić, M, et al., 2013, Swarm-NG: a CUDA library for parallel N-body integrations with focus on simulations of planetary systems. New Astron., 23, 6–18 {267, 513}Google Scholar
Ding, F, Pierrehumbert, RT, 2016, Convection in condensable-rich atmospheres. ApJ, 822, 24 {598}CrossRefGoogle Scholar
Diolaiti, E, Ciliegi, P, Abicca, R, et al., 2016, MAORY: adaptive optics module for the E–ELT. SPIE Conf. Ser., volume 9909 of Proc. SPIE, 99092D {346}Google Scholar
Diolaiti, E, Conan, J, Foppiani, I, et al., 2010, Towards the phase A review of MAORY, the multi-conjugate adaptive optics module for the E–ELT. Adaptive Optics for Extremely Large Telescopes, 2007 {332, 346}CrossRefGoogle Scholar
Dipierro, G, Laibe, G, 2017, An opening criterion for dust gaps in protoplanetary disks. MNRAS, 469, 1932–1948 {467}CrossRefGoogle Scholar
Dipierro, G, Laibe, G, Price, DJ, et al., 2016, Two mechanisms for dust gap opening in protoplanetary disks. MNRAS, 459, L1–L5 {467}CrossRefGoogle Scholar
Dirac, PAM, 1937, The cosmological constants. Nature, 139, 323 {630}CrossRefGoogle Scholar
Dittkrist, KM, Mordasini, C, Klahr, H, et al., 2014, Impacts of planet migration models on planetary populations: effects of saturation, cooling and stellar irradiation. A&A, 567, A121 {519}Google Scholar
Dittmann, JA, Close, LM, Green, EM, et al., 2009a, Follow-up observations of the Nep-tunemass transiting extrasolar planet HAT–P–11 b. ApJ, 699, L48–L51 {736}CrossRefGoogle Scholar
Dittmann, JA, Close, LM, Green, EM, 2009b, A tentative detection of a star spot during consecutive transits of an extra-solar planet from the ground: no evidence of a double transiting planet system around TrES–1. ApJ, 701, 756–763 {212, 750}CrossRefGoogle Scholar
Dittmann, JA, Close, LM, Scuderi, LJ, et al., 2010, Transit observations of the WASP–10 system. ApJ, 717, 235–238 {752}CrossRefGoogle Scholar
Dittmann, JA, Close, LM, Scuderi, LJ, 2012, A revised orbital ephemeris for HAT–P–9 b. New Astron., 17, 438–441 {736}CrossRefGoogle Scholar
Dittmann, JA, Irwin, JM, Charbonneau, D, et al., 2014, Trigonometric parallaxes for 1507 nearbymid-to-late Mdwarfs. ApJ, 784, 156 {91}CrossRefGoogle Scholar
Dittmann, JA, Irwin, JM, Charbonneau, D, 2017a, A search for additional bodies in the GJ 1132 planetary system from 21 ground-based transits and a 100-hr Spitzer campaign. AJ, 154, 142 {734}CrossRefGoogle Scholar
Dittmann, JA, Irwin, JM, Charbonneau, D, 2017b, A temperate rocky super-Earth transiting a nearby cool star. Nature, 544, 333–336 {194, 634, 749}CrossRefGoogle Scholar
Dittrich, K, Klahr, H, Johansen, A, 2013, Gravoturbulent planetesimal formation: the positive effect of long-lived zonal flows. ApJ, 763, 117 {461}CrossRefGoogle Scholar
Divine, N, 1993, Five populations of interplanetary meteoroids. J. Geophys. Res., 98, 17029–17048 {691}CrossRefGoogle Scholar
Djurasevic, G, Rovithis-Livaniou, H, Rovithis, P, et al., 2003, Gravity-darkening exponents in semi-detached binary systems from photometric observations. A&A, 402, 667–682 {215}Google Scholar
Dmitrienko, ES, Savanov, IS, 2017, Spots and the activity of M dwarfs from observations with the Kepler space telescope. Astronomy Reports, 61, 122–129 {383}CrossRefGoogle Scholar
Do, A, Tucker, MA, Tonry, J, 2018, Interstellar interlopers: number density and origin of Oumuamua-like objects. ApJ, 855, L10 {692, 693}CrossRefGoogle Scholar
doNascimento, JD, Charbonnel, C, Lèbre, A, et al., 2000, Lithium and rotation on the subgiant branch. II. Theoretical analysis of observations. A&A, 357, 931–937 {56}Google Scholar
doNascimento, JD, García, RA, Mathur, S, et al., 2014, Rotation periods and ages of solar analogues and solar twins revealed by the Kepler mission. ApJ, 790, L23 {405}CrossRefGoogle Scholar
Dobbs-Dixon, I, Agol, E, 2013, Three-dimensional radiative-hydrodynamical simulations of the highly-irradiated short-period exoplanet HD 189733 b. MNRAS, 435, 3159–3168 {730}CrossRefGoogle Scholar
Dobbs-Dixon, I, Agol, E, Burrows, A, 2012, The impact of circumplantary jets on transit spectra and timing offsets for hot Jupiters. ApJ, 751, 87 {596, 732}CrossRefGoogle Scholar
Dobbs-Dixon, I, Cowan, NB, 2017, Wavelength does not equal pressure: vertical contribution functions and their implications for mapping hot Jupiters. ApJ, 851, L26 {591, 731}CrossRefGoogle Scholar
Dobbs-Dixon, I, Cumming, A, Lin, DNC, 2010, Radiative hydrodynamic simulations of HD 209458 b: temporal variability. ApJ, 710, 1395–1407 {593, 596, 732}CrossRefGoogle Scholar
Dobbs-Dixon, I, Lin, DNC, 2008, Atmospheric dynamics of short-period extrasolar gas giant planets. II. Dependence of night-side temperature on opacity. ApJ, 673, 513–525 {591, 593}CrossRefGoogle Scholar
Dobbs-Dixon, I, Lin, DNC, Mardling, RA, 2004, Spin–orbit evolution of short-period planets. ApJ, 610, 464–476 {387, 535}CrossRefGoogle Scholar
Dobinson, J, Leinhardt, ZM, Lines, S, et al., 2016, Hiding in the shadows. II. Collisional dust as exoplanet markers. ApJ, 820, 29 {496}CrossRefGoogle Scholar
Dobos, V, Heller, R, Turner, EL, 2017, The effect of multiple heat sources on exomoon habitable zones. A&A, 601, A91 {627}Google Scholar
Dobos, V, Kereszturi Á, Pál, A, et al., 2016, Possibility for albedo estimation of exo-moons: why should we care about Mdwarfs? A&A, 592, A139 {276}Google Scholar
Dobos, V, Orgoványi, J, Nagy, I, 2013, Empirical formulae of temperature and luminosity as functions of mass for calculating the habitable zone. Astron. Nach., 334, 1004 {619}CrossRefGoogle Scholar
Dobos, V, Turner, EL, 2015, Viscoelastic models of tidally heated exomoons. ApJ, 804, 41 {627}CrossRefGoogle Scholar
Dobrovolskis, AR, 2007, Spin states and climates of eccentric exoplanets. Icarus, 192, 1–23 {541, 621, 622}CrossRefGoogle Scholar
Dobrovolskis, AR, 2009, Insolation patterns on synchronous exoplanets with obliquity. Icarus, 204, 1–10 {621}CrossRefGoogle Scholar
Dobrovolskis, AR, 2013a, Effects of Trojan exoplanets on the reflex motions of their parent stars. Icarus, 226, 1635–1641 {77}CrossRefGoogle Scholar
Dobrovolskis, AR, 2013b, Insolation on exoplanets with eccentricity and obliquity. Icarus, 226, 760–776 {621}CrossRefGoogle Scholar
Dobrovolskis, AR, 2015a, Insolation patterns on eccentric exoplanets. Icarus, 250, 395–399 {621, 622, 623}CrossRefGoogle Scholar
Dobrovolskis, AR, 2015b, Radial velocities of starswithmultiple co-orbital planets. Ap&SS, 356, 241–249 {77}Google Scholar
Dodson-Robinson, SE, Beichman, CA, Carpenter, JM, et al., 2011, A Spitzer infrared spectrograph study of debris disks around planet-host stars. AJ, 141, 11 {493}CrossRefGoogle Scholar
Dodson-Robinson, SE, Bodenheimer, P, 2009, Discovering the growth histories of exo-planets: the Saturn analogue HD 149026 b. ApJ, 695, L159–L162 {729}CrossRefGoogle Scholar
Dodson-Robinson, SE, Salyk, C, 2011, Transition disks as signposts of young, multi-planet systems. ApJ, 738, 131 {467}CrossRefGoogle Scholar
Dodson-Robinson, SE, Su, KYL, Bryden, G, et al., 2016, Herschel observations and updated spectral energy distributions of five sunlike stars with debris disks. ApJ, 833, 183 {493, 720}CrossRefGoogle Scholar
Dodson-Robinson, SE, Veras, D, Ford, EB, et al., 2009, The formation mechanism of gas giants on wide orbits. ApJ, 707, 79–88 {447, 472, 489, 761, 763}CrossRefGoogle Scholar
Doerr, HP, Kentischer, TJ, Steinmetz, T, et al., 2012, Performance of a laser frequency comb calibration system with a high-resolution solar echelle spectrograph. Mod-ern Technologies in Space- and Ground-based Telescopes and Instrumentation II, volume 8450 of Proc. SPIE, 84501G {33}Google Scholar
Dohlen, K, Langlois, M, Saisse, M, et al., 2008, The infra-red dual imaging and spectrograph for VLT–SPHERE: design and performance. Ground-based and Airborne Instrumentation for Astronomy II, volume 7014 of Proc. SPIE, 70143L {344}Google Scholar
Dohnanyi, JS, 1969, Collisional model of asteroids and their debris. J. Geophys. Res., 74, 2531–2554 {496}CrossRefGoogle Scholar
Dole, SH, 1964, Habitable Planets for Man. Blaisdell, New York {619, 621, 644}Google Scholar
Döllinger, MP, Hatzes, AP, Pasquini, L, et al., 2007, Discovery of a planet around the K giant star 4 UMa. A&A, 472, 649–652 {10, 55, 56, 716}Google Scholar
Döllinger, MP, Hatzes, AP, Pasquini, L, 2009a, Planetary companion candidates around the K giant stars 42 Dra and HD 139357. A&A, 499, 935–942 {55, 56, 715, 722}Google Scholar
Döllinger, MP, Hatzes, AP, Pasquini, L, 2009b, Planetary companions around the K giant stars 11 UMi and HD 32518. A&A, 505, 1311–1317 {716, 719}Google Scholar
Domagal-Goldman, SD, Meadows, VS, Claire, MW, et al., 2011, Using biogenic sulphur gases as remotely detectable biosignatures on anoxic planets. Astrobiology, 11, 419–441 {642}CrossRefGoogle ScholarPubMed
Domagal-Goldman, SD, Segura, A, Claire, MW, et al., 2014, Abiotic ozone and oxygen in atmospheres similar to prebiotic Earth. ApJ, 792, 90 {640}CrossRefGoogle Scholar
Domagal-Goldman, SD, Wright, KE, Adamala, K, et al., 2016, The astrobiology primer v2.0. Astrobiology, 16, 561–653 {619, 635, 636, 637}CrossRefGoogle ScholarPubMed
Domingo, V, Fleck, B, Poland, AI, 1995, The SOHO mission: an overview. Sol. Phys., 162, 1–37 {74}CrossRefGoogle Scholar
Domingos, RC, Winter, OC, Carruba, V, 2012, Meanmotion resonances and the stability of a circumbinary disk in a triple stellar system. A&A, 544, A63 {550}Google Scholar
Domingos, RC, Winter, OC, Yokoyama, T, 2006, Stable satellites around extrasolar giant planets. MNRAS, 373, 1227–1234 {277, 281}CrossRefGoogle Scholar
Dominik, C, Blum, J, Cuzzi, JN, et al., 2007a, Growth of dust as the initial step toward planet formation. Protostars and Planets V, 783–800 {454, 469}
Dominik, C, Dullemond, CP, 2011, Accretion through the inner hole of transition disks: what happens to the dust? A&A, 531, A101 {465}Google Scholar
Dominik, C, Laureijs, RJ, Jourdain de Muizon M, et al., 1998, A Vega–like disk associated with the planetary system of ρ1 Cnc (55 Cnc). A&A, 329, L53–L56 {728}Google Scholar
Dominik, C, Tielens, AGGM, 1997, The physics of dust coagulation and the structure of dust aggregates in space. ApJ, 480, 647–673 {468}CrossRefGoogle Scholar
Dominik, M, 1998, Galactic microlensing with rotating binaries. A&A, 329, 361–374 {132}Google Scholar
Dominik, M, 1999, The binary gravitational lens and its extreme cases. A&A, 349, 108–125 {126, 131}Google Scholar
Dominik, M, 2011, Planetary mass function and planetary systems. MNRAS, 411, 2–8 {554, 555}CrossRefGoogle Scholar
Dominik, M, Albrow, MD, Beaulieu, JP, et al., 2002, The PLANET microlensing follow-up network: results and prospects for the detection of extrasolar planets. Planet. Space Sci., 50, 299–307 {140}CrossRefGoogle Scholar
Dominik, M, Jørgensen, UG, Rattenbury, NJ, et al., 2010, Realisation of a fully-deterministic microlensing observing strategy for inferring planet populations. Astron. Nach., 331, 671–691 {140}CrossRefGoogle Scholar
Dominik, M, Rattenbury, NJ, Allan, A, et al., 2007b, An anomaly detector with immediate feedback to hunt for planets of Earth mass and below by microlensing. MNRAS, 380, 792–804 {139}CrossRefGoogle Scholar
Dominik, M, Sahu, KC, 2000, Astrometric microlensing of stars. ApJ, 534, 213–226 {138}CrossRefGoogle Scholar
Domokos, G, Jerolmack, DJ, Sipos AÁ, et al., 2014, How river rocks round: resolving the shape-size paradox. PLoS ONE, 9, e88657 {684}CrossRefGoogle ScholarPubMed
Domokos, G, Kun, F, Sipos AÁ, et al., 2015, Universality of fragment shapes. Scientific Reports, 5, 9147 {684}CrossRefGoogle ScholarPubMed
Domokos, G, Sipos AÁ, Szabó, GM, et al., 2009, Formation of sharp edges and planar areas of asteroids by polyhedral abrasion. ApJ, 699, L13–L16 {684}CrossRefGoogle Scholar
Domokos, G, Sipos AÁ, Szabó, GM, 2017, Explaining the elongated shape of Oumuamua by the Eikonal abrasion model. RNAAS, 1, 50 {693}Google Scholar
Donahue, TM, Pollack, JB, 1983, Origin and evolution of the atmosphere of Venus, 1003–1036. University of Arizona Press {667}Google Scholar
Donaldson, JK, Roberge, A, Chen, CH, et al., 2012, Herschel–PACS observations and modeling of debris disks in the Tuc–Hor association. ApJ, 753, 147 {493}CrossRefGoogle Scholar
Donati, JF, Brown, SF, 1997, Zeeman–Doppler imaging of active stars. V. Sensitivity of maximum entropy magnetic maps to field orientation. A&A, 326, 1135–1142 {421}Google Scholar
Donati, JF, Hébrard, E, Hussain, GAJ, et al., 2015, Magnetic activity and hot Jupiters of young Suns: the weak-line T Tauri stars V819 Tau and V830 Tau. MNRAS, 453, 3706–3719 {715}CrossRefGoogle Scholar
Donati, JF, Howarth, ID, Jardine, MM, et al., 2006, The surprising magnetic topology of τ Sco: fossil remnant or dynamo output? MNRAS, 370, 629–644 {421}CrossRefGoogle Scholar
Donati, JF, Landstreet, JD, 2009, Magnetic fields of nondegenerate stars. ARA&A, 47, 333–370 {423}Google Scholar
Donati, JF, Moutou, C, Farès, R, et al., 2008, Magnetic cycles of the planet-hosting star τ Boo. MNRAS, 385, 1179–1185 {421, 714}CrossRefGoogle Scholar
Donati, JF, Yu, L, Moutou, C, et al., 2017, The hot Jupiter of the magnetically active weak-line T Tauri star V830 Tau. MNRAS, 465, 3343–3360 {715}CrossRefGoogle Scholar
Dones, L, Brasser, R, Kaib, N, et al., 2015, Origin and evolution of the cometary reservoirs. Space Sci. Rev., 197, 191–269 {685, 686, 699}CrossRefGoogle Scholar
Dones, L, Tremaine, S, 1993a, On the origin of planetary spins. Icarus, 103, 67–92 {600, 680}CrossRefGoogle Scholar
Dones, L, Tremaine, S, 1993b, Why does the Earth spin forward? Science, 259, 350–354 {680}CrossRefGoogle Scholar
Dong, C, Huang, Z, Lingam, M, et al., 2017a, The dehydration of water worlds via atmospheric losses. ApJ, 847, L4 {601}CrossRefGoogle Scholar
Dong, C, Jin, M, Lingam, M, et al., 2018, Atmospheric escape from the TRAPPIST–1 planets and implications for habitability. Proceedings of the National Academy of Science, 115, 260–265 {750}CrossRefGoogle ScholarPubMed
Dong, C, Lingam, M, Ma, Y, et al., 2017b, Is Proxima Cen b habitable? A study of atmospheric loss. ApJ, 837, L26 {714}CrossRefGoogle Scholar
Dong, R, Dawson, R, 2016, Stability and occurrence rate constraints on the planetary sculpting hypothesis for transition disks. ApJ, 825, 77 {465}CrossRefGoogle Scholar
Dong, R, Fung, J, 2017a, How bright are planet-induced spiral arms in scattered light? ApJ, 835, 38 {467}CrossRefGoogle Scholar
Dong, R, Fung, J, 2017b, What is the mass of a gap-opening planet? ApJ, 835, 146 {467, 520}CrossRefGoogle Scholar
Dong, R, Fung, J, Chiang, E, 2016a, How spirals and gaps driven by companions in protoplanetary disks appear in scattered light at arbitrary viewing angles. ApJ, 826, 75 {467}CrossRefGoogle Scholar
Dong, R, Hashimoto, J, Rafikov, R, et al., 2012, The structure of pre-transition proto-planetary disks. I. Radiative transfer modeling of the disk+cavity in PDS 70. ApJ, 760, 111 {466}CrossRefGoogle Scholar
Dong, R, Li, S, Chiang, E, et al., 2017c, Multiple disk gaps and rings generated by a single super-Earth. ApJ, 843, 127 {467}CrossRefGoogle Scholar
Dong, R, Rafikov, RR, Stone, JM, 2011a, Density waves excited by low-mass planets in protoplanetary disks. II. High-resolution simulations of the non-linear regime. ApJ, 741, 57 {467}CrossRefGoogle Scholar
Dong, R, Rafikov, RR, Stone, JM, et al., 2011b, Density waves excited by low-mass planets in protoplanetary disks. I. Linear regime. ApJ, 741, 56 {467}CrossRefGoogle Scholar
Dong, R, Vorobyov, E, Pavlyuchenkov, Y, et al., 2016b, Signatures of gravitational instability in resolved images of protostellar disks. ApJ, 823, 141 {490}CrossRefGoogle Scholar
Dong, R, Wang, Y, Lin, DNC, et al., 2010, Dusty disks around white dwarfs. I. Origin of debris disks. ApJ, 715, 1036–1049 {415}CrossRefGoogle Scholar
Dong, R, Zhu, Z, Fung, J, et al., 2016c, An M dwarf companion and its induced spiral arms in the HD 100453 protoplanetary disk. ApJ, 816, L12 {466}CrossRefGoogle Scholar
Dong, R, Zhu, Z, Rafikov, RR, et al., 2015a, Observational signatures of planets in proto-planetary disks: spiral arms observed in scattered light imaging can be induced by planets. ApJ, 809, L5 {467}CrossRefGoogle Scholar
Dong, R, Zhu, Z, Whitney, B, 2015b, Observational signatures of planets in proto-planetary disks. I. Gaps opened by single and multiple young planets in disks. ApJ, 809, 93 {467}CrossRefGoogle Scholar
Dong, S, Bond, IA, Gould, A, et al., 2009a, Microlensing event MOA–2007–BLG–400: exhuming the buried signature of a cool, Jovian-mass planet. ApJ, 698, 1826–1837 {132, 141, 759}CrossRefGoogle Scholar
Dong, S, DePoy, DL, Gaudi, BS, et al., 2006, Planetary detection efficiency of the magnification 3000 microlensing event OGLE–2004–BLG–343. ApJ, 642, 842–860 {129}CrossRefGoogle Scholar
Dong, S, Gould, A, Udalski, A, et al., 2009b, OGLE–2005–BLG–71L b, the most massive Mdwarf planetary companion? ApJ, 695, 970–987 {145, 759}CrossRefGoogle Scholar
Dong, S, Katz, B, Socrates, A, 2013a, Directly imaging tidally-powered migrating Jupiters. ApJ, 762, L26 {306, 719}CrossRefGoogle Scholar
Dong, S, Katz, B, Socrates, A, 2013b, Exploring a ‘flow’ of highly eccentric binaries with Kepler. ApJ, 763, L2 {204, 210, 529}CrossRefGoogle Scholar
Dong, S, Katz, B, Socrates, A, 2014a, Warm Jupiters need close ‘friends’ for high-eccentricitymigration: a stringent upper limit on the perturber's separation. ApJ, 781, L5 {305}CrossRefGoogle Scholar
Dong, S, Udalski, A, Gould, A, et al., 2007, First space-based microlens parallax measurement: Spitzer observations of OGLE–2005–SMC–001. ApJ, 664, 862–878 {134, 135}CrossRefGoogle Scholar
Dong, S, Zheng, Z, Zhu, Z, et al., 2014b, On the metallicities of Kepler stars. ApJ, 789, L3 {177, 390}CrossRefGoogle Scholar
Dong, S, Zhu, Z, 2013, Fast rise of Neptune-size planets (4-8R⊕) from P = 10-250 d: statistics of Kepler planet candidates up to 0.75 au. ApJ, 778, 53 {289, 290, 295, 308}CrossRefGoogle Scholar
Dong, Y, 2014, A research on tidal evolution of extrasolar planets. Acta Astronomica Sinica, 55, 271–272 {545, 734, 735, 739, 755}Google Scholar
Dong, Y, Ji, J, 2012, Tidal evolution of exo-planetary systems: WASP–50, GJ 1214 and CoRoT–7. Science in China G: Physics and Astronomy, 55, 872–879 {734, 755}CrossRefGoogle Scholar
Dong, Y, Ji, J, 2013, Tidal evolution of the Kepler–10 system. MNRAS, 430, 951–960 {739}CrossRefGoogle Scholar
Dong, Y, Ji Jh, 2014, Tidal evolution of the Kepler candidate two-planet systems. Chin. Astron. Astrophys., 38, 186–199 {545}Google Scholar
Dong, Y, Ji, JH, Wang, S, 2017d, Tidal evolution of the Kepler planets with radii less than 4R⊕. Acta Astronomica Sinica, 58, 31 {540}Google Scholar
Donnison, JR, 2006, The Hill stability of a binary or planetary system during encounters with a third inclined body. MNRAS, 369, 1267–1280 {512}CrossRefGoogle Scholar
Donnison, JR, 2009, The Hill stability of inclined bound triple star and planetary systems. Planet. Space Sci., 57, 771–783 {276, 512}CrossRefGoogle Scholar
Donnison, JR, 2010a, The Hill stability of inclined small-mass binary systems in three-body systems with special application to triple star systems, extrasolar planetary systems and binary Kuiper Belt systems. Planet. Space Sci., 58, 1169–1179 {276, 471, 512}CrossRefGoogle Scholar
Donnison, JR, 2010b, The Hill stability of the possiblemoons of extrasolar planets. MNRAS, 406, 1918–1934 {276, 504}Google Scholar
Donnison, JR, 2014, Limits on the orbits of possible eccentric and inclined moons of extrasolar planets orbiting single stars. Earth Moon and Planets, 113, 73–97 {276, 504}CrossRefGoogle Scholar
Donnison, JR, Williams, IP, 1983, The stability of coplanar three-body systems with application to the solar system. Celestial Mechanics, 31, 123–128 {276}CrossRefGoogle Scholar
Donnison, JR, Williams, IP, 2014, Analytical model for the evolution of giant extrasolar planets. Planet. Space Sci., 97, 43–49 {302}CrossRefGoogle Scholar
Doodson, AT, 1921, The harmonic development of the tide-generating potential. Proceedings of the Royal Society of London Series A, 100, 305–329 {533}CrossRefGoogle Scholar
Doolin, S, Blundell, KM, 2011, The dynamics and stability of circumbinary orbits. MNRAS, 418, 2656–2668 {550, 551}CrossRefGoogle Scholar
D'Orazi, V, Desidera, S, Gratton, RG, et al., 2017, A critical reassessment of the fundamental properties of GJ 504: chemical composition and age. A&A, 598, A19 {762}Google Scholar
Dorland, BN, Dudik, RP, Dugan, Z, et al., 2009, The Joint Milli-Arcsecond Pathfinder Survey (JMAPS): mission overview and attitude sensing applications [unpublished]. ArXiv e-prints {100}
Dormand, JR, Woolfson, MM, 1989, The Origin of the Solar System: The Capture Theory. Ellis Horwood/Prentice Hall {450}Google Scholar
Dorn, C, Hinkel, NR, Venturini, J, 2017a, Bayesian analysis of interiors of HD 219134 b, Kepler–10 b, Kepler–93 b, CoRoT–7 b, 55 Cnc e, and HD 97658 b using stellar abundance proxies. A&A, 597, A38 {728, 729, 733, 734, 739, 743}Google Scholar
Dorn, C, Khan, A, Heng, K, et al., 2015, Can we constrain the interior structure of rocky exoplanets from mass and radiusmeasurements? A&A, 577, A83 {603, 740}Google Scholar
Dorn, C, Venturini, J, Khan, A, et al., 2017b, A generalised Bayesian inference method for constraining the interiors of super Earths and sub-Neptunes. A&A, 597, A37 {574}Google Scholar
Doroshenko, O, Löhmer, O, Kramer, M, et al., 2001, Orbital variability of the PSR J2051–0827 binary system. A&A, 379, 579–587 {108}Google Scholar
Dorren, JD, 1987, A new formulation of the star spot model, and the consequences of star spot structure. ApJ, 320, 756–767 {212, 214}CrossRefGoogle Scholar
dosSantos, LA, Meléndez, J, do Nascimento, JD, et al., 2016, The solar twin planet search. IV. The Sun as a typical rotator and evidence for a new rotational braking law for Sun-like stars. A&A, 592, A156 {405}Google Scholar
Dosopoulou, F, Naoz, S, Kalogera, V, 2017, Roche-lobe overflowin eccentric planet–star systems. ApJ, 844, 12 {231}CrossRefGoogle Scholar
Dou, J, Ren, D, 2016, Phase quantisation study of spatial light modulator for extreme high-contrast imaging. ApJ, 832, 84 {339}CrossRefGoogle Scholar
Dou, J, Ren, D, Zhang, X, et al., 2014, A coronagraph based on two spatial light modulators for active amplitude apodising and phase corrections. Ground-based and Airborne Instrumentation for Astronomy V, volume 9147 of Proc. SPIE, 91478O {335}Google Scholar
Dougherty, SM, Beasley, AJ, Claussen, MJ, et al., 2005, High-resolution radio observations of the colliding-wind binary WR 140. ApJ, 623, 447–459 {101}CrossRefGoogle Scholar
Doughty, CE, Wolf, A, 2010, Detecting tree-like multicellular life on extrasolar planets. Astrobiology, 10, 869–879 {641}CrossRefGoogle ScholarPubMed
Douglas, NG, 1997, Heterodyned holographic spectroscopy. PASP, 109, 151–165 {49}CrossRefGoogle Scholar
Douglas, ST, Agüeros, MA, Covey, KR, et al., 2016, K2 rotation periods for low-mass Hyads and the implications for gyrochronology. ApJ, 822, 47 {159}CrossRefGoogle Scholar
Douglas, TA, Caselli, P, Ilee, JD, et al., 2013, Simulated observations of young gravitationally unstable protoplanetary disks. MNRAS, 433, 2064–2074 {492}CrossRefGoogle Scholar
Dowling, TE, Fischer, AS, Gierasch, PJ, et al., 1998, The Explicit Planetary Isentropic-Coordinate (EPIC) atmospheric model. Icarus, 132, 221–238 {593}CrossRefGoogle Scholar
Downs, GS, Reichley, PE, Green, RR, 1975, Radarmeasurements of Martian topography and surface properties: the 1971 and 1973 oppositions. Icarus, 26, 273–312 {356}CrossRefGoogle Scholar
Doyle, AP, Smalley, B, Maxted, PFL, et al., 2013, Accurate spectroscopic parameters of WASP planet host stars. MNRAS, 428, 3164–3172 {24}CrossRefGoogle Scholar
Doyle, LR, 1988, Progress in determining the space orientation of stars. IAUColloq. 99: Bioastronomy –The Next Steps, volume 144 of Astrophys. Space Sci. Lib., 101–105 {159}Google Scholar
Doyle, LR, Carter, JA, Fabrycky, DC, et al., 2011, Kepler–16: a transiting circumbinary planet. Science, 333, 1602–1603 {11, 179, 223, 224, 254, 288, 326, 327, 551, 553, 739}CrossRefGoogle ScholarPubMed
Doyle, LR, Deeg, H, Jenkins, JM, et al., 1998, Detectability of Jupiter-to-brown-dwarf-mass companions around small eclipsing binary systems. Brown Dwarfs and Ex-trasolar Planets, volume 134 of ASP Conf. Ser., 224 {159}Google Scholar
Doyle, LR, Deeg, HJ, Kozhevnikov, VP, et al., 2000, Observational limits on terrestrial-sized inner planets around the CM Dra system using the photometric transit method with amatched-filter algorithm. ApJ, 535, 338–349 {79, 160, 193}CrossRefGoogle Scholar
Doyle, LR, Dunham, ET, Deeg, H, et al., 1996, Ground-based detectability of terrestrial and Jovian extrasolar planets: observations of CM Dra at Lick Observatory. J. Geophys. Res., 101, 14823–14830 {160}CrossRefGoogle Scholar
Dragomir, D, Benneke, B, Pearson, KA, et al., 2015, Rayleigh scattering in the atmosphere of the warmexo-Neptune GJ 3470 b. ApJ, 814, 102 {729}CrossRefGoogle Scholar
Dragomir, D, Kane, SR, Henry, GW, et al., 2012a, The HD 192263 system: planetary orbital period and stellar variability disentangled. ApJ, 754, 37 {184, 213, 723}CrossRefGoogle Scholar
Dragomir, D, Kane, SR, Pilyavsky, G, et al., 2011, TERMS photometry of known transiting exoplanets. AJ, 142, 115 {184, 752, 754}CrossRefGoogle Scholar
Dragomir, D, Matthews, JM, Eastman, JD, et al., 2013, MOST detects transits of HD 97658 b, a warm, likely volatile-rich super-Earth. ApJ, 772, L2 {170, 186, 729}CrossRefGoogle Scholar
Dragomir, D, Matthews, JM, Howard, AW, et al., 2012b, Non-detection of previously reported transits of HD 97658 b with MOST photometry. ApJ, 759, L41 {186, 729}CrossRefGoogle Scholar
Dragomir, D, Matthews, JM, Kuschnig, R, et al., 2012c, A search for transits of GJ 581 e and characterisation of the host star variability using MOST photometry. ApJ, 759, 2 {186, 717}CrossRefGoogle Scholar
Dragomir, D, Matthews, JM, Winn, JN, et al., 2014, New MOST photometry of the 55 Cnc system. IAU Symposium, volume 293 of IAU Symp., 52–57 {186, 728}Google Scholar
Drahus, M, Guzik, P, Waniak, W, et al., 2017, Tumbling motion of Oumuamua reveals body's violent past. ArXiv e-prints {693}
Draine, BT, 2003, Interstellar dust grains. ARA&A, 41, 241–289 {495}Google Scholar
Drake, AJ, 2003, On the selection of photometric planetary transits. ApJ, 589, 1020–1026 {239}CrossRefGoogle Scholar
Drake, AJ, Beshore, E, Catelan, M, et al., 2010, Discovery of eclipsing white dwarf systems in a search for Earth-size companions [unpublished]. ArXiv e-prints {153, 160}
Drake, AJ, Cook, KH, 2004, Photometric transits from the MACHO project database. ApJ, 604, 379–387 {166}CrossRefGoogle Scholar
Drake, F, 1988, Stars as gravitational lenses. IAU Colloq. 99: Bioastronomy - The Next Steps, volume 144 of Astrophys. Space Sci. Lib., 391–394 {646}Google Scholar
Drake, FD, 1961, Project Ozma. Physics Today, 14, 40–46 {643}CrossRefGoogle Scholar
Drake, FD, 1965, The radio search for intelligent extraterrestrial life. Current Aspects of Exobiology (Pergamon, New York), 323–345 {399}
Drake, FD, 2008, SETI: the early days and now. Frontiers of Astrophysics: A Celebration of NRAO's 50th Anniversary, volume 395 of ASP Conf. Ser., 213–224 {643}Google Scholar
Drake, MJ, Campins, H, 2006, Origin of water on the terrestial planets. Asteroids, Comets, Meteors, volume 229 of IAU Symposium, 381–394 {667}Google Scholar
Drake, MJ, Righter, K, 2002, Determining the composition of the Earth. Nature, 416, 39–44 {668}CrossRefGoogle Scholar
Drake, MJ, Stimpfl, M, Lauretta, DS, 2004, How did the terrestrial planets acquire their water? Workshop on Oxygen in the Terrestrial Planets, 3043 {667}Google Scholar
Dravins, D, 1975, Physical limits to attainable accuracies in stellar radial velocities. A&A, 43, 45–50 {29, 39}Google Scholar
Dravins, D, 1982, Photospheric spectrum line asymmetries and wavelength shifts. ARA&A, 20, 61–89 {36}Google Scholar
Dravins, D, 1999, Stellar surface convection, line asymmetries, and wavelength shifts. IAU Colloq. 170: Precise Stellar Radial Velocities, volume 185 of ASP Conf. Ser., 268–277 {30}Google Scholar
Dravins, D, 2014, Intensity interferometry with Cherenkov telescope arrays: prospects for sub-mas optical imaging. Improving the Performances of Current Optical Interferometers and Future Designs, 19 {354}Google Scholar
Dravins, D, Lagadec, T, Nuñez, PD, 2015, Long-baseline optical intensity interferometry: laboratory demonstration of diffraction-limited imaging. A&A, 580, A99 {354}Google Scholar
Dravins, D, LeBohec, S, Jensen, H, et al., 2012, Stellar intensity interferometry: prospects for sub-milliarcsecond optical imaging. New Astron. Rev., 56, 143–167 {354}CrossRefGoogle Scholar
Dravins, D, LeBohec, S, Jensen, H, 2013, Optical intensity interferometry with the Cherenkov Telescope Array. As-troparticle Physics, 43, 331–347 {354}Google Scholar
Dravins, D, Lindegren, L, Madsen, S, 1999, Astrometric radial velocities. I. Non-spectroscopic methods for measuring stellar radial velocity. A&A, 348, 1040–1051 {30, 85}Google Scholar
Dravins, D, Lindegren, L, Mezey, E, et al., 1997a, Atmospheric intensity scintillation of stars. I. Statistical distributions and temporal properties. PASP, 109, 173–207 {188}CrossRefGoogle Scholar
Dravins, D, Lindegren, L, Mezey, E, 1997b, Atmospheric intensity scintillation of stars. II. Dependence on optical wavelength. PASP, 109, 725–737 {188}CrossRefGoogle Scholar
Dravins, D, Lindegren, L, Nordlund, A, 1981, Solar granulation: influence of convection on spectral line asymmetries and shifts. A&A, 96, 345–364 {30, 39}Google Scholar
Dravins, D, Ludwig, HG, Dahlén, E, et al., 2017a, Spatially resolved spectroscopy across stellar surfaces. I. Using exoplanet transits to analyze 3d stellar atmospheres. A&A, 605, A90 {250}Google Scholar
Dravins, D, Ludwig, HG, Dahlén, E, 2017b, Spatially resolved spectroscopy across stellar surfaces. II. High-resolution spectra across HD 209458. A&A, 605, A91 {250, 610, 732, 733}Google Scholar
Drazkowska, J, Alibert, Y, 2017, Planetesimal formation starts at the snow line. A&A, 608, A92 {565}Google Scholar
Drazkowska, J, Alibert, Y, Moore, B, 2016, Close-in planetesimal formation by pile-up of drifting pebbles. A&A, 594, A105 {471}Google Scholar
Drazkowska, J, Dullemond, CP, 2014, Can dust coagulation trigger streaming instability? A&A, 572, A78 {458}Google Scholar
Drazkowska, J, Windmark, F, Dullemond, CP, 2013, Planetesimal formation via sweep-up growth at the inner edge of dead zones. A&A, 556, A37 {459, 460}Google Scholar
Drazkowska, J, Windmark, F, Dullemond, CP, 2014, Modeling dust growth in protoplanetary disks: the breakthrough case. A&A, 567, A38 {470}Google Scholar
Dreizler, S, Hauschildt, PH, Kley, W, et al., 2003, OGLE–TR–3: a possible new transiting planet. A&A, 402, 791–799 {168}Google Scholar
Dreizler, S, Ofir, A, 2014, Kepler–9 revisited 60 per cent the mass with six times more data [unpublished]. ArXiv e-prints {179}
Dreizler, S, Rauch, T, Hauschildt, P, et al., 2002, Spectral types of planetary host star candidates: two new transiting planets? A&A, 391, L17–L20 {168, 749}Google Scholar
Dreizler, S, Reiners, A, Homeier, D, et al., 2009, On the possibility of detecting extraso-lar planet atmospheres with the Rossiter–McLaughlin effect. A&A, 499, 615–621 {249}Google Scholar
Dressing, CD, Adams, ER, Dupree, AK, et al., 2014, Adaptive optics images. III. 87 Kepler Objects of Interest (KOIs). AJ, 148, 78 {360}CrossRefGoogle Scholar
Dressing, CD, Charbonneau, D, 2013, The occurrence rate of small planets around small stars. ApJ, 767, 95 {58, 289, 290, 308, 476, 484}CrossRefGoogle Scholar
Dressing, CD, Charbonneau, D, 2015, The occurrence of potentially habitable planets orbiting M dwarfs estimated from the full Kepler data set, and an empirical measurement of the detection sensitivity. ApJ, 807, 45 {622}CrossRefGoogle Scholar
Dressing, CD, Charbonneau, D, Dumusque, X, et al., 2015, Themass of Kepler–93 b and the composition of terrestrial planets. ApJ, 800, 135 {602, 742}CrossRefGoogle Scholar
Dressing, CD, Spiegel, DS, Scharf, CA, et al., 2010, Habitable climates: the influence of eccentricity. ApJ, 721, 1295–1307 {210, 620, 622}CrossRefGoogle Scholar
Dressing, CD, Vanderburg, A, Schlieder, JE, et al., 2017, Characterising K2 candidate planetary systems orbiting low-mass stars. II. Planetary systems observed during Campaigns 1–7. AJ, 154, 207 {749}CrossRefGoogle Scholar
Driscoll, P, Olson, P, 2011, Optimal dynamos in the cores of terrestrial exoplanets: magnetic field generation and detectability. Icarus, 213, 12–23 {425}CrossRefGoogle Scholar
Driscoll, PE, Barnes, R, 2015, Tidal heating of Earth-like exoplanets around M stars: thermal, magnetic, and orbital evolutions. Astrobiology, 15, 739–760 {626}CrossRefGoogle ScholarPubMed
Drummond, B, Tremblin, P, Baraffe, I, et al., 2016, The effects of consistent chemical kinetics calculations on the pressure–temperature profiles and emission spectra of hot Jupiters. A&A, 594, A69 {580}Google Scholar
Dubrulle, B, Graner, F, 1994, Titius–Bode laws in the solar system. 2. Build your own law from diskmodels. A&A, 282, 269–276 {510}Google Scholar
Dubrulle, B, Morfill, G, Sterzik, M, 1995, The dust subdisk in the protoplanetary nebula. Icarus, 114, 237–246 {468}CrossRefGoogle Scholar
Duchêne, G, 2010, Planet formation in binary systems: a separation-dependent mechanism? ApJ, 709, L114–L118 {554}CrossRefGoogle Scholar
Duchêne, G, Kraus, A, 2013, Stellar multiplicity. ARA&A, 51, 269–310 {64, 65, 547}Google Scholar
Duermann, C, Wurm, G, Kuepper, M, 2013, Radiative forces on macroscopic porous bodies in protoplanetary disks: laboratory experiments. A&A, 558, A70 {458, 468}Google Scholar
Duffard, R, Pinilla-Alonso, N, Santos-Sanz, P, et al., 2014, TNOs are cool: a survey of the trans-Neptunian region. XI. A Herschel–PACS view of 16 Centaurs. A&A, 564, A92 {685}Google Scholar
Duffell, PC, 2015, Halting migration: numerical calculations of corotation torques in the weakly nonlinear regime. ApJ, 806, 182 {519}CrossRefGoogle Scholar
Duffell, PC, Dong, R, 2015, Shallow cavities in multiple-planet systems. ApJ, 802, 42 {467}CrossRefGoogle Scholar
Duffell, PC, Haiman, Z, Mac Fadyen, AI, et al., 2014, The migration of gap-opening planets is not locked to viscous disk evolution. ApJ, 792, L10 {520}CrossRefGoogle Scholar
Duffell, PC, Mac Fadyen, AI, 2013, Gap opening by extremely low-mass planets in a viscous disk. ApJ, 769, 41 {467}CrossRefGoogle Scholar
Dufour, P, Kilic, M, Fontaine, G, et al., 2010, The discovery of the most metal-rich white dwarf: composition of a tidally disrupted extrasolar dwarf planet. ApJ, 719, 803–809 {417}CrossRefGoogle Scholar
Dufour, P, Kilic, M, Fontaine, G, 2012, Detailed compositional analysis of the heavily-polluted DBZ white dwarf SDSS J073842.56+183509.06: a window on planet formation? ApJ, 749, 6 {417}CrossRefGoogle Scholar
Duggan, P, McBreen, B, Carr, AJ, et al., 2003, Gamma-ray bursts and X-ray melting of material to formchondrules and planets. A&A, 409, L9–L12 {653}Google Scholar
Dukes, D, Krumholz, MR, 2012, Was the Sun born in a massive cluster? ApJ, 754, 56 {650}CrossRefGoogle Scholar
Dullemond, CP, Dominik, C, 2004, The effect of dust settling on the appearance of protoplanetary disks. A&A, 421, 1075–1086 {456, 468}Google Scholar
Dullemond, CP, Dominik, C, 2005, Dust coagulation in protoplanetary disks: a rapid depletion of small grains. A&A, 434, 971–986 {465, 469}Google Scholar
Dullemond, CP, Hollenbach, D, Kamp, I, et al., 2007, Models of the structure and evolution of protoplanetary disks. Protostars and Planets V, 555–572 {455}
Dullemond, CP, Monnier, JD, 2010, The inner regions of protoplanetary disks. ARA&A, 48, 205–239 {454}Google Scholar
Dumberry, M, Mound, J, 2010, Inner core-mantle gravitational locking and the super-rotation of the inner core. Geophysical Journal International, 181, 806–817 {596}Google Scholar
Dumusque, X, 2016, Radial velocity fitting challenge. I. Simulating the data set including realistic stellar radial velocity signals. A&A, 593, A5 {35}Google Scholar
Dumusque, X, Boisse, I, Santos, NC, 2014a, SOAP 2.0: a tool to estimate the photometric and radial velocity variations induced by stellar spots and plages. ApJ, 796, 132 {37, 38, 212, 730}CrossRefGoogle Scholar
Dumusque, X, Bonomo, AS, Haywood, RD, et al., 2014b, The Kepler–10 planetary system revisited by HARPS–N: a hot rocky world and a solid Neptune-mass planet. ApJ, 789, 154 {503, 739}CrossRefGoogle Scholar
Dumusque, X, Borsa, F, Damasso, M, et al., 2017, Radial velocity fitting challenge. II. First results of the analysis of the data set. A&A, 598, A133 {35, 36, 37}Google Scholar
Dumusque, X, Glenday, A, Phillips, DF, et al., 2015a, HARPS–N observes the Sun as a star. ApJ, 814, L21 {37, 38}CrossRefGoogle Scholar
Dumusque, X, Lovis, C, Ségransan, D, et al., 2011a, The HARPS search for southern extrasolar planets. XXX. Planetary systems around stars with solar-like magnetic cycles and short-termactivity variation. A&A, 535, A55 {36, 718, 722, 724}Google Scholar
Dumusque, X, Pepe, F, Lovis, C, et al., 2012, An Earth-mass planet orbiting α Cen B. Nature, 491, 207–211 {12, 37, 59, 193, 552, 714}CrossRefGoogle Scholar
Dumusque, X, Pepe, F, Lovis, C, 2015b, Characterisation of a spurious one-year signal in HARPS data. ApJ, 808, 171 {30}CrossRefGoogle Scholar
Dumusque, X, Santos, NC, Udry, S, et al., 2011b, Planetary detection limits taking into account stellar noise. II. Effect of star spot groups on radial velocities. A&A, 527, A82 {37, 49}Google Scholar
Dumusque, X, Udry, S, Lovis, C, et al., 2011c, Planetary detection limits taking into account stellar noise. I. Observational strategies to reduce stellar oscillation and granulation effects. A&A, 525, A140 {37, 38, 713, 714}Google Scholar
Duncan, M, Quinn, T, Tremaine, S, 1987, The formation and extent of the solar system comet cloud. AJ, 94, 1330–1338 {526, 686}CrossRefGoogle Scholar
Duncan, MJ, 2008, Dynamical origin of comets and their reservoirs. Space Sci. Rev., 138, 109–126 {685}CrossRefGoogle Scholar
Duncan, MJ, Levison, HF, 1997, A scattered comet disk and the origin of Jupiter family comets. Science, 276, 1670–1672 {662, 685, 694}CrossRefGoogle Scholar
Duncan, MJ, Levison, HF, Lee, MH, 1998, Amultiple time step symplectic algorithmfor integrating close encounters. AJ, 116, 2067–2077 {513}CrossRefGoogle Scholar
Duncan, MJ, Lissauer, JJ, 1998, The effects of post-main-sequence solar mass loss on the stability of our planetary system. Icarus, 134, 303–310 {110, 517}CrossRefGoogle Scholar
Duncan, MJ, Quinn, T, 1993, The long-term dynamical evolution of the solar system. ARA&A, 31, 265–295 {694}Google Scholar
Dunham, EW, Borucki, WJ, Koch, DG, et al., 2010, Kepler–6 b: a transiting hot Jupiter orbiting a metal-rich star. ApJ, 713, L136–L139 {178, 738}CrossRefGoogle Scholar
Dunham, EW, Mandushev, GI, Taylor, BW, et al., 2004, PSST: The Planet Search Survey Telescope. PASP, 116, 1072–1080 {169}CrossRefGoogle Scholar
Dunhill, AC, Alexander, RD, 2013, The curiously circular orbit of Kepler–16 b. MNRAS, 435, 2328–2334 {739}CrossRefGoogle Scholar
Dunhill, AC, Alexander, RD, Armitage, PJ, 2013, A limit on eccentricity growth from global 3d simulations of disk–planet interactions. MNRAS, 428, 3072–3082 {519}CrossRefGoogle Scholar
Dupuy, TJ, Kratter, KM, Kraus, AL, et al., 2016, Orbital architectures of planet-hosting binaries. I. Forming five small planets in the truncated disk of Kepler–444A. ApJ, 817, 80 {746}CrossRefGoogle Scholar
Dupuy, TJ, Kraus, AL, 2013, Distances, luminosities, and temperatures of the coldest known substellar objects. Science, 341, 1492–1495 {434, 439}CrossRefGoogle ScholarPubMed
Dupuy, TJ, Liu, MC, 2009, Detectability of transiting Jupiters and low-mass eclipsing binaries in sparsely sampled Pan–STARRS–1 survey data. ApJ, 704, 1519–1537 {171}CrossRefGoogle Scholar
Dupuy, TJ, Liu, MC, 2012, The Hawaii infrared parallax programme. I. Ultracool binaries and the L/T transition. ApJS, 201, 19 {434, 607}CrossRefGoogle Scholar
Dupuy, TJ, Liu, MC, Ireland, MJ, 2009, Dynamical mass of the substellar benchmark binary HD 130948BC. ApJ, 692, 729–752 {437}CrossRefGoogle Scholar
Duquennoy, A, Mayor, M, 1991, Multiplicity among solar-type stars in the solar neigh-bourhood. II. Distribution of the orbital elements in an unbiased sample. A&A, 248, 485–524 {50, 78, 547}Google Scholar
Durda, DD, Dermott, SF, 1997, The collisional evolution of the asteroid belt and its contribution to the zodiacal cloud. Icarus, 130, 140–164 {496, 691}CrossRefGoogle Scholar
Durian, DJ, Bideaud, H, Duringer, P, et al., 2006, What is in a pebble shape? Phys. Rev. Lett., 97(2), 028001 {684}CrossRefGoogle Scholar
Durisen, RH, Boss, AP, Mayer, L, et al., 2007, Gravitational instabilities in gaseous protoplanetary disks and implications for giant planet formation. Protostars and Planets V, 607–622 {488, 489}
Durisen, RH, Cai, K, Mejía, AC, et al., 2005, A hybrid scenario for gas giant planet formation in rings. Icarus, 173, 417–424 {458}CrossRefGoogle Scholar
Durisen, RH, Hartquist, TW, Pickett, MK, 2008, The formation of fragments at corota-tion in isothermal protoplanetary disks. Ap&SS, 317, 3–8 {488}Google Scholar
Durkan, S, Janson, M, Carson, JC, 2016, High contrast imaging with Spitzer: constraining the frequency of giant planets out to 1000 au separations. ApJ, 824, 58 {350}CrossRefGoogle Scholar
Dürmann, C, Kley, W, 2015, Migration of massive planets in accreting disks. A&A, 574, A52 {483, 520}Google Scholar
Dürmann, C, Kley, W, 2017, The accretion of migrating giant planets. A&A, 598, A80 {483, 520}Google Scholar
Dutrey, A, Semenov, D, Chapillon, E, et al., 2014, Physical and chemical structure of planet-forming disks probed by millimeter observations and modeling. Proto-stars and Planets VI, 317–338 {454}
Dutrey, A, Wakelam, V, Boehler, Y, et al., 2011, Chemistry in disks. V. Sulphur-bearing molecules in the protoplanetary disks surrounding LkCa 15, MW 480, DM Tau, and GO Tau. A&A, 535, A104 {764}Google Scholar
Dvorak, R, 1982, Planetary orbits in double star systems. Oesterreichische Akademie Wissenschaften Mathematisch naturwissenschaftliche Klasse Sitzungsberichte Abteilung, 191, 423–437 {548}Google Scholar
Dvorak, R, 1984, Numerical experiments on planetary orbits in double stars. Celestial Mechanics, 34, 369–378 {549}CrossRefGoogle Scholar
Dvorak, R, 1986, Critical orbits in the elliptic restricted three-body problem. A&A, 167, 379–386 {549, 551}Google Scholar
Dvorak, R, Bazsó Á, Zhou, LY, 2010a, Where are the Uranus Trojans? Cel. Mech. Dyn. Astron., 107, 51–62 {690}CrossRefGoogle Scholar
Dvorak, R, Froeschle, C, Froeschle, C, 1989, Stability of outer planetary orbits (P-types) in binaries. A&A, 226, 335–342 {549, 551}Google Scholar
Dvorak, R, Pilat-Lohinger, E, Bois, E, et al., 2004a, Planets in double stars: the γ Cep system. Revista Mexicana de Astronomia y Astrofisica Conference Series, volume 21, 222–226 {549, 714}Google Scholar
Dvorak, R, Pilat-Lohinger, E, Bois, E, 2010b, Dynamical habitability of planetary systems. Astrobiology, 10, 33–43 {623}CrossRefGoogle Scholar
Dvorak, R, Pilat-Lohinger, E, Funk, B, et al., 2003a, Planets in habitable zones: a study of the binary γ Cep. A&A, 398, L1–L4 {549, 623, 714}Google Scholar
Dvorak, R, Pilat-Lohinger, E, Funk, B, 2003b, A study of the stable regions in the planetary system HD 74156: can it host Earth-like planets in habitable zones? A&A, 410, L13–L16 {514, 623, 720}Google Scholar
Dvorak, R, Pilat-Lohinger, E, Schwarz, R, et al., 2004b, Extrasolar Trojan planets close to habitable zones. A&A, 426, L37–L40 {274}Google Scholar
Dvorak, R, Schwarz, R, Süli Á, et al., 2007, On the stability of the Neptune Trojans. MNRAS, 382, 1324–1330 {690}CrossRefGoogle Scholar
Dybczyński, PA, Berski, F, 2015, On the accuracy of close stellar approaches determi-nation. MNRAS, 449, 2459–2471 {655}CrossRefGoogle Scholar
Dybczyński, PA, Królikowska, M, 2015, Near-parabolic comets observed in 2006–2010. II. Their past and future motion under the influence of the Galaxy field and known nearby stars. MNRAS, 448, 588–600 {693}CrossRefGoogle Scholar
Dybczyński, PA, Królikowska, M, 2018, Investigating the dynamical history of the interstellar object Oumuamua. A&A, 610, L11 {693}Google Scholar
Dykema, JA, Keith, DW, Keutsch, FN, 2016, Improved aerosol radiative properties as a foundation for solar geoengineering risk assessment. Geophys. Res. Lett., 43, 7758–7766 {233}CrossRefGoogle Scholar
Dyson, FJ, 1960, Search for artificial stellar sources of infrared radiation. Science, 131, 1667–1668 {647}CrossRefGoogle ScholarPubMed
Dyson, FW, Eddington, AS, Davidson, C, 1920, A determination of the deflection of light by the Sun's gravitational field, from observations made at the total eclipse of 29 May 1919. Phil. Trans. Soc. London A, 220, 291–333 {120}Google Scholar
Dyudina, U, Zhang, X, Li, L, et al., 2016, Reflected light curves, spherical and Bond albedos of Jupiter- and Saturn-like exoplanets. ApJ, 822, 76 {591}CrossRefGoogle Scholar
Dyudina, UA, Del Genio, AD, Ingersoll, AP, et al., 2004, Lightning on Jupiter observed in the Hα line by the Cassini imaging science subsystem. Icarus, 172, 24–36 {591}CrossRefGoogle Scholar
Dyudina, UA, Sackett, PD, Bayliss, DDR, et al., 2005, Phase light curves for extrasolar Jupiters and Saturns. ApJ, 618, 973–986 {235}CrossRefGoogle Scholar
Dziembowski, WA, Fiorentini, G, Ricci, B, et al., 1999, Helioseismology and the solar age. A&A, 343, 990–996 {652}Google Scholar
Dziewonski, AM, Anderson, DL, 1981, Preliminary reference Earth model (PREM). Physics of the Earth and Planetary Interiors, 25, 297–356 {533, 603}CrossRefGoogle Scholar
Dzigan, Y, Zucker, S, 2011, Directed follow-up strategy of low-cadence photometric surveys in search of transiting exoplanets. I. Bayesian approach for adaptive scheduling. MNRAS, 415, 2513–2522 {180, 730, 732}CrossRefGoogle Scholar
Dzigan, Y, Zucker, S, 2012, Detection of transiting Jovian exoplanets by Gaia photometry: expected yield. ApJ, 753, L1 {180, 181}CrossRefGoogle Scholar
Dzigan, Y, Zucker, S, 2013, Directed follow-up strategy of low-cadence photometric surveys in search of transiting exoplanets. II. Application to Gaia. MNRAS, 428, 3641–3647 {180}CrossRefGoogle Scholar
Dzyurkevich, N, Flock, M, Turner, NJ, et al., 2010, Trapping solids at the inner edge of the dead zone: 3d global MHD simulations. A&A, 515, A70 {460}Google Scholar
Early, JT, 1989, Space-based solar shield to offset greenhouse effect. Journal of the British Interplanetary Society, 42, 567–569 {233}Google Scholar
Eason, ELE, Africano, JL, Klimke, A, et al., 1983, Eclipse timings in U Gem. PASP, 95, 58–60 {114}CrossRefGoogle Scholar
Eastman, J, Gaudi, BS, Agol, E, 2013, EXOFAST: a fast exoplanetary fitting suite in IDL. PASP, 125, 83–112 {24, 195, 735}CrossRefGoogle Scholar
Eastman, J, Gaudi, BS, Siverd, R, et al., 2010a, DEMONEX: the DEdicated MONitor of EXotransits. SPIE Conf. Ser., volume 7733 {182}Google Scholar
Eastman, J, Siverd, R, Gaudi, BS, 2010b, Achieving better than 1 minute accuracy in the heliocentric and barycentric Julian dates. PASP, 122, 935–946 {103, 104}CrossRefGoogle Scholar
Eastman, JD, Beatty, TG, Siverd, RJ, et al., 2016, KELT–4A b: an inflated hot Jupiter transiting the bright (V ~ 10) component of a hierarchical triple. AJ, 151, 45 {738}CrossRefGoogle Scholar
Eastman, JD, Brown, TM, Hygelund, J, et al., 2014, NRES: the network of robotic Echelle spectrographs. Ground-based and Airborne Instrumentation for Astronomy V, volume 9147 of Proc. SPIE, 914716 {46}Google Scholar
Ebel, DS, Grossman, L, 2000, Condensation in dust-enriched systems. Geochim. Cos-mochim. Acta, 64, 339–366 {562}Google Scholar
Eberle, J, Cuntz, M, 2010, On the reality of the suggested planet in the v Oct system. ApJ, 721, L168–L171 {11, 715}CrossRefGoogle Scholar
Eberle, J, Cuntz, M, Quarles, B, et al., 2011, Case studies of habitable Trojan planets in the system of HD 23079. Int. J. Astrobiol., 10, 325–334 {624, 719}CrossRefGoogle Scholar
Ebisuzaki, T, Imaeda, Y, 2017, United theory of planet formation. I. Tandem regime. New Astron., 54, 7–23 {556}CrossRefGoogle Scholar
Eccleston, P, Swinyard, B, Tessenyi, M, et al., 2015, The EChO payload instrument: an overview. Exp. Astron., 40, 427–447 {182, 187}CrossRefGoogle Scholar
Ecuvillon, A, Israelian, G, Pont, F, et al., 2007, Kinematics of planet-host stars and their relation to dynamical streams in the solar neigh bourhood. A&A, 461, 171–182 {375}Google Scholar
Ecuvillon, A, Israelian, G, Santos, NC, et al., 2004a, C,, S, Zn and Cu abundances in planet-harbouring stars. A&A, 426, 619–630 {388, 397, 398, 400}Google Scholar
Ecuvillon, A, Israelian, G, Santos, NC, 2004b, Nitrogen abundances in planet-harbouring stars. A&A, 418, 703–715 {388, 397, 398, 400}Google Scholar
Ecuvillon, A, Israelian, G, Santos, NC, 2006a, Abundance ratios of volatile versus refractory elements in planet-harbouring stars: hints of pollution? A&A, 449, 809–816 {398}Google Scholar
Ecuvillon, A, Israelian, G, Santos, NC, 2006b, Oxygen abundances in planet-harbouring stars: comparison of different abundance indicators. A&A, 445, 633–645 {397, 398, 399}Google Scholar
Edberg, SJ, 2016, An automated system for citizen searches for exoplanets. Society for Astronomical Sciences Annual Symposium, 35, 11–22 {191}Google Scholar
Eddington, AS, 1920, Space, Time and Gravitation. AnOutline of the General Relativity Theory. Cambridge University Press {120}Google Scholar
Edelstein, J, Muterspaugh, MW, Erskine, D, et al., 2008, Dispersed interferometry for infrared exoplanet velocimetry. SPIE Conf. Ser., volume 7014, 242–247 {50}Google Scholar
Edelstein, J, Muterspaugh, MW, Erskine, DJ, et al., 2007, TEDI: the Triple Spec exoplanet discovery instrument. SPIE Conf. Ser., volume 6693 {46, 50, 55}Google Scholar
Edgar, RG, 2007, Giant planet migration in viscous power-law disks. ApJ, 663, 1325–1334 {483}CrossRefGoogle Scholar
Edgar, RG, Quillen, AC, 2008, The vertical structure of planet-induced gaps in proto-planetary disks. MNRAS, 387, 387–396 {496}CrossRefGoogle Scholar
Edgar, RG, Quillen, AC, Park, J, 2007, The minimum gap-opening planet mass in an irradiated circumstellar accretion disk. MNRAS, 381, 1280–1286 {520}CrossRefGoogle Scholar
Edser, E, Butler, CP, 1898, A simple method of reducing prismatic spectra. Phil. Mag., 46(5), 207–216 {49}CrossRefGoogle Scholar
Edson, A, Lee, S, Bannon, P, et al., 2011, Atmospheric circulations of terrestrial planets orbiting low-mass stars. Icarus, 212, 1–13 {621}CrossRefGoogle Scholar
Edson, AR, Kasting, JF, Pollard, D, et al., 2012, The carbonate–silicate cycle and CO2/climate feedbacks on tidally-locked terrestrial planets. Astrobiology, 12, 562–571 {621, 628}CrossRefGoogle ScholarPubMed
Edvardsson, B, Andersen, J, Gustafsson, B, et al., 1993, The chemical evolution of the Galactic disk. I. Analysis and results. A&A, 275, 101–152 {375, 379, 395, 399}Google Scholar
Edwards, S, Strom, SE, Hartigan, P, et al., 1993, Angular momentum regulation in low-mass young stars surrounded by accretion disks. AJ, 106, 372–382 {402}CrossRefGoogle Scholar
Efroimsky, M, 2012a, Bodily tides near spin–orbit resonances. Cel. Mech. Dyn. Astron., 112, 283–330 {536, 666}CrossRefGoogle Scholar
Efroimsky, M, 2012b, Tidal dissipation compared to seismic dissipation: in small bodies, Earths, and super-Earths. ApJ, 746, 150 {536}CrossRefGoogle Scholar
Efroimsky, M, Lainey, V, 2007, Physics of bodily tides in terrestrial planets and the appropriate scales of dynamical evolution. J. Geophys. Res., 112, 12003 {535, 666}CrossRefGoogle Scholar
Efroimsky, M, Makarov, VV, 2013, Tidal friction and tidal lagging: applicability limitations of a popular formula for the tidal torque. ApJ, 764, 26 {534, 666}CrossRefGoogle Scholar
Efroimsky, M, Makarov, VV, 2014, Tidal dissipation in a homogeneous spherical body. I. Methods. ApJ, 795, 6 {536}CrossRefGoogle Scholar
Efroimsky, M, Williams, JG, 2009, Tidal torques: a critical review of some techniques. Cel. Mech. Dyn. Astron., 104, 257–289 {666}CrossRefGoogle Scholar
Egan, G, 2018, Polar orbits around binary stars. Cel. Mech. Dyn. Astron., 130, 5 {550}CrossRefGoogle Scholar
Eggen, OJ, 1993a, Degenerate stars in the Hyades supercluster. AJ, 106, 642–649 {418}CrossRefGoogle Scholar
Eggen, OJ, 1993b, The low mass Hyades and the evaporation of clusters. AJ, 106, 1885–1905 {418}CrossRefGoogle Scholar
Eggenberger, A, 2010, Detection and characterisation of planets in binary and multiple systems. EAS Pub. Ser., volume 42, 19–37 {56, 78, 79, 80, 552}CrossRefGoogle Scholar
Eggenberger, A, Halbwachs, J, Udry, S, et al., 2004a, Statistical properties of an unbiased sample of F7-K binaries: towards the long-period systems. Revista Mexi-cana de Astronomia y Astrofisica Conference Series, volume 21, 28–32 {547}Google Scholar
Eggenberger, A, Mayor, M, Naef, D, et al., 2006, The CORALIE survey for southern ex-trasolar planets. XIV. HD 142022 b: a long-period planetary companion in a wide binary. A&A, 447, 1159–1163 {21, 22, 29, 722}Google Scholar
Eggenberger, A, Udry, S, Chauvin, G, et al., 2007a, The impact of stellar duplicity on planet occurrence and properties. I. Observational results of a VLT–NACO search for stellar companions to 130 nearby stars with and without planets. A&A, 474, 273–291 {552}Google Scholar
Eggenberger, A, Udry, S, Mayor, M, 2004b, Statistical properties of exoplanets. III. Planet properties and stellar multiplicity. A&A, 417, 353–360 {79}Google Scholar
Eggenberger, A, Udry, S, Mazeh, T, et al., 2007b, No evidence of a hot Jupiter around HD 188753 A. A&A, 466, 1179–1183 {80}Google Scholar
Eggenberger, P, Charbonnel, C, Talon, S, et al., 2004c, Analysis of α Cen AB including seismic constraints. A&A, 417, 235–246 {714}Google Scholar
Eggl, S, Haghighipour, N, Pilat-Lohinger, E, 2013a, Detectability of Earth-like planets in circumstellar habitable zones of binary star systems with Sun-like components. ApJ, 764, 130 {635, 714}CrossRefGoogle Scholar
Eggl, S, Pilat-Lohinger, E, Funk, B, et al., 2013b, Circumstellar habitable zones of binary-star systems in the solar neighbourhood. MNRAS, 428, 3104–3113 {623}CrossRefGoogle Scholar
Eggl, S, Pilat-Lohinger, E, Georgakarakos, N, et al., 2012, An analytic method to determine habitable zones for S-type planetary orbits in binary star systems. ApJ, 752, 74 {623}CrossRefGoogle Scholar
Eggleton, PP, Kiseleva, LG, Hut, P, 1998, The equilibrium tide model for tidal friction. ApJ, 499, 853–870 {535, 536, 541}CrossRefGoogle Scholar
Eggleton, PP, Kiseleva-Eggleton, L, 2001, Orbital evolution in binary and triple stars, with an application to SS Lac. ApJ, 562, 1012–1030 {528, 541}CrossRefGoogle Scholar
Eggleton, PP, Kisseleva-Eggleton, L, 2006, A mechanism for producing short-period binaries. Ap&SS, 304, 75–79 {528}Google Scholar
Ehlmann, BL, Anderson, FS, Andrews-Hanna, J, et al., 2016, The sustainability of habitability on terrestrial planets: insights, questions, and needed measurements from Mars for understanding the evolution of Earth-like worlds. J. Geophys. Res. (Planets), 121, 1927–1961 {636}Google Scholar
Ehrenfest, P, 1917, In what way does it become manifest in the fundamental laws of physics that space has three dimensions? Proc. Amsterdam Acad., 20, 200–209 {515}Google Scholar
Ehrenreich, D, 2018, Atmospheres of exoplanets. Asteroseismology and Exoplanets: Listening to the Stars and Searching for New Worlds, 49, 251 {607}Google Scholar
Ehrenreich, D, Bonfils, X, Lovis, C, et al., 2014, Near-infrared transmission spectrumof the warm-Uranus GJ 3470 b with HST–WFC3. A&A, 570, A89 {729}Google Scholar
Ehrenreich, D, Bourrier, V, Bonfils, X, et al., 2012a, Hint of a transiting extended atmosphere on 55 Cnc b. A&A, 547, A18 {728}Google Scholar
Ehrenreich, D, Bourrier, V, Wheatley, PJ, et al., 2015, A giant comet-like cloud of hydrogen escaping the warm Neptune-mass exoplanet GJ 436 b. Nature, 522, 459–461 {729}CrossRefGoogle Scholar
Ehrenreich, D, Désert, JM, 2011, Mass-loss rates for transiting exoplanets. A&A, 529, A136 {601, 730, 732, 751, 752, 753}Google Scholar
Ehrenreich, D, Hébrard, G, Lecavelier des Etangs A, et al., 2007, A Spitzer search for water in the transiting exoplanet HD 189733 b. ApJ, 668, L179–L182 {609, 730}CrossRefGoogle Scholar
Ehrenreich, D, Lagrange, AM, Bouchy, F, et al., 2011a, SOPHIE velocimetry of Kepler transit candidates. I. Detection of the low-mass white dwarf KOI–74 b. A&A, 525, A85 {61, 239}Google Scholar
Ehrenreich, D, Lecavelier des Etangs A, Beaulieu, JP, et al., 2006a, On the possible properties of small and cold extrasolar planets: is OGLE–2005–BLG–390L b entirely frozen? ApJ, 651, 535–543 {574, 577, 759}CrossRefGoogle Scholar
Ehrenreich, D, Lecavelier Des Etangs A, Delfosse, X, 2011b, HST–STIS Lyman-α observations of the quiet Mdwarf GJ 436. Predictions for the exospheric transit signature of the hot Neptune GJ 436 b. A&A, 529, A80 {728}Google Scholar
Ehrenreich, D, Lecavelier des Etangs A, Hébrard, G, et al., 2008, New observations of the extended hydrogen exosphere of the extrasolar planet HD 209458 b. A&A, 483, 933–937 {602, 610, 732}Google Scholar
Ehrenreich, D, Tinetti, G, Lecavelier Des Etangs A, et al., 2006b, The transmission spec-trumof Earth-size transiting planets. A&A, 448, 379–393 {591}Google Scholar
Ehrenreich, D, Vidal-Madjar, A, Widemann, T, et al., 2012b, Transmission spectrum of Venus as a transiting exoplanet. A&A, 537, L2 {161}Google Scholar
Eibe, MT, Cuesta, L, Ullán, A, et al., 2012, Analysis of variations in transit time and transit duration in WASP–3: evidence of secular perturbations reconsidered. MNRAS, 423, 1381–1389 {752}CrossRefGoogle Scholar
Eigmüller, P, Gandolfi, D, Persson, CM, et al., 2017, K2–60 b and K2–107 b: a sub-Jovian and a Jovian planet from the K2 mission. AJ, 153, 130 {748}CrossRefGoogle Scholar
Einstein, A, 1936, Lens-like action of a star by the deviation of light in the gravitational field. Science, 84, 506–507 {120}CrossRefGoogle ScholarPubMed
Eiroa, C, Marshall, JP, Mora, A, et al., 2011, Herschel discovery of a new class of cold, faint debris disks. A&A, 536, L4 {493}Google Scholar
Eiroa, C, Marshall, JP, Mora, A, 2013, DUst around NEarby Stars (DUNES): the survey observational results. A&A, 555, A11 {493}Google Scholar
Eiroa, C, Rebollido, I, Montesinos, B, et al., 2016, Exocomet signatures around the A-shell star ` Leo? A&A, 594, L1 {282}Google Scholar
Eisenhardt, PRM, Griffith, RL, Stern, D, et al., 2010, Ultracool field brown dwarf candidates selected at 4.5μm. AJ, 139, 2455–2464 {436}CrossRefGoogle Scholar
Eisenhauer, F, Perrin, G, Brandner, W, et al., 2011, GRAVITY: observing the Universe in motion. The Messenger, 143, 16–24 {91}Google Scholar
Eisenhauer, F, Raab, W, 2015, Visible/infrared imaging spectroscopy and energy-resolving detectors. ARA&A, 53, 155–197 {183}Google Scholar
Eisner, JA, 2007, Water vapour and hydrogen in the terrestrial-planet-forming region of a protoplanetary disk. Nature, 447, 562–564 {642}CrossRefGoogle ScholarPubMed
Eisner, JA, Hillenbrand, LA, White, RJ, et al., 2005, Observations of T Tauri disks at sub-au radii: implications for magnetospheric accretion and planet formation. ApJ, 623, 952–966 {521}CrossRefGoogle Scholar
Eisner, JA, Kulkarni, SR, 2001a, Sensitivity of the astrometric technique in detecting outer planets. ApJ, 561, 1107–1115 {87}CrossRefGoogle Scholar
Eisner, JA, Kulkarni, SR, 2001b, Sensitivity of the radial-velocity technique in detecting outer planets. ApJ, 550, 871–883 {26}CrossRefGoogle Scholar
Eisner, JA, Kulkarni, SR, 2002, Detecting outer planets in edge-on orbits: combining radial velocity and astrometric techniques. ApJ, 574, 426–429 {87}CrossRefGoogle Scholar
Eistrup, C, Walsh, C, van Dishoeck, EF, 2016, Setting the volatile composition of (exo)planet-building material: does chemical evolution in disk midplanes matter? A&A, 595, A83 {463, 464}Google Scholar
Ekenbäck, A, Holmström, M, Wurz, P, et al., 2010, Energetic neutral atoms around HD 209458 b: estimations of magnetospheric properties. ApJ, 709, 670–679 {428, 732}CrossRefGoogle Scholar
Eker, Z, 1994, Modeling light curves of spotted stars. ApJ, 420, 373–386 {212}CrossRefGoogle Scholar
Elachi, C, Allison, MD, Borgarelli, L, et al., 2004, Radar: the Cassini Titan Radar Mapper. Space Sci. Rev., 115, 71–110 {356}CrossRefGoogle Scholar
Elias, NM, 2008, Photon orbital angular momentumin astronomy. A&A, 492, 883–922 {336}Google Scholar
Elkins-Tanton, LT, 2008, Linkedmagma ocean solidification and atmospheric growth for Earth and Mars. Earth Planet. Sci. Lett., 271, 181–191 {576}CrossRefGoogle Scholar
Elkins-Tanton, LT, 2011, Formation of early water oceans on rocky planets. Ap&SS, 332, 359–364 {598}Google Scholar
Elkins-Tanton, LT, Seager, S, 2008a, Coreless terrestrial exoplanets. ApJ, 688, 628–635 {573, 574, 597}CrossRefGoogle Scholar
Elkins-Tanton, LT, Seager, S, 2008b, Ranges of atmospheric mass and composition of super-Earth exoplanets. ApJ, 685, 1237–1246 {574, 597, 624}CrossRefGoogle Scholar
Elkins-Tanton, LT, Weiss, BP, Zuber, MT, 2011, Chondrites as samples of differentiated planetesimals. Earth Planet. Sci. Lett., 305, 1–10 {683}CrossRefGoogle Scholar
Elliot, JL, 1978, Direct imaging of extrasolar planets with stationary occultations viewed by a space telescope. Icarus, 35, 156–164 {339, 351}CrossRefGoogle Scholar
Elliot, JL, Dunham, E, Mink, D, 1977, The rings of Uranus. Nature, 267, 328–330 {690}CrossRefGoogle Scholar
Elliot, JL, Kern, SD, Clancy, KB, et al., 2005, The Deep Ecliptic Survey: a search for Kuiper belt objects and Centaurs. II. Dynamical classification, the Kuiper belt plane, and the core population. AJ, 129, 1117–1162 {684, 685}CrossRefGoogle Scholar
Ellis, GFR, 2011, Brandon Carter, large number coincidences and the anthropic principle in cosmology. General Relativity and Gravitation, 43, 3213–3223 {630, 632}CrossRefGoogle Scholar
Elmegreen, BG, 1999, A prediction of brown dwarfs in ultracold molecular gas. ApJ, 522, 915–920 {441}CrossRefGoogle Scholar
Els, SG, Sterzik, MF, Marchis, F, et al., 2001, A second substellar companion in the GJ 86 system: a brown dwarf in an extrasolar planetary system. A&A, 370, L1–L4 {414, 551, 716}Google Scholar
Elser, S, Grimm, SL, Stadel, JG, 2013, Super-Earths and dynamical stability of planetary systems: first parallel GPU simulations using GENGA. MNRAS, 433, 2194–2205 {70, 513, 718, 719, 720, 722, 723, 724, 725}CrossRefGoogle Scholar
Elser, S, Moore, B, Stadel, J, et al., 2011, How common are Earth–Moon planetary systems? Icarus, 214, 357–365 {276, 504}CrossRefGoogle Scholar
Emelyanenko, VV, 2011, A study on dynamic processes at late stages in the formation of planetary systems in gas and dust disks. Sol. Syst. Res., 45, 402–409 {717}Google Scholar
Emelyanenko, VV, Asher, DJ, Bailey, ME, 2005, Centaurs from the Oort cloud and the origin of Jupiter-family comets. MNRAS, 361, 1345–1351 {662}Google Scholar
Emel'yanenko, VV, Asher, DJ, Bailey, ME, 2007, The fundamental role of the Oort cloud in determining the flux of comets through the planetary system. MNRAS, 381, 779–789 {686}CrossRefGoogle Scholar
Emerson, J, Sutherland, W, 2010, The Visible and Infrared Survey Telescope for Astronomy (VISTA): looking back at commissioning. The Messenger, 139, 2–5 {433}Google Scholar
Emery, JP, Burr, DM, Cruikshank, DP, 2011, Near-infrared spectroscopy of Trojan asteroids: evidence for two compositional groups. AJ, 141, 25 {689}CrossRefGoogle Scholar
Emilio, M, Kuhn, JR, Bush, RI, et al., 2012, Measuring the solar radius from space during the 2003 and 2006Mercury transits. ApJ, 750, 135 {657}CrossRefGoogle Scholar
Emsenhuber, A, Jutzi, M, Benz, W, 2018, SPH calculations of Mars-scale collisions: the role of the equation of state, material rheologies, and numerical effects. Icarus, 301, 247–257 {476}CrossRefGoogle Scholar
Encrenaz, T, Bibring, J, Blanc, M, 2004, The Solar System. Springer {703}CrossRefGoogle Scholar
Encrenaz, T, Tinetti, G, Coustenis, A, 2017, Transit spectroscopy of temperate Jupiters with ARIEL: a feasibility study. Exp. Astron. {182}
Encrenaz, T, Tinetti, G, Tessenyi, M, et al., 2015, Transit spectroscopy of exoplanets from space: how to optimise the wavelength coverage and spectral resolving power. Exp. Astron., 40, 523–543 {643}CrossRefGoogle Scholar
Endl, M, Bergmann, C, Hearnshaw, J, et al., 2015, The Mt John University Observatory search for Earth-mass planets in the habitable zone of α Cen. Int. J. Astrobiol., 14, 305–312 {714}CrossRefGoogle Scholar
Endl, M, Brugamyer, EJ, Cochran, WD, et al., 2016, Two new long-period giant planets from the McDonald Observatory planet search and two stars with long-period radial velocity signals related to stellar activity cycles. ApJ, 818, 34 {715, 721}CrossRefGoogle Scholar
Endl, M, Caldwell, DA, Barclay, T, et al., 2014, Kepler–424 b: a lonely hot Jupiter that found a companion. ApJ, 795, 151 {304, 305, 741, 742, 745}CrossRefGoogle Scholar
Endl, M, Cochran, WD, Kürster, M, et al., 2006a, Exploring the frequency of close-in Jovian planets around Mdwarfs. ApJ, 649, 436–443 {57, 393}CrossRefGoogle Scholar
Endl, M, Cochran, WD, Kürster, M, 2008a, New results from the McDonald Observatory and ESO–VLT planet surveys. ASP Conf. Ser., volume 398, 51–58 {46, 58}Google Scholar
Endl, M, Cochran, WD, Tull, RG, et al., 2003, A dedicated M dwarf planet search using the Hobby–Eberly telescope. AJ, 126, 3099–3107 {55, 57}CrossRefGoogle Scholar
Endl, M, Cochran, WD, Wittenmyer, RA, et al., 2006b, Determination of the orbit of the planetary companion to the metal-rich star HD 45350. AJ, 131, 3131–3134 {720}CrossRefGoogle Scholar
Endl, M, Cochran, WD, Wittenmyer, RA, 2008b, An Msini = 24 M⊕ planetary companion to the nearby M dwarf GJ 176. ApJ, 673, 1165–1168 {724}CrossRefGoogle Scholar
Endl, M, Hatzes, AP, Cochran, WD, et al., 2004, HD 137510: an oasis in the brown dwarf desert. ApJ, 611, 1121–1124 {65}CrossRefGoogle Scholar
Endl, M, Kürster, M, 2008, Toward detection of terrestrial planets in the habitable zone of our closest neighbour: Proxima Cen. A&A, 488, 1149–1153 {714}Google Scholar
Endl, M, Kürster, M, Els, S, et al., 2001, The planet search programme at the ESO Coudé echelle spectrometer. II. The α Cen system: limits for planetary companions. A&A, 374, 675–681 {714}Google Scholar
Endl, M, Kürster, M, Els, S, 2002, The planet search programme at the ESO Coudé Echelle spectrometer. III. The complete Long Camera survey results. A&A, 392, 671–690 {55}Google Scholar
Endl, M, Mac Queen, PJ, Cochran, WD, et al., 2011, Kepler–15 b: a hot Jupiter enriched in heavy elements and the first Kepler mission planet confirmedwith the Hobby–Eberly telescope. ApJS, 197, 13 {739}CrossRefGoogle Scholar
Endl, M, Robertson, P, Cochran, WD, et al., 2012, Revisiting ρ1 Cnc e (55 Cnc e): a new mass determination of the transiting super-Earth. ApJ, 759, 19 {60, 728}CrossRefGoogle Scholar
Engdahl, SL, Cuffari, R, 1974, The Planet-Girded Suns: Man's View of other Solar Systems. Atheneum, New York {639}Google Scholar
Engelhardt, T, Jedicke, R, Vereš, P, et al., 2017, An observational upper limit on the interstellar number density of asteroids and comets. AJ, 153, 133 {692}CrossRefGoogle Scholar
Enoch, B, Anderson, DR, Barros, SCC, et al., 2011a, WASP–35 b, WASP–48 b, and HAT–P–30b/WASP–51 b: two new planets and an independent discovery of a HAT planet. AJ, 142, 86–94 {737, 754, 755}CrossRefGoogle Scholar
Enoch, B, Collier Cameron, A, Anderson, DR, et al., 2011b, WASP–25 b: a 0.6 Jupiter-mass planet in the southern hemisphere. MNRAS, 410, 1631–1636 {754}Google Scholar
Enoch, B, Haswell, CA, Norton, AJ, et al., 2012, Transit algorithm performance using real WASP data. A&A, 548, A48 {190}Google Scholar
Enoch, ML, Brown, ME, Burgasser, AJ, 2003, Photometric variability at the L/T dwarf boundary. AJ, 126, 1006–1016 {440}CrossRefGoogle Scholar
Enriquez, JE, Siemion, A, Foster, G, et al., 2017, The Breakthrough Listen search for intelligent life: 1.1–1.9GHz observations of 692 nearby stars. ApJ, 849, 104 {645}CrossRefGoogle Scholar
Enriquez, JE, Siemion, A, Lazio, TJW, et al., 2018, Breakthrough Listen observations of Oumuamua with the GBT. RNAAS, 2, 9 {693}Google Scholar
Enya, K, Abe, L, Takeuchi, S, et al., 2011a, A high dynamic-range instrument for SPICA for coronagraphic observation of exoplanets and monitoring of transiting exo-planets. SPIE Conf. Ser., volume 8146, 282 {182}Google Scholar
Enya, K, Kotani, T, Haze, K, et al., 2011b, The SPICA coronagraphic instrument for the study of exoplanets. Adv. Space Res., 48, 323–333 {182}CrossRefGoogle Scholar
Epchtein, N, 2010, A vision for European astronomy and astrophysics at the Antarctic station Concordia, Dome C. Prepared by Antarctic Research, a European Network for Astrophysics (ARENA) for EC–FP6 contract RICA 026150 {347}
Epchtein, N, Abe, L, Ansorge, W, et al., 2011, A project for an infrared synoptic survey from Antarctica with the Polar Large Telescope (PLT). SF2A-2011: Proceedings of the Annual meeting of the French Society of Astronomy and Astrophysics, 107–110 {347}
Epchtein, N, de Batz, B, Capoani, L, et al., 1997, The deep near-infrared southern sky survey (DENIS). The Messenger, 87, 27–34 {432}Google Scholar
Epstein, CR, Pinsonneault, MH, 2014, How good a clock is rotation? The stellar rotation–mass–age relationship for old field stars. ApJ, 780, 159 {380}CrossRefGoogle Scholar
Epstein, PS, 1924, On the resistance experienced by spheres in their motion through gases. Physical Review, 23, 710–733 {457}CrossRefGoogle Scholar
Ercolano, B, 2014, The dispersal of protoplanetary disks. Astron. Nach., 335, 549 {462}CrossRefGoogle Scholar
Ercolano, B, Clarke, CJ, 2010, Metallicity, planet formation and disk lifetimes. MNRAS, 402, 2735–2743 {462}CrossRefGoogle Scholar
Ercolano, B, Drake, JJ, Raymond, JC, et al., 2008, X-ray-irradiated protoplanetary disk atmospheres. I. Predicted emission-line spectrum and photoevaporation. ApJ, 688, 398-407 {465}CrossRefGoogle Scholar
Ercolano, B, Koepferl, C, 2014, The lifetime of protoplanetary disks: observations and theory. Astrophysics and Space Science Proceedings, 36, 63 {462}CrossRefGoogle Scholar
Ercolano, B, Owen, JE, 2010, Theoretical spectra of photoevaporating protoplanetary disks: an atlas of atomic and low-ionisation emission lines. MNRAS, 406, 1553–1569 {463}Google Scholar
Ercolano, B, Pascucci, I, 2017, The dispersal of planet-forming disks: theory confronts observations. Royal Society Open Science, 4, 170114 {466}CrossRefGoogle Scholar
Ercolano, B, Rosotti, G, 2015, The link between disk dispersal by photoevaporation and the semimajor axis distribution of exoplanets. MNRAS, 450, 3008–3014 {462}CrossRefGoogle Scholar
Ercolano, B, Rosotti, GP, Picogna, G, et al., 2017, A photoevaporative gap in the closest planet-forming disk. MNRAS, 464, L95–L99 {462}CrossRefGoogle Scholar
Erdélyi, R, Ballai, I, 2007, Heating of the solar and stellar coronae: a review. Astron. Nach., 328, 726–733 {423}CrossRefGoogle Scholar
Érdi, B, Dvorak, R, Sándor, Z, et al., 2004, The dynamical structure of the habitable zone in the HD 38529, HD 168443 and HD 169830 systems. MNRAS, 351, 1043–1048 {516, 623, 719, 723}CrossRefGoogle Scholar
Érdi, B, Nagy, I, Sándor, Z, et al., 2007, Secondary resonances of co-orbital motions. MNRAS, 381, 33–40 {76}CrossRefGoogle Scholar
Erdl, H, Schneider, P, 1993, Classification of the multiple deflection two point-mass gravitational lens models and application of catastrophe theory in lensing. A&A, 268, 453–471 {126}Google Scholar
Erikson, A, Santerne, A, Renner, S, et al., 2012, Planetary transit candidates in the CoRoT–SRc01 field. A&A, 539, A14 {191, 217}Google Scholar
Eriksson, LEJ, Mustill, AJ, Johansen, A, 2018, Circularising Planet Nine through dynamical friction with an extended, cold planetesimal belt. MNRAS, 475, 4609–4616 {687}CrossRefGoogle Scholar
Eriksson, U, Lindegren, L, 2007, Limits of ultra-high-precision optical astrometry. Stellar surface structures. A&A, 476, 1389–1400 {85, 187}Google Scholar
Erkaev, NV, Kulikov, YN, Lammer, H, et al., 2007, Roche lobe effects on the atmospheric loss from hot Jupiters. A&A, 472, 329–334 {167, 423, 602, 732, 749, 750}Google Scholar
Erkaev, NV, Lammer, H, Elkins-Tanton, LT, et al., 2014, Escape of the Martian protoat-mosphere and initial water inventory. Planet. Space Sci., 98, 106–119 {658}CrossRefGoogle ScholarPubMed
Erkaev, NV, Lammer, H, Odert, P, et al., 2013, XUV exposed non-hydrostatic hydrogen-rich upper atmospheres of terrestrial planets. I. Atmospheric expansion and thermal escape. Astrobiology, 13, 1011–1029 {601}CrossRefGoogle ScholarPubMed
Erkaev, NV, Lammer, H, Odert, P, 2016, EUV-driven mass-loss of protoplanetary cores with hydrogen-dominated atmospheres: the influences of ionisation and orbital distance. MNRAS, 460, 1300–1309 {601}CrossRefGoogle Scholar
Erkaev, NV, Odert, P, Lammer, H, et al., 2017, Effect of stellar wind induced magnetic fields on planetary obstacles of non-magnetised hot Jupiters. MNRAS, 470, 4330–4336 {422, 732}CrossRefGoogle Scholar
Errmann, R, Minardi, S, Pertsch, T, 2013a, A broad-band scalar vortex coronagraph. MNRAS, 435, 565–569 {337}CrossRefGoogle Scholar
Errmann, R, Neuhäuser, R, Marschall, L, et al., 2013b, The stellar content of the young open cluster Trumpler 37. Astron. Nach., 334, 673–681 {158}CrossRefGoogle Scholar
Errmann, R, Raetz, S, Kitze, M, et al., 2014a, The search for transiting planets using the YETI network. Contributions of the Astronomical Observatory Skalnate Pleso, 43, 513–517 {158}Google Scholar
Errmann, R, Torres, G, Schmidt, TOB, et al., 2014b, Investigation of a transiting planet candidate in Trumpler 37: an astrophysical false positive eclipsing spectroscopic binary star. Astron. Nach., 335, 345 {158}CrossRefGoogle Scholar
Erskine, DJ, 2003, An externally dispersed interferometer prototype for sensitive radial velocimetry: theory and demonstration on sunlight. PASP, 115, 255–269 {49}CrossRefGoogle Scholar
Erskine, DJ, Edelstein, J, Feuerstein, WM, et al., 2003, High-resolution broad-band spectroscopy using an externally dispersed interferometer. ApJ, 592, L103–L106 {49}CrossRefGoogle Scholar
Erskine, DJ, Edelstein, J, Sirk, M, et al., 2014, High-resolution broad-band spectroscopy in the near-infrared using the Triplespec externally dispersed interferometer at the Hale telescope. Ground-based and Airborne Instrumentation for Astronomy V, volume 9147 of Proc. SPIE, 914717 {50}Google Scholar
Erskine, DJ, Ge, J, 2000, A novel interferometer spectrometer for sensitive stellar radial velocimetry. Imaging the Universe in Three Dimensions, volume 195, 501–507 {49}Google Scholar
Erskine, DJ, Linder, E, Wishnow, E, et al., 2016, Dramatic robustness of a multiple delay dispersed interferometer to spectrograph errors: how mixing delays reduces or cancels wavelength drift. Ground-based and Airborne Instrumentation for Astronomy VI, volume 9908 of Proc. SPIE, 99085Y {49}Google Scholar
Ertel, S, Absil, O, Defrère, D, et al., 2014, A near-infrared interferometric survey of debris-disk stars. IV. An unbiased sample of 92 southern stars observed in H band with VLTI–PIONIER. A&A, 570, A128 {183, 348, 492}Google Scholar
Ertel, S, Defrère, D, Absil, O, et al., 2016, A near-infrared interferometric survey of debris disk stars. V. PIONIER search for variability. A&A, 595, A44 {348, 492}Google Scholar
Ertel, S, Defrère, D, Hinz, P, et al., 2018, The HOSTS survey: exozodiacal dustmeasure-ments for 30 stars. AJ, 155, 194 {342, 343}CrossRefGoogle Scholar
Ertel, S, Wolf, S, Marshall, JP, et al., 2012a, A peculiar class of debris disks from Herschel–DUNES: a steep fall off in the far infrared. A&A, 541, A148 {493}Google Scholar
Ertel, S, Wolf, S, Rodmann, J, 2012b, Observing planet-disk interaction in debris disks. A&A, 544, A61 {492}Google Scholar
Escobar, ME, Théado, S, Vauclair, S, et al., 2012, Precise modeling of the exoplanet host star and CoRoT main target HD 52265. A&A, 543, A96 {411, 720}Google Scholar
Escribano, R, Frère, JM, Monderen, D, et al., 2001, Insights on neutrino lensing. Physics Letters B, 512, 8–17 {137}CrossRefGoogle Scholar
Eshleman, VR, 1979, Gravitational lens of the Sun: its potential for observations and communications over interstellar distances. Science, 205, 1133–1135 {137, 646}CrossRefGoogle ScholarPubMed
Eshleman, VR, 1986, Radar glory from buried craters on icy moons. Science, 234, 587–590 {356}CrossRefGoogle ScholarPubMed
Espaillat, C, Calvet, N, D'Alessio, P, et al., 2007, On the diversity of the Taurus transition disks: UX Tau A and LkCa 15. ApJ, 670, L135–L138 {465}CrossRefGoogle Scholar
Espaillat, C, Calvet, N, Luhman, KL, et al., 2008, Confirmation of a gapped primordial disk around LkCa 15. ApJ, 682, L125 {465}CrossRefGoogle Scholar
Espaillat, C, D'Alessio, P, Hernández, J, et al., 2010, Unveiling the structure of pre-transition disks. ApJ, 717, 441–457 {465}CrossRefGoogle Scholar
Espaillat, C, Furlan, E, D'Alessio, P, et al., 2011, A Spitzer–IRS study of infrared variability in transition and pre-transition disks of T Tauri stars. ApJ, 728, 49 {465}CrossRefGoogle Scholar
Espaillat, C, Muzerolle, J, Najita, J, et al., 2014, An observational perspective of transition disks. Protostars and Planets VI, 497–520 {464, 465, 466}
Espinoza, N, Bayliss, D, Hartman, JD, et al., 2016a, HATS–25 b through HATS–30 b: a half-dozen new inflated transiting hot Jupiters from the HAT–South survey. AJ, 152, 108 {737}CrossRefGoogle Scholar
Espinoza, N, Brahm, R, Jordán, A, et al., 2016b, Discovery and validation of a high-density sub-Neptune from the K2 mission. ApJ, 830, 43 {748}CrossRefGoogle Scholar
Espinoza, N, Fortney, JJ, Miguel, Y, et al., 2017a, Metal enrichment leads to low atmospheric C/O ratios in transiting giant exoplanets. ApJ, 838, L9 {582}CrossRefGoogle Scholar
Espinoza, N, Jordán, A, 2015, Limb darkening and exoplanets: testing stellar model atmospheres and identifying biases in transit parameters. MNRAS, 450, 1879–1899 {211}CrossRefGoogle Scholar
Espinoza, N, Jordán, A, 2016, Limb darkening and exoplanets. II. Choosing the best law for optimal retrieval of transit parameters. MNRAS, 457, 3573–3581 {211}CrossRefGoogle Scholar
Espinoza, N, Rabus, M, Brahm, R, et al., 2017b, K2–113: a dense hot-Jupiter transiting a solar analogue. MNRAS, 471, 4374–4380 {749}CrossRefGoogle Scholar
Esplin, TL, Luhman, KL, 2017, A survey for planetary-mass brown dwarfs in the Taurus and Perseus star-forming regions. AJ, 154, 134 {434}CrossRefGoogle Scholar
Esplin, TL, Luhman, KL, Cushing, MC, et al., 2016, Photometric monitoring of the coldest known brown dwarf with Spitzer. ApJ, 832, 58 {433}CrossRefGoogle Scholar
Esplin, TL, Luhman, KL, Faherty, JK, et al., 2017, A survey for planetary-mass brown dwarfs in the Chamaeleon I star-forming region. AJ, 154, 46 {446}CrossRefGoogle Scholar
Esposito, L, 2002, Planetary rings. Rep. Prog. Phys., 65, 1741–1783 {690, 691}CrossRefGoogle Scholar
Esposito, L, 2006, Planetary rings: structure and history. European Planetary Science Congress, 196–197 {690}
Esposito, M, Covino, E, Desidera, S, et al., 2017, The GAPS Programme with HARPS–N at TNG. XIII. The orbital obliquity of three close-in massive planets hosted by dwarf K-type stars: WASP–43, HAT–P–20 and Qatar–2. A&A, 601, A53 {253, 736, 750, 755}Google Scholar
Esposito, M, Covino, E, Mancini, L, et al., 2014a, The GAPS Programme with HARPS–N at TNG. III. The retrograde orbit of HAT–P–18 b. A&A, 564, L13 {736}Google Scholar
Esposito, S, Mesa, D, Skemer, A, et al., 2013, LBT observations of the HR 8799 planetary system: first detection of HR 8799 e in H band. A&A, 549, A52 {365, 366, 763}Google Scholar
Esposito, TM, Fitzgerald, MP, Graham, JR, et al., 2014b, Modeling self-subtraction in angular differential imaging: application to the HD 32297 debris disk. ApJ, 780, 25 {340}CrossRefGoogle Scholar
Essick, R, Weinberg, NN, 2016, Orbital decay of hot Jupiters due to nonlinear tidal dissipation within Solar-type hosts. ApJ, 816, 18 {231, 733, 737, 754}CrossRefGoogle Scholar
Esteves, LJ, DeMooij, EJW, Jayawardhana, R, 2013, Optical phase curves of Kepler exo-planets. ApJ, 772, 51 {12, 163, 238, 240, 242, 300, 301, 615, 735, 738, 739, 742, 751}CrossRefGoogle Scholar
Esteves, LJ, DeMooij, EJW, Jayawardhana, R, 2015, Changing phases of alien worlds: probing atmospheres of Kepler planets with high-precision photometry. ApJ, 804, 150 {590, 735, 738, 739, 741, 742, 745, 751}CrossRefGoogle Scholar
Esteves, LJ, de Mooij, EJW, Jayawardhana, R, et al., 2017, A search for water in a super-Earth atmosphere: high-resolution optical spectroscopy of 55 Cnc e. AJ, 153, 268 {728}CrossRefGoogle Scholar
Estrada, PR, Cuzzi, JN, Morgan, DA, 2016, Global modeling of nebulae with particle growth, drift, and evaporation fronts. I. Methodology and typical results. ApJ, 818, 200 {458}CrossRefGoogle Scholar
Estrada, PR, Mosqueira, I, 2006, A gas-poor planetesimal capture model for the formation of giant planet satellite systems. Icarus, 181, 486–509 {688}CrossRefGoogle Scholar
Estrela, R, Valio, A, 2016, Stellar magnetic cycles in the solar-like stars Kepler–17 and Kepler–63. ApJ, 831, 57 {739, 742}CrossRefGoogle Scholar
Etchegaray, MI, 1987, Preliminary scientific rationale for a voyage to a thousand astronomical units. NASA STI/Recon Technical Report N, 87, 28490 {138}Google Scholar
Etzel, PB, 1993, Current status of the EBOP code. IAU Commission on Close Binary Stars, 21, 113–124 {201}Google Scholar
Evans, B, 2008, NASA's Voyager Missions: Exploring the Outer Solar System and Beyond. Springer Praxis {658}Google Scholar
Evans, DF, Southworth, J, Maxted, PFL, et al., 2016a, High-resolution Imaging of Transiting Extrasolar Planetary systems (HITEP). I. Lucky imaging observations of 101 systems in the southern hemisphere. A&A, 589, A58 {333}Google Scholar
Evans, DF, Southworth, J, Smalley, B, 2016b, WASP–20 is a close visual binary with a transiting hot Jupiter. ApJ, 833, L19 {754}CrossRefGoogle Scholar
Evans, DS, 1968, Stars of higher multiplicity. QJRAS, 9, 388 {548}Google Scholar
Evans, DW, Riello, M, De Angeli, F, et al., 2017, Gaia Data Release 1. Validation of the photometry. A&A, 600, A51 {99}Google Scholar
Evans, NW, Tabachnik, S, 1999, Possible long-lived asteroid belts in the inner solar system. Nature, 399, 41–43 {694}CrossRefGoogle Scholar
Evans, NW, Tabachnik, SA, 2002, Structure of possible long-lived asteroid belts. MNRAS, 333, L1–L5 {317}CrossRefGoogle Scholar
Evans, TM, Ireland, MJ, Kraus, AL, et al., 2012, Mapping the shores of the brown dwarf desert. III. Young moving groups. ApJ, 744, 120 {65, 358}CrossRefGoogle Scholar
Evans, TM, Pont, F, Sing, DK, et al., 2013, The deep blue colour of HD 189733 b: albedo measurements with HST–STIS at visible wavelengths. ApJ, 772, L16 {246, 730}CrossRefGoogle Scholar
Evans, TM, Sackett, PD, 2010, An a priori investigation of astrophysical false positives in ground-based transiting planet surveys. ApJ, 712, 38–51 {196}CrossRefGoogle Scholar
Evans, TM, Sing, DK, Wakeford, HR, et al., 2016c, Detection of H2O and evidence for TiO/VO in an ultra-hot exoplanet atmosphere. ApJ, 822, L4 {590, 757}CrossRefGoogle Scholar
Evatt, GW, Coughlan, MJ, Joy, KH, et al., 2016, A potential hidden layer of meteorites below the ice surface of Antarctica. Nature Communications, 7, 10679 {672}CrossRefGoogle ScholarPubMed
Everett, ME, Barclay, T, Ciardi, DR, et al., 2015, High-resolution multi-band imaging for validation and characterisation of small Kepler planets. AJ, 149, 55 {197, 745}CrossRefGoogle Scholar
Everett, ME, Howell, SB, 2001, A technique for ultrahigh-precision CCD photometry. PASP, 113, 1428–1435 {156}CrossRefGoogle Scholar
Everett, ME, Howell, SB, Kinemuchi, K, 2012, A UBV photometric survey of the Kepler field. PASP, 124, 316–322 {176}CrossRefGoogle Scholar
Everett, ME, Howell, SB, Silva, DR, et al., 2013, Spectroscopy of faint Kepler mission exoplanet candidate host stars. ApJ, 771, 107 {308, 390}CrossRefGoogle Scholar
Everhart, E, 1968, Change in total energy of comets passing through the solar system. AJ, 73, 1039 {661}CrossRefGoogle Scholar
Everhart, E, 1973, Examination of several ideas of comet origins. AJ, 78, 329 {694}CrossRefGoogle Scholar
Eyer, L, Mignard, F, 2005, Rate of correct detection of periodic signal with the Gaia satellite. MNRAS, 361, 1136–1144 {186}CrossRefGoogle Scholar
Faber, JA, Rasio, FA, Willems, B, 2005, Tidal interactions and disruptions of giant planets on highly eccentric orbits. Icarus, 175, 248–262 {230}CrossRefGoogle Scholar
Faber, P, Quillen, AC, 2007, The total number of giant planets in debris disks with central clearings. MNRAS, 382, 1823–1828 {493}CrossRefGoogle Scholar
Fabrycky, DC, 2008, Radiative thrusters on close-in extrasolar planets. ApJ, 677, L117–L120 {261}CrossRefGoogle Scholar
Fabrycky, DC, Ford, EB, Steffen, JH, et al., 2012, Transit timing observations from Kepler. IV. Confirmation of four multiple-planet systems by simple physical models. ApJ, 750, 114 {11, 213, 270, 271, 740}CrossRefGoogle Scholar
Fabrycky, DC, Holman, MJ, Carter, JA, et al., 2011, KOI–730 as a system of four planets in a chain of resonances. AAS Abstracts, 2, 304 {11, 179, 321, 744}Google Scholar
Fabrycky, DC, Johnson, ET, Goodman, J, 2007, Cassini states with dissipation: why obliquity tides cannot inflate hot Jupiters. ApJ, 665, 754–766 {303}CrossRefGoogle Scholar
Fabrycky, DC, Lissauer, JJ, Ragozzine, D, et al., 2014, Architecture of Kepler's multi-transiting systems. II. New investigations with twice as many candidates. ApJ, 790, 146 {198, 199, 271, 313, 315, 316, 317, 319, 320, 323, 501, 508}CrossRefGoogle Scholar
Fabrycky, DC, Murray-Clay, RA, 2010, Stability of the directly imaged multi-planet sys-tem HR 8799: resonance and masses. ApJ, 710, 1408–1421 {365, 526, 763}CrossRefGoogle Scholar
Fabrycky, DC, Tremaine, S, 2007, Shrinking binary and planetary orbits by Kozai cycles with tidal friction. ApJ, 669, 1298–1315 {80, 254, 311, 527, 528, 529, 530, 531, 553}CrossRefGoogle Scholar
Fabrycky, DC, Winn, JN, 2009, Exoplanetary spin–orbit alignment: results from the ensemble of Rossiter–McLaughlin observations. ApJ, 696, 1230–1240 {249, 254}CrossRefGoogle Scholar
Facchini, S, Clarke, CJ, Bisbas, TG, 2016, External photoevaporation of protoplanetary disks in sparse stellar groups: the impact of dust growth. MNRAS, 457, 3593–3610 {462}CrossRefGoogle Scholar
Facchini, S, Lodato, G, Price, DJ, 2013, Wave-like warp propagation in circumbinary disks. I. Analytic theory and numerical simulations. MNRAS, 433, 2142–2156 {551}CrossRefGoogle Scholar
Faedi, F, Barros, SCC, Anderson, DR, et al., 2011a, WASP–39 b: a highly inflated Saturn-mass planet orbiting a late G-type star. A&A, 531, A40 {755}Google Scholar
Faedi, F, Pollacco, D, Barros, SCC, et al., 2013a, WASP–54 b, WASP–56 b and WASP–57 b: three new sub-Jupiter mass planets from Super WASP. A&A, 551, A73 {755}Google Scholar
Faedi, F, Staley, T, Gómez Maqueo Chew Y, et al., 2013b, Lucky imaging of transiting planet host stars with Lucky Cam. MNRAS, 433, 2097–2106 {333, 733, 735, 736, 750, 751}CrossRefGoogle Scholar
Faedi, F, West, RG, Burleigh, MR, et al., 2011b, Detection limits for close eclipsing and transiting substellar and planetary companions towhite dwarfs in the WASP survey. MNRAS, 410, 899–911 {153, 160, 233}CrossRefGoogle Scholar
Faherty, JK, Burgasser, AJ, Walter, FM, et al., 2012, The brown dwarf kinematics project (BDKP). III. Parallaxes for 70 ultracool dwarfs. ApJ, 752, 56 {434, 437}CrossRefGoogle Scholar
Faherty, JK, Riedel, AR, Cruz, KL, et al., 2016, Population properties of brown dwarf analogues to exoplanets. ApJS, 225, 10 {435}CrossRefGoogle Scholar
Faigler, S, Mazeh, T, 2011, Photometric detection of non-transiting short-period low-mass companions through the beaming, ellipsoidal and reflection effects in Kepler and CoRoT light curves. MNRAS, 415, 3921–3928 {238, 239, 241}CrossRefGoogle Scholar
Faigler, S, Mazeh, T, 2015, BEER analysis of Kepler and CoRoT light curves. II. Evidence for superrot-ation in the phase curves of three Kepler hot Jupiters. ApJ, 800, 73 {615, 735, 739, 742, 751}CrossRefGoogle Scholar
Faigler, S, Mazeh, T, Quinn, SN, et al., 2012, Seven newbinaries discovered in the Kepler light curves through the BEER method confirmed by radial velocity. ApJ, 746, 185 {239}CrossRefGoogle Scholar
Faigler, S, Tal-Or, L, Mazeh, T, et al., 2013, BEER analysis of Kepler and CoRoT light curves. I. Discovery of Kepler–76 b: a hot Jupiter with evidence for superrotation. ApJ, 771, 26 {6, 12, 198, 238, 242, 615, 742}CrossRefGoogle Scholar
Fairbridge, RW, Shirley, JH, 1987, Prolonged minima and the 179-yr cycle of the solar inertialmotion. Sol. Phys., 110, 191–210 {87, 656}CrossRefGoogle Scholar
Fairén, AG, Parro, V, Schulze-Makuch, D, et al., 2017, Searching for life on Mars before it is too late. Astrobiology, 17, 962–970 {636}CrossRefGoogle ScholarPubMed
Falkowski, PG, 2005, Tracing oxygen's imprint on Earth'smetabolic evolution. Science, 311, 1724–1725 {674}Google Scholar
Falkowski, PG, Katz, ME, Milligan, AJ, et al., 2005, The rise of O2 over the past 205Myr and the evolution of large placental mammals. Science, 309, 2202–2204 {674}CrossRefGoogle Scholar
Fan, S, Batygin, K, 2017, Simulations of the solar system's early dynamical evolution with a self-gravitating planetesimal disk. ApJ, 851, L37 {697}CrossRefGoogle Scholar
Fang, J, Margot, JL, 2012a, Architecture of planetary systems based on Kepler data: number of planets and coplanarity. ApJ, 761, 92 {323, 501}CrossRefGoogle Scholar
Fang, J, Margot, JL, 2012b, Predicting planets in Kepler multi-planet systems. ApJ, 751, 23 {317, 739, 741, 743, 745, 746}CrossRefGoogle Scholar
Fang, J, Margot, JL, 2012c, The role of Kozai cycles in near-Earth binary asteroids. AJ, 143, 59 {529}CrossRefGoogle Scholar
Fang, J, Margot, JL, 2013, Are planetary systems filled to capacity? A study based on Kepler results. ApJ, 767, 115 {317, 501}CrossRefGoogle Scholar
Fang, M, van Boekel, R, Wang, W, et al., 2009, Star and protoplanetary disk properties in Orion's suburbs. A&A, 504, 461–489 {444, 465}Google Scholar
Fang, N, Lee, H, Sun, C, et al., 2005, Sub-diffraction-limited optical imaging with a silver superlens. Science, 308, 534–537 {357}CrossRefGoogle ScholarPubMed
Faramaz, V, Beust, H, Augereau, JC, et al., 2015, Insights on the dynamical history of the Fomalhaut system: investigating the Fomalhaut c hypothesis. A&A, 573, A87 {497, 761}Google Scholar
Faramaz, V, Beust, H, Thébault, P, et al., 2014, Can eccentric debris disks be long-lived? A first numerical investigation and application to ξ2 Ret. A&A, 563, A72 {495}Google Scholar
Faramaz, V, Ertel, S, Booth, M, et al., 2017, Inner mean-motion resonances with eccentric planets: a possible origin for exozodiacal dust clouds. MNRAS, 465, 2352–2365 {497}CrossRefGoogle Scholar
Fares, R, Bourrier, V, Vidotto, AA, et al., 2017, MOVES. I. The evolving magnetic field of the planet-hosting star HD 189733. MNRAS, 471, 1246–1257 {731}CrossRefGoogle Scholar
Fares, R, Donati, J, Moutou, C, et al., 2009, Magnetic cycles of the planet-hosting star τ Boo. II. A second magnetic polarity reversal. MNRAS, 398, 1383–1391 {421, 422, 714}CrossRefGoogle Scholar
Fares, R, Donati, JF, Moutou, C, et al., 2010, Searching for star–planet interactions within themagnetosphere of HD 189733. MNRAS, 406, 409–419 {387, 730}CrossRefGoogle Scholar
Fares, R, Donati, JF, Moutou, C, 2012, Magnetic field, differential rotation and activity of the hot-Jupiter-hosting star HD 179949. MNRAS, 423, 1006–1017 {387, 723}CrossRefGoogle Scholar
Fares, R, Moutou, C, Donati, JF, et al., 2013, A small survey of the magnetic fields of planet-host stars. MNRAS, 435, 1451–1462 {387, 421, 714, 720, 721, 722, 723, 734, 735, 757}CrossRefGoogle Scholar
Faria, JP, Haywood, RD, Brewer, BJ, et al., 2016a, Uncovering the planets and stellar activity of CoRoT–7 using only radial velocities. A&A, 588, A31 {23, 24, 37, 734}Google Scholar
Faria, JP, Santos, NC, Figueira, P, et al., 2016b, The HARPS search for southern extrasolar planets. XL. Searching for Neptunes around metal-poor stars. A&A, 589, A25 {60}Google Scholar
Farihi, J, 2016, Circumstellar debris and pollution at white dwarf stars. New Astron. Rev., 71, 9–34 {416}CrossRefGoogle Scholar
Farihi, J, Barstow, MA, Redfield, S, et al., 2010a, Rocky planetesimals as the origin of metals in DZ stars. MNRAS, 404, 2123 {416, 417, 418, 419}Google Scholar
Farihi, J, Becklin, EE, Zuckerman, B, 2008, Spitzer–IRAC observations of white dwarfs. II. Massive planetary and cold brown dwarf companions to young and old degenerates. ApJ, 681, 1470-1483 {418}CrossRefGoogle Scholar
Farihi, J, Bond, HE, Dufour, P, et al., 2013a, Orbital and evolutionary constraints on the planet hosting binary GJ 86 from HST. MNRAS, 430, 652–660 {716}CrossRefGoogle Scholar
Farihi, J, Brinkworth, CS, Gänsicke, BT, et al., 2011a, Possible signs of water and differentiation in a rocky exoplanetary body. ApJ, 728, L8 {417}CrossRefGoogle Scholar
Farihi, J, Burleigh, MR, Holberg, JB, et al., 2011b, Evolutionary constraints on the planet-hosting subgiant yatt MC, et al., 2005, Structure in the Ret from its white dwarf companion. MNRAS, 417, 1735–1741 {719}Google Scholar
Farihi, J, Dufour, P, Napiwotzki, R, et al., 2011c, The magnetic and metallic degenerate G77–50. MNRAS, 413, 2559–2569 {417}CrossRefGoogle Scholar
Farihi, J, Fossati, L, Wheatley, PJ, et al., 2018, Magnetism, X-rays and accretion rates in WD 1145+017 and other polluted white dwarf systems. MNRAS, 474, 947–960 {418}CrossRefGoogle Scholar
Farihi, J, Gänsicke, BT, Koester, D, 2013b, Evidence for water in the rocky debris of a disrupted extrasolar minor planet. Science, 342, 218–220 {417, 419}CrossRefGoogle Scholar
Farihi, J, Gänsicke, BT, Koester, D, 2013c, Evidence of rocky planetesimals orbiting two Hyades stars. MNRAS, 432, 1955–1960 {418}CrossRefGoogle Scholar
Farihi, J, Gänsicke, BT, Steele, PR, et al., 2012a, A trio of metal-rich dust and gas disks found orbiting candidate white dwarfs with K-band excess. MNRAS, 421, 1635–1643 {416}CrossRefGoogle Scholar
Farihi, J, Gänsicke, BT, Wyatt, MC, et al., 2012b, Scars of intense accretion episodes at metal-rich white dwarfs. MNRAS, 424, 464–471 {416, 417}CrossRefGoogle Scholar
Farihi, J, Jura, M, Lee, JE, et al., 2010b, Strengthening the case for asteroidal accretion: evidence for subtle and diverse disks at white dwarfs. ApJ, 714, 1386–1397 {416}CrossRefGoogle Scholar
Farihi, J, Jura, M, Zuckerman, B, 2009, Infrared signatures of disrupted minor planets at white dwarfs. ApJ, 694, 805–819 {416}CrossRefGoogle Scholar
Farihi, J, Koester, D, Zuckerman, B, et al., 2016, Solar abundances of rock-forming elements, extreme oxygen and hydrogen in a young polluted white dwarf. MNRAS, 463, 3186–3192 {419}CrossRefGoogle Scholar
Farihi, J, Subasavage, JP, Nelan, EP, et al., 2012c, Precision astrometry of the exoplanet host candidate GD 66. MNRAS, 424, 519–523 {93, 111}CrossRefGoogle Scholar
Farinella, P, Froeschle, C, Froeschle, C, et al., 1994, Asteroids falling onto the Sun. Nature, 371, 315–317 {509}CrossRefGoogle Scholar
Farmer, AJ, Goldreich, P, 2006, Understanding the behaviour of Prometheus and Pandora. Icarus, 180, 403–411 {318}CrossRefGoogle Scholar
Farmer, R, Kolb, U, Norton, AJ, 2013, The true stellar parameters of the Kepler target list. MNRAS, 433, 1133–1145 {390}CrossRefGoogle Scholar
Farquhar, J, Bao, H, Thiemens, M, 2000, Atmospheric influence of Earth's earliest sul-phur cycle. Science, 289, 756–759 {674}CrossRefGoogle ScholarPubMed
Farquhar, J, Savarino, J, Airieau, S, et al., 2001, Observation of wavelength-sensitive mass-independent sulphur isotope effects during SO2 photolysis: implications for the early atmosphere. J. Geophys. Res., 106, 32829–32840 {674}CrossRefGoogle Scholar
Farrell, WM, Lazio, TJW, Desch, MD, et al., 2004a, Radio emission from extrasolar planets. Bioastronomy 2002: Life Among the Stars, volume 213 of IAU Symp., 73–76 {424, 722}Google Scholar
Farrell, WM, Lazio, TJW, Zarka, P, et al., 2004b, The radio search for extrasolar planets with LOFAR. Planet. Space Sci., 52, 1469–1478 {425, 426}CrossRefGoogle Scholar
Fassett, CI, 2016, Analysis of impact crater populations and the geochronology of planetary surfaces in the inner solar system. J. Geophys. Res. (Planets), 121, 1900–1926 {671}Google Scholar
Fatuzzo, M, Adams, FC, Gauvin, R, et al., 2006, A statistical stability analysis of Earth-like planetary orbits in binary systems. PASP, 118, 1510–1527 {549, 623}CrossRefGoogle Scholar
Fauchez, T, Rossi, L, Stam, DM, 2017, The O2 A-band in the fluxes and polarisation of starlight reflected by Earth-like exoplanets. ApJ, 842, 41 {246}CrossRefGoogle Scholar
Faure, J, Fromang, S, Latter, H, et al., 2015, Vortex cycles at the inner edges of dead zones in protoplanetary disks. A&A, 573, A132 {459}Google Scholar
Faure, J, Nelson, RP, 2016, Planet filtering at the inner edges of dead zones in proto-planetary disks. A&A, 586, A105 {459}Google Scholar
Faurobert, M, Arnaud, J, 2003, Centre-to-limb variation of scattering polarisation in molecular solar lines: observations andmodeling. A&A, 412, 555–565 {244}Google Scholar
Faurobert, M, Arnaud, J, Vigneau, J, et al., 2001, Investigation of weak solar magnetic fields: new observational results for the Sr I 460.7nm linear polarisation and radiative transfer modeling. A&A, 378, 627–634 {244}Google Scholar
Favata, F, 2004, The Eddington baseline mission. Stellar Structure and Habitable Planet Finding, volume 538 of ESA SP, 3–11 {180}Google Scholar
Feast, MW, Whitelock, PA, 1997, Galactic kinematics of Cepheids from Hipparcos proper motions. MNRAS, 291, 683–693 {702}CrossRefGoogle Scholar
Fedele, D, Carney, M, Hogerheijde, MR, et al., 2017, ALMA unveils rings and gaps in the protoplanetary system HD 169142: signatures of two giant protoplanets. A&A, 600, A72 {467}Google Scholar
Feger, T, Bacigalupo, C, Bedding, TR, et al., 2014, RHEA: the ultra-compact repli-cable high-resolution exoplanet and asteroseismology spectrograph. Ground-based and Airborne Instrumentation for Astronomy V, volume 9147 of Proc. SPIE, 91477I {34, 46}Google Scholar
Feger, T, Ireland, MJ, Schwab, C, et al., 2016, Attaining ms-1 level intrinsic Doppler precision with RHEA, a low-cost single-mode spectrograph. Exp. Astron., 42, 285–300 {46}CrossRefGoogle Scholar
Fegley, B, 2000, Kinetics of gas-grain reactions in the solar nebula. Space Sci. Rev., 92, 177–200 {562, 563}CrossRefGoogle Scholar
Fegley, B, Lewis, JS, 1980, Volatile element chemistry in the solar nebula: Na, K, F, Cl, Br, and P. Icarus, 41, 439–455 {562}CrossRefGoogle Scholar
Fegley, B, Lodders, K, 1994, Chemical models of the deep atmospheres of Jupiter and Saturn. Icarus, 110, 117–154 {436, 562, 578, 582, 586}CrossRefGoogle Scholar
Fegley, B, Lodders, K, 1996, Atmospheric chemistry of the brown dwarf GJ 229 B: thermochemical equi-libriumpredictions. ApJ, 472, L37–41 {582}CrossRefGoogle Scholar
Fegley, B, Palme, H, 1985, Evidence for oxidising conditions in the solar nebula from Mo and Wdepletions in refractory inclusions in carbonaceous chondrites. Earth Planet. Sci. Lett., 72, 311–326 {562}CrossRefGoogle Scholar
Fegley, B, Prinn, RG, Hartman, H, et al., 1986, Chemical effects of large impacts on the Earth's primitive atmosphere. Nature, 319, 305–308 {673}CrossRefGoogle ScholarPubMed
Fei, Y, Mao, H, Hemley, RJ, 1993, Thermal expansivity, bulk modulus, and melting curve of H2O-ice VII to 20GPa. J. Chem. Phys., 99, 5369–5373 {569}CrossRefGoogle Scholar
Feigelson, ED, Montmerle, T, 1999, High-energy processes in young stellar objects. ARA&A, 37, 363–408 {653}Google Scholar
Fekel, FC Jr, 1981, The properties of close multiple stars. ApJ, 246, 879–898 {547}CrossRefGoogle Scholar
Feldmeier, JJ, Howell, SB, Sherry, W, et al., 2011, The Burrell–Optical–Kepler–Survey (BOKS). I. Survey description and initial results. AJ, 142, 2 {169, 176}CrossRefGoogle Scholar
Feldt, M, Olofsson, J, Boccaletti, A, et al., 2017, SPHERE/SHINE reveals concentric rings in the debris disk of HIP 73145. A&A, 601, A7 {360, 493}Google Scholar
Fellgett, P, 1955, A proposal for a radial velocity photometer. Optica Acta, 2, 9–16 {29}CrossRefGoogle Scholar
Fendyke, SM, Nelson, RP, 2014, On the corotation torque for low-mass eccentric planets. MNRAS, 437, 96–107 {518, 519}CrossRefGoogle Scholar
Feng, F, Bailer-Jones, CAL, 2014, Exploring the role of the Sun's motion in terrestrial comet impacts. MNRAS, 442, 3653–3673 {654, 655}CrossRefGoogle Scholar
Feng, F, Bailer-Jones, CAL, 2015, Finding the imprints of stellar encounters in long-period comets. MNRAS, 454, 3267–3276 {655}CrossRefGoogle Scholar
Feng, F, Jones, HRA, 2018a, Oumuamua as a messenger from the Local Association. ApJ, 852, L27 {693}CrossRefGoogle Scholar
Feng, F, Jones, HRA, 2018b, Understanding Fomalhaut as a Cooper pair. MNRAS, 474, 4412–4420 {761}CrossRefGoogle Scholar
Feng, F, Tuomi, M, Jones, HRA, 2017a, Agatha: disentangling periodic signals from correlated noise in a periodogram framework. MNRAS, 470, 4794–4814 {21, 719, 723, 734}CrossRefGoogle Scholar
Feng, F, Tuomi, M, Jones, HRA, 2017b, Evidence for at least three planet candidates orbiting HD 20794. A&A, 605, A103 {719}Google Scholar
Feng, F, Tuomi, M, Jones, HRA, et al., 2016a, A Goldilocks principle for modelling radial velocity noise. MNRAS, 461, 2440–2452 {24}CrossRefGoogle Scholar
Feng, F, Tuomi, M, Jones, HRA, 2017c, Colour difference makes a difference: four planet candidates around τ Cet. AJ, 154, 135 {714}CrossRefGoogle Scholar
Feng, YK, Line, MR, Fortney, JJ, et al., 2016b, The impact of non-uniformthermal structure on the interpretation of exoplanet emission spectra. ApJ, 829, 52 {591, 755}CrossRefGoogle Scholar
Feng, YK, Wright, JT, Nelson, B, et al., 2015, The California Planet Survey. IV. A planet orbiting the giant star HD145934 and updates to seven systems with long-period planets. ApJ, 800, 22 {717, 719, 720, 722, 723, 724}CrossRefGoogle Scholar
Ferlet, R, Vidal-Madjar, A, Hobbs, LM, 1987, The fl Pic circumstellar disk. V. Time variations of the Ca II K line. A&A, 185, 267–270 {282}Google Scholar
Fernandes, J, Santos, NC, 2004, Detailed theoretical models for extrasolar planet-host stars: the red stragglers HD 37124 and HD 46375. A&A, 427, 607–612 {719, 720}Google Scholar
Fernández, JA, 1997, The formation of the Oort cloud and the primitive Galactic environment. Icarus, 129, 106–119 {651}CrossRefGoogle Scholar
Fernández, JA, Ip, W, 1984, Some dynamical aspects of the accretion of Uranus and Neptune: the exchange of orbital angularmomentum with planetesimals. Icarus, 58, 109–120 {695}CrossRefGoogle Scholar
Fernandez, JM, Holman, MJ, Winn, JN, et al., 2009, The Transit Light Curve Project. XII. Six transits of the exoplanet XO–2 b. AJ, 137, 4911–4916 {184, 757}CrossRefGoogle Scholar
Fernández, M, Comerón, F, 2001, Intense accretion and mass loss of a very low mass young stellar object. A&A, 380, 264–276 {444}Google Scholar
Fernández, YR, Sheppard, SS, Jewitt, DC, 2003, The albedo distribution of Jovian Trojan asteroids. AJ, 126, 1563–1574 {273}Google Scholar
Feroz, F, Balan, ST, Hobson, MP, 2011a, Bayesian evidence for two companions orbiting HIP 5158. MNRAS, 416, L104–L108 {23, 724}CrossRefGoogle Scholar
Feroz, F, Balan, ST, Hobson, MP, 2011b, Detecting extrasolar planets from stellar radial velocities using Bayesian evidence. MNRAS, 415, 3462–3472 {23, 24, 716, 718, 719}CrossRefGoogle Scholar
Feroz, F, Gair, JR, Hobson, MP, et al., 2009a, Use of the MULTINEST algorithm for gravitational wave data analysis. Classical and Quantum Gravity, 26(21), 215003 {23}CrossRefGoogle Scholar
Feroz, F, Hobson, MP, 2008, Multimodal nested sampling: an efficient and robust alternative to Markov Chain Monte Carlo methods for astronomical data analyses. MNRAS, 384, 449–463 {23}CrossRefGoogle Scholar
Feroz, F, Hobson, MP, 2014, Bayesian analysis of radial velocity data of GJ 667C with correlated noise: evidence for only two planets. MNRAS, 437, 3540–3549 {37, 717}CrossRefGoogle Scholar
Feroz, F, Hobson, MP, Bridges, M, 2009b, MULTINEST: an efficient and robust Bayesian inference tool for cosmology and particle physics. MNRAS, 398, 1601–1614 {23}CrossRefGoogle Scholar
Ferrari, A, Soummer, R, Aime, C, 2007, An introduction to stellar coronagraphy. Comptes Rendus Physique, 8, 277–287 {334}CrossRefGoogle Scholar
Ferrari, C, Lucas, A, 2016, Low thermal inertias of icy planetary surfaces: evidence for amorphous ice? A&A, 588, A133 {599}Google Scholar
Ferraz-Mello, S, 2015, Tidal synchronisation of close-in satellites and exoplanets: II. Spin dynamics and extension to Mercury and exoplanet host stars. Cel. Mech. Dyn. Astron., 122, 359–389 {541}CrossRefGoogle Scholar
Ferraz-Mello, S, Beaugé, C, Michtchenko, TA, 2003, Evolution of migrating planet pairs in resonance. Cel. Mech. Dyn. Astron., 87, 99–112 {522}CrossRefGoogle Scholar
Ferraz-Mello, S, Michtchenko, TA, Beaugé, C, 2005, The orbits of the extrasolar planets HD 82943 c and b. ApJ, 621, 473–481 {74, 509, 721}CrossRefGoogle Scholar
Ferraz-Mello, S, Rodríguez, A, Hussmann, H, 2008, Tidal friction in close-in satellites and exoplanets: the Darwin theory revisited. Cel. Mech. Dyn. Astron., 101, 171–201 {227, 535}CrossRefGoogle Scholar
Ferraz-Mello, S, Tadeu Dos Santos M, Beaugé, C, et al., 2011, On the mass determination of super-Earths orbiting active stars: the CoRoT–7 system. A&A, 531, A161 {733}Google Scholar
Ferreira, D, Marshall, J, O'Gorman, PA, et al., 2014, Climate at high-obliquity. Icarus, 243, 236–248 {621}CrossRefGoogle Scholar
Ferris, GAJ, 1969, Planetary influences on sun spots. J. Br. Astron. Assoc., 79, 385–388 {656}Google Scholar
Fessler, JR, Kulick, JD, Eaton, JK, 1994, Preferential concentration of heavy particles in a turbulent channel flow. Physics of Fluids, 6, 3742–3749 {460}CrossRefGoogle Scholar
Festou, MC, Keller, HU, Weaver, HA, 2004, Comets II. University of Arizona Press {651}Google Scholar
Feulner, G, 2012, The faint young Sun problem. Reviews of Geophysics, 50, RG2006 {673}CrossRefGoogle Scholar
Fielding, DB, McKee, CF, Socrates, A, et al., 2015, The turbulent origin of spin–orbit misalignment in planetary systems. MNRAS, 450, 3306–3318 {531}CrossRefGoogle Scholar
Fields, BD, Olive, KA, 1999, The evolution of 6Li in standard cosmic-ray nucleo-synthesis. New Astron., 4, 255–263 {400}CrossRefGoogle Scholar
Fields, DL, Albrow, MD, An, J, et al., 2003, High-precision limb-darkening measurement of a K3 giant using microlensing. ApJ, 596, 1305–1319 {132}CrossRefGoogle Scholar
Fienga, A, Laskar, J, Exertier, P, et al., 2015, Numerical estimation of the sensitivity of INPOP planetary ephemerides to general relativity parameters. Cel. Mech. Dyn. Astron., 123, 325–349 {657, 676, 701}CrossRefGoogle Scholar
Fienga, A, Laskar, J, Manche, H, et al., 2016, Constraints on the location of a possible ninth planet derived from the Cassini data. A&A, 587, L8 {687}Google Scholar
Fienga, A, Laskar, J, Morley, T, et al., 2009, INPOP08, a 4-d planetary ephemeris: from asteroid and time-scale computations to ESA Mars Express and Venus Express contributions. A&A, 507, 1675–1686 {30}Google Scholar
Fienga, A, Manche, H, Laskar, J, et al., 2008, INPOP06: a new numerical planetary ephemeris. A&A, 477, 315–327 {30}Google Scholar
Fienga, A, Manche, H, Laskar, J, 2013a, Gaia DPAC INPOP final release: INPOP10e. Technical Report GAIA-CA-TN-IMC-AF-002-01, IMCCE–CNRS Paris {701}
Fienga, A, Manche, H, Laskar, J, 2013b, INPOP new release: INPOP10e. ArXiv e-prints {657, 701, 703}
Fienga, A, Manche, H, Laskar, J, 2014, INPOP new release: INPOP13b [unpublished]. ArXiv e-prints {30, 676}
Figueira, P, 2018, Deriving high-precision radial velocities. Asteroseismology and Exo-planets: Listening to the Stars and Searching for New Worlds, 49, 181 {53}Google Scholar
Figueira, P, Faria, JP, Adibekyan, VZ, et al., 2016a, A pragmatic Bayesian perspective on correlation analysis: the exoplanetary gravity–stellar activity case. Origins of Life and Evolution of the Biosphere, 46, 385–393 {307}CrossRefGoogle Scholar
Figueira, P, Faria, JP, Delgado-Mena, E, et al., 2014a, Exoplanet hosts reveal lithiumde-pletion: results from a homogeneous statistical analysis. A&A, 570, A21 {401}Google Scholar
Figueira, P, Marmier, M, Bonfils, X, et al., 2010a, Evidence against the young hot-Jupiter around BD+20 1790. A&A, 513, L8 {36, 716}Google Scholar
Figueira, P, Marmier, M, Boué, G, et al., 2012, Comparing HARPS and Kepler surveys: the alignment of multiple-planet systems. A&A, 541, A139 {324}Google Scholar
Figueira, P, Oshagh, M, Adibekyan, VZ, et al., 2014b, Revisiting the correlation between stellar activity and planetary surface gravity. A&A, 572, A51 {306}Google Scholar
Figueira, P, Pepe, F, Lovis, C, et al., 2010b, Evaluating the stability of atmospheric lines with HARPS. A&A, 515, A106 {31}Google Scholar
Figueira, P, Pepe, F, Melo, CHF, et al., 2010c, Radial velocities with CRIRES: pushing precision to 5–10ms-1. A&A, 511, A55 {48}Google Scholar
Figueira, P, Pont, F, Mordasini, C, et al., 2009, Bulk composition of the transiting hot Neptune around GJ 436. A&A, 493, 671–676 {728}Google Scholar
Figueira, P, Santerne, A, Suárez Mascareño A, et al., 2016b, Is the activity level of HD 80606 influenced by its eccentric planet? A&A, 592, A143 {729}Google Scholar
Figueira, P, Santos, NC, Pepe, F, et al., 2013, Line-profile variations in radial-velocity measurements: two alternative indicators for planetary searches. A&A, 557, A93 {40}Google Scholar
Filipovic, MD, Horner, J, Crawford, EJ, et al., 2013, Mass extinction and the structure of the Milky Way. Serbian Astronomical Journal, 187, 43–52 {655}Google Scholar
Filippov, AV, Zurita, M, Rosner, DE, 2000, Fractal-like aggregates: relation between morphology and physical properties. Journal of Colloid and Interface Science, 229(1), 261 –273, ISSN 0021-9797 {469}CrossRefGoogle ScholarPubMed
Fimiani, L, Cook, DL, Faestermann, T, et al., 2016, Interstellar 60Fe on the surface of the Moon. Phys. Rev. Lett., 116(15), 151104 {651}CrossRefGoogle Scholar
Finley, DS, Koester, D, Basri, G, 1997, The temperature scale and mass distribution of hot DA white dwarfs. ApJ, 488, 375–396 {413}CrossRefGoogle Scholar
Fischer, DA, Anglada-Escude, G, Arriagada, P, et al., 2016a, State of the field: extreme precision radial velocities. PASP, 128(6), 066001 {36}CrossRefGoogle Scholar
Fischer, DA, Butler, RP, Marcy, GW, et al., 2003a, A sub-Saturn mass planet orbiting HD 3651. ApJ, 590, 1081–1087 {718}CrossRefGoogle Scholar
Fischer, DA, Driscoll, P, Isaacson, H, et al., 2009, Five planets and an independent confirmation of HD 196885 b from Lick Observatory. ApJ, 703, 1545–1556 {719, 721, 722, 724}CrossRefGoogle Scholar
Fischer, DA, Gaidos, E, Howard, AW, et al., 2012a, M2K. II. A triple-planet system orbiting HIP 57274. ApJ, 745, 21 {55, 57, 725}CrossRefGoogle Scholar
Fischer, DA, Laughlin, G, Butler, P, et al., 2005, The N2K consortium. I. A hot Saturn planet orbiting HD 88133. ApJ, 620, 481–486 {54, 55, 262, 373, 721}CrossRefGoogle Scholar
Fischer, DA, Laughlin, G, Marcy, GW, et al., 2006, The N2K consortium. III. Short-period planets orbiting HD 149143 and HD 109749. ApJ, 637, 1094–1101 {721, 722}CrossRefGoogle Scholar
Fischer, DA, Marcy, GW, 1992, Multiplicity among Mdwarfs. ApJ, 396, 178–194 {547}CrossRefGoogle Scholar
Fischer, DA, Marcy, GW, Butler, RP, et al., 1999, Planetary companions around two solar-type stars: HD 195019 and HD 217107. PASP, 111, 50–56 {724}CrossRefGoogle Scholar
Fischer, DA, Marcy, GW, Butler, RP, 2001, Planetary companions to HD 12661, HD 92788, and HD 38529 and variations in Keplerian residuals of extrasolar planets. ApJ, 551, 1107–1118 {718, 719, 721}CrossRefGoogle Scholar
Fischer, DA, Marcy, GW, Butler, RP, 2002a, Planetary companions to HD 136118, HD 50554, and HD 106252. PASP, 114, 529–535 {720, 721}CrossRefGoogle Scholar
Fischer, DA, Marcy, GW, Butler, RP, 2002b, A second planet orbiting 47 UMa. ApJ, 564, 1028–1034 {67, 94, 716}CrossRefGoogle Scholar
Fischer, DA, Marcy, GW, Butler, RP, 2003b, A planetary companion to HD 40979 and additional planets orbiting HD 12661 and HD 38529. ApJ, 586, 1394–1408 {77, 718, 719}CrossRefGoogle Scholar
Fischer, DA, Marcy, GW, Butler, RP, 2008, Five planets orbiting 55 Cnc. ApJ, 675, 790–801 {10, 22, 51, 52, 70, 71, 74, 728}CrossRefGoogle Scholar
Fischer, DA, Marcy, GW, Spronck, JFP, 2014, The twenty-five year Lick planet search. ApJS, 210, 5 {54}CrossRefGoogle Scholar
Fischer, DA, Schwamb, ME, Schawinski, K, et al., 2012b, Planet Hunters: the first two planet candidates identified by the public using the Kepler public archive data. MNRAS, 419, 2900–2911 {191, 192}CrossRefGoogle Scholar
Fischer, DA, Valenti, J, 2005, The planet–metallicity correlation. ApJ, 622, 1102–1117 {60, 159, 308, 378, 389, 392, 393, 394, 484, 485}CrossRefGoogle Scholar
Fischer, DA, Vogt, SS, Marcy, GW, et al., 2007a, Five intermediate-period planets from the N2K sample. ApJ, 669, 1336–1344 {55, 170, 718, 722, 723, 724, 729}CrossRefGoogle Scholar
Fischer, G, Kurth, WS, Dyudina, UA, et al., 2007b, Analysis of a giant lightning stormon Saturn. Icarus, 190, 528–544 {591}CrossRefGoogle Scholar
Fischer, G, Kurth, WS, Gurnett, DA, et al., 2011, A giant thunderstorm on Saturn. Nature, 475, 75–77 {591}CrossRefGoogle ScholarPubMed
Fischer, HM, Pehlke, E, Wibberenz, G, et al., 1996, High-energy charged particles in the innermost Jovian magnetosphere. Science, 272, 856–858 {631}CrossRefGoogle ScholarPubMed
Fischer, PD, Knutson, HA, Sing, DK, et al., 2016b, HST hot-Jupiter transmission spectral survey: clear skies for cool Saturn WASP–39 b. ApJ, 827, 19 {755}CrossRefGoogle Scholar
Fish, FF, 1967, Angularmomenta of the planets. Icarus, 7, 251–256 {679}CrossRefGoogle Scholar
Fitzgerald, MP, Kalas, PG, Graham, JR, 2009, Orbital constraints on the fl Pic inner planet candidate with Keck adaptive optics. ApJ, 706, L41–L45 {493, 762}CrossRefGoogle Scholar
Fitzsimmons, A, Snodgrass, C, Rozitis, B, et al., 2018, Spectroscopy and thermal mod-elling of the first interstellar object Oumuamua. Nature Astronomy, 2, 133–137 {693}CrossRefGoogle Scholar
Flagg, L, Weinberger, AJ, Matthews, K, 2016, Detectability of planetesimal impacts on giant exoplanets. Icarus, 264, 1–8 {498}CrossRefGoogle Scholar
Flaig, M, Kley, W, Kissmann, R, 2010, Vertical structure and turbulent saturation level in fully radiative protoplanetary diskmodels. MNRAS, 409, 1297–1306 {460}CrossRefGoogle Scholar
Flammarion, C, 1880, La pluralité des mondes habités. Didier et Cie, Paris {639}Google Scholar
Flasar, FM, Achterberg, RK, Conrath, BJ, et al., 2005, Temperatures, winds, and composition in the Saturnian system. Science, 307, 1247–1251 {578}CrossRefGoogle ScholarPubMed
Fleck, RC, 2008, A magnetic mechanism for halting inward protoplanet migration. I. Necessary conditions and angular momentum transfer time scales. Ap&SS, 313, 351–356 {521}Google Scholar
Fleming, BT, France, K, Nell, N, et al., 2017, The Colorado Ultraviolet Transit Experiment (CUTE): a dedicated cubesat mission for the study of exoplanetary mass loss and magnetic fields. SPIE Conf. Ser., volume 10397, 103971A {181}Google Scholar
Fleming, SW, Ge, J, Mahadevan, S, et al., 2010, Discovery of a low-mass companion to a metal-rich F star with the MARVELS pilot project. ApJ, 718, 1186–1199 {50}CrossRefGoogle Scholar
Fleming, SW, Kane, SR, McCullough, PR, et al., 2008, Detecting temperate Jupiters: the prospects of searching for transiting gas giants in habitable zones. MNRAS, 386, 1503–1520 {155}CrossRefGoogle Scholar
Fleming, SW, Mahadevan, S, Deshpande, R, et al., 2015, The APOGEE spectroscopic survey of Kepler planet hosts: feasibility, efficiency, and first results. AJ, 149, 143 {390}CrossRefGoogle Scholar
Fletcher, M, Nayakshin, S, 2016, Planets, debris and their host metallicity correlations. MNRAS, 461, 1850–1861 {489}CrossRefGoogle Scholar
Flock, M, Fromang, S, Turner, NJ, et al., 2016, Radiation hydrodynamics models of the inner rimin protoplanetary disks. ApJ, 827, 144 {464}CrossRefGoogle Scholar
Flock, M, Henning, T, Klahr, H, 2012, Turbulence in weakly ionised protoplanetary disks. ApJ, 761, 95 {461}CrossRefGoogle Scholar
Flores, MG, Buccino, AP, Saffe, CE, et al., 2017, A possible long-term activity cycle for ι Hor: first results from SPI-HKα project. MNRAS, 464, 4299–4305 {421}CrossRefGoogle Scholar
Flores-Gutiérrez, JD, García-Guerra, C, 2011, A variant of the Titius–Bode Law. Rev. Mex. Astron. Astrofis., 47, 173–184 {510}Google Scholar
Fluri, DM, Berdyugina, SV, 2010, Orbital parameters of extrasolar planets derived from polarimetry. A&A, 512, A59 {246}Google Scholar
Fluri, DM, Stenflo, JO, 1999, Continuumpolarisation in the solar spectrum. A&A, 341, 902–911 {245}Google Scholar
Fogg, MJ, Nelson, RP, 2005, Oligarchic and giant impact growth of terrestrial planets in the presence of gas giant planet migration. A&A, 441, 791–806 {475, 523}Google Scholar
Fogg, MJ, Nelson, RP, 2007a, The effect of type I migration on the formation of terrestrial planets in hot-Jupiter systems. A&A, 472, 1003–1015 {304, 523}Google Scholar
Fogg, MJ, Nelson, RP, 2007b, On the formation of terrestrial planets in hot-Jupiter systems. A&A, 461, 1195–1208 {304, 523}Google Scholar
Fogg, MJ, Nelson, RP, 2009, Terrestrial planet formation in low-eccentricitywarm-Jupiter systems. A&A, 498, 575–589 {523}Google Scholar
Fogtmann-Schulz, A, Hinrup, B, Van Eylen, V, et al., 2014, Accurate parameters of the oldest known rocky-exoplanet hosting system: Kepler–10 revisited. ApJ, 781, 67 {236, 312, 739}CrossRefGoogle Scholar
Föhring, D, Dhillon, VS, Madhusudhan, N, et al., 2013, ULTRACAM z’-band detection of the secondary eclipse of WASP–12 b. MNRAS, 435, 2268–2273 {183, 753}CrossRefGoogle Scholar
Föhring, D, Wilson, R, Osborn, J, et al., 2015, Scintillation noise in exoplanet transit photometry. Journal of Physics Conference Series, volume 595, 012010 {189}CrossRefGoogle Scholar
Foley, BJ, 2015, The role of plate tectonic-climate coupling and exposed land area in the development of habitable climates on rocky planets. ApJ, 812, 36 {628}CrossRefGoogle Scholar
Foley, BJ, Bercovici, D, Landuyt, W, 2012, The conditions for plate tectonics on super-Earths. Earth Planet. Sci. Lett., 331, 281–290 {628}Google Scholar
Folini, D, Walder, R, Favre, JM, 2014, Supersonic turbulence in 3d isothermal flow collision. A&A, 562, A112 {452}Google Scholar
Folkes, SL, Pinfield, DJ, Kendall, TR, et al., 2007, Discovery of a nearby L–T transition object in the southern Galactic plane. MNRAS, 378, 901–909 {438}CrossRefGoogle Scholar
Folkner, WM, Charlot, P, Finger, MH, et al., 1994, Determination of the extragalactic-planetary frame tie from joint analysis of radio interferometric and lunar laser ranging measurements. A&A, 287, 279–289 {86}Google Scholar
Folkner, WM, Williams, JG, Boggs, DH, et al., 2014, The planetary and lunar ephemerides DE430 and DE431. Interplanetary Network Progress Report, 196, 1–81 {665, 676}Google Scholar
Follette, KB, Grady, CA, Swearingen, JR, et al., 2015, SEEDS adaptive optics imaging of the asymmetric transition disk Oph IRS 48 in scattered light. ApJ, 798, 132 {367, 466}CrossRefGoogle Scholar
Follette, KB, Rameau, J, Dong, R, et al., 2017, Complex spiral structure in the HD100546 transitional disk as revealed by Gemini–GPI and MagAO. AJ, 153, 264 {466, 763}CrossRefGoogle Scholar
Folonier, HA, Ferraz-Mello, S, Kholshevnikov, KV, 2015, The flattenings of the layers of rotating planets and satellites deformed by a tidal potential. Cel. Mech. Dyn. Astron., 122, 183–198 {545}CrossRefGoogle Scholar
Fomalont, EB, Kopeikin, SM, 2003, The measurement of the light deflection from Jupiter: experimental results. ApJ, 598, 704–711 {101}CrossRefGoogle Scholar
Fomalont, EB, Vlahakis, C, Corder, S, et al., 2015, The 2014 ALMA Long Baseline Campaign: an overview. ApJ, 808, L1 {370}Google Scholar
Font, AS, McCarthy, IG, Johnstone, D, et al., 2004, Photoevaporation of circumstellar disks around young stars. ApJ, 607, 890–903 {462}CrossRefGoogle Scholar
Font-Ribera, A, Miralda-Escudé, J, Ribas, I, 2009, Protostellar cloud fragmentation and inward migration by disk capture as the origin of massive exoplanets. ApJ, 694, 183–191 {489}CrossRefGoogle Scholar
Fontaine, G, Michaud, G, 1979, Diffusion time scales in white dwarfs. ApJ, 231, 826–840 {416}CrossRefGoogle Scholar
Foo, G, Palacios, DM, Swartzlander, GA, 2005, Optical vortex coronagraph. Optics Letters, 30, 3308–3310 {334, 337}CrossRefGoogle ScholarPubMed
For, BQ, Green, EM, Fontaine, G, et al., 2010, Modeling the system parameters of 2M 1533+3759: a new longer period low-mass eclipsing sdB+dM binary. ApJ, 708, 253–267 {234}CrossRefGoogle Scholar
Forbrich, J, Berger, E, 2009, The first VLBI detection of an ultracool dwarf: implications for the detectability of sub-stellar companions. ApJ, 706, L205–L209 {101}CrossRefGoogle Scholar
Forbrich, J, Berger, E, Reid, MJ, 2013, An astrometric search for a sub-stellar companion of the M8.5 dwarf TVLM513–46546 using VLBI. ApJ, 777, 70 {101}CrossRefGoogle Scholar
Ford, EB, 2004a, Choice of observing schedules for astrometric planet searches. PASP, 116, 1083–1092 {26, 100}CrossRefGoogle Scholar
Ford, EB, 2004b, Quantifying the uncertainty in the orbits of extrasolar planets with Markov Chain Monte Carlo. The Search for Other Worlds, volume 713 of Amer. Inst. Phys. Conf. Ser., 27–30 {25}Google Scholar
Ford, EB, 2005, Quantifying the uncertainty in the orbits of extrasolar planets. AJ, 129, 1706–1717 {23, 195}CrossRefGoogle Scholar
Ford, EB, 2006a, The effects of multiple companions on the efficiency of Space Interferom-etry Mission planet searches. PASP, 118, 364–384 {100}CrossRefGoogle Scholar
Ford, EB, 2006b, Improving the efficiency of Markov Chain Monte Carlo for analysing the orbits of extrasolar planets. ApJ, 642, 505–522 {23, 25, 195}CrossRefGoogle Scholar
Ford, EB, 2008, Adaptive scheduling algorithms for planet searches. AJ, 135, 1008–1020 {27}CrossRefGoogle Scholar
Ford, EB, Chiang, EI, 2007, The formation of ice giants in a packed oligarchy: instability and aftermath. ApJ, 661, 602–615 {475}CrossRefGoogle Scholar
Ford, EB, Fabrycky, DC, Steffen, JH, et al., 2012a, Transit timing observations from Kepler. II. Confirmation of two multi-planet systems via a non-parametric correlation analysis. ApJ, 750, 113 {11, 269, 270, 305, 740}CrossRefGoogle Scholar
Ford, EB, Gaudi, BS, 2006, Observational constraints on Trojans of transiting extrasolar planets. ApJ, 652, L137–L140 {274}CrossRefGoogle Scholar
Ford, EB, Gregory, PC, 2007, Bayesian model selection and extrasolar planet detection. Statistical Challenges in Modern Astronomy IV, volume 371 of ASP Conf. Ser., 189–193 {23, 87}Google Scholar
Ford, EB, Havlickova, M, Rasio, FA, 2001a, Dynamical instabilities in extrasolar planetary systems containing two giant planets. Icarus, 150, 303–313 {525}CrossRefGoogle Scholar
Ford, EB, Holman, MJ, 2007, Using transit timing observations to search for Trojans of transiting extrasolar planets. ApJ, 664, L51–L54 {274, 278}CrossRefGoogle Scholar
Ford, EB, Joshi, KJ, Rasio, FA, et al., 2000a, Theoretical implications of the PSR B1620–26 triple system and its planet. ApJ, 528, 336–350 {108}CrossRefGoogle Scholar
Ford, EB, Kozinsky, B, Rasio, FA, 2000b, Secular evolution of hierarchical triple star systems. ApJ, 535, 385–401 {79, 527, 528}CrossRefGoogle Scholar
Ford, EB, Lystad, V, Rasio, FA, 2005, Planet–planet scattering in the À And system. Nature, 434, 873–876 {70, 74, 516, 525, 713}CrossRefGoogle ScholarPubMed
Ford, EB, Quinn, SN, Veras, D, 2008a, Characterising the orbital eccentricities of transiting extrasolar planets with photometric observations. ApJ, 678, 1407–1418 {203, 289, 323}CrossRefGoogle Scholar
Ford, EB, Ragozzine, D, Rowe, JF, et al., 2012b, Transit timing observations from Kepler. V. Transit timing variation candidates in the first sixteen months from polynomial models. ApJ, 756, 185 {269, 270}CrossRefGoogle Scholar
Ford, EB, Rasio, FA, 2006, On the relation between hot Jupiters and the Roche limit. ApJ, 638, L45–L48 {521}CrossRefGoogle Scholar
Ford, EB, Rasio, FA, 2008, Origins of eccentric extrasolar planets: testing the planet–planet scattering model. ApJ, 686, 621–636 {114, 210, 525}CrossRefGoogle Scholar
Ford, EB, Rasio, FA, Sills, A, 1999, Structure and evolution of nearby stars with planets. I. Short-period systems. ApJ, 514, 411–429 {393}CrossRefGoogle Scholar
Ford, EB, Rasio, FA, Yu, K, 2003, Dynamical instabilities in extrasolar planetary systems. Scientific Frontiers in Research on Extrasolar Planets, volume 294 of ASP Conf. Ser., 181–188 {525}Google Scholar
Ford, EB, Rowe, JF, Fabrycky, DC, et al., 2011, Transit timing observations from Kepler. I. Statistical analysis of the first four months. ApJS, 197, 2 {11, 269, 270, 319}CrossRefGoogle Scholar
Ford, EB, Seager, S, Turner, EL, 2001b, Characterisation of extrasolar terrestrial planets from diurnal photometric variability. Nature, 412, 885–887 {221, 242, 641}CrossRefGoogle Scholar
Ford, EB, Tremaine, S, 2003, Planet-finding prospects for the Space Interferometry Mission. PASP, 115, 1171–1186 {100}CrossRefGoogle Scholar
Ford, HC, Bartko, F, Bely, PY, et al., 1998, Advanced camera for the Hubble Space Telescope. SPIE Conf. Ser., volume 3356, 234–248 {349}Google Scholar
Ford, HC, Bhatti, W, Hebb, L, et al., 2008b, Detecting transits in sparsely sampled surveys. Amer. Inst. Phys. Conf. Ser., volume 1082, 275–281 {157}Google Scholar
Ford, HC, Petro, LD, Burrows, C, et al., 2002, Artemis: a stratospheric planet finder. Adv. Space Res., 30, 1283–1288 {349}CrossRefGoogle Scholar
Foreman-Mackey, D, Hogg, DW, Lang, D, et al., 2013, emcee: the MCMC hammer. PASP, 125, 306 {23, 25}CrossRefGoogle Scholar
Foreman-Mackey, D, Hogg, DW, Morton, TD, 2014, Exoplanet population inference and the abundance of Earth analogues from noisy, incomplete catalogues. ApJ, 795, 64 {290}CrossRefGoogle Scholar
Foreman-Mackey, D, Montet, BT, Hogg, DW, et al., 2015, A systematic search for transiting planets in the K2 data. ApJ, 806, 215 {176}CrossRefGoogle Scholar
Foreman-Mackey, D, Morton, TD, Hogg, DW, et al., 2016, The population of long-period transiting exoplanets. AJ, 152, 206 {193, 291, 743, 744, 745, 746}CrossRefGoogle Scholar
Forestini, M, 1994, Low-mass stars: pre-main sequence evolution and nucleo-synthesis. A&A, 285, 473–488 {402}Google Scholar
Forgan, DH, 2012, Oscillations in the habitable zone around α Cen B. MNRAS, 422, 1241–1249 {635, 714}CrossRefGoogle Scholar
Forgan, DH, 2013, On the possibility of detecting class A stellar engines using exoplanet transit curves. J. Br. Interplanet. Soc., 66, 144–154 {233}Google Scholar
Forgan, DH, 2014, Assessing circumbinary habitable zones using latitudinal energy balance modelling. MNRAS, 437, 1352–1361 {623, 739, 740, 741, 742}CrossRefGoogle Scholar
Forgan, DH, 2016, Milankovitch cycles of terrestrial planets in binary star systems. MNRAS, 463, 2768–2780 {621, 714, 741}CrossRefGoogle Scholar
Forgan, DH, 2017, On the feasibility of exomoon detection via exoplanet phase curve spectral contrast. MNRAS, 470, 416–426 {277}CrossRefGoogle Scholar
Forgan, DH, Dobos, V, 2016, Exomoon climate models with the carbonate-silicate cycle and viscoelastic tidal heating. MNRAS, 457, 1233–1241 {628}CrossRefGoogle Scholar
Forgan, DH, Hall, C, Meru, F, et al., 2018, Towards a population synthesis model of self-gravitating disk fragmentation and tidal downsizing. II. The effect of fragment-fragment interactions. MNRAS, 474, 5036–5048 {490}CrossRefGoogle Scholar
Forgan, DH, Kipping, D, 2013, Dynamical effects on the habitable zone for Earth-like exomoons. MNRAS, 432, 2994–3004 {627}CrossRefGoogle Scholar
Forgan, DH, Mead, A, Cockell, CS, et al., 2015, Surface flux patterns on planets in circumbinary systems and potential for photosynthesis. Int. J. Astrobiol., 14, 465–478 {739, 741}CrossRefGoogle Scholar
Forgan, DH, Nichol, RC, 2011, A failure of serendipity: the Square Kilometer Array will struggle to eavesdrop on human-like extraterrestrial intelligence. Int. J. As-trobiol., 10, 77–81 {645}Google Scholar
Forgan, DH, Rice, K, 2011, The Jeans mass as a fundamental measure of self-gravitating disk fragmentation and initial fragment mass. MNRAS, 417, 1928–1937 {488}CrossRefGoogle Scholar
Forgan, DH, Rice, K, 2013, Towards a population synthesismodel of objects formed by self-gravitating disk fragmentation and tidal downsizing. MNRAS, 432, 3168–3185 {490}CrossRefGoogle Scholar
Forgan, DH, Rowlands, K, Gomez, HL, et al., 2017, Can planet formation resolve the dust budget crisis in high-redshift galaxies? MNRAS, 472, 2289–2296 {495}CrossRefGoogle Scholar
Forgan, DH, Yotov, V, 2014, The effect of planetary illumination on climate modelling of Earth-like exomoons. MNRAS, 441, 3513–3523 {627}CrossRefGoogle Scholar
Forget, F, 2013, On the probability of habitable planets. Int. J. Astrobiol., 12, 177–185 {620}CrossRefGoogle Scholar
Forget, F, Hourdin, F, Fournier, R, et al., 1999, Improved general circulation models of the Martian atmosphere from the surface to above 80 km. J. Geophys. Res., 104, 24155–24176 {593}CrossRefGoogle Scholar
Forget, F, Leconte, J, 2014, Possible climates on terrestrial exoplanets. Phil. Trans. Soc. London A, 372, 30084 {598}Google ScholarPubMed
Fors, O, Law, NM, Ratzloff, J, et al., 2015, The Evryscope and extrasolar planets. IAU General Assembly, 22, 2258237 {170}Google Scholar
Forsberg, P, Karlsson, M, 2013, High aspect ratio optical gratings in diamond. Diamond and Related Materials, 34, 19–24 {337}CrossRefGoogle Scholar
Fortier, A, Alibert, Y, Carron, F, et al., 2013, Planet formation models: the interplay with the planetesimal disk. A&A, 549, A44 {481}Google Scholar
Fortier, A, Benvenuto, OG, Brunini, A, 2007, Oligarchic planetesimal accretion and giant planet formation. A&A, 473, 311–322 {475}Google Scholar
Fortier, A, Benvenuto, OG, Brunini, A, 2009, Oligarchic planetesimal accretion and giant planet formation. II. A&A, 500, 1249–1252 {475}Google Scholar
Fortney, JJ, 2005, The effect of condensates on the characterisation of transiting planet atmospheres with transmission spectroscopy. MNRAS, 364, 649–653 {591}CrossRefGoogle Scholar
Fortney, JJ, 2007, The structure of Jupiter, Saturn, and exoplanets: key questions for high-pressure experiments. Ap&SS, 307, 279–283 {567}Google Scholar
Fortney, JJ, 2012, On the C/O ratio measurement in nearby Sun-like stars: implications for planet formation and the determination of stellar abundances. ApJ, 747, L27 {388}CrossRefGoogle Scholar
Fortney, JJ, Cooper, CS, Showman, AP, et al., 2006a, The influence of atmospheric dynamics on the infrared spectra and light curves of hot Jupiters. ApJ, 652, 746–757 {591, 615}CrossRefGoogle Scholar
Fortney, JJ, Demory, BO, Désert, JM, et al., 2011a, Discovery and atmospheric char-acterisation of giant planet Kepler–12 b: an inflated radius outlier. ApJS, 197, 9 {739}CrossRefGoogle Scholar
Fortney, JJ, Hubbard, WB, 2003, Phase separation in giant planets: inhomogeneous evolution of Saturn. Icarus, 164, 228–243 {569}CrossRefGoogle Scholar
Fortney, JJ, Hubbard, WB, 2004, Effects of helium phase separation on the evolution of extrasolar giant planets. ApJ, 608, 1039–1049 {569}CrossRefGoogle Scholar
Fortney, JJ, Ikoma, M, Nettelmann, N, et al., 2011b, Self-consistentmodel atmospheres and the cooling of the solar system's giant planets. ApJ, 729, 32 {660, 661}CrossRefGoogle Scholar
Fortney, JJ, Lodders, K, Marley, MS, et al., 2008a, A unified theory for the atmospheres of the hot and very hot Jupiters: two classes of irradiated atmospheres. ApJ, 678, 1419–1435 {42, 285, 580, 584, 585}CrossRefGoogle Scholar
Fortney, JJ, Marley, MS, 2007, Analysis of Spitzer spectra of irradiated planets: evidence for water vapour? ApJ, 666, L45–L48 {579}CrossRefGoogle Scholar
Fortney, JJ, Marley, MS, Barnes, JW, 2007a, Planetary radii across five orders of magnitude in mass and stellar insolation: application to transits (Erratum to: 2007ApJ…659.1661F). ApJ, 668, 1267–1267 {296}CrossRefGoogle Scholar
Fortney, JJ, Marley, MS, Barnes, JW, 2007b, Planetary radii across five orders of magnitude in mass and stellar insola-tion: application to transits. ApJ, 659, 1661–1672 {292, 293, 303, 565, 566, 569, 571, 572, 573, 603, 604}CrossRefGoogle Scholar
Fortney, JJ, Marley, MS, Laughlin, G, et al., 2016a, The hunt for Planet Nine: atmosphere, spectra, evolution, and detectability. ApJ, 824, L25 {687}CrossRefGoogle Scholar
Fortney, JJ, Marley, MS, Lodders, K, et al., 2005, Comparative planetary atmospheres: models of TrES–1 and HD 209458 b. ApJ, 627, L69–L72 {579, 582, 731, 750}CrossRefGoogle Scholar
Fortney, JJ, Marley, MS, Saumon, D, et al., 2008b, Synthetic spectra and colours of young giant planet atmospheres: effects of initial conditions and atmospheric metallicity. ApJ, 683, 1104–1116 {578, 579, 580, 581, 583}CrossRefGoogle Scholar
Fortney, JJ, Mordasini, C, Nettelmann, N, et al., 2013, A framework for characterising the atmospheres of low-mass low-density transiting planets. ApJ, 775, 80 {735}CrossRefGoogle Scholar
Fortney, JJ, Nettelmann, N, 2010, The interior structure, composition, and evolution of giant planets. Space Sci. Rev., 152, 423–447 {302, 487, 660}CrossRefGoogle Scholar
Fortney, JJ, Robinson, TD, Domagal-Goldman, S, et al., 2016b, The need for laboratory work to aid in the understanding of exoplanetary atmospheres [unpublished]. ArXiv e-prints {618}
Fortney, JJ, Saumon, D, Marley, MS, et al., 2006b, Atmosphere, interior, and evolution of the metal-rich transiting planet HD149026 b. ApJ, 642, 495–504 {302, 569, 573, 579, 582, 729}CrossRefGoogle Scholar
Fortney, JJ, Shabram, M, Showman, AP, et al., 2010, Transmission spectra of three-dimensional hot Jupiter model atmospheres. ApJ, 709, 1396–1406 {730, 732}CrossRefGoogle Scholar
Fortney, JJ, Sudarsky, D, Hubeny, I, et al., 2003, On the indirect detection of sodium in the atmosphere of the planetary companion to HD 209458. ApJ, 589, 615–622 {731}CrossRefGoogle Scholar
Forveille, T, Bonfils, X, Delfosse, X, et al., 2009, The HARPS search for southern extraso-lar planets. XIV. GJ 176 b, a super-Earth rather than a Neptune, and at a different period. A&A, 493, 645–650 {724}Google Scholar
Forveille, T, Bonfils, X, Delfosse, X, 2011a, The HARPS search for southern extrasolar planets. XXXII. Only four planets in the GJ 581 system [unpublished] ArXiv e-prints {716}
Forveille, T, Bonfils, X, Lo Curto, G, et al., 2011b, The HARPS search for southern extra-solar planets. XXVI. Two giant planets around M0 dwarfs. A&A, 526, A141 {717, 724}Google Scholar
Fosbury, R, Koch, G, Koch, J, 2011, Ozone: twilit skies, and exoplanet transits. The Mes-senger, 143, 27–31 {161}Google Scholar
Fossati, L, Ayres, TR, Haswell, CA, et al., 2013a, Absorbing gas around the WASP–12 planetary system. ApJ, 766, L20 {753}CrossRefGoogle Scholar
Fossati, L, Ayres, TR, Haswell, CA, 2014a, Searching for a gas cloud surrounding the WASP–18 planetary system. Ap&SS, 354, 21–28 {753}Google Scholar
Fossati, L, Bagnulo, S, Elmasli, A, et al., 2010a, A detailed spectropolarimetric analysis of the planet-hosting star WASP–12. ApJ, 720, 872–886 {752}CrossRefGoogle Scholar
Fossati, L, Bagnulo, S, Haswell, CA, et al., 2012, The habitability and detection of Earth-like planets orbiting cool white dwarfs. ApJ, 757, L15 {412}CrossRefGoogle Scholar
Fossati, L, Bisikalo, D, Lammer, H, et al., 2014b, Major prospects of exoplanet astronomy with the World Space Observatory–Ultra Violet mission. Ap&SS, 354, 9–19 {428}Google Scholar
Fossati, L, Erkaev, NV, Lammer, H, et al., 2017a, Aeronomical constraints to the minimum mass andmaximumradius of hot low-mass planets. A&A, 598, A90 {601}Google Scholar
Fossati, L, France, K, Koskinen, T, et al., 2015a, Far-ultraviolet spectroscopy of the planet-hosting star WASP–13: high-energy irradiance, distance, age, planetary mass-loss rate, and circumstellar environment. ApJ, 815, 118 {753}CrossRefGoogle Scholar
Fossati, L, Haswell, CA, Froning, CS, et al., 2010b, Metals in the exosphere of the highly-irradiated planet WASP–12 b. ApJ, 714, L222–L227 {166, 221, 281, 425, 611, 752}CrossRefGoogle Scholar
Fossati, L, Ingrassia, S, Lanza, AF, 2015b, A bimodal correlation between host star chromospheric emission and the surface gravity of hot Jupiters. ApJ, 812, L35 {306}CrossRefGoogle Scholar
Fossati, L, Kochukhov, O, Jenkins, JS, et al., 2013b, Detection of a magnetic field in three old and inactive solar-like planet-hosting stars. A&A, 551, A85 {421, 720, 722}Google Scholar
Fossati, L, Koskinen, T, France, K, et al., 2018, Suppressed far-UV stellar activity and low planetary mass loss in the WASP–18 system. AJ, 155, 113 {754}CrossRefGoogle Scholar
Fossati, L, Marcelja, SE, Staab, D, et al., 2017b, The effect of ISM absorption on stellar activity measurements and its relevance for exoplanet studies. A&A, 601, A104 {188, 753}Google Scholar
Fossey, SJ, Waldmann, IP, Kipping, DM, 2009, Detection of a transit by the planetary companion of HD 80606. MNRAS, 396, L16–L20 {158, 170, 729}CrossRefGoogle Scholar
Foster, JB, Goodman, AA, 2006, Cloudshine: new light on dark clouds. ApJ, 636, L105–L108 {495}CrossRefGoogle Scholar
Foster, RS, Fischer, J, 1996, Search for protoplanetary and debris disks around millisecond pulsars. ApJ, 460, 902–905 {107}CrossRefGoogle Scholar
Foucart, F, Lai, D, 2011, Evolution of spin direction of accreting magnetic protostars and spin–orbit misalignment in exoplanetary systems. II. Warped disks. MNRAS, 412, 2799–2815 {255, 531}CrossRefGoogle Scholar
Foucart, F, Lai, D, 2013, Assembly of protoplanetary disks and inclinations of circumbinary planets. ApJ, 764, 106 {551, 553, 554}CrossRefGoogle Scholar
Foucart, F, Lai, D, 2014, Evolution of linear warps in accretion disks and applications to proto-planetary disks in binaries. MNRAS, 445, 1731–1744 {553}CrossRefGoogle Scholar
Fouchet, L, Alibert, Y, Mordasini, C, et al., 2012, Effects of disk irradiation on planet population synthesis. A&A, 540, A107 {461}Google Scholar
Foukal, P, Ortiz, A, Schnerr, R, 2011, Dimming of the 17th century Sun. ApJ, 733, L38 {656}CrossRefGoogle Scholar
Foulger, GR, 2010, Plates versus Plumes: A Geological Controversy. Wiley-Blackwell {670}CrossRefGoogle Scholar
Fox, SW, Dose, K, 1972, Molecular Evolution and the Origin of Life. W. H. Freeman and Co. {647}Google Scholar
Fraedrich, K, Kirk, E, Luksch, U, et al., 2005, The Portable University Model of the Atmosphere (PUMA): storm track dynamics and low-frequency variability. Meteo-rologische Zeitschrift, 14, 735–745 {593}Google Scholar
Fragione, G, Ginsburg, I, 2017, Transit probabilities around hypervelocity and runaway stars. MNRAS, 466, 1805–1813 {406}CrossRefGoogle Scholar
Fragner, MM, Nelson, RP, 2009, Giant planet formation in stellar clusters: the effects of stellar fly-bys. A&A, 505, 873–889 {158}Google Scholar
Fragner, MM, Nelson, RP, Kley, W, 2011, On the dynamics and collisional growth of planetesimals in misaligned binary systems. A&A, 528, A40 {550}Google Scholar
Fraine, JD, Deming, D, Benneke, B, et al., 2014, Water vapour absorption in the clear atmosphere of a Neptune-sized exoplanet. Nature, 513, 526–529 {736}CrossRefGoogle ScholarPubMed
Fraine, JD, Deming, D, Gillon, M, et al., 2013, Spitzer transits of the super-Earth GJ 1214 b and implications for its atmosphere. ApJ, 765, 127 {613, 735}CrossRefGoogle Scholar
Frakes, LA, Francis, JE, Syktus, JI, 1992, Climate Modes of the Phanerozoic. Cambridge Monographs on Physics {655, 676}CrossRefGoogle Scholar
François, P, Briot, D, Spite, F, et al., 1999, Line profile variation and planets around 51 Peg and À And. A&A, 349, 220–224 {713, 715}Google Scholar
France, K, Froning, CS, Linsky, JL, et al., 2013, The ultraviolet radiation environment around Mdwarf exoplanet host stars. ApJ, 763, 149 {405, 717, 729, 734}CrossRefGoogle Scholar
France, K, Linsky, JL, Parke Loyd, RO, 2014, The ultraviolet radiation environment in the habitable zones around low-mass exoplanet host stars. Ap&SS, 354, 3–7 {628}Google Scholar
France, K, Linsky, JL, Tian, F, et al., 2012, Time-resolved ultraviolet spectroscopy of the Mdwarf GJ 876 exoplanetary system. ApJ, 750, L32 {717}CrossRefGoogle Scholar
France, K, Linsky, JL, Yang, H, et al., 2011, HST–COS observations of the transiting ex-trasolar planetary system HD 209458 b. Ap&SS, 335, 25–32 {610, 732}Google Scholar
France, K, Parke Loyd, RO, Youngblood, A, et al., 2016, The MUSCLES Treasury Survey. I. Motivation and overview. ApJ, 820, 89 {424}CrossRefGoogle Scholar
France, K, Stocke, JT, Yang, H, et al., 2010, Searching for far-ultraviolet auroral/dayglow emission from HD 209458 b. ApJ, 712, 1277–1286 {732}CrossRefGoogle Scholar
Franck, S, Cuntz, M, von Bloh, W, et al., 2003, The habitable zone of Earth-mass planets around 47UMa: results for land andwaterworlds. Int. J. Astrobiol., 2, 35–39 {716}CrossRefGoogle Scholar
Franck, S, von Bloh, W, Bounama, C, et al., 2001, Limits of photosynthesis in extrasolar planetary systems for Earth-like planets. Adv. Space Res., 28, 695–700 {641}CrossRefGoogle ScholarPubMed
Frandsen, S, Douglas, NG, Butcher, HR, 1993, An astronomical seismometer. A&A, 279, 310–321 {49}Google Scholar
Frank, EA, Meyer, BS, Mojzsis, SJ, 2014, A radiogenic heating evolution model for cos-mochemically Earth-like exoplanets. Icarus, 243, 274–286 {569, 571}CrossRefGoogle Scholar
Frank, J, King, A, Raine, DJ, 2002, Accretion Power in Astrophysics. Cambridge University Press, Third Edition {455}CrossRefGoogle Scholar
Frank, MR, Fei, Y, Hu, J, 2004, Constraining the equation of state of fluid H2O to 80GPa using themelting curve, bulk modulus, and thermal expansivity of ice VII. Geochim. Cosmochim. Acta, 68, 2781–2790 {569}CrossRefGoogle Scholar
Frankenberg, C, Bergamaschi, P, Butz, A, et al., 2008, Tropical methane emissions: a revised view from ENVISAT–SCIAMACHY. Geophys. Res. Lett., 35, L15811 {287}CrossRefGoogle Scholar
Franklin, F, Lecar, M, Soper, P, 1989, On the original distribution of the asteroids. II. Do stable orbits exist between Jupiter and Saturn? Icarus, 79, 223–227 {694}Google Scholar
Frantseva, K, Kostogryz, NM, Yakobchuk, TM, 2012, Simulation of polarimetric effects in planetary system HD 189733. Advances in Astronomy and Space Physics, 2, 146–148 {245}Google Scholar
Frasca, A, Fröhlich, HE, Bonanno, A, et al., 2011, Magnetic activity and differential rotation in the very young star KIC–8429280. A&A, 532, A81 {386}Google Scholar
Fraser, WC, Brown, ME, 2012, The HST–WFC3 test of surfaces in the outer solar system: the compositional classes of the Kuiper belt. ApJ, 749, 33 {685}CrossRefGoogle Scholar
Fraser, WC, Pravec, P, Fitzsimmons, A, et al., 2017, Oumuamua is tumbling. ArXiv e-prints {693}
Frazin, RA, 2013, Utilisation of the wavefront sensor and short-exposure images for simultaneous estimation of quasi-static aberration and exoplanet intensity. ApJ, 767, 21 {339}CrossRefGoogle Scholar
Freed, M, Close, LM, McCarthy, DW, 2003, MEDI: an instrument for direct-detection of massive extrasolar planets. SPIE Conf. Ser., volume 4839, 1132–1141 {340}Google Scholar
Freedman, RS, Lustig-Yaeger, J, Fortney, JJ, et al., 2014, Gaseous mean opacities for giant planet and ultracool dwarf atmospheres over a range of metallicities and temperatures. ApJS, 214, 25 {570, 579}CrossRefGoogle Scholar
Freedman, RS, Marley, MS, Lodders, K, 2008, Line and mean opacities for ultracool dwarfs and extrasolar planets. ApJS, 174, 504–513 {569, 570}CrossRefGoogle Scholar
Freeman, M, Philpott, LC, Abe, F, et al., 2015, Can the masses of isolated planetary-mass gravitational lenses be measured by terrestrial parallax? ApJ, 799, 181 {135}CrossRefGoogle Scholar
Fregeau, JM, Chatterjee, S, Rasio, FA, 2006, Dynamical interactions of planetary systems in dense stellar environments. ApJ, 640, 1086–1098 {108, 158, 526}CrossRefGoogle Scholar
Freistetter, F, 2006, The size of the stability regions of Jupiter Trojans. A&A, 453, 353–361 {689}Google Scholar
Freistetter, F, Krivov, AV, Löhne, T, 2007, Planets of fl Pic revisited. A&A, 466, 389–393 {493, 762}Google Scholar
Freistetter, F, Süli Á, Funk, B, 2009, Dynamics of the TrES–2 system. Astron. Nach., 330, 469–474 {750}CrossRefGoogle Scholar
Freitas, RA, 1980, A search for natural or artificial objects located at the Earth–Moon libration points. Icarus, 42, 442–447 {647}CrossRefGoogle Scholar
Freitas, RA, 1985, Observable characteristics of extraterrestrial technological civilisations. J. Br. Interplanet. Soc., 38, 106–112 {647}Google Scholar
Frelikh, R, Murray-Clay, RA, 2017, The formation of Uranus and Neptune: fine-tuning in core accretion. AJ, 154, 98 {661}CrossRefGoogle Scholar
French, M, Mattsson, TR, Nettelmann, N, et al., 2009, Equation of state and phase diagram of water at ultrahigh pressures as in planetary interiors. Phys. Rev. B, 79(5), 054107 {568}CrossRefGoogle Scholar
French, RG, McGhee-French, CA, Lonergan, K, et al., 2017, Noncircular features in Saturn's rings. IV. Absolute radius scale and Saturn's pole direction. Icarus, 290, 14–45 {690}CrossRefGoogle Scholar
French, RG, Nicholson, PD, 2000, Saturn's Rings. II. Particle sizes inferred from stellar occultation data. Icarus, 145, 502–523 {690}CrossRefGoogle Scholar
Fressin, F, Guillot, T, Bouchy, F, et al., 2005, Antarctica search for transiting extrasolar planets. EAS Pub. Ser., volume 14, 309–312 {169}CrossRefGoogle Scholar
Fressin, F, Guillot, T, Morello, V, et al., 2007a, Interpreting and predicting the yield of transit surveys: giant planets in the OGLE fields. A&A, 475, 729–746 {168}Google Scholar
Fressin, F, Guillot, T, Nesta, L, 2009, Interpreting the yield of transit surveys: are there groups in the known transiting planets population? A&A, 504, 605–615 {293, 294, 307}Google Scholar
Fressin, F, Guillot, T, Schmider, FX, et al., 2007b, ASTEP: towards a large photometric survey for exoplanets at Dome C. EAS Pub. Ser., volume 25, 225–232 {169}CrossRefGoogle Scholar
Fressin, F, Knutson, HA, Charbonneau, D, et al., 2010, The broadband infrared emission spectrumof the exoplanet TrES–3. ApJ, 711, 374–379 {614, 751}CrossRefGoogle Scholar
Fressin, F, Torres, G, Charbonneau, D, et al., 2013, False positive rate of Kepler and the occurrence of planets. ApJ, 766, 81 {193, 196, 289, 290, 295, 308, 404, 500, 633}CrossRefGoogle Scholar
Fressin, F, Torres, G, Désert, JM, et al., 2011, Kepler–10 c: a 2.2 R⊕ transiting planet in a multiple system. ApJS, 197, 5 {11, 197, 198, 322, 738}CrossRefGoogle Scholar
Fressin, F, Torres, G, Pont, F, et al., 2012a, Spitzer infrared observations and independent validation of the transiting super-Earth CoRoT–7 b. ApJ, 745, 81 {197, 198, 734}CrossRefGoogle Scholar
Fressin, F, Torres, G, Rowe, JF, et al., 2012b, Two Earth-sized planets orbiting Kepler–20. Nature, 482, 195–198 {11, 14, 179, 197, 740}CrossRefGoogle Scholar
Frewen, SFN, Hansen, BMS, 2014, Eccentric planets and stellar evolution as a cause of polluted white dwarfs. MNRAS, 439, 2442–2458 {416}CrossRefGoogle Scholar
Frewen, SFN, Hansen, BMS, 2016, The effect of stellar evolution on migrating warm Jupiters. MNRAS, 455, 1538–1552 {530}CrossRefGoogle Scholar
Fricke, W, Schwan, H, Lederle, T, et al., 1988, Fifth fundamental catalogue (FK5). Part 1: The basic fundamental stars. Veroeffentlichungen des Astronomischen Rechen-Instituts Heidelberg, 32, 1–106 {86}Google Scholar
Fridlund, CVM, 2000, Darwin: the infrared space interferometer. Darwin and Astronomy: the Infrared Space Interferometer, volume 451 of ESA SP, 11–18 {352}Google Scholar
Fridlund, CVM, 2004, The Darwin mission. Adv. Space Res., 34, 613–617 {352}CrossRefGoogle Scholar
Fridlund, CVM, Eiroa, C, Henning, T, et al., 2010a, A roadmap for the detection and characterisation of other Earths. Astrobiology, 10, 113–119 {618}CrossRefGoogle Scholar
Fridlund, CVM, Hébrard, G, Alonso, R, et al., 2010b, Transiting exoplanets from the CoRoT space mission. IX. CoRoT–6 b: a transiting hot Jupiter planet in an 8.9 d orbit around a low-metallicity star. A&A, 512, A14 {733}Google Scholar
Fridlund, CVM, Henning, T, Lacoste, H, 2003, Towards other Earths: DARWIN/TPF and the search for extrasolar terrestrial planets, volume 539 of ESA SP. ESA {352}Google Scholar
Fridlund, M, Gaidos, E, Barragán, O, et al., 2017, K2–111 b: a short period super-Earth transiting a metal poor, evolved old star. A&A, 604, A16 {748}Google Scholar
Fridman, PA, 2011, SETI: the transmission rate of radio communication and the signal's detection. Acta Astron., 69, 777–787 {644}CrossRefGoogle Scholar
Fried, DL, 1965, Statistics of a geometric representation of wavefront distortion. J. Opt. Soc. Amer., 55, 1427–1431 {331}CrossRefGoogle Scholar
Fried, DL, 1966, Optical resolution through a randomly inhomogeneous medium for very long and very short exposures. J. Opt. Soc. Amer., 56, 1372–1379 {331, 332}CrossRefGoogle Scholar
Friedrich, S, Zinnecker, H, Brandner, W, et al., 2005, A NICMOS direct imaging search for giant planets around the single white dwarfs in the Hyades. 14th European Workshop on White Dwarfs, volume 334 of ASP Conf. Ser., 431–434 {415}Google Scholar
Friel, E, Cayrel de Strobel G, Chmielewski, Y, et al., 1993, In search of real solar twins. III. A&A, 274, 825–837 {401}Google Scholar
Frink, S, Mitchell, DS, Quirrenbach, A, et al., 2002, Discovery of a substellar companion to the K2 III giant ι Dra. ApJ, 576, 478–484 {56, 95, 725}CrossRefGoogle Scholar
Fritzewski, DJ, Kitze, M, Mugrauer, M, et al., 2016, Long-term photometry of IC 348 with the Young Exoplanet Transit Initiative network. MNRAS, 462, 2396–2417 {158}CrossRefGoogle Scholar
Froeschlé, C, 1984, The Lyapunov characteristic exponents and applications. Journal de Mécanique Théorique et Appliquée Supplement, 101–132 {515}
Froeschlé, C, Lega, E, Gonczi, R, 1997a, Fast Lyapunov indicators: application to asteroidal motion. Cel. Mech. Dyn. Astron., 67, 41–62 {515}CrossRefGoogle Scholar
Froeschle, C, Scholl, H, 1989, The three principal secular resonances V5, Vand V 6 16 in the asteroidal belt. Cel. Mech. Dyn. Astron., 46, 231–251 {693}CrossRefGoogle Scholar
Froeschlé, M, Mignard, F, Arenou, F, 1997b, Determination of the PPN parameter gamma with the Hipparcos data. ESA–SP, volume 402, 49–52 {120}Google Scholar
Frogel, JA, Gould, A, 1998, No death star–for now. ApJ, 499, L219–L222 {655}CrossRefGoogle Scholar
Fröhlich, C, 2013, Total solar irradiance: what have we learned from the last three cycles and the recent minimum? Space Sci. Rev., 176, 237–252 {656}CrossRefGoogle Scholar
Fröhlich, HE, Frasca, A, Catanzaro, G, et al., 2012, Magnetic activity and differential rotation in the young Sun-like stars KIC–7985370 and KIC–7765135. A&A, 543, A146 {386}Google Scholar
Fröhlich, HE, Küker, M, Hatzes, AP, et al., 2009, On the differential rotation of CoRoT–2. A&A, 506, 263–268 {214, 733}Google Scholar
Frolov, PN, Anan'eva, VI, Ksanfomality, LV, et al., 2015, Stellar coronagraph observations of the phase curves of exoplanets. Solar System Research, 49, 410–419 {616}CrossRefGoogle Scholar
Fromang, S, Leconte, J, Heng, K, 2016, Shear-driven instabilities and shocks in the atmospheres of hot Jupiters. A&A, 591, A144 {591}Google Scholar
Fromang, S, Lyra, W, Masset, F, 2011, Meridional circulation in turbulent protoplanet-ary disks. A&A, 534, A107 {460}Google Scholar
Fromang, S, Nelson, RP, 2005, On the accumulation of solid bodies in global turbulent protoplanetary disk models. MNRAS, 364, L81–L85 {460, 461}CrossRefGoogle Scholar
Fromang, S, Papaloizou, J, 2006, Dust settling in local simulations of turbulent proto-planetary disks. A&A, 452, 751–762 {468}Google Scholar
Fromang, S, Terquem, C, Nelson, RP, 2005, Numerical simulations of type I planetary migration in non-turbulent magnetised disks. MNRAS, 363, 943–953 {519}CrossRefGoogle Scholar
Frouard, J, Quillen, AC, Efroimsky, M, et al., 2016, Numerical simulation of tidal evolution of a viscoelastic bodymodelled with a mass-spring network. MNRAS, 458, 2890–2901 {542}CrossRefGoogle Scholar
Fruchter, AS, Stinebring, DR, Taylor, JH, 1988, A millisecond pulsar in an eclipsing binary. Nature, 333, 237–239 {105, 106}CrossRefGoogle Scholar
Früh-Green, GL, Kelley, DS, Bernasconi, SM, et al., 2003, 30, 000 years of hydrothermal activity at the Lost City vent field. Science, 301, 495–498 {637}CrossRefGoogle ScholarPubMed
Fruth, T, Cabrera, J, Csizmadia, S, et al., 2014, Transit search from Antarctica and Chile: comparison and combination. PASP, 126, 227–242 {169, 171, 753}CrossRefGoogle Scholar
Fu, G, Deming, D, Knutson, H, et al., 2017a, Statistical analysis of HST–WFC3 transit spectroscopy of extrasolar planets. ApJ, 847, L22 {612}CrossRefGoogle Scholar
Fu, R, O'Connell, RJ, Sasselov, DD, 2010, The interior dynamics of water planets. ApJ, 708, 1326–1334 {577}CrossRefGoogle Scholar
Fu, W, Lubow, SH, Martin, RG, 2017b, Fragmentation of Lidov–Kozai disks. ApJ, 835, L29 {529}CrossRefGoogle Scholar
Fuhrmann, K, 1998, Nearby stars of the Galactic disk and halo. A&A, 338, 161–183 {391}Google Scholar
Fuhrmann, K, 2004, Nearby stars of the Galactic disk and halo. III. Astron. Nach., 325, 3–80 {394, 654}CrossRefGoogle Scholar
Fuhrmann, K, Pfeiffer, MJ, Bernkopf, J, 1997, Solar-type stars with planetary companions: 51 Peg and 47 UMa. A&A, 326, 1081–1089 {379, 388, 715, 716}Google Scholar
Fuhrmann, K, Pfeiffer, MJ, Bernkopf, J, 1998, F- and G-type stars with planetary companions: À And, ρ1Cnc (55 Cnc), τ Boo, 16 Cyg and ρ CrB. A&A, 336, 942–952 {377, 378, 379, 382, 388, 713, 715, 728}Google Scholar
Fujii, Y, Kawahara, H, 2012, Mapping Earth analogues from photometric variability: spin–orbit tomography for planets in inclined orbits. ApJ, 755, 101 {242}CrossRefGoogle Scholar
Fujii, Y, Kawahara, H, Suto, Y, et al., 2010, Colours of a second Earth. I. Estimating the fractional areas of ocean, land, and vegetation of earth-like exoplanets. ApJ, 715, 866–880 {242, 641}CrossRefGoogle Scholar
Fujii, Y, Lustig-Yaeger, J, Cowan, NB, 2017a, Rotational spectral unmixing of exo-planets: degeneracies between surface colours and geography. AJ, 154, 189 {616}CrossRefGoogle Scholar
Fujii, Y, Spiegel, DS, Mroczkowski, T, et al., 2016, Radio emission from red-giant hot Jupiters. ApJ, 820, 122 {427}CrossRefGoogle Scholar
Fujii, YI, Kobayashi, H, Takahashi, SZ, et al., 2017b, Orbital evolution of moons in weakly accreting circumplanetary disks. AJ, 153, 194 {276}CrossRefGoogle Scholar
Fujii, YI, Okuzumi, S, Inutsuka Si, 2014a, Magnetohydrodynamics with time-dependent ionisation degree in protoplanetary disks with grain evolution. Astrophysics and Space Science Proceedings, 36, 81 {459}CrossRefGoogle Scholar
Fujii, YI, Okuzumi, S, Tanigawa, T, et al., 2014b, On the viability of the magnetorot-ational instability in circumplanetary disks. ApJ, 785, 101 {461, 463}CrossRefGoogle Scholar
Fujita, T, Ohtsuki, K, Tanigawa, T, et al., 2013, Capture of planetesimals by gas drag from circumplanetary disks. AJ, 146, 140 {463, 687}CrossRefGoogle Scholar
Fukagawa, M, Itoh, Y, Tamura, M, et al., 2009, H-band image of a planetary companion around HR 8799 in 2002. ApJ, 696, L1–L5 {763}CrossRefGoogle Scholar
Fukui, A, Abe, F, Bond, IA, et al., 2009, Transiting exoplanets search for MOA-I data. IAU Symp., volume 253, 366–369 {166}Google Scholar
Fukui, A, Gould, A, Sumi, T, et al., 2015, OGLE–2012–BLG–563L b: a Saturn-mass planet around an M dwarf with the mass constrained by Subaru adaptive optics imaging. ApJ, 809, 74 {141, 760}CrossRefGoogle Scholar
Fukui, A, Kawashima, Y, Ikoma, M, et al., 2014, Multi-band, multi-epoch observations of the transiting warm Jupiter WASP–80 b. ApJ, 790, 108 {588, 756}CrossRefGoogle Scholar
Fukui, A, Livingston, J, Narita, N, et al., 2016a, Ground-based transit observation of the habitable-zone super-Earth K2–3 d. AJ, 152, 171 {747}CrossRefGoogle Scholar
Fukui, A, Narita, N, Kawashima, Y, et al., 2016b, Demonstrating high-precision, multi-band transit photometry with MuSCAT: a case for HAT–P–14 b. ApJ, 819, 27 {182, 736}CrossRefGoogle Scholar
Fukui, A, Narita, N, Kurosaki, K, et al., 2013, Optical-to-near-infrared simultaneous observations for the hot Uranus GJ 3470 b: a hint of a cloud-free atmosphere. ApJ, 770, 95 {613, 729}CrossRefGoogle Scholar
Fukui, A, Narita, N, Tristram, PJ, et al., 2011, Measurements of transit timing variations for WASP–5 b. PASJ, 63, 287–300 {752}Google Scholar
Fulle, M, Della Corte, V, Rotundi, A, et al., 2016, Comet 67P/Churyumov–Gerasimenko preserved the pebbles that formed planetesimals. MNRAS, 462, S132–S137 {473}CrossRefGoogle Scholar
Fuller, J, 2014, Saturn ring seismology: evidence for stable stratification in the deep interior of Saturn. Icarus, 242, 283–296 {411}CrossRefGoogle Scholar
Fuller, J, Lai, D, 2012, Dynamical tides in eccentric binaries and tidally excited stellar pulsations in Kepler KOI–54. MNRAS, 420, 3126–3138 {230, 542}CrossRefGoogle Scholar
Fuller, J, Lai, D, Storch, NI, 2014, Non-radial oscillations in rotating giant planets with solid cores: application to Saturn and its rings. Icarus, 231, 34–50 {411}CrossRefGoogle Scholar
Fuller, J, Luan, J, Quataert, E, 2016, Resonance locking as the source of rapid tidal migration in the Jupiter and Saturn moon systems. MNRAS, 458, 3867–3879 {688}CrossRefGoogle Scholar
Fulton, BJ, Collins, KA, Gaudi, BS, et al., 2015a, KELT–8 b: a highly inflated transiting hot Jupiter and a new technique for extracting high-precision radial velocities from noisy spectra. ApJ, 810, 30 {738}CrossRefGoogle Scholar
Fulton, BJ, Howard, AW, Weiss, LM, et al., 2016, Three temperate Neptunes orbiting nearby stars. ApJ, 830, 46 {715, 719, 723}CrossRefGoogle Scholar
Fulton, BJ, Howard, AW, Winn, JN, et al., 2013, The stellar obliquity and the long-period planet in the HAT–P–17 exoplanetary system. ApJ, 772, 80 {736}CrossRefGoogle Scholar
Fulton, BJ, Petigura, EA, Howard, AW, et al., 2017, The California–Kepler survey. III. A gap in the radius distribution of small planets. AJ, 154, 109 {176, 293, 299}CrossRefGoogle Scholar
Fulton, BJ, Shporer, A, Winn, JN, et al., 2011, Long-termtransit timing monitoring and refined light curve parameters of HAT–P–13 b. AJ, 142, 84 {195, 269, 736}CrossRefGoogle Scholar
Fulton, BJ, Tonry, JL, Flewelling, H, et al., 2014, A search for planetary eclipses of white dwarfs in the Pan-STARRS1 medium-deep fields. ApJ, 796, 114 {233}CrossRefGoogle Scholar
Fulton, BJ, Weiss, LM, Sinukoff, E, et al., 2015b, Three super-Earths orbiting HD 7924. ApJ, 805, 175 {718}CrossRefGoogle Scholar
Fung, J, Chiang, E, 2016, Gap opening in 3d: single-planet gaps. ApJ, 832, 105 {467}CrossRefGoogle Scholar
Fung, J, Chiang, E, 2017, Save the planet, feed the star: howsuper-Earths survive migration and drive disk accretion. ApJ, 839, 100 {502}CrossRefGoogle Scholar
Fung, J, Dong, R, 2015, Inferring planet mass from spiral structures in protoplanetary disks. ApJ, 815, L21 {467}CrossRefGoogle Scholar
Fung, J, Shi, JM, Chiang, E, 2014, How empty are disk gaps opened by giant planets? ApJ, 782, 88 {467}CrossRefGoogle Scholar
Funk, B, Dvorak, R, Schwarz, R, 2013, Exchange orbits: an interesting case of co-orbital motion. Cel. Mech. Dyn. Astron., 117, 41–58 {273}CrossRefGoogle Scholar
Funk, B, Libert, AS, Süli Á, et al., 2011a, On the influence of the Kozai mechanism in habitable zones of extrasolar planetary systems. A&A, 526, A98 {529, 623}Google Scholar
Funk, B, Pilat-Lohinger, E, Bazsó Á, et al., 2017, On the stability of the detected planet in the triple system HD 131399. Proceedings of the First Greek-Austrian Workshop on Extrasolar Planetary Systems, 115–124 {763}
Funk, B, Pilat-Lohinger, E, Dvorak, R, et al., 2004, Resonances in multiple planetary systems. Cel. Mech. Dyn. Astron., 90, 43–50 {514}CrossRefGoogle Scholar
Funk, B, Pilat-Lohinger, E, Eggl, S, 2015, Can there be additional rocky planets in the habitable zone of tight binary stars with a known gas giant? MNRAS, 448, 3797–3805 {80, 714, 716, 719, 724}CrossRefGoogle Scholar
Funk, B, Schwarz, R, Dvorak, R, et al., 2011b, Exchange orbits: a possible application to extrasolar planetary systems? MNRAS, 410, 455–460 {273}CrossRefGoogle Scholar
Funk, B, Schwarz, R, Süli Á, et al., 2012, On the stability of possible Trojan planets in the habitable zone: an application to HD 147513 and HD 210277. MNRAS, 423, 3074–3082 {624, 722, 724}CrossRefGoogle Scholar
Funk, B, Wuchterl, G, Schwarz, R, et al., 2010, The stability of ultra-compact planetary systems. A&A, 516, A82 {512}Google Scholar
Furlan, E, Howell, SB, 2017, The densities of planets in multiple stellar systems. AJ, 154, 66 {202}CrossRefGoogle Scholar
Furlan, E, Sargent, B, Calvet, N, et al., 2007, HD 98800: a 10Myr old transition disk. ApJ, 664, 1176–1184 {497}CrossRefGoogle Scholar
Furusawa, K, Udalski, A, Sumi, T, et al., 2013, MOA–2010–BLG–328L b: a sub-Neptune orbiting a late Mdwarf? ApJ, 779, 91 {133, 141, 759}CrossRefGoogle Scholar
Fusco, T, Blanc, A, Nicolle, M, et al., 2006a, Sky coverage estimation for multiconjugate adaptive optics systems: strategies and results. MNRAS, 370, 174–184 {332}CrossRefGoogle Scholar
Fusco, T, Petit, C, Rousset, G, et al., 2006b, Design of the extreme adaptive optics system for VLT–SPHERE, the planet finder instrument of the VLT. SPIE Conf. Ser., volume 6272, 17 {343}Google Scholar
Fusco, T, Rousset, G, Sauvage, JF, et al., 2006c, High-order adaptive optics requirements for direct detection of extrasolar planets: application to the VLT–SPHERE instrument. Optics Express, 14, 7515 {343}CrossRefGoogle Scholar
Fusco, T, Verinaud, C, Rousset, G, et al., 2006d, Extreme adaptive optics for extrasolar planet detection with ELTs: application to OWL. The Scientific Requirements for Extremely Large Telescopes, volume 232 of IAU Symp., 376–380 {345}Google Scholar
Gaeman, J, Hier-Majumder, S, Roberts, JH, 2012, Sustainability of a subsurface ocean within Triton's interior. Icarus, 220, 339–347 {688}CrossRefGoogle Scholar
Gagné, J, Faherty, JK, Mamajek, EE, et al., 2017, BANYAN. IX. The initialmass function and planetary-mass object space density of the TW Hya association. ApJS, 228, 18 {446}CrossRefGoogle Scholar
Gagné, J, Lafrenière, D, Doyon, R, et al., 2014, SIMP J2154–1055: a new low-gravity L4 brown dwarf candidate member of the Argus association. ApJ, 792, L17 {433}CrossRefGoogle Scholar
Gagné, J, Plavchan, P, Gao, P, et al., 2016, A high-precision near-infrared survey for radial velocity variable low-mass stars using CSHELL and a methane gas cell. ApJ, 822, 40 {46}CrossRefGoogle Scholar
Gahm, GF, Grenman, T, Fredriksson, S, et al., 2007, Globulettes as seeds of brown dwarfs and free-floating planetary-mass objects. AJ, 133, 1795–1809 {442}CrossRefGoogle Scholar
Gahm, GF, Persson, CM, Mäkelä, MM, et al., 2013, Mass and motion of globulettes in the Rosette Nebula. A&A, 555, A57 {446}Google Scholar
Gai, M, Vecchiato, A, Ligori, S, et al., 2012, Gravitation astrometric measurement experiment. Exp. Astron., 34, 165–180 {100}CrossRefGoogle Scholar
Gaia, Collaboration, Brown, AGA, Vallenari, A, et al., 2016a, Gaia Data Release 1. Summary of the astrometric, photometric, and survey properties. A&A, 595, A2 {99, 374}Google Scholar
Gaia, Collaboration, Prusti, T, de Bruijne, JHJ, et al., 2016b, The Gaia mission. A&A, 595, A1 {95, 99}Google Scholar
Gaidos, E, 2013, Candidate planets in the habitable zones of Kepler stars. ApJ, 770, 90 {290, 634}CrossRefGoogle Scholar
Gaidos, E, 2015, What are little worlds made of? Stellar abundances and the building blocks of planets. ApJ, 804, 40 {378}CrossRefGoogle Scholar
Gaidos, E, 2017a, A minimum mass nebula for Mdwarfs. MNRAS, 470, L1–L5 {456}CrossRefGoogle Scholar
Gaidos, E, 2017b, Transit detection of a star shade at the inner Lagrange point of an exo-planet. MNRAS, 469, 4455–4464 {233, 646}CrossRefGoogle Scholar
Gaidos, E, Conrad, CP, Manga, M, et al., 2010, Thermodynamic limits on magnetody-namos in rocky exoplanets. ApJ, 718, 596–609 {572}CrossRefGoogle Scholar
Gaidos, E, Haghighipour, N, Agol, E, et al., 2007, New worlds on the horizon: Earth-sized planets close to other stars. Science, 318, 210–{500}CrossRefGoogle ScholarPubMed
Gaidos, E, Kitzmann, D, Heng, K, 2017a, Exoplanet characterisation by multi-observatory transit photometry with TESS and CHEOPS. MNRAS, 468, 3418–3427 {180}CrossRefGoogle Scholar
Gaidos, E, Mann, AW, 2013, Objects in Kepler's mirror may be larger than they appear: bias and selection effects in transiting planet surveys. ApJ, 762, 41 {289}CrossRefGoogle Scholar
Gaidos, E, Mann, AW, 2014, M dwarf metallicities and giant planet occurrence: ironing out uncertainties and systematics. ApJ, 791, 54 {405}CrossRefGoogle Scholar
Gaidos, E, Mann, AW, Kraus, AL, et al., 2016, They are small worlds after all: revised properties of Kepler M dwarf stars and their planets. MNRAS, 457, 2877–2899 {290}CrossRefGoogle Scholar
Gaidos, E, Mann, AW, Lépine, S, et al., 2014, Trumpeting M dwarfs with CONCH-SHELL: a catalogue of nearby cool host-stars for habitable exoplanets and life. MNRAS, 443, 2561–2578 {375}CrossRefGoogle Scholar
Gaidos, E, Mann, AW, Rizzuto, A, et al., 2017b, Zodiacal exoplanets in time (ZEIT). II. A super-Earth orbiting a young K dwarf in the Pleiades neighbourhood. MNRAS, 464, 850–862 {159, 748}CrossRefGoogle Scholar
Gaidos, E, Williams, DM, 2004, Seasonality on terrestrial extrasolar planets: inferring obliquity and surface conditions from infrared light curves. New Astron., 10, 67–77 {221}CrossRefGoogle Scholar
Gaidos, E, Williams, J, Kraus, A, 2017c, Origin of interstellar object A/2017 U1 in a nearby young stellar association? RNAAS, 1, 13 {693}Google Scholar
Gaidos, EJ, 1995, Paleodynamics: solar system formation and the early environment of the Sun. Icarus, 114, 258–268 {650, 651}CrossRefGoogle Scholar
Gaidos, EJ, 1999, Observational constraints on Late Heavy Bombardment episodes around young solar analogues. ApJ, 510, L131–L134 {342}CrossRefGoogle Scholar
Gail, H, 2002, Radial mixing in protoplanetary accretion disks. III. Carbon dust oxidation and abundance of hydrocarbons in comets. A&A, 390, 253–265 {460, 562}Google Scholar
Gail, H, Hoppe, P, 2010, The origins of protoplanetary dust and the formation of accretion disks. Protoplanetary Dust: Astrophysical and Cosmochemical Perspectives, 27–65, Cambridge University Press {451, 453, 456}
Gail, HP, 2004, Radial mixing in protoplanetary accretion disks. IV. Metamorphosis of the silicate dust complex. A&A, 413, 571–591 {562}Google Scholar
Gajdoš, P, Parimucha Š, Hambálek L’, et al., 2017, Transit-timing variations in the sys-tem Kepler–410A b. MNRAS, 469, 2907–2912 {745}CrossRefGoogle Scholar
Galante, D, Horvath, JE, 2007, Biological effects of gamma-ray bursts: distances for severe damage on the biota. Int. J. Astrobiol., 6, 19–26 {647}CrossRefGoogle Scholar
Galarza, JY, Meléndez, J, Cohen, JG, 2016, Serendipitous discovery of the faint solar twin Inti 1. A&A, 589, A65 {405}Google Scholar
Gale, J, Wandel, A, 2017, The potential of planets orbiting red dwarf stars to support oxygenic photosynthesis and complex life. Int. J. Astrobiol., 16, 1–9 {629}CrossRefGoogle Scholar
Galeev, AI, Bikmaev, IF, Musaev, FA, et al., 2004, Chemical composition of 15 photometric analogues of the Sun. Astronomy Reports, 48, 492–510 {405}CrossRefGoogle Scholar
Galicher, R, Baudoz, P, Baudrand, J, 2011a, Multi-stage four-quadrant phase mask: achromatic coronagraph for space-based and ground-based telescopes. A&A, 530, A43 {336, 343}Google Scholar
Galicher, R, Baudoz, P, Boccaletti, A, et al., 2010a, SEE–COAST: polarimetric and spectral characterisation of exoplanets with a small space telescope. SPIE Conf. Ser., volume 7731 {182}Google Scholar
Galicher, R, Baudoz, P, Rousset, G, 2008, Wavefront error correction and Earth-like planet detection by a self-coherent camera in space. A&A, 488, L9–L12 {339, 340}Google Scholar
Galicher, R, Baudoz, P, Rousset, G, et al., 2010b, Self-coherent camera as a focal plane wavefront sensor: simulations. A&A, 509, A31 {341}Google Scholar
Galicher, R, Marois, C, Macintosh, B, et al., 2011b, M-band imaging of the HR 8799 planetary system using an innovative LOCI-based background subtraction. ApJ, 739, L41 {340, 341, 763}CrossRefGoogle Scholar
Galicher, R, Marois, C, Macintosh, B, 2016, The International Deep Planet Survey (IDPS). II. The frequency of directly imaged giant exoplanets with stellar mass. A&A, 594, A63 {358, 364}Google Scholar
Galicher, R, Marois, C, Zuckerman, B, et al., 2013, Fomalhaut b: independent analysis of the HST public archive data. ApJ, 769, 42 {365, 761}CrossRefGoogle Scholar
Galicher, R, Rameau, J, Bonnefoy, M, et al., 2014, Near-infrared detection and charac-terisation of the exoplanet HD 95086 b with the Gemini Planet Imager. A&A, 565, L4 {762}Google Scholar
Gall, C, Andersen, AC, Hjorth, J, 2011, Genesis and evolution of dust in galaxies in the early Universe. II. Rapid dust evolution in quasars at z>6. A&A, 528, A14 {495}Google Scholar
Galland, F, Lagrange, AM, Udry, S, et al., 2005a, Extrasolar planets and brown dwarfs around A-F type stars. I. Performances of radial velocity measurements, first analyses of variations. A&A, 443, 337–345 {56, 57}Google Scholar
Galland, F, Lagrange, AM, Udry, S, 2005b, Extrasolar planets and brown dwarfs around A-F type stars. II. A planet found with ELODIE around the F6V star HD 33564. A&A, 444, L21–L24 {56, 719}Google Scholar
Galland, F, Lagrange, AM, Udry, S, 2006a, Extrasolar planets and brown dwarfs around A-F type stars. III. fl Pic: looking for planets, finding pulsations. A&A, 447, 355–359 {493}Google Scholar
Galland, F, Lagrange, AM, Udry, S, 2006b, Extrasolar planets and brown dwarfs around A-F type stars. IV. A candidate brown dwarf around the A9V pulsating star HD 180777. A&A, 452, 709–714 {56}Google Scholar
Gallardo, J, Minniti, D, Valls-Gabaud, D, et al., 2005, Characterisation of extrasolar planetary transit candidates. A&A, 431, 707–720 {168}Google Scholar
Gallardo, J, Silva, S, Ramírez Alegría S, et al., 2010, Characterisation of extrasolar planetary transit candidates. II. The companions to late M-type stars. A&A, 522, A4 {168}Google Scholar
Gallardo, T, Hugo, G, Pais, P, 2012, Survey of Kozai dynamics beyond Neptune. Icarus, 220, 392–403 {528}CrossRefGoogle Scholar
Gallet, F, Bolmont, E, Mathis, S, et al., 2017a, Tidal dissipation in rotating low-mass stars and implications for the orbital evolution of close-in planets. I. From the PMS to the RGB at solar metallicity. A&A, 604, A112 {537}Google Scholar
Gallet, F, Charbonnel, C, Amard, L, et al., 2017b, Impacts of stellar evolution and dynamics on the habitable zone: the role of rotation and magnetic activity. A&A, 597, A14 {622, 628}Google Scholar
Galvagni, M, Mayer, L, 2014, Early evolution of clumps formed via gravitational instability in protoplanetary disks: precursors of Hot Jupiters? MNRAS, 437, 2909–2921 {499}CrossRefGoogle Scholar
Gálvez-Ortiz, MC, Delgado-Mena, E, González Hernández JI, et al., 2011, Beryllium abundances in stars with planets: extending the sample. A&A, 530, A66 {403}Google Scholar
Gammie, CF, 1996, Layered accretion in T Tauri disks. ApJ, 457, 355–362 {459}CrossRefGoogle Scholar
Gammie, CF, 2001, Nonlinear outcome of gravitational instability in cooling, gaseous disks. ApJ, 553, 174–183 {488}CrossRefGoogle Scholar
Gammie, CF, Menou, K, 1998, On the origin of episodic accretion in dwarf novae. ApJ, 492, L75–L78 {459}CrossRefGoogle Scholar
Gandhi, S, Madhusudhan, N, 2017, GENESIS: new self-consistent models of exo-planetary spectra. MNRAS, 472, 2334–2355 {606}CrossRefGoogle Scholar
Gandolfi, D, Barragán, O, Hatzes, AP, et al., 2017, The transiting multi-planet system HD 3167: a 5.7 M⊕ super-Earth and an 8.3 M⊕ mini-Neptune. AJ, 154, 123 {748}CrossRefGoogle Scholar
Gandolfi, D, Collier Cameron, A, Endl, M, et al., 2012, Doppler tomography of transiting exoplanets: a prograde, low-inclined orbit for the hot Jupiter CoRoT–11 b. A&A, 543, L5 {252, 734}Google Scholar
Gandolfi, D, Hébrard, G, Alonso, R, et al., 2010, Transiting exoplanets from the CoRoT space mission. XIV. CoRoT–11 b: a transiting massive hot-Jupiter in a prograde orbit around a rapidly rotating F-type star. A&A, 524, A55 {543, 734}Google Scholar
Gandolfi, D, Parviainen, H, Deeg, HJ, et al., 2015, Kepler–423 b: a half-Jupiter mass planet transiting a very old solar-like star. A&A, 576, A11 {745}Google Scholar
Gandolfi, D, Parviainen, H, Fridlund, M, et al., 2013, Kepler–77 b: a very low albedo, Saturn-mass transiting planet around a metal-rich solar-like star. A&A, 557, A74 {742}Google Scholar
Gänsicke, BT, Aungwerojwit, A, Marsh, TR, et al., 2016, High-speed photometry of the disintegrating planetesimals at WD1145+017: evidence for rapid dynamical evolution. ApJ, 818, L7 {418}CrossRefGoogle Scholar
Gänsicke, BT, Koester, D, Farihi, J, et al., 2012, The chemical diversity of exo-terrestrial planetary debris around white dwarfs. MNRAS, 424, 333–347 {417, 419}CrossRefGoogle Scholar
Gänsicke, BT, Marsh, TR, Southworth, J, et al., 2006, A gaseous metal disk around a white dwarf. Science, 314, 1908–1910 {415, 416}CrossRefGoogle ScholarPubMed
Gao, P, Hu, R, Robinson, TD, et al., 2015, Stability of CO2 atmospheres on desiccated Mdwarf exoplanets. ApJ, 806, 249 {599}CrossRefGoogle Scholar
Gao, P, Marley, MS, Zahnle, K, et al., 2017, Sulphur hazes in giant exoplanet atmospheres: impacts on reflected light spectra. AJ, 153, 139 {588, 589, 591}CrossRefGoogle Scholar
Garai, Z, 2018, Light-curve analysis of KOI–2700 b: the second extrasolar planet with a comet-like tail. A&A, 611, A63 {232}Google Scholar
Garai, Z, Pribulla, T, Hambálek, L, et al., 2016, Search for transiting exoplanets and variable stars in the open cluster NGC 7243. Astron. Nach., 337, 261–285 {158}CrossRefGoogle Scholar
Garai, Z, Pribulla, T, Hambálek, L, 2017, Affordable echelle spectroscopy of the eccentric HAT–P–2, WASP–14, and XO–3 planetary systems with a sub-meter-class telescope. Astron. Nach., 338, 35–48 {47, 735, 753, 757}CrossRefGoogle Scholar
Garai, Z, Zhou, G, Budaj, J, et al., 2014, Search for circumplanetary material and orbital period variations of short-period Kepler exoplanet candidates. Astron. Nach., 335, 1018–1036 {232, 747}CrossRefGoogle Scholar
Garaud, P, 2011, What happened to the other Mohicans? The case for a primordial origin to the planet-metallicity connection. ApJ, 728, L30 {394}CrossRefGoogle Scholar
Garaud, P, Lin, DNC, 2004, On the evolution and stability of a protoplanetary disk dust layer. ApJ, 608, 1050–1075 {460}CrossRefGoogle Scholar
Garaud, P, Lin, DNC, 2007, The effect of internal dissipation and surface irradiation on the structure of disks and the location of the snow line around Sun-like stars. ApJ, 654, 606–624 {564, 667}CrossRefGoogle Scholar
Garaud, P, Meru, F, Galvagni, M, et al., 2013, From dust to planetesimals: an improved model for collisional growth in protoplanetary disks. ApJ, 764, 146 {446, 469}CrossRefGoogle Scholar
García, L, Gómez, M, 2016, Modeling of debris disks in single and binary stars. Rev. Mex. Astron. Astrofis., 52, 357–374 {495}Google Scholar
Garcia, PJV, Thiébaut, E, Bacon, R, 1999, Spatially resolved spectroscopy of Z Canis Majoris components. A&A, 346, 892–896 {444}Google Scholar
García, RA, Ceillier, T, Salabert, D, et al., 2014, Rotation and magnetism of Kepler pulsating solar-like stars: towards asteroseismically calibrated age-rotation relations. A&A, 572, A34 {309}Google Scholar
García-Berro, E, Isern, J, Kubyshin, YA, 2007, Astronomical measurements and constraints on the variability of fundamental constants. A&A Rev., 14, 113–170 {630}Google Scholar
GarciaLopez, RJ, Perez de Taoro MR, 1998, Beryllium abundances in parent stars of extrasolar planets: 16 Cyg A and B and 55 Cnc. A&A, 334, 599–605 {403, 715, 728}Google Scholar
Garcia-Melendo, E, López-Morales, M, 2011, Potential biases in the detection of planetary systems with large transit timing variations. MNRAS, 417, L16–L20 {272}CrossRefGoogle Scholar
Garcia-Melendo, E, McCullough, PR, 2009, Photometric detection of a transit of HD 80606 b. ApJ, 698, 558–561 {158, 170, 729}CrossRefGoogle Scholar
García Muñoz, A, 2007, Physical and chemical aeronomy of HD 209458 b. Planet. Space Sci., 55, 1426–1455 {732}CrossRefGoogle Scholar
García Muñoz, A, 2015, Towards a comprehensive model of Earth's disk-integrated Stokes vector. Int. J. Astrobiol., 14, 379–390 {161, 246}CrossRefGoogle Scholar
García Muñoz, A, Cabrera, J, 2018, Exoplanet phase curves at large phase angles: diagnostics for extended hazy atmospheres. MNRAS, 473, 1801–1818 {616}CrossRefGoogle Scholar
García Muñoz, A, Mills, FP, 2012, The June 2012 transit of Venus: framework for interpretation of observations. A&A, 547, A22 {161, 222}Google Scholar
García Muñoz, A, Zapatero Osorio, MR, Barrena, R, et al., 2012, Glancing views of the Earth: from a lunar eclipse to an exoplanetary transit. ApJ, 755, 103 {161, 222}CrossRefGoogle Scholar
GarciaMunoz, A, Isaak, KG, 2015, Probing exoplanet clouds with optical phase curves. Proc. Nat. Acad. Sci., 112, 13461–13466 {738}Google Scholar
Garcia-Piquer, A, Morales, JC, Ribas, I, et al., 2017, Efficient scheduling of astronomical observations: application to the CARMENES radial-velocity survey. A&A, 604, A87 {27}Google Scholar
Garcia-Sage, K, Glocer, A, Drake, JJ, et al., 2017, On the magnetic protection of the atmosphere of Proxima Cen b. ApJ, 844, L13 {714}CrossRefGoogle Scholar
García-Sánchez, J, 2000, Close approaches of stars to the solar system based on Hip-parcos data. PASP, 112, 422–422 {655}CrossRefGoogle Scholar
García-Sánchez, J, Preston, RA, Jones, DL, et al., 1999, Stellar encounters with the Oort cloud based on Hipparcos data. AJ, 117, 1042–1055 {655}CrossRefGoogle Scholar
García-Sánchez, J, Weissman, PR, Preston, RA, et al., 2001, Stellar encounters with the solar system. A&A, 379, 634–659 {655}Google Scholar
Garhart, E, Deming, D, Mandell, A, et al., 2018, Spitzer secondary eclipses of Qatar–1 b. A&A, 610, A55 {750}Google Scholar
Garraffo, C, Drake, JJ, Cohen, O, 2016, The space weather of Proxima Cen b. ApJ, 833, L4 {714}CrossRefGoogle Scholar
Garraffo, C, Drake, JJ, Cohen, O, et al., 2017, The threatening magnetic and plasma environment of the TRAPPIST–1 planets. ApJ, 843, L33 {750}CrossRefGoogle Scholar
Garrett, D, Savransky, D, Macintosh, B, 2017, A simple depth-of-search metric for exo-planet imaging surveys. AJ, 154, 47 {357}CrossRefGoogle Scholar
Garrick-Bethell, I, Perera, V, Nimmo, F, et al., 2014, The tidal-rotational shape of the Moon and evidence for polar wander. Nature, 512, 181–184 {665}CrossRefGoogle ScholarPubMed
Garrison, R, 2000, Classification of stellar spectra. Encyclopedia of Astronomy and Astrophysics {435}
Gartrelle, GM, 2015, Unknown caller: can we effectively manage the announcement of discovery of extraterrestrial life? Int. J. Astrobiol., 14, 577–587 {648}CrossRefGoogle Scholar
Garufi, A, Quanz, SP, Avenhaus, H, et al., 2013, Small versus large dust grains in transition disks: do different cavity sizes indicate a planet? HD 135344B (SAO 206462) in polarised light with VLT–NACO. A&A, 560, A105 {340, 367, 368, 466}Google Scholar
Garufi, A, Quanz, SP, Schmid, HM, et al., 2016, The SPHERE view of the planet-forming disk around HD 100546. A&A, 588, A8 {466, 493, 494, 762}Google Scholar
Gary, BL, Rappaport, S, Kaye, TG, et al., 2017, WD 1145+017 photometric observations during eight months of high activity. MNRAS, 465, 3267–3280 {418}CrossRefGoogle Scholar
Gary, DE, Linsky, JL, 1981, First detection of nonflare microwave emissions from the coronae of single late-type dwarf stars. ApJ, 250, 284–292 {101}CrossRefGoogle Scholar
Gáspár, A, Psaltis, D, Özel F, et al., 2012a, Modeling collisional cascades in debris disks: the numerical method. ApJ, 749, 14 {496}CrossRefGoogle Scholar
Gáspár, A, Psaltis, D, Rieke, GH, et al., 2012b, Modeling collisional cascades in debris disks: steep dust-size distributions. ApJ, 754, 74 {496}CrossRefGoogle Scholar
Gáspár, A, Rieke, GH, Ballering, N, 2016, The correlation between metallicity and debris diskmass. ApJ, 826, 171 {495}CrossRefGoogle Scholar
Gáspár, A, Rieke, GH, Balog, Z, 2013, The collisional evolution of debris disks. ApJ, 768, 25 {496}CrossRefGoogle Scholar
Gaspar, HS, Winter, OC, Vieira Neto, E, 2011, Irregular satellites of Jupiter: capture configurations of binary-asteroids. MNRAS, 415, 1999–2008 {688}CrossRefGoogle Scholar
Gaspar, HS, Winter, OC, Vieira Neto, E, 2013, Irregular satellites of Jupiter: three-dimensional study of binary-asteroid captures. MNRAS, 433, 36–46 {688}CrossRefGoogle Scholar
Gaspar, HS, Winter, OC, Vieira Neto, E, 2017, The asteroid belt outer region under jumping-Jupiter migration. MNRAS, 470, 2680–2686 {697}CrossRefGoogle Scholar
Gatewood, G, 1987, Themultichannel astrometric photometer and atmospheric limitations in the measurement of relative positions. AJ, 94, 213–224 {82, 83}CrossRefGoogle Scholar
Gatewood, G, 1996, Lalande 21185. AAS Bulletin, volume 28, 885 {83}Google Scholar
Gatewood, G, Eichhorn, H, 1973, An unsuccessful search for a planetary companion of Barnard's star. AJ, 78, 769–776 {83}CrossRefGoogle Scholar
Gatewood, G, Han, I, Black, DC, 2001, A combined Hipparcos and multichannel astro-metric photometer study of the proposed planetary system of ρ CrB. ApJ, 548, L61–L63 {94, 715}CrossRefGoogle Scholar
Gatewood, G, Stein, J, de Jonge, JK, et al., 1992, Multichannel astrometric photometer and photographic astrometric studies in the regions of Lalande 21185, BD+56 2966, and HR 4784. AJ, 104, 1237–1247 {83}CrossRefGoogle Scholar
Gauchet, L, Lacour, S, Lagrange, AM, et al., 2016, Sparse aperture masking at the VLT. II. Detection limits for the eight debris disks stars fl Pic, AU Mic, 49 Cet, · Tel, Fomalhaut, g Lup, HD 181327 and HR 8799. A&A, 595, A31 {761, 762, 763}Google Scholar
Gaudi, BS, 1998, Distinguishing between binary-source and planetary microlensing perturbations. ApJ, 506, 533–539 {123}CrossRefGoogle Scholar
Gaudi, BS, 2002, Interpreting the M22 spike events. ApJ, 566, 452–462 {151}CrossRefGoogle Scholar
Gaudi, BS, 2005, On the size distribution of close-in extrasolar giant planets. ApJ, 628, L73–L76 {303}CrossRefGoogle Scholar
Gaudi, BS, 2008, Microlensing searches for planets: results and future prospects. ASP Conf. Ser., volume 398, 479–487 {120}Google Scholar
Gaudi, BS, 2010, Microlensing by exoplanets. Exoplanets, 79–110, Univ. Arizona Press {126}
Gaudi, BS, 2012, Microlensing surveys for exoplanets. ARA&A, 50, 411–453 {120, 123, 125, 126, 127, 139, 142, 149, 150}Google Scholar
Gaudi, BS, Albrow, MD, An, J, et al., 2002, Microlensing constraints on the frequency of Jupiter-mass companions: analysis of five years of planet photometry. ApJ, 566, 463–499 {140}CrossRefGoogle Scholar
Gaudi, BS, Bennett, DP, Udalski, A, et al., 2008, Discovery of a Jupiter/Saturn analogue with gravitational microlensing. Science, 319, 927–930 {10, 133, 134, 141, 145, 146, 759}CrossRefGoogle Scholar
Gaudi, BS, Bloom, JS, 2005, Astrometric microlensing constraints on a massive body in the outer solar system with Gaia. ApJ, 635, 711–717 {138, 687}CrossRefGoogle Scholar
Gaudi, BS, Chang, H, Han, C, 2003, Probing structures of distant extrasolar planets with microlensing. ApJ, 586, 527–539 {136}CrossRefGoogle Scholar
Gaudi, BS, Gould, A, 1997, Planet parameters in microlensing events. ApJ, 486, 85–99 {123, 138}CrossRefGoogle Scholar
Gaudi, BS, Gould, A, 1999, Spectrophotometric resolution of stellar surfaces with microlensing. ApJ, 513, 619–625 {136}CrossRefGoogle Scholar
Gaudi, BS, Han, C, 2004, The many possible interpretations of microlensing event OGLE–2002–BLG–55. ApJ, 611, 528–536 {140}CrossRefGoogle Scholar
Gaudi, BS, Naber, RM, Sackett, PD, 1998, Microlensing by multiple planets in high-magnification events. ApJ, 502, L33–L37 {123}CrossRefGoogle Scholar
Gaudi, BS, Sackett, PD, 2000, Detection efficiencies of microlensing data sets to stellar and planetary companions. ApJ, 528, 56–73 {123, 130, 140}CrossRefGoogle Scholar
Gaudi, BS, Seager, S, Mallen-Ornelas, G, 2005, On the period distribution of close-in extrasolar giant planets. ApJ, 623, 472–481 {13}CrossRefGoogle Scholar
Gaudi, BS, Stassun, KG, Collins, KA, et al., 2017, A giant planet undergoing extreme-ultraviolet irradiation by its hot massive-star host. Nature, 546, 514–518 {300, 601, 738}Google ScholarPubMed
Gaudi, BS, Winn, JN, 2007, Prospects for the characterisation and confirmation of transiting exoplanets via the Rossiter–McLaughlin effect. ApJ, 655, 550–563 {249}CrossRefGoogle Scholar
Gaulme, P, Deheuvels, S, Weiss, WW, et al., 2010a, HD 46375: seismic and spectropo-larimetric analysis of a young Sun hosting a Saturn-like planet. A&A, 524, A47 {421, 720}Google Scholar
Gaulme, P, Schmider, FX, Gay, J, et al., 2011, Detection of Jovian seismic waves: a new probe of its interior structure. A&A, 531, A104 {411}Google Scholar
Gaulme, P, Vannier, M, Guillot, T, et al., 2010b, Possible detection of phase changes from the non-transiting planet HD 46375 b by CoRoT. A&A, 518, L153 {236, 720}Google Scholar
Gauss, CF, 1857, Theory of the Motion of the Heavenly Bodies Moving About the Sun in Conic Sections. Little, Brown and Company (Boston) {701}Google Scholar
Gautam, AK, Siemion, A, Korpela, EJ, et al., 2014, SETI searches for radio transients from Kepler field planets and astropulse candidates. AAS Abstracts #224, 405.06 {644}Google Scholar
Gautier, D, Conrath, B, Flasar, M, et al., 2006, The helium to hydrogen ratio in Saturn's atmosphere from Cassini CIRS and radio science measurement. 36th COSPAR Scientific Assembly, volume 36 of COSPARMeeting {660}Google Scholar
Gautier, D, Hersant, F, Mousis, O, et al., 2001a, Enrichments in volatiles in Jupiter: a new interpretation of the Galileo measurements (Erratum to: 2001ApJ…550L.227G). ApJ, 559, L183–L183 {578}Google Scholar
Gautier, D, Hersant, F, Mousis, O, 2001b, Enrichments in volatiles in Jupiter: a new interpretation of the Galileo measurements. ApJ, 550, L227–L230 {578, 661}CrossRefGoogle Scholar
Gautier, TN, Borucki, WJ, Caldwell, DA, et al., 2007, The Kepler follow-up observation programme. Transiting Extrasolar Planets Workshop, volume 366 of ASP Conf. Ser., 219–224 {197}Google Scholar
Gautier, TN, Charbonneau, D, Rowe, JF, et al., 2012, Kepler–20: a Sun-like star with three sub-Neptune exoplanets and two Earth-size candidates. ApJ, 749, 15 {179, 740}CrossRefGoogle Scholar
Gauza, B, Béjar, VJS, Pérez-Garrido, A, et al., 2015, Discovery of a young planetary mass companion to the nearby M dwarf VHS J125601.92–125723.9. ApJ, 804, 96 {362, 764}CrossRefGoogle Scholar
Gavrilov, SV, Zharkov, VN, 1977, Love numbers of the giant planets. Icarus, 32, 443–449 {534}CrossRefGoogle Scholar
Gay, J, Rabbia, Y, 1996, An interferometric method for coronography. Academie des Science Paris Comptes Rendus Serie B Sciences Physiques, 322, 265–271 {334}Google Scholar
Gayon, J, Bois, E, 2008a, Are retrograde resonances possible in multi-planet systems? A&A, 482, 665–672 {76, 77, 321, 508, 516}Google Scholar
Gayon, J, Bois, E, 2008b, Retrograde resonances in compact multi-planetary systems: a feasible sta-bilising mechanism. IAU Symp., volume 249, 511–516 {76}Google Scholar
Gayon, J, Bois, E, Scholl, H, 2009, Dynamics of planets in retrograde mean motion resonance. Cel. Mech. Dyn. Astron., 103, 267–279 {76}CrossRefGoogle Scholar
Gayon, J, Marzari, F, Scholl, H, 2008, Stable chaos in the 55 Cnc exoplanetary system? MNRAS, 389, L1–L3 {71, 516, 728}CrossRefGoogle Scholar
Gayon-Markt, J, Bois, E, 2009, On fitting planetary systems in counter-revolving configurations. MNRAS, 399, L137–L140 {77}CrossRefGoogle Scholar
Gazak, JZ, Johnson, JA, Tonry, J, et al., 2012, Transit analysis package: an IDL graphical user interface for exoplanet transit photometry. Advances in Astronomy, 2012, 697967 {195}CrossRefGoogle Scholar
Gazzano, JC, de Laverny, P, Deleuil, M, et al., 2010, Stellar characterisation of CoRoT fields with MATISSE. A&A, 523, A91 {388}Google Scholar
Ge, J, 2002, Fixed delay interferometry for Doppler extrasolar planet detection. ApJ, 571, L165–L168 {46, 49}CrossRefGoogle Scholar
Ge, J, 2007, An all-sky extrasolar planet survey with multiple object, dispersed fixed-delay interferometers. Revista Mexicana de Astronomia y Astrofisica Conference Series, volume 28, 31–37 {50}Google Scholar
Ge, J, Angel, JRP, Jacobsen, B, et al., 2002a, An optical ultrahigh-resolution cross-dispersed echelle spectrograph with adaptive optics. PASP, 114, 879–891 {28}CrossRefGoogle Scholar
Ge, J, Eisenstein, D, 2009, MARVELS: revealing the formation and dynamical evolution of giant planet systems. Astro2010: The Astronomy and Astrophysics Decadal Survey, volume 2010 of Astronomy, 86 {46, 49}Google Scholar
Ge, J, Erskine, DJ, Rushford, M, 2002b, An externally dispersed interferometer for sensitive Doppler extrasolar planet searches. PASP, 114, 1016–1028 {49}CrossRefGoogle Scholar
Ge, J, Lee, B, Mahadevan, S, et al., 2009, The SDSS–IIIMulti-object APO Radial-Velocity Exoplanet Large-area Survey (MARVELS) and its early results. AAS Abstracts, volume 213, 336.02 {49, 55, 56}Google Scholar
Ge, J, Mahadevan, S, Lee, B, et al., 2008, First results from the SDSS–III Multi-object APO Radial-Velocity Exoplanet Large-area Survey (MARVELS). AAS Abstracts, volume 40, 01.06 {46}Google Scholar
Ge, J, Powell, S, Zhao, B, et al., 2014, A robotic, compact, and extremely high resolution optical spectrograph for a close-in super-Earth survey. Ground-based and Airborne Instrumentation for Astronomy V, volume 9147 of Proc. SPIE, 914786 {46}Google Scholar
Ge, J, van Eyken, J, Mahadevan, S, et al., 2006, The first extrasolar planet discovered with a new-generation high-throughput Doppler instrument. ApJ, 648, 683–695 {49, 721}CrossRefGoogle Scholar
Ge, J, van Eyken, JC, Mahadevan, S, et al., 2007, An all sky extrasolar planet survey with new generation multiple object Doppler instruments at Sloan telescope. Revista Mexicana de Astronomia y Astrofisica Conference Series, volume 29, 30–36 {46, 49, 50}Google Scholar
Ge, J, Zhao, B, Powell, S, et al., 2012, Design and performance of a new generation, compact, low cost, very high Doppler precision and resolution optical spectrograph. Ground-based and Airborne Instrumentation for Astronomy IV, volume 8446 of Proc. SPIE, 84468R {46}Google Scholar
Geballe, TR, Knapp, GR, Leggett, SK, et al., 2002, Toward spectral classification of L and T dwarfs: infrared and optical spectroscopy and analysis. ApJ, 564, 466–481 {432}CrossRefGoogle Scholar
Geballe, TR, Kulkarni, SR, Woodward, CE, et al., 1996, The near-infrared spectrum of the brown dwarf GJ 229B. ApJ, 467, L101 {436}CrossRefGoogle Scholar
Gebauer, S, Grenfell, JL, Stock, JW, et al., 2017, Evolution of Earth-like extrasolar planetary atmospheres: assessing the atmospheres and biospheres of early Earth analogue planets with a coupled atmosphere biogeochemical model. Astrobiology, 17, 27–54 {674}CrossRefGoogle Scholar
Geers, V, Scholz, A, Jayawardhana, R, et al., 2011, Substellar Objects in Nearby Young Clusters (SONYC). II. The brown dwarf population of ρ Oph. ApJ, 726, 23 {434}CrossRefGoogle Scholar
Geers, VC, Gorti, U, Meyer, MR, et al., 2012, Remnant gas in evolved circumstellar disks: Herschel–PACS observations of 10–100Myr old disk systems. ApJ, 755, 8 {493}CrossRefGoogle Scholar
Gehrels, N, 2010, The Joint Dark Energy Mission (JDEM) Omega [unpublished]. ArXiv e-prints {143}
Gehrels, N, Laird, CM, Jackman, CH, et al., 2003, Ozone depletion from nearby supernovae. ApJ, 585, 1169–1176 {651}CrossRefGoogle Scholar
Gehrels, T (ed.), 1976, Jupiter: Studies of the Interior, Atmosphere, Magnetosphere and Satellites {651}
Gehrels, T, Matthews, MS, 1984, Saturn. University of Arizona Press {651}Google Scholar
Geier, S, Classen, L, Brünner, P, et al., 2012, Low-mass stellar and substellar companions to sdB stars. Fifth Meeting on Hot Subdwarf Stars and Related Objects, volume 452 of ASP Conf. Ser., 153 {111}Google Scholar
Geiler, F, Krivov, AV, 2017, Does warm debris dust stem from asteroid belts? MNRAS, 468, 959–970 {497}CrossRefGoogle Scholar
Gelino, CR, Kirkpatrick, JD, Cushing, MC, et al., 2011, WISE brown dwarf binaries: the discovery of a T5+T5 and a T8.5+T9 system. AJ, 142, 57 {433, 434, 436}CrossRefGoogle Scholar
Gelino, CR, Marley, MS, Holtzman, JA, et al., 2002, L dwarf variability: I-band observations. ApJ, 577, 433–446 {440}CrossRefGoogle Scholar
Gelino, DM, Kane, SR, 2014, Phase curves of the Kepler–11 multi-planet system. ApJ, 787, 105 {242, 243, 739}CrossRefGoogle Scholar
Gelman, A, 2008, Objections to Bayesian statistics. Bayesian Anal., 3(3), 445–449 {24}CrossRefGoogle Scholar
Gelman, SE, Elkins-Tanton, LT, Seager, S, 2011, Effects of stellar flux on tidally-locked terrestrial planets: degree-1 mantle convection and local magma ponds. ApJ, 735, 72 {420}CrossRefGoogle Scholar
Genda, H, Abe, Y, 2003, Survival of a proto-atmosphere through the stage of giant impacts: the mechanical aspects. Icarus, 164, 149–162 {672}CrossRefGoogle Scholar
Genda, H, Abe, Y, 2005, Enhanced atmospheric loss on protoplanets at the giant impact phase in the presence of oceans. Nature, 433, 842–844 {575, 668, 672}CrossRefGoogle ScholarPubMed
Genda, H, Brasser, R, Mojzsis, SJ, 2017, The terrestrial late veneer from core disruption of a lunar-sized impactor. Earth Planet. Sci. Lett., 480, 25–32 {669}CrossRefGoogle Scholar
Genda, H, Kobayashi, H, Kokubo, E, 2015, Warm debris disks produced by giant impacts during terrestrial planet formation. ApJ, 810, 136 {497}CrossRefGoogle Scholar
Genda, H, Kokubo, E, Ida, S, 2012, Merging criteria for giant impacts of protoplanets. ApJ, 744, 137 {476}CrossRefGoogle Scholar
GentileFusillo, NP, Gänsicke, BT, Farihi, J, et al., 2017, Trace hydrogen in helium atmosphere white dwarfs as a possible signature of water accretion. MNRAS, 468, 971–980 {419}Google Scholar
Georgakarakos, N, Dobbs-Dixon, I, Way, MJ, 2016, Long-term evolution of planetary systems with a terrestrial planet and a giant planet. MNRAS, 461, 1512–1528 {511}CrossRefGoogle Scholar
Georgakarakos, N, Eggl, S, 2015, Analytic orbit propagation for transiting circum-binary planets. ApJ, 802, 94 {739, 740, 742, 745}CrossRefGoogle Scholar
George, SJ, Stevens, IR, 2007, Giant meterwave radio telescope low-frequency observations of extrasolar planetary systems. MNRAS, 382, 455–460 {425, 427}CrossRefGoogle Scholar
Gerard, B, Lawler, S, Marois, C, et al., 2016, Searching for the HR 8799 debris disk with HST–STIS. ApJ, 823, 149 {763}CrossRefGoogle Scholar
Geretshauser, RJ, Meru, F, Speith, R, et al., 2011a, The four-population model: a new classification scheme for pre-planetesimal collisions. A&A, 531, A166 {468, 469}Google Scholar
Geretshauser, RJ, Speith, R, Kley, W, 2011b, Collisions of inhomogeneous pre-planetesimals. A&A, 536, A104 {458, 468}Google Scholar
Gerlach, E, Haghighipour, N, 2012, Can GJ 876 host four planets in resonance? Cel. Mech. Dyn. Astron., 113, 35–47 {717}CrossRefGoogle Scholar
Geroyannis, VS, 2015, Gravitational quantisation of exoplanet orbits in HD 40307, μ Ara, Kepler–26, Kepler–62, and Kepler–275: comparing predicted orbits [unpublished]. ArXiv e-prints {510, 713, 719, 740, 741, 744}
Gerstenkorn, H, 1955, Über Gezeitenreibung beim Zweikörperproblem [About tidal friction in the two-body problem]. ZAp, 36, 245 {664}Google Scholar
Getley, AK, Carter, B, King, R, et al., 2017, Evidence for a planetary mass third body orbiting the binary star KIC–5095269. MNRAS, 468, 2932–2937 {117}CrossRefGoogle Scholar
Gettel, S, Charbonneau, D, Dressing, CD, et al., 2016, The Kepler–454 system: a small, not-rocky inner planet, a Jovian world, and a distant companion. ApJ, 816, 95 {746}CrossRefGoogle Scholar
Gettel, S, Pepe, F, Collier Cameron, A, et al., 2013, Correcting astrophysical noise in HARPS–N radial velocity measurements. Protostars and Planets VI, 24 {38}Google Scholar
Gettel, S, Wolszczan, A, Niedzielski, A, et al., 2012a, Planets around the K-giants BD+20 274 and HD 219415. ApJ, 756, 53 {55, 56, 716, 724}CrossRefGoogle Scholar
Gettel, S, Wolszczan, A, Niedzielski, A, 2012b, Substellar-mass companions to the K-giants HD 240237, BD+48 738, and HD 96127. ApJ, 745, 28 {716, 721, 724}CrossRefGoogle Scholar
Gezari, DY, Nisenson, P, Papaliolios, CD, et al., 2003, ExPO: a discovery-class apodised square aperture exo-planet imaging space telescope concept. SPIE Conf. Ser., volume 4860, 302–310 {353}Google Scholar
Ghezzi, L, Cunha, K, Schuler, SC, et al., 2010a, Metallicities of planet-hosting stars: a sample of giants and subgiants. ApJ, 725, 721–733 {388}CrossRefGoogle Scholar
Ghezzi, L, Cunha, K, Smith, VV, et al., 2009, Measurements of the isotopic ratio 6Li/7Li in stars with planets. ApJ, 698, 451–460 {402, 403, 720, 721, 722, 724}CrossRefGoogle Scholar
Ghezzi, L, Cunha, K, Smith, VV, 2010b, Lithium abundances in a sample of planet-hosting dwarfs. ApJ, 724, 154–164 {401}CrossRefGoogle Scholar
Ghezzi, L, Cunha, K, Smith, VV, 2010c, Stellar parameters and metallicities of stars hosting Jovian and Neptunian mass planets: a possible dependence of planetary mass on metallicity. ApJ, 720, 1290–1302 {308, 388}CrossRefGoogle Scholar
Ghil, M, Le Treut, H, 1981, A climate model with cryodynamics and geodynamics. J. Geophys. Res., 86, 5262–5270 {681}CrossRefGoogle Scholar
Ghosh, A, Weidenschilling, SJ, Amelin, Y, et al., 2004, Planet formation and early solar system heating: recent advancements. AGU Fall Abstracts, C5 {653}Google Scholar
Giacalone, S, Matsakos, T, Königl, A, 2017, A test of the high-eccentricity migration scenario for close-in planets. AJ, 154, 192 {499}CrossRefGoogle Scholar
Giammichele, N, Bergeron, P, Dufour, P, 2012, Know your neighbourhood: a detailed model atmosphere analysis of nearby white dwarfs. ApJS, 199, 29 {413}CrossRefGoogle Scholar
Giannini, E, Lunine, JI, 2013, Microlensing detection of extrasolar planets. Rep. Prog. Phys., 76(5), 056901 {120}CrossRefGoogle ScholarPubMed
Gibb, EL, Mumma, MJ, Dello Russo, N, et al., 2003, Methane in Oort cloud comets. Icarus, 165, 391–406 {686}CrossRefGoogle Scholar
Gibbons, PG, Mamatsashvili, GR, Rice, WKM, 2014, Planetesimal formation in self-gravitating disks: the effects of particle self-gravity and back-reaction. MNRAS, 442, 361–371 {462}CrossRefGoogle Scholar
Gibbons, PG, Rice, WKM, Mamatsashvili, GR, 2012, Planetesimal formation in self-gravitating disks. MNRAS, 426, 1444–1454 {488}CrossRefGoogle Scholar
Gibson, CH, Schild, RE, Wickramasinghe, NC, 2011a, The origin of life from primordial planets. Int. J. Astrobiol., 10, 83–98 {638}CrossRefGoogle Scholar
Gibson, NP, Aigrain, S, Barstow, JK, et al., 2013a, A Gemini ground-based transmission spectrum of WASP–29 b: a featureless spectrum from 515–720 nm. MNRAS, 428, 3680–3692 {588, 754}CrossRefGoogle Scholar
Gibson, NP, Aigrain, S, Barstow, JK, 2013b, The optical transmission spectrum of the hot Jupiter HAT–P–32 b: clouds explain the absence of broad spectral features? MNRAS, 436, 2974–2988 {737}CrossRefGoogle Scholar
Gibson, NP, Aigrain, S, Pollacco, DL, et al., 2010a, Ground-based detection of thermal emission from the exoplanet WASP–19 b. MNRAS, 404, L114–L118 {166, 754}CrossRefGoogle Scholar
Gibson, NP, Aigrain, S, Pont, F, et al., 2012a, Probing the haze in the atmosphere of HD 189733 b with HST–WFC3 transmission spectroscopy. MNRAS, 422, 753–760 {588, 730}CrossRefGoogle Scholar
Gibson, NP, Aigrain, S, Roberts, S, et al., 2012b, A Gaussian process framework for modelling instrumental systematics: application to transmission spectroscopy. MNRAS, 419, 2683–2694 {606, 730}CrossRefGoogle Scholar
Gibson, NP, Nikolov, N, Sing, DK, et al., 2017, VLT–FORS2 comparative transmission spectroscopy. II. Confirmation of a cloud deck and Rayleigh scattering in WASP–31 b, but no potassium? MNRAS, 467, 4591–4605 {754}CrossRefGoogle Scholar
Gibson, NP, Pollacco, D, Simpson, EK, et al., 2008, Updated parameters for the transiting exoplanet WASP–3 b using RISE, a new fast camera for the Liverpool Telescope. A&A, 492, 603–607 {183, 269, 751}Google Scholar
Gibson, NP, Pollacco, D, Simpson, EK, 2009, A transit timing analysis of nine RISE light curves of the exoplanet system TrES–3. ApJ, 700, 1078–1085 {183, 269, 751}CrossRefGoogle Scholar
Gibson, NP, Pollacco, DL, Barros, S, et al., 2010b, A transit timing analysis of seven RISE light curves of the exoplanet system HAT–P–3. MNRAS, 401, 1917–1923 {183, 269, 735}CrossRefGoogle Scholar
Gibson, NP, Pont, F, Aigrain, S, 2011b, A new look at NICMOS transmission spectroscopy of HD 189733, GJ 436 and XO–1: no conclusive evidence for molecular features. MNRAS, 411, 2199–2213 {185, 609, 728, 730, 757}CrossRefGoogle Scholar
Gibson, S, 2015, Photometric detections of secondary and primary transits of extrasolar planet CoRoT–1 b. Ph. D. thesis, Texas A&M University {733}Google Scholar
Gies, DR, Helsel, JW, 2005, Ice age epochs and the Sun's path through the Galaxy. ApJ, 626, 844–848 {654, 655}CrossRefGoogle Scholar
Giese, RH, Kneissel, B, Rittich, U, 1986, Three-dimensionalmodels of the zodiacal dust cloud: comparative study. Icarus, 68, 395–411 {691}CrossRefGoogle Scholar
Giguere, MJ, Fischer, DA, Howard, AW, et al., 2012, A high-eccentricity component in the double-planet system around HD 163607 and a planet around HD 164509. ApJ, 744, 4 {723}CrossRefGoogle Scholar
Giguere, MJ, Fischer, DA, Payne, MJ, et al., 2015, Newly discovered planets orbiting HD 5319, HD 11506, HD 75784 and HD 10442 from the N2K Consortium. ApJ, 799, 89 {718, 720}CrossRefGoogle Scholar
Giguere, MJ, Fischer, DA, Zhang, CXY, et al., 2016, A combined spectroscopic and photometric stellar activity study of yatt MC, et al., 2005, Structure in the Eri. ApJ, 824, 150 {715}CrossRefGoogle Scholar
Gil-Merino, R, Lewis, GF, 2005, Interpreting microlensing signal in QSO 2237+0305: stars or planets? A&A, 437, L15–L18 {151}Google Scholar
Giles, HAC, Bayliss, D, Espinoza, N, et al., 2018, K2–140 b: an eccentric 6.57-d transiting hot Jupiter in Virgo. MNRAS, 475, 1809–1818 {749}CrossRefGoogle Scholar
Giles, HAC, Collier Cameron, A, Haywood, RD, 2017, A Kepler study of star spot lifetimes with respect to light-curve amplitude and spectral type. MNRAS, 472, 1618–1627 {383}CrossRefGoogle Scholar
Gillen, E, Hillenbrand, LA, David, TJ, et al., 2017, New low-mass eclipsing binary systems in Praesepe discovered by K2. ApJ, 849, 11 {196}CrossRefGoogle Scholar
Gilles, L, Ellerbroek, B, Véran, J, 2006, Laser guide star multi-conjugate adaptive optics performance of the Thirty Meter Telescope with elongated beacons and matched filtering. SPIE Conf. Ser., volume 6272, 99 {332}Google Scholar
Gillet, S, Riaud, P, Lardière, O, et al., 2003, Imaging capabilities of hypertelescopes with a pair of micro-lens arrays. A&A, 400, 393–396 {355}Google Scholar
Gilli, G, Israelian, G, Ecuvillon, A, et al., 2006, Abundances of refractory elements in the atmospheres of stars with extrasolar planets. A&A, 449, 723–736 {388, 396, 399}Google Scholar
Gilliam, AE, McKay, CP, 2011, Titan under a red dwarf star and as a rogue planet: requirements for liquid methane. Planet. Space Sci., 59, 835–839 {576}CrossRefGoogle Scholar
Gilliland, RL, Baliunas, SL, 1987, Objective characterisation of stellar activity cycles. I. Methods and solar cycle analyses. ApJ, 314, 766–781 {21}CrossRefGoogle Scholar
Gilliland, RL, Brown, TM, 1988, Time-resolved CCD photometry of an ensemble of stars. PASP, 100, 754–765 {156}CrossRefGoogle Scholar
Gilliland, RL, Brown, TM, Guhathakurta, P, et al., 2000, A lack of planets in 47 Tuc from an HST search. ApJ, 545, L47–L51 {159}CrossRefGoogle Scholar
Gilliland, RL, Cartier, KMS, Adams, ER, et al., 2015a, HST high-resolution imaging of Kepler small and cool exoplanet host stars. AJ, 149, 24 {361}CrossRefGoogle Scholar
Gilliland, RL, Chaplin, WJ, Dunham, EW, et al., 2011a, Kepler mission stellar and instrument noise properties. ApJS, 197, 6 {175, 188}CrossRefGoogle Scholar
Gilliland, RL, Chaplin, WJ, Jenkins, JM, et al., 2015b, Kepler mission stellar and instrument noise properties revisited. AJ, 150, 133 {188}CrossRefGoogle Scholar
Gilliland, RL, Jenkins, JM, Borucki, WJ, et al., 2010, Initial characteristics of Kepler short cadence data. ApJ, 713, L160–L163 {156, 175}CrossRefGoogle Scholar
Gilliland, RL, Marcy, GW, Rowe, JF, et al., 2013, Kepler–68: three planets, one with a density between that of Earth and ice giants. ApJ, 766, 40 {742}CrossRefGoogle Scholar
Gilliland, RL, McCullough, PR, Nelan, EP, et al., 2011b, Asteroseismology of the transiting exoplanet host HD 17156 with HST–FGS. ApJ, 726, 2 {407, 410, 729}CrossRefGoogle Scholar
Gillman, MP, Erenler, HE, 2017, Globally disruptive events show predictable timing patterns. Int. J. Astrobiol., 16, 91–96 {654}CrossRefGoogle Scholar
Gillon, M, Anderson, DR, Collier Cameron, A, et al., 2013a, WASP–64 b and WASP–72 b: two new transiting highly-irradiated giant planets. A&A, 552, A82 {756}Google Scholar
Gillon, M, Anderson, DR, Collier Cameron, A, 2014a, WASP–103 b: a new planet at the edge of tidal disruption. A&A, 562, L3 {756}Google Scholar
Gillon, M, Anderson, DR, Triaud, AHMJ, et al., 2009a, Discovery and characterisation of WASP–6 b, an inflated sub-Jupiter mass planet transiting a solar-type star. A&A, 501, 785–792 {195, 253, 752}Google Scholar
Gillon, M, Bonfils, X, Demory, BO, et al., 2011a, An educated search for transiting habitable planets: targetting Mdwarfs with known transiting planets. A&A, 525, A32 {734}Google Scholar
Gillon, M, Courbin, F, Magain, P, et al., 2005, On the potential of extrasolar planet transit surveys. A&A, 442, 731–744 {155}Google Scholar
Gillon, M, Deming, D, Demory, BO, et al., 2010a, The Spitzer search for the transits of HARPS low-mass planets. I. No transit for the super-Earth HD 40307 b. A&A, 518, A25 {158, 719}Google Scholar
Gillon, M, Demory, B, Triaud, AHMJ, et al., 2009b, VLT transit and occultation photometry for the bloated planet CoRoT–1 b. A&A, 506, 359–367 {173, 733}Google Scholar
Gillon, M, Demory, BO, Barman, T, et al., 2007a, Accurate Spitzer infrared radius measurement for the hot Neptune GJ 436 b. A&A, 471, L51–L54 {728}Google Scholar
Gillon, M, Demory, BO, Benneke, B, et al., 2012a, Improved precision on the radius of the nearby super-Earth 55 Cnc e. A&A, 539, A28 {728}Google Scholar
Gillon, M, Demory, BO, Lovis, C, et al., 2017a, The Spitzer search for the transits of HARPS low-mass planets. II. Null results for 19 planets. A&A, 601, A117 {158}Google Scholar
Gillon, M, Demory, BO, Madhusudhan, N, et al., 2014b, Search for a habitable terrestrial planet transiting the nearby red dwarf GJ 1214. A&A, 563, A21 {735}Google Scholar
Gillon, M, Demory, BO, Van Grootel, V, et al., 2017b, Two massive rocky planets transiting a K-dwarf 6.5 pc away. Nature Astronomy, 1, 0056 {733}CrossRefGoogle Scholar
Gillon, M, Doyle, AP, Lendl, M, et al., 2011b, WASP–50 b: a hot Jupiter transiting amod-erately active solar-type star. A&A, 533, A88 {542, 755}Google Scholar
Gillon, M, Hatzes, A, Csizmadia, S, et al., 2010b, Transiting exoplanets from the CoRoT space mission. XII. CoRoT–12 b: a short-period low-density planet transiting a solar analogue star. A&A, 520, A97 {734}Google Scholar
Gillon, M, Jehin, E, Delrez, L, et al., 2013b, SPECULOOS: Search for habitable Planets EClipsing ULtra-cOOl Stars. Protostars and Planets VI Posters {171}
Gillon, M, Jehin, E, Lederer, SM, et al., 2016, Temperate Earth-sized planets transiting a nearby ultracool dwarf star. Nature, 533, 221–224 {167, 168, 750}CrossRefGoogle ScholarPubMed
Gillon, M, Lanotte, AA, Barman, T, et al., 2010c, The thermal emission of the young and massive planet CoRoT–2 b at 4.5 and 8μm. A&A, 511(26), 3–7 {733}Google Scholar
Gillon, M, Pont, F, Demory, BO, et al., 2007b, Detection of transits of the nearby hot Neptune GJ 436 b. A&A, 472, L13–L16 {170, 292, 293, 728}Google Scholar
Gillon, M, Pont, F, Moutou, C, et al., 2006, High accuracy transit photometry of the planet OGLE–TR–113 b with a new deconvolution-based method. A&A, 459, 249–255 {749}Google Scholar
Gillon, M, Pont, F, Moutou, C, 2007c, The transiting planet OGLE–TR–132 b revisited with new spectroscopy and deconvolution photometry. A&A, 466, 743–748 {749}Google Scholar
Gillon, M, Smalley, B, Hebb, L, et al., 2009c, Improved parameters for the transiting hot Jupiters WASP–4 b and WASP–5 b. A&A, 496, 259–267 {752}Google Scholar
Gillon, M, Triaud, AHMJ, Demory, BO, et al., 2017c, Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST–1. Nature, 542, 456–460 {12, 167, 168, 634, 750}CrossRefGoogle Scholar
Gillon, M, Triaud, AHMJ, Fortney, JJ, et al., 2012b, The TRAPPIST survey of southern transiting planets. I. Thirty eclipses of the ultra-short period planet WASP–43 b. A&A, 542, A4 {168, 195, 755}Google Scholar
Gillon, M, Triaud, AHMJ, Mayor, M, et al., 2008, Improved parameters for the transiting planet HD 17156 b: a high-density giant planet with a very eccentric orbit. A&A, 485, 871–875 {195, 729}Google Scholar
Gilmour, I, Sephton, MA, 2004, An introduction to astrobiology. An introduction to astrobiology, by I., Gilmour and M. A., Sephton. Cambridge, UK: Cambridge University Press, 2004 {619}Google Scholar
Gilmour, JD, Middleton, CA, 2009, Anthropic selection of a solar system with a high 26Al/27Al ratio: implications and a possible mechanism. Icarus, 201, 821–823 {399}CrossRefGoogle Scholar
Gilmozzi, R, Delabre, B, Dierickx, P, et al., 1998, Future of filled aperture telescopes: is a 100-m feasible? SPIE Conf. Ser., volume 3352, 778–791 {345}Google Scholar
Gilmozzi, R, Dierickx, P, Monnet, G, 2002, Science and technology of a 100m telescope ESO's OWL concept. ESO Proceedings, volume 58, 1 {345}Google Scholar
Giménez, A, 2000, uvby photometry of stars with planets. A&A, 356, 213–217 {388}Google Scholar
Giménez, A, 2006a, Equations for the analysis of the light curves of extrasolar planetary transits. A&A, 450, 1231–1237 {195, 201, 225}Google Scholar
Giménez, A, 2006b, Equations for the analysis of the Rossiter–McLaughlin effect in extrasolar planetary transits. ApJ, 650, 408–413 {195, 249, 385}CrossRefGoogle Scholar
Giménez, A, Diaz-Cordovés, J, 1993, Improving the light curve synthesis program EBOP: variable position of the periastron and second-order limb darkening. IAU Commission on Close Binary Stars, 21, 125–129 {201}Google Scholar
Ginsburg, I, Loeb, A, Wegner, GA, 2012, Hypervelocity planets and transits in hypervelocity stars. MNRAS, 423, 948–954 {406}CrossRefGoogle Scholar
Ginski, C, Mugrauer, M, Seeliger, M, et al., 2012, A lucky imaging multiplicity study of exoplanet host stars. MNRAS, 421, 2498–2509 {333, 715}CrossRefGoogle Scholar
Ginski, C, Mugrauer, M, Seeliger, M, 2013, The multiplicity status of three exoplanet host stars. A&A, 559, A71 {720, 736, 737}Google Scholar
Ginski, C, Mugrauer, M, Seeliger, M, 2016a, A lucky imaging multiplicity study of exoplanet host stars. II. MNRAS, 457, 2173–2191 {333, 718, 724, 740, 742, 756}CrossRefGoogle Scholar
Ginski, C, Schmidt, TOB, Mugrauer, M, et al., 2014, Astrometric follow-up observations of directly imaged sub-stellar companions to young stars and brown dwarfs. MNRAS, 444, 2280–2302 {341, 762, 763, 764}CrossRefGoogle Scholar
Ginski, C, Stolker, T, Pinilla, P, et al., 2016b, Direct detection of scattered light gaps in the transition disk around HD 97048 with VLT–SPHERE. A&A, 595, A112 {466, 520}Google Scholar
Ginzburg, S, Sari, R, 2015, Hot-Jupiter inflation due to deep energy deposition. ApJ, 803, 111 {302}CrossRefGoogle Scholar
Ginzburg, S, Sari, R, 2016, Extended heat deposition in hot Jupiters: application to Ohmic heating. ApJ, 819, 116 {303}CrossRefGoogle Scholar
Ginzburg, S, Sari, R, 2017a, Hot Jupiter core mass from Roche lobe overflow. MNRAS, 469, 278–285 {231}CrossRefGoogle Scholar
Ginzburg, S, Sari, R, 2017b, Tidal heating of young super-Earth atmospheres. MNRAS, 464, 3937–3944 {501}CrossRefGoogle Scholar
Ginzburg, S, Sari, R, Loeb, A, 2016a, Blackbody radiation from isolated Neptunes. ApJ, 822, L11 {687}CrossRefGoogle Scholar
Ginzburg, S, Schlichting, HE, Sari, R, 2016b, Super-Earth atmospheres: self-consistent gas accretion and retention. ApJ, 825, 29 {599}CrossRefGoogle Scholar
Giommi, P, Angelini, L, Osborne, J, et al., 1987, EXO 033319–2554.2 (UZ For). IAU Circ., 4486 {116}Google Scholar
Giordano, M, Nucita, AA, De Paolis, F, et al., 2015, Star spot induced effects in micro-lensing events with rotating source star. MNRAS, 453, 2017–2021 {136}CrossRefGoogle Scholar
Giordano, M, Nucita, AA, de Paolis, F, et al., 2017, Timing analysis in microlensing. International Journal of Modern Physics D, 26, 1741009 {136}CrossRefGoogle Scholar
Girard, JHV, Kasper, M, Quanz, SP, et al., 2010, Status and new operation modes of the versatile VLT–NACO. Adaptive Optics Systems II, volume 7736 of Proc. SPIE, 77362N {343}Google Scholar
Girardi, L, 2016, Milky Way populations with TRILEGAL. Astron. Nach., 337, 871 {380}CrossRefGoogle Scholar
Girardi, L, Barbieri, M, Groenewegen, MAT, et al., 2012, TRILEGAL, a TRIdimensional modeL of the GALaxy: status and future. ASSL, 165 {380}Google Scholar
Girardi, L, Barbieri, M, Miglio, A, et al., 2015, The expected stellar populations in the Kepler and CoRoT fields. Astrophysics and Space Science Proceedings, 39, 125 {174}CrossRefGoogle Scholar
Girardi, L, Bressan, A, Bertelli, G, et al., 2000, Evolutionary tracks and isochrones for low- and intermediate-mass stars. A&AS, 141, 371–383 {379, 702}Google Scholar
Girardi, L, Groenewegen, MAT, Hatziminaoglou, E, et al., 2005, Star counts in the Galaxy: simulating from very deep to very shallow photometric surveys with the TRILEGAL code. A&A, 436, 895–915 {380}Google Scholar
Girven, J, Brinkworth, CS, Farihi, J, et al., 2012, Constraints on the lifetimes of disks resulting from tidally-destroyed rocky planetary bodies. ApJ, 749, 154 {416}CrossRefGoogle Scholar
Giuppone, CA, Beaugé, C, Michtchenko, TA, et al., 2010, Dynamics of two planets in co-orbital motion. MNRAS, 407, 390–398 {273}CrossRefGoogle Scholar
Giuppone, CA, Benítez-Llambay, P, Beaugé, C, 2012a, Origin and detectability of co-orbital planets from radial velocity data. MNRAS, 421, 356–368 {23, 77}Google Scholar
Giuppone, CA, Correia, ACM, 2017, Lidov–Kozai stability regions in the α Cen system. A&A, 605, A124 {714}Google Scholar
Giuppone, CA, Leiva, AM, 2016, Secular models and Kozai resonance for planets in coorbital non-coplanar motion. MNRAS, 460, 966–979 {529}CrossRefGoogle Scholar
Giuppone, CA, Leiva, AM, Correa-Otto, J, et al., 2011, Secular dynamics of planetes-imals in tight binary systems: application to γ Cep. A&A, 530, A103 {80, 550, 714}Google Scholar
Giuppone, CA, Morais, MHM, Boué, G, et al., 2012b, Dynamical analysis and constraints for the HD 196885 system. A&A, 541, A151 {44, 724}Google Scholar
Giuppone, CA, Morais, MHM, Correia, ACM, 2013, A semi-empirical stability criterion for real planetary systems with eccentric orbits. MNRAS, 436, 3547–3556 {509}CrossRefGoogle Scholar
Give'on, A, Kasdin, NJ, Vanderbei, RJ, et al., 2005, Amplitude and phase correction for high-contrast imaging using Fourier decomposition. SPIE Conf. Ser., volume 5905, 368–378 {339}Google Scholar
Gizis, JE, Jao, WC, Subasavage, JP, et al., 2007, The trigonometric parallax of the brown dwarf planetary system 2M J1207. ApJ, 669, L45–L48 {763}CrossRefGoogle Scholar
Gizis, JE, Kirkpatrick, JD, Burgasser, AJ, et al., 2001, Substellar companions to main-sequence stars: no brown dwarf desert at wide separations. ApJ, 551, L163–L166 {65, 357, 441}CrossRefGoogle Scholar
Gizis, JE, Reid, IN, Hawley, SL, 2002, The Palomar/MSU nearby star spectroscopic survey. III. Chromospheric activity, M dwarf ages, and the local star formation history. AJ, 123, 3356–3369 {441}CrossRefGoogle Scholar
Appourchaux, T, Gough, DO, 1998, LOI/SOHO constraints on oblique rotation of the solar core. New Eyes to See Inside the Sun and Stars, volume 185 of IAU Symp., 37 {654}Google Scholar
Gizon, L, Ballot, J, Michel, E, et al., 2013, Seismic constraints on rotation of Sun-like star and mass of exoplanet. Proc. Nat. Acad. Sci., 110, 13267–13271 {410, 720}CrossRefGoogle ScholarPubMed
Gizon, L, Birch, AC, 2005, Local helioseismology. Living Reviews in Solar Physics, 2, 6 {649}CrossRefGoogle Scholar
Gizon, L, Sekii, T, Takata, M, et al., 2016, Shape of a slowly rotating star measured by asteroseismology. Science Advances, 2, e1601777–e1601777 {216}CrossRefGoogle ScholarPubMed
Gizon, L, Solanki, SK, 2003, Determining the inclination of the rotation axis of a Sun-like star. ApJ, 589, 1009–1019 {385, 408}CrossRefGoogle Scholar
Glade, N, Ballet, P, Bastien, O, 2012, A stochastic process approach of the Drake equation parameters. Int. J. Astrobiol., 11, 103–108 {644}CrossRefGoogle Scholar
Gladman, B, 1993, Dynamics of systems of two close planets. Icarus, 106, 247–263 {107, 315, 316, 512}CrossRefGoogle Scholar
Gladman, B, Duncan, M, 1990, On the fates of minor bodies in the outer solar system. AJ, 100, 1680–1693 {514, 679, 694}CrossRefGoogle Scholar
Gladman, B, Holman, M, Grav, T, et al., 2002, Evidence for an extended scattered disk. Icarus, 157, 269–279 {685}CrossRefGoogle Scholar
Gladman, B, Kavelaars, J, Petit, JM, et al., 2009, Discovery of the first retrograde Transneptunian Object. ApJ, 697, L91–L94 {687}CrossRefGoogle Scholar
Gladman, B, Lawler, SM, Petit, JM, et al., 2012, The resonant trans-Neptunian populations. AJ, 144, 23 {684}CrossRefGoogle Scholar
Gladman, B, Marsden, BG, Vanlaerhoven, C, 2008, Nomenclature in the outer solar system. The Solar System Beyond Neptune, 43–57 {685}
Gladman, B, Migliorini, F, Morbidelli, A, et al., 1997, Dynamical lifetimes of objects injected into asteroid belt resonances. Science, 277, 197–201 {509, 694}CrossRefGoogle Scholar
Gladman, BJ, Burns, JA, Duncan, M, et al., 1996, The exchange of impact ejecta between terrestrial planets. Science, 271, 1387–1392 {683}CrossRefGoogle Scholar
Glasby, GP, 2006, Abiogenic origin of hydrocarbons: an historical overview. Resource Geology, 56(1), 85–98 {598}CrossRefGoogle Scholar
Glaschke, P, Amaro-Seoane, P, Spurzem, R, 2014, Hybrid methods in planetesimal dynamics: description of a new composite algorithm. MNRAS, 445, 3620–3649 {470}CrossRefGoogle Scholar
Glassmeier, KH, Vogt, J, 2010, Magnetic polarity transitions and biospheric effects: historical perspective and current developments. Space Sci. Rev., 155, 387–410 {663}CrossRefGoogle Scholar
Glatzmaier, GA, Roberts, PH, 1996, Rotation and magnetism of Earth's inner core. Science, 274, 1887–1891 {596}CrossRefGoogle ScholarPubMed
Gleiser, M, Walker, SI, 2012, Life's chirality from prebiotic environments. Int. J. Astro-biol., 11, 287–296 {625}Google Scholar
Gliese, W, 1957, Katalog der Sterne näher also 20 Parsek für 1950.0. Astron. Rechen-Institut, Heidelberg, 8, 1–89 {374}Google Scholar
Gliese, W, 1969, Catalogue of Nearby Stars (CNS2). Veroeffentlichungen des Astronomischen Rechen-Instituts Heidelberg, 22, 1–117 {374}Google Scholar
Gliese, W, 1982, Detectable perturbations in the propermotions of the nearest stars caused by Jupiter-like companions? The Scientific Aspects of the Hipparcos Space As-trometry Mission, volume 177 of ESA SP, 193–194 {83}Google Scholar
Gliese, W, Jahreiß, H, 1991, Preliminary Version of the Third Catalogue of Nearby Stars. Technical report, The Astronomical Data Center CD-ROM: Selected Astronomical Catalogs, NASA/Astronomical Data Center {374}
Glindemann, A, Algomedo, J, Amestica, R, et al., 2003, The VLTI: a status report. SPIE Conf. Ser., volume 4838, 89–100 {348}Google Scholar
Gnevishev, MN, Ohl, AI, 1948, About the 22-year cycle of solar activity. AJ, 25(18-20) {656}Google Scholar
Gobat, R, Hong, SE, 2016, Evolution of galaxy habitability. A&A, 592, A96 {625}Google Scholar
Godolt, M, Grenfell, JL, Hamann-Reinus, A, et al., 2015, 3d climate modeling of Earth-like extrasolar planets orbiting different types of host stars. Planet. Space Sci., 111, 62–76 {598}CrossRefGoogle Scholar
Godolt, M, Grenfell, JL, Kitzmann, D, et al., 2016, Assessing the habitability of planets with Earth-like atmospheres with 1d and 3d climate modeling. A&A, 592, A36 {620}Google Scholar
Godon, P, Livio, M, 1999a, On the nonlinear hydrodynamic stability of thin Keplerian disks. ApJ, 521, 319–327 {457}CrossRefGoogle Scholar
Godon, P, Livio, M, 1999b, Vortices in protoplanetary disks. ApJ, 523, 350–356 {461}CrossRefGoogle Scholar
Gogarten, JP, 1998, Origin and early evolution of life: deciphering the molecular record. Origins, volume 148 of ASP Conf. Ser., 435–448 {618}Google Scholar
Goicoechea, JR, Swinyard, B, 2010, Exoplanetary systems with SAFARI: a far infrared imaging spectrometer for SPICA. ASP Conf. Ser., volume 430, 448–449 {182}Google Scholar
Goicoechea, JR, Swinyard, B, Tinetti, G, et al., 2008, Using SPICA space telescope to characterise exoplanets [unpublished]. ArXiv e-prints {182}
Golabek, GJ, Emsenhuber, A, Jutzi, M, et al., 2018, Coupling SPH and thermochemical models of planets: methodology and example of a Mars-sized body. Icarus, 301, 235–246 {476}CrossRefGoogle Scholar
Gold, T, 1979, Terrestrial sources of carbon and earthquake outgassing. J. Petroleum Geology, 1(3), 3–19 {598}CrossRefGoogle Scholar
Gold, T, 1985, The origin of natural gas and petroleum, and the prognosis for future supplies. Ann. Rev. Energy, 10, 53–77 {598}CrossRefGoogle Scholar
Gold, T, 1993, The origin of methane in the crust of the Earth. US Geol. Surv. Prof. Paper, 1570, 57–70 {598}Google Scholar
Gold, T, Soter, S, 1969, Atmospheric tides and the resonant rotation of Venus. Icarus, 11, 356–366 {544, 594}CrossRefGoogle Scholar
Gold, T, Soter, S, 1980, The deep-Earth gas hypothesis. Scientific American, 242(6), 130–137 {598}CrossRefGoogle Scholar
Goldberg, D, Mazeh, T, Latham, DW, 2003, On the mass-ratio distribution of spectroscopic binaries. ApJ, 591, 397–405 {548}CrossRefGoogle Scholar
Goldberg, DE, 1989, Genetic Algorithms in Search, Optimisation and Machine Learning. Addison-Wesley {25}Google Scholar
Goldblatt, C, Watson, AJ, 2012, The runaway greenhouse: implications for future climate change, geoengineering and planetary atmospheres. Phil. Trans. Soc. London A, 370, 4197–4216 {619, 624}Google ScholarPubMed
Goldin, A, Makarov, VV, 2006, Unconstrained astrometric orbits for Hipparcos stars with stochastic solutions. ApJS, 166, 341–350 {94}CrossRefGoogle Scholar
Goldman, B, Cushing, MC, Marley, MS, et al., 2008, CLOUDS search for variability in brown dwarf atmospheres. Infrared spectroscopic time series of L/T transition brown dwarfs. A&A, 487, 277–292 {440}Google Scholar
Goldman, B, Marsat, S, Henning, T, et al., 2010, A new benchmark T8-9 brown dwarf and a couple of new mid-T dwarfs from the UKIDSS DR5+ LAS. MNRAS, 405, 1140–1152 {432}Google Scholar
Goldreich, P, 1963, On the eccentricity of satellite orbits in the solar system. MNRAS, 126, 257–268 {534, 535}CrossRefGoogle Scholar
Goldreich, P, 1965, An explanation of the frequent occurrence of commensurable mean motions in the solar system. MNRAS, 130, 159–181 {507}CrossRefGoogle Scholar
Goldreich, P, 1966a, Final spin states of planets and satellites. AJ, 71, 1 {541}CrossRefGoogle Scholar
Goldreich, P, 1966b, History of the lunar orbit. Reviews of Geophysics and Space Physics, 4, 411–439 {665, 679}CrossRefGoogle Scholar
Goldreich, P, Keeley, DA, 1977, Solar seismology. I. The stability of the solar p-modes. ApJ, 211, 934–942 {541}CrossRefGoogle Scholar
Goldreich, P, Lithwick, Y, Sari, R, 2004a, Final stages of planet formation. ApJ, 614, 497–507 {476}CrossRefGoogle Scholar
Goldreich, P, Lithwick, Y, Sari, R, 2004b, Planet formation by coagulation: a focus on Uranus and Neptune. ARA&A, 42, 549–601 {473, 474, 483}Google Scholar
Goldreich, P, Nicholson, PD, 1977, Turbulent viscosity and Jupiter's tidal Q. Icarus, 30, 301–304 {535, 536, 541}CrossRefGoogle Scholar
Goldreich, P, Nicholson, PD, 1989, Tidal friction in early-type stars. ApJ, 342, 1079–1084 {541, 542}CrossRefGoogle Scholar
Goldreich, P, Peale, S, 1966, Spin–orbit coupling in the solar system. AJ, 71, 425–437 {535, 541, 622}CrossRefGoogle Scholar
Goldreich, P, Sari, R, 2003, Eccentricity evolution for planets in gaseous disks. ApJ, 585, 1024–1037 {522, 523}CrossRefGoogle Scholar
Goldreich, P, Schlichting, HE, 2014, Overstable librations can account for the paucity of mean motion resonances among exoplanet pairs. AJ, 147, 32 {502, 507}CrossRefGoogle Scholar
Goldreich, P, Soter, S, 1966, Q in the solar system. Icarus, 5, 375–389 {533, 535, 536, 540, 545}CrossRefGoogle Scholar
Goldreich, P, Tremaine, S, 1979, The excitation of density waves at the Lindblad and corotation resonances by an external potential. ApJ, 233, 857–871 {517}CrossRefGoogle Scholar
Goldreich, P, Tremaine, S, 1980, Disk-satellite interactions. ApJ, 241, 425–441 {393, 517, 518, 520, 522}CrossRefGoogle Scholar
Goldreich, P, Ward, WR, 1973, The formation of planetesimals. ApJ, 183, 1051–1062 {460, 467}CrossRefGoogle Scholar
Goldsmith, DW, 1988, Who will speak for Earth? IAU Colloq. 99: Bioastronomy –The Next Steps, 425–428, IAU {648}
Goldstein, JJ, Mumma, MJ, Kostiuk, T, et al., 1991, Absolute wind velocities in the lower thermosphere of Venus using infrared heterodyne spectroscopy. Icarus, 94, 45–63 {595}CrossRefGoogle Scholar
Goldstein, RM, Green, RR, 1980, Ganymede: radar surface characteristics. Science, 207, 179 {356}CrossRefGoogle ScholarPubMed
Goldstein, RM, Green, RR, Pettengill, GH, et al., 1977, The rings of Saturn: two-frequency radar observations. Icarus, 30, 104–110 {356}CrossRefGoogle Scholar
Gole, D, Simon, JB, Lubow, SH, et al., 2016, Turbulence, transport, and waves in Ohmic dead zones. ApJ, 826, 18 {459}CrossRefGoogle Scholar
Golimowski, DA, Ardila, DR, Krist, JE, et al., 2006, HST–ACS multiband coronagraphic imaging of the debris disk around fl Pic. AJ, 131, 3109–3130 {493}CrossRefGoogle Scholar
Golimowski, DA, Clampin, M, Durrance, ST, et al., 1992, High-resolution ground-based coronagraphy using image-motion compensation. Appl. Opt., 31, 4405–4416 {331, 333}CrossRefGoogle ScholarPubMed
Golimowski, DA, Henry, TJ, Krist, JE, et al., 2004, The solar neighbourhood. 09. HST detections of companions to five Mand L dwarfs within 10 pc of the Sun. AJ, 128, 1733–1747 {374}CrossRefGoogle Scholar
Golimowski, DA, Krist, JE, Stapelfeldt, KR, et al., 2011, Hubble and Spitzer space telescope observations of the debris disk around the nearby K dwarf HD 92945. AJ, 142, 30 {496}CrossRefGoogle Scholar
Gomes, RS, 1989, On the problem of the search for Planet X based on its perturbation of the outer planets. Icarus, 80, 334–343 {686}CrossRefGoogle Scholar
Gomes, RS, 2003, The origin of the Kuiper Belt high-inclination population. Icarus, 161, 404–418 {685}CrossRefGoogle Scholar
Gomes, RS, 2011, The origin of TNO 2004 XR190 as a primordial scattered object. Icarus, 215, 661–668 {685}CrossRefGoogle Scholar
Gomes, RS, Deienno, R, Morbidelli, A, 2017, The inclination of the planetary system relative to the solar equator may be explained by the presence of Planet Nine. AJ, 153, 27 {654}CrossRefGoogle Scholar
Gomes, RS, Fern Ndez, JA, Gallardo, T, et al., 2008, The scattered disk: origins, dynamics, and end states. The Solar System Beyond Neptune, 259–273 {685}
Gomes, RS, Gallardo, T, Fernández, JA, et al., 2005a, On the origin of the high-perihelion scattered disk: the role of the Kozai mechanism and mean motion resonances. Cel. Mech. Dyn. Astron., 91, 109–129 {650, 685}CrossRefGoogle Scholar
Gomes, RS, Levison, HF, Tsiganis, K, et al., 2005b, Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets. Nature, 435, 466–469 {668, 695, 697, 698}CrossRefGoogle Scholar
Gomes, RS, Matese, JJ, Lissauer, JJ, 2006, A distant planetary-mass solar companion may have produced distant detached objects. Icarus, 184, 589–601 {681}CrossRefGoogle Scholar
Gomes, RS, Morbidelli, A, Levison, HF, 2004, Planetary migration in a planetesimal disk: why did Neptune stop at 30 au? Icarus, 170, 492–507 {524, 697}CrossRefGoogle Scholar
Gomes da Silva, J, Santos, NC, Bonfils, X, et al., 2011, Long-term magnetic activity of a sample of M dwarf stars from HARPS. I. Comparison of activity indices. A&A, 534, A30 {37}Google Scholar
Gomes da Silva, J, Santos, NC, Bonfils, X, 2012, Long-term magnetic activity of a sample of M dwarf stars from HARPS. II. Activity and radial velocity. A&A, 541, A9 {37}Google Scholar
GomezGonzalez, CA, Absil, O, Absil, PA, et al., 2016, Low-rank plus sparse decomposition for exoplanet detection in direct-imaging ADI sequences. The LLSG algorithm. A&A, 589, A54 {340, 341}Google Scholar
GomezGonzalez, CA, Absil, O, van Droogenbroeck, M, 2017a, Supervised detection of exoplanets in high-contrast imaging sequences. ArXiv e-prints {341}
GomezGonzalez, CA, Wertz, O, Absil, O, et al., 2017b, VIP: Vortex Image Processing Package for High-contrast Direct Imaging. AJ, 154, 7 {340, 763}CrossRefGoogle Scholar
Gómez-Leal, I, Codron, F, Selsis, F, 2016, Thermal light curves of Earth-like planets. 1. Varying surface and rotation on planets in a terrestrial orbit. Icarus, 269, 98–110 {616}CrossRefGoogle Scholar
Gómez Maqueo Chew, Y, Faedi, F, Cargile, P, et al., 2013a, The Homogeneous Study of Transiting Systems (HoSTS). I. The pilot study of WASP–13. ApJ, 768, 79 {753}CrossRefGoogle Scholar
Gómez Maqueo Chew, Y, Faedi, F, Pollacco, D, et al., 2013b, Discovery of WASP–65 b and WASP–75 b: two hot Jupiters without highly inflated radii. A&A, 559, A36 {756}Google Scholar
Goncharov, AV, Dainty, JC, Esposito, S, et al., 2005, Laboratory MCAO test-bed for developing wavefront sensing concepts. Optics Express, 13, 5580–5590 {332}CrossRefGoogle ScholarPubMed
Goncharov, AV, Owner-Petersen, M, Puryayev, DT, 2002, Intrinsic apodisation effect in a compact two-mirror systemwith a spherical primary mirror. Optical Engineering, 41, 3111–3118 {335}CrossRefGoogle Scholar
Gondoin, P, den Hartog, R, Fridlund, M, et al., 2008, GENIE: a Ground-Based European Nulling Instrument at ESO VLTI. The Power of Optical/IR Interferometry: Recent Scientific Results and Second Generation, 445–458 {349, 353}
Gong, X, Wang, L, Cui, X, et al., 2010, Dome A site testing and future plans. EAS Pub. Ser., volume 40, 65–72 {347}CrossRefGoogle Scholar
Gong, YX, 2017, P-type planet–planet scattering: Kepler close binary configurations. ApJ, 834, 55 {551}CrossRefGoogle Scholar
Gong, YX, Ji, J, 2017, The scattering outcomes of Kepler circumbinary planets: planet mass ratio. AJ, 154, 179 {740, 745}CrossRefGoogle Scholar
Gong, YX, Zhou, JL, 2012, The silicate and carbon-rich models of CoRoT–7 b, Kepler–9d and Kepler–10 b. Res. Astron. Astrophys., 12, 678–692 {734, 738, 739}CrossRefGoogle Scholar
Gong, YX, Zhou, JL, Xie, JW, et al., 2013, The effect of planet–planet scattering on the survival of exomoons. ApJ, 769, L14 {504}CrossRefGoogle Scholar
Gonzalez, G, 1997, The stellarmetallicity-giant planet connection. MNRAS, 285, 403–412 {60, 388, 484, 521}CrossRefGoogle Scholar
Gonzalez, G, 1998, Spectroscopic analyses of the parent stars of extrasolar planetary system candidates. A&A, 334, 221–238 {388, 393, 400}Google Scholar
Gonzalez, G, 1999a, Are stars with planets anomalous? MNRAS, 308, 447–458 {625}CrossRefGoogle Scholar
Gonzalez, G, 1999b, Is the Sun anomalous? Astronomy and Geophysics, 40, 25–29 {628}CrossRefGoogle Scholar
Gonzalez, G, 2003, Colloquium: Stars, planets, and metals. Reviews of Modern Physics, 75, 101–120 {392}CrossRefGoogle Scholar
Gonzalez, G, 2006a, The chemical compositions of stars with planets: a review. PASP, 118, 1494–1505 {377, 378, 392}CrossRefGoogle Scholar
Gonzalez, G, 2006b, Condensation temperature trends among stars with planets. MNRAS, 367, L37–L41 {394, 396, 398}CrossRefGoogle Scholar
Gonzalez, G, 2008, Parent stars of extrasolar planets. IX. Lithium abundances. MNRAS, 386, 928–934 {382, 401, 402}CrossRefGoogle Scholar
Gonzalez, G, 2009, Stars with planets and the thick disk. MNRAS, 399, L103–L107 {389, 395}CrossRefGoogle Scholar
Gonzalez, G, 2011, Parent stars of extrasolar planets. XII. Additional evidence for trends with v sini, condensation temperature and chromospheric activity. MNRAS, 416, L80–L83 {420}CrossRefGoogle Scholar
Gonzalez, G, 2014a, Parent stars of extrasolar planets. XIII. Additional evidence for Li abundance anomalies. MNRAS, 441, 1201–1208 {401}CrossRefGoogle Scholar
Gonzalez, G, 2014b, The metallicity dependence of giant planet incidence. MNRAS, 443, 393–397 {389, 392}CrossRefGoogle Scholar
Gonzalez, G, 2015a, Parent stars of extrasolar planets. XIV. Strong evidence of Li abundance deficit. MNRAS, 446, 1020–1025 {401}CrossRefGoogle Scholar
Gonzalez, G, 2015b, Parent stars of extrasolar planets. XV. Host star rotation revisited with Kepler data. MNRAS, 450, 3227–3232 {383}CrossRefGoogle Scholar
Gonzalez, G, Brownlee, D, Ward, P, 2001a, The Galactic habitable zone: Galactic chemical evolution. Icarus, 152, 185–200 {398, 625}CrossRefGoogle Scholar
Gonzalez, G, Carlson, MK, Tobin, RW, 2010, Parent stars of extrasolar planets. X. Lithiumabundances and v sini revisited. MNRAS, 403, 1368–1380 {401}Google Scholar
Gonzalez, G, Laws, C, 2000, Parent stars of extrasolar planets. V. HD 75289. AJ, 119, 390–396 {388, 397, 401, 720}CrossRefGoogle Scholar
Gonzalez, G, Laws, C, 2007, Parent stars of extrasolar planets. VIII. Chemical abundances for 18 elements in 31 stars. MNRAS, 378, 1141–1152 {397, 399, 401}CrossRefGoogle Scholar
Gonzalez, G, Laws, C, Tyagi, S, et al., 2001b, Parent stars of extrasolar planets. VI. Abundance analyses of 20 new systems. AJ, 121, 432–452 {388, 393, 396, 397, 399}CrossRefGoogle Scholar
Gonzalez, G, Vanture, AD, 1998, Parent stars of extrasolar planets. III. ρ1 Cnc (55 Cnc) revisited. A&A, 339, L29–L32 {388, 728}Google Scholar
Gonzalez, G, Wallerstein, G, Saar, SH, 1999, Parent stars of extrasolar planets. IV. 14Her, HD 187123, and HD 210277. ApJ, 511, L111–L114 {388, 715, 723, 724}CrossRefGoogle Scholar
Gonzalez, JF, Laibe, G, Maddison, ST, 2017, Self-induced dust traps: overcoming planet formation barriers. MNRAS, 467, 1984–1996 {460}Google Scholar
Gonzalez, JF, Laibe, G, Maddison, ST, et al., 2015, The accumulation and trapping of grains at planet gaps: effects of grain growth and fragmentation. Planet. Space Sci., 116, 48–56 {460, 463}CrossRefGoogle Scholar
González-Álvarez, E, Affer, L, Micela, G, et al., 2017, The GAPS Programme with HARPS–N at TNG. XV. A substellar companion around a K giant star identified with quasi-simultaneous HARPS–N and GIANO measurements. A&A, 606, A51 {725}Google Scholar
González-Cataldo, F, Wilson, HF, Militzer, B, 2014, Ab initio free energy calculations of the solubility of silica inmetallic hydrogen and application to giant planet cores. ApJ, 787, 79 {567}CrossRefGoogle Scholar
González Hernández, JI, Delgado-Mena, E, Sousa, SG, et al., 2013, Searching for the signatures of terrestrial planets in F-, G-type main-sequence stars. A&A, 552, A6 {389}Google Scholar
González Hernández, JI, Israelian, G, Santos, NC, et al., 2010, Searching for the signatures of terrestrial planets in solar analogues. ApJ, 720, 1592–1602 {405}Google Scholar
González-Merino, B, Pallé, E, Motalebi, F, et al., 2013, Earthshine observations at high spectral resolution: exploring and detecting metal lines in the Earth's upper atmosphere. MNRAS, 435, 2574–2580 {641}CrossRefGoogle Scholar
Goode, PR, Qiu, J, Yurchyshyn, V, et al., 2001, Earthshine observations of the Earth's reflectance. Geophys. Res. Lett., 28, 1671–1674 {641}CrossRefGoogle Scholar
Goodman, J, Dickson, ES, 1998, Dynamical tides in solar-type binaries. ApJ, 507, 938–944 {542}CrossRefGoogle Scholar
Goodman, J, Lackner, C, 2009, Dynamical tides in rotating planets and stars. ApJ, 696, 2054–2067 {535, 542}CrossRefGoogle Scholar
Goodman, J, Oh, SP, 1997, Fast tides in slow stars: the efficiency of eddy viscosity. ApJ, 486, 403–412 {541}CrossRefGoogle Scholar
Goodman, J, Pindor, B, 2000, Secular instability and planetesimal formation in the dust layer. Icarus, 148, 537–549 {458, 469}CrossRefGoogle Scholar
Goodman, J, Rafikov, RR, 2001, Planetary torques as the viscosity of protoplanetary disks. ApJ, 552, 793–802 {402}CrossRefGoogle Scholar
Goodwin, SP, Whitworth, AP, 2007, Brown dwarf formation by binary disruption. A&A, 466, 943–948 {442}Google Scholar
Gorbikov, E, Brosch, N, Afonso, C, 2010, A two-colour CCD survey of the North Celestial Cap. I. The method. Ap&SS, 326, 203–217 {142}Google Scholar
Gorbovskoy, ES, Lipunov, VM, Kornilov, VG, et al., 2013, The MASTER-II network of robotic optical telescopes: first results. Astronomy Reports, 57, 233–286 {182}CrossRefGoogle Scholar
Gorti, U, Hollenbach, D, Dullemond, CP, 2015, The impact of dust evolution and photo-evaporation on disk dispersal. ApJ, 804, 29 {462}CrossRefGoogle Scholar
Gostev, NY, 2011, Light curve analysis for eclipsing systems with exoplanets. The systems Kepler–5 b, Kepler–6 b, and Kepler–7 b. Astronomy Reports, 55, 649–659 {738}CrossRefGoogle Scholar
Götberg, Y, Davies, MB, Mustill, AJ, et al., 2016, Long-term stability of the HR 8799 planetary systemwithout resonant lock. A&A, 592, A147 {763}Google Scholar
Goto, M, van der Plas G, van den Ancker M, et al., 2012, Warmgas at 50 au in the disk around Herbig Be star HD 100546. A&A, 539, A81 {762}Google Scholar
Gott, JR, 1981, Are heavy halos made of low mass stars: a gravitational lens test. ApJ, 243, 140–146 {122}CrossRefGoogle Scholar
Gouda, N, 2015, Infrared space astrometry missions: JASMINE. IAU General Assembly, 22, 2247720 {100}Google Scholar
Gouda, N, Kobayashi, Y, Yamada, Y, et al., 2008, Infrared space astrometry project JASMINE. IAU Symp., volume 248, 248–251 {100}Google Scholar
Gough, D, 2012, How oblate is the Sun? Science, 337, 1611–{657}CrossRefGoogle ScholarPubMed
Gough, DO, Thompson, MJ, 1990, The effect of rotation and a buried magnetic field on stellar oscillations. MNRAS, 242, 25–55 {407, 408}CrossRefGoogle Scholar
Gough, DO, Toomre, J, 1991, Seismic observations of the solar interior. ARA&A, 29, 627–685 {407}Google Scholar
Gould, A, 1992, Extending the MACHO search to about 106 solar masses. ApJ, 392, 442–451 {133, 134}CrossRefGoogle Scholar
Gould, A, 1996, Microlensing and the stellar mass function. PASP, 108, 465–476 {122}CrossRefGoogle Scholar
Gould, A, 1997a, Extreme microlensing toward the Galactic bulge. ApJ, 480, 188–195 {135}CrossRefGoogle Scholar
Gould, A, 1997b, The Hollywood strategy for microlensing detection of planets. Variables Stars and the Astrophysical Returns of the Microlensing Surveys, 125 {132}Google Scholar
Gould, A, 2004, Resolution of the MACHO–LMC–5 puzzle: the jerk-parallax microlens degeneracy. ApJ, 606, 319–325 {133}CrossRefGoogle Scholar
Gould, A, 2005, Microlensing search for planets. New Astron. Rev., 49, 424–429 {120}CrossRefGoogle Scholar
Gould, A, 2008, Hexadecapole approximation in planetary microlensing. ApJ, 681, 1593–1598 {128, 131}CrossRefGoogle Scholar
Gould, A, 2013a, Geosynchronous microlens parallaxes. ApJ, 763, L35 {134}CrossRefGoogle Scholar
Gould, A, 2013b, LSST's DC bias against planets and Galactic-plane science [unpublished]. ArXiv e-prints {143}
Gould, A, 2016a, Microlensing by Kuiper, Oort, and free-floating planets. Journal of Korean Astronomical Society, 49, 123–126 {130}CrossRefGoogle Scholar
Gould, A, 2016b, Microlensing planets. Methods of Detecting Exoplanets, volume 428 of As-trophys. Space Sci. Lib., 135 {120}Google Scholar
Gould, A, An, JH, 2002, Resolving microlens blends using image subtraction. ApJ, 565, 1381–1385 {131}CrossRefGoogle Scholar
Gould, A, Dong, S, Bennett, DP, et al., 2010a, A second method to photometrically align multi-site microlensing light curves: source colour in planetary event MOA–2007–BLG–192. ApJ, 710, 1800–1805 {131, 759}CrossRefGoogle Scholar
Gould, A, Dong, S, Gaudi, BS, et al., 2010b, Frequency of solar-like systems and of ice and gas giants beyond the snow line from high-magnification microlensing events in 2005–2008. ApJ, 720, 1073–1089 {57, 142, 144, 148, 149, 484}CrossRefGoogle Scholar
Gould, A, Dorsher, S, Gaudi, BS, et al., 2006a, Frequency of hot Jupiters and very hot Jupiters from the OGLE–III transit surveys toward the Galactic bulge and Carina. Acta Astronomica, 56, 1–50 {67, 168}Google Scholar
Gould, A, Ford, EB, Fischer, DA, 2003a, Early-type stars: most favorable targets for as-trometrically detectable planets in the habitable zone. ApJ, 591, L155–L158 {81}CrossRefGoogle Scholar
Gould, A, Gaudi, BS, 1997, Femtolens imaging of a quasar central engine using a dwarf star telescope. ApJ, 486, 687–692 {355}CrossRefGoogle Scholar
Gould, A, Gaudi, BS, Bennett, DP, 2007, Ground-based microlensing surveys [unpublished]. ArXiv e-prints {142}
Gould, A, Gaudi, BS, Han, C, 2003b, Resolving the microlens mass degeneracy for Earth-mass planets. ApJ, 591, L53–L56 {134}CrossRefGoogle Scholar
Gould, A, Horne, K, 2013a, Kepler-like multiplexing for mass production of microlens parallaxes. ApJ, 779, L28 {134}CrossRefGoogle Scholar
Gould, A, Horne, K, 2013b, Kepler microlens planets and parallaxes [unpublished]. ArXiv e-prints {135}
Gould, A, Kilic, M, 2008, Finding planets around white dwarf remnants of massive stars. ApJ, 673, L75–L78 {412}CrossRefGoogle Scholar
Gould, A, Loeb, A, 1992, Discovering planetary systems through gravitational mi-crolenses. ApJ, 396, 104–114 {123, 128, 130, 139}CrossRefGoogle Scholar
Gould, A, Pepper, J, DePoy, DL, 2003c, Sensitivity of transit searches to habitable-zone planets. ApJ, 594, 533–537 {160}CrossRefGoogle Scholar
Gould, A, Udalski, A, An, D, et al., 2006b, Microlens OGLE–2005–BLG–169 implies that cool Neptune-like planets are common. ApJ, 644, L37–L40 {131, 141, 145, 148, 759}CrossRefGoogle Scholar
Gould, A, Udalski, A, Monard, B, et al., 2009, The extreme microlensing event OGLE–2007–BLG–224: terrestrial parallax observation of a thick disk brown dwarf. ApJ, 698, L147–L151 {135}CrossRefGoogle Scholar
Gould, A, Udalski, A, Shin, IG, et al., 2014, A terrestrial planet in a 1 au orbit around one member of a ~15 au binary. Science, 345, 46–49 {141, 760}CrossRefGoogle Scholar
Gould, A, Yee, JC, 2012, Cheap space-based microlens parallaxes for high-magnification events. ApJ, 755, L17 {134}CrossRefGoogle Scholar
Gould, A, Yee, JC, 2013, Microlens terrestrial parallax mass measurements: a rare probe of isolated brown dwarfs and free-floating planets. ApJ, 764, 107 {130}CrossRefGoogle Scholar
Gould, A, Yee, JC, 2014, Microlens masses from astrometry and parallax in space-based surveys: from planets to black holes. ApJ, 784, 64 {134}CrossRefGoogle Scholar
Goulding, NT, Barnes, JR, Pinfield, DJ, et al., 2012, J-band variability of Mdwarfs in the WFCAM transit survey. MNRAS, 427, 3358–3373 {169}CrossRefGoogle Scholar
Goulinski, N, Ribak, EN, 2018, Capture of free-floating planets by planetary systems. MNRAS, 473, 1589–1595 {448}Google Scholar
Goullioud, R, Catanzarite, JH, Dekens, FG, et al., 2008, Overview of the SIM Plan-et Quest Light mission concept. SPIE Conf. Ser., volume 7013, 151 {100}Google Scholar
Gounelle, M, Meibom, A, 2008, The origin of short-lived radionuclides and the astrophysical environment of solar system formation. ApJ, 680, 781–792 {651}CrossRefGoogle Scholar
Gowanlock, MG, Patton, DR, McConnell, SM, 2011, A model of habitability within the Milky Way Galaxy. Astrobiology, 11, 855–873 {625}CrossRefGoogle ScholarPubMed
Goździewski, K, 2002, Stability of the 47 UMa planetary system. A&A, 393, 997–1013 {623, 716}Google Scholar
Goździewski, K, 2003a, A dynamical analysis of the HD 37124 planetary system. A&A, 398, 315–325 {70, 516, 719}Google Scholar
Goździewski, K, 2003b, Stability of the HD 12661 planetary system. A&A, 398, 1151–1161 {75, 516, 718}Google Scholar
Goździewski, K, Bois, E, Maciejewski, AJ, 2002, Global dynamics of the GJ 876 planetary system. MNRAS, 332, 839–855 {717}CrossRefGoogle Scholar
Goździewski, K, Bois, E, Maciejewski, AJ, et al., 2001, Global dynamics of planetary systems with the MEGNO criterion. A&A, 378, 569–586 {70, 516}Google Scholar
Goździewski, K, Breiter, S, Borczyk, W, 2008a, The long-termstability of extrasolar sys-tem HD 37124: numerical study of resonance effects. MNRAS, 383, 989–999 {70, 516, 719}Google Scholar
Goździewski, K, Konacki, M, 2004, Dynamical properties of the multi-planet system around HD 169830. ApJ, 610, 1093–1106 {77, 511, 516, 723}CrossRefGoogle Scholar
Goździewski, K, Konacki, M, 2006, Trojan pairs in the HD 128311 and HD 82943 planetary systems? ApJ, 647, 573–586 {72, 76, 77, 274, 721, 722}CrossRefGoogle Scholar
Goździewski, K, Konacki, M, Maciejewski, AJ, 2003, Where is the second planet in the HD 160691 planetary system? ApJ, 594, 1019–1032 {71, 516, 713}CrossRefGoogle Scholar
Goździewski, K, Konacki, M, Maciejewski, AJ, 2005a, Orbital solutions to the HD 160691 (μ Ara) Doppler signal. ApJ, 622, 1136–1148 {71, 516, 713}CrossRefGoogle Scholar
Goździewski, K, Konacki, M, Maciejewski, AJ, 2006, Orbital configurations and dynamical stability of multi-planet systems around Sun-like stars HD 202206, 14 Her, HD 37124, and HD 108874. ApJ, 645, 688–703 {70, 74, 75, 715, 719, 721, 724}CrossRefGoogle Scholar
Goździewski, K, Konacki, M, Wolszczan, A, 2005b, Long-term stability and dynamical environment of the PSR B1257+12 planetary system. ApJ, 619, 1084–1097 {107}CrossRefGoogle Scholar
Goździewski, K, Maciejewski, AJ, 2001, Dynamical analysis of the orbital parameters of the HD 82943 planetary system. ApJ, 563, L81–L85 {74, 721}CrossRefGoogle Scholar
Goździewski, K, Maciejewski, AJ, 2003, The Janus head of the HD 12661 planetary system. ApJ, 586, L153–L156 {25, 77, 516, 718}CrossRefGoogle Scholar
Goździewski, K, Maciejewski, AJ, Migaszewski, C, 2007, On the extrasolar multi-planet system around HD 160691. ApJ, 657, 546–558 {70, 71, 713}CrossRefGoogle Scholar
Goździewski, K, Migaszewski, C, 2006, About putative Neptune-like extrasolar planetary candidates. A&A, 449, 1219–1232 {722, 723, 724}Google Scholar
Goździewski, K, Migaszewski, C, 2009, Is the HR 8799 extrasolar system destined for planetary scattering? MNRAS, 397, L16–L20 {365, 763}CrossRefGoogle Scholar
Goździewski, K, Migaszewski, C, 2014, Multiple mean motion resonances in the HR 8799 planetary system. MNRAS, 440, 3140–3171 {365, 366, 508, 763}CrossRefGoogle Scholar
Goździewski, K, Migaszewski, C, Konacki, M, 2008b, A dynamical analysis of the 14Her planetary system. MNRAS, 385, 957–966 {74, 715}CrossRefGoogle Scholar
Goździewski, K, Migaszewski, C, Panichi, F, et al., 2016, The Laplace resonance in the Kepler–60 planetary system. MNRAS, 455, L104–L108 {320, 508, 516, 741}CrossRefGoogle Scholar
Goździewski, K, Nasiroglu, I, Słowikowska, A, et al., 2012, On the HU Aqr planetary system hypothesis. MNRAS, 425, 930–949 {115, 116}CrossRefGoogle Scholar
Goździewski, K, Słonina, M, Migaszewski, C, et al., 2013, Testing a hypothesis of the V Oct planet system. MNRAS, 430, 533–545 {715}CrossRefGoogle Scholar
Goździewski, K, Słowikowska, A, Dimitrov, D, et al., 2015, The HUAqr planetary system hypothesis revisited. MNRAS, 448, 1118–1136 {516}CrossRefGoogle Scholar
Gradstein, FM, Ogg, JG, Schmitz, MD, et al., 2012, The Geologic Time Scale. Elsevier {671}Google Scholar
Grady, CA, Muto, T, Hashimoto, J, et al., 2013, Spiral arms in the asymmetrically illuminated disk of MWC 758 and constraints on giant planets. ApJ, 762, 48 {367, 466}CrossRefGoogle Scholar
Grady, CA, Proffitt, CR, Malumuth, E, et al., 2003, Coronagraphic imaging with HST–STIS. PASP, 115, 1036–1049 {349}Google Scholar
Grady, CA, Sitko, ML, Bjorkman, KS, et al., 1997, The star-grazing extrasolar comets in the HD 100546 system. ApJ, 483, 449–456 {762}CrossRefGoogle Scholar
Grady, CA, Woodgate, B, Heap, SR, et al., 2005, Resolving the inner cavity of the HD 100546 disk: a candidate young planetary system? ApJ, 620, 470–480 {762}CrossRefGoogle Scholar
Grady, MM, 2001, Astrobiology. Astrobiology by Monica M.|Grady. Washington, D. C., ISBN: 1560988495 {619}Google Scholar
Gräfe, C, Wolf, S, Guilloteau, S, et al., 2013, Vertical settling and radial segregation of large dust grains in the circumstellar disk of the Butterfly Star. A&A, 553, A69 {465}Google Scholar
Gräfe, C, Wolf, S, Roccatagliata, V, et al., 2011, Mid-infrared observations of the transition disks around DH Tau, DM Tau, and GM Aur. A&A, 533, A89 {465, 762}Google Scholar
Graff, DS, Gaudi, BS, 2000, Direct detection of large close-in planets around the source stars of caustic-crossing microlensing events. ApJ, 538, L133–L136 {123, 136}CrossRefGoogle Scholar
Graham, JB, Dudley, R, Aguilar, N, et al., 1995, Implications of the late Paleozoic oxygen pulse for physiology and evolution. Nature, 375, 117–120 {674}CrossRefGoogle Scholar
Graham, JR, Matthews, K, Neugebauer, G, et al., 1990, The infrared excess of G29–38: brown dwarf or dust? ApJ, 357, 216–223 {415, 416, 431}CrossRefGoogle Scholar
Granata, V, Marzari, F, Davis, DR, et al., 2011, Multi-zone simulations of the collisional evolution of main-belt asteroids. LPI Science Conf Abstracts, volume 42, 1359 {684}Google Scholar
Granata, V, Nascimbeni, V, Piotto, G, et al., 2014, TASTE IV: refining ephemeris and orbital parameters for HAT–P–20 b and WASP–1 b. Astron. Nach., 335, 797 {184, 736, 751}CrossRefGoogle Scholar
Graner, F, Dubrulle, B, 1994, Titius–Bode laws in the solar system. 1. Scale invariance explains everything. A&A, 282, 262–268 {510}Google Scholar
Grasset, O, Castillo-Rogez, J, Guillot, T, et al., 2017, Water and volatiles in the outer solar system. Space Sci. Rev., 212, 835–875 {667}CrossRefGoogle Scholar
Grasset, O, Schneider, J, Sotin, C, 2009, A study of the accuracy of mass–radius relationships for silicate-rich and ice-rich planets up to 100 M⊕. ApJ, 693, 722–733 {574, 603}CrossRefGoogle Scholar
Gratadour, D, Rouan, D, Boccaletti, A, et al., 2005, Four quadrant phase mask K-band coronagraphy of NGC 1068 with VLT–NACO. A&A, 429, 433–437 {336}Google Scholar
Gratia, P, Fabrycky, D, 2017, Outer-planet scattering can gently tilt an inner planetary system. MNRAS, 464, 1709–1717 {654, 741}CrossRefGoogle Scholar
Gratton, RG, Bonanno, G, Claudi, RU, et al., 2001, Non-interacting main-sequence binaries with different chemical compositions: evidence of infall of rockymaterial? A&A, 377, 123–131 {393}Google Scholar
Gratton, RG, Carretta, E, Claudi, RU, et al., 2003, The SARG planet search: hunting for planets around stars in wide binaries. Scientific Frontiers in Research on Extraso-lar Planets, volume 294 of ASP Conf. Ser., 47–50 {56, 78}Google Scholar
Gratton, RG, Carretta, E, Claudi, RU, 2004, The SARG exoplanet search. Mem. Soc. Astron. Ital., 75, 97–102 {46}Google Scholar
Grauzhanina, AO, Valyavin, GG, Gadelshin, DR, et al., 2017, Spectroscopic observations of the exoplanet WASP–32 b transit. Astrophysical Bulletin, 72, 67–72 {754}CrossRefGoogle Scholar
Gray, DF, 1982, Observations of spectral line asymmetries and convective velocities in F, G, and K stars. ApJ, 255, 200–209 {39}CrossRefGoogle Scholar
Gray, DF, 1983, On the constancy of spectral-line bisectors. PASP, 95, 252–255 {39}CrossRefGoogle Scholar
Gray, DF, 1984, Measurements of rotation and turbulence in F, G, and K dwarfs. ApJ, 281, 719–722 {250}CrossRefGoogle Scholar
Gray, DF, 1989, The morphology of reversed spectral-line bisectors. PASP, 101, 832–838 {39}CrossRefGoogle Scholar
Gray, DF, 1997, Absence of a planetary signature in the spectra of the star 51 Peg. Nature, 385, 795–796 {51, 715}CrossRefGoogle Scholar
Gray, DF, 1998, A planetary companion for 51 Peg implied by absence of pulsations in the stellar spectra. Nature, 391, 153–154 {51, 715}CrossRefGoogle Scholar
Gray, DF, 1999, Stellar rotation and precise radial velocities. IAU Colloq. 170: Precise Stellar Radial Velocities, volume 185 of ASP Conf. Ser., 243–254 {30}Google Scholar
Gray, DF, Brown, KIT, 2006, Precise spectroscopic radial velocity measurements using telluric lines. PASP, 118, 399–404 {31}CrossRefGoogle Scholar
Gray, DF, Carney, BW, Yong, D, 2008, Asymmetries in the spectral lines of evolved halo stars. AJ, 135, 2033–2037 {39}CrossRefGoogle Scholar
Gray, DF, Hatzes, AP, 1997, Non-radial oscillation in the solar-temperature star 51 Peg. ApJ, 490, 412–424 {51, 715}CrossRefGoogle Scholar
Gray, DF, Nagar, P, 1985, The rotational discontinuity shown by luminosity class IV stars. ApJ, 298, 756–760 {56}CrossRefGoogle Scholar
Gray, DF, Oostra, B, 2018, The solar-flux third granulation signature. ApJ, 852, 42 {36}CrossRefGoogle Scholar
Gray, JS, 1997, Marine biodiversity: patterns, threats and conservation needs. Biodiversity & Conservation, 6(1), 153–175, ISSN 1572-9710 {632}CrossRefGoogle Scholar
Gray, LJ, Beer, J, Geller, M, et al., 2010, Solar influences on climate. Reviews of Geophysics, 48, RG4001 {655}CrossRefGoogle Scholar
Gray, R, 2000, Effective temperature scale and bolometric corrections. Encyclopedia of Astronomy and Astrophysics {376, 377}
Gray, RH, Mooley, K, 2017, A VLA search for radio signals from M31 and M33. AJ, 153, 110 {645}CrossRefGoogle Scholar
Gray, RO, Corbally, CJ, De Cat, P, et al., 2016, LAMOST observations in the Kepler field: spectral classification with the MKCLASS code. AJ, 151, 13 {390}CrossRefGoogle Scholar
Gray, RO, Corbally, CJ, Garrison, RF, et al., 2006, Contributions to the nearby stars (NStars) project: spectroscopy of stars earlier than M0 within 40 pc: the southern sample. AJ, 132, 161–170 {405}CrossRefGoogle Scholar
Graziani, F, Black, DC, 1981, Orbital stability constraints on the nature of planetary systems. ApJ, 251, 337–341 {548}CrossRefGoogle Scholar
Grazier, KR, Newman, WI, Kaula, WM, et al., 1999a, Dynamical evolution of planetes-imals in the outer solar system. I. The Jupiter/Saturn zone. Icarus, 140, 341–352 {694}CrossRefGoogle Scholar
Grazier, KR, Newman, WI, Varadi, F, et al., 1999b, Dynamical evolution of planetes-imals in the outer solar system. II. The Saturn/Uranus and Uranus/Neptune zones. Icarus, 140, 353–368 {694}CrossRefGoogle Scholar
Grbic, A, Eleftheriades, GV, 2004, Overcoming the diffraction limit with a planar left-handed transmission-line lens. Phys. Rev. Lett., 92(11), 117403–7406 {357}CrossRefGoogle ScholarPubMed
Greaves, JS, 2006, A common proper motion companion to the exoplanet host 51 Peg. J. Double Star Obs., 2, 4 {91, 715}Google Scholar
Greaves, JS, 2010, Predicting the incidence of planet and debris disks as a function of stellar mass. MNRAS, 409, L44–L48 {496}CrossRefGoogle Scholar
Greaves, JS, Fischer, DA, Wyatt, MC, 2006, Metallicity, debris disks and planets. MNRAS, 366, 283–286 {392}CrossRefGoogle Scholar
Greaves, JS, Hales, AS, Mason, BS, et al., 2012, Debris disks at centimeter wavelengths: planetesimal populations in young extrasolar Kuiper belts. MNRAS, 423, L70–L74 {496}CrossRefGoogle Scholar
Greaves, JS, Holland, WS, Jayawardhana, R, et al., 2004a, A search for debris disks around stars with giant planets. MNRAS, 348, 1097–1104 {493}CrossRefGoogle Scholar
Greaves, JS, Holland, WS, Moriarty-Schieven, G, et al., 1998, A dust ring around yatt MC, et al., 2005, Structure in the Eri: analogue to the young solar system. ApJ, 506, L133–L137 {642, 715}CrossRefGoogle Scholar
Greaves, JS, Holland, WS, Wyatt, MC, et al., 2005, Structure in the yatt MC, et al., 2005, Structure in the Eri debris disk. ApJ, 619, L187–L190 {342, 715}CrossRefGoogle Scholar
Greaves, JS, Kennedy, GM, Thureau, N, et al., 2014, Alignment in star-debris disk systems seen by Herschel. MNRAS, 438, L31–L35 {554}CrossRefGoogle Scholar
Greaves, JS, Wyatt, MC, Bryden, G, 2009, Debris disks around nearby solar analogues. MNRAS, 397, 757–762 {493}CrossRefGoogle Scholar
Greaves, JS, Wyatt, MC, Holland, WS, et al., 2004b, The debris disk around τ Cet: a massive analogue to the Kuiper belt. MNRAS, 351, L54–L58 {714}CrossRefGoogle Scholar
Greco, JP, Brandt, TD, 2016, The measurement, treatment, and impact of spectral covariance and Bayesian priors in integral-field spectroscopy of exoplanets. ApJ, 833, 134 {341}CrossRefGoogle Scholar
Greco, JP, Burrows, A, 2015, The direct detectability of giant exoplanets in the optical. ApJ, 808, 172 {350}CrossRefGoogle Scholar
Green, RM, 1985, Spherical Astronomy. Cambridge University Press {88}Google Scholar
Greenaway, AH, Spaan, FHP, Mourai, V, 2005, Pupil replication for exoplanet imaging. ApJ, 618, L165–L165 {338}CrossRefGoogle Scholar
Greenberg, R, 1982, Orbital evolution of the Galilean satellites. Satellites of Jupiter, 65–92, University of Arizona Press {536}
Greenberg, R, 1989, Time-varying orbits and tidal heating of the Galilean satellites. NASA Special Publication, 494, 100–115 {536}Google Scholar
Greenberg, R, 2005, Europa –the Ocean Moon: Search for an Alien Biosphere. Springer–Praxis {626}Google Scholar
Greenberg, R, 2009, Frequency dependence of tidal Q. ApJ, 698, L42–L45 {535}CrossRefGoogle Scholar
Greenberg, R, Brahic, A, 1984, Planetary Rings. University of Arizona Press {651}Google Scholar
Greenberg, R, Hartmann, WK, Chapman, CR, et al., 1978, Planetesimals to planets: numerical simulation of collisional evolution. Icarus, 35, 1–26 {473, 474}CrossRefGoogle Scholar
Greenberg, R, Van Laerhoven, C, 2011, Tidal evolution of a secularly interacting planetary system. ApJ, 733, 8 {733}CrossRefGoogle Scholar
Greenberg, R, van Laerhoven, C, 2012, Aligned major axes in a planetary system without tidal evolution: the 61 Vir example. MNRAS, 419, 429–435 {511, 716}CrossRefGoogle Scholar
Greenberg, R, Van Laerhoven, C, Barnes, R, 2013, Spin-driven tidal pumping: tidally driven changes in planetary spin coupled with secular interactions between planets. Cel. Mech. Dyn. Astron., 117, 331–348 {309, 544}CrossRefGoogle Scholar
Greenberg, R, Weidenschilling, SJ, 1984, How fast do Galilean satellites spin? Icarus, 58, 186–196 {541}CrossRefGoogle Scholar
Greene, TP, Line, MR, Montero, C, et al., 2016, Characterising transiting exoplanet atmospheres with JWST. ApJ, 817, 17 {181}CrossRefGoogle Scholar
Greenstein, JL, 1988, The companion of the white dwarf G29–38 as a brown dwarf. AJ, 95, 1494–1504 {431}CrossRefGoogle Scholar
Greenzweig, Y, Lissauer, JJ, 1990, Accretion rates of protoplanets. Icarus, 87, 40–77 {474}CrossRefGoogle Scholar
Greenzweig, Y, Lissauer, JJ, 1992, Accretion rates of protoplanets. II. Gaussian distributions of planetesimal velocities. Icarus, 100, 440–463 {481}Google Scholar
Greer, PA, Payne, SG, Norton, AJ, et al., 2017, The Super WASP catalogue of 4963 RR Lyr stars: identification of 983 Blazhko effect candidates. A&A, 607, A11 {164}Google Scholar
Gregory, PC, 2005, A Bayesian analysis of extrasolar planet data for HD 73526. ApJ, 631, 1198–1214 {23, 24, 25, 720}CrossRefGoogle Scholar
Gregory, PC, 2007a, A Bayesian Kepler periodogram detects a second planet in HD 208487. MNRAS, 374, 1321–1333 {24, 25, 724}CrossRefGoogle Scholar
Gregory, PC, 2007b, A Bayesian periodogram finds evidence for three planets in HD 11964. MNRAS, 381, 1607–1616 {24, 25, 718}CrossRefGoogle Scholar
Gregory, PC, 2011a, Bayesian exoplanet tests of a new method for MCMC sampling in highly correlated model parameter spaces. MNRAS, 410, 94–110 {23, 25, 100}CrossRefGoogle Scholar
Gregory, PC, 2011b, Bayesian re-analysis of the GJ 581 exoplanet system. MNRAS, 415, 2523–2545 {37, 606, 716}CrossRefGoogle Scholar
Gregory, PC, 2016, An apodised Kepler periodogramfor separating planetary and stellar activity signals. MNRAS, 458, 2604–2633 {36}CrossRefGoogle Scholar
Gregory, PC, Fischer, DA, 2010, A Bayesian periodogram finds evidence for three planets in 47 UMa. MNRAS, 403, 731–747 {25, 716}CrossRefGoogle Scholar
Gregoryanz, E, Goncharov, AF, Matsuishi, K, et al., 2003, Raman spectroscopy of hot dense hydrogen. Phys. Rev. Lett., 90(17), 175701 {567}CrossRefGoogle ScholarPubMed
Greiss, S, Steeghs, D, Gänsicke, BT, et al., 2012, Initial data release of the Kepler–INT survey. AJ, 144, 24 {176}CrossRefGoogle Scholar
Grenfell, JL, Gebauer, S, von Paris, P, et al., 2011, Sensitivity of biomarkers to changes in chemical emissions in the Earth's Proterozoic atmosphere. Icarus, 211, 81–88 {641}CrossRefGoogle Scholar
Grenfell, JL, Grießmeier, JM, Patzer, B, et al., 2007a, Biomarker response to Galactic cosmic ray-induced NOx and the methane greenhouse effect in the atmosphere of an Earth-like planet orbiting an Mdwarf star. Astrobiology, 7, 208–221 {631}CrossRefGoogle Scholar
Grenfell, JL, Rauer, H, Selsis, F, et al., 2010, Co-evolution of atmospheres, life, and climate. Astrobiology, 10, 77–88 {636}CrossRefGoogle ScholarPubMed
Grenfell, JL, Stracke, B, von Paris, P, et al., 2007b, The response of atmospheric chemistry on earthlike planets around F, G and K stars to small variations in orbital distance. Planet. Space Sci., 55, 661–671 {642}CrossRefGoogle Scholar
Gressel, O, Nelson, RP, Turner, NJ, 2011, On the dynamics of planetesimals embedded in turbulent protoplanetary disks with dead zones. MNRAS, 415, 3291–3307 {459}CrossRefGoogle Scholar
Gressel, O, Nelson, RP, Turner, NJ, 2012, Dead zones as safe havens for planetesimals: influence of disk mass and external magnetic field. MNRAS, 422, 1140–1159 {459}CrossRefGoogle Scholar
Grether, D, Lineweaver, CH, 2006, How dry is the brown dwarf desert? Quantifying the relative number of planets, brown dwarfs, and stellar companions around nearby Sun-like stars. ApJ, 640, 1051–1062 {64, 65}CrossRefGoogle Scholar
Grevesse, N, Noels, A, 1993, Cosmic abundances of the elements. Origin and Evolution of the Elements, 14–25, Cambridge University Press {651, 701, 702}
Grevesse, N, Noels, A, Sauval, AJ, 1996, Standard abundances. Cosmic Abundances, volume 99 of ASP Conf. Ser., 117–126 {651}Google Scholar
Grevesse, N, Sauval, AJ, 1998, Standard solar composition. Space Sci. Rev., 85, 161–174 {651}CrossRefGoogle Scholar
Grevesse, N, Sauval, AJ, 2002, The composition of the solar photosphere. Adv. Space Res., 30, 3–11 {651}CrossRefGoogle Scholar
Grießmeier, JM, Motschmann, U, Mann, G, et al., 2005a, The influence of stellar wind conditions on the detectability of planetary radio emissions. A&A, 437, 717–726 {425}Google Scholar
Grießmeier, JM, Preusse, S, Khodachenko, M, et al., 2007a, Exoplanetary radio emission under different stellar wind conditions. Planet. Space Sci., 55, 618–630 {425}CrossRefGoogle Scholar
Grießmeier, JM, Stadelmann, A, Motschmann, U, et al., 2005b, Cosmic ray impact on extrasolar Earth-like planets in close-in habitable zones. Astrobiology, 5, 587–603 {631}Google Scholar
Grießmeier, JM, Stadelmann, A, Penz, T, et al., 2004, The effect of tidal locking on the magnetospheric and atmospheric evolution of Hot Jupiters. A&A, 425, 753–762 {167, 426, 731, 749}Google Scholar
Grießmeier, JM, Tabataba-Vakili, F, Stadelmann, A, et al., 2015, Galactic cosmic rays on extrasolar Earth-like planets. I. Cosmic ray flux. A&A, 581, A44 {631}Google Scholar
Grießmeier, JM, Tabataba-Vakili, F, Stadelmann, A, 2016, Galactic cosmic rays on extrasolar Earth-like planets. II. Atmospheric implications. A&A, 587, A159 {631}Google Scholar
Grießmeier, JM, Zarka, P, Spreeuw, H, 2007b, Predicting low-frequency radio fluxes of known extrasolar planets. A&A, 475, 359–368 {425}Google Scholar
Griest, K, 1991, Galactic microlensing as a method of detecting massive compact halo objects. ApJ, 366, 412–421 {124}CrossRefGoogle Scholar
Griest, K, Safizadeh, N, 1998, The use of high-magnification microlensing events in discovering extrasolar planets. ApJ, 500, 37–50 {123, 127, 128, 130}CrossRefGoogle Scholar
Grieve, RAF, Pesonen, LJ, 1996, Terrestrial impact craters: their spatial and temporal distribution and impacting bodies. Earth Moon and Planets, 72, 357–376 {477}CrossRefGoogle Scholar
Grieves, N, Ge, J, Thomas, N, et al., 2017, Exploring the brown dwarf desert: new sub-stellar companions from the SDSS–IIIMARVELS survey. MNRAS, 467, 4264–4281 {50, 64, 65}CrossRefGoogle Scholar
Griffin, MJ, Abergel, A, Abreu, A, et al., 2010, The Herschel-SPIRE instrument and its in-flight performance. A&A, 518, L3 {443}Google Scholar
Griffin, REM, David, M, Verschueren, W, 2000, Accuracy of radial-velocity measurements for early-type stars. II. Investigations of spectrum mismatch from high-resolution observations. A&AS, 147, 299–321 {56}Google Scholar
Griffin, RF, 1967, A photoelectric radial-velocity spectrometer. ApJ, 148, 465–476 {29}CrossRefGoogle Scholar
Griffin, RF, 1973, On the possibility of determining stellar radial velocities to 0.01kms-1. MNRAS, 162, 243–253 {31}CrossRefGoogle Scholar
Griffin, RF, Griffin, REM, 1973, Accurate wavelengths of stellar and telluric absorption lines near 700 nm. MNRAS, 162, 255–260 {31}CrossRefGoogle Scholar
Griffith, CA, Yelle, RV, 1999, Disequilibriumchemistry in a brown dwarf's atmosphere: CO in GJ 229B. ApJ, 519, L85–L88 {436}CrossRefGoogle Scholar
Griffith, RL, Wright, JT, Maldonado, J, et al., 2015, The Ĝ Infrared search for extraterrestrial civilisations with large energy supplies. III. The reddest extended sources in WISE. ApJS, 217, 25 {646}CrossRefGoogle Scholar
Grigorieva, A, Artymowicz, P, Thébault, P, 2007, Collisional dust avalanches in debris disks. A&A, 461, 537–549 {495, 496}Google Scholar
Grillmair, CJ, Burrows, A, Charbonneau, D, et al., 2008, Strong water absorption in the day-side emission spectrum of the planet HD 189733 b. Nature, 456, 767–769 {608, 609, 613, 730}CrossRefGoogle Scholar
Grillmair, CJ, Charbonneau, D, Burrows, A, et al., 2007, A Spitzer spectrum of the exo-planet HD 189733 b. ApJ, 658, L115–L118 {10, 608, 609, 730}CrossRefGoogle Scholar
Grimm, SL, Demory, BO, Gillon, M, et al., 2018, The nature of the TRAPPIST–1 exo-planets. ArXiv e-prints {750}
Grimm, SL, Stadel, JG, 2014, The GENGA code: gravitational encounters in N-body simulations with GPU acceleration. ApJ, 796, 23 {513}CrossRefGoogle Scholar
Grishin, E, Lai, D, Perets, HB, 2018, Chaotic quadruple secular evolution and the production of misaligned exomoons and warm Jupiters in stellar multiples. MNRAS, 474, 3547–3556 {276}CrossRefGoogle Scholar
Grishin, E, Perets, HB, 2016, Application of gas dynamical friction for planetesimals. II. Evolution of binary planetesimals. ApJ, 820, 106 {471}CrossRefGoogle Scholar
Grishin, E, Perets, HB, Zenati, Y, et al., 2017, Generalised Hill-stability criteria for hierarchical three-body systems at arbitrary inclinations. MNRAS, 466, 276–285 {512}CrossRefGoogle Scholar
Gritschneder, M, Lin, DNC, Murray, SD, et al., 2012, The supernova triggered formation and enrichment of our solar system. ApJ, 745, 22 {651}CrossRefGoogle Scholar
Grodent, D, 2015, A brief review of ultraviolet auroral emissions on giant planets. Space Sci. Rev., 187, 23–50 {426}CrossRefGoogle Scholar
Groff, TD, Kasdin, NJ, Limbach, MA, et al., 2014, Construction and status of the CHARIS high-contrast imaging spectrograph. Ground-based and Airborne Instrumentation for Astronomy V, volume 9147 of Proc. SPIE, 91471W {344}Google Scholar
Groff, TD, Kasdin, NJ, Limbach, MA, 2015, The CHARIS IFS for high-contrast imaging at Subaru. Techniques and Instrumentation for Detection of Exoplanets VII, volume 9605 of Proc. SPIE, 96051C {344}Google Scholar
Grogan, K, Dermott, SF, Durda, DD, 2001, The size-frequency distribution of the zodiacal cloud: evidence from the solar system dust bands. Icarus, 152, 251–267 {691}CrossRefGoogle Scholar
Gronoff, G, Maggiolo, R, Wedlund, CS, et al., 2014, Theoretical ultraviolet absorption spectra of hydrodynamically escaping O2/CO2-rich exoplanetary atmospheres. ApJ, 788, 191 {601}CrossRefGoogle Scholar
Groot, PJ, 2012, Rotational Doppler beaming in eclipsing binaries. ApJ, 745, 55 {384}CrossRefGoogle Scholar
Grossman, AS, Graboske, HC, 1973, Evolution of low-mass stars. V. Minimummass for the deuteriummain sequence. ApJ, 180, 195–198 {430}CrossRefGoogle Scholar
Grossman, L, 1972, Condensation in the primitive solar nebula. Geochim. Cos-mochim. Acta, 36, 597–619 {562, 653}Google Scholar
Grossman, L, Larimer, JW, 1974, Early chemical history of the solar system. Reviews of Geophysics and Space Physics, 12, 71–101 {562}CrossRefGoogle Scholar
Grun, E, Zook, HA, Baguhl, M, et al., 1993, Discovery of Jovian dust streams and interstellar grains by the ULYSSES spacecraft. Nature, 362, 428–430 {692}CrossRefGoogle Scholar
Grunblatt, SK, Howard, AW, Haywood, RD, 2015, Determining the mass of Kepler–78 b with nonparametric Gaussian process estimation. ApJ, 808, 127 {37, 742}CrossRefGoogle Scholar
Grunblatt, SK, Huber, D, Gaidos, E, et al., 2017, Seeing double with K2: testing re-inflation with two remarkably similar planets around red giant branch stars. AJ, 154, 254 {748, 749}CrossRefGoogle Scholar
Grunblatt, SK, Huber, D, Gaidos, EJ, et al., 2016, K2–97 b: a (re-?)inflated planet orbiting a red giant star. AJ, 152, 185 {748}CrossRefGoogle Scholar
Grundy, WM, Binzel, RP, Buratti, BJ, et al., 2016, Surface compositions across Pluto and Charon. Science, 351, aad9189 {682}CrossRefGoogle ScholarPubMed
Grundy, WM, Olkin, CB, Young, LA, et al., 2013, Near-infrared spectral monitoring of Pluto's ices: spatial distribution and secular evolution. Icarus, 223, 710–721 {682}CrossRefGoogle Scholar
Gruntman, M, 1997, Energetic neutral atom imaging of space plasmas. Review of Scientific Instruments, 68, 3617–3656 {428}CrossRefGoogle Scholar
Grziwa, S, Gandolfi, D, Csizmadia, S, et al., 2016, K2–31 b, a grazing transiting hot Jupiter on a 1.26-d orbit around a bright G7V star. AJ, 152, 132 {223, 224, 748}CrossRefGoogle Scholar
Grziwa, S, Pätzold, M, Carone, L, 2012, The needle in the haystack: searching for transiting extrasolar planets in CoRoT stellar light curves. MNRAS, 420, 1045–1052 {191}CrossRefGoogle Scholar
Gu, PG, Bodenheimer, PH, Lin, DNC, 2003a, On the Roche lobe overflow of giant planets with ultra-short periods due to tidal dissipation. Scientific Frontiers in Research on Extrasolar Planets, volume 294 of ASP Conf. Ser., 209–212 {298}Google Scholar
Gu, PG, Bodenheimer, PH, Lin, DNC, 2004, The internal structural adjustment due to tidal heating of short-period inflated giant planets. ApJ, 608, 1076–1094 {303}CrossRefGoogle Scholar
Gu, PG, Lin, DNC, Bodenheimer, PH, 2003b, The effect of tidal inflation instability on the mass and dynamical evolution of extrasolar planets with ultrashort periods. ApJ, 588, 509–534 {159, 298, 541, 544}CrossRefGoogle Scholar
Güdel, M, 2002, Stellar radio astronomy: probing stellar atmospheres from protostars to giants. ARA&A, 40, 217–261 {101}Google Scholar
Guedes, JM, Rivera, EJ, Davis, E, et al., 2008, Formation and detectability of terrestrial planets around α Cen B. ApJ, 679, 1582–1587 {714}CrossRefGoogle Scholar
Guenel, M, Mathis, S, Remus, F, 2014, Unravelling tidal dissipation in gaseous giant planets. A&A, 566, L9 {542}Google Scholar
Guenther, DB, Demarque, P, 1997, Seismic tests of the Sun's interior structure, composition, and age, and implications for solar neutrinos. ApJ, 484, 937–959 {652}CrossRefGoogle Scholar
Guenther, DB, Demarque, P, 2000, α Cen AB. ApJ, 531, 503–520 {714}CrossRefGoogle Scholar
Guenther, EW, Barragán, O, Dai, F, et al., 2017, K2–106, a system containing a metal-rich planet and a planet of lower density. A&A, 608, A93 {748}Google Scholar
Guenther, EW, Cabrera, J, Erikson, A, et al., 2011, Constraints on the exosphere of CoRoT–7 b. A&A, 525, A24 {733}Google Scholar
Guenther, EW, Díaz, RF, Gazzano, JC, et al., 2012, Transiting exoplanets from the CoRoT space mission. XXI. CoRoT–19 b: a low density planet orbiting an old inactive F9V-star. A&A, 537, A136 {734}Google Scholar
Guenther, EW, Fridlund, M, Alonso, R, et al., 2013, High angular resolution imaging and infrared spectroscopy of CoRoT candidates. A&A, 556, A75 {360}Google Scholar
Guenther, EW, Hartmann, M, Esposito, M, et al., 2009, A substellar component orbiting the F-star 30 Ari B. A&A, 507, 1659–1665 {170, 543, 728}Google Scholar
Guenther, EW, Neuhäuser, R, Wuchterl, G, et al., 2005, The low-mass companion of GQ Lup. Astron. Nach., 326, 958–963 {762}CrossRefGoogle Scholar
Guenther, EW, Wuchterl, G, 2003, Companions of old brown dwarfs, and very low mass stars. A&A, 401, 677–683 {55}Google Scholar
Guerin, W, Dussaux, A, FouchéM, et al., 2017, Temporal intensity interferometry: photon bunching on three bright stars. ArXiv e-prints {354}
Guerri, G, Daban, JB, Robbe-Dubois, S, et al., 2011, Apodised Lyot coronagraph for VLT–SPHERE. II. Laboratory tests and performance. Exp. Astron., 30, 59–81 {343}CrossRefGoogle Scholar
Guildner, LA, Johnson, DP, Jones, FE, 1976, Vapour pressure of water at its triple point: highly accurate value. Science, 191, 1261–1263 {568}CrossRefGoogle Scholar
Guilera, OM, Brunini, A, Benvenuto, OG, 2010, Consequences of the simultaneous formation of giant planets by the core accretion mechanism. A&A, 521, A50 {481}Google Scholar
Guilera, OM, de Elía GC, Brunini, A, et al., 2014, Planetesimal fragmentation and giant planet formation. A&A, 565, A96 {481}Google Scholar
Guilera, OM, Fortier, A, Brunini, A, et al., 2011, Simultaneous formation of solar system giant planets. A&A, 532, A142 {697}Google Scholar
Guilera, OM, Miller Bertolami, MM, Ronco, MP, 2017, The formation of giant planets in wide orbits by photoevaporation-synchronised migration. MNRAS, 471, L16–L20 {483}CrossRefGoogle Scholar
Guilera, OM, Sándor, Z, 2017, Giant planet formation at the pressure maxima of proto-planetary disks. A&A, 604, A10 {473}Google Scholar
Guilet, J, Baruteau, C, Papaloizou, JCB, 2013, Type I planet migration in weakly mag-netised laminar disks. MNRAS, 430, 1764–1783 {518, 519}CrossRefGoogle Scholar
Guilet, J, Ogilvie, GI, 2014, Global evolution of the magnetic field in a thin disk and its consequences for protoplanetary systems. MNRAS, 441, 852–868 {461}CrossRefGoogle Scholar
Guillochon, J, Loeb, A, 2015, SETI via leakage from light sails in exoplanetary systems. ApJ, 811, L20 {225, 646, 648}CrossRefGoogle Scholar
Guillochon, J, Ramirez-Ruiz, E, Lin, D, 2011, Consequences of the ejection and disruption of giant planets. ApJ, 732, 74 {230, 521, 525}CrossRefGoogle Scholar
Guillot, T, 1999a, A comparison of the interiors of Jupiter and Saturn. Planet. Space Sci., 47, 1183–1200 {302, 487, 658, 660}CrossRefGoogle Scholar
Guillot, T, 1999b, Interiors of giant planets inside and outside the solar system. Science, 296, 72–77 {296}Google Scholar
Guillot, T, 2005, The interiors of giant planets: models and outstanding questions. Ann. Rev. Earth Plan. Sci., 33, 493–530 {9, 296, 302, 475, 566, 567, 569, 573, 605, 658, 659, 661}CrossRefGoogle Scholar
Guillot, T, 2010, On the radiative equilibrium of irradiated planetary atmospheres. A&A, 520, A27 {580, 591}Google Scholar
Guillot, T, Abe, L, Agabi, A, et al., 2015, Thermalising a telescope in Antarctica: analysis of ASTEP observations. Astron. Nach., 336, 638 {169}CrossRefGoogle Scholar
Guillot, T, Burrows, A, Hubbard, WB, et al., 1996, Giant planets at small orbital distances. ApJ, 459, L35–L38 {302, 535, 565, 601, 602, 622}CrossRefGoogle Scholar
Guillot, T, Chabrier, G, Morel, P, et al., 1994a, Nonadiabatic models of Jupiter and Saturn. Icarus, 112, 354–367 {569}CrossRefGoogle Scholar
Guillot, T, Gautier, D, Chabrier, G, et al., 1994b, Are the giant planets fully convective? Icarus, 112, 337–353 {569, 660}CrossRefGoogle Scholar
Guillot, T, Gautier, D, Hubbard, WB, 1997, New constraints on the composition of Jupiter from Galileo measurements and interior models. Icarus, 130, 534–539 {487, 658}CrossRefGoogle Scholar
Guillot, T, Havel, M, 2011, An analysis of CoRoT–2: a young spotted star and its inflated giant planet. A&A, 527, A20 {616, 733}Google Scholar
Guillot, T, Hueso, R, 2006, The composition of Jupiter: sign of a (relatively) late formation in a chemically evolved protosolar disk. MNRAS, 367, L47–L51 {578}CrossRefGoogle Scholar
Guillot, T, Ida, S, Ormel, CW, 2014a, On the filtering and processing of dust by plan-etesimals. I. Derivation of collision probabilities for non-drifting planetesimals. A&A, 572, A72 {470}Google Scholar
Guillot, T, Lin, DNC, Morel, P, et al., 2014b, Evolution of exoplanets and their parent stars. EAS Publications Series, volume 65 of EAS Publications Series, 327–336 {64}CrossRefGoogle Scholar
Guillot, T, Miguel, Y, Militzer, B, et al., 2018, A suppression of differential rotation in Jupiter's deep interior. Nature, 555, 227–230 {659}CrossRefGoogle ScholarPubMed
Guillot, T, Santos, NC, Pont, F, et al., 2006, A correlation between the heavy element content of transiting extrasolar planets and the metallicity of their parent stars. A&A, 453, L21–L24 {293, 390, 485}Google Scholar
Guillot, T, Showman, AP, 2002, Evolution of 51 Peg-like planets. A&A, 385, 156–165 {302, 303, 571, 715}Google Scholar
Guillot, T, Stevenson, DJ, Hubbard, WB, et al., 2004, The interior of Jupiter. Jupiter. The Planet, Satellites and Magnetosphere, 35–57, Cambridge University Press {426, 487, 567, 569, 658}
Guilloteau, S, Dutrey, A, Piétu, V, et al., 2011, A dual-frequency sub-arcsecond study of protoplanetary disks at mm wavelengths: first evidence for radial variations of the dust properties. A&A, 529, A105 {496}Google Scholar
Guinan, EF, 2013, The case of the tail wagging the dog: HD 189733, evidence of hot Jupiter exoplanets spinning-up their host stars. Journal of the American Association of Variable Star Observers (JAAVSO), 41, 153 {730}Google Scholar
Guinan, EF, Engle, SG, Durbin, A, 2016, Living with a red dwarf: rotation and X-ray and ultraviolet properties of the halo population Kapteyn's Star. ApJ, 821, 81 {716}CrossRefGoogle Scholar
Guinan, EF, Ribas, I, 2001, The best brown dwarf yet? A companion to the Hyades eclipsing binary V471 Tau. ApJ, 546, L43–L47 {113}CrossRefGoogle Scholar
Gulbis, AAS, Bus, SJ, Elliot, JL, et al., 2011, First results from the MIT Optical Rapid Imaging System (IRTF–MORIS): a stellar occultation by Pluto and a transit by exoplanet XO–2 b. PASP, 123, 461–469 {182, 757}CrossRefGoogle Scholar
Gulkis, S, Biraud, F, Heidmann, J, et al., 1990, Technical considerations on using the large Nancay radio telescope for SETI. Telecommunications and Data Acquisition Progress Report, 102, 152–160 {644}Google Scholar
Gullbring, E, Hartmann, L, Briceno, C, et al., 1998, Disk accretion rates for T Tauri stars. ApJ, 492, 323–341 {456}CrossRefGoogle Scholar
Gullikson, K, Endl, M, 2013, Future direct spectroscopic detection of hot Jupiters with IGRINS. PASP, 125, 924–932 {43, 46, 48}CrossRefGoogle Scholar
Gundlach, B, Kilias, S, Beitz, E, et al., 2011, Micrometer-sized ice particles for planetary-science experiments. I. Preparation, critical rolling friction force, and specific surface energy. Icarus, 214, 717–723 {458}CrossRefGoogle Scholar
Gunkelmann, N, Ringl, C, Urbassek, HM, 2016, Influence of porosity on collisions between dust aggregates. A&A, 589, A30 {469}Google Scholar
Günther, MN, Queloz, D, Demory, BO, et al., 2017a, A newyield simulator for transiting planets and false positives: application to the Next Generation Transit Survey (NGTS). MNRAS, 465, 3379–3389 {167}CrossRefGoogle Scholar
Günther, MN, Queloz, D, Gillen, E, et al., 2017b, Centroid vetting of transiting planet candidates from the Next Generation Transit Survey (NGTS). MNRAS, 472, 295–307 {167}CrossRefGoogle Scholar
Guo, J, Zhang, F, Zhang, X, et al., 2010, Habitable zones and UV habitable zones around host stars. Ap&SS, 325, 25–30 {628}Google Scholar
Guo, JH, 2010, The effect of mass loss on the tidal evolution of extrasolar planet. ApJ, 712, 1107–1115 {732}CrossRefGoogle Scholar
Guo, JH, 2011, Escaping particle fluxes in the atmospheres of close-in exoplanets. I. Model of hydrogen. ApJ, 733, 98 {601, 730, 732}CrossRefGoogle Scholar
Guo, JH, 2013, Escaping particle fluxes in the atmospheres of close-in exoplanets. II. Reduced mass-loss rates and anisotropic winds. ApJ, 766, 102 {601}CrossRefGoogle Scholar
Guo, JH, Ben-Jaffel, L, 2016, The influence of the extreme ultraviolet spectral energy distribution on the structure and composition of the upper atmosphere of exo-planets. ApJ, 818, 107 {729, 731, 732, 739}CrossRefGoogle Scholar
Guo, X, Esin, A, Di Stefano, R, et al., 2015, Periodic signals in binary microlensing events. ApJ, 809, 182 {129, 133}CrossRefGoogle Scholar
Guo, X, Johnson, JA, Mann, AW, et al., 2017a, The metallicity distribution and hot Jupiter rate of the Kepler field: hectochelle high-resolution spectroscopy for 776 Kepler target stars. ApJ, 838, 25 {13}CrossRefGoogle Scholar
Guo, Z, Gies, DR, Fuller, J, 2017b, Tidally-induced pulsations in Kepler eclipsing binary KIC–3230227. ApJ, 834, 59 {230}CrossRefGoogle Scholar
Gurdemir, L, Redfield, S, Cuntz, M, 2012, Planet-induced emission enhancements in HD 179949: results from McDonald observations. Publ. Astron. Soc. Australia, 29, 141–149 {723}CrossRefGoogle Scholar
Gurevich, L, Mostepanenko, V, 1971, On the existence of atoms in N-dimensional space. Physics Letters A, 35, 201–202 {515}CrossRefGoogle Scholar
Gurfil, P, Kasdin, J, Arrell, R, et al., 2002, Infrared space observatories: how to mitigate zodiacal dust interference. ApJ, 567, 1250–1261 {351}CrossRefGoogle Scholar
Gurnett, DA, Kurth, WS, Cairns, IH, et al., 1990, Whistlers in Neptune's magnetosphere: evidence of atmospheric lightning. J. Geophys. Res., 95, 20967–20976 {591}CrossRefGoogle Scholar
Gurnett, DA, Kurth, WS, Hospodarsky, GB, et al., 2002, Control of Jupiter's radio emission and aurorae by the solar wind. Nature, 415, 985–987 {426}CrossRefGoogle ScholarPubMed
Gurnett, DA, Shaw, RR, Anderson, RR, et al., 1979, Whistlers observed by Voyager 1: detection of lightning on Jupiter. Geophys. Res. Lett., 6, 511–514 {591}CrossRefGoogle Scholar
Gurri, P, Veras, D, Gänsicke, BT, 2017, Mass and eccentricity constraints on the planetary debris orbiting the white dwarf WD 1145+017. MNRAS, 464, 321–328 {418}CrossRefGoogle Scholar
Gusev, A, Kitiashvili, I, 2006, Transition from a direct rotation to the reverse rotation of exoplanets by action of the basic perturbations. European Planetary Science Congress, 260 {254}Google Scholar
Gustafson, BAS, Misconi, NY, Rusk, ET, 1987, Interplanetary dust dynamics. II. Poynting–Robertson drag and planetary perturbations on cometary dust. III. Dust released from P/Enke: distribution with respect to the zodiacal cloud. Icarus, 72, 568–592 {692}Google Scholar
Gutjahr, M, Ridgwell, A, Sexton, PF, et al., 2017, Very large release of mostly volcanic carbon during the Palaeocene–Eocene Thermal Maximum. Nature, 548, 573–577 {675}CrossRefGoogle ScholarPubMed
Güttler, C, Blum, J, Zsom, A, et al., 2010, The outcome of protoplanetary dust growth: pebbles, boulders, or planetesimals? I. Mapping the zoo of laboratory collision experiments. A&A, 513, A56 {468, 469}Google Scholar
Guyon, O, 2003, Phase-induced amplitude apodisation of telescope pupils for extra-solar terrestrial planet imaging. A&A, 404, 379–387 {334}Google Scholar
Guyon, O, 2004, Imaging faint sources within a speckle halo with synchronous interferometric speckle subtraction. ApJ, 615, 562–572 {340}CrossRefGoogle Scholar
Guyon, O, 2005, Limits of adaptive optics for high-contrast imaging. ApJ, 629, 592–614 {332, 339, 346}CrossRefGoogle Scholar
Guyon, O, 2007, A theoretical look at coronagraph design and performance for direct imaging of exoplanets. Comptes Rendus Physique, 8, 323–332 {334}CrossRefGoogle Scholar
Guyon, O, 2010, High sensitivity wavefront sensing with a nonlinear curvature wavefront sensor. PASP, 122, 49–62 {332}CrossRefGoogle Scholar
Guyon, O, Angel, JRP, Backman, D, et al., 2008, Pupil mapping Exoplanet Corona-graphic Observer (PECO). SPIE Conf. Ser., volume 7010, 59 {352, 353}Google Scholar
Guyon, O, Angel, JRP, Bowers, C, et al., 2006a, Telescope to Observe Planetary Systems (TOPS): a high throughput 1.2-m visible telescope with a small inner working angle. SPIE Conf. Ser., volume 6265, 52 {353}Google Scholar
Guyon, O, Angel, JRP, Bowers, C, 2007, Direct imaging of nearby exoplanets with a small size space telescope: Telescope to Observe Planetary System (TOPS). In the Spirit of Bernard Lyot: The Direct Detection of Planets and Circumstellar Disks in the 21st Century, 37 {353}Google Scholar
Guyon, O, Bendek, EA, Eisner, JA, et al., 2012a, High-precision astrometry with a diffractive pupil telescope. ApJS, 200, 11 {100}CrossRefGoogle Scholar
Guyon, O, Eisner, JA, Angel, R, et al., 2013, Simultaneous exoplanet characterisation and deep wide-field imaging with a diffractive pupil telescope. ApJ, 767, 11 {100}CrossRefGoogle Scholar
Guyon, O, Hinz, PM, Cady, E, et al., 2014, High performance Lyot and PIAA coronagra-phy for arbitrarily shaped telescope apertures. ApJ, 780, 171 {335}CrossRefGoogle Scholar
Guyon, O, Matsuo, T, Angel, R, 2009, Coronagraphic low-order wave-front sensor: principle and application to a phase-induced amplitude coronagraph. ApJ, 693, 75–84 {332}CrossRefGoogle Scholar
Guyon, O, Pluzhnik, E, Martinache, F, et al., 2010, High-contrast imaging andwavefront control with a PIAA coronagraph: laboratory system validation. PASP, 122, 71–84 {335}CrossRefGoogle Scholar
Guyon, O, Pluzhnik, EA, Galicher, R, et al., 2005, Exoplanet imaging with a phase-induced amplitude apodisation coronagraph. I. Principle. ApJ, 622, 744–758 {334, 335}CrossRefGoogle Scholar
Guyon, O, Pluzhnik, EA, Kuchner, MJ, et al., 2006b, Theoretical limits on extrasolar terrestrial planet detection with coronagraphs. ApJS, 167, 81–99 {334, 335, 337}CrossRefGoogle Scholar
Guyon, O, Schneider, G, Belikov, R, et al., 2012b, The EXoplanetary Circumstellar Environments and Disk Explorer (EXCEDE). SPIE Conf. Ser., volume 8442 {353}Google Scholar
Guyon, O, Shao, M, 2006, The pupil-swapping coronagraph. PASP, 118, 860–865 {334}CrossRefGoogle Scholar
Guzmán-Marmolejo, A, Segura, A, Escobar-Briones, E, 2013, Abiotic production of methane in terrestrial planets. Astrobiology, 13, 550–559 {640}CrossRefGoogle ScholarPubMed
Guzzo, M, Lega, E, Froeschlé, C, 2002, On the numerical detection of the effective stability of chaotic motions in quasi-integrable systems. Physica D Nonlinear Phenomena, 163, 1–25 {515}CrossRefGoogle Scholar
Gyldén, H, 1884, Die Bahnbewegungen in einem Systeme von zwei Körpern in dem Falle, dass die Massen Veränderungen unterworfen sind (Orbits in a 2-body sys-temwith changingmasses). Astron. Nach., 109, 1 {516}CrossRefGoogle Scholar
Haas, JR, 2010, The potential feasibility of chlorinic photosynthesis on exoplanets. Astrobiology, 10, 953–963 {629}CrossRefGoogle ScholarPubMed
Haas, MR, Batalha, NM, Bryson, ST, et al., 2010, Kepler science operations. ApJ, 713, L115–L119 {175}CrossRefGoogle Scholar
Haberl, F, Turolla, R, de Vries, CP, et al., 2006, Evidence for precession of the isolated neutron star RX J0720.4–3125. A&A, 451, L17–L21 {109}Google Scholar
Haberreiter, M, Schmutz, W, Kosovichev, AG, 2008, Solving the discrepancy between the seismic and photospheric solar radius. ApJ, 675, L53 {701, 702}CrossRefGoogle Scholar
Hadden, S, Lithwick, Y, 2014, Densities and eccentricities of 139 Kepler planets from transit time variations. ApJ, 787, 80 {268, 289, 740, 741, 743, 745}CrossRefGoogle Scholar
Hadden, S, Lithwick, Y, 2016, Numerical and analytical modeling of transit timing variations. ApJ, 828, 44 {271}CrossRefGoogle Scholar
Hadden, S, Lithwick, Y, 2017, Kepler planet masses and eccentricities from TTV analysis. AJ, 154, 5 {271}CrossRefGoogle Scholar
Hadjidemetriou, JD, 1963, Two-body problem with variable mass: a new approach. Icarus, 2, 440–451 {516}CrossRefGoogle Scholar
Hadjidemetriou, JD, 1966, Analytic solutions of the two-body problem with variable mass. Icarus, 5, 34–46 {516}CrossRefGoogle Scholar
Hadjidemetriou, JD, Psychoyos, D, 2003, Dynamics of extrasolar planetary systems: 2:1 resonant motion. Galaxies and Chaos, volume 626 of Lecture Notes in Physics, Springer–Verlag, 412–432 {721}Google Scholar
Hadjidemetriou, JD, Psychoyos, D, Voyatzis, G, 2009, The 1:1 resonance in extrasolar planetary systems. Cel. Mech. Dyn. Astron., 104, 23–38 {76, 273}CrossRefGoogle Scholar
Hadjidemetriou, JD, Voyatzis, G, 2011, The 1:1 resonance in extrasolar systems: migration from planetary to satellite orbits. Cel. Mech. Dyn. Astron., 111, 179–199 {273}CrossRefGoogle Scholar
Hagelberg, J, Ségransan, D, Udry, S, et al., 2016, The Geneva reduction and analysis pipeline for high-contrast imaging of planetary companions. MNRAS, 455, 2178–2186 {340}CrossRefGoogle Scholar
Haggard, HM, Cowan, NB, 2018, Analytic reflected lightcurves for exoplanets. ArXiv e-prints {591, 615, 616}
Haghighipour, N, 2004, On the dynamical stability of γ Cep, an S-type binary planetary system. The Search for Other Worlds, volume 713 of Amer. Inst. Phys. Conf. Ser., 269–272 {80, 549, 714}Google Scholar
Haghighipour, N, 2006, Dynamical stability and habitability of the γ Cep binary-planetary system. ApJ, 644, 543–550 {80, 549, 623, 714}CrossRefGoogle Scholar
Haghighipour, N, 2008, Formation, dynamical evolution, and habitability of planets in binary star systems. Exoplanets: Detection, Formation, Properties, Habitability, 223–257, Springer {548, 549}
Haghighipour, N (ed.), 2010, Planets in Binary Star Systems, volume 366 of Astrophys. Space Sci. Lib. {551}
Haghighipour, N, 2013, The formation and dynamics of super-Earth planets. Ann. Rev. Earth Plan. Sci., 41, 469–495 {500}CrossRefGoogle Scholar
Haghighipour, N, Boss, AP, 2003, On gas drag-induced rapid migration of solids in a nonuniformsolar nebula. ApJ, 598, 1301–1311 {458, 461}CrossRefGoogle Scholar
Haghighipour, N, Butler, RP, Rivera, EJ, et al., 2012, The Lick–Carnegie survey: a new two-planet system around the star HD 207832. ApJ, 756, 91 {724}CrossRefGoogle Scholar
Haghighipour, N, Capen, S, Hinse, TC, 2013, Detection of Earth-mass and super-Earth Trojan planets using transit timing variation method. Cel. Mech. Dyn. Astron., 117, 75–89 {274}CrossRefGoogle Scholar
Haghighipour, N, Kaltenegger, L, 2013, Calculating the habitable zone of binary star systems. II. P-type binaries. ApJ, 777, 166 {623}CrossRefGoogle Scholar
Haghighipour, N, Kirste, S, 2011, On the detection of (habitable) super-Earths around low-mass stars using Kepler and transit timing variation method. Cel. Mech. Dyn. Astron., 111, 267–284 {634}CrossRefGoogle Scholar
Haghighipour, N, Raymond, SN, 2007, Habitable planet formation in binary planetary systems. ApJ, 666, 436–446 {550}CrossRefGoogle Scholar
Haghighipour, N, Scott, ERD, 2012, On the effect of giant planets on the scattering of parent bodies of iron meteorite from the terrestrial planet region into the asteroid belt: a concept study. ApJ, 749, 113 {669}CrossRefGoogle Scholar
Haghighipour, N, Vogt, SS, Butler, RP, et al., 2010, The Lick–Carnegie exoplanet survey: a Saturn-mass planet in the habitable zone of the nearby M4V star HIP 57050. ApJ, 715, 271–276 {153, 635, 717}CrossRefGoogle Scholar
Haghighipour, N, Winter, OC, 2016, Formation of terrestrial planets in disks with different surface density profiles. Cel. Mech. Dyn. Astron., 124, 235–268 {476, 657, 697}CrossRefGoogle Scholar
Hahn, JM, 2010, Diagnosing circumstellar debris disks. ApJ, 719, 1699–1714 {496}CrossRefGoogle Scholar
Hahn, JM, Malhotra, R, 1999, Orbital evolution of planets embedded in a planetesimal disk. AJ, 117, 3041–3053 {524, 685}CrossRefGoogle Scholar
Hahn, JM, Malhotra, R, 2005, Neptune's migration into a stirred-up Kuiper belt: a detailed comparison of simulations to observations. AJ, 130, 2392–2414 {685, 695}CrossRefGoogle Scholar
Haigh, JD, 2007, The Sun and the Earth's climate. Living Reviews in Solar Physics, 4, 2 {649}CrossRefGoogle Scholar
Hainaut, OR, Kleyna, J, Sarid, G, et al., 2012, P/2010 A2 LINEAR. I. An impact in the asteroid main belt. A&A, 537, A69 {685}Google Scholar
Hainaut, OR, Rahoui, F, Gilmozzi, R, 2007, Down to Earths, with OWL. Exploring the Cosmic Frontier: Astrophysical Instruments for the 21st Century, 253–256, Springer–Verlag {345}
Hair, TW, 2013, Provocative radio transients and base rate bias: a Bayesian argument for conservatism. Acta Astron., 91, 194–197 {645}CrossRefGoogle Scholar
Haisch, KE, Lada, EA, Lada, CJ, 2001, Disk frequencies and lifetimes in young clusters. ApJ, 553, L153–L156 {462, 483}CrossRefGoogle Scholar
Hajdukova, M Jr, 2016, The occurrence of interstellar particles in the vicinity of the Sun: an overview of 25 years of research. International Meteor Conference, 105–110 {683}
Hajian, AR, Behr, BB, Cenko, AT, et al., 2007, Initial results from the USNO dispersed Fourier Transform Spectrograph. ApJ, 661, 616–633 {50}CrossRefGoogle Scholar
Halbwachs, JL, Arenou, F, Mayor, M, et al., 2000, Exploring the brown dwarf desert with Hipparcos. A&A, 355, 581–594 {65}Google Scholar
Halbwachs, JL, Mayor, M, Udry, S, et al., 2003, Multiplicity among solar-type stars. III. Statistical properties of the F7-K binaries with periods up to 10 years. A&A, 397, 159–175 {78, 547}Google Scholar
Hale, A, 1994, Orbital coplanarity in solar-type binary systems: implications for planetary system formation and detection. AJ, 107, 306–332 {159}CrossRefGoogle Scholar
Hale, A, Doyle, LR, 1994, The photometric method of extrasolar planet detection revisited. Ap&SS, 212, 335–348 {157}Google Scholar
Hale, GE, 1895, On a new method of mapping the solar corona without an eclipse. ApJ, 1, 318–334 {333}Google Scholar
Hales, AS, De Gregorio-Monsalvo, I, Montesinos, B, et al., 2014, A CO survey in planet-forming disks: characterising the gas content in the epoch of planet formation. AJ, 148, 47 {467}CrossRefGoogle Scholar
Hales, SEG, Baldwin, JE, Warner, PJ, 1993, The 6C survey of radio sources. VI. MNRAS, 263, 25–30 {426}Google Scholar
Hales, SEG, Waldram, EM, Rees, N, et al., 1995, A revised machine-readable source list for the Rees 38-MHz survey. MNRAS, 274, 447–451 {426}CrossRefGoogle Scholar
Hall, C, Forgan, D, Rice, K, et al., 2016, Directly observing continuum emission from self-gravitating spiral waves. MNRAS, 458, 306–318 {463}CrossRefGoogle Scholar
Hall, JC, 2008, Stellar chromospheric activity. Living Reviews in Solar Physics, 5, 2 {649}CrossRefGoogle Scholar
Hallakoun, N, Xu, S, Maoz, D, et al., 2017, Once in a blue moon: detection of ‘bluing’ during debris transits in the white dwarf WD 1145+017. MNRAS, 469, 3213–3224 {418}CrossRefGoogle Scholar
Halliday, AN, 2000, Terrestrial accretion rates and the origin of the Moon. Earth Planet. Sci. Lett., 176, 17–30 {664}CrossRefGoogle Scholar
Halliday, AN, 2004, Mixing, volatile loss and compositional change during impact-driven accretion of the Earth. Nature, 427, 505–509 {652}CrossRefGoogle Scholar
Halliday, AN, 2008, A young Moon-forming giant impact at 70–110Myr accompanied by late-stage mixing, core formation and degassing of the Earth. Phil. Trans. Soc. London A, 366, 4163–4181 {664, 665}Google Scholar
Hallinan, G, Sirothia, SK, Antonova, A, et al., 2013, Looking for a pulse: a search for rotationally modulated radio emission from the hot Jupiter, τ Boo b. ApJ, 762, 34 {714}CrossRefGoogle Scholar
Halverson, S, Mahadevan, S, Ramsey, L, et al., 2014, Development of fiber Fabry–Pérot interferometers as stable near-infrared calibration sources for high resolution spectrographs. PASP, 126, 445–458 {33}CrossRefGoogle Scholar
Hamano, K, Abe, Y, Genda, H, 2013, Emergence of two types of terrestrial planet on solidification of magma ocean. Nature, 497, 607–610 {576}CrossRefGoogle ScholarPubMed
Hamano, K, Kawahara, H, Abe, Y, et al., 2015, Lifetime and spectral evolution of a magma ocean with a steam atmosphere: its detectability by future direct imaging. ApJ, 806, 216 {576}CrossRefGoogle Scholar
Hambleton, K, Kurtz, DW, Prša, A, et al., 2016, KIC–3749404: a heartbeat star with rapidapsidal advance indicative of a tertiary component. MNRAS, 463, 1199–1212 {230}CrossRefGoogle Scholar
Hamdani, S, Arnold, L, Foellmi, C, et al., 2006, Biomarkers in disk-averaged near-ultraviolet to near-infrared Earth spectra using Earthshine observations. A&A, 460, 617–624 {641}Google Scholar
Hamers, AS, 2017a, Hints for hidden planetary companions to hot Jupiters in stellar binaries. ApJ, 835, L24 {530}CrossRefGoogle Scholar
Hamers, AS, 2017b, On the formation of hot and warm Jupiters via secular high-eccentricity migration in stellar triples. MNRAS, 466, 4107–4120 {529}Google Scholar
Hamers, AS, Antonini, F, Lithwick, Y, et al., 2017, Secular dynamics of multi-planet systems: implications for the formation of hot and warm Jupiters via high-eccentricity migration. MNRAS, 464, 688–701 {529}CrossRefGoogle Scholar
Hamers, AS, Lai, D, 2017, Secular chaotic dynamics in hierarchical quadruple systems, with applications to hot Jupiters in stellar binaries and triples. MNRAS, 470, 1657–1672 {529}CrossRefGoogle Scholar
Hamers, AS, Perets, HB, Portegies Zwart, SF, 2016, A triple origin for the lack of tight coplanar circumbinary planets around short-period binaries. MNRAS, 455, 3180–3200 {553}CrossRefGoogle Scholar
Hamers, AS, Portegies Zwart, SF, 2016a, Secular dynamics of hierarchical multiple systems composed of nested binaries, with an arbitrary number of bodies and arbitrary hierarchical structure: first applications to multi-planet and multi-star systems. MNRAS, 459, 2827–2874 {548, 550, 728}CrossRefGoogle Scholar
Hamers, AS, Portegies Zwart, SF, 2016b, White dwarf pollution by planets in stellar binaries. MNRAS, 462, L84–L87 {417}CrossRefGoogle Scholar
Hamers, AS, Tremaine, S, 2017, Hot Jupiters driven by high-eccentricity migration in globular clusters. AJ, 154, 272 {499}CrossRefGoogle Scholar
Hamilton, DP, Burns, JA, 1991, Orbital stability zones about asteroids. Icarus, 92, 118–131 {688}CrossRefGoogle Scholar
Hamilton, DP, Burns, JA, 1992, Orbital stability zones about asteroids. II. The destabilising effects of eccentric orbits and of solar radiation. Icarus, 96, 43–64 {512}CrossRefGoogle Scholar
Hamilton, DP, Ward, WR, 2004, Tilting Saturn. II. Numericalmodel. AJ, 128, 2510–2517 {681}CrossRefGoogle Scholar
Hammond, M, Pierrehumbert, RT, 2017, Linking the climate and thermal phase curve of 55 Cnc e. ApJ, 849, 152 {728}CrossRefGoogle Scholar
Hamolli, L, De Paolis, F, Hafizi, M, et al., 2017, Predictions on the detection of the free-floating planet population with K2 and Spitzer microlensing campaigns. Astrophysical Bulletin, 72, 73–80 {135}CrossRefGoogle Scholar
Hamolli, L, Hafizi, M, De Paolis, F, et al., 2015, Estimating finite source effects in micro-lensing events due to free-floating planets with the Euclid survey. Advances in Astronomy, 2015, 402303 {130}CrossRefGoogle Scholar
Hamolli, L, Hafizi, M, De Poalis, F, et al., 2013, Parallax effects on microlensing events caused by free-floating planets. Bulgarian Astronomical Journal, 19, 34 {143}Google Scholar
Han, C, 2002, Astrometric method for breaking the photometric degeneracy between binary-source and planetary microlensing perturbations. ApJ, 564, 1015–1018 {138}CrossRefGoogle Scholar
Han, C, 2005a, Analysis of microlensing light curves induced by multiple-planet systems. ApJ, 629, 1102–1109 {123}CrossRefGoogle Scholar
Han, C, 2005b, On the feasibility of characterising lens stars in future space-based micro-lensing surveys. ApJ, 633, 414–417 {143}CrossRefGoogle Scholar
Han, C, 2006a, Properties of planetary caustics in gravitational microlensing. ApJ, 638, 1080–1085 {123}CrossRefGoogle Scholar
Han, C, 2006b, Secure identification of free-floating planets. ApJ, 644, 1232–1236 {130}CrossRefGoogle Scholar
Han, C, 2007a, Criteria in the selection of target events for planetary microlensing follow-up observations. ApJ, 661, 1202–1207 {139}CrossRefGoogle Scholar
Han, C, 2007b, Expansion of planet detection methods in next-generation microlensing surveys. ApJ, 670, 1361–1366 {125, 142}CrossRefGoogle Scholar
Han, C, 2008a, Microlensing detections of moons of exoplanets. ApJ, 684, 684–690 {135, 276}CrossRefGoogle Scholar
Han, C, 2008b, Microlensing search for planets with two simultaneously rising suns. ApJ, 676, L53–L56 {130}CrossRefGoogle Scholar
Han, C, 2009, Characterisation of microlensing planets with moderately wide separations. ApJ, 700, 945–948 {142}CrossRefGoogle Scholar
Han, C, Bennett, DP, Udalski, A, et al., 2016a, A new nonplanetary interpretation of the microlensing event OGLE–2013–BLG–723. ApJ, 825, 8 {760}CrossRefGoogle Scholar
Han, C, Chang, HY, An, JH, et al., 2001a, Properties of microlensing light curve anomalies induced by multiple planets. MNRAS, 328, 986–992 {123}CrossRefGoogle Scholar
Han, C, Chang, K, 1999, The applicability of the astrometric method for determining the physical parameters of gravitational microlenses. MNRAS, 304, 845–850 {138}CrossRefGoogle Scholar
Han, C, Chang, K, 2003, Signs of planetarymicrolensing signals. ApJ, 597, 1070–1075 {138}CrossRefGoogle Scholar
Han, C, Chung, SJ, Kim, D, et al., 2004, Gravitational microlensing: a tool for detecting and characterising free-floating planets. ApJ, 604, 372–378 {130}CrossRefGoogle Scholar
Han, C, Gaudi, BS, 2008, A characteristic planetary feature in double-peaked, high-magnificationmicrolensing events. ApJ, 689, 53–58 {123}CrossRefGoogle Scholar
Han, C, Gaudi, BS, An, JH, et al., 2005, Microlensing detection and characterisation of wide-separation planets. ApJ, 618, 962–972 {123, 130, 132}CrossRefGoogle Scholar
Han, C, Gould, A, 1995, Statistics of microlensing optical depth. ApJ, 449, 521 {123}CrossRefGoogle Scholar
Han, C, Han, W, 2002, On the feasibility of detecting satellites of extrasolar planets via microlensing. ApJ, 580, 490–493 {135, 276}CrossRefGoogle Scholar
Han, C, Jung, YK, Udalski, A, et al., 2013a, Microlensing discovery of a tight, low-mass-ratio planetary-mass object around an old field brown dwarf. ApJ, 778, 38 {141, 760}CrossRefGoogle Scholar
Han, C, Kang, YW, 2003, Probing the spatial distribution of extrasolar planets with gravitational microlensing. ApJ, 596, 1320–1326 {123}CrossRefGoogle Scholar
Han, C, Kim, YG, 2001, Comparison of the two follow-up observation strategies for gravitational microlensing planet searches. ApJ, 546, 975–979 {139}CrossRefGoogle Scholar
Han, C, Lee, C, 2002, Properties of planet-induced deviations in the astrometric microlensing centroid shift trajectory. MNRAS, 329, 163–174 {138}CrossRefGoogle Scholar
Han, C, Shin, IG, Jung, YK, 2017a, Detections of planets in binaries through the channel of Chang–Refsdal gravitational lensing events. ApJ, 835, 115 {126}CrossRefGoogle Scholar
Han, C, Udalski, A, Bozza, V, et al., 2017b, OGLE–2014–BLG–1112LB: a microlensing brown dwarf detected through the channel of a gravitational binary-lens event. ApJ, 843, 87 {144}CrossRefGoogle Scholar
Han, C, Udalski, A, Choi, JY, et al., 2013b, The second multiple-planet system discovered by microlensing: OGLE–2012–BLG–26L b, c: a pair of Jovian planets beyond the snow line. ApJ, 762, L28 {12, 141, 145, 147, 760}CrossRefGoogle Scholar
Han, C, Udalski, A, Gould, A, et al., 2016b, OGLE–2015–BLG–051/KMT–2015–BLG–048L b: a giant planet orbiting a low-mass bulge star discovered by high-cadence microlensing surveys. AJ, 152, 95 {141, 760}CrossRefGoogle Scholar
Han, C, Udalski, A, Gould, A, 2017c, OGLE–2016–BLG–0263L b: microlensing detection of a very low-mass binary companion through a repeating event channel. AJ, 154, 133 {129, 141, 145, 760}CrossRefGoogle Scholar
Han, C, Udalski, A, Gould, A, 2017d, OGLE–2016–BLG–0613LABb: a microlensing planet in a binary system. AJ, 154, 223 {141, 760}CrossRefGoogle Scholar
Han, C, Udalski, A, Sumi, T, et al., 2017e, OGLE–2016–BLG–1469L: microlensing binary composed of brown dwarfs. ApJ, 843, 59 {144}CrossRefGoogle Scholar
Han, E, Wang, SX, Wright, JT, et al., 2014, Exoplanet orbit database. II. Updates to exo-planets.org. PASP, 126, 827–837 {14}CrossRefGoogle Scholar
Han, I, 1989, The accuracy of differential astrometry limited by the atmospheric turbulence. AJ, 97, 607–610 {82}CrossRefGoogle Scholar
Han, I, Black, DC, Gatewood, G, 2001b, Preliminary astrometric masses for proposed extrasolar planetary companions. ApJ, 548, L57–L60 {94}CrossRefGoogle Scholar
Han, I, Lee, BC, Kim, KM, et al., 2010, Detection of a planetary companion around the giant star γ1 Leo. A&A, 509, A24 {55, 56, 715}Google Scholar
Han, Z, Podsiadlowski, P, Maxted, PFL, et al., 2002, The origin of subdwarf B stars. I. The formation channels. MNRAS, 336, 449–466 {111}CrossRefGoogle Scholar
Han, Z, Podsiadlowski, P, Maxted, PFL, 2003, The origin of subdwarf B stars. II. MNRAS, 341, 669–691 {111}CrossRefGoogle Scholar
Han, ZT, Qian, SB, Fernández Lajús E, et al., 2015, An orbital period analysis of the dwarf novae OY Car. New Astron., 34, 1–5 {105, 116}CrossRefGoogle Scholar
Hanasz, M, Kowalik, K, Wóltański, D, et al., 2010, The PIERNIK MHD code: a multi-fluid, non-ideal extension of the relaxing-TVD scheme. EAS Publications Series, volume 42, 275–280, Gożdziewski, K. and Niedzielski, A. and Schneider, J. {462}Google Scholar
Handler, G, Balona, LA, Shobbrook, RR, et al., 2002, Discovery and analysis of p-mode and g-mode oscillations in the A-type primary of the eccentric binary HD 209295. MNRAS, 333, 262–279 {230}CrossRefGoogle Scholar
Hands, TO, Alexander, RD, 2016, There might be giants: unseen Jupiter-mass planets as sculptors of tightly packed planetary systems. MNRAS, 456, 4121–4127 {322}CrossRefGoogle Scholar
Hands, TO, Alexander, RD, Dehnen, W, 2014, Understanding the assembly of Kepler's compact planetary systems. MNRAS, 445, 749–760 {502, 739, 740}CrossRefGoogle Scholar
Hanna, DS, Ball, J, Covault, CE, et al., 2009, OSETI with STACEE: a search for nanosecond optical transients from nearby stars. Astrobiology, 9, 345–357 {646}CrossRefGoogle ScholarPubMed
Hanse, J, Jílková, L, Portegies Zwart, SF, et al., 2018, Capture of exocomets and the erosion of the Oort cloud due to stellar encounters in the Galaxy. MNRAS, 473, 5432–5445 {686}CrossRefGoogle Scholar
Hansen, BMS, 2004, The astrophysics of cool white dwarfs. Phys. Rep., 399, 1–70 {110}CrossRefGoogle Scholar
Hansen, BMS, 2008, On the absorption and redistribution of energy in irradiated planets. ApJS, 179, 484–508 {580, 591}CrossRefGoogle Scholar
Hansen, BMS, 2009, Formation of the terrestrial planets from a narrow annulus. ApJ, 703, 1131–1140 {501, 657}CrossRefGoogle Scholar
Hansen, BMS, 2010, Calibration of equilibrium tide theory for extrasolar planet systems. I. ApJ, 723, 285–299 {536, 537, 541, 544}CrossRefGoogle Scholar
Hansen, BMS, 2012, Calibration of equilibriumtide theory for extrasolar planet systems. II. ApJ, 757, 6 {255, 537}CrossRefGoogle Scholar
Hansen, BMS, 2014, The circulation of dust in protoplanetary disks and the initial conditions of planet formation. MNRAS, 440, 3545–3556 {461}CrossRefGoogle Scholar
Hansen, BMS, 2015, In situ models for planet assembly around cool stars. Int. J. Astrobiol., 14, 267–278 {324, 476}CrossRefGoogle Scholar
Hansen, BMS, 2017, Perturbation of compact planetary systems by distant giant planets. MNRAS, 467, 1531–1560 {325}Google Scholar
Hansen, BMS, 2018, A dynamical context for the origin of Phobos and Deimos. MNRAS, 475, 2452–2466 {689}CrossRefGoogle Scholar
Hansen, BMS, Barman, T, 2007, Two classes of hot Jupiters. ApJ, 671, 861–871 {293, 294, 303, 307, 423, 521}CrossRefGoogle Scholar
Hansen, BMS, Kulkarni, S, Wiktorowicz, S, 2006, A Spitzer search for infrared excesses around massive young white dwarfs. AJ, 131, 1106–1118 {415}CrossRefGoogle Scholar
Hansen, BMS, Murray, N, 2012, Migration then assembly: formation of Neptune-mass planets inside 1 au. ApJ, 751, 158 {476, 501, 502}CrossRefGoogle Scholar
Hansen, BMS, Murray, N, 2013, Testing in situ assembly with the Kepler planet candidate sample. ApJ, 775, 53 {324, 476, 501, 502, 545}CrossRefGoogle Scholar
Hansen, BMS, Murray, N, 2015, Secular effects of tidal damping in compact planetary systems. MNRAS, 448, 1044–1059 {545}CrossRefGoogle Scholar
Hansen, BMS, Zink, J, 2015, On the potentially dramatic history of the super-Earth 55 Cnc e. MNRAS, 450, 4505–4520 {728}CrossRefGoogle Scholar
Hansen, CJ, Schwartz, JC, Cowan, NB, 2014, Features in the broad-band eclipse spectra of exoplanets: signal or noise? MNRAS, 444, 3632–3640 {606, 607, 613, 614}CrossRefGoogle Scholar
Hansen, JE, Hovenier, JW, 1974, Interpretation of the polarisation of Venus. Journal of Atmospheric Sciences, 31, 1137–1160 {589}2.0.CO;2>CrossRefGoogle Scholar
Hansen, PA, 1856, Sur la figure de la lune. Mem. Roy. astr. Soc, 24, 29–89 {639}Google Scholar
Hanson, JR, Apai, D, 2015, KLIP-ing for analogues: detection statistics for HR 8799-like systems. American Astronomical Society Meeting Abstracts, volume 225 of American Astronomical Society Meeting Abstracts, 258.13 {340}Google Scholar
Hao, W, Kouwenhoven, MBN, Spurzem, R, 2013, The dynamical evolution of multi-planet systems in open clusters. MNRAS, 433, 867–877 {526}CrossRefGoogle Scholar
Haqq-Misra, J, Baum, SD, 2009, The sustainability solution to the Fermi paradox. J. Br. Interplanet. Soc., 62, 47–51 {647}Google Scholar
Haqq-Misra, J, Busch, M, Som, S, et al., 2012, The benefits and harms of transmitting into space [unpublished]. ArXiv e-prints {648}
Haqq-Misra, J, Kopparapu, RK, 2015, Geothermal heating enhances atmospheric asymmetries on synchronously rotating planets. MNRAS, 446, 428–438 {599}CrossRefGoogle Scholar
Haqq-Misra, J, Kopparapu, RK, Batalha, NE, et al., 2016, Limit cycles can reduce the width of the habitable zone. ApJ, 827, 120 {620}CrossRefGoogle ScholarPubMed
Haqq-Misra, J, Kopparapu, RK, Wolf, ET, 2018a, Why do we find ourselves around a yellow star instead of a red star? Int. J. Astrobiol., 17, 77–86 {632}CrossRefGoogle Scholar
Haqq-Misra, J, Wolf, ET, Joshi, M, et al., 2018b, Demarcating circulation regimes of synchronously rotating terrestrial planets within the habitable zone. ApJ, 852, 67 {621}CrossRefGoogle Scholar
Hara, NC, Boué, G, Laskar, J, et al., 2017, Radial velocity data analysis with compressed sensing techniques. MNRAS, 464, 1220–1246 {21, 22, 717, 718, 720, 728}CrossRefGoogle Scholar
Harakawa, H, Sato, B, Fischer, DA, et al., 2010, Detection of a low-eccentricity and super-massive planet to the subgiant HD 38801. ApJ, 715, 550–553 {56, 719}CrossRefGoogle Scholar
Harakawa, H, Sato, B, Omiya, M, et al., 2015, Five new exoplanets orbiting three metal-rich, massive stars: two-planet systems including long-period planets and an eccentric planet. ApJ, 806, 5 {718, 720}CrossRefGoogle Scholar
Hardorp, J, 1978, The Sun among the stars. I. A search for solar spectral analogues. A&A, 63, 383–390 {405}Google Scholar
Hardy, F, Gong, S, 2017, On the formation and stability of resonant planetary systems. MNRAS, 470, 264–275 {508}CrossRefGoogle Scholar
Hardy, JH, 1982, Active optics –don't build a telescope without it. SPIE Conf. Ser., volume 332, 252–259 {331}Google Scholar
Hardy, JW, 1998, Adaptive Optics for Astronomical Telescopes. Oxford University Press {331, 332}Google Scholar
Hardy, LK, Butterley, T, Dhillon, VS, et al., 2015, pt5m: a 0.5-m robotic telescope on La Palma. MNRAS, 454, 4316–4325 {754}CrossRefGoogle Scholar
Hardy, RA, Harrington, J, Hardin, MR, et al., 2017, Secondary eclipses of HAT–P–13 b. ApJ, 836, 143 {259, 736}CrossRefGoogle Scholar
Hargreaves, RJ, Beale, CA, Michaux, L, et al., 2012, Hot methane line lists for exoplanet and brown dwarf atmospheres. ApJ, 757, 46 {570}CrossRefGoogle Scholar
Harman, CE, Schwieterman, EW, Schottelkotte, JC, et al., 2015, Abiotic O2 levels on planets around F, G, K ApJ, 812, 137 {638}CrossRefGoogle Scholar
Harmon, JK, 2007, Radar imaging of Mercury. Space Sci. Rev., 132, 307–349 {356}CrossRefGoogle Scholar
Harmon, JK, Arvidson, RE, Guinness, EA, et al., 1999, Mars mapping with delay-Doppler radar. J. Geophys. Res., 104, 14065–14090 {356}CrossRefGoogle Scholar
Harmon, JK, Nolan, MC, 2017, Arecibo radar imagery of Mars. II. Chryse-Xanthe, polar caps, and other regions. Icarus, 281, 162–199 {356}CrossRefGoogle Scholar
Harmon, JK, Nolan, MC, Husmann, DI, et al., 2012, Arecibo radar imagery of Mars. I. The major volcanic provinces. Icarus, 220, 990–1030 {356}CrossRefGoogle Scholar
Harmon, JK, Ostro, SJ, 1985, Mars: dual-polarisation radar observations with extended coverage. Icarus, 62, 110–128 {356}CrossRefGoogle Scholar
Harmon, JK, Slade, MA, Butler, BJ, et al., 2007, Mercury: radar images of the equatorial and midlatitude zones. Icarus, 187, 374–405 {356}CrossRefGoogle Scholar
Harp, GR, Richards, J, Shostak, S, et al., 2016a, Radio SETI observations of the anomalous star KIC–8462852. ApJ, 825, 155 {232, 644, 747}CrossRefGoogle Scholar
Harp, GR, Richards, J, Tarter, JC, et al., 2016b, SETI observations of exoplanets with the Allen Telescope Array. AJ, 152, 181 {644}CrossRefGoogle Scholar
Harpsøe, KBW, Hardis, S, Hinse, TC, et al., 2013, The transiting system GJ 1214: high-precision defocused transit observations and a search for evidence of transit timing variation. A&A, 549, A10 {189, 735}Google Scholar
Harrington, J, Hansen, BM, Luszcz, SH, et al., 2006, The phase-dependent infrared brightness of the extrasolar planet À And b. Science, 314, 623–626 {10, 70, 236, 237, 595, 616, 713}CrossRefGoogle Scholar
Harrington, J, Luszcz, S, Seager, S, et al., 2007, The hottest planet. Nature, 447, 691–693 {729}CrossRefGoogle ScholarPubMed
Harrington, RS, 1968, Dynamical evolution of triple stars. AJ, 73, 190–194 {528}CrossRefGoogle Scholar
Harrington, RS, 1969, The stellar three-body problem. Celestial Mechanics, 1, 200–209 {528}CrossRefGoogle Scholar
Harrington, RS, 1977, Planetary orbits in binary stars. AJ, 82, 753–756 {160, 548, 623}CrossRefGoogle Scholar
Harrington, RS, Dahn, CC, 1980, Summary of US Naval Observatory parallaxes. AJ, 85, 454–465 {82}CrossRefGoogle Scholar
Harrington, RS, Harrington, BJ, 1978, Can we find a place to live near a multiple star? Mercury, 7, 34–37 {623}Google Scholar
Harris, AW, Ward, WR, 1982, Dynamical constraints on the formation and evolution of planetary bodies. Ann. Rev. Earth Plan. Sci., 10, 61–108 {680}CrossRefGoogle Scholar
Harris, MJ, 1986, On the detectability of antimatter propulsion spacecraft. Ap&SS, 123, 297–303 {647}Google Scholar
Harris, RJ, Labadie, L, Lemke, U, et al., 2016, Performance estimates for spectrographs using photonic reformatters. SPIE Conf. Ser., volume 9912 of Proc. SPIE, 99125Q {34}Google Scholar
Harrison, JF, Kaiser, A, Vanden Brooks, JM, 2010, Atmospheric oxygen level and the evolution of insect body size. Phil. Trans. Roy. Soc. London B, 277(1690), 1937–1946, ISSN 0962-8452 {629}Google ScholarPubMed
Harrison, TE, Howell, SB, Huber, ME, et al., 2003, Modeling the remarkablemultiwave-length light curves of EF Eri: the detection of its irradiated brown dwarf-like secondary star. AJ, 125, 2609–2620 {234}CrossRefGoogle Scholar
Hart, MH, 1975, Explanation for the absence of extraterrestrials on Earth. QJRAS, 16, 128 {647}Google Scholar
Hart, MH, 1978, The evolution of the atmosphere of the Earth. Icarus, 33, 23–39 {624}CrossRefGoogle Scholar
Hart, MH, 1979, Habitable zones about main sequence stars. Icarus, 37, 351–357 {619, 624}CrossRefGoogle Scholar
Hartkopf, WI, Mason, BD, Worley, CE, 2001, The 2001 US Naval Observatory Double Star CD-ROM. II. The Fifth Catalogue of Orbits of Visual Binary Stars. AJ, 122, 3472–3479 {547}Google Scholar
Hartman, JD, 2010, A correlation between stellar activity and the surface gravity of hot Jupiters. ApJ, 717, L138–L142 {305}CrossRefGoogle Scholar
Hartman, JD, Bakos GÁ, Béky, B, et al., 2012, HAT–P–39 b –HAT–P–41 b: three highly inflated transiting hot Jupiters. AJ, 144, 139 {302, 737}CrossRefGoogle Scholar
Hartman, JD, Bakos GÁ, Bhatti, W, et al., 2016, HAT–P–65 b and HAT–P–66 b: two transiting inflated hot Jupiters and observational evidence for the re-inflation of close-in giant planets. AJ, 152, 182 {737}CrossRefGoogle Scholar
Hartman, JD, Bakos GÁ, Buchhave, LA, et al., 2015a, HAT–P–57 b: a short-period giant planet transiting a bright rapidly rotating A8V star confirmed via Doppler tomography. AJ, 150, 197 {252, 737}CrossRefGoogle Scholar
Hartman, JD, Bakos GÁ, Kipping, DM, et al., 2011a, HAT–P–26 b: a low-density Neptune-mass planet transiting a K star. ApJ, 728, 138–141 {737}CrossRefGoogle Scholar
Hartman, JD, Bakos GÁ, Sato, B, et al., 2011b, HAT–P–18 b and HAT–P–19 b: two low-density Saturn-mass planets transiting metal-rich K stars. ApJ, 726, 52–56 {736}CrossRefGoogle Scholar
Hartman, JD, Bakos GÁ, Torres, G, et al., 2009a, HAT–P–12 b: a low-density sub-Saturn mass planet transiting a metal-poor K dwarf. ApJ, 706, 785–796 {163, 736}CrossRefGoogle Scholar
Hartman, JD, Bakos GÁ, Torres, G, 2011c, HAT–P–32 b and HAT–P–33 b: two highly-inflated hot Jupiters transiting high-jitter stars. ApJ, 742, 59 {737}CrossRefGoogle Scholar
Hartman, JD, Bakos GÁ, Torres, G, 2014, HAT–P–44 b, HAT–P–45 b, and HAT–P–46 b: three transiting hot Jupiters in possible multi-planet systems. AJ, 147, 128 {737}CrossRefGoogle Scholar
Hartman, JD, Bayliss, D, Brahm, R, et al., 2015b, HATS–6 b: a warm Saturn transiting an early M dwarf star, and a set of empirical relations for characterising K and Mdwarf planet hosts. AJ, 149, 166 {99, 737}CrossRefGoogle Scholar
Hartman, JD, Bhatti, W, Bakos GÁ, et al., 2015c, HAT–P–50 b, HAT–P–51 b, HAT–P–52 b, and HAT–P–53 b: three transiting hot Jupiters and a transiting hot Saturn from the HATNet Survey. AJ, 150, 168 {737}CrossRefGoogle Scholar
Hartman, JD, Gaudi, BS, Holman, MJ, et al., 2008a, Deep MMT transit survey of the open cluster M37. I. Observations and cluster parameters. ApJ, 675, 1233–1253 {159}Google Scholar
Hartman, JD, Gaudi, BS, Holman, MJ, 2008b, Deep MMT transit survey of the open cluster M37. II. Variable stars. ApJ, 675, 1254–1277 {159}Google Scholar
Hartman, JD, Gaudi, BS, Holman, MJ, 2009b, Deep MMT transit survey of the open cluster M37. IV. Limit on the fraction of stars with planets as small as 0.3RJ. ApJ, 695, 336–356 {159}CrossRefGoogle Scholar
Hartmann, DL, 2016, Global Physical Climatology. Elsevier {594}Google Scholar
Hartmann, L, 2002, On disk braking of T Tauri rotation. ApJ, 566, L29–L32 {402}CrossRefGoogle Scholar
Hartmann, L, Calvet, N, Gullbring, E, et al., 1998, Accretion and the evolution of T Tauri disks. ApJ, 495, 385–400 {456, 457}CrossRefGoogle Scholar
Hartmann, L, D'Alessio, P, Calvet, N, et al., 2006, Why do T Tauri disks accrete? ApJ, 648, 484–490 {309}CrossRefGoogle Scholar
Hartmann, M, Guenther, EW, Hatzes, AP, 2010, A sub-stellar companion around the F7V star HD 8673. ApJ, 717, 348–356 {55, 718}CrossRefGoogle Scholar
Hartmann, WK, 2014, The giant impact hypothesis: past, present (and future?). Phil. Trans. Soc. London A, 372, 20130249–20130249 {664}Google ScholarPubMed
Hartmann, WK, Davis, DR, 1975, Satellite-sized planetesimals and lunar origin. Icarus, 24, 504–514 {664}CrossRefGoogle Scholar
Hartmann, WK, Larson, SM, 1967, Angular momenta of planetary bodies. Icarus, 7, 257–260 {679, 680}CrossRefGoogle Scholar
Hartmann, WK, Ryder, G, Dones, L, et al., 2000, The time-dependent intense bombardment of the primordial Earth–Moon system. Origin of the Earth and Moon, 493–512 {669}
Hartogh, P, Lis, DC, Bockelée-Morvan, D, et al., 2011, Ocean-like water in the Jupiter-family comet 103P/Hartley 2. Nature, 478, 218–220 {668}CrossRefGoogle ScholarPubMed
Harvey, PM, Henning, T, Liu, Y, et al., 2012a, A Herschel survey of cold dust in disks around brown dwarfs and low-mass stars. ApJ, 755, 67 {434, 444}CrossRefGoogle Scholar
Harvey, PM, Henning, T, Ménard, F, et al., 2012b, A Herschel search for cold dust in brown dwarf disks: first results. ApJ, 744, L1 {434, 444}CrossRefGoogle Scholar
Harvey, PM, Jaffe, DT, Allers, K, et al., 2010, A Spitzer search for planetary-mass brown dwarfs with circumstellar disks: candidate selection. ApJ, 720, 1374–1379 {443}CrossRefGoogle Scholar
Harwit, M, 2003, Photon orbital angular momentum in astrophysics. ApJ, 597, 1266–1270 {336, 337, 645}CrossRefGoogle Scholar
Hasegawa, Y, Hirashita, H, 2014, Planet traps and first planets: the critical metallicity for gas giant formation. ApJ, 788, 62 {485}CrossRefGoogle Scholar
Hasegawa, Y, Ida, S, 2013, Do giant planets survive type II migration? ApJ, 774, 146 {520}CrossRefGoogle Scholar
Hasegawa, Y, Okuzumi, S, Flock, M, et al., 2017, Magnetically induced disk winds and transport in the HL Tau disk. ApJ, 845, 31 {466}CrossRefGoogle Scholar
Hasegawa, Y, Pudritz, RE, 2010, Dead zones as thermal barriers to rapid planetary migration in protoplanetary disks. ApJ, 710, L167–L171 {459}CrossRefGoogle Scholar
Hasegawa, Y, Pudritz, RE, 2011a, Dust settling and rapid planetary migration. MNRAS, 413, 286–300 {521}CrossRefGoogle Scholar
Hasegawa, Y, Pudritz, RE, 2011b, The origin of planetary system architectures. I. Multiple planet traps in gaseous disks. MNRAS, 417, 1236–1259 {483}CrossRefGoogle Scholar
Hasegawa, Y, Pudritz, RE, 2012, Evolutionary tracks of trapped, accreting protoplanets: the origin of the observed mass–period relation. ApJ, 760, 117 {521}CrossRefGoogle Scholar
Hasegawa, Y, Pudritz, RE, 2013, Planetary populations in the mass–period diagram: a statistical treatment of exoplanet formation and the role of planet traps. ApJ, 778, 78 {501}CrossRefGoogle Scholar
Hasegawa, Y, Pudritz, RE, 2014, Planet traps and planetary cores: origins of the planet–metallicity correlation. ApJ, 794, 25 {481, 485}CrossRefGoogle Scholar
Hasenkopf, CA, Freedman, MA, Beaver, MR, et al., 2011, Potential climatic impact of organic haze on early Earth. Astrobiology, 11, 135–149 {641}CrossRefGoogle ScholarPubMed
Hashimoto, J, Dong, R, Kudo, T, et al., 2012, Polarimetric imaging of large cavity structures in the pre-transition protoplanetary disk around PDS 70. ApJ, 758, L19 {340, 359, 466}CrossRefGoogle Scholar
Hashimoto, J, Tamura, M, Muto, T, et al., 2011, Direct imaging of fine structures in giant planet-forming regions of the protoplanetary disk around AB Aur. ApJ, 729, L17 {359}CrossRefGoogle Scholar
Hashimoto, J, Tsukagoshi, T, Brown, JM, et al., 2015, The structure of pre-transition protoplanetary disks. II. Azimuthal asymmetries, different radial distributions of large and small dust grains in PDS 70. ApJ, 799, 43 {466}CrossRefGoogle Scholar
Hastings, WK, 1953, Monte Carlo sampling methods using Markov chains. Biometrika, 57(1), 97–109 {25}Google Scholar
Haswell, CA, Fossati, L, Ayres, T, et al., 2012, Near-ultraviolet absorption, chromo-spheric activity, and star–planet interactions in the WASP–12 system. ApJ, 760, 79 {221, 752}CrossRefGoogle Scholar
Hatchett, WT, Barnes, JW, Ahlers, JP, et al., 2018, A pilot investigation to constrain the presence of ring systems around transiting exoplanets. New Astron., 60, 88–94 {217}CrossRefGoogle Scholar
Hathaway, DH, 2015, The solar cycle. Living Reviews in Solar Physics, 12, 4 {649}CrossRefGoogle ScholarPubMed
Hatzes, AP, 1996, Simulations of stellar radial velocity and spectral line bisector variations. I. Nonradial pulsations. PASP, 108, 839–843 {39, 40}CrossRefGoogle Scholar
Hatzes, AP, 2002, Star spots and exoplanets. Astron. Nach., 323, 392–394 {30, 38, 85}3.0.CO;2-M>CrossRefGoogle Scholar
Hatzes, AP, 2013a, An investigation into the radial velocity variability of GJ 581: on the significance of GJ 581 g. Astron. Nach., 334, 616 {717}Google Scholar
Hatzes, AP, 2013b, The radial velocity detection of Earth-mass planets in the presence of activity noise: the case of α Cen Bb. ApJ, 770, 133 {38, 59, 714}CrossRefGoogle Scholar
Hatzes, AP, 2014a, The detection of Earth-mass planets around active stars: the mass of Kepler–78 b. A&A, 568, A84 {742}Google Scholar
Hatzes, AP, 2014b, The role of space telescopes in the characterisation of transiting exo-planets. Nature, 513, 353–357 {154, 174}CrossRefGoogle Scholar
Hatzes, AP, 2016a, The architecture of exoplanets. Space Sci. Rev., 205, 267–283 {53, 288}CrossRefGoogle Scholar
Hatzes, AP, 2016b, The radial velocity method for the detection of exoplanets. Methods of Detecting Exoplanets, volume 428 of Astrophys. Space Sci. Lib., 3 {53}CrossRefGoogle Scholar
Hatzes, AP, Cochran, WD, 1993, Long-period radial velocity variations in three K giants. ApJ, 413, 339–348 {1, 10, 50, 715, 720}CrossRefGoogle Scholar
Hatzes, AP, Cochran, WD, Bakker, EJ, 1998a, Further evidence for the planet around 51 Peg. Nature, 391, 154–155 {51, 715}CrossRefGoogle Scholar
Hatzes, AP, Cochran, WD, Bakker, EJ, 1998b, The lack of spectral variability in 51 Peg: confirmation of the planet hypothesis. ApJ, 508, 380–386 {51, 715}CrossRefGoogle Scholar
Hatzes, AP, Cochran, WD, Endl, M, et al., 2003a, A planetary companion to γ Cep A. ApJ, 599, 1383–1394 {50, 78, 80, 551, 714}CrossRefGoogle Scholar
Hatzes, AP, Cochran, WD, Endl, M, 2006, Confirmation of the planet hypothesis for the long-period radial velocity variations of fl Gem. A&A, 457, 335–341 {50}Google Scholar
Hatzes, AP, Cochran, WD, Endl, M, 2015, Long-lived, long-period radial velocity variations in Aldebaran: a planetary companion and stellar activity. A&A, 580, A31 {715}Google Scholar
Hatzes, AP, Cochran, WD, Johns-Krull, CM, 1997, Testing the planet hypothesis: a search for variability in the spectral-line shapes of 51 Peg. ApJ, 478, 374–380 {51, 715}CrossRefGoogle Scholar
Hatzes, AP, Cochran, WD, McArthur, B, et al., 2000, Evidence for a long-period planet orbiting yatt MC, et al., 2005, Structure in the Eri. ApJ, 544, L145–L148 {59, 493, 715}CrossRefGoogle Scholar
Hatzes, AP, Dvorak, R, Wuchterl, G, et al., 2010, An investigation into the radial velocity variations of CoRoT–7. A&A, 520, A93 {38, 733}Google Scholar
Hatzes, AP, Fridlund, M, Nachmani, G, et al., 2011, The mass of CoRoT–7 b. ApJ, 743, 75 {173, 733}CrossRefGoogle Scholar
Hatzes, AP, Guenther, E, Kürster, M, et al., 2003b, The planet search programme of the Thüringer Landessternwarte Tautenburg. Earths: Darwin/TPF and the Search for Extrasolar Terrestrial Planets, volume 539 of ESA SP, 441–445 {46}Google Scholar
Hatzes, AP, Guenther, EW, Endl, M, et al., 2005, A giant planet around the massive giant star HD 13189. A&A, 437, 743–751 {56, 718}Google Scholar
Hatzes, AP, Kürster, M, Cochran, WD, et al., 1996, The ESO planetary search pro-gramme: preliminary results. J. Geophys. Res., 101, 9285–9290 {46}CrossRefGoogle Scholar
Hatzes, AP, Rauer, H, 2015, A definition for giant planets based on the mass–density relationship. ApJ, 810, L25 {8, 604}CrossRefGoogle Scholar
Hatzes, AP, Zechmeister, M, 2008, Stellar oscillations in planet-hosting giant stars. Journal of Physics Conference Series, 118(1), 012016 {409}CrossRefGoogle Scholar
Hauri, EH, Weinreich, T, Saal, AE, et al., 2011, High pre-eruptive water contents preserved in lunarmelt inclusions. Science, 333, 213 {666}CrossRefGoogle ScholarPubMed
Hauser, HM, Marcy, GW, 1999, The orbit of 16 Cyg AB. PASP, 111, 321–334 {80, 95, 715}CrossRefGoogle Scholar
Havel, M, Guillot, T, Valencia, D, et al., 2011, The multiple planets transiting Kepler–9. I. Inferring stellar properties and planetary compositions. A&A, 531, A3 {738}Google Scholar
Hawarden, TG, Dravins, D, Gilmore, GF, et al., 2003, Critical science for the largest telescopes: science drivers for a 100mground-based optical-IR telescope. SPIE Conf. Ser., volume 4840, 299–308 {339, 345}Google Scholar
Hawley, JF, Balbus, SA, 1991, A powerful local shear instability in weakly magnetised disks. II. Nonlinear evolution. ApJ, 376, 223–233 {459}CrossRefGoogle Scholar
Hawley, SL, Davenport, JRA, Kowalski, AF, et al., 2014, Kepler flares. I. Active and inactive Mdwarfs. ApJ, 797, 121 {427}CrossRefGoogle Scholar
Hawley, SL, Reid, IN, 2003, An outsiders view of extrasolar planets. The Future of Cool-Star Astrophysics: 12th Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun, volume 12, 128–140 {381}Google Scholar
Haworth, TJ, Facchini, S, Clarke, CJ, 2015, The theory of globulettes: candidate precursors of brown dwarfs and free-floating planets in HII regions. MNRAS, 446, 1098–1106 {446}CrossRefGoogle Scholar
Haworth, TJ, Facchini, S, Clarke, CJ, et al., 2017, First evidence of external disk photo-evaporation in a low mass star forming region: the case of IM Lup. MNRAS, 468, L108–L112 {462}CrossRefGoogle Scholar
Haworth, TJ, Ilee, JD, Forgan, DH, et al., 2016, Grand challenges in protoplanetary disk modelling. Publ. Astron. Soc. Australia, 33, e053 {454}CrossRefGoogle Scholar
Hay, KL, Collier-Cameron, A, Doyle, AP, et al., 2016, WASP–92 b, WASP–93 b and WASP–118 b: three new transiting close-in giant planets. MNRAS, 463, 3276–3289 {756, 757}CrossRefGoogle Scholar
Hayashi, C, 1981, Structure of the solar nebula, growth and decay of magnetic fields and effects of magnetic and turbulent viscosities on the nebula. Progress of Theoretical Physics Supplement, 70, 35–53 {455, 501, 565}CrossRefGoogle Scholar
Hayashi, C, Nakano, T, 1963, Evolution of stars of small masses in the pre-main-sequence stages. Progress of Theoretical Physics, 30, 460–474 {429}CrossRefGoogle Scholar
Hayashi, C, Nakazawa, K, Mizuno, H, 1979, Earth'smelting due to the blanketing effect of the primordial dense atmosphere. Earth Planet. Sci. Lett., 43, 22–28 {597}CrossRefGoogle Scholar
Hayek, W, Sing, D, Pont, F, et al., 2012, Limb darkening laws for two exoplanet host stars derived from 3d stellar model atmospheres: comparison with 1d models and HST light curve observations. A&A, 539, A102 {211, 730, 732}Google Scholar
Hayes, W, Tremaine, S, 1998, Fitting selected randomplanetary systems to Titius–Bode laws. Icarus, 135, 549–557 {477, 510, 512}CrossRefGoogle Scholar
Hayes, WB, 2007, Is the outer solar system chaotic? Nature Physics, 3, 689–691 {504}CrossRefGoogle Scholar
Haynes, K, Mandell, AM, Madhusudhan, N, et al., 2015, Spectroscopic evidence for a temperature inversion in the day-side atmosphere of hot Jupiter WASP–33 b. ApJ, 806, 146 {754}CrossRefGoogle Scholar
Hays, JD, Imbrie, J, Shackleton, NJ, 1976, Variations in the Earth's orbit: pacemaker of the ice ages. Science, 194, 1121–1132 {681}CrossRefGoogle ScholarPubMed
Haywood, M, 2008, A peculiarity of metal-poor stars with planets? A&A, 482, 673–676 {389, 391, 394, 395, 400}Google Scholar
Haywood, M, 2009, On the correlation between metallicity and the presence of giant planets. ApJ, 698, L1–L5 {389, 394, 395, 400}CrossRefGoogle Scholar
Haywood, RD, Collier Cameron, A, Queloz, D, et al., 2014a, Disentangling planetary orbits from stellar activity in radial-velocity surveys. Int. J. Astrobiol., 13, 155–157 {734}CrossRefGoogle Scholar
Haywood, RD, Collier Cameron, A, Queloz, D, 2014b, Planets and stellar activity: hide and seek in the CoRoT–7 system. MNRAS, 443, 2517–2531 {37, 734}CrossRefGoogle Scholar
Haywood, RD, Collier Cameron, A, Unruh, YC, et al., 2016, The Sun as a planet-host star: proxies from SDO images for HARPS radial-velocity variations. MNRAS, 457, 3637–3651 {37, 38}CrossRefGoogle Scholar
Haze, K, Enya, K, Abe, L, et al., 2015, Experimental demonstration of binary shaped pupilmask coronagraphs for telescopes with obscured pupils. PASJ, 67, 28 {335}CrossRefGoogle Scholar
He, C, Hörst, SM, Riemer, S, et al., 2017a, Carbon monoxide affecting planetary atmospheric chemistry. ApJ, 841, L31 {582}CrossRefGoogle Scholar
He, H, Wang, H, Yun, D, 2015, Activity analyses for solar-type stars observed with Kepler. I. Proxies of magnetic activity. ApJS, 221, 18 {382}CrossRefGoogle Scholar
He, MY, Triaud, AHMJ, Gillon, M, 2017b, First limits on the occurrence rate of short-period planets orbiting brown dwarfs. MNRAS, 464, 2687–2697 {160, 445}CrossRefGoogle Scholar
Heacox, WD, 1986, On the application of optical-fiber image scramblers to astronomical spectroscopy. AJ, 92, 219–229 {34}CrossRefGoogle Scholar
Heacox, WD, 1988, Wavelength-precise slit spectroscopy with optical fiber image scramblers. Fiber Optics in Astronomy, volume 3 of ASP Conf. Ser., 204–235 {34}Google Scholar
Heacox, WD, 1996, Statistical characteristics of extrasolar planetary transits. J. Geophys. Res., 101, 14815–14822 {157}CrossRefGoogle Scholar
Heacox, WD, Connes, P, 1992, Optical fibers in astronomical instruments. A&A Rev., 3, 169–199 {34}Google Scholar
Hearnshaw, JB, 1974, Carbon and iron abundances for twenty F and Gtype stars. A&A, 36, 191–199 {388}Google Scholar
Hebb, L, Collier Cameron, A, Loeillet, B, et al., 2009, WASP–12 b: the hottest transiting extrasolar planet yet discovered. ApJ, 693, 1920–1928 {544, 752}CrossRefGoogle Scholar
Hebb, L, Collier Cameron, A, Triaud, AHMJ, et al., 2010, WASP–19 b: the shortest period transiting exoplanet yet discovered. ApJ, 708, 224–231 {166, 533, 754}CrossRefGoogle Scholar
Heber, U, 2009, Hot subdwarf stars. ARA&A, 47, 211–251 {111}Google Scholar
Hébrard, ÉM, Donati, JF, Delfosse, X, et al., 2014a, Detecting planets around active stars: impact of magnetic fields on radial velocities and line bisectors. MNRAS, 443, 2599–2611 {37}CrossRefGoogle Scholar
Hébrard, G, Almenara, JM, Santerne, A, et al., 2013a, KOI–200 b and KOI–889 b: two transiting planets characterised with Kepler, SOPHIE and HARPS–N. A&A, 554, A114 {12, 47, 742}Google Scholar
Hébrard, G, Arnold, L, Forveille, T, et al., 2016, The SOPHIE search for northern extra-solar planets. X. Detection and characterisation of giant planets by the dozen. A&A, 588, A145 {718, 719, 722, 724, 725}Google Scholar
Hébrard, G, Bonfils, X, Ségransan, D, et al., 2010a, The SOPHIE search for northern extrasolar planets. II. A multiple planet system around HD 9446. A&A, 513, A69 {718}Google Scholar
Hébrard, G, Bouchy, F, Pont, F, et al., 2008, Misaligned spin–orbit in the XO–3 planetary system? A&A, 488, 763–770 {253, 757}Google Scholar
Hébrard, G, Collier Cameron, A, Brown, DJA, et al., 2013b, WASP–52 b, WASP–58 b, WASP–59 b, and WASP–60 b: four new transiting close-in giant planets. A&A, 549, A134 {206, 253, 755}Google Scholar
Hébrard, G, Désert, J, Díaz, RF, et al., 2010b, Observation of the full 12-hour-long transit of the exoplanet HD 80606 b: warm-Spitzer photometry and SOPHIE spectroscopy. A&A, 516, A95 {729}Google Scholar
Hébrard, G, Ehrenreich, D, Bouchy, F, et al., 2011a, The retrograde orbit of the HAT–P–6 b exoplanet. A&A, 527, L11 {11, 163, 254, 256, 735}Google Scholar
Hébrard, G, Evans, TM, Alonso, R, et al., 2011b, Transiting exoplanets from the CoRoT space mission. XVIII. CoRoT–18 b: a massive hot Jupiter on a prograde, nearly aligned orbit. A&A, 533, A130 {734}Google Scholar
Hébrard, G, Lecavelier des Etangs A, 2006, A posteriori detection of the planetary transit of HD 189733 b in the Hipparcos photometry. A&A, 445, 341–346 {170, 185, 729}Google Scholar
Hébrard, G, Lecavelier des Etangs A, Vidal-Madjar, A, et al., 2004, Evaporation rate of hot Jupiters and formation of chthonian planets. Extrasolar Planets: Today and Tomorrow, volume 321 of ASP Conf. Ser., 203–204 {602}Google Scholar
Hébrard, G, Robichon, N, Pont, F, et al., 2006, Search for transiting planets in the Hip-parcos database. Tenth Anniversary of 51 Peg-b: Status of and prospects for hot Jupiter studies, 193–195 {186}
Hébrard, G, Santerne, A, Montagnier, G, et al., 2014b, Characterisation of the four new transiting planets KOI–188 b, KOI–195 b, KOI–192 b, and KOI–830 b. A&A, 572, A93 {745}Google Scholar
Hébrard, G, Udry, S, Lo Curto, G, et al., 2010c, The HARPS search for southern extraso-lar planets. XX. Planets around the active star BD–08 2823. A&A, 512, A46 {716}Google Scholar
Heck, PR, Schmitz, B, Bottke, WF, et al., 2017, Rare meteorites common in the Ordovician period. Nature Astronomy, 1, 0035 {672}CrossRefGoogle Scholar
Hedelt, P, Alonso, R, Brown, T, et al., 2011, Venus transit 2004: illustrating the capability of exoplanet transmission spectroscopy. A&A, 533, A136 {161}Google Scholar
Hedelt, P, von Paris, P, Godolt, M, et al., 2013, Spectral features of Earth-like planets and their detectability at different orbital distances around F, G, and K-type stars. A&A, 553, A9 {618, 640}Google Scholar
Hedges, C, Hodgkin, S, Kennedy, G, 2018, Discovery of new dipper stars with K2: a window into the inner disk region of T Tauri stars. MNRAS, 476, 2968–2998 {466}CrossRefGoogle Scholar
Hedman, MM, 2015, Why are dense planetary rings only found between 8–20 au? ApJ, 801, L33 {217, 691}CrossRefGoogle Scholar
Hedman, MM, Nicholson, PD, 2013, Kronoseismology: using densitywaves in Saturn's C ring to probe the planet's interior. AJ, 146, 12 {411}CrossRefGoogle Scholar
Hedman, MM, Nicholson, PD, Baines, KH, et al., 2010, The architecture of the Cassini Division. AJ, 139, 228–251 {690}CrossRefGoogle Scholar
Hees, A, Folkner, WM, Jacobson, RA, et al., 2014, Constraints on modified Newtonian dynamics theories from radio tracking data of the Cassini spacecraft. Phys. Rev. D, 89(10), 102002 {676}CrossRefGoogle Scholar
Hegde, S, Kaltenegger, L, 2013, Colours of extreme exo-Earth environments. Astrobiology, 13, 47–56 {641}CrossRefGoogle ScholarPubMed
Heggy, E, Scabbia, G, Bruzzone, L, et al., 2017, Radar probing of Jovian icy moons: understanding subsurface water and structure detectability in the JUICE and Europa missions. Icarus, 285, 237–251 {356}CrossRefGoogle Scholar
Heidmann, J, 1989, Dix années de recherches futures de signaux extraterrestres. An-nales de Physique, 14, 133–145 {644}Google Scholar
Heidmann, J, Maccone, C, 1994, Astro Sail and FOCAL: two extrasolar system missions to the Sun's gravitational focuses. Acta Astron., 35, 409–410 {138}Google Scholar
Heimpel, M, Aurnou, J, Wicht, J, 2005, Simulation of equatorial and high-latitude jets on Jupiter in a deep convectionmodel. Nature, 438, 193–196 {595}CrossRefGoogle Scholar
Hein, AM, Perakis, N, Long, KF, et al., 2017, Project Lyra: sending a spacecraft to Ou-muamua, the interstellar asteroid. ArXiv e-prints {693}
Heintz, WD, 1978a, Double Stars, volume 15 of Geophys. Astrophys. Mon. Reidel, Dor-drecht {17, 19, 88}
Heintz, WD, 1978b, Reexamination of suspected unresolved binaries. ApJ, 220, 931–934 {83}CrossRefGoogle Scholar
Heinze, AN, Hinz, P, Sivanandam, S, et al., 2006, High contrast L’ band adaptive optics imaging to detect extrasolar planets. SPIE Conf. Ser., volume 6272, 121 {340}Google Scholar
Heinze, AN, Hinz, PM, Kenworthy, M, et al., 2008, Deep L’- and M-band imaging for planets around Vega and yatt MC, et al., 2005, Structure in the Eri. ApJ, 688, 583–596 {715}Google Scholar
Heinze, AN, Hinz, PM, Kenworthy, M, 2010a, Constraints on long-period planets from an L’- and M-band survey of nearby Sun-like stars: modeling results. ApJ, 714, 1570–1581 {358}Google Scholar
Heinze, AN, Hinz, PM, Sivanandam, S, et al., 2010b, Constraints on long-period planets from an L’- and M-band survey of nearby Sun-like stars: observations. ApJ, 714, 1551–1569 {358}Google Scholar
Heinze, AN, Metchev, S, Kellogg, K, 2015, Weather on other worlds. III. A survey for T dwarfs with high-amplitude optical variability. ApJ, 801, 104 {439, 440}CrossRefGoogle Scholar
Heinzeller, D, Nomura, H, Walsh, C, et al., 2011, Chemical evolution of protoplanetary disks: the effects of viscous accretion, turbulent mixing, and disk winds. ApJ, 731, 115 {460}CrossRefGoogle Scholar
Heising, MZ, Marcy, GW, Schlichting, HE, 2015, A search for ringed exoplanets using Kepler photometry. ApJ, 814, 81 {217}CrossRefGoogle Scholar
Heisler, J, Tremaine, S, 1986, The influence of the galactic tidal field on the Oort comet cloud. Icarus, 65, 13–26 {527, 686}CrossRefGoogle Scholar
Heiter, U, Luck, RE, 2003, Abundance analysis of planetary host stars. I. Differential iron abundances. AJ, 126, 2015–2036 {388}CrossRefGoogle Scholar
Hekker, S, Reffert, S, Quirrenbach, A, 2006a, Radial velocity variations in K giants: planets or pulsations? Communications in Asteroseismology, 147, 121–124 {725}Google Scholar
Hekker, S, Reffert, S, Quirrenbach, A, et al., 2006b, Precise radial velocities of giant stars. I. Stable stars. A&A, 454, 943–949 {36, 55, 56}Google Scholar
Hekker, S, Snellen, IAG, Aerts, C, et al., 2008, Precise radial velocities of giant stars. IV. A correlation between surface gravity and radial velocity variation and a statistical investigation of companion properties. A&A, 480, 215–222 {56}Google Scholar
Held, I, 1999, Equatorial superrotation in Earth-like atmospheric models. Berhard Haurwitz Memorial Lecture, AMS {596}
Held, IM, Hou, AY, 1980, Nonlinear axially symmetric circulations in a nearly inviscid atmosphere. Journal of Atmospheric Sciences, 37, 515–533 {596}2.0.CO;2>CrossRefGoogle Scholar
Hellary, P, Nelson, RP, 2012, Global models of planetary system formation in radiatively-inefficient protoplanetary disks. MNRAS, 419, 2737–2757 {483}CrossRefGoogle Scholar
Helled, R, 2011, Constraining Saturn's core properties by a measurement of its moment of inertia: implications to the Cassini Solstice mission. ApJ, 735, L16 {658}CrossRefGoogle Scholar
Helled, R, Anderson, JD, Podolak, M, et al., 2011, Interior models of Uranus and Neptune. ApJ, 726, 15 {659}CrossRefGoogle Scholar
Helled, R, Anderson, JD, Schubert, G, 2010, Uranus and Neptune: shape and rotation. Icarus, 210, 446–454 {661}CrossRefGoogle Scholar
Helled, R, Bodenheimer, P, 2010, Metallicity of the massive protoplanets around HR 8799 if formed by gravitational instability. Icarus, 207, 503–508 {763}CrossRefGoogle Scholar
Helled, R, Bodenheimer, P, 2014, The formation of Uranus and Neptune: challenges and implications for intermediate-mass exoplanets. ApJ, 789, 69 {660}CrossRefGoogle Scholar
Helled, R, Bodenheimer, P, Podolak, M, et al., 2014, Giant planet formation, evolution, and internal structure. Protostars and Planets VI, 643–665 {479, 482, 483, 485, 490, 660, 661}
Helled, R, Guillot, T, 2013, Interior models of Saturn: including the uncertainties in shape and rotation. ApJ, 767, 113 {658}CrossRefGoogle Scholar
Helled, R, Lozovsky, M, Zucker, S, 2016, A possible correlation between planetary radius and orbital period for small planets. MNRAS, 455, L96–L98 {293}CrossRefGoogle Scholar
Helled, R, Podolak, M, Kovetz, A, 2008, Grain sedimentation in a giant gaseous proto-planet. Icarus, 195, 863–870 {488}CrossRefGoogle Scholar
Helled, R, Podolak, M, Vos, E, 2015, Methane planets and their mass–radius relation. ApJ, 805, L11 {604}CrossRefGoogle Scholar
Helled, R, Schubert, G, 2008, Core formation in giant gaseous protoplanets. Icarus, 198, 156–162 {487, 488}CrossRefGoogle Scholar
Helled, R, Stevenson, D, 2017, The fuzziness of giant planet cores. ApJ, 840, L4 {658}CrossRefGoogle Scholar
Heller, CH, 1993, Encounters with protostellar disks. I. Disk tilt and the nonzero solar obliquity. ApJ, 408, 337–346 {311, 654, 681}CrossRefGoogle Scholar
Heller, R, 2012, Exomoon habitability constrained by energy flux and orbital stability. A&A, 545, L8 {627}Google Scholar
Heller, R, 2014, Detecting extrasolar moons akin to solar system satellites with an orbital sampling effect. ApJ, 787, 14 {277, 278}CrossRefGoogle Scholar
Heller, R, 2016, Transits of extrasolar moons around luminous giant planets. A&A, 588, A34 {276}Google Scholar
Heller, R, Albrecht, S, 2014, How to determine an exomoon's sense of orbital motion. ApJ, 796, L1 {280}CrossRefGoogle Scholar
Heller, R, Armstrong, J, 2014, Superhabitable worlds. Astrobiology, 14, 50–66 {619, 621, 626, 627, 628, 629, 631, 632, 635}CrossRefGoogle ScholarPubMed
Heller, R, Barnes, R, 2013, Exomoon habitability constrained by illumination and tidal heating. Astrobiology, 13, 18–46 {627, 740}CrossRefGoogle ScholarPubMed
Heller, R, Barnes, R, 2015, Runaway greenhouse effect on exomoons due to irradiation from hot, young giant planets. Int. J. Astrobiol., 14, 335–343 {627}CrossRefGoogle Scholar
Heller, R, Barnes, R, Leconte, J, 2011a, Habitability of extrasolar planets and tidal spin evolution. Origins of Life and Evolution of the Biosphere, 41, 539–543 {621}CrossRefGoogle Scholar
Heller, R, Hippke, M, 2017, Deceleration of high-velocity interstellar photon sails into bound orbits at α Cen. ApJ, 835, L32 {648, 714}CrossRefGoogle Scholar
Heller, R, Hippke, M, Jackson, B, 2016a, Modeling the orbital sampling effect of extra-solar moons. ApJ, 820, 88 {277}CrossRefGoogle Scholar
Heller, R, Hippke, M, Kervella, P, 2017, Optimised trajectories to the nearest stars using lightweight high-velocity photon sails. AJ, 154, 115 {648}CrossRefGoogle Scholar
Heller, R, Hippke, M, Placek, B, et al., 2016b, Predictable patterns in planetary transit timing variations and transit duration variations due to exomoons. A&A, 591, A67 {277}Google Scholar
Heller, R, Leconte, J, Barnes, R, 2011b, Tidal obliquity evolution of potentially habitable planets. A&A, 528, A27 {621}Google Scholar
Heller, R, Mislis, D, Antoniadis, J, 2009, Transit detections of extrasolar planets around main-sequence stars. I. Sky maps for hot Jupiters. A&A, 508, 1509–1516 {155, 248}Google Scholar
Heller, R, Pudritz, R, 2015, Water ice lines and the formation of giant moons around super-Jovian planets. ApJ, 806, 181 {687}CrossRefGoogle Scholar
Heller, R, Pudritz, RE, 2016, The Search for Extraterrestrial Intelligence in Earth's solar transit zone. Astrobiology, 16, 259–270 {648}CrossRefGoogle ScholarPubMed
Heller, R, Williams, D, Kipping, D, et al., 2014, Formation, habitability, and detection of extrasolar moons. Astrobiology, 14, 798–835 {627}CrossRefGoogle ScholarPubMed
Heller, R, Zuluaga, JI, 2013, Magnetic shielding of exomoons beyond the circumplan-etary habitable edge. ApJ, 776, L33 {631}CrossRefGoogle Scholar
Hellier, C, Anderson, DR, Bouchy, F, et al., 2018, New transiting hot Jupiters discovered by WASP–South, Euler/CORALIE and TRAPPIST–South. ArXiv e-prints {757}
Hellier, C, Anderson, DR, Cameron, AC, et al., 2017, WASP-South transiting exoplanets: WASP–130 b, WASP–131 b, WASP–132 b, WASP–139 b, WASP–140 b, WASP–141 b and WASP–142 b. MNRAS, 465, 3693–3707 {757}CrossRefGoogle Scholar
Hellier, C, Anderson, DR, Collier Cameron, A, et al., 2009a, An orbital period of 0.94 days for the hot-Jupiter planet WASP–18 b. Nature, 460, 1098–1100 {10, 41, 166, 260, 439, 533, 537, 544, 753}CrossRefGoogle Scholar
Hellier, C, Anderson, DR, Collier Cameron, A, 2010, WASP–29 b: a Saturn-sized transiting exoplanet. ApJ, 723, L60–L63 {166, 754}CrossRefGoogle Scholar
Hellier, C, Anderson, DR, Collier Cameron, A, 2011a, On the orbit of the short-period exoplanet WASP–19 b. ApJ, 730, L31 {253, 754}CrossRefGoogle Scholar
Hellier, C, Anderson, DR, Collier Cameron, A, 2011b, WASP–43 b: the closest-orbiting hot Jupiter. A&A, 535, L7 {11, 166, 755}Google Scholar
Hellier, C, Anderson, DR, Collier Cameron, A, 2012, Seven transiting hot Jupiters from WASP–South, Euler and TRAPPIST. MNRAS, 426, 739–750 {166, 223, 230, 304, 523, 755, 756}Google Scholar
Hellier, C, Anderson, DR, Collier Cameron, A, 2014, Transiting hot Jupiters from WASP–South, Euler and TRAPPIST: WASP–95 b to WASP–101 b. MNRAS, 440, 1982–1992 {168, 756}CrossRefGoogle Scholar
Hellier, C, Anderson, DR, Collier Cameron, A, 2015, Three WASP–South transiting exoplanets: WASP–74 b, WASP–83 b, and WASP–89 b. AJ, 150, 18 {756}CrossRefGoogle Scholar
Hellier, C, Anderson, DR, Gillon, M, et al., 2009b, WASP–7: a bright transiting-exoplanet system in the southern hemisphere. ApJ, 690, L89–L91 {752}CrossRefGoogle Scholar
Hellier, C, Sproats, LN, 1992, Updated ephemeris for the cataclysmic variable EX Hya. Information Bulletin on Variable Stars, 3724 {114}Google Scholar
Helling, C, Jardine, M, Mokler, F, 2011a, Ionisation in atmospheres of brown dwarfs and extrasolar planets. II. Dust-induced collisional ionisation. ApJ, 737, 38 {591}CrossRefGoogle Scholar
Helling, C, Jardine, M, Stark, C, et al., 2013, Ionisation in atmospheres of brown dwarfs and extrasolar planets. III. Breakdown conditions for mineral clouds. ApJ, 767, 136 {591}CrossRefGoogle Scholar
Helling, C, Jardine, M, Witte, S, et al., 2011b, Ionisation in atmospheres of brown dwarfs and extrasolar planets. I. The role of electron avalanche. ApJ, 727, 4 {591}CrossRefGoogle Scholar
Helling, C, Lee, G, Dobbs-Dixon, I, et al., 2016, The mineral clouds on HD209458 b and HD 189733 b. MNRAS, 460, 855–883 {731, 732}CrossRefGoogle Scholar
Helling, C, Tootill, D, Woitke, P, et al., 2017, Dust in brown dwarfs and extrasolar planets. V. Cloud formation in carbon- and oxygen-rich environments. A&A, 603, A123 {582}Google Scholar
Hénault, F, 2011, Imaging power of multi-fiber nulling telescopes for extrasolar planet characterisation. SPIE Conf. Ser., volume 8151, 8 {349}Google Scholar
Henderson, CB, 2015, Prospects for characterising host stars of the planetary system detections predicted for the Korean Microlensing Telescope Network. ApJ, 800, 58 {142}CrossRefGoogle Scholar
Henderson, CB, Gaudi, BS, Han, C, et al., 2014, Optimal survey strategies and predicted planet yields for the Korean microlensing telescope network. ApJ, 794, 52 {142}CrossRefGoogle Scholar
Henderson, CB, Poleski, R, Penny, M, et al., 2016, Campaign 9 of the K2 mission: observational parameters, scientific drivers, and community involvement for a simultaneous space- and ground-based microlensing survey. PASP, 128(12), 124401 {135, 176}CrossRefGoogle Scholar
Henderson, CB, Shvartzvald, Y, 2016, On the feasibility of characterising free-floating planets with current and future space-based microlensing surveys. AJ, 152, 96 {130}CrossRefGoogle Scholar
Heng, K, 2011, Estimating themass of the debris disk in HD69830. MNRAS, 415, 3365–3368 {494, 720}Google Scholar
Heng, K, 2012a, On the existence of shocks in irradiated exoplanetary atmospheres. ApJ, 761, L1 {591}CrossRefGoogle Scholar
Heng, K, 2012b, The influence of atmospheric scattering and absorption on Ohmic dissipation in hot Jupiters. ApJ, 748, L17 {303}CrossRefGoogle Scholar
Heng, K, 2016, A cloudiness index for transiting exoplanets based on the sodium and potassium lines: tentative evidence for hotter atmospheres being less cloudy at visible wavelengths. ApJ, 826, L16 {591, 735, 753, 754}CrossRefGoogle Scholar
Heng, K, 2017, Exoplanetary Atmospheres: Theoretical Concepts and Foundations. Princeton University Press {578, 594}CrossRefGoogle Scholar
Heng, K, Demory, BO, 2013, Understanding trends associated with clouds in irradiated exoplanets. ApJ, 777, 100 {591, 730}CrossRefGoogle Scholar
Heng, K, Frierson, DMW, Phillipps, PJ, 2011a, Atmospheric circulation of tidally-lockedexoplanets. II. Dual-band radiative transfer and convective adjustment. MNRAS, 418, 2669–2696 {580, 593, 596}CrossRefGoogle Scholar
Heng, K, Hayek, W, Pont, F, et al., 2012, On the effects of clouds and hazes in the atmospheres of hot Jupiters: semi-analytical T–P profiles. MNRAS, 420, 20–36 {589, 591, 730}CrossRefGoogle Scholar
Heng, K, Keeton, CR, 2009, Planetesimal disk microlensing. ApJ, 707, 621–631 {135}CrossRefGoogle Scholar
Heng, K, Kenyon, SJ, 2010, Vortices as nurseries for planetesimal formation in proto-planetary disks. MNRAS, 408, 1476–1493 {461}CrossRefGoogle Scholar
Heng, K, Kitzmann, D, 2017, Analytical models of exoplanetary atmospheres. IV. Improved two-stream radiative transfer for the treatment of aerosols. ApJS, 232, 20 {591}CrossRefGoogle Scholar
Heng, K, Kopparla, P, 2012, On the stability of super-Earth atmospheres. ApJ, 754, 60 {621, 728, 734}CrossRefGoogle Scholar
Heng, K, Lyons, JR, 2016, Carbon dioxide in exoplanetary atmospheres: rarely dominant compared to CO and H2O in hot, hydrogen-dominated atmospheres. ApJ, 817, 149 {583, 753}CrossRefGoogle Scholar
Heng, K, Lyons, JR, Tsai, SM, 2016, Atmospheric chemistry for astrophysicists: a self-consistent formalism and analytical solutions for arbitrary C/O. ApJ, 816, 96 {582, 591}CrossRefGoogle Scholar
Heng, K, Malik, M, 2013, Debris disks around M stars: non-existence versus non-detection. MNRAS, 432, 2562–2572 {494, 717}CrossRefGoogle Scholar
Heng, K, Mendonça, JM, Lee, JM, 2014, Analytical models of exoplanetary atmospheres. II. Radiative transfer via the two-stream approximation. ApJS, 215, 4 {595}CrossRefGoogle Scholar
Heng, K, Menou, K, Phillipps, PJ, 2011b, Atmospheric circulation of tidally-locked exo-planets: a suite of benchmark tests for dynamical solvers. MNRAS, 413, 2380–2402 {592, 593, 596, 621}CrossRefGoogle Scholar
Heng, K, Showman, AP, 2015, Atmospheric dynamics of hot exoplanets. Ann. Rev. Earth Plan. Sci., 43, 509–540 {607}CrossRefGoogle Scholar
Heng, K, Tremaine, S, 2010, Long-lived planetesimal disks. MNRAS, 401, 867–889 {497}CrossRefGoogle Scholar
Heng, K, Tsai, SM, 2016, Analytical models of exoplanetary atmospheres. III. Gaseous C-H-O-N chemistry with nine molecules. ApJ, 829, 104 {582}CrossRefGoogle Scholar
Heng, K, Vogt, SS, 2011, GJ 581 g as a scaled-up version of Earth: atmospheric circulation simulations. MNRAS, 415, 2145–2157 {593, 621, 716}CrossRefGoogle Scholar
Heng, K, Workman, J, 2014, Analytical models of exoplanetary atmospheres. I. Atmospheric dynamics via the shallow water system. ApJS, 213, 27 {595}CrossRefGoogle Scholar
Heng, K, Wyttenbach, A, Lavie, B, et al., 2015, A non-isothermal theory for interpreting sodiumlines in transmission spectra of exoplanets. ApJ, 803, L9 {731}CrossRefGoogle Scholar
Hennebelle, P, Chabrier, G, 2008, Analytical theory for the initial mass function. I. CO clumps and prestellar cores. ApJ, 684, 395-410 {442}CrossRefGoogle Scholar
Hennebelle, P, Chabrier, G, 2009, Analytical theory for the initial mass function. II. Properties of the flow. ApJ, 702, 1428–1442 {442}CrossRefGoogle Scholar
Hennebelle, P, Commerçon, B, Chabrier, G, et al., 2016, Magnetically self-regulated formation of early protoplanetary disks. ApJ, 830, L8 {461}CrossRefGoogle Scholar
Hennessy, GS, Lane, BF, Veillette, D, et al., 2010, Achieving milli-arcsecond residual astrometric error for the JMAPSMission. SPIE Conf. Ser., volume 7731, 149 {100}Google Scholar
Henning, T, Dullemond, CP, Wolf, S, et al., 2006, Dust coagulation in protoplanetary disks. Planet Formation, 112–128, Cambridge University Press {469}
Henning, T, Mancini, L, Sarkis, P, et al., 2018, HATS–50 b through HATS–53 b: four transiting hot Jupiters orbiting G-type stars discovered by the HATSouth survey. AJ, 155, 79 {738}CrossRefGoogle Scholar
Henning, WG, Hurford, T, 2014, Tidal heating in multilayered terrestrial exoplanets. ApJ, 789, 30 {544}CrossRefGoogle Scholar
Henning, WG, O'Connell, RJ, Sasselov, DD, 2009, Tidally heated terrestrial exoplanets: viscoelastic response models. ApJ, 707, 1000–1015 {626, 627}CrossRefGoogle Scholar
Hénon, M, Guyot, M, 1970, Stability of periodic orbits in the restricted problem. Periodic Orbits Stability and Resonances, 349–374 {549}
Hénon, M, Heiles, C, 1964, The applicability of the third integral of motion: some numerical experiments. AJ, 69, 73–79 {515}CrossRefGoogle Scholar
Henry, GW, 2000, Search for transits of a short-period, sub-Saturn extrasolar planet orbiting HD 46375. ApJ, 536, L47–L48 {720}CrossRefGoogle ScholarPubMed
Henry, GW, Donahue, RA, Baliunas, SL, 2002, A false planet around HD 192263. ApJ, 577, L111–L114 {85, 723}CrossRefGoogle Scholar
Henry, GW, Howard, AW, Marcy, GW, et al., 2011a, Detection of a transiting low-density super-Earth [unpublished]. ArXiv e-prints {170, 729}
Henry, GW, Kane, SR, Wang, SX, et al., 2013, Host star properties and transit exclusion for the HD 38529 planetary system. ApJ, 768, 155 {184, 378, 719}CrossRefGoogle Scholar
Henry, GW, Marcy, G, Butler, RP, et al., 1999, HD 209458. IAU Circ., 7307, 1 {10, 153, 170, 608, 610, 731}Google Scholar
Henry, GW, Marcy, GW, Butler, RP, et al., 2000, A transiting 51 Peg-like planet. ApJ, 529, L41–L44 {153, 170, 185, 608, 610, 731}CrossRefGoogle ScholarPubMed
Henry, GW, Winn, JN, 2008, The rotation period of the planet-hosting star HD 189733. AJ, 135, 68–71 {730}CrossRefGoogle Scholar
Henry, TJ, Boyd, MR, Dieterich, SB, et al., 2011b, RECONS reaches to 25 pc. AAS Abstracts, volume 43, 242.05 {374}Google Scholar
Henry, TJ, Jao, W, Subasavage, JP, et al., 2006, The solar neighbourhood. 17. Parallax results from the CTIOPI 0.9-m programme: 20 new members of the RECONS 10 pc sample. AJ, 132, 2360–2371 {374}CrossRefGoogle Scholar
Henry, TJ, Soderblom, DR, Donahue, RA, et al., 1996, A survey of Ca IIHand K chromo-spheric emission in southern solar-type stars. AJ, 111, 439–465 {381}CrossRefGoogle Scholar
Heppenheimer, TA, 1978, On the formation of planets in binary star systems. A&A, 65, 421–426 {160, 550, 619}Google Scholar
Heppenheimer, TA, 1980, Secular resonances and the origin of eccentricities of Mars and the asteroids. Icarus, 41, 76–88 {693}CrossRefGoogle Scholar
Herbst, E, van Dishoeck, EF, 2009, Complex organic interstellar molecules. ARA&A, 47, 427–480 {647}Google Scholar
Herbst, W, Hamilton, CM, Leduc, K, et al., 2008, Reflected light from sand grains in the terrestrial zone of a protoplanetary disk. Nature, 452, 194–197 {468}CrossRefGoogle ScholarPubMed
Herczeg, GJ, Hillenbrand, LA, 2008, UV excess measures of accretion onto young very lowmass stars and brown dwarfs. ApJ, 681, 594-625 {444, 445}CrossRefGoogle Scholar
Herman, MK, de Mooij, EJW, Huang, CX, et al., 2018, Spin–orbit misalignment and precession in the Kepler–13A b planetary system. AJ, 155, 13 {739}CrossRefGoogle Scholar
Hernán-Obispo, M, Gálvez-Ortiz, MC, Anglada-Escudé, G, et al., 2010, Evidence of a massive planet candidate orbiting the young active K5V star BD+20 1790. A&A, 512, A45 {716}Google Scholar
Hernán-Obispo, M, Tuomi, M, Gálvez-Ortiz, MC, et al., 2015, Analysis of combined radial velocities and activity of BD+20 1790: evidence supporting the existence of a planetary companion. A&A, 576, A66 {716}Google Scholar
Hernandez, DM, 2016, Fast and reliable symplectic integration for planetary system N-body problems. MNRAS, 458, 4285–4296 {513}CrossRefGoogle Scholar
Hernandez, DM, Dehnen, W, 2017, A study of symplectic integrators for planetary sys-temproblems: error analysis and comparisons. MNRAS, 468, 2614–2636 {677}CrossRefGoogle Scholar
Hernández, J, Calvet, N, Briceño, C, et al., 2007a, Spitzer observations of the Orion OB1 association: disk census in the low-mass stars. ApJ, 671, 1784–1799 {465}CrossRefGoogle Scholar
Hernández, J, Hartmann, L, Calvet, N, et al., 2008, A Spitzer view of protoplanetary disks in the γ Vel cluster. ApJ, 686, 1195-1208 {465}CrossRefGoogle Scholar
Hernández, J, Hartmann, L, Megeath, T, et al., 2007b, A Spitzer space telescope study of disks in the young σ Ori cluster. ApJ, 662, 1067–1081 {462, 464}CrossRefGoogle Scholar
Hernández, J, Morales-Calderon, M, Calvet, N, et al., 2010, Spitzer observations of the λ Ori cluster. II. Disks around solar-type and low-mass stars. ApJ, 722, 1226–1239 {465}CrossRefGoogle Scholar
Hernández-Mena, C, Benet, L, 2011, Statistics and universality in simplified models of planet formation. MNRAS, 412, 95–106 {513}CrossRefGoogle Scholar
Herrero, E, Morales, JC, Ribas, I, et al., 2011, WASP–33: the first δ Scuti exoplanet host star. A&A, 526, L10–L13 {166, 230, 259, 754}Google Scholar
Herrero, E, Ribas, I, Jordi, C, et al., 2012, Optimising exoplanet transit searches around low-mass stars with inclination constraints. A&A, 537, A147 {205}Google Scholar
Herrero, E, Ribas, I, Jordi, C, 2016, Modelling the photosphere of active stars for planet detection and charac-terisation. A&A, 586, A131 {36, 188, 731}Google Scholar
Herrick, RR, Rumpf, ME, 2011, Post-impact modification by volcanic or tectonic processes as the rule, not the exception, for Venusian craters. J. Geophys. Res. (Planets), 116, E02004 {671}CrossRefGoogle Scholar
Herrmann, F, Krivov, AV, 2007, Effects of photophoresis on the evolution of transitional circumstellar disks. A&A, 476, 829–839 {458}Google Scholar
Hersant, F, Gautier, D, Lunine, JI, 2004, Enrichment in volatiles in the giant planets of the Solar System. Planet. Space Sci., 52, 623–641 {661}CrossRefGoogle Scholar
Herschel, W, 1795, On the nature and construction of the Sun and fixed stars. Phil. Trans. Soc. London A, 85, 46–72 {639}Google Scholar
Hershey, JL, Lippincott, SL, 1982, A study of the intensive 40-year Sproul plate series on Lalande 21185 and BD+5 1668. AJ, 87, 840–844 {83}Google Scholar
Herwartz, D, Pack, A, Friedrichs, B, et al., 2014, Identification of the giant impactor Theia in lunar rocks. Science, 344, 1146–1150 {664}CrossRefGoogle ScholarPubMed
Hess, S, Mottez, F, Zarka, P, et al., 2008, Generation of the Jovian radio decametric arcs from the Io Flux Tube. J. Geophys. Res., 113(12), 3209–3218 {426}CrossRefGoogle Scholar
Hess, SLG, Zarka, P, 2011, Modeling the radio signature of the orbital parameters, rotation, and magnetic field of exoplanets. A&A, 531, A29 {425}Google Scholar
Hessman, FV, Dhillon, VS, Winget, DE, et al., 2010, On the naming convention used for multiple star systems and extrasolar planets [unpublished]. ArXiv e-prints {7}
Hester, JJ, Desch, SJ, 2005, Understanding our origins: star formation in HII region environments. Chondrites and the Protoplanetary Disk, volume 341 of ASP Conf. Ser., 107–129 {651}
Hester, JJ, Desch, SJ, Healy, KR, et al., 2004, The cradle of the solar system. Science, 304, 1116–1117 {651}CrossRefGoogle ScholarPubMed
Hewitt, JN, Turner, EL, Schneider, DP, et al., 1988, Unusual radio source MG1131+0456: a possible Einstein ring. Nature, 333, 537–540 {120}CrossRefGoogle Scholar
Heyl, J, 2010, Diffractive microlensing. I. Flickering planetesimals at the edge of the solar system. MNRAS, 402, L39–L43 {137}CrossRefGoogle Scholar
Heyl, JS, 2007, Orbital evolution with white-dwarf kicks. MNRAS, 382, 915–920 {412}CrossRefGoogle Scholar
Heyl, JS, 2011a, Diffractive microlensing. II. Substellar disk and halo objects. MNRAS, 411, 1780–1786 {137, 426}CrossRefGoogle Scholar
Heyl, JS, 2011b, Diffractive microlensing. III. Astrometric signatures. MNRAS, 411, 1787–1791 {426}CrossRefGoogle Scholar
Heyl, JS, Gladman, BJ, 2007, Using long-term transit timing to detect terrestrial planets. MNRAS, 377, 1511–1519 {262, 263}CrossRefGoogle Scholar
Heyner, D, Glassmeier, KH, Schmitt, D, 2012, Stellar wind influence on planetary dynamos. ApJ, 750, 133 {422}CrossRefGoogle Scholar
Heyrovský, D, Loeb, A, 1997, Microlensing of an elliptical source by a point mass. ApJ, 490, 38–50 {136}CrossRefGoogle Scholar
Heyrovský, D, Sasselov, D, 2000, Detecting stellar spots by gravitational microlensing. ApJ, 529, 69–76 {136}CrossRefGoogle Scholar
Heyrovský, D, Sasselov, D, Loeb, A, 2000, Probing red giant atmospheres with gravita-tionalmicrolensing. ApJ, 543, 406–416 {136}CrossRefGoogle Scholar
Hicks, BA, 2016, Exoplanet detection and characterisation via parallel broadband nulling coronagraphy. Journal of Astronomical Telescopes, Instruments, and Systems, 2(1), 011015 {349}CrossRefGoogle Scholar
Hicks, RK, Day, DA, Jimenez, JL, et al., 2016, Follow the carbon: isotopic labeling studies of early Earth aerosol. Astrobiology, 16, 822–830 {641}CrossRefGoogle ScholarPubMed
Hidas, MG, Ashley, MCB, Webb, JK, et al., 2005, The University of New South Wales extrasolar planet search: methods and first results from a field centred on NGC 6633. MNRAS, 360, 703–717 {159}CrossRefGoogle Scholar
Hidas, MG, Hawkins, E, Walker, Z, et al., 2008, Las Cumbres Observatory Global Telescope: a homogeneous telescope network. Astron. Nach., 329, 269–270 {140}CrossRefGoogle Scholar
Hidas, MG, Tsapras, Y, Mislis, D, et al., 2010, An ingress and a complete transit of HD 80606 b. MNRAS, 406, 1146–1151 {158, 729}Google Scholar
Hide, R, 1969, Dynamics of the atmospheres of the major planets. Journal of Atmospheric Sciences, 26, 841–853 {596}Google Scholar
Higgins, CA, Carr, TD, Reyes, F, et al., 1997, A redefinition of Jupiter's rotation period. J. Geophys. Res., 102, 22033–22042 {426}CrossRefGoogle Scholar
Higuchi, A, Ida, S, 2016, Temporary capture of asteroids by a planet: dependence of prograde/retrograde capture on asteroids semimajor axes. AJ, 151, 16 {688}CrossRefGoogle Scholar
Higuchi, A, Ida, S, 2017, Formation of wide-orbit gas giants near the stability limit in multi-stellar systems. AJ, 154, 88 {483, 763}CrossRefGoogle Scholar
Higuchi, AE, Sato, A, Tsukagoshi, T, et al., 2017, Detection of submillimeter-wave [C I] emission in gaseous debris disks of 49 Cet and β Pic. ApJ, 839, L14 {762}CrossRefGoogle Scholar
Hilditch, RW, 2001, An Introduction to Close Binary Stars. Cambridge University Press {17, 114}CrossRefGoogle Scholar
Hill, C, Yurchenko, SN, Tennyson, J, 2013, Temperature-dependent molecular absorption cross sections for exoplanets and other atmospheres. Icarus, 226, 1673–1677 {570}CrossRefGoogle Scholar
Hill, GW, 1878, Researches in the lunar theory. Am. J. Math., 1(129-147) {315, 316, 512}CrossRefGoogle Scholar
Hill, JM, 2010, The Large Binocular Telescope. Appl. Opt., 49, 115–122 {331, 332, 348}CrossRefGoogle ScholarPubMed
Hillenbrand, LA, 2008, Disk dispersal and planet-formation time scales. Physica Scripta Volume T, 130(1), 014024 {484}Google Scholar
Hillenbrand, LA, Carpenter, JM, 2000, Constraints on the stellar/substellar mass function in the inner Orion nebula cluster. ApJ, 540, 236–254 {446}CrossRefGoogle Scholar
Hillenbrand, LA, Carpenter, JM, Kim, JS, et al., 2008, The complete census of 70 μm-bright debris disks within Formation and Evolution of Planetary Systems Spitzer legacy survey of Sun-like stars. ApJ, 677, 630-656 {493}CrossRefGoogle Scholar
Hillier, JK, Bauer, JM, Buratti, BJ, 2011, Photometric modeling of asteroid (5535) An-nefrank from Stardust observations. Icarus, 211, 546–552 {681}CrossRefGoogle Scholar
Hills, JG, 1981, Comet showers and the steady-state infall of comets from the Oort cloud. AJ, 86, 1730–1740 {686}CrossRefGoogle Scholar
Hilton, JL, Seidelmann, PK, Liu, C, 1988, Analysis of ancient Chinese records of occul-tations between planets and stars. AJ, 96, 1482–1493 {227}CrossRefGoogle Scholar
Hines, DC, Backman, DE, Bouwman, J, et al., 2006, The formation and evolution of planetary systems: discovery of an unusual debris system associated with HD 12039. ApJ, 638, 1070–1079 {497}CrossRefGoogle Scholar
Hinkel, NR, Kane, SR, 2013a, Habitability of exomoons at the Hill or tidal-locking radius. ApJ, 774, 27 {627, 713, 716, 719, 720}CrossRefGoogle Scholar
Hinkel, NR, Kane, SR, 2013b, Implications of the spectroscopic abundances in α Cen A and B. MNRAS, 432, L36 {714}CrossRefGoogle Scholar
Hinkel, NR, Kane, SR, Henry, GW, et al., 2015a, Refined properties of the HD 130322 planetary system. ApJ, 803, 8 {722}CrossRefGoogle Scholar
Hinkel, NR, Kane, SR, Pilyavsky, G, et al., 2015b, A new analysis of the exoplanet hosting system HD 6434. AJ, 150, 169 {718}CrossRefGoogle Scholar
Hinkle, KH, Joyce, RR, Hedden, A, et al., 2001, Wavelength calibration of near-infrared spectra. PASP, 113, 548–566 {32}CrossRefGoogle Scholar
Hinkley, S, Bowler, BP, Vigan, A, et al., 2015, Early results from VLT–SPHERE: long-slit spectroscopy of 2MASS 0122–2439B, a young companion near the deuterium burning limit. ApJ, 805, L10 {763}CrossRefGoogle Scholar
Hinkley, S, Carpenter, JM, Ireland, MJ, et al., 2011a, Observational constraints on companions inside of 10 au in the HR 8799 planetary system. ApJ, 730, L21 {763}CrossRefGoogle Scholar
Hinkley, S, Oppenheimer, BR, Soummer, R, et al., 2009, Speckle suppression through dual imaging polarimetry, and a ground-based image of the HR 4796A circum-stellar disk. ApJ, 701, 804-810 {340}CrossRefGoogle Scholar
Hinkley, S, Oppenheimer, BR, Zimmerman, N, et al., 2011b, A newhigh-contrast imaging programme at Palomar Observatory. PASP, 123, 74–86 {343}CrossRefGoogle Scholar
Hinkley, S, Pueyo, L, Faherty, JK, et al., 2013, The κ And system: new constraints on the companion mass, system age, and further multiplicity. ApJ, 779, 153 {359, 761}CrossRefGoogle Scholar
Hinse, TC, Haghighipour, N, Kostov, VB, et al., 2015, Predicting a third planet in the Kepler–47 circumbinary system. ApJ, 799, 88 {327, 741}CrossRefGoogle Scholar
Hinse, TC, Lee, JW, Goździewski, K, et al., 2012, New light-travel time models and orbital stability study of the proposed planetary system HU Aqr. MNRAS, 420, 3609–3620 {115}CrossRefGoogle Scholar
Hinse, TC, Lee, JW, Goździewski, K, 2014, Revisiting the proposed circumbinary multi-planet system NSVS 14256825. MNRAS, 438, 307–317 {117}CrossRefGoogle Scholar
Hinse, TC, Michelsen, R, Jørgensen, UG, et al., 2008, Dynamics and stability of tel-luric planets within the habitable zone of extrasolar planetary systems. Numerical simulations of test particles within the HD 4208 and HD 70642 systems. A&A, 488, 1133–1147 {623, 718, 720}Google Scholar
Hinz, PM, Angel, JRP, Hoffmann, WF, et al., 1998, Imaging circumstellar environments with a nulling interferometer. Nature, 395, 251–253 {349}CrossRefGoogle Scholar
Hinz, PM, Angel, JRP, Woolf, NJ, et al., 2000, BLINC: a testbed for nulling interferometry in the thermal infrared. SPIE Conf. Ser., volume 4006, 349–353 {348}Google Scholar
Hinz, PM, Bailey, VP, Defrère, D, et al., 2014, Commissioning the LBTI for use as a nulling interferometer and coherent imager. Optical and Infrared Interferometry IV, volume 9146 of Proc. SPIE, 91460T {349}Google Scholar
Hinz, PM, Hoffmann, WF, Hora, JL, 2001, Constraints on disk sizes around young intermediate-mass stars: nulling interferometric observations of Herbig Ae objects. ApJ, 561, L131–L134 {349}CrossRefGoogle Scholar
Hinz, PM, Rodigas, TJ, Kenworthy, MA, et al., 2010, Thermal infrared MMT–AO observations of the HR 8799 planetary system. ApJ, 716, 417–426 {763}CrossRefGoogle Scholar
Hinz, PM, Solheid, E, Durney, O, et al., 2008, NIC: LBTI's nulling and imaging camera. SPIE Conf. Ser., volume 7013, 100 {349}Google Scholar
Hippke, M, 2015, On the detection of exomoons: a search in Kepler data for the orbital sampling effect and the scatter peak. ApJ, 806, 51 {277}CrossRefGoogle Scholar
Hippke, M, Angerhausen, D, 2015a, A statistical search for a population of exo-Trojans in the Kepler data set. ApJ, 811, 1 {275}CrossRefGoogle Scholar
Hippke, M, Angerhausen, D, 2015b, Photometry's bright future: detecting solar system analogues with future space telescopes. ApJ, 810, 29 {180}CrossRefGoogle Scholar
Hippke, M, Angerhausen, D, 2016, A first viewwith Gaia on KIC–8462852: distance estimates and a comparison to other F stars. ArXiv e-prints {232, 747}
Hippke, M, Angerhausen, D, Lund, MB, et al., 2016, A statistical analysis of the accuracy of the digitised magnitudes of photometric plates on the time scale of decades with an application to the century-long light curve of KIC–8462852. ApJ, 825, 73 {232, 747}CrossRefGoogle Scholar
Hippke, M, Kroll, P, Matthai, F, et al., 2017, Sonneberg plate photometry for Boyajian's star in two passbands. ApJ, 837, 85 {232, 747}CrossRefGoogle Scholar
Hirano, T, Dai, F, Gandolfi, D, et al., 2018a, Exoplanets around low-mass stars unveiled by K2. AJ, 155, 127 {749}CrossRefGoogle Scholar
Hirano, T, Dai, F, Livingston, JH, et al., 2018b, K2–155: a bright metal-poor M dwarf with three transiting super-Earths. AJ, 155, 124 {749}CrossRefGoogle Scholar
Hirano, T, Fukui, A, Mann, AW, et al., 2016a, The K2–ESPRINT Project. III. A close-in super Earth around ametal-rich mid-M dwarf. ApJ, 820, 41 {748}CrossRefGoogle Scholar
Hirano, T, Narita, N, Sato, B, et al., 2011a, Further observations of the tilted planet XO–3: a new determination of spin–orbit misalignment, and limits on differential rotation. PASJ, 63, L57–L61 {757}CrossRefGoogle Scholar
Hirano, T, Narita, N, Sato, B, 2012a, Planet–planet eclipse and the Rossiter–McLaughlin effect of a multiple transiting system (KOI–94=Kepler–89): joint analysis of the Subaru spectroscopy and the Kepler photometry. ApJ, 759, L36 {12, 179, 225, 226, 254, 280, 742}CrossRefGoogle Scholar
Hirano, T, Narita, N, Shporer, A, et al., 2011b, A possible tilted orbit of the super-Neptune HAT–P–11 b. PASJ, 63, 531–536 {254, 736}CrossRefGoogle Scholar
Hirano, T, Nowak, G, Kuzuhara, M, et al., 2016b, The K2–ESPRINT Project. IV. A hot Jupiter in a prograde orbit with a possible stellar companion. ApJ, 825, 53 {748}CrossRefGoogle Scholar
Hirano, T, Sanchis-Ojeda, R, Takeda, Y, et al., 2012b, Measurements of stellar inclinations for Kepler planet candidates. ApJ, 756, 66 {214, 311}CrossRefGoogle Scholar
Hirano, T, Sanchis-Ojeda, R, Takeda, Y, 2014, Measurements of stellar inclinations for Kepler planet candidates. II. Candidate spin–orbitmisalignments in single- and multiple-transiting systems. ApJ, 783, 9 {177, 311, 531, 744}CrossRefGoogle Scholar
Hirano, T, Suto, Y, Taruya, A, et al., 2010, Analytic description of the Rossiter–McLaughlin effect for transiting exoplanets: cross-correlation method and comparison with simulated data. ApJ, 709, 458–469 {249}CrossRefGoogle Scholar
Hirano, T, Suto, Y, Winn, JN, et al., 2011c, Improved modeling of the Rossiter–McLaughlin effect for transiting exoplanets. ApJ, 742, 69 {249, 250, 251}CrossRefGoogle Scholar
Hirao, Y, Udalski, A, Sumi, T, et al., 2016, OGLE–2012–BLG–724L b: a Saturn-mass planet around an Mdwarf. ApJ, 824, 139 {141, 760}CrossRefGoogle Scholar
Hirao, Y, Udalski, A, Sumi, T, 2017, OGLE–2013–BLG–1761L b: a massive planet around an M/K dwarf. AJ, 154, 1 {760}CrossRefGoogle Scholar
Hirsch, LA, Ciardi, DR, Howard, AW, et al., 2017, Assessing the effect of stellar companions from high-resolution imaging of Kepler Objects of Interest. AJ, 153, 117 {202, 361}CrossRefGoogle Scholar
Hirth, GA, Mundt, R, Solf, J, 1997, Spatial and kinematic properties of the forbidden emission line region of T Tauri stars. A&AS, 126 {444}Google Scholar
Hirth, GA, Mundt, R, Solf, J, et al., 1994, Asymmetries in bipolar jets from young stars. ApJ, 427, L99–L102 {444}CrossRefGoogle Scholar
Ho, S, Turner, EL, 2011, The posterior distribution of sini values for exoplanets with Msini determined from radial velocity data. ApJ, 739, 26 {44}CrossRefGoogle Scholar
Hoang, T, Lazarian, A, Burkhart, B, et al., 2017, The interaction of relativistic spacecrafts with the interstellar medium. ApJ, 837, 5 {648}CrossRefGoogle Scholar
Hoard, DW, Debes, JH, Wachter, S, et al., 2013, The WIRED survey. IV. New dust disks from the McCook–Sion white dwarf catalogue. ApJ, 770, 21 {415}CrossRefGoogle Scholar
Hobbs, D, Høg, E, Mora, A, et al., 2016, Gaia NIR: combining optical and near-infrared capabilities with time-delay-integration (TDI) sensors for a future Gaia-like mission. ArXiv e-prints {100}
Hobbs, G, Lyne, AG, Kramer, M, 2010, An analysis of the timing irregularities for 366 pulsars. MNRAS, 402, 1027–1048 {109}CrossRefGoogle Scholar
Hobbs, GB, 2012, Using the pulsar timing software package, TEMPO2 [unpublished]. ArXiv e-prints {104}
Hobbs, GB, 2013, Pulsar timing arrays: status and techniques. IAU Symp., volume 291, 165–170 {110}Google Scholar
Hobbs, GB, Bailes, M, Bhat, NDR, et al., 2009, Gravitational-wave detection using pulsars: status of the Parkes pulsar timing array project. Publ. Astron. Soc. Australia, 26, 103–109 {109}CrossRefGoogle Scholar
Hobbs, GB, Coles, W, Manchester, RN, et al., 2012, Development of a pulsar-based time-scale. MNRAS, 427, 2780–2787 {104}CrossRefGoogle Scholar
Hobbs, GB, Edwards, RT, Manchester, RN, 2006, TEMPO2, a new pulsar-timing package. I. An overview. MNRAS, 369, 655–672 {104}CrossRefGoogle Scholar
Hobbs, LM, Welty, DE, Lagrange-Henri, AM, et al., 1988, The location of the Ca II ions in the β Pic disk. ApJ, 334, L41–L44 {282}CrossRefGoogle Scholar
Hobbs, PV, 1974, Ice Physics. Clarendon Press, Oxford {567}Google Scholar
Hobson, MJ, Gomez, M, 2017, Multiple planetary systems: properties of the current sample. New Astron., 55, 1–12 {317}CrossRefGoogle Scholar
Hodgkin, ST, Irwin, JM, Aigrain, S, et al., 2006, Monitor: transiting planets and brown dwarfs in star forming regions and young open clusters. Astron. Nach., 327, 9–13 {158, 159}CrossRefGoogle Scholar
Hodosán, G, Helling, C, Asensio-Torres, R, et al., 2016a, Lightning climatology of exo-planets and brown dwarfs guided by solar system data. MNRAS, 461, 3927–3947 {591, 728, 731, 741, 744, 756, 762}CrossRefGoogle Scholar
Hodosán, G, Rimmer, PB, Helling, C, 2016b, Is lightning a possible source of the radio emission on HAT–P–11 b? MNRAS, 461, 1222–1226 {163, 591, 736}CrossRefGoogle Scholar
Hoffman, PF, Kaufman, AJ, Halverson, GP, et al., 1998, A Neoproterozoic snowball Earth. Science, 281, 1342 {630}CrossRefGoogle ScholarPubMed
Hoffman, PF, Schrag, DP, 2002, The snowball Earth hypothesis: testing the limits of global change. Terra Nova, 14, 129–155 {674}CrossRefGoogle Scholar
Hoffmann, H, Seiß, M, Salo, H, et al., 2015, Vertical structures induced by embedded moonlets in Saturn's rings. Icarus, 252, 400–414 {691}CrossRefGoogle Scholar
Hoffmann, H, Seiß, M, Spahn, F, 2013, Vertical relaxation of a moonlet propeller in Saturn's A ring. ApJ, 765, L4 {691}CrossRefGoogle Scholar
Hoffmann, V, Grimm, SL, Moore, B, et al., 2017, Stochasticity and predictability in terrestrial planet formation. MNRAS, 465, 2170–2188 {477, 694, 734}CrossRefGoogle Scholar
Hofmann, F, Müller, J, Biskupek, L, 2010, Lunar laser ranging test of the Nordtvedt parameter and a possible variation in the gravitational constant. A&A, 522, L5 {257}Google Scholar
Høg, E, Bässgen, G, Bastian, U, et al., 1997, The Tycho catalogue. A&A, 323, L57–L60 {93, 373}Google Scholar
Høg, E, Fabricius, C, Makarov, VV, et al., 2000, The Tycho 2 catalogue of the 2.5 million brightest stars. A&A, 355, L27–L30 {93, 373}Google Scholar
Høg, E, Lindegren, L, 1994, Roemer satellite project: the first high-accuracy survey of faint stars. Galactic and Solar System Optical Astrometry (eds. Morrison LV, Gilmore GF), 246 {95}
Høg, E, Novikov, ID, Polnarev, AG, 1995, MACHO photometry and astrometry. A&A, 294, 287–294 {138}Google Scholar
Hogan, E, Burleigh, MR, Clarke, FJ, 2011, Latest results from the DODO survey: imaging planets around white dwarfs. Amer. Inst. Phys. Conf. Ser., volume 1331, 271–277 {415}Google Scholar
Hogg, DW, Myers, AD, Bovy, J, 2010, Inferring the eccentricity distribution. ApJ, 725, 2166–2175 {63}CrossRefGoogle Scholar
Holberg, JB, Oswalt, TD, Sion, EM, 2002, A determination of the local density of white dwarf stars. ApJ, 571, 512–518 {413}CrossRefGoogle Scholar
Holczer, T, Mazeh, T, Nachmani, G, et al., 2016, Transit timing observations from Kepler. IX. Catalogue of the full long-cadence data set. ApJS, 225, 9 {236, 269, 271, 741, 747}CrossRefGoogle Scholar
Holczer, T, Shporer, A, Mazeh, T, et al., 2015, Time variation of Kepler transits induced by stellar spots: a way to distinguish between prograde and retrograde motion. II. Application to KOIs. ApJ, 807, 170 {215, 736, 739, 741, 742, 746}CrossRefGoogle Scholar
Holder, J, 2005, Optical SETI with imaging Cherenkov telescopes. International Cosmic Ray Conference, volume 5, 387 {646}Google Scholar
Holl, B, Lindegren, L, Hobbs, D, 2012, Error characterisation of the Gaia astrometric solution. II. Validating the covariance expansion model. A&A, 543, A15 {97}Google Scholar
Holland, HD, 2002, Volcanic gases, black smokers, and the great oxidation event. Geochim. Cosmochim. Acta, 66, 3811–3826 {673}CrossRefGoogle Scholar
Holland, HD, 2006, The oxygenation of the atmosphere and oceans. Phil. Trans. Roy. Soc. London B, 361, 903–915 {673}CrossRefGoogle ScholarPubMed
Holland, HD, 2009, Why the atmosphere became oxygenated: a proposal. Geochim. Cos-mochim. Acta, 73, 5241–5255 {673}Google Scholar
Holland, WS, Greaves, JS, Dent, WRF, et al., 2003, Submillimeter observations of an asymmetric dust disk around Fomalhaut. ApJ, 582, 1141–1146 {492, 761}CrossRefGoogle Scholar
Holland, WS, Matthews, BC, Kennedy, GM, et al., 2017, SONS: the JCMT legacy survey of debris disks in the submillimetre. MNRAS, 470, 3606–3663 {493}CrossRefGoogle Scholar
Hollenbach, D, Johnstone, D, Lizano, S, et al., 1994, Photoevaporation of disks around massive stars and application to ultracompact HII regions. ApJ, 428, 654–669 {462}CrossRefGoogle Scholar
Hollis, MDJ, Balan, ST, Lever, G, et al., 2012, A uniformly derived catalogue of exo-planets from radial velocities. MNRAS, 423, 2800–2814 {25}CrossRefGoogle Scholar
Holm, S, 2015, Prudence in estimating coherence between planetary, solar and climate oscillations. Ap&SS, 357, 106 {656}Google Scholar
Holman, MJ, 1995, The distribution of mass in the Kuiper belt. 27th Symposium on Celestial Mechanics,, 116 {694}Google Scholar
Holman, MJ, 1997, A possible long-lived belt of objects between Uranus and Neptune. Nature, 387, 785–788 {317}CrossRefGoogle Scholar
Holman, MJ, Fabrycky, DC, Ragozzine, D, et al., 2010, Kepler–9: a system of multiple planets transiting a Sun-like star, confirmed by timing variations. Science, 330, 51–54 {11, 179, 266, 269, 270, 273, 313, 322, 738}CrossRefGoogle ScholarPubMed
Holman, MJ, Kavelaars, JJ, Grav, T, et al., 2004, Discovery of five irregular moons of Neptune. Nature, 430, 865–867 {688}CrossRefGoogle ScholarPubMed
Holman, MJ, Murray, NW, 2005, The use of transit timing to detect terrestrial-mass extrasolar planets. Science, 307, 1288–1291 {189, 207, 262, 263, 269, 294}CrossRefGoogle ScholarPubMed
Holman, MJ, Payne, MJ, 2016a, Observational constraints on Planet Nine: astrometry of Pluto and other trans-Neptunian objects. AJ, 152, 80 {687}CrossRefGoogle Scholar
Holman, MJ, Payne, MJ, 2016b, Observational constraints on Planet Nine: Cassini range observations. AJ, 152, 94 {687}CrossRefGoogle Scholar
Holman, MJ, Touma, J, Tremaine, S, 1997, Chaotic variations in the eccentricity of the planet orbiting 16 Cyg B. Nature, 386, 254–256 {69, 79, 80, 529, 715}CrossRefGoogle Scholar
Holman, MJ, Wiegert, PA, 1999, Long-term stability of planets in binary systems. AJ, 117, 621–628 {548, 549, 551}CrossRefGoogle Scholar
Holman, MJ, Winn, JN, Fuentes, CI, et al., 2007a, The Transit Light Curve Project. IV. Five transits of the exoplanet OGLE–TR–10 b. ApJ, 655, 1103–1109 {184, 749}CrossRefGoogle Scholar
Holman, MJ, Winn, JN, Latham, DW, et al., 2006, The Transit Light Curve Project. I. Four consecutive transits of the exoplanet XO–1 b. ApJ, 652, 1715–1723 {184, 195, 757}CrossRefGoogle Scholar
Holman, MJ, Winn, JN, Latham, DW, 2007b, The Transit Light Curve project. VI. Three transits of the exoplanet TrES–2. ApJ, 664, 1185–1189 {184, 206, 750}CrossRefGoogle Scholar
Holman, MJ, Wisdom, J, 1993, Dynamical stability in the outer solar system and the delivery of short period comets. AJ, 105, 1987–1999 {514, 662, 679, 694}CrossRefGoogle Scholar
Holmberg, E, 1938, Invisible companions of parallax stars revealed by means of mod-ern trigonometric parallax observations. Medd. Lund Astron. Obs. Ser. II, 92 {83}Google Scholar
Holmberg, J, Flynn, C, 2000, The local density of matter mapped by Hipparcos. MNRAS, 313, 209–216 {702}CrossRefGoogle Scholar
Holmberg, J, Flynn, C, 2004, The local surface density of disk matter mapped by Hipparcos. MNRAS, 352, 440–446 {457}CrossRefGoogle Scholar
Holmström, M, Ekenbäck, A, Selsis, F, et al., 2008, Energetic neutral atoms as the explanation for the high-velocity hydrogen around HD209458 b. Nature, 451, 970–972 {428, 732}CrossRefGoogle Scholar
Holoien, TWS, Brown, JS, Stanek, KZ, et al., 2017, The ASAS–SN bright supernova cata-logue. III. 2016. MNRAS, 471, 4966–4981 {99}CrossRefGoogle Scholar
Holsapple, K, Giblin, I, Housen, K, et al., 2002, Asteroid impacts: laboratory experiments and scaling laws, 443–462. University of Arizona Press {496}
Holt, JR, 1893, Spectroscopic determination of stellar rotation. Astronomy and Astro-Physics (W. W. Payne & G. E. Hale), XII, 646 {248}
Holton, JR, 2012, An Introduction to Dynamic Meteorology. Academic Press {594}Google Scholar
Holz, DE, Wald, RM, 1996, Photon statistics limits for Earth-based parallax measurements of MACHO events. ApJ, 471, 64–67 {135}CrossRefGoogle Scholar
Homann, H, Guillot, T, Bec, J, et al., 2016, Effect of turbulence on collisions of dust particles with planetesimals in protoplanetary disks. A&A, 589, A129 {469}Google Scholar
Honda, M, Maaskant, K, Okamoto, YK, et al., 2012, Mid-infrared imaging of the transition disk of HD 169142: measuring the size of the gap. ApJ, 752, 143 {367}CrossRefGoogle Scholar
Hong, YC, Raymond, SN, Nicholson, PD, et al., 2018, Innocent bystanders: orbital dynamics of exomoons during planet–planet scattering. ApJ, 852, 85 {276}CrossRefGoogle Scholar
Hong, YC, Tiscareno, MS, Nicholson, PD, et al., 2015, Orbital instability of close-in exo-moons in non-coplanar systems. MNRAS, 449, 828–834 {276}CrossRefGoogle Scholar
Honma, M, Kurayama, T, 2002, Astrometric microlensing of distant sources caused by stars in the Galaxy. ApJ, 568, 717–725 {138}CrossRefGoogle Scholar
Hood, B, Collier Cameron, A, Kane, SR, et al., 2005, A dearth of planetary transits in the direction of NGC 6940. MNRAS, 360, 791–800 {159}CrossRefGoogle Scholar
Hood, B, Wood, K, Seager, S, et al., 2008, Reflected light from 3d exoplanetary atmospheres and simulation of HD 209458 b. MNRAS, 389, 257–269 {732}CrossRefGoogle Scholar
Hood, LL, Weidenschilling, SJ, 2012, The planetesimal bowshock model for chondrule formation: a more quantitative assessment of the standard (fixed Jupiter) case. Meteor. Plan. Sci., 47, 1715–1727 {653}Google Scholar
Hooper, D, Steffen, JH, 2012, Dark matter and the habitability of planets. J. Cosmology and Astroparticle Physics, 7, 046 {619}CrossRefGoogle Scholar
Hopkins, PF, 2013, A general theory of turbulent fragmentation. MNRAS, 430, 1653–1693 {442}CrossRefGoogle Scholar
Hopkins, PF, 2016a, A simple phenomenological model for grain clustering in turbulence. MNRAS, 455, 89–111 {469}CrossRefGoogle Scholar
Hopkins, PF, 2016b, Jumping the gap: the formation conditions and mass function of ‘pebble-pile’ planetesimals. MNRAS, 456, 2383–2405 {471}CrossRefGoogle Scholar
Hopkins, PF, Christiansen, JL, 2013, Turbulent disks are never stable: fragmentation and turbulence-promoted planet formation. ApJ, 776, 48 {442, 487}CrossRefGoogle Scholar
Horch, EP, Howell, SB, Everett, ME, et al., 2012, Observations of binary stars with the differential speckle survey instrument. IV. Observations of Kepler, CoRo, T AJ, 144, 165 {332}CrossRefGoogle Scholar
Horch, EP, Howell, SB, Everett, ME, 2014, Most sub-arcsec companions of Kepler exoplanet candidate host stars are gravitationally bound. ApJ, 795, 60 {360}CrossRefGoogle Scholar
Horch, EP, van Altena, WF, Cyr, WM, et al., 2008, CCD speckle observations of binary stars with the WIYN telescope. V. Measures during 2001–2006. AJ, 136, 312-322 {332}CrossRefGoogle Scholar
Horedt, GP, 2015, Long-term resonances between two Jovian exoplanets. Planet. Space Sci., 117, 250–261 {509}CrossRefGoogle Scholar
Hori, Y, Ikoma, M, 2010, Critical core masses for gas giant formation with grain-free envelopes. ApJ, 714, 1343–1346 {485}CrossRefGoogle Scholar
Hori, Y, Ikoma, M, 2011, Gas giant formation with small cores triggered by envelope pollution by icy planetesimals. MNRAS, 416, 1419–1429 {482}CrossRefGoogle Scholar
Hormuth, F, Hippler, S, Brandner, W, et al., 2008, AstraLux: the Calar Alto lucky imaging camera. Ground-based and Airborne Instrumentation for Astronomy II, volume 7014 of Proc. SPIE, 701448 {333}CrossRefGoogle Scholar
Horn, B, Lyra, W, Mac Low, MM, et al., 2012, Orbitalmigration of interacting low-mass planets in evolutionary radiative turbulent models. ApJ, 750, 34 {519}CrossRefGoogle Scholar
Hornbeck, JB, Swearingen, JR, Grady, CA, et al., 2016, Panchromatic imaging of a transition disk: GM Aur in optical and far-UV scattered light. ApJ, 829, 65 {465}CrossRefGoogle Scholar
Horne, JH, Baliunas, SL, 1986, A prescription for period analysis of unevenly sampled time series. ApJ, 302, 757–763 {21}CrossRefGoogle Scholar
Horne, K, 2001, Planetary transit searches: hot Jupiters galore. Techniques for the Detection of Planets and Life beyond the Solar System, 5 {155}Google Scholar
Horne, K, Snodgrass, C, Tsapras, Y, 2009, A metric and optimisation scheme for microlens planet searches. MNRAS, 396, 2087–2102 {129, 140}CrossRefGoogle Scholar
Horneck, G, 1993, Responses of Bacillus subtilis spores to space environment: results from experiments in space. Origins of Life and Evolution of the Biosphere, 23, 37–52 {638}CrossRefGoogle ScholarPubMed
Horneck, G, 2006, Search for life in the Universe: what can we learn from our biosphere? Rev. Mod. Astron., volume 19, 215 {637}CrossRefGoogle Scholar
Horneck, G, 2008, Panspermia revisited. COSPAR Scientific Assembly, volume 37, 1268 {637}Google Scholar
Horneck, G, Klaus, DM, Mancinelli, RL, 2010, Space microbiology. Microbiol. Mol. Biol. Rev., 74(121-156) {637}CrossRefGoogle ScholarPubMed
Horneck, G, Rettberg, P, 2007, Complete course in astrobiology. Wiley {619}CrossRefGoogle Scholar
Horneck, G, Walter, N, Westall, F, et al., 2016, AstRoMap: European Astrobiology Roadmap. Astrobiology, 16, 201–243 {618}CrossRefGoogle ScholarPubMed
Horneck, G, Zell, M, 2012, Introduction to the EXPOSE-E mission. Astrobiology, 12, 373–373 {637}CrossRefGoogle ScholarPubMed
Horner, J, Evans, NW, Bailey, ME, 2004a, Simulations of the population of Centaurs. I. The bulk statistics. MNRAS, 354, 798–810 {662, 684}CrossRefGoogle Scholar
Horner, J, Evans, NW, Bailey, ME, 2004b, Simulations of the population of Centaurs. II. Individual objects. MNRAS, 355, 321–329 {662}CrossRefGoogle Scholar
Horner, J, Evans, NW, Bailey, ME, et al., 2003, The populations of comet-like bodies in the solar system. MNRAS, 343, 1057–1066 {662}CrossRefGoogle Scholar
Horner, J, Hinse, TC, Wittenmyer, RA, et al., 2012a, A dynamical analysis of the proposed circumbinary HWVir planetary system. MNRAS, 427, 2812–2823 {114}CrossRefGoogle Scholar
Horner, J, Jones, BW, 2008, Jupiter –friend or foe? I. The asteroids. Int. J. Astrobiol., 7, 251–261 {662}CrossRefGoogle Scholar
Horner, J, Jones, BW, 2009, Jupiter –friend or foe? II. The Centaurs. Int. J. Astrobiol., 8, 75–80 {662}CrossRefGoogle Scholar
Horner, J, Jones, BW, 2010, Determining habitability: which exo-Earths should we search for life? Int. J. Astrobiol., 9, 273–291 {627, 661}CrossRefGoogle Scholar
Horner, J, Jones, BW, 2012a, Jupiter –friend or foe? IV. The influence of orbital eccentricity and inclination. Int. J. Astrobiol., 11, 147–156 {662}CrossRefGoogle Scholar
Horner, J, Jones, BW, 2012b, Quantifying Jupiter's influence on the Earth's impact flux: implications for planetary habitability [unpublished]. ArXiv e-prints {647}
Horner, J, Jones, BW, Chambers, J, 2010, Jupiter –friend or foe? III. The Oort cloud comets. Int. J. Astrobiol., 9, 1–10 {662}CrossRefGoogle Scholar
Horner, J, Lykawka, PS, 2010a, Planetary Trojans: the main source of short-period comets? Int. J. Astrobiol., 9, 227–234 {662}CrossRefGoogle Scholar
Horner, J, Lykawka, PS, 2010b, The Neptune Trojans: a new source for the Centaurs? MNRAS, 402, 13–20 {662}CrossRefGoogle Scholar
Horner, J, Marshall, JP, Wittenmyer, RA, et al., 2011, A dynamical analysis of the proposed HU Aqr planetary system. MNRAS, 416, L11–L15 {115}CrossRefGoogle Scholar
Horner, J, Wittenmyer, RA, Hinse, TC, et al., 2012b, A detailed investigation of the proposed NN Ser planetary system. MNRAS, 425, 749–756 {115}CrossRefGoogle Scholar
Horner, J, Wittenmyer, RA, Hinse, TC, 2013, A detailed dynamical investigation of the proposed QS Vir planetary system. MNRAS, 435, 2033–2039 {117}CrossRefGoogle Scholar
Horner, J, Wittenmyer, RA, Hinse, TC, 2014, A dynamical investigation of the proposed BD+20 2457 system. MNRAS, 439, 1176–1181 {716}CrossRefGoogle Scholar
Horner, J, Wyn Evans, N, 2006, The capture of Centaurs as Trojans. MNRAS, 367, L20–L23 {662}CrossRefGoogle Scholar
Horowitz, P, Coldwell, CM, Howard, AB, et al., 2001, Targeted and all-sky search for nanosecond optical pulses at Harvard–Smithsonian. SPIE Conf. Ser., volume 4273, 119–127 {646}Google Scholar
Horton, A, Tinney, CG, Case, S, et al., 2012, CYCLOPS2: the fibre image slicer upgrade for the UCLES high resolution spectrograph. Ground-based and Airborne Instrumentation for Astronomy IV, volume 8446 of Proc. SPIE, 84463A {46}CrossRefGoogle Scholar
Horvath, JE, Galante, D, 2012, Effects of high-energy astrophysical events on habitable planets. Int. J. Astrobiol., 11, 279–286 {625}CrossRefGoogle Scholar
Horzempa, P, 2012, Future exoplanet missions: the lessons of SIM. www.thespacereview.com/article/2170/2 {100}
Hoskins, BJ, Simmons, AJ, 1975, A multi-layer spectral model and the semi-implicit method. Quarterly Journal of the Royal Meteorological Society, 101, 637–655 {593}CrossRefGoogle Scholar
Hosokawa, Y, 1953, On the rotation effect of velocity curves in eclipsing binary systems. PASJ, 5, 88 {248, 249}Google Scholar
Hosono, N, Iwasawa, M, Tanikawa, A, et al., 2017, Unconvergence of very-large-scale giant impact simulations. PASJ, 69, 26 {664}CrossRefGoogle Scholar
Hosseinbor, AP, Edgar, RG, Quillen, AC, et al., 2007, The formation of an eccentric gap in a gas disk by a planet in an eccentric orbit. MNRAS, 378, 966–972 {520}CrossRefGoogle Scholar
Hotta, H, Yokoyama, T, 2011, Modeling of differential rotation in rapidly rotating solar-type stars. ApJ, 740, 12 {386}CrossRefGoogle Scholar
Hou, F, Goodman, J, Hogg, DW, et al., 2012, An affine-invariant sampler for exoplanet fitting and discovery in radial velocity data. ApJ, 745, 198 {23}CrossRefGoogle Scholar
Hou, LG, Han, JL, 2014, The observed spiral structure of the Milky Way. A&A, 569, A125 {655}Google Scholar
Hou, X, Xin, X, 2017, A note on the spin–orbit, spin–spin, and spin–orbit–spin resonances in the binary minor planet system. AJ, 154, 257 {684}CrossRefGoogle Scholar
Hough, JH, Lucas, PW, Bailey, JA, et al., 2003, A high sensitivity polarimeter for the direct detection and characterisation of extrasolar planets. SPIE Conf. Ser., volume 4843, 517–523 {247}Google Scholar
Hough, JH, Lucas, PW, Bailey, JA, 2006a, Detecting the polarisation signatures of extrasolar planets. SPIE Conf. Ser., volume 6269 {247}Google Scholar
Hough, JH, Lucas, PW, Bailey, JA, 2006b, Planet Pol: a very high sensitivity polarimeter. PASP, 118, 1302–1318 {247}CrossRefGoogle Scholar
Houghton, JT, 2002, The Physics of Atmospheres. Cambridge University Press, Third Edition {579}Google Scholar
Hourdin, F, Grandpeix, JY, Rio, C, et al., 2013, LMDZ5B: the atmospheric component of the IPSL climate model with revisited parameterizations for clouds and convection. Climate Dynamics, 40, 2193–2222 {593}CrossRefGoogle Scholar
Hourdin, F, Musat, I, Bony, S, et al., 2006, The LMDZ4 general circulation model: climate performance and sensitivity to parameterised physics with emphasis on tropical convection. Climate Dynamics, 27, 787–813 {593}CrossRefGoogle Scholar
Hourdin, F, Talagrand, O, Sadourny, R, et al., 1995, Numerical simulation of the general circulation of the atmosphere of Titan. Icarus, 117, 358–374 {593}CrossRefGoogle ScholarPubMed
Hourigan, K, Ward, WR, 1984, Radialmigration of preplanetary material: implications for the accretion time scale problem. Icarus, 60, 29–39 {518}CrossRefGoogle Scholar
Houtkooper, JM, 2011, Glaciopanspermia: seeding the terrestrial planets with life? Planet. Space Sci., 59, 1107–1111 {638}CrossRefGoogle Scholar
Howard, A, Horowitz, P, Mead, C, et al., 2007, Initial results from Harvard all-sky optical SETI. Acta Astron., 61, 78–87 {646}CrossRefGoogle Scholar
Howard, AW, 2013, Observed properties of extrasolar planets. Science, 340, 572–576 {193}CrossRefGoogle ScholarPubMed
Howard, AW, Bakos GÁ, Hartman, J, et al., 2012a, HAT–P–17 b, c: a transiting, eccentric, hot Saturn and a long-period, cold Jupiter. ApJ, 749, 134 {163, 304, 736}CrossRefGoogle Scholar
Howard, AW, Horowitz, P, Wilkinson, DT, et al., 2004, Search for nanosecond optical pulses from nearby solar-type stars. ApJ, 613, 1270–1284 {646}CrossRefGoogle Scholar
Howard, AW, Johnson, JA, Marcy, GW, et al., 2009, The NASA–UC Eta–Earth pro-gramme. I. A super-Earth orbiting HD 7924. ApJ, 696, 75–83 {55, 59, 632, 718}CrossRefGoogle Scholar
Howard, AW, Johnson, JA, Marcy, GW, 2010a, The California planet survey. I. Four new giant exoplanets. ApJ, 721, 1467–1481 {24, 716, 718, 719, 722}CrossRefGoogle Scholar
Howard, AW, Johnson, JA, Marcy, GW, 2011a, The NASA–UC Eta–Earth programme. II. A planet orbiting HD156668 with a minimummass of 4M⊕. ApJ, 726, 73–77 {55, 59, 722}CrossRefGoogle Scholar
Howard, AW, Johnson, JA, Marcy, GW, 2011b, The NASA–UC Eta–Earth programme. III. A super-Earth orbiting HD97658 and a Neptune-mass planet orbiting GJ 785. ApJ, 730, 10–16 {55, 59, 170, 723, 729}CrossRefGoogle Scholar
Howard, AW, Marcy, GW, Bryson, ST, et al., 2012b, Planet occurrence within 0.25 au of solar-type stars from Kepler. ApJS, 201, 15 {13, 58, 67, 155, 230, 289, 308, 500, 556}CrossRefGoogle Scholar
Howard, AW, Marcy, GW, Fischer, DA, et al., 2014, The NASA–UC–UH ETA–Earth pro-gramme. IV. A low-mass planet orbiting an M dwarf 3.6 pc from Earth. ApJ, 794, 51 {55, 59, 716}CrossRefGoogle Scholar
Howard, AW, Marcy, GW, Johnson, JA, et al., 2010b, The occurrence and mass distribution of close-in super-Earths, Neptunes, and Jupiters. Science, 330, 653–654 {59, 149, 155, 404, 502, 554, 556, 632}CrossRefGoogle Scholar
Howard, AW, Sanchis-Ojeda, R, Marcy, GW, et al., 2013, A rocky composition for an Earth-sized exoplanet. Nature, 503, 381–384 {12, 179, 742}CrossRefGoogle ScholarPubMed
Howard, P, 2005, An introduction to astrobiology. J. Br. Astron. Assoc., 115, 12 {619}Google Scholar
Howarth, ID, 2011a, New limb-darkening coefficients and synthetic photometry for model-atmosphere grids at Galactic, LMC and SMC abundances. MNRAS, 413, 1515–1523 {211}CrossRefGoogle Scholar
Howarth, ID, 2011b, On stellar limb darkening and exoplanetary transits. MNRAS, 418, 1165–1175 {211}CrossRefGoogle Scholar
Howarth, ID, 2016, A reappraisal of parameters for the putative planet PTFO 8–8695 b and its potentially precessing parent star. MNRAS, 457, 3769–3774 {750}CrossRefGoogle Scholar
Howarth, ID, Morello, G, 2017, Rapid rotators revisited: absolute dimensions of KOI–13 (Kepler–13). MNRAS, 470, 932–939 {739}CrossRefGoogle Scholar
Howe, AR, Burrows, A, 2015, Evolutionarymodels of super-Earths and mini-Neptunes incorporating cooling and mass loss. ApJ, 808, 150 {503, 739}CrossRefGoogle Scholar
Howe, AR, Burrows, A, Deming, D, 2017, An information-theoretic approach to opti-mise JWST observations and retrievals of transiting exoplanet atmospheres. ApJ, 835, 96 {181}CrossRefGoogle Scholar
Howe, AR, Burrows, A, Verne, W, 2014, Mass–radius relations and core–envelope decompositions of super-Earths and sub-Neptunes. ApJ, 787, 173 {500, 603}CrossRefGoogle Scholar
Howe, AR, Burrows, AS, 2012, Theoretical transit spectra for GJ 1214 b and other super-Earths. ApJ, 756, 176 {284, 590, 613, 734}CrossRefGoogle Scholar
Howe, R, 2009, Solar interior rotation and its variation. Living Reviews in Solar Physics, 6, 1 {649}CrossRefGoogle Scholar
Howell, SB, Ciardi, DR, Giampapa, MS, et al., 2016a, Variability of Kepler solar-like stars harbouring small exoplanets. AJ, 151, 43 {193}CrossRefGoogle Scholar
Howell, SB, Everett, ME, Esquerdo, G, et al., 1999, Photometric search for extrasolar planets. Precision CCD Photometry, volume 189 of ASP Conf. Ser., 170 {157}Google Scholar
Howell, SB, Everett, ME, Horch, EP, et al., 2016b, Speckle imaging excludes low-mass companions orbiting the exoplanet host star TRAPPIST–1. ApJ, 829, L2 {750}CrossRefGoogle Scholar
Howell, SB, Everett, ME, Sherry, W, et al., 2011, Speckle camera observations for the NASA Kepler mission follow-up programme. AJ, 142, 19 {197, 739}CrossRefGoogle Scholar
Howell, SB, Rowe, JF, Bryson, ST, et al., 2012, Kepler–21 b: a 1.6R⊕ planet transiting the bright oscillating F subgiant star HD 179070. ApJ, 746, 123 {740}CrossRefGoogle Scholar
Howell, SB, Rowe, JF, Sherry, W, et al., 2010, Kepler observations of three pre-launch exoplanet candidates: discovery of two eclipsing binaries and a new exoplanet. ApJ, 725, 1633–1643 {169, 176, 742}CrossRefGoogle Scholar
Howell, SB, Sobeck, C, Haas, M, et al., 2014, The K2 mission: characterisation and early results. PASP, 126, 398–408 {176}CrossRefGoogle Scholar
Howell, SB, Van Outryve, C, Tonry, JL, et al., 2005, A search for variable stars and planetary occultations in NGC 2301. II. Variability. PASP, 117, 1187–1203 {159}CrossRefGoogle Scholar
Howland, JL, 2000, The Surprising Archaea. Oxford University Press {636}Google Scholar
Hoyer, S, López-Morales, M, Rojo, P, et al., 2013, TraMoS project. III. Improved physical parameters, timing analysis and starspot modelling of the WASP–4 b exoplanet system from 38 transit observations. MNRAS, 434, 46–58 {184, 752}CrossRefGoogle Scholar
Hoyer, S, López-Morales, M, Rojo, P, 2016a, TraMoS. IV. Discarding the quick orbital decay hypothesis for OGLE–TR–113 b. MNRAS, 455, 1334–1340 {749}CrossRefGoogle Scholar
Hoyer, S, Pallé, E, Dragomir, D, et al., 2016b, Ruling out the orbital decay of the WASP–43 b exoplanet. AJ, 151, 137 {755}CrossRefGoogle Scholar
Hoyer, S, Rojo, P, López-Morales, M, 2012, Transit monitoring in the south (TraMoS) project: discarding transit timing variations in WASP–5 b. ApJ, 748, 22 {184, 195, 752}CrossRefGoogle Scholar
Hoyer, S, Rojo, P, López-Morales, M, et al., 2011, Five new transit epochs of the exo-planet OGLE–TR–111 b. ApJ, 733, 53 {184, 749}CrossRefGoogle Scholar
Hoyle, F, 1954, On nuclear reactions occuring in very hot stars. I. The synthesis of elements from C to Ni. ApJS, 1, 121–146 {630}CrossRefGoogle Scholar
Hoyle, F, Dunbar, DNF, Wenzel, WA, et al., 1953, A state in 12C predicted from astrophysical evidence. Physical Review, 92, 1095–1161 {630}Google Scholar
Hoyle, F, Wickramasinghe, C, 1981, Space Travellors, the Bringers of Life. University College Cardiff Press {638}Google Scholar
Hoyt, WG, 1976, Lowell and Mars. University of Arizona Press {639}Google Scholar
Hrudková, M, Hatzes, A, Karjalainen, R, et al., 2017, The discovery of a planetary candidate around the evolved low-mass Kepler giant star HD 175370. MNRAS, 464, 1018–1028 {723}CrossRefGoogle Scholar
Hrudková, M, Skillen, I, Benn, CR, et al., 2010, Tight constraints on the existence of additional planets around HD 189733. MNRAS, 403, 2111–2119 {269, 730}CrossRefGoogle Scholar
Hsieh, HH, Jewitt, D, 2006, A population of comets in the main asteroid belt. Science, 312, 561–563 {685}CrossRefGoogle ScholarPubMed
Hsu, YJG, Arakawa, A, 1990, Numerical modeling of the atmosphere with an isentropic vertical coordinate. Monthly Weather Review, 118, 1933–1959 {593}2.0.CO;2>CrossRefGoogle Scholar
Hu, R, Demory, BO, Seager, S, et al., 2015a, A semi-analytical model of visible-wavelength phase curves of exoplanets and applications to Kepler–7 b and Kepler–10 b. ApJ, 802, 51 {590, 615, 738, 739}CrossRefGoogle Scholar
Hu, R, Ehlmann, BL, Seager, S, 2012a, Theoretical spectra of terrestrial exoplanet surfaces. ApJ, 752, 7 {574}CrossRefGoogle Scholar
Hu, R, Seager, S, 2014, Photochemistry in terrestrial exoplanet atmospheres. III. Photochemistry and thermochemistry in thick atmospheres on super Earths and mini Neptunes. ApJ, 784, 63 {587, 598, 728, 729, 735}CrossRefGoogle Scholar
Hu, R, Seager, S, Bains, W, 2012b, Photochemistry in terrestrial exoplanet atmospheres. I. Photochemistry model and benchmark cases. ApJ, 761, 166 {587, 598}CrossRefGoogle Scholar
Hu, R, Seager, S, Bains, W, 2013, Photochemistry in terrestrial exoplanet atmospheres. II. H2S and SO2 photochemistry in anoxic atmospheres. ApJ, 769, 6 {587, 589, 598}CrossRefGoogle Scholar
Hu, R, Seager, S, Yung, YL, 2015b, Helium atmospheres on warm Neptune- and sub-Neptune-sized exoplanets and applications to GJ 436 b. ApJ, 807, 8 {729}CrossRefGoogle Scholar
Hu, X, Tan, JC, Zhu, Z, et al., 2018, Inside-out planet formation. IV. Pebble evolution and planet formation timescales. ApJ, 857, 20 {473}CrossRefGoogle Scholar
Hu, X, Zhu, Z, Tan, JC, et al., 2016, Inside-out planet formation. III. Planet–disk interaction at the dead zone inner boundary. ApJ, 816, 19 {473}CrossRefGoogle Scholar
Hu, Y, Ding, F, 2011, Radiative constraints on the habitability of exoplanets GJ 581 c and GJ 581 d. A&A, 526, A135 {716}Google Scholar
Hu, Y, Shang, Z, Ashley, MCB, et al., 2014, Meteorological data for the astronomical site at Dome A, Antarctica. PASP, 126, 868–881 {347}CrossRefGoogle Scholar
Hu, Y, Wang, Y, Liu, Y, et al., 2017, Climate and habitability of Kepler–452 b simulated with a fully coupled atmosphere-ocean general circulation model. ApJ, 835, L6 {746}CrossRefGoogle Scholar
Hu, Y, Yang, J, 2014, Role of ocean heat transport in climates of tidally-locked exo-planets around Mdwarf stars. Proc. Nat. Acad. Sci., 111, 629–634 {621}CrossRefGoogle Scholar
Huang, C, Arras, P, Christie, D, et al., 2017a, A model of the Hα and Na transmission spectrumof HD 189733 b. ApJ, 851, 150 {731}CrossRefGoogle Scholar
Huang, C, Wu, Y, Triaud, AHMJ, 2016, Warm Jupiters are less lonely than hot Jupiters: close neighbours. ApJ, 825, 98 {305, 755}CrossRefGoogle Scholar
Huang, C, Zhao, G, Zhang, HW, et al., 2005, Chemical abundances of 22 extrasolar planet host stars. MNRAS, 363, 71–78 {396, 398, 399}CrossRefGoogle Scholar
Huang, CX, Bakos GÁ, 2014, Testing the Titius–Bode law predictions for Kepler multi-planet systems. MNRAS, 442, 674–681 {510}CrossRefGoogle Scholar
Huang, CX, Hartman, JD, Bakos GÁ, et al., 2015a, HAT–P–56 b: an inflated massive hot Jupiter transiting a bright F star followed up with K2 Campaign 0 observations. AJ, 150, 85 {737}CrossRefGoogle Scholar
Huang, CX, Penev, K, Hartman, JD, et al., 2015b, High-precision photometry for K2 Campaign 1. MNRAS, 454, 4159–4171 {176}CrossRefGoogle Scholar
Huang, CX, Petrovich, C, Deibert, E, 2017b, Dynamically hot super-Earths from outer giant planet scattering. AJ, 153, 210 {503, 722}CrossRefGoogle Scholar
Huang, PH, Ji, JH, 2016, Analogue simulation and orbital solving algorithm of astro-metric exoplanet detection. Acta Astronomica Sinica, 57, 568–584 {96, 714, 717, 720}Google Scholar
Huang, Ph, Ji, Jh, 2017, Analogue simulation and orbit solution algorithmof astromet-ric exoplanet detection. Chin. Astron. Astrophys., 41, 399–418 {96, 714, 717, 720}CrossRefGoogle Scholar
Huang, S, 1959, The problem of life in the Universe and the mode of star formation. PASP, 71, 421–424 {619}CrossRefGoogle Scholar
Huang, S, 1960, The sizes of habitable planets. PASP, 72, 489–493 {619, 628}CrossRefGoogle Scholar
Huang, SS, Wade C Jr, 1966, Galactic distribution of eclipsing binaries and its significance. ApJ, 143, 146 {526}CrossRefGoogle Scholar
Huang, TY, Innanen, KA, 1983, The gravitational escape/capture of planetary satellites. AJ, 88, 1537–1548 {688}CrossRefGoogle Scholar
Huang, X, Bakos GÁ, Hartman, JD, 2013, 150 new transiting planet candidates from Kepler Q1–Q6 data. MNRAS, 429, 2001–2018 {11, 192}CrossRefGoogle Scholar
Huang, X, Cumming, A, 2012, Ohmic dissipation in the interiors of hot Jupiters. ApJ, 757, 47 {303}CrossRefGoogle Scholar
Huang, YF, Yu, YB, 2017, Searching for strange quark matter objects in exoplanets. ApJ, 848, 115 {108, 110, 231}CrossRefGoogle Scholar
Hubbard, A, 2013a, Turbulence-induced collision velocities and rates between different sized dust grains. MNRAS, 432, 1274–1284 {469}CrossRefGoogle Scholar
Hubbard, A, 2016, Turbulent thermal diffusion: a way to concentrate dust in protoplanetary disks. MNRAS, 456, 3079–3089 {461}CrossRefGoogle Scholar
Hubbard, A, 2017a, FU Ori outbursts, preferential recondensation of water ice, and the formation of giant planets. MNRAS, 465, 1910–1914 {472}CrossRefGoogle Scholar
Hubbard, A, 2017b, Making terrestrial planets: high temperatures, FU Ori outbursts, Earth, and planetary system architectures. ApJ, 840, L5 {472}CrossRefGoogle Scholar
Hubbard, A, McNally, CP, Mac Low, MM, 2012, Short circuits in thermally ionised plasmas: a mechanism for intermittent heating of protoplanetary disks. ApJ, 761, 58 {653}CrossRefGoogle Scholar
Hubbard, EN, Angel, JRP, Gresham, MS, 1979, Operation of a long fused silica fiber as a link between telescope and spectrograph. ApJ, 229, 1074–1078 {34}CrossRefGoogle Scholar
Hubbard, WB, 1968, Thermal structure of Jupiter. ApJ, 152, 745–754 {567, 660}CrossRefGoogle Scholar
Hubbard, WB, 1974, Tides in the giant planets. Icarus, 23, 42–50 {535}CrossRefGoogle Scholar
Hubbard, WB, 1977, The Jovian surface condition and cooling rate. Icarus, 30, 305–310 {569}CrossRefGoogle Scholar
Hubbard, WB, 1984, Planetary Interiors. Van Nostrand Reinhold Co., New York {535, 566}Google Scholar
Hubbard, WB, 1989, Structure and composition of giant planet interiors. Origin and Evolution of Planetary and Satellite Atmospheres, 539–563 {302}
Hubbard, WB, 2012, High-precision Maclaurin-based models of rotating liquid planets. ApJ, 756, L15 {605}CrossRefGoogle Scholar
Hubbard, WB, 2013b, Concentric Maclaurin spheroid models of rotating liquid planets. ApJ, 768, 43 {605}CrossRefGoogle Scholar
Hubbard, WB, Burrows, A, Lunine, JI, 2002, Theory of giant planets. ARA&A, 40, 103–136 {425, 569}Google Scholar
Hubbard, WB, DeWitt, HE, 1985, Statistical mechanics of light elements at high pressure. VII. A perturbative free energy for arbitrary mixtures of H and He. ApJ, 290, 388–393 {567}CrossRefGoogle Scholar
Hubbard, WB, Hattori, MF, Burrows, A, et al., 2007, Effects of mass loss for highly-irradiated giant planets. Icarus, 187, 358–364 {602}CrossRefGoogle Scholar
Hubbard, WB, Macfarlane, JJ, 1980, Structure and evolution of Uranus and Neptune. J. Geophys. Res., 85, 225–234 {566}CrossRefGoogle Scholar
Hubbard, WB, Militzer, B, 2016, A preliminary Jupitermodel. ApJ, 820, 80 {659}CrossRefGoogle Scholar
Hubbard, WB, Podolak, M, Stevenson, DJ, 1995, The interior of Neptune. Neptune and Triton, 109–138 {9, 577}
Hubeny, I, 1988, A computer program for calculating non-LTE model stellar atmospheres. Computer Physics Communications, 52, 103–132 {579}CrossRefGoogle Scholar
Hubeny, I, 2017, Model atmospheres of sub-stellar mass objects. MNRAS, 469, 841–869 {607}CrossRefGoogle Scholar
Hubeny, I, Burrows, A, 2007, A systematic study of departures from chemical equilib-riumin the atmospheres of substellar mass objects. ApJ, 669, 1248–1261 {436}CrossRefGoogle Scholar
Hubeny, I, Burrows, A, Sudarsky, D, 2003, A possible bifurcation in atmospheres of strongly irradiated stars and planets. ApJ, 594, 1011–1018 {579, 580, 585, 591}CrossRefGoogle Scholar
Hubeny, I, Lanz, T, 1995, Non-LTE line-blanketed model atmospheres of hot stars. I. Hybrid complete linearisation/accelerated lambda iteration method. ApJ, 439, 875–904 {579}CrossRefGoogle Scholar
Huber, D, 2018, Synergies between asteroseismology and exoplanetary science. Aster-oseismology and Exoplanets: Listening to the Stars and Searching for New Worlds, 49, 119 {409}Google Scholar
Huber, D, Bryson, ST, Haas, MR, et al., 2016, The K2 Ecliptic Plane Input Catalog (EPIC) and stellar classifications of 138 600 targets in campaigns 1–8. ApJS, 224, 2 {175}CrossRefGoogle Scholar
Huber, D, Carter, JA, Barbieri, M, et al., 2013a, Stellar spin–orbit misalignment in a multi-planet system. Science, 342, 331–334 {272, 313, 322, 531, 741}CrossRefGoogle Scholar
Huber, D, Chaplin, WJ, Christensen-Dalsgaard, J, et al., 2013b, Fundamental properties of Kepler planet-candidate host stars using asteroseismology. ApJ, 767, 127 {312, 411, 738, 739, 740}CrossRefGoogle Scholar
Huber, D, Ireland, MJ, Bedding, TR, et al., 2012a, Fundamental properties of stars using asteroseismology from Kepler and CoRoT and interferometry from CHARA. ApJ, 760, 32 {378}CrossRefGoogle Scholar
Huber, D, Ireland, MJ, Bedding, TR, 2012b, Validation of Kepler–21 b using CHARA–PAVO long-baseline interferometry. MNRAS, 423, L16–L20 {740}CrossRefGoogle Scholar
Huber, D, Silva Aguirre, V, Matthews, JM, et al., 2014, Revised stellar properties of Kepler targets for the quarter 1–16 transit detection run. ApJS, 211, 2 {307}CrossRefGoogle Scholar
Huber, KF, Czesla, S, Schmitt, JHMM, 2017, Discovery of the secondary eclipse of HAT–P–11 b. A&A, 597, A113 {736}Google Scholar
Huber, KF, Czesla, S, Wolter, U, et al., 2009, A planetary eclipse map of CoRoT–2. Comprehensive light curve modeling combining rotational-modulation and transits. A&A, 508, 901–907 {733}Google Scholar
Hubickyj, O, 2006, The core accretion-gas capture model for gas-giant planet formation. Planet Formation, 163–178, Cambridge University Press {479}
Hubickyj, O, 2010, Core accretion model. Formation and Evolution of Exoplanets, 101–122, Wiley {479}
Hubickyj, O, Bodenheimer, P, Lissauer, JJ, 2004, Evolution of gas giant planets using the core accretion model. Revista Mexicana de Astronomia y Astrofisica Conference Series, volume 22, 83–86 {62}Google Scholar
Hubickyj, O, Bodenheimer, P, Lissauer, JJ, 2005, Accretion of the gaseous envelope of Jupiter around a 5–10 Earth-mass core. Icarus, 179, 415–431 {581, 660}CrossRefGoogle Scholar
Hubin, N, Arsenault, R, Conzelmann, R, et al., 2005, Ground layer adaptive optics. Comptes Rendus Physique, 6, 1099–1109 {332}CrossRefGoogle Scholar
Hubin, N, Noethe, L, 1993, Active optics, adaptive optics, and laser guide stars. Science, 262, 1390–1394 {331, 332}CrossRefGoogle ScholarPubMed
Huby, E, Duchêne, G, Marchis, F, et al., 2013, FIRST, a fibered aperturemasking instrument. II. Spectroscopy of the Capella binary systemat the diffraction limit. A&A, 560, A113 {335}Google Scholar
Hudgins, DW, Filipović, MD, 2002, Photometric techniques using small college research instruments for study of the extrasolar planetary transits of HD 209458. Publ. Astron. Soc. Australia, 19, 443–447 {731}CrossRefGoogle Scholar
Huebner, WF, Merts, AL, Magee, NH, et al., 1977, Los Alamos Sci. Rep. LA-6760-M {570}
Huélamo, N, Figueira, P, Bonfils, X, et al., 2008, TWHya: evidence of star spots instead of a hot Jupiter. A&A, 489, L9–L13 {36}Google Scholar
Huélamo, N, Lacour, S, Tuthill, P, et al., 2011, A companion candidate in the gap of the T Cha transition disk. A&A, 528, L7 {467}Google Scholar
Hueso, R, Pérez-Hoyos, S, Sánchez-Lavega, A, et al., 2013, Impact flux on Jupiter: from superbolides to large-scale collisions. A&A, 560, A55 {672}Google Scholar
Huey, RB, Ward, PD, 2005, Hypoxia, global warming, and terrestrial late Permian extinctions. Science, 308, 398–401 {674}CrossRefGoogle ScholarPubMed
Hügelmeyer, SD, Dreizler, S, Homeier, D, et al., 2007, Investigation of transit-selected exoplanet candidates from the MACHO survey. A&A, 469, 1163–1168 {166}Google Scholar
Huggins, W, Miller, WA, 1864, On the spectra of some of the fixed stars. Phil. Trans. Soc. London A, 154, 413–435 {639}Google Scholar
Hughes, AM, Andrews, SM, Espaillat, C, et al., 2009, A spatially resolved inner hole in the disk around GM Aur. ApJ, 698, 131–142 {465}CrossRefGoogle Scholar
Hughes, AM, Lieman-Sifry, J, Flaherty, KM, et al., 2017, Radial surface density profiles of gas and dust in the debris disk around 49 Cet. ApJ, 839, 86 {496}CrossRefGoogle Scholar
Hughes, AM, Wilner, DJ, Andrews, SM, et al., 2011, Resolved sub-mm observations of the HR 8799 and HD 107146 debris disks. ApJ, 740, 38 {763}CrossRefGoogle Scholar
Hughes, DW, 2003, Planetary spin. Planet. Space Sci., 51, 517–523 {680}CrossRefGoogle Scholar
Hugot, E, Ferrari, M, El Hadi, K, et al., 2012, Active optics methods for exoplanet direct imaging: stress polishing of supersmooth aspherics for VLT–SPHERE. A&A, 538, A139 {339}Google Scholar
Hui, L, Seager, S, 2002, Atmospheric lensing and oblateness effects during an extraso-lar planetary transit. ApJ, 572, 540–555 {219, 222}CrossRefGoogle Scholar
Huitson, CM, Désert, JM, Bean, JL, et al., 2017, Gemini–GMOS transmission spectral survey: complete optical transmission spectrumof the hot Jupiter WASP–4 b. AJ, 154, 95 {752}CrossRefGoogle Scholar
Huitson, CM, Sing, DK, Pont, F, et al., 2013, An HST optical to near-infrared transmission spectrumof the hot Jupiter WASP–19 b: detection of atmospheric water and likely absence of TiO. MNRAS, 434, 3252–3274 {754}CrossRefGoogle Scholar
Huitson, CM, Sing, DK, Vidal-Madjar, A, et al., 2012, Temperature-pressure profile of the hot Jupiter HD 189733 b from HST sodium observations: detection of upper atmospheric heating. MNRAS, 422, 2477–2488 {609, 730}CrossRefGoogle Scholar
Hulsebus, A, Marengo, M, Carson, J, et al., 2014, A mid-infrared search for substellar companions of nearby planet-host stars. ApJ, 784, 41 {360}CrossRefGoogle Scholar
Humason, ML, Zwicky, F, 1947, A search for faint blue stars. ApJ, 105, 85 {418}CrossRefGoogle Scholar
Hummer, DG, Mihalas, D, 1988, The equation of state for stellar envelopes. I. An occupation probability formalism for the truncation of internal partition functions. ApJ, 331, 794–814 {566}CrossRefGoogle Scholar
Hundertmark, M, Hessman, FV, Dreizler, S, 2009, Detecting circumstellar disks around gravitational microlenses. A&A, 500, 929–934 {135}Google Scholar
Hundertmark, M, Street, RA, Tsapras, Y, et al., 2018, Robo TAP: target priorities for robotic microlensing observations. A&A, 609, A55 {140}Google Scholar
Hung, LW, Duchêne, G, Arriaga, P, et al., 2015, First scattered-light image of the debris disk around HD 131835 with the Gemini Planet Imager (GPI). ApJ, 815, L14 {360}CrossRefGoogle Scholar
Hunten, DM, 2002, Exospheres and planetary escape. Atmospheres in the Solar System: Comparative Aeronomy, 191–202, American Geophysical Union {601}
Hunten, DM, Watson, AJ, 1982, Stability of Pluto's atmosphere. Icarus, 51, 665–667 {601}CrossRefGoogle Scholar
Hunter, TR, Ramsey, LW, 1992, Scrambling properties of optical fibers and the performance of a double scrambler. PASP, 104, 1244–1251 {34}CrossRefGoogle Scholar
Husnoo, N, Pont, F, Hébrard, G, et al., 2011, Orbital eccentricity of WASP–12 and WASP–14 from new radial velocity monitoring with SOPHIE. MNRAS, 413, 2500–2508 {752, 753}CrossRefGoogle Scholar
Husnoo, N, Pont, F, Mazeh, T, et al., 2012, Observational constraints on tidal effects using orbital eccentricities. MNRAS, 422, 3151–3177 {499, 536, 540, 542, 730, 733, 734, 735, 736, 751, 752, 753, 754, 755, 757}CrossRefGoogle Scholar
Hussain, GAJ, Alvarado-Gómez, JD, Grunhut, J, et al., 2016, A spectro-polarimetric study of the planet-hosting G dwarf, HD 147513. A&A, 585, A77 {722}Google Scholar
Hut, P, 1980, Stability of tidal equilibrium. A&A, 92, 167–170 {538, 665}Google Scholar
Hut, P, 1981, Tidal evolution in close binary systems. A&A, 99, 126–140 {533, 535, 617}Google Scholar
Hutchison, MA, Laibe, G, 2016, A plane-parallel wind solution for testing numerical simulations of photoevaporation. Publ. Astron. Soc. Australia, 33, e014 {462}CrossRefGoogle Scholar
Hutchison, MA, Laibe, G, Maddison, ST, 2016a, On the maximum grain size entrained by photoevaporative winds. MNRAS, 463, 2725–2734 {462}CrossRefGoogle Scholar
Hutchison, MA, Price, DJ, Laibe, G, et al., 2016b, On dust entrainment in photoevapo-rative winds. MNRAS, 461, 742–759 {462}CrossRefGoogle Scholar
Hutchison, R, Alexander, CMO, Barber, DJ, 1988, Chondrules: chemical, mineralogical and isotopic constraints on theories of their origin. Phil. Trans. Soc. London A, 325, 445–458 {653}Google Scholar
Hutchison, R, Graham, AL, 1975, Significance of calcium-rich differentiates in chon-dritic meteorites. Nature, 255, 471 {653}CrossRefGoogle Scholar
Hutsemékers, D, Manfroid, J, Jehin, E, et al., 2009, New constraints on the delivery of cometary water and nitrogen to Earth from the 15N/ 14N isotopic ratio. Icarus, 204, 346–348 {668}CrossRefGoogle Scholar
Hwang, J, Chatterjee, S, Lombardi J Jr, et al., 2018a, Outcomes of grazing impacts between sub-Neptunes in Kepler multis. ApJ, 852, 41 {740}CrossRefGoogle Scholar
Hwang, JA, Steffen, JH, Lombardi JC Jr, et al., 2017, Dynamics and collisional evolution of closely packed planetary systems. MNRAS, 470, 4145–4162 {739}CrossRefGoogle Scholar
Hwang, KH, Han, C, Choi, JY, et al., 2015, KMT–2015–1 b: a giant planet orbiting a low-mass dwarf host star discovered by a new high-cadence microlensing surveywith a global telescope network [unpublished]. ArXiv e-prints {142}
Hwang, KH, Han, C, Udalski, A, et al., 2011, OGLE–2009–BLG–23 (MOA–2009–BLG–28): characterisation of a binary microlensing event based on survey data. MNRAS, 413, 1244–1250 {144}Google Scholar
Hwang, KH, Udalski, A, Han, C, et al., 2010, OGLE–2005–BLG–153: microlensing discovery and characterisation of a very low mass binary. ApJ, 723, 797–802 {144}CrossRefGoogle Scholar
Hwang, KH, Udalski, A, Shvartzvald, Y, et al., 2018b, OGLE–2017–BLG–0173L b: low-mass-ratio planet in a ‘Hollywood’ microlensing event. AJ, 155, 20 {132, 760}CrossRefGoogle Scholar
Hyodo, R, Charnoz, S, 2017, Dynamical evolution of the debris disk after a satellite catastrophic disruption around Saturn. AJ, 154, 34 {690}CrossRefGoogle Scholar
Hyodo, R, Charnoz, S, Genda, H, et al., 2016, Formation of Centaurs’ rings through their partial tidal disruption during planetary encounters. ApJ, 828, L8 {691}CrossRefGoogle Scholar
Hyodo, R, Charnoz, S, Ohtsuki, K, et al., 2017a, Ring formation around giant planets by tidal disruption of a single passing large Kuiper belt object. Icarus, 282, 195–213 {690}CrossRefGoogle Scholar
Hyodo, R, Rosenblatt, P, Genda, H, et al., 2017b, On the impact origin of Phobos and Deimos. II. True polar wander and disk evolution. ApJ, 851, 122 {689}CrossRefGoogle Scholar
Iaroslavitz, E, Podolak, M, 2007, Atmospheric mass deposition by captured planetesi-mals. Icarus, 187, 600–610 {482}CrossRefGoogle Scholar
Iaroslavitz, E, Podolak, M, 2003, IAU Working Group on Extrasolar Planets: position statement on the defintion of a planet. www.dtm.ciw.edu/boss/definition.html {8}
Iaroslavitz, E, Podolak, M, 2006, Definition of a planet in the solar system. www.iau.org {8}
Ibanoglu, C, Çakırlı Ö, Tas, G, et al., 2004, High-speed photometry of the pre-cataclysmic binary HW Vir and its orbital period change. A&A, 414, 1043–1048 {114, 115}Google Scholar
Ibgui, L, Burrows, A, 2009, Coupled evolutionwith tides of the radius and orbit of transiting giant planets: general results. ApJ, 700, 1921–1932 {70, 303}CrossRefGoogle Scholar
Ibgui, L, Burrows, A, Spiegel, DS, 2010, Tidal heating models for the radii of the inflated transiting giant planets WASP–4 b, WASP–6 b, WASP–12 b, WASP–15 b, and TrES–4. ApJ, 713, 751–763 {302, 303, 751, 752, 753}CrossRefGoogle Scholar
Ibgui, L, Spiegel, DS, Burrows, A, 2011, Explorations into the viability of coupled radius–orbit evolutionary models for inflated planets. ApJ, 727, 75 {303, 732, 751, 752, 753}CrossRefGoogle Scholar
Ida, S, 1990, Stirring and dynamical friction rates of planetesimals in the solar gravitational field. Icarus, 88, 129–145 {323}CrossRefGoogle Scholar
Ida, S, Guillot, T, 2016, Formation of dust-rich planetesimals from sublimated pebbles inside of the snow line. A&A, 596, L3 {471}Google Scholar
Ida, S, Guillot, T, Morbidelli, A, 2016, The radial dependence of pebble accretion rates: a source of diversity in planetary systems. I. Analytical formulation. A&A, 591, A72 {472}Google Scholar
Ida, S, Larwood, J, Burkert, A, 2000, Evidence for early stellar encounters in the orbital distribution of Edgeworth–Kuiper belt objects. ApJ, 528, 351–356 {158, 650}CrossRefGoogle Scholar
Ida, S, Lin, DNC, 2004a, Toward a deterministic model of planetary formation. I. A desert in the mass and semi-major axis distributions of extrasolar planets. ApJ, 604, 388–413 {65, 554}CrossRefGoogle Scholar
Ida, S, Lin, DNC, 2004b, Toward a deterministic model of planetary formation. II. The formation and retention of gas giant planets around stars with a range of metallicities. ApJ, 616, 567–572 {62, 293, 392, 485, 554}CrossRefGoogle Scholar
Ida, S, Lin, DNC, 2005a, Dependence of exoplanets on host star metallicity and mass. Progress of Theoretical Physics Supplement, 158, 68–85 {392}CrossRefGoogle Scholar
Ida, S, Lin, DNC, 2005b, Toward a deterministic model of planetary formation. III. Mass distribution of short-period planets around stars of various masses. ApJ, 626, 1045–1060 {13, 62, 484, 554}CrossRefGoogle Scholar
Ida, S, Lin, DNC, 2008a, Toward a deterministic model of planetary formation. IV. Effects of type I migration. ApJ, 673, 487–501 {554}CrossRefGoogle Scholar
Ida, S, Lin, DNC, 2008b, Toward a deterministic model of planetary formation. V. Accumulation near the ice line and super-Earths. ApJ, 685, 584–595 {554, 558}CrossRefGoogle Scholar
Ida, S, Lin, DNC, 2010, Toward a deterministic model of planetary formation. VI. Dynamical interaction and coagulation of multiple rocky embryos and super-Earth systems around solar-type stars. ApJ, 719, 810–830 {501, 554}CrossRefGoogle Scholar
Ida, S, Lin, DNC, Nagasawa, M, 2013, Toward a deterministic model of planetary formation. VII. Eccentricity distribution of gas giants. ApJ, 775, 42 {142, 554}CrossRefGoogle Scholar
Ida, S, Makino, J, 1993, Scattering of planetesimals by a protoplanet: slowing down of runaway growth. Icarus, 106, 210 {474}CrossRefGoogle Scholar
Iess, L, Folkner, WM, Durante, D, et al., 2018, Measurement of Jupiter's asymmetric gravity field. Nature, 555, 220–222 {659}CrossRefGoogle ScholarPubMed
Iess, L, Stevenson, DJ, Parisi, M, et al., 2014, The gravity field and interior structure of Enceladus. Science, 344, 78–80 {689}CrossRefGoogle ScholarPubMed
Iglesias, CA, Rogers, FJ, 1996, Updated OPAL opacities. ApJ, 464, 943–953 {407, 570}CrossRefGoogle Scholar
Iglesias-Marzoa, R, López-Morales, M, Jesús Arévalo Morales, M, 2015a, rvfit: radial velocity curves fitting for binary stars or exoplanets. Astrophysics Source Code Library {24}
Iglesias-Marzoa, R, López-Morales, M, Jesús Arévalo Morales, M, 2015b, The rvfit code: a detailed adaptive simulated annealing code for fitting binaries and exoplanets radial velocities. PASP, 127, 567–582 {24}CrossRefGoogle Scholar
Ignace, R, 2001, Spectral energy distribution signatures of Jovian planets around white dwarf stars. PASP, 113, 1227–1231 {412, 414}CrossRefGoogle Scholar
Ihle, G, Avila, G, Kastinen, I, et al., 2010, HARPS secondary guiding. Modern Technologies in Space- and Ground-based Telescopes and Instrumentation, volume 7739 of Proc. SPIE, 77393R {34}CrossRefGoogle Scholar
Ikoma, M, Genda, H, 2006, Constraints on the mass of a habitable planet with water of nebular origin. ApJ, 648, 696–706 {597, 667}CrossRefGoogle Scholar
Ikoma, M, Guillot, T, Genda, H, et al., 2006, On the origin of HD 149026 b. ApJ, 650, 1150–1159 {573, 729}CrossRefGoogle Scholar
Ikoma, M, Hori, Y, 2012, In situ accretion of H-rich atmospheres on short-period super-Earths: implications for the Kepler–11 planets. ApJ, 753, 66 {502, 503, 739}CrossRefGoogle Scholar
Ikoma, M, Nakazawa, K, Emori, H, 2000, Formation of giant planets: dependences on core accretion rate and grain opacity. ApJ, 537, 1013–1025 {486}CrossRefGoogle Scholar
Ilee, JD, Forgan, DH, Evans, MG, et al., 2017, The chemistry of protoplanetary fragments formed via gravitational instabilities. MNRAS, 472, 189–204 {488}CrossRefGoogle Scholar
Ilgner, M, 2012, Grain charging in protoplanetary disks. A&A, 538, A124 {469}Google Scholar
Imbrie, J, 1982, Astronomical theory of the Pleistocene ice ages: a brief historical review. Icarus, 50, 408–422 {681}CrossRefGoogle Scholar
Imbrie, J, Imbrie, JZ, 1980, Modeling the climatic response to orbital variations. Science, 207, 943–953 {681}CrossRefGoogle ScholarPubMed
Impey, C, 2010, Talking About Life: Conversations on Astrobiology. Cambridge University Press {618}CrossRefGoogle Scholar
Inaba, S, Tanaka, H, Nakazawa, K, et al., 2001, High-accuracy statistical simulation of planetary accretion. II. Comparison with N-body simulation. Icarus, 149, 235–250 {469, 473}CrossRefGoogle Scholar
Inaba, S, Wetherill, GW, Ikoma, M, 2003, Formation of gas giant planets: core accretion models with fragmentation and planetary envelope. Icarus, 166, 46–62 {481}CrossRefGoogle Scholar
Inamdar, NK, Schlichting, HE, 2015, The formation of super-Earths and mini-Neptunes with giant impacts. MNRAS, 448, 1751–1760 {501}CrossRefGoogle Scholar
Inamdar, NK, Schlichting, HE, 2016, Stealing the gas: giant impacts and the large diversity in exoplanet densities. ApJ, 817, L13 {476}CrossRefGoogle Scholar
Ingalls, JG, Krick, JE, Carey, SJ, et al., 2016, Repeatability and accuracy of exoplanet eclipse depths measured with post-cryogenic Spitzer. AJ, 152, 44 {606, 757}CrossRefGoogle Scholar
Ingersoll, AP, 1990, Atmospheric dynamics of the outer planets. Science, 248, 308–315 {462}CrossRefGoogle ScholarPubMed
Ingersoll, AP, Porco, CC, 1978, Solar heating and internal heat flow on Jupiter. Icarus, 35, 27–43 {581}CrossRefGoogle Scholar
Ingraham, P, Marley, MS, Saumon, D, et al., 2014, Gemini Planet Imager (GPI) spectroscopy of the HR 8799 planets c and d. ApJ, 794, L15 {12, 360, 365, 366, 763}CrossRefGoogle Scholar
Ingrosso, G, Novati, SC, de Paolis, F, et al., 2009, Pixel lensing as a way to detect extra-solar planets in M31. MNRAS, 399, 219–228 {137}CrossRefGoogle Scholar
Ingrosso, G, Novati, SC, de Paolis, F, 2011, Search for exoplanets in M31 with pixel-lensing and the PA–99–N2 event revisited. General Relativity and Gravitation, 43, 1047–1060 {137}CrossRefGoogle Scholar
Innanen, KA, Zheng, JQ, Mikkola, S, et al., 1997, The Kozai mechanism and the stability of planetary orbits in binary star systems. AJ, 113, 1915–1919 {79, 527, 529, 550}CrossRefGoogle Scholar
Inutsuka, SI, 2014, The formation and early evolution of protostars and protoplanet-ary disks. Astrophysics and Space Science Proceedings, 36, 59 {454}CrossRefGoogle Scholar
Inutsuka, SI, Machida, MN, Matsumoto, T, 2010, Emergence of protoplanetary disks and successive formation of gaseous planets by gravitational instability. ApJ, 718, L58–L62 {488, 489}CrossRefGoogle Scholar
Ioannidis, P, Huber, KF, Schmitt, JHMM, 2016, How do star spots influence the transit timing variations of exoplanets? Simulations of individual and consecutive transits. A&A, 585, A72 {215}Google Scholar
Ioannidis, P, Schmitt, JHMM, 2016, Glimpses of stellar surfaces. I. Spot evolution and differential rotation of the planet host star Kepler–210. A&A, 594, A41 {744}Google Scholar
Ioannidis, P, Schmitt, JHMM, Avdellidou, C, et al., 2014, Kepler–210: an active star with at least two planets. A&A, 564, A33 {744}Google Scholar
Ioannou, PJ, Kakouris, A, 2001, Stochastic dynamics of Keplerian accretion disks. ApJ, 550, 931–943 {457}CrossRefGoogle Scholar
Ionov, DE, Bisikalo, DV, Shematovich, VI, et al., 2014, Ionisation fraction in the thermo-sphere of the exoplanet HD 209458 b. Solar System Research, 48, 105–112 {587, 732}CrossRefGoogle Scholar
Ionov, DE, Shematovich, VI, 2015, Hydrogen-dominated upper atmosphere of an exo-planet: heating by stellar radiation from soft X-rays to extreme ultraviolet. Solar System Research, 49, 339–345 {732}CrossRefGoogle Scholar
Iorio, L, 2005, On the possibility of measuring the solar oblateness and some relativistic effects from planetary ranging. A&A, 433, 385–393 {258}Google Scholar
Iorio, L, 2006a, Are we far from testing general relativity with the transiting extrasolar planet HD 209458 b? New Astron., 11, 490–494 {259, 731}CrossRefGoogle Scholar
Iorio, L, 2006b, Dynamical constraints on the quadrupolemass moment of the HD209458 star. General Relativity and Quantum Cosmology e-prints {259, 731}
Iorio, L, 2009, Constraints on Planet X/Nemesis from the solar system's inner dynamics. MNRAS, 400, 346–353 {687}CrossRefGoogle Scholar
Iorio, L, 2010a, Constraining the relative inclinations of the planets B and C of the millisecond pulsar PSR B1257+12. J. Astrophys. Astron., 31, 147–153 {107}CrossRefGoogle Scholar
Iorio, L, 2010b, Phenomenological constraints on accretion of non-annihilating dark matter on the PSR B1257+12 pulsar from orbital dynamics of its planets. J. Cosm. Astro. Phys., 11, 046 {107}CrossRefGoogle Scholar
Iorio, L, 2011a, Classical and relativistic long-termtime variations of some observables for transiting exoplanets. MNRAS, 411, 167–183 {257}CrossRefGoogle Scholar
Iorio, L, 2011b, Classical and relativistic node precessional effects in WASP–33 b and perspectives for detecting them. Ap&SS, 331, 485–496 {166, 259, 260, 754}Google Scholar
Iorio, L, 2011c, On the anomalous secular increase of the eccentricity of the orbit of the Moon. MNRAS, 415, 1266–1275 {665}CrossRefGoogle Scholar
Iorio, L, 2012a, Constraints on the location of a putative distant massive body in the solar system from recent planetary data. Cel. Mech. Dyn. Astron., 112, 117–130 {687}CrossRefGoogle Scholar
Iorio, L, 2012b, Orbital effects of non-isotropic mass depletion of the atmospheres of evaporating hot Jupiters in extrasolar systems. New Astron., 17, 356–361 {601}CrossRefGoogle Scholar
Iorio, L, 2013, A closer Earth and the faint young Sun paradox: modification of the laws of gravitation or Sun/Earthmass losses? Galaxies, 1, 192–209 {673}CrossRefGoogle Scholar
Iorio, L, 2014, Planet X revamped after the discovery of the Sedna-like object 2012 VP113? MNRAS, 444, L78–L79 {687}CrossRefGoogle Scholar
Iorio, L, 2016, Accurate characterisation of the stellar and orbital parameters of the exo-planetary system WASP–33 b from orbital dynamics. MNRAS, 455, 207–213 {754}CrossRefGoogle Scholar
Iorio, L, 2017, Preliminary constraints on the location of the recently hypothesised new planet of the solar system from planetary orbital dynamics. Ap&SS, 362, 11 {687}Google Scholar
Iorio, L, Ruggiero, ML, 2010, Constraining the Kehagias–Sfetsos solution of the Horava–Lifshitz modified gravity with extrasolar planets. The Open Astronomy Journal, 3, 167–171 {257, 732}CrossRefGoogle Scholar
Ip, WH, Kopp, A, Hu, JH, 2004, On the star-magnetosphere interaction of close-in exo-planets. ApJ, 602, L53–L56 {426}CrossRefGoogle Scholar
Ipatov, SI, Mather, JC, 2007, Migration of comets to the terrestrial planets. Near Earth Objects, our Celestial Neighbours: Opportunity and Risk, volume 236 of IAU Symp., 55–64 {668}Google Scholar
Ireland, MJ, Kraus, A, Martinache, F, et al., 2011, Two wide planetary-mass companions to solar-type stars in Upper Scorpius. ApJ, 726, 113 {362, 447, 764}CrossRefGoogle Scholar
Ireland, MJ, Kraus, AL, 2008, The disk around CoKu Tau 4: circumbinary, not transition. ApJ, 678, L59 {465}CrossRefGoogle Scholar
Iro, N, Bézard, B, Guillot, T, 2005, A time-dependent radiative model of HD 209458 b. A&A, 436, 719–727 {731}Google Scholar
Iro, N, Deming, LD, 2010, A time-dependent radiative model for the atmosphere of eccentric exoplanets. ApJ, 712, 218–225 {617, 729}CrossRefGoogle Scholar
Iro, N, Maxted, PFL, 2013, On the heat redistribution of the hot transiting exoplanet WASP–18 b. Icarus, 226, 1719–1723 {753}CrossRefGoogle Scholar
Irwin, AW, Campbell, B, Morbey, CL, et al., 1989, Long-period radial-velocity variations of Arcturus. PASP, 101, 147–159 {21}CrossRefGoogle Scholar
Irwin, J, Charbonneau, D, Berta, ZK, et al., 2009, GJ 3236: a new bright, very low mass eclipsing binary system discovered by the MEarth observatory. ApJ, 701, 1436–1449 {167}CrossRefGoogle Scholar
Irwin, J, Charbonneau, D, Nutzman, P, et al., 2008a, Parameters and predictions for the long-period transiting planet HD 17156 b. ApJ, 681, 636–643 {617, 729}CrossRefGoogle Scholar
Irwin, JM, Berta-Thompson, ZK, Charbonneau, D, et al., 2015, The MEarth–North and MEarth–South transit surveys: searching for habitable super-Earth exoplanets around nearby M dwarfs. 18th Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun, volume 18 of Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun, 767–772 {167}
Irwin, LN, Méndez, A, Fairén, AG, et al., 2014, Assessing the possibility of biological complexity on other worlds, with an estimate of the occurrence of complex life in the Milky Way Galaxy. Challenges, 5, 159–174 {633}CrossRefGoogle Scholar
Irwin, PGJ, 2006, Giant Planets of our Solar System: An Introduction. Springer–Praxis {601}Google Scholar
Irwin, PGJ, Teanby, NA, de Kok, R, et al., 2008b, The NEMESIS planetary atmosphere radiative transfer and retrieval tool. J. Quant. Spec. Radiat. Transf., 109, 1136–1150 {606}CrossRefGoogle Scholar
Isaacson, H, Fischer, D, 2010, Chromospheric activity and jitter measurements for 2630 stars on the California planet search. ApJ, 725, 875–885 {37, 420}CrossRefGoogle Scholar
Isaacson, H, Siemion, APV, Marcy, GW, et al., 2017, The Breakthrough Listen search for intelligent life: target selection of nearby stars and galaxies. PASP, 129(5), 054501 {645, 646}CrossRefGoogle Scholar
Isella, A, Chandler, CJ, Carpenter, JM, et al., 2014, Searching for circumplanetary disks around LkCa 15. ApJ, 788, 129 {463, 764}CrossRefGoogle Scholar
Isella, A, Natta, A, Wilner, D, et al., 2010, Millimeter imaging of MWC 758: probing the disk structure and kinematics. ApJ, 725, 1735–1741 {367}CrossRefGoogle Scholar
Isella, A, Pérez, LM, Carpenter, JM, 2012, On the nature of the transition disk around LkCa 15. ApJ, 747, 136 {467, 492, 764}CrossRefGoogle Scholar
Ishiguro, M, Ueno, M, 2003, Prospects for the exosolar planetary systems based on the zodiacal light observations. Astronomical Herald, 96, 206–209 {691}Google Scholar
Ishihara, D, Kondo, T, Kaneda, H, et al., 2017a, A likely detection of a local interplanetary dust cloud passing near the Earth in the AKARI mid-infrared all-sky map. A&A, 603, A82 {692}Google Scholar
Ishihara, D, Takeuchi, N, Kobayashi, H, et al., 2017b, Faint warm debris disks around nearby bright stars explored by AKARI and IRSF. A&A, 601, A72 {493}Google Scholar
Ismaiel, MN, 2011, The effects of gravitational waves on the orbital elements of the planets. The Open Astronomy Journal, 4, 1–5 {679}CrossRefGoogle Scholar
Israelian, G, 2008, Abundances in stars with planetary systems. Extrasolar Planets, 150–161 {399}
Israelian, G, Delgado Mena, E, Santos, NC, et al., 2009, Enhanced lithium depletion in Sun-like stars with orbiting planets. Nature, 462, 189–191 {401, 402, 403}CrossRefGoogle ScholarPubMed
Israelian, G, Santos, NC, Mayor, M, et al., 2001, Evidence for planet engulfment by the star HD 82943. Nature, 411, 163–166 {393, 394, 401, 402, 721}CrossRefGoogle Scholar
Israelian, G, Santos, NC, Mayor, M, 2003, New measurement of the 6Li/7Li isotopic ratio in the extrasolar planet host star HD 82943 and line blending in the Li 670.8 nm region. A&A, 405, 753–762 {393, 394, 403, 721}Google Scholar
Israelian, G, Santos, NC, Mayor, M, 2004, Lithiumin stars with exoplanets. A&A, 414, 601–611 {388, 400, 401, 402}Google Scholar
Ito, T, Miyama, SM, 2001, An estimation of upper limit masses of ν And planets. ApJ, 552, 372–379 {713}CrossRefGoogle Scholar
Ito, T, Tanikawa, K, 2002, Long-term integrations and stability of planetary orbits in our solar system. MNRAS, 336, 483–500 {679}CrossRefGoogle Scholar
Ito, T, Tanikawa, K, 2012, On the error reduction of a simple symplectic integrator. PASJ, 64, 35 {513}CrossRefGoogle Scholar
Ito, Y, Ikoma, M, Kawahara, H, et al., 2015, Theoretical emission spectra of atmospheres of hot rocky super-Earths. ApJ, 801, 144 {576, 598}CrossRefGoogle Scholar
Itoh, Y, Hayashi, M, Tamura, M, et al., 2005, A young brown dwarf companion to DH Tau. ApJ, 620, 984–993 {361, 362, 762}CrossRefGoogle Scholar
IUPAC, 1995, Atomic weights of the elements 1993. Journal of Physical and Chemical Reference Data, 24, 1561–1576 {668}
Ivanov, PB, Papaloizou, JCB, 2004a, On equilibrium tides in fully convective planets and stars. MNRAS, 353, 1161–1175 {535, 541}CrossRefGoogle Scholar
Ivanov, PB, Papaloizou, JCB, 2004b, On the tidal interaction of massive extrasolar planets on highly eccentric orbits. MNRAS, 347, 437–453 {535}CrossRefGoogle Scholar
Ivanov, PB, Papaloizou, JCB, 2007, Dynamic tides in rotating objects: orbital circularisation of extrasolar planets for realistic planetmodels. MNRAS, 376, 682–704 {535, 542}CrossRefGoogle Scholar
Ivanov, PB, Papaloizou, JCB, 2011, Close encounters of a rotating star with planets in parabolic orbits of varying inclination and the formation of hot Jupiters. Cel. Mech. Dyn. Astron., 111, 51–82 {535}CrossRefGoogle Scholar
Ivanova, N, Taam, RE, 2003, Magnetic braking revisited. ApJ, 599, 516–521 {423}CrossRefGoogle Scholar
Ivezic, Z, Axelrod, T, Brandt, WN, et al., 2008, Large Synoptic Survey Telescope (LSST): from science drivers to reference design. Serbian Astronomical Journal, 176, 1–13 {170}Google Scholar
Iwasawa, M, Oshino, S, Fujii, MS, et al., 2017, PENTACLE: parallelised particle-particle particle-tree code for planet formation. PASJ, 69, 81 {476}CrossRefGoogle Scholar
Iyer, AR, Swain, MR, Zellem, RT, et al., 2016, A characteristic transmission spectrum dominated by H2O applies to the majority of HST–WFC3 exoplanet observations. ApJ, 823, 109 {612}CrossRefGoogle Scholar
Izakov, MN, 2016, Turbulence, superrotation, and general circulation models of the atmosphere of Venus. Solar System Research, 50, 301–315 {596}CrossRefGoogle Scholar
Izidoro, A, de Souza Torres K, Winter, OC, et al., 2013, A compound model for the origin of Earth's water. ApJ, 767, 54 {658, 668}CrossRefGoogle Scholar
Izidoro, A, Haghighipour, N, Winter, OC, et al., 2014a, Terrestrial planet formation in a protoplanetary disk with a local mass depletion: a successful scenario for the formation of Mars. ApJ, 782, 31 {657}CrossRefGoogle Scholar
Izidoro, A, Morbidelli, A, Raymond, SN, 2014b, Terrestrial planet formation in the presence of migrating super-Earths. ApJ, 794, 11 {501}CrossRefGoogle Scholar
Izidoro, A, Morbidelli, A, Raymond, SN, et al., 2015a, Accretion of Uranus and Neptune from inward-migrating planetary embryos blocked by Jupiter and Saturn. A&A, 582, A99 {697}Google Scholar
Izidoro, A, Ogihara, M, Raymond, SN, et al., 2017, Breaking the chains: hot super-Earth systems from migration and disruption of compact resonant chains. MNRAS, 470, 1750–1770 {503}CrossRefGoogle Scholar
Izidoro, A, Raymond, SN, Morbidelli, A, et al., 2015b, Gas giant planets as dynamical barriers to inward-migrating super-Earths. ApJ, 800, L22 {501}CrossRefGoogle Scholar
Izidoro, A, Raymond, SN, Morbidelli, A, 2015c, Terrestrial planet formation constrained by Mars and the structure of the asteroid belt. MNRAS, 453, 3619–3634 {657}CrossRefGoogle Scholar
Izidoro, A, Raymond, SN, Pierens, A, et al., 2016, The asteroid belt as a relic from a chaotic early solar system. ApJ, 833, 40 {697}CrossRefGoogle Scholar
Izumiura, H, 2005, An East-Asian extrasolar planet search network. J. Korean Astron. Soc., 38, 81–84 {46}CrossRefGoogle Scholar
Jacklin, S, Lund, MB, Pepper, J, et al., 2015, Transiting planets with LSST. II. Period detection of planets orbiting 1Mfl hosts. AJ, 150, 34 {170}CrossRefGoogle Scholar
Jacklin, SR, Lund, MB, Pepper, J, et al., 2017, Transiting planetswith LSST. III. Detection rate per year of operation. AJ, 153, 186 {170}CrossRefGoogle Scholar
Jackson, AA, Zook, HA, 1989, A solar system dust ring with Earth as its shepherd. Nature, 337, 629–631 {218, 692}CrossRefGoogle Scholar
Jackson, AP, Davis, TA, Wheatley, PJ, 2012a, The coronal X-ray-age relation and its implications for the evaporation of exoplanets. MNRAS, 422, 2024–2043 {423}CrossRefGoogle Scholar
Jackson, AP, Gabriel, TSJ, Asphaug, EI, 2018, Constraints on the pre-impact orbits of Solar systemgiant impactors. MNRAS, 474, 2924–2936 {476}CrossRefGoogle Scholar
Jackson, AP, Tamayo, D, Hammond, N, et al., 2017a, Ejection of rocky and icy material from binary star systems: implications for the origin and composition of Ou-muamua. ArXiv e-prints {693}
Jackson, AP, Wyatt, MC, 2012, Debris from terrestrial planet formation: the Moon-forming collision. MNRAS, 425, 657–679 {667}CrossRefGoogle Scholar
Jackson, AP, Wyatt, MC, Bonsor, A, et al., 2014, Debris from giant impacts between planetary embryos at large orbital radii. MNRAS, 440, 3757–3777 {497, 762}CrossRefGoogle Scholar
Jackson, B, 2010, Tides and exoplanets. Formation and Evolution of Exoplanets, 243–266, Wiley {531, 532}
Jackson, B, Arras, P, Penev, K, et al., 2017b, A new model of Roche lobe overflow for short-period gaseous planets and binary stars. ApJ, 835, 145 {231, 734, 750, 753}CrossRefGoogle Scholar
Jackson, B, Barnes, R, Greenberg, R, 2008a, Tidal heating of terrestrial extrasolar planets and implications for their habitability. MNRAS, 391, 237–245 {626}CrossRefGoogle Scholar
Jackson, B, Barnes, R, Greenberg, R, 2009, Observational evidence for tidal destruction of exoplanets. ApJ, 698, 1357–1366 {159, 309, 310, 369, 521, 536}CrossRefGoogle Scholar
Jackson, B, Greenberg, R, Barnes, R, 2008b, Tidal evolution of close-in extrasolar planets. ApJ, 678, 1396–1406 {231, 369, 535, 536, 537, 538}CrossRefGoogle Scholar
Jackson, B, Greenberg, R, Barnes, R, 2008c, Tidal heating of extrasolar planets. ApJ, 681, 1631–1638 {537, 543, 544, 626}CrossRefGoogle Scholar
Jackson, B, Jensen, E, Peacock, S, et al., 2016, Tidal decay and stable Roche-lobe overflow of short-period gaseous exoplanets. Cel. Mech. Dyn. Astron., 126, 227–248 {231}CrossRefGoogle Scholar
Jackson, B, Lewis, NK, Barnes, JW, et al., 2012b, The EVIL-MC model for ellipsoidal variations of planet-hosting stars and applications to the HAT–P–7 system. ApJ, 751, 112 {163, 229, 238, 239, 240, 735}CrossRefGoogle Scholar
Jackson, B, Miller, N, Barnes, R, et al., 2010, The roles of tidal evolution and evaporative mass loss in the origin of CoRoT–7 b. MNRAS, 407, 910–922 {733}CrossRefGoogle Scholar
Jackson, B, Stark, CC, Adams, ER, et al., 2013, A survey for very short-period planets in the Kepler data. ApJ, 779, 165 {192}CrossRefGoogle Scholar
Jackson, JD, 1998, Classical Electrodynamics, Third Edition. Wiley {336}Google Scholar
Jackson, JM, Rathborne, JM, Shah, RY, et al., 2006, The Boston University-Five College Radio Astronomy Observatory Galactic ring survey. ApJS, 163, 145–159 {395}CrossRefGoogle Scholar
Jacob, WS, 1855, On certain anomalies presented by the binary star 70 Oph. MNRAS, 15, 228–230 {83}Google Scholar
Jacobs, JA, 1953, The Earth's inner core. Nature, 172, 297–298 {663}CrossRefGoogle Scholar
Jacobson, SA, Morbidelli, A, 2014, Lunar and terrestrial planet formation in the Grand Tack scenario. Phil. Trans. Soc. London A, 372, 0174 {664, 665, 698, 699}Google ScholarPubMed
Jacobson, SA, Morbidelli, A, Raymond, SN, et al., 2014, Highly siderophile elements in Earth'smantle as a clock for the Moon-forming impact. Nature, 508, 84–87 {669}CrossRefGoogle ScholarPubMed
Jacquinet-Husson, N, Crepeau, L, Armante, R, et al., 2011, The 2009 edition of the GEISA spectroscopic database. J. Quant. Spec. Radiat. Transf., 112, 2395–2445 {570}CrossRefGoogle Scholar
Jahreiß, H, Wielen, R, 1997, The impact of Hipparcos on the Catalogue of Nearby Stars: the stellar luminosity function and local kinematics. Hipparcos –Venice ’97, volume 402 of ESA SP, 675–680 {374}
Jahreiß, H, Wielen, R, 2000, The census of nearby star binaries. IAU Symp., volume 200, 129 {374}Google Scholar
Jaime, LG, Aguilar, L, Pichardo, B, 2014, Habitable zones with stable orbits for planets around binary systems. MNRAS, 443, 260–274 {623}CrossRefGoogle Scholar
Jaime, LG, Pichardo, B, Aguilar, L, 2012, Regions of dynamical stability for disks and planets in binary stars of the solar neighbourhood. MNRAS, 427, 2723–2733 {739}CrossRefGoogle Scholar
Jain, C, Paul, B, Sharma, R, et al., 2017, Indication of a massive circumbinary planet orbiting the low-mass X-ray binary MXB 1658–298. MNRAS, 468, L118–L122 {105, 116}CrossRefGoogle Scholar
Jakubík, M, Morbidelli, A, Neslušan, L, et al., 2012, The accretion of Uranus and Neptune by collisions among planetary embryos in the vicinity of Jupiter and Saturn. A&A, 540, A71 {660}Google Scholar
James, IN, Gray, LJ, 1986, Concerning the effect of surface drag on the circulation of a baroclinic planetary atmosphere. Quarterly Journal of the Royal Meteorological Society, 112, 1231–1250 {593}CrossRefGoogle Scholar
Janczak, J, Fukui, A, Dong, S, et al., 2010, Sub-Saturn planet MOA–2008–BLG–310Lb: likely to be in the Galactic bulge. ApJ, 711, 731–743 {141, 759}CrossRefGoogle Scholar
Janes, K, 1996, Star clusters: optimal targets for a photometric planetary search pro-gramme. J. Geophys. Res., 101, 14853–14860 {157}CrossRefGoogle Scholar
Janes, K, Barnes, SA, Meibom, S, et al., 2014, Open clusters in the Kepler field. II. NGC 6866. AJ, 147, 139 {158}CrossRefGoogle Scholar
Jang-Condell, H, 2007, Constraints on the formation of the planet in HD 188753. ApJ, 654, 641–649 {80}CrossRefGoogle Scholar
Jang-Condell, H, 2015, On the likelihood of planet formation in close binaries. ApJ, 799, 147 {550}CrossRefGoogle Scholar
Jang-Condell, H, 2017, Gaps in protoplanetary disks as signatures of planets. III. Polarisation. ApJ, 835, 12 {467}CrossRefGoogle Scholar
Jang-Condell, H, Boss, AP, 2007, Signatures of planet formation in gravitationally unstable disks. ApJ, 659, L169–L172 {490}CrossRefGoogle Scholar
Jang-Condell, H, Mugrauer, M, Schmidt, T, 2008, Disk truncation and planet formation in ν Cep. ApJ, 683, L191–L194 {80, 714}CrossRefGoogle Scholar
Jang-Condell, H, Sasselov, DD, 2005, Type I migration in a non-isothermal proto-planetary disk. ApJ, 619, 1123–1131 {518}CrossRefGoogle Scholar
Jang-Condell, H, Turner, NJ, 2012, Gaps in protoplanetary disks as signatures of planets. I. Methodology and validation. ApJ, 749, 153 {467}CrossRefGoogle Scholar
Jang-Condell, H, Turner, NJ, 2013, Gaps in protoplanetary disks as signatures of planets. II. Inclined disks. ApJ, 772, 34 {467}CrossRefGoogle Scholar
Jankowski, T, Wurm, G, Kelling, T, et al., 2012, Crossing barriers in planetesimal formation: the growth of mm-dust aggregates with large constituent grains. A&A, 542, A80 {468}Google Scholar
Janson, M, 2007, Celestial exoplanet survey occulter: a concept for direct imaging of extrasolar Earth-like planets from the ground. PASP, 119, 214–227 {339}CrossRefGoogle Scholar
Janson, M, 2010, The relevance of prior inclination determination for direct imaging of Earth-like planets. MNRAS, 408, 514–521 {342}CrossRefGoogle Scholar
Janson, M, 2013, A systematic search for Trojan planets in the Kepler data. ApJ, 774, 156 {272, 274, 275}CrossRefGoogle Scholar
Janson, M, Bergfors, C, Goto, M, et al., 2010, Spatially resolved spectroscopy of the exoplanet HR 8799 c. ApJ, 710, L35–L38 {11, 365, 763}CrossRefGoogle Scholar
Janson, M, Bonavita, M, Klahr, H, et al., 2011a, High-contrast imaging search for planets and brown dwarfs around the most massive stars in the solar neighbourhood. ApJ, 736, 89 {358}CrossRefGoogle Scholar
Janson, M, Bonavita, M, Klahr, H, 2012a, How do most planets form? Constraints on disk instability from direct imaging. ApJ, 745, 4 {490}CrossRefGoogle Scholar
Janson, M, Brandner, W, Henning, T, et al., 2007, NACO–SDI direct imaging search for the exoplanet yatt MC, et al., 2005, Structure in the Eri b. AJ, 133, 2442–2456 {361, 715}Google Scholar
Janson, M, Brandt, TD, Kuzuhara, M, et al., 2013a, Direct imaging detection of CH4 in the atmosphere of GJ 504 b. ApJ, 778, L4 {359, 762}CrossRefGoogle Scholar
Janson, M, Brandt, TD, Moro-Martín, A, et al., 2013b, The SEEDS direct imaging survey for planets and scattered dust emission in debris disk systems. ApJ, 773, 73 {359}CrossRefGoogle Scholar
Janson, M, Carson, J, Thalmann, C, et al., 2011b, Near-infraredmulti-band photometry of the substellar companion GJ 758 B. ApJ, 728, 85 {359}CrossRefGoogle Scholar
Janson, M, Carson, JC, Lafrenière, D, et al., 2012b, Infrared non-detection of Fomalhaut b: implications for the planet interpretation. ApJ, 747, 116 {365, 761}CrossRefGoogle Scholar
Janson, M, Hormuth, F, Bergfors, C, et al., 2012c, The Astra Lux large M-dwarf multiplicity survey. ApJ, 754, 44 {547}CrossRefGoogle Scholar
Janson, M, Jayawardhana, R, Girard, JH, et al., 2012d, New brown dwarf companions to young stars in Scorpius–Centaurus. ApJ, 758, L2 {434}CrossRefGoogle Scholar
Janson, M, Quanz, SP, Carson, JC, et al., 2015, High-contrast imaging with Spitzer: deep observations of Vega, Fomalhaut, and yatt, MC A&A, 574, A120 {350, 492, 715, 761}Google Scholar
Janson, M, Reffert, S, Brandner, W, et al., 2008, A comprehensive examination of the yatt MC, et al., 2005, Structure in the ε Eri system: verification of a 4μmnarrow-band high-contrast imaging approach for planet searches. A&A, 488, 771–780 {715}Google Scholar
Janvier, M, Aulanier, G, Démoulin, P, 2015, From coronal observations to MHDsimula-tions, the building blocks for 3d models of solar flares. Sol. Phys., 290, 3425–3456 {427}CrossRefGoogle Scholar
Jardine, M, Collier Cameron, A, 2008, Radio emission from exoplanets: the role of the stellar coronal density and magnetic field strength. A&A, 490, 843–851 {425, 426}Google Scholar
Jardine, M, Collier Cameron, A, Donati, JF, 2002, The global magnetic topology of AB Dor. MNRAS, 333, 339–346 {387}CrossRefGoogle Scholar
Jaritz, GF, Endler, S, Langmayr, D, et al., 2005, Roche lobe effects on expanded upper atmospheres of short-periodic giant exoplanets. A&A, 439, 771–775 {602}Google Scholar
Jaroszynski, M, Paczyński, B, 2002, A possible planetary event OGLE–2002–BLG–55. Acta Astronomica, 52, 361–367 {140}Google Scholar
Javaraiah, J, 2005, Sun's retrograde motion and violation of even-odd cycle rule in sun spot activity. MNRAS, 362, 1311–1318 {656}CrossRefGoogle Scholar
Javaux, EJ, Dehant, V, 2010, Habitability: from stars to cells. A&A Rev., 18, 383–416 {618}Google Scholar
Jayawardhana, R, Ardila, DR, Stelzer, B, et al., 2003a, A disk census for young brown dwarfs. AJ, 126, 1515–1521 {443}CrossRefGoogle Scholar
Jayawardhana, R, Holland, WS, Kalas, P, et al., 2002, New submillimeter limits on dust in the 55 Cnc planetary system. ApJ, 570, L93–L96 {728}CrossRefGoogle Scholar
Jayawardhana, R, Ivanov, VD, 2006, Discovery of a young planetary-mass binary. Science, 313, 1279–1281 {446, 448}CrossRefGoogle Scholar
Jayawardhana, R, Mohanty, S, Basri, G, 2003b, Evidence for a T Tauri phase in young brown dwarfs. ApJ, 592, 282–287 {443}CrossRefGoogle Scholar
Jeans, JH, 1902, The stability of a spherical nebula. Phil. Trans. Soc. London A, 199, 1–53 {452}Google Scholar
Jeans, JH, 1917, The part played by rotation in cosmic evolution. MNRAS, 77, 186–199 {450}CrossRefGoogle Scholar
Jeans, JH, 1924, Cosmogonic problems associated with a secular decrease of mass. MNRAS, 85, 2 {516}CrossRefGoogle Scholar
Jeans, JH, 1943, Non-solar planetary systems. Nature, 152, 721 {83}CrossRefGoogle Scholar
Jeffers, SV, Barnes, JR, Jones, HRA, et al., 2014, Is it possible to detect planets around young active G and K dwarfs? MNRAS, 438, 2717–2731 {61}CrossRefGoogle Scholar
Jeffery, CS, Bailey, ME, Chambers, JE, 1997, Fractionated accretion and the solar neutrino problem. The Observatory, 117, 224–228 {394}Google Scholar
Jeffreys, H, 1929a, Collision and the origin of rotation in the solar system. MNRAS, 89, 636–641 {450}Google Scholar
Jeffreys, H, 1929b, The early history of the solar system on the collision theory. MNRAS, 89, 731–739 {450}Google Scholar
Jeffreys, H, 1961, The effect of tidal friction on eccentricity and inclination. MNRAS, 122, 339–343 {534, 535}CrossRefGoogle Scholar
Jeffreys, H, 1976, The Earth: its Origin, History and Physical Constitution. Cambridge University Press {228}Google Scholar
Jeffries, RD, Totten, EJ, Harmer, S, et al., 2002, Membership, metallicity and lithium abundances for solar-type stars in NGC 6633. MNRAS, 336, 1109–1128 {381}CrossRefGoogle Scholar
Jehin, E, Gillon, M, Queloz, D, et al., 2011, TRAPPIST: TRAnsiting Planets and Planetes-Imals Small Telescope. The Messenger, 145, 2–6 {171}Google Scholar
Jenkins, C, 2008, Optical vortex coronagraphs on ground-based telescopes. MNRAS, 384, 515–524 {337}CrossRefGoogle Scholar
Jenkins, JM, 2002, The impact of solar-like variability on the detectability of transiting terrestrial planets. ApJ, 575, 493–505 {187, 190}CrossRefGoogle Scholar
Jenkins, JM, Borucki, WJ, Koch, DG, et al., 2010a, Discovery and Rossiter–McLaughlin effect of exoplanet Kepler–8 b. ApJ, 724, 1108–1119 {738}CrossRefGoogle Scholar
Jenkins, JM, Caldwell, DA, Borucki, WJ, 2002, Some tests to establish confidence in planets discovered by transit photometry. ApJ, 564, 495–507 {186, 190, 191}CrossRefGoogle Scholar
Jenkins, JM, Caldwell, DA, Chandrasekaran, H, et al., 2010b, Initial characteristics of Kepler long cadence data for detecting transiting planets. ApJ, 713, L120–L125 {175, 176, 191}CrossRefGoogle Scholar
Jenkins, JM, Caldwell, DA, Chandrasekaran, H, 2010c, Overview of the Kepler science processing pipeline. ApJ, 713, L87–L91 {190, 191, 197, 289}CrossRefGoogle Scholar
Jenkins, JM, Doyle, LR, 2003, Detecting reflected light from close-in extrasolar giant planets with the Kepler photometer. ApJ, 595, 429–445 {174, 237}CrossRefGoogle Scholar
Jenkins, JM, Doyle, LR, Cullers, DK, 1996, A matched filter method for ground-based sub-noise detection of terrestrial extrasolar planets in eclipsing binaries: application to CMDra. Icarus, 119, 244–260 {190}CrossRefGoogle Scholar
Jenkins, JM, Twicken, JD, Batalha, NM, et al., 2015, Discovery and validation of Kepler–452 b: a 1.6 R⊕ super Earth exoplanet in the habitable zone of a G2 star. AJ, 150, 56 {12, 624, 635, 746}CrossRefGoogle Scholar
Jenkins, JS, Jones, HRA, Goździewski, K, et al., 2009a, First results from the Calan–Hertfordshire extrasolar planet search: exoplanets and the discovery of an eccentric brown dwarf in the desert. MNRAS, 398, 911–917 {55}CrossRefGoogle Scholar
Jenkins, JS, Jones, HRA, Rojo, P, et al., 2013a, Status of the Calan–Hertfordshire Extra-solar Planet Search. EPJWeb Conf., volume 47, 5001 {55}CrossRefGoogle Scholar
Jenkins, JS, Jones, HRA, Tinney, CG, et al., 2006, An activity catalogue of southern stars. MNRAS, 372, 163–173 {36}CrossRefGoogle Scholar
Jenkins, JS, Jones, HRA, Tuomi, M, et al., 2013b, A hot Uranus orbiting the super metal-rich star HD 77338 and the metallicity-mass connection. ApJ, 766, 67 {720}CrossRefGoogle Scholar
Jenkins, JS, Jones, HRA, Tuomi, M, 2017, New planetary systems from the Calan–Hertfordshire Extrasolar Planet Search. MNRAS, 466, 443–473 {718, 720, 722, 723, 724}CrossRefGoogle Scholar
Jenkins, JS, Ramsey, LW, Jones, HRA, et al., 2009b, Rotational velocities for M dwarfs. ApJ, 704, 975–988 {383}CrossRefGoogle Scholar
Jenkins, JS, Tuomi, M, 2014, The curious case of HD 41248: a pair of static signals buried behind red noise. ApJ, 794, 110 {719}CrossRefGoogle Scholar
Jenkins, JS, Tuomi, M, Brasser, R, et al., 2013c, Two super-Earths orbiting the solar analogue HD 41248 on the edge of a 7:5 mean motion resonance. ApJ, 771, 41 {39, 719}CrossRefGoogle Scholar
Jenkins, JS, Yoma, NB, Rojo, P, et al., 2014, Improved signal detection algorithms for unevenly sampled data: six signals in the radial velocity data for GJ 876. MNRAS, 441, 2253–2265 {21, 717}CrossRefGoogle Scholar
Jensen, AG, Redfield, S, Endl, M, et al., 2011, A survey of alkali line absorption in exo-planetary atmospheres. ApJ, 743, 203 {729, 730, 732, 735}CrossRefGoogle Scholar
Jensen, AG, Redfield, S, Endl, M, 2012, A detection of Hα in an exoplanetary exosphere. ApJ, 751, 86 {609, 610, 611, 730, 732}CrossRefGoogle Scholar
Jensen, ELN, Akeson, R, 2014, Misaligned protoplanetary disks in a young binary star system. Nature, 511, 567–569 {371, 495}CrossRefGoogle Scholar
Jensen-Clem, R, Seager, S, Smith, MW, et al., 2011, Exoplanet Sat: the search for Earth-sized planets. AAS Abstracts, 406.02 {182}Google Scholar
Jeong, G, Lee, BC, Han, I, et al., 2018, Detection of planet candidates around K giants, HD 40956, HD 111591, and HD 113996. A&A, 610, A3 {719, 721}Google Scholar
Jermyn, AS, Tout, CA, Ogilvie, GI, 2017, Tidal heating and stellar irradiation of hot Jupiters. MNRAS, 469, 1768–1782 {303}CrossRefGoogle Scholar
Jessberger, EK, Christoforidis, A, Kissel, J, 1988, Aspects of the major element composition of Halley's dust. Nature, 332, 691–695 {419}CrossRefGoogle Scholar
Jessberger, EK, Kissel, J, Rahe, J, 1989, The composition of comets, 167–191. University of Arizona Pres {667}
Jetsu, L, Pelt, J, 2000, Spurious periods in the terrestrial impact crater record. A&A, 353, 409–418 {654}Google Scholar
Jewitt, D, 1999, Kuiper belt objects. Ann. Rev. Earth Plan. Sci., 27, 287–312 {684}CrossRefGoogle Scholar
Jewitt, D, 2003, Project Pan-STARRS and the outer solar system. Earth Moon and Planets, 92, 465–476 {692}CrossRefGoogle Scholar
Jewitt, D, Chizmadia, L, Grimm, R, et al., 2007, Water in the small bodies of the solar system. Protostars and Planets V, 863–878 {564}
Jewitt, D, Luu, J, 1993, Discovery of the candidate Kuiper belt object 1992 QB1. Nature, 362, 730–732 {684}CrossRefGoogle Scholar
Jewitt, D, Luu, J, Rajagopal, J, et al., 2017, Interstellar interloper Oumuamua: observations from the NOT and WIYN telescopes. ApJ, 850, L36 {693}CrossRefGoogle Scholar
Jewitt, DC, Trujillo, CA, Luu, JX, 2000, Population and size distribution of small Jovian Trojan asteroids. AJ, 120, 1140–1147 {273}CrossRefGoogle Scholar
Jha, S, Charbonneau, D, Garnavich, PM, et al., 2000, Multicolour observations of a planetary transit of HD 209458. ApJ, 540, L45–L48 {610, 731}CrossRefGoogle Scholar
Jheeta, S, 2013, Meeting summary: is a moon necessary for the co-evolution of the biosphere of its host planet. The Observatory, 133, 309–311 {666}Google Scholar
Ji, H, Burin, M, Schartman, E, et al., 2006, Hydrodynamic turbulence cannot transport angularmomentum effectively in astrophysical disks. Nature, 444, 343–346 {457}CrossRefGoogle ScholarPubMed
Ji, J, Jin, S, Tinney, CG, 2011, Forming close-in Earth-like planets via a collision-merger mechanism in late-stage planet formation. ApJ, 727, L5 {525}CrossRefGoogle Scholar
Ji, J, Kinoshita, H, Liu, L, et al., 2003a, The apsidal antialignment of the HD 82943 system. Cel. Mech. Dyn. Astron., 87, 113–120 {70, 74, 721}CrossRefGoogle Scholar
Ji, J, Kinoshita, H, Liu, L, 2003b, Could the 55 Cnc planetary system really be in the 3:1 mean motion resonance? ApJ, 585, L139–L142 {71, 74, 728}CrossRefGoogle Scholar
Ji, J, Kinoshita, H, Liu, L, 2007, The secular evolution and dynamical architecture of the Neptunian triplet planetary system HD 69830. ApJ, 657, 1092–1097 {66, 720}CrossRefGoogle Scholar
Ji, J, Li, G, Liu, L, 2002a, The dynamical simulations of the planets orbiting GJ 876. ApJ, 572, 1041–1047 {717}CrossRefGoogle Scholar
Ji, J, Liu, L, Kinoshita, H, et al., 2003c, The librating companions in HD 37124, HD 12661, HD 82943, 47 UMa, and GJ 876: alignment or antialignment? ApJ, 591, L57–L60 {506, 716, 717, 718, 719, 721}CrossRefGoogle Scholar
Ji, J, Liu, L, Kinoshita, H, 2005, Could the 47 UMa planetary system be a second solar system? Predicting the Earth-like planets. ApJ, 631, 1191–1197 {274, 716}CrossRefGoogle Scholar
Ji, J, Liu, L, Kinoshita, H, 2008, Habitable zones for Earth-mass planets in multiple planetary systems. IAU Symp., volume 249, 499–502 {623}Google Scholar
Ji, JH, Liu, L, Kinoshita, H, et al., 2002b, The stabilising mechanism of the HD 82943 planetary system. Chinese Astronomy and Astrophysics, 26, 379–385 {721}CrossRefGoogle Scholar
Ji, JH, Liu, L, Zhou, JL, et al., 2003d, The apsidal motion in multiple planetary systems. Chinese Astronomy and Astrophysics, 27, 127–132 {506}Google Scholar
Ji, Y, Banks, T, Budding, E, et al., 2017, An investigation into exoplanet transits and uncertainties. Ap&SS, 362, 112 {736, 742, 751}Google Scholar
Jiang, IG, Ip, WH, 2001, The planetary system of ν And. A&A, 367, 943–948 {69, 713}Google Scholar
Jiang, IG, Lai, CY, Savushkin, A, et al., 2016, The possible orbital decay and transit timing variations of the planet WASP–43 b. AJ, 151, 17 {755}CrossRefGoogle Scholar
Jiang, IG, Laughlin, G, Lin, DNC, 2004, On the formation of brown dwarfs. AJ, 127, 455–459 {442}CrossRefGoogle Scholar
Jiang, IG, Yeh, LC, Chang, YC, et al., 2007, On themass-period distributions and correlations of extrasolar planets. AJ, 134, 2061–2066 {62}CrossRefGoogle Scholar
Jiang, IG, Yeh, LC, Hung, WL, 2015, The period–ratio and mass–ratio correlation in extrasolar multiple planetary systems. MNRAS, 449, L65–L67 {320}CrossRefGoogle Scholar
Jiang, IG, Yeh, LC, Thakur, P, et al., 2013a, Possible transit timing variations of the TrES–3 planetary system. AJ, 145, 68 {751}CrossRefGoogle Scholar
Jiang, P, Ge, J, Cargile, P, et al., 2013b, Very low mass stellar and substellar companions to solar-like stars from MARVELS. IV. A candidate brown dwarf or low-mass stellar companion to HIP 67526. AJ, 146, 65 {50}CrossRefGoogle Scholar
Jílková, L, Hamers, AS, Hammer, M, et al., 2016, Mass transfer between debris disks during close stellar encounters. MNRAS, 457, 4218–4235 {498}CrossRefGoogle Scholar
Jílková, L, Portegies Zwart, S, Pijloo, T, et al., 2015, How Sedna and familywere captured in a close encounter with a solar sibling. MNRAS, 453, 3157–3162 {655, 686}CrossRefGoogle Scholar
Jiménez, MA, Masset, FS, 2017, Improved torque formula for low- and intermediate-mass planetary migration. MNRAS, 471, 4917–4929 {519}CrossRefGoogle Scholar
Jiménez-Torres, JJ, 2016, 3d modeling of spectra and light curves of hot Jupiters with PHOENIX: a first approach. Rev. Mex. Astron. Astrofis., 52, 69–82 {723}Google Scholar
Jiménez-Torres, JJ, Pichardo, B, Lake, G, et al., 2011, Effect of different stellar galactic environments on planetary disks. I. The solar neighbourhood and the birth cloud of the Sun. MNRAS, 418, 1272–1284 {655}CrossRefGoogle Scholar
Jin, L, 2010, An interpretation of the orbital period difference between hot Jupiters and giant planets on long-period orbits. ApJ, 720, L211–L214 {498}CrossRefGoogle Scholar
Jin, L, Arnett, WD, Sui, N, et al., 2008, An interpretation of the anomalously low mass of Mars. ApJ, 674, L105–L108 {657}CrossRefGoogle Scholar
Jin, S, 2014, Formation and internal structure of terrestrial planets, and atmospheric escape. Acta Astronomica Sinica, 55, 534–536 {601}Google Scholar
Jin, S, Ji, J, 2011, Terrestrial planet formation in inclined systems: application to the OGLE–2006–BLG–109L system. MNRAS, 418, 1335–1345 {759}CrossRefGoogle Scholar
Jin, S, Li, S, Isella, A, et al., 2016, Modeling dust emission of HL Tau disk based on planet–disk interactions. ApJ, 818, 76 {466}CrossRefGoogle Scholar
Jin, S, Mordasini, C, Parmentier, V, et al., 2014, Planetary population synthesis coupled with atmospheric escape: a statistical view of evaporation. ApJ, 795, 65 {556}CrossRefGoogle Scholar
Joergens, V, 2006, Radial velocity survey for planets and brown dwarf companions to very young brown dwarfs and very low-mass stars in Chamaeleon I with UVES at the VLT. A&A, 446, 1165–1176 {56}Google Scholar
Joergens, V, 2008, Binary frequency of very young brown dwarfs at separations smaller than 3 au. A&A, 492, 545–555 {46}Google Scholar
Joergens, V, Bonnefoy, M, Liu, Y, et al., 2013a, OTS 44: disk and accretion at the planetary border. A&A, 558, L7 {444}Google Scholar
Joergens, V, Fernández, M, Carpenter, JM, et al., 2003, Rotational periods of very young brown dwarfs and very low mass stars in Chamaeleon I. ApJ, 594, 971–981 {444}CrossRefGoogle Scholar
Joergens, V, Guenther, E, 2001, UVES spectra of young brown dwarfs in Cha I: radial and rotational velocities. A&A, 379, L9–L12 {444}Google Scholar
Joergens, V, Herczeg, G, Liu, Y, et al., 2013b, Disks, accretion and outflows of brown dwarfs. Astron. Nach., 334, 159 {444}CrossRefGoogle Scholar
Joergens, V, Pohl, A, Sicilia-Aguilar, A, et al., 2012, The bipolar outflow and disk of the brown dwarf ISO 217. A&A, 543, A151 {444, 445}Google Scholar
Joergens, V, Quirrenbach, A, 2004, Towards characterisation of exoplanetary spectra with the VLT interferometer. Astron. Nach. Supplement, 325, 3–7 {348}Google Scholar
Jofré, E, Petrucci, R, Saffe, C, et al., 2015, Stellar parameters and chemical abundances of 223 evolved stars with and without planets. A&A, 574, A50 {378}Google Scholar
Johansen, A, 2009, The role of magnetic fields for planetary formation. Cosmic Magnetic Fields: From Planets, to Stars and Galaxies, volume 259 of IAU Symposium, 249–258 {459, 462}
Johansen, A, Blum, J, Tanaka, H, et al., 2014, The multifaceted planetesimal formation process. Protostars and Planets VI, 547–570 {454, 455, 457, 460, 461, 468, 469}
Johansen, A, Brauer, F, Dullemond, C, et al., 2008, A coagulation-fragmentationmodel for the turbulent growth and destruction of preplanetesimals. A&A, 486, 597–611 {469, 471}Google Scholar
Johansen, A, Davies, MB, Church, RP, et al., 2012, Can planetary instability explain the Kepler dichotomy? ApJ, 758, 39 {316, 324, 325}CrossRefGoogle Scholar
Johansen, A, Henning, T, Klahr, H, 2006a, Dust sedimentation and self-sustained Kelvin–Helmholtz turbulence in protoplanetary disk midplanes. ApJ, 643, 1219–1232 {469}CrossRefGoogle Scholar
Johansen, A, Klahr, H, 2005, Dust diffusion in protoplanetary disks by magnetorot-ational turbulence. ApJ, 634, 1353–1371 {468}CrossRefGoogle Scholar
Johansen, A, Klahr, H, 2011, Planetesimal formation through streaming and gravitational instabilities. Earth Moon and Planets, 108, 39–43 {458}CrossRefGoogle Scholar
Johansen, A, Klahr, H, Henning, T, 2006b, Gravoturbulent formation of planetesimals. ApJ, 636, 1121–1134 {460}CrossRefGoogle Scholar
Johansen, A, Klahr, H, Henning, T, 2011, High-resolution simulations of planetesimal formation in turbulent proto-planetary disks. A&A, 529, A62 {466}Google Scholar
Johansen, A, Lacerda, P, 2010, Prograde rotation of protoplanets by accretion of pebbles in a gaseous environment. MNRAS, 404, 475–485 {471}Google Scholar
Johansen, A, Lambrechts, M, 2017, Forming planets via pebble accretion. Ann. Rev. Earth Plan. Sci., 45, 359–387 {471}CrossRefGoogle Scholar
Johansen, A, Oishi, JS, Mac Low, M, et al., 2007, Rapid planetesimal formation in turbulent circumstellar disks. Nature, 448, 1022–1025 {461, 469, 471}CrossRefGoogle ScholarPubMed
Johansen, A, Okuzumi, S, 2018, Harvesting the decay energy of 26Al to drive lightning discharge in protoplanetary disks. A&A, 609, A31 {591, 653}Google Scholar
Johansen, A, Youdin, A, 2007, Protoplanetary disk turbulence driven by the streaming instability: nonlinear saturation and particle concentration. ApJ, 662, 627–641 {458}CrossRefGoogle Scholar
Johansen, A, Youdin, A, Klahr, H, 2009a, Zonal flows and long-lived axisymmetric pressure bumps in magnetorotational turbulence. ApJ, 697, 1269–1289 {460}CrossRefGoogle Scholar
Johansen, A, Youdin, A, Mac Low, MM, 2009b, Particle clumping and planetesimal formation depend strongly on metallicity. ApJ, 704, L75–L79 {458, 471}CrossRefGoogle Scholar
Johansson, EPG, Mueller, J, Motschmann, U, 2011a, Interplanetary magnetic field orientation and themagnetospheres of close-in exoplanets. A&A, 525, A117 {422}Google Scholar
Johansson, EPG, Müller, J, Motschmann, U, 2011b, Quasi-parallel and parallel stellar wind interaction and the magnetospheres of close-in exoplanets. Astron. Nach., 332, 1062 {422}CrossRefGoogle Scholar
Johns, M, 2008, The Giant Magellan Telescope (GMT). SPIE Conf. Ser., volume 6986, 3 {346}Google Scholar
Johns-Krull, CM, McCullough, PR, Burke, CJ, et al., 2008, XO–3 b: a massive planet in an eccentric orbit transiting an F5V star. ApJ, 677, 657–670 {757}CrossRefGoogle Scholar
Johns-Krull, CM, McLane, JN, Prato, L, et al., 2016a, A candidate young massive planet in orbit around the classical T Tauri star CI Tau. ApJ, 826, 206 {61, 715}CrossRefGoogle Scholar
Johns-Krull, CM, Prato, L, McLane, JN, et al., 2016b, Hα variability in PTFO 8–8695 and the possible direct detection of emission from a 2 million year old evaporating hot Jupiter. ApJ, 830, 15 {750}CrossRefGoogle Scholar
Johnson, AR, Okawachi, Y, Lamont, MRE, et al., 2014a, Microresonator-based comb generation without an external laser source. Optics Express, 22, 1394 {33}CrossRefGoogle Scholar
Johnson, BC, Collins, GS, Minton, DA, et al., 2016a, Spherule layers, crater scaling laws, and the population of ancient terrestrial impactors. Icarus, 271, 350–359 {672}CrossRefGoogle Scholar
Johnson, BC, Lisse, CM, Chen, CH, et al., 2012a, A self-consistent model of the circum-stellar debris created by a giant hypervelocity impact in the HD 172555 system. ApJ, 761, 45 {498}CrossRefGoogle Scholar
Johnson, BC, Melosh, HJ, 2012, Impact spherules as a record of an ancient heavy bombardment of Earth. Nature, 485, 75–77 {672}CrossRefGoogle ScholarPubMed
Johnson, BC, Walsh, KJ, Minton, DA, 2016b, Late formation andmigration of the giant planets as constrained by formation of carbonaceous chondrites. Lunar and Planetary Science Conference, volume 47, 1136 {699}Google Scholar
Johnson, BM, Gammie, CF, 2005, Vortices in thin, compressible, unmagnetised disks. ApJ, 635, 149–156 {461}CrossRefGoogle Scholar
Johnson, E, Davenport, JRA, Hawley, SL, 2017a, FBEYE: analysing Kepler light curves and validating flares. Astrophysics Source Code Library {428}
Johnson, ET, Goodman, J, Menou, K, 2006a, Diffusive migration of low-mass proto-planets in turbulent disks. ApJ, 647, 1413–1425 {518}CrossRefGoogle Scholar
Johnson, HL, Morgan, WW, 1953, Fundamental stellar photometry for standards of spectral type on the revised system of the Yerkes spectral atlas. ApJ, 117, 313–352 {435}CrossRefGoogle Scholar
Johnson, JA, 2008, Planets around massive subgiants. ASP Conf. Ser., volume 398, 59–66 {56}Google Scholar
Johnson, JA, 2009, International Year of Astronomy Invited Review on Exoplanets. PASP, 121, 309–315 {53}CrossRefGoogle Scholar
Johnson, JA, Aller, KM, Howard, AW, et al., 2010a, Giant planet occurrence in the stellar mass–metallicity plane. PASP, 122, 905–915 {144, 389, 404, 484}CrossRefGoogle Scholar
Johnson, JA, Apps, K, 2009, On the metal richness of M dwarfs with planets. ApJ, 699, 933–937 {391}CrossRefGoogle Scholar
Johnson, JA, Bowler, BP, Howard, AW, et al., 2010b, A hot Jupiter orbiting the 1.7 solar mass subgiant HD 102956. ApJ, 721, L153–L157 {56, 721}CrossRefGoogle Scholar
Johnson, JA, Butler, RP, Marcy, GW, et al., 2007a, A new planet around an M dwarf: revealing a correlation between exoplanets and stellar mass. ApJ, 670, 833–840 {58, 144, 716}CrossRefGoogle Scholar
Johnson, JA, Clanton, C, Howard, AW, et al., 2011a, Retired A stars and their companions. VII. 18 new Jovian planets. ApJS, 197, 26 {55, 718, 719, 720, 721, 722, 723}CrossRefGoogle Scholar
Johnson, JA, Fischer, DA, Marcy, GW, et al., 2007b, Retired a stars and their companions: exoplanets orbiting three intermediate-mass subgiants. ApJ, 665, 785–793{56, 57, 723, 724}CrossRefGoogle Scholar
Johnson, JA, Gazak, JZ, Apps, K, et al., 2012b, Characterising the cool KOIs. II. The Mdwarf KOI–254 (Kepler–45) and its hot Jupiter. AJ, 143, 111 {13, 741}CrossRefGoogle Scholar
Johnson, JA, Howard, AW, Bowler, BP, et al., 2010c, Retired A stars and their companions. IV. Seven Jovian exoplanets from Keck Observatory. PASP, 122, 701–711 {55, 56, 718, 721, 722, 723, 724}CrossRefGoogle Scholar
Johnson, JA, Howard, AW, Marcy, GW, et al., 2010d, The California planet survey. II. A Saturn-mass planet orbiting the Mdwarf GJ 649. PASP, 122, 149–155 {13, 58, 149, 391, 717}Google Scholar
Johnson, JA, Marcy, GW, Fischer, DA, et al., 2006b, An eccentric hot Jupiter orbiting the subgiant HD 185269. ApJ, 652, 1724–1728 {55, 56, 723}CrossRefGoogle Scholar
Johnson, JA, Marcy, GW, Fischer, DA, 2006c, The N2K consortium. VI. Doppler shifts without templates and three new short-period planets. ApJ, 647, 600–611 {31, 32, 719, 721, 724}CrossRefGoogle Scholar
Johnson, JA, Marcy, GW, Fischer, DA, 2008a, Retired A stars and their companions. II. Jovian planets orbiting • CrB and HD 167042. ApJ, 675, 784–789 {715, 723}CrossRefGoogle Scholar
Johnson, JA, Payne, M, Howard, AW, et al., 2011b, Retired A stars and their companions. VI. A pair of interacting exoplanet pairs around the subgiants 24 Sex and HD 200964. AJ, 141, 16–22 {56, 70, 508, 715, 724}CrossRefGoogle Scholar
Johnson, JA, Petigura, EA, Fulton, BJ, et al., 2017b, The California–Kepler survey. II. Precise physical properties of 2025 Kepler planets and their host stars. AJ, 154, 108 {176}CrossRefGoogle Scholar
Johnson, JA, Winn, JN, Albrecht, S, et al., 2009a, A third exoplanetary system with misaligned orbital and stellar spin axes. PASP, 121, 1104–1111 {253, 753}CrossRefGoogle Scholar
Johnson, JA, Winn, JN, Bakos GÁ, et al., 2011c, HAT–P–30 b: a transiting hot Jupiter on a highly oblique orbit. ApJ, 735, 24 {11, 737}CrossRefGoogle Scholar
Johnson, JA, Winn, JN, Cabrera, NE, 2009b, Submillimag photometry of transiting exo-planets with an orthogonal transfer array. AAS Bulletin, volume 41, 192 {183}Google Scholar
Johnson, JA, Winn, JN, Cabrera, NE, et al., 2009c, A smaller radius for the transiting exoplanet WASP–10 b. ApJ, 692, L100–L104 {187, 752}CrossRefGoogle Scholar
Johnson, JA, Winn, JN, Narita, N, et al., 2008b, Measurement of the spin–orbit angle of exoplanet HAT–P–1 b. ApJ, 686, 649–657 {735}CrossRefGoogle Scholar
Johnson, JL, Li, H, 2012, The first planets: the critical metallicity for planet formation. ApJ, 751, 81 {463}CrossRefGoogle Scholar
Johnson, MC, Cochran, WD, Addison, BC, et al., 2017c, Spin–orbit misalignments of three Jovian planets via Doppler tomography. AJ, 154, 137 {252, 737, 746, 756}CrossRefGoogle Scholar
Johnson, MC, Cochran, WD, Albrecht, S, et al., 2014b, A misaligned prograde orbit for Kepler–13 Ab via Doppler tomography. ApJ, 790, 30 {252, 739}CrossRefGoogle Scholar
Johnson, MC, Cochran, WD, Collier Cameron, A, et al., 2015a, Measurement of the nodal precession of WASP–33 b via Doppler tomography. ApJ, 810, L23 {165, 252, 253, 260, 754}CrossRefGoogle Scholar
Johnson, MC, Endl, M, Cochran, WD, et al., 2016c, A 12-yr activity cycle for the nearby planet host star HD 219134. ApJ, 821, 74 {733}CrossRefGoogle Scholar
Johnson, MC, Gandolfi, D, Fridlund, M, et al., 2016d, Two hot Jupiters from K2 campaign 4. AJ, 151, 171 {748}CrossRefGoogle Scholar
Johnson, MC, Redfield, S, Jensen, AG, 2015b, The interstellar medium in the Kepler search volume. ApJ, 807, 162 {176, 740, 741, 744, 745, 746}CrossRefGoogle Scholar
Johnson, MC, Rodriguez, JE, Zhou, G, et al., 2018, KELT–21 b: a hot Jupiter transiting the rapidly rotating metal-poor late-A primary of a likely hierarchical triple system. AJ, 155, 100 {738}CrossRefGoogle Scholar
Johnson, RE, Carlson, RW, Cooper, JF, et al., 2004, Radiation effects on the surfaces of the Galilean satellites. Jupiter. The Planet, Satellites and Magnetosphere, 485–512, Cambridge University Press {626}
Johnson, RE, Huggins, PJ, 2006, Toroidal atmospheres around extrasolar planets. PASP, 118, 1136–1143 {217}CrossRefGoogle Scholar
Johnson, RE, Volkov, AN, Erwin, JT, 2013, Molecular-kinetic simulations of escape from the ex-planet and exoplanets: criterion for transonic flow. ApJ, 768, L4 {601}CrossRefGoogle Scholar
Johnson, TV, 2005, Geology of the icy satellites. Space Sci. Rev., 116, 401–420 {577}CrossRefGoogle Scholar
Johnson, TV, Castillo-Rogez, JC, Matson, DL, et al., 2008c, Constraints on outer solar system chronology. LPI Science Conf Abstracts, volume 39, 2314 {697}Google Scholar
Johnson, TV, Lunine, JI, 2005, Saturn's moon Phoebe as a captured body from the outer solar system. Nature, 435, 69–71 {685}CrossRefGoogle ScholarPubMed
Johnson, TV, Mousis, O, Lunine, JI, et al., 2012c, Planetesimal compositions in exo-planet systems. ApJ, 757, 192 {464, 561}CrossRefGoogle Scholar
Johnston, KJ, 2003, The FAME mission. SPIE Conf. Ser., volume 4854, 303–310 {100}Google Scholar
Johnston, KJ, Benson, JA, Hutter, DJ, et al., 2006a, The Navy Prototype Optical Interferometer: recent developments since 2004. SPIE Conf. Ser., volume 6268, 6 {348}Google Scholar
Johnston, KJ, de Vegt, C, 1999, Reference frames in astronomy. ARA&A, 37, 97–125 {86}Google Scholar
Johnston, KJ, Dorland, B, Gaume, R, et al., 2006b, The Origins Billions Star Survey (OBSS): Galactic explorer. PASP, 118, 1428–1442 {100}CrossRefGoogle Scholar
Johnston, WR, 2015, List of brown dwarfs. www.johnstonsarchive.net {435}
Johnstone, CP, Zhilkin, A, Pilat-Lohinger, E, et al., 2015, Colliding winds in low-mass binary star systems: wind interactions and implications for habitable planets. A&A, 577, A122 {550, 553}Google Scholar
Johnstone, D, Hollenbach, D, Bally, J, 1998, Photoevaporation of disks and clumps by nearby massive stars: application to disk destruction in the Orion nebula. ApJ, 499, 758–776 {462}CrossRefGoogle Scholar
Joiner, DA, Sul, C, Dragomir, D, et al., 2014, A consistent orbital stability analysis for the GJ 581 system. ApJ, 788, 160 {717}CrossRefGoogle Scholar
Jones, BF, 1976, Gravitational deflection of light: solar eclipse of 30 June 1973. II. Plate reductions. AJ, 81, 455–463 {120}CrossRefGoogle Scholar
Jones, BW, Sleep, PN, 2002, The stability of the orbits of Earth-mass planets in the habitable zone of 47 UMa. A&A, 393, 1015–1026 {623, 716}Google Scholar
Jones, BW, Sleep, PN, 2010, Habitability of exoplanetary systems with planets observed in transit. MNRAS, 407, 1259–1267 {634}CrossRefGoogle Scholar
Jones, BW, Sleep, PN, Chambers, JE, 2001, The stability of the orbits of terrestrial planets in the habitable zones of known exoplanetary systems. A&A, 366, 254–262 {623}Google Scholar
Jones, BW, Sleep, PN, Underwood, DR, 2006a, Habitability of known exoplanetary systems based on measured stellar properties. ApJ, 649, 1010–1019 {523, 623}CrossRefGoogle Scholar
Jones, BW, Underwood, DR, Sleep, PN, 2005, Prospects for habitable Earths in known exoplanetary systems. ApJ, 622, 1091–1101 {623}CrossRefGoogle Scholar
Jones, CA, Thompson, MJ, Tobias, SM, 2010a, The solar dynamo. Space Science Reviews, 152, 591–616 {656}CrossRefGoogle Scholar
Jones, DJ, Diddams, S, Ranka, JK, et al., 2000a, Carrier-envelope phase control of fem-tosecond mode-locked lasers and direct optical frequency synthesis. Science, 288, 635–640 {32}CrossRefGoogle Scholar
Jones, EG, Lineweaver, CH, 2010, To what extent does terrestrial life ‘follow the water’? Astrobiology, 10, 349–361 {619}CrossRefGoogle Scholar
Jones, EM, 1985, Where is everybody? An account of Fermi's question. NASA STI/Recon Technical Report N, 85, 30988 {647}Google Scholar
Jones, HRA, Butler, RP, Marcy, GW, et al., 2002a, Extrasolar planets around HD 196050, HD 216437 and HD 160691. MNRAS, 337, 1170–1178 {55, 713, 724}CrossRefGoogle Scholar
Jones, HRA, Butler, RP, Tinney, CG, et al., 2003, An exoplanet in orbit around τ1 Gru (HD 216435). MNRAS, 341, 948–952 {65, 724}CrossRefGoogle Scholar
Jones, HRA, Butler, RP, Tinney, CG, 2004, HD 10647 and the distribution of exoplanet properties with semi-major axis. Extrasolar Planets: Today and Tomorrow, volume 321 of ASP Conf. Ser., 298 {718}Google Scholar
Jones, HRA, Butler, RP, Tinney, CG, 2006b, High-eccentricity planets from the Anglo–Australian Planet Search. MNRAS, 369, 249–256 {78, 719, 723}CrossRefGoogle Scholar
Jones, HRA, Butler, RP, Tinney, CG, 2010b, A long-period planet orbiting a nearby Sun-like star. MNRAS, 403, 1703 {722}CrossRefGoogle Scholar
Jones, HRA, Butler, RP, Wright, JT, et al., 2008a, A catalogue of nearby exoplanets. Precision Spectroscopy in Astrophysics, 205–206 {53}
Jones, HRA, Jenkins, JS, Barnes, JR, 2008b, Close-orbiting exoplanets: formation, migration mechanisms and properties. Exoplanets: Detection, Formation, Properties, Habitability, 153–175, Springer {392}
Jones, HRA, Paul Butler, R, Tinney, CG, et al., 2002b, A probable planetary companion to HD 39091 from the Anglo–Australian planet search. MNRAS, 333, 871–875 {719}CrossRefGoogle Scholar
Jones, HRA, Rayner, J, Ramsey, L, et al., 2008c, Precision radial velocity spectrograph. SPIE Conf. Ser., volume 7014 {46}Google Scholar
Jones, J, White, RJ, Quinn, S, et al., 2016a, The age of the directly imaged planet host star κ And determined from interferometric observations. ApJ, 822, L3 {761}CrossRefGoogle Scholar
Jones, MH, Bewsher, D, Brown, DS, 2013a, Imaging of a circumsolar dust ring near the orbit of Venus. Science, 342, 960–963 {692}CrossRefGoogle Scholar
Jones, MI, Brahm, R, Wittenmyer, RA, et al., 2017, An eccentric companion at the edge of the brown dwarf desert orbiting the 2.4M⊙ giant star HIP 67537. A&A, 602, A58 {725}Google Scholar
Jones, MI, Jenkins, JS, 2014, No evidence of the planet orbiting the extremely metal-poor extragalactic star HIP 13044. A&A, 562, A129 {724}Google Scholar
Jones, MI, Jenkins, JS, Bluhm, P, et al., 2014, The properties of planets around giant stars. A&A, 566, A113 {725}Google Scholar
Jones, MI, Jenkins, JS, Brahm, R, et al., 2016b, Four new planets around giant stars and the mass-metallicity correlation of planet-hosting stars. A&A, 590, A38 {724, 725}Google Scholar
Jones, MI, Jenkins, JS, Rojo, P, et al., 2013b, Study of the impact of the post-main sequence evolution of the host star on the orbits of close-in planets. II. A giant planet in a close-in orbit around the RGB star HIP 63242. A&A, 556, A78 {25, 55, 56, 57, 58, 725}Google Scholar
Jones, MI, Jenkins, JS, Rojo, P, 2015a, A planetary system and a highly eccentric brown dwarf around the giant stars HIP 67851 and HIP 97233. A&A, 573, A3 {725}Google Scholar
Jones, MI, Jenkins, JS, Rojo, P, 2015b, Giant planets around two intermediate-mass evolved stars and confirmation of the planetary nature of HIP 67851 c. A&A, 580, A14 {725}Google Scholar
Jones, RH, Lee, T, Connolly, HC, et al., 2000b, Formation of chondrules and CAIs: theory versus observation. Protostars and Planets IV, 927–962 {653}
Jontof-Hutter, D, Ford, EB, Rowe, JF, et al., 2016, Secure mass measurements from transit timing: 10 Kepler exoplanets between 3-8M⊕ with diverse densities and incident fluxes. ApJ, 820, 39 {271, 740, 741, 743, 745}CrossRefGoogle Scholar
Jontof-Hutter, D, Hamilton, DP, 2012a, The fate of sub-micron circumplanetary dust grains. I. Aligned dipolar magnetic fields. Icarus, 218, 420–432 {469}CrossRefGoogle Scholar
Jontof-Hutter, D, Hamilton, DP, 2012b, The fate of sub-micron circumplanetary dust grains. II. Multipolar fields. Icarus, 220, 487–502 {469}CrossRefGoogle Scholar
Jontof-Hutter, D, Lissauer, JJ, Rowe, JF, et al., 2014, Kepler–79's lowdensity planets. ApJ, 785, 15 {288, 500, 742}CrossRefGoogle Scholar
Jontof-Hutter, D, Rowe, JF, Lissauer, JJ, et al., 2015, The mass of the Mars-sized exo-planet Kepler–138 b from transit timing. Nature, 522, 321–323 {743}CrossRefGoogle Scholar
Jontof-Hutter, D, Weaver, BP, Ford, EB, et al., 2017, Outer architecture of Kepler–11: constraints from coplanarity. AJ, 153, 227 {739}CrossRefGoogle Scholar
Joos, F, Schmid, HM, Gisler, D, et al., 2011, Direct imaging of extrasolar planets by means of polarimetry with VLT–SPHERE/ZIMPOL. ASP Conf. Ser., volume 449, 381 {344}Google Scholar
Jordán, A, Bakos GÁ, 2008, Observability of the general relativistic precession of peri-astra in exoplanets. ApJ, 685, 543–552 {258, 259, 262}CrossRefGoogle Scholar
Jordán, A, Brahm, R, Bakos GÁ, et al., 2014, HATS–4 b: a dense hot Jupiter transiting a super metal-rich G star. AJ, 148, 29 {737}CrossRefGoogle Scholar
Jordán, A, Espinoza, N, Rabus, M, et al., 2013, A ground-based optical transmission spectrumof WASP–6 b. ApJ, 778, 184 {588, 591, 752}CrossRefGoogle Scholar
Jordi, C, Gebran, M, Carrasco, JM, et al., 2010, Gaia broad band photometry. A&A, 523, A48 {96, 180}Google Scholar
Jørgensen, BR, Lindegren, L, 2005, Determination of stellar ages from isochrones: Bayesian estimation versus isochrone fitting. A&A, 436, 127–143 {380}Google Scholar
Jorgensen, UG, 1991, Advanced stages in the evolution of the Sun. A&A, 246, 118–136 {414}Google Scholar
Jorgensen, UG, 1996, Cool star models. Molecules in astrophysics: probes and processes, volume 178 of IAU Symposium, 441 {570}Google Scholar
Jorissen, A, Mayor, M, Udry, S, 2001, The distribution of exoplanet masses. A&A, 379, 992–998 {21, 62}Google Scholar
Jose, PD, 1965, Sun'smotion and sun spots. AJ, 70, 193–200 {656}CrossRefGoogle Scholar
Joshi, KJ, Rasio, FA, 1997, Distant companions and planets around millisecond pulsars. ApJ, 479, 948–959 {107, 108}CrossRefGoogle Scholar
Joshi, M, 2003, Climate model studies of synchronously rotating planets. Astrobiology, 3, 415–427 {593, 621}CrossRefGoogle ScholarPubMed
Joshi, M, Haberle, RM, 1997, On the ability of synchronously rotating planets to support atmospheres. IAU Colloq. 161, 351–357 {621}Google Scholar
Joshi, M, Haberle, RM, 2012, Suppression of the water ice and snow albedo feedback on planets orbiting red dwarf stars and the subsequent widening of the habitable zone. Astrobiology, 12, 3–8 {620, 622}CrossRefGoogle ScholarPubMed
Joshi, M, Haberle, RM, Reynolds, RT, 1997, Simulations of the atmospheres of synchronously rotating terrestrial planets orbiting M dwarfs: conditions for atmospheric collapse and the implications for habitability. Icarus, 129, 450–465 {593, 621}CrossRefGoogle Scholar
Joshi, MM, Lewis, SR, Read, PL, et al., 1995, Western boundary currents in the Martian atmosphere: numerical simulations and observational evidence. J. Geo-phys. Res., 100, 5485–5500 {593}CrossRefGoogle Scholar
Joshi, YC, Pollacco, D, Collier Cameron, A, et al., 2009, WASP–14 b: 7.3MJ transiting planet in an eccentric orbit. MNRAS, 392, 1532–1538 {253, 544, 753}CrossRefGoogle Scholar
Joung, MKR, Mac Low, M, Ebel, DS, 2004, Chondrule formation and protoplanetary disk heating by current sheets in nonideal magnetohydrodynamic turbulence. ApJ, 606, 532–541 {653}CrossRefGoogle Scholar
Jovanovic, N, Martinache, F, Guyon, O, et al., 2015, The Subaru coronagraphic extreme adaptive optics system (SCExAO): enabling high-contrast imaging on solar-system scales. PASP, 127, 890 {344}CrossRefGoogle Scholar
Joy, KH, Crawford, IA, Curran, NM, et al., 2016, The Moon: an archive of small body migration in the solar system. Earth Moon and Planets, 118, 133–158 {671}CrossRefGoogle Scholar
Joyce, GF, 1994, Foreword. Origins of Life: The Central Concepts, Jones & Bartlett Publishers {635}
Juckett, DA, 2000, Solar activity cycles, north/south asymmetries, and differential rotation associated with solar spin–orbit variations. Sol. Phys., 191, 201–226 {656}CrossRefGoogle Scholar
Juckett, DA, 2003, Temporal variations of low-order spherical harmonic representations of sun spot group patterns: evidence for solar spin–orbit coupling. A&A, 399, 731–741 {656}Google Scholar
Jugaku, J, Nishimura, S, 2004, A search for Dyson spheres around late-type stars in the solar neighbourhood. Bioastronomy 2002: Life Among the Stars, volume 213 of IAU Symp., 437 {647}Google Scholar
Juncher, D, Buchhave, LA, Hartman, JD, et al., 2015, HAT–P–55 b: a hot Jupiter transiting a Sun-like star. PASP, 127, 851–856 {737}CrossRefGoogle Scholar
Juncher, D, Jørgensen, UG, Helling, C, 2017, Self-consistent atmosphere modelingwith cloud formation for low-mass stars and exoplanets. A&A, 608, A70 {591}Google Scholar
Jung, YK, Han, C, Gould, A, et al., 2013, Reanalysis of the gravitational microlensing event MACHO–97–BLG–41 based on combined data. ApJ, 768, L7 {140}CrossRefGoogle Scholar
Jung, YK, Park, H, Han, C, et al., 2014, Reevaluating the feasibility of ground-based Earth-mass microlensing planet detections. ApJ, 786, 85 {132}CrossRefGoogle Scholar
Jung, YK, Udalski, A, Sumi, T, et al., 2015, OGLE–2013–BLG–102LA, B: a microlensing binary. ApJ, 798, 123 {141, 760}CrossRefGoogle Scholar
Jung, YK, Udalski, A, Yee, JC, et al., 2017, Binary source microlensing event OGLE–2016–BLG–0733: interpretation of a long-term asymmetric perturbation. AJ, 153, 129 {123, 136}CrossRefGoogle Scholar
Junge, CE, 1963, Sulphur in the atmosphere. J. Geophys. Res., 68, 3975 {589}CrossRefGoogle Scholar
Jura, M, 2003, A tidally disrupted asteroid around the white dwarf G29–38. ApJ, 584, L91–L94 {10, 415, 416}CrossRefGoogle Scholar
Jura, M, 2004, An observational signature of evolved oceans on extrasolar terrestrial planets. ApJ, 605, L65–L68 {587, 601}CrossRefGoogle Scholar
Jura, M, 2006, Carbon deficiency in externally polluted white dwarfs: evidence for accretion of asteroids. ApJ, 653, 613–620 {394, 415, 417}CrossRefGoogle Scholar
Jura, M, 2008, Pollution of single white dwarfs by accretion of many small asteroids. AJ, 135, 1785–1792 {415}CrossRefGoogle Scholar
Jura, M, Dufour, P, Xu, S, et al., 2015, Evidence for an anhydrous carbonaceous extra-solar minor planet. ApJ, 799, 109 {419}CrossRefGoogle Scholar
Jura, M, Farihi, J, Zuckerman, B, 2007, Externally polluted white dwarfs with dust disks. ApJ, 663, 1285–1290 {415}CrossRefGoogle Scholar
Jura, M, Farihi, J, Zuckerman, B, 2009, Six white dwarfs with circumstellar silicates. AJ, 137, 3191–3197 {417}CrossRefGoogle Scholar
Jura, M, Klein, B, Xu, S, et al., 2014, A pilot search for evidence of extrasolar Earth-analogue plate tectonics. ApJ, 791, L29 {12, 419, 628, 670}CrossRefGoogle Scholar
Jura, M, Xu, S, 2012, Water fractions in extrasolar planetesimals. AJ, 143, 6 {419}CrossRefGoogle Scholar
Jura, M, Xu, S, 2013, Extrasolar refractory-dominated planetesimals: an assessment. AJ, 145, 30 {417}CrossRefGoogle Scholar
Jura, M, Xu, S, Klein, B, et al., 2012, Two extrasolar asteroids with low volatile-element mass fractions. ApJ, 750, 69 {417}CrossRefGoogle Scholar
Jura, M, Xu, S, Young, ED, 2013, 26Al in the early solar system: not so unusual after all. ApJ, 775, L41 {419, 651}CrossRefGoogle Scholar
Jura, M, Young, ED, 2014, Extrasolar cosmochemistry. Ann. Rev. Earth Plan. Sci., 42, 45–67 {416, 419}CrossRefGoogle Scholar
Jurgenson, C, Fischer, D, McCracken, T, et al., 2016, EXPRES: a next generation radial velocity spectrograph in the search for Earth-like worlds. Ground-based and Airborne Instrumentation for Astronomy VI, volume 9908 of Proc. SPIE, 99086T {46}Google Scholar
Jurić, M, Tremaine, S, 2008, Dynamical origin of extrasolar planet eccentricity distribution. ApJ, 686, 603–620 {63, 210, 525}CrossRefGoogle Scholar
Luhman, KL, Jayawardhana, R, 2002, An adaptive optics search for companions to stars with planets. ApJ, 566, 1132–1146 {361}CrossRefGoogle Scholar
Luhman, KL, Mamajek, EE, Allen, PR, et al., 2009, Discovery of a wide binary brown dwarf born in isolation. ApJ, 691, 1265–1275 {362, 762}CrossRefGoogle Scholar
Luhman, KL, Muench, AA, 2008, New low-mass stars and brown dwarfs with disks in the Chamaeleon I star-forming region. ApJ, 684, 654–662 {443}CrossRefGoogle Scholar
Luhman, KL, Patten, BM, Marengo, M, et al., 2007b, Discovery of two T dwarf companions with the Spitzer Space Telescope. ApJ, 654, 570–579 {362, 438, 762}CrossRefGoogle Scholar
Luhman, KL, Stauffer, JR, Muench, AA, et al., 2003, A census of the young cluster IC 348. ApJ, 593, 1093–1115 {442}CrossRefGoogle Scholar
Luhman, KL, Wilson, JC, Brandner, W, et al., 2006, Discovery of a young substellar companion in Chamaeleon. ApJ, 649, 894–899 {361, 362, 764}CrossRefGoogle Scholar
Luhmann, JG, Johnson, RE, Zhang, MHG, 1992, Evolutionary impact of sputtering of the Martian atmosphere by O(+) pickup ions. Geophys. Res. Lett., 19, 2151–2154 {631}CrossRefGoogle Scholar
Luhn, JK, Penny, MT, Gaudi, BS, 2016, Caustic structures and detectability of circum-binary planets in microlensing. ApJ, 827, 61 {126}CrossRefGoogle Scholar
Lukyanov, LG, Uralskaya, VS, 2012, Sundman stability of natural planet satellites. MNRAS, 421, 2316–2324 {276}CrossRefGoogle Scholar
Lumer, E, Forestini, M, Arnould, M, 1990, Application of an extended mixing length model to the convective envelope of the Sun and its Li and Be content. A&A, 240, 515–519 {400, 403}Google Scholar
Lund, MB, Pepper, J, Stassun, KG, 2015a, Transiting planets with LSST. I. Potential for LSST exoplanet detection. AJ, 149, 16 {170}CrossRefGoogle Scholar
Lund, MB, Rodriguez, JE, Zhou, G, et al., 2017a, KELT–20 b: a giant planet with a period of 3.5 d transiting the V = 7.6 early A star HD 185603. AJ, 154, 194 {738}CrossRefGoogle Scholar
Lund, MN, Handberg, R, Davies, GR, et al., 2015b, K2P2: a photometry pipeline for the K2 mission. ApJ, 806, 30 {176}CrossRefGoogle Scholar
Lund, MN, Lundkvist, M, Silva Aguirre, V, et al., 2014, Asteroseismic inference on the spin–orbit misalignment and stellar parameters of HAT–P–7. A&A, 570, A54 {163, 735}Google Scholar
Lund, MN, Silva Aguirre, V, Davies, GR, et al., 2017b, Standing on the shoulders of dwarfs: the Kepler asteroseismic legacy sample. I. Oscillation mode parameters. ApJ, 835, 172 {312}CrossRefGoogle Scholar
Lunine, JI, 1993, The atmospheres of Uranus and Neptune. ARA&A, 31, 217–263 {659}Google Scholar
Lunine, JI, 1999a, Earth: Evolution of a Habitable World. Cambridge University Press {624}Google Scholar
Lunine, JI, 1999b, In search of planets and life around other stars. society of photo, 96, 5353–5355 {624}Google Scholar
Lunine, JI, 2005, Astrobiology: AMulti-Disciplinary Approach. Benjamin Cummings {619}Google Scholar
Lunine, JI, 2006, Origin of water ice in the solar system. Meteorites and the Early Solar Sys-tem II, 309–319, University of Arizona Press {668}
Lunine, JI, Chambers, J, Morbidelli, A, et al., 2003, The origin of water on Mars. Icarus, 165, 1–8 {658, 667}CrossRefGoogle Scholar
Lunine, JI, Fischer, D, Hammel, HB, et al., 2008, Worlds beyond: a strategy for the detection and characterisation of exoplanets. Astrobiology, 8, 875–881 {632}Google Scholar
Lunine, JI, Hubbard, WB, Burrows, A, et al., 1989, The effect of gas and grain opacity on the cooling of brown dwarfs. ApJ, 338, 314–337 {436}CrossRefGoogle Scholar
Lunine, JI, Stevenson, DJ, 1982, Formation of the Galilean satellites in a gaseous nebula. Icarus, 52, 14–39 {577}CrossRefGoogle Scholar
Luo, L, Katz, B, Dong, S, 2016, Double-averaging can fail to characterise the longterm evolution of Lidov–Kozai cycles and derivation of an analytical correction. MNRAS, 458, 3060–3074 {528}CrossRefGoogle Scholar
Lupton, J, Butterfield, D, Lilley, M, et al., 2006, Submarine venting of liquid carbon dioxide on a Mariana Arc volcano. Geochemistry, Geophysics, Geosystems, 7(8), ISSN 1525-2027, q08007 {637}CrossRefGoogle Scholar
Lupu, RE, Marley, MS, Lewis, N, et al., 2016, Developing atmospheric retrieval methods for direct imaging spectroscopy of gas giants in reflected light. I. Methane abundances and basic cloud properties. AJ, 152, 217 {606, 721}CrossRefGoogle Scholar
Lupu, RE, Zahnle, K, Marley, MS, et al., 2014, The atmospheres of Earth-like planets after giant impact events. ApJ, 784, 27 {600}CrossRefGoogle Scholar
Luque, A, Gordillo-Vázquez, FJ, Pallé, E, 2015, Ground-based search for lightning in Jupiter with GTC–OSIRIS fast photometry and tunable filters. A&A, 577, A94 {591}Google Scholar
Lurie, JC, Henry, TJ, Jao, WC, et al., 2014, The solar neighbourhood. 34. A search for planets orbiting nearby M dwarfs using astrometry. AJ, 148, 91 {91, 375, 716, 717, 735}CrossRefGoogle Scholar
Lüst, R, 1952, Die Entwicklung einer um einen Zentralkörper rotierenden Gas-masse. I. Lösungen der hydrodynamischen Gleichungen mit turbulenter Rei-bung. Zeitschrift Naturforschung Teil A, 7, 87–98 {456}Google Scholar
Lutz, R, Schuh, S, Silvotti, R, 2012, EXOTIME: searching for planets andmeasuring P in sdB pulsators. Astron. Nach., 333, 1099 {112}CrossRefGoogle Scholar
Lutz, R, Schuh, S, Silvotti, R, et al., 2009, The planet-hosting subdwarf B star V391 Peg is a hybrid pulsator. A&A, 496, 469–473 {112}Google Scholar
Luu, J, Jewitt, D, 1996, Colour diversity among the Centaurs and Kuiper belt objects. AJ, 112, 2310 {685}CrossRefGoogle Scholar
Luyten, WJ, 1954, A search for faint blue stars. II. The Hyades and the south galactic polar region. AJ, 59, 224 {418}CrossRefGoogle Scholar
Luyten, WJ, 1956, The search for faint blue stars. IV. More blue stars in the Hyades region. AJ, 61, 261 {418}CrossRefGoogle Scholar
Luyten, WJ, 1979, LHS Catalogue: A Catalogue of Stars with Proper Motions Exceeding 0.5 arc-sec Annually. University of Minnesota {374}Google Scholar
Luzum, B, Capitaine, N, Fienga, A, et al., 2011, The IAU 2009 system of astronomical constants: the report of the IAU working group on numerical standards for Fundamental Astronomy. Cel. Mech. Dyn. Astron., 110, 293–304 {6, 701}CrossRefGoogle Scholar
Lv, KP, Norman, L, Li, YL, 2017, Oxygen-free biochemistry: the putative CHN foundation for exotic life in a hydrocarbon world? Astrobiology, 17, 1173–1181 {638}CrossRefGoogle Scholar
Lyapunov, AM, 1892, General Problem of the Stability of Motion. Translated from the Russian, Ann. Math. Studies 17, 1949; Princeton University Press {515}Google Scholar
Lydon, TJ, Sofia, S, 1996, A measurement of the shape of the solar disk: the solar quadrupole moment, the solar octopole moment, and the advance of perihelion of the planet Mercury. Phys. Rev. Lett., 76, 177–179 {258}CrossRefGoogle ScholarPubMed
Lykawka, PS, Horner, J, Jones, BW, et al., 2010, Formation and dynamical evolution of the Neptune Trojans: the influence of the initial solar system architecture. MNRAS, 404, 1272–1280 {697}Google Scholar
Lykawka, PS, Horner, J, Jones, BW, 2011, Origin and dynamical evolution of Neptune Trojans. II. Long-term evolution. MNRAS, 412, 537–550 {690}CrossRefGoogle Scholar
Lykawka, PS, Ito, T, 2013, Terrestrial planet formation during the migration and resonance crossings of the giant planets. ApJ, 773, 65 {697}CrossRefGoogle Scholar
Lykawka, PS, Ito, T, 2017, Terrestrial planet formation: constraining the formation of Mercury. ApJ, 838, 106 {476}CrossRefGoogle Scholar
Lykawka, PS, Mukai, T, 2006, Exploring the 7:4 mean motion resonance. II. Scattering evolutionary paths and resonance sticking. Planet. Space Sci., 54, 87–100 {685}CrossRefGoogle Scholar
Lykawka, PS, Mukai, T, 2007, Dynamical classification of trans-Neptunian objects: probing their origin, evolution, and interrelation. Icarus, 189, 213–232 {685}CrossRefGoogle Scholar
Lykawka, PS, Mukai, T, 2008, An outer planet beyond Pluto and the origin of the Trans-Neptunian Belt architecture. AJ, 135, 1161–1200 {685, 687}CrossRefGoogle Scholar
Lynch, CR, Murphy, T, Kaplan, DL, et al., 2017, A search for circularly polarised emission from young exoplanets. MNRAS, 467, 3447–3453 {748, 753}CrossRefGoogle Scholar
Lynch, P, 2003, On the significance of the Titius–Bode law for the distribution of the planets. MNRAS, 341, 1174–1178 {510}CrossRefGoogle Scholar
Lynden-Bell, D, Pringle, JE, 1974, The evolution of viscous disks and the origin of the nebular variables. MNRAS, 168, 603–637 {456}CrossRefGoogle Scholar
Lynds, R, Petrosian, V, 1986, Giant luminous arcs in galaxy clusters. AAS Bulletin, volume 18, 1014 {120}Google Scholar
Lyne, AG, Bailes, M, 1992, No planet orbiting PSR B1829–10. Nature, 355, 213–214 {109}CrossRefGoogle Scholar
Lyne, AG, Biggs, JD, Brinklow, A, et al., 1988, Discovery of a binary millisecond pulsar in the globular cluster M4. Nature, 332, 45–47 {108}CrossRefGoogle Scholar
Lyo, AR, Ohashi, N, Qi, C, et al., 2011, Millimeter observations of the transition disk around HD 135344B (SAO 206462). AJ, 142, 151 {466}CrossRefGoogle Scholar
Lyo, AR, Song, I, Lawson, WA, et al., 2006, A deep photometric survey of the ɲ Cha cluster down to the brown dwarf–planet boundary. MNRAS, 368, 1451–1455 {447}CrossRefGoogle Scholar
Lyon, R, Clampin, M, Petrone, P, et al., 2012, Telescopes in near space: Balloon Exo-planet Nulling Interferometer (Big BENI). AAS Abstracts #219, 155.14 {353}Google Scholar
Lyon, RG, Clampin, M, 2012, Space telescope sensitivity and controls for exoplanet imaging. Optical Engineering, 51(1), 011002 {338}Google Scholar
Lyon, RG, Gezari, DY, Melnick, GJ, et al., 2003, Extrasolar planetary imager (ESPI) for space-based Jovian planetary detection. SPIE Conf. Ser., volume 4860, 45–53 {353}Google Scholar
Lyon, SP, Johnson, JD, 1992, SESAME: the Los Alamos National Laboratory equation of state data base. LA–UR–92–3407 {566}
Lyot, B, 1939, The study of the solar corona and prominences without eclipses. MNRAS, 99, 580–594 {333}Google Scholar
Lyra, W, 2010, Naming the extrasolar planets. Bull. Astron. Soc. Brazil, 29, 26 {6}Google Scholar
Lyra, W, Johansen, A, Klahr, H, et al., 2008a, Embryos grown in the dead zone: assembling the first protoplanetary cores in low mass self-gravitating circumstellar disks of gas and solids. A&A, 491, L41–L44 {460}Google Scholar
Lyra, W, Johansen, A, Klahr, H, 2008b, Global magnetohydrodynamical models of turbulence in protoplanetary disks. I. A cylindrical potential on a Cartesian grid and transport of solids. A&A, 479, 883–901 {460}Google Scholar
Lyra, W, Johansen, A, Klahr, H, 2009, Standing on the shoulders of giants: Trojan Earths and vortex trapping in low mass self-gravitating protoplanetary disks of gas and solids. A&A, 493, 1125–1139 {460, 467}Google Scholar
Lyra, W, Klahr, H, 2011, The baroclinic instability in the context of layered accretion: self-sustained vortices and theirmagnetic stability in local compressible unstratified models of protoplanetary disks. A&A, 527, A138 {462}Google Scholar
Lyra, W, Kuchner, M, 2013, Formation of sharp eccentric rings in debris disks with gas but without planets. Nature, 499, 184–187 {496, 761}CrossRefGoogle ScholarPubMed
Lyra, W, Lin, MK, 2013, Steady state dust distributions in disk vortices: observational predictions and applications to transition disks. ApJ, 775, 17 {466}CrossRefGoogle Scholar
Lyra, W, Mac Low, MM, 2012, Rossby wave instability at dead zone boundaries in three-dimensional resistive magnetohydrodynamical global models of proto-planetary disks. ApJ, 756, 62 {459}CrossRefGoogle Scholar
Lyra, W, Paardekooper, SJ, Mac Low, MM, 2010, Orbital migration of low-mass planets in evolutionary radiativemodels: avoiding catastrophic infall. ApJ, 715, L68–L73 {519}CrossRefGoogle Scholar
Lyra, W, Richert, AJW, Boley, A, et al., 2016, On shocks driven by high-mass planets in radiatively inefficient disks. II. Three-dimensional global disk simulations. ApJ, 817, 102 {466, 467, 762}CrossRefGoogle Scholar
Lyra, W, Turner, NJ, McNally, CP, 2015, Rossby wave instability does not require sharp resistivity gradients. A&A, 574, A10 {467}Google Scholar
Lyttleton, RA, 1961, An accretion hypothesis for the origin of the solar system. MNRAS, 122, 399–407 {450}CrossRefGoogle Scholar
Ma, B, Ge, J, 2012, A newmulti-band radial velocity technique for detecting exoplanets around active stars. ApJ, 750, 172 {48}CrossRefGoogle Scholar
Ma, B, Ge, J, 2014, Statistical properties of brown dwarf companions: implications for different formation mechanisms. MNRAS, 439, 2781–2789 {64, 65}CrossRefGoogle Scholar
Ma, B, Ge, J, Wolszczan, A, et al., 2016a, Very low-mass stellar and substellar companions to solar-like stars from MARVELS. VI. A giant planet and a brown dwarf candidate in a close binary system HD 87646. AJ, 152, 112 {50, 721}Google Scholar
Ma, C, Arias, EF, Eubanks, TM, et al., 1998, The International Celestial Reference Frame as realised by VLBI. AJ, 116, 516–546 {86}CrossRefGoogle Scholar
Ma, DZ, Fu, YN, Wang, XL, 2017, The orbital configuration of the two interacting Jupiters in HD 155358 system. MNRAS, 470, 706–712 {722}CrossRefGoogle Scholar
Ma, Q, Matthews, LS, Land, V, et al., 2013, Charging of aggregate grains in astrophysical environments. ApJ, 763, 77 {469}CrossRefGoogle Scholar
Ma, S, Mao, S, Ida, S, et al., 2016b, Free-floating planets from core accretion theory: microlensing predictions. MNRAS, 461, L107–L111 {130}CrossRefGoogle Scholar
Maccone, C, 1994a, Recent developments on space missions to the solar foci. J. Br. Interplanet. Soc., 47, 508–512 {138}Google Scholar
Maccone, C, 1994b, Space missions outside the solar system to exploit the gravitational lens of the Sun. J. Br. Interplanet. Soc., 47, 45–52 {138}Google Scholar
Maccone, C, 2000, The gravitational lenses of α Cen A, B, C and of Barnard's star. Acta Astron., 47, 885–897 {138, 714}CrossRefGoogle Scholar
Maccone, C, 2008, FOCAL probe to 550–1000 au: a status review. J. Br. Interplanet. Soc., 61, 310–314 {138}Google Scholar
Maccone, C, 2011a, A belt of focal spheres between 550 and 17 kau for SETI and science. Acta Astron., 69, 939–948 {138}CrossRefGoogle Scholar
Maccone, C, 2011b, Exoplanet searches by future deep space missions. EPJ Web Conf., volume 11, 6007 {138}CrossRefGoogle Scholar
Maccone, C, 2011c, SETI and SEH (Statistical Equation for Habitables). Acta Astron., 68, 63–75 {644}CrossRefGoogle Scholar
Maccone, C, 2013, Sun focus comes first, interstellar comes second. J. Br. Interplanet. Soc., 66, 25–37 {138}Google Scholar
Maccone, C, Matloff, GL, 1994, SETI-Sail: a space mission to 550 au to exploit the gravitational lens of the Sun for SETI and astrophysics. J. Br. Interplanet. Soc., 47, 3–4 {138}Google Scholar
Maccone, C, Piantà, M, 1997, Magnifying the nearby stellar systems by FOCAL space missions to 550 au. Part I. J. Br. Interplanet. Soc., 50, 277–280 {138}Google Scholar
MacDonald, GJF, 1964, Tidal friction. Reviews of Geophysics and Space Physics, 2, 467–541 {533}CrossRefGoogle Scholar
MacDonald, MG, Ragozzine, D, Fabrycky, DC, et al., 2016, A dynamical analysis of the Kepler–80 system of five transiting planets. AJ, 152, 105 {190, 320, 742}CrossRefGoogle Scholar
MacDonald, RJ, Madhusudhan, N, 2017a, HD 209458 b in new light: evidence of N chemistry, patchy clouds and sub-solar water. MNRAS, 469, 1979–1996 {733}CrossRefGoogle Scholar
MacDonald, RJ, Madhusudhan, N, 2017b, Signatures of nitrogen chemistry in hot Jupiter atmospheres. ApJ, 850, L15 {733, 754, 756}CrossRefGoogle Scholar
Maceroni, C, Montalbán, J, Michel, E, et al., 2009, HD 174884: a strongly eccentric, short-period early-type binary system discovered by CoRoT. A&A, 508, 1375–1389 {230}Google Scholar
MacGregor, MA, Lawler, SM, Wilner, DJ, et al., 2016a, ALMA observations of the debris disk of solar analogue τ Cet. ApJ, 828, 113 {493, 714}CrossRefGoogle Scholar
MacGregor, MA, Matrà, L, Kalas, P, et al., 2017a, A complete ALMA map of the Fomalhaut debris disk. ApJ, 842, 8 {761}CrossRefGoogle Scholar
MacGregor, MA, Wilner, DJ, Chandler, C, et al., 2016b, Constraints on planetesimal collisionmodels in debris disks. ApJ, 823, 79 {496}CrossRefGoogle Scholar
MacGregor, MA, Wilner, DJ, Czekala, I, et al., 2017b, ALMA measurements of circum-stellar material in the GQ Lup system. ApJ, 835, 17 {762}CrossRefGoogle Scholar
Machalek, P, Greene, T, McCullough, PR, et al., 2010, Thermal emission and tidal heating of the heavy and eccentric planet XO–3 b. ApJ, 711, 111–118 {757}CrossRefGoogle Scholar
Machalek, P, McCullough, PR, Burke, CJ, et al., 2008, Thermal emission of exoplanet XO–1 b. ApJ, 684, 1427–1432 {757}CrossRefGoogle Scholar
Machalek, P, McCullough, PR, Burrows, A, et al., 2009, Detection of thermal emission of XO–2 b: evidence for a weak temperature inversion. ApJ, 701, 514–520 {757}CrossRefGoogle Scholar
Machida, MN, Inutsuka Si, Matsumoto, T, 2009, The circumbinary outflow: a proto-stellar outflow driven by a circumbinary disk. ApJ, 704, L10–L14 {444}CrossRefGoogle Scholar
Machida, MN, Inutsuka, SI, Matsumoto, T, 2011, Recurrent planet formation and intermittent protostellar outflows induced by episodic mass accretion. ApJ, 729, 42 {489}CrossRefGoogle Scholar
Machida, MN, Kokubo, E, Inutsuka, SI, et al., 2010, Gas accretion onto a protoplanet and formation of a gas giant planet. MNRAS, 405, 1227–1243 {481}Google Scholar
Macías, E, Anglada, G, Osorio, M, et al., 2017, Imaging a central ionised component, a narrow ring, and the CO snowline in the multigapped disk of HD 169142. ApJ, 838, 97 {467}CrossRefGoogle Scholar
Maciejewski, G, Dimitrov, D, Fernández, M, et al., 2016a, Departure from the constant-period ephemeris for the transiting exoplanet WASP–12. A&A, 588, L6 {260, 753}Google Scholar
Maciejewski, G, Dimitrov, D, Mancini, L, et al., 2016b, New transit observations for HAT–P–30 b, HAT–P–37 b, TrES–5 b, WASP–28 b, WASP–36 b and WASP–39 b. Acta Astronomica, 66, 55–74 {737, 751, 754, 755}Google Scholar
Maciejewski, G, Dimitrov, D, Neuhäuser, R, et al., 2010, Transit timing variation in exo-planet WASP–3 b. MNRAS, 407, 2625–2631 {269, 751}Google Scholar
Maciejewski, G, Dimitrov, D, Neuhäuser, R, 2011a, Transit timing variation and activity in the WASP–10 planetary system. MNRAS, 411, 1204–1212 {752}CrossRefGoogle Scholar
Maciejewski, G, Dimitrov, D, Seeliger, M, et al., 2013a, Multi-site campaign for transit timing variations of WASP–12 b: possible detection of a long-period signal of planetary origin. A&A, 551, A108 {165, 195, 256, 268, 269, 305, 753}Google Scholar
Maciejewski, G, Errmann, R, Raetz, S, et al., 2011b, High-precision photometry of WASP–12 b transits. A&A, 528, A65 {752}Google Scholar
Maciejewski, G, Fernández, M, Aceituno, FJ, et al., 2015, No variations in transit times for Qatar–1 b. A&A, 577, A109 {750}Google Scholar
Maciejewski, G, Ginski, C, Gilbert, H, et al., 2016c, On the orbital period of the exo-planet WASP–39 b. Information Bulletin on Variable Stars, 6177 {755}Google Scholar
Maciejewski, G, Niedzielski, A, Nowak, G, et al., 2014a, On the GJ 436 planetary system. Acta Astronomica, 64, 323–335 {729}Google Scholar
Maciejewski, G, Niedzielski, A, Wolszczan, A, et al., 2013b, Constraints on a second planet in the WASP–3 system. AJ, 146, 147 {752}CrossRefGoogle Scholar
Maciejewski, G, Ohlert, J, Dimitrov, D, et al., 2014b, Revisiting parameters for the WASP–1 planetary system. Acta Astronomica, 64, 27 {751}Google Scholar
Maciejewski, G, Puchalski, D, Saral, G, et al., 2013c, New mid-transit times for HAT–P–36 b, TrES–3 b, and WASP–43 b. IBVS, 6082, 1 {737, 751, 755}Google Scholar
Maciejewski, G, Raetz, S, Nettelmann, N, et al., 2011c, Analysis of new high-precision transit light curves of WASP–10 b: star spot occultations, small planetary radius, and high metallicity. A&A, 535, A7 {166, 213, 752}Google Scholar
Maciejewski, G, Seeliger, M, Adam, C, et al., 2011d, Refining parameters of the XO–5 planetary system with high-precision transit photometry. Acta Astronomica, 61, 25–35 {757}Google Scholar
Maciel, WJ, Costa, RDD, 2009, Abundance gradients in the Galactic disk: space and time variations. IAU Symp., volume 254, 38–43 {395}Google Scholar
Macintosh, BA, 2007, Direct detection of extrasolar planets with the Thirty Meter Telescope. In the Spirit of Bernard Lyot: The Direct Detection of Planets and Circum-stellar Disks in the 21st Century, 38 {346}Google Scholar
Macintosh, BA, Becklin, EE, Kaisler, D, et al., 2003, Deep Keck adaptive optics searches for extrasolar planets in the dust of yatt MC, et al., 2005, Structure in the Eri and Vega. ApJ, 594, 538–544 {715}Google Scholar
Macintosh, BA, Graham, JR, Barman, T, et al., 2015, Discovery and spectroscopy of the young Jovian planet 51 Eri b with the Gemini Planet Imager (GPI). Science, 350, 64–67 {360, 362, 588, 761}CrossRefGoogle Scholar
Macintosh, BA, Graham, JR, Ingraham, P, et al., 2014, First light of the Gemini Planet Imager (GPI). Proc. Nat. Acad. Sci., 111, 12661–12666 {12, 344, 360, 367}CrossRefGoogle Scholar
Macintosh, BA, Graham, JR, Palmer, DW, et al., 2008, The Gemini Planet Imager: from science to design to construction. SPIE Conf. Ser., volume 7015, 31 {344}Google Scholar
Macintosh, BA, Troy, M, Doyon, R, et al., 2006, Extreme adaptive optics for the Thirty Meter Telescope. SPIE Conf. Ser., volume 6272, 20 {346}Google Scholar
Mack, CE, Ge, J, Deshpande, R, et al., 2013, A cautionary tale: MARVELS brown dwarf candidate reveals itself to be a very long period, highly eccentric spectroscopic stellar binary. AJ, 145, 139 {50}CrossRefGoogle Scholar
Mack, CE, Schuler, SC, Stassun, KG, et al., 2014, Detailed abundances of planet-hosting wide binaries. I. Did planet formation imprint chemical signatures in the atmospheres of HD 20782/81? ApJ, 787, 98 {719}CrossRefGoogle Scholar
Mack, CE, Stassun, KG, Schuler, SC, et al., 2016, Detailed abundances of planet-hosting wide binaries. II. HD 80606 and HD 80607. ApJ, 818, 54 {729}CrossRefGoogle Scholar
Mackay, C, Dominik, M, Steele, IA, et al., 2017, Gravity Cam: wide-field high-resolution high-cadence imaging surveys in the visible from the ground. ArXiv e-prints {142, 333}
Mackay, CD, Baldwin, J, Law, N, et al., 2004, High-resolution imaging in the visible from the ground without adaptive optics: new techniques and results. Ground-based Instrumentation for Astronomy, volume 5492 of Proc. SPIE, 128–135 {333}Google Scholar
Mackay, DJC, 2003, Information Theory, Inference and Learning Algorithms. Cambridge University Press {25}Google Scholar
Mackebrandt, F, Mallonn, M, Ohlert, JM, et al., 2017, Transmission spectroscopy of the hot Jupiter TrES-3 b: Disproof of an overly large Rayleigh-like feature. A&A, 608, A26 {751}Google Scholar
MacLeod, M, Cantiello, M, Soares-Furtado, M, 2018, Planetary engulfment in the Hertzsprung–Russell diagram. ApJ, 853, L1 {412}CrossRefGoogle Scholar
Madhusudhan, N, 2012, C/O ratio as a dimension for characterising exoplanetary atmospheres. ApJ, 758, 36 {583, 614, 733, 752, 753, 754, 757}CrossRefGoogle Scholar
Madhusudhan, N, Agúndez, M, Moses, JI, et al., 2016, Exoplanetary atmospheres: chemistry, formation conditions, and habitability. Space Sci. Rev., 205, 285–348 {607}CrossRefGoogle ScholarPubMed
Madhusudhan, N, Amin, MA, Kennedy, GM, 2014a, Toward chemical constraints on hot Jupiter migration. ApJ, 794, L12 {499}CrossRefGoogle Scholar
Madhusudhan, N, Bitsch, B, Johansen, A, et al., 2017, Atmospheric signatures of giant exoplanet formation by pebble accretion. MNRAS, 469, 4102–4115 {471}CrossRefGoogle Scholar
Madhusudhan, N, Burrows, A, 2012, Analytic models for albedos, phase curves, and polarisation of reflected light from exoplanets. ApJ, 747, 25 {590, 591}CrossRefGoogle Scholar
Madhusudhan, N, Burrows, A, Currie, T, 2011a, Model atmospheres for massive gas giants with thick clouds: application to the HR 8799 planets and predictions for future detections. ApJ, 737, 34 {438, 588, 591, 763}CrossRefGoogle Scholar
Madhusudhan, N, Crouzet, N, McCullough, PR, et al., 2014b, H2O abundances in the atmospheres of three hot Jupiters. ApJ, 791, L9 {609, 610, 730, 732, 753}CrossRefGoogle Scholar
Madhusudhan, N, Harrington, J, Stevenson, KB, et al., 2011b, A high C/O ratio and weak thermal inversion in the atmosphere of exoplanet WASP–12 b. Nature, 469, 64–67 {583, 752}CrossRefGoogle Scholar
Madhusudhan, N, Knutson, H, Fortney, JJ, et al., 2014c, Exoplanetary atmospheres. Protostars and Planets VI, 739–762 {592}
Madhusudhan, N, Lee, KKM, Mousis, O, 2012, A possible carbon-rich interior in super-Earth 55 Cnc e. ApJ, 759, L40 {573, 728}CrossRefGoogle Scholar
Madhusudhan, N, Mousis, O, Johnson, TV, et al., 2011c, Carbon-rich giant planets: atmospheric chemistry, thermal inversions, spectra, and formation conditions. ApJ, 743, 191 {583, 752}CrossRefGoogle Scholar
Madhusudhan, N, Redfield, S, 2015, Optimal measures for characterising water-rich super-Earths. Int. J. Astrobiol., 14, 177–189 {728, 735}CrossRefGoogle Scholar
Madhusudhan, N, Seager, S, 2009, A temperature and abundance retrievalmethod for exoplanet atmospheres. ApJ, 707, 24–39 {208, 606}CrossRefGoogle Scholar
Madhusudhan, N, Seager, S, 2010, On the inference of thermal inversions in hot Jupiter atmospheres. ApJ, 725, 261–274 {591, 732, 735, 751}CrossRefGoogle Scholar
Madhusudhan, N, Seager, S, 2011, High metallicity and non-equilibrium chemistry in the day-side atmosphere of hot-Neptune GJ 436 b. ApJ, 729, 41 {728}CrossRefGoogle Scholar
Madhusudhan, N, Winn, JN, 2009, Empirical constraints on Trojan companions and orbital eccentricities in 25 transiting systems. ApJ, 693, 784–793 {274, 728}CrossRefGoogle Scholar
Madiedo, JM, Ortiz, JL, Morales, N, et al., 2014, A large lunar impact blast on 2013 September 11. MNRAS, 439, 2364–2369 {672}CrossRefGoogle Scholar
Maehara, H, Notsu, Y, Notsu, S, et al., 2017, Star spot activity and super-flares on solar-type stars. PASJ, 69, 41 {428}CrossRefGoogle Scholar
Maehara, H, Shibayama, T, Notsu, S, et al., 2012, Super-flares on solar-type stars. Nature, 485, 478–481 {428}CrossRefGoogle ScholarPubMed
Maggio, A, Pillitteri, I, Scandariato, G, et al., 2015, Coordinated X-ray and optical observations of star–planet Interaction in HD 17156. ApJ, 811, L2 {729}CrossRefGoogle Scholar
Magic, Z, Chiavassa, A, Collet, R, et al., 2015, The Stagger-grid: a grid of 3d stellar atmosphere models. IV. Limb darkening coefficients. A&A, 573, A90 {211}Google Scholar
Mahadevan, S, Ge, J, 2009, The use of absorption cells as a wavelength reference for precision radial velocity measurements in the near-infrared. ApJ, 692, 1590–1596 {32}CrossRefGoogle Scholar
Mahadevan, S, Ge, J, Fleming, SW, et al., 2008a, An inexpensive field-widened monolithic Michelson interferometer for precision radial velocity measurements. PASP, 120, 1001–1015 {49}CrossRefGoogle Scholar
Mahadevan, S, Halverson, S, Ramsey, L, et al., 2014a, Suppression of fibermodal noise induced radial velocity errors for bright emission-line calibration sources. ApJ, 786, 18 {34}CrossRefGoogle Scholar
Mahadevan, S, Ramsey, L, Bender, C, et al., 2012, The Habitable-zone Planet Finder (HPF): a stabilised fiber-fed NIR spectrograph for the Hobby–Eberly Telescope. SPIE Conf. Ser., volume 8446 {48}Google Scholar
Mahadevan, S, Ramsey, LW, Terrien, R, et al., 2014b, The Habitable-zone Planet Finder (HPF): a status update on the development of a stabilized fiber-fed near-infrared spectrograph for the for the Hobby–Eberly telescope. Ground-based and Airborne Instrumentation for Astronomy V, volume 9147 of Proc. SPIE, 91471G {46}Google Scholar
Mahadevan, S, van Eyken, J, Ge, J, et al., 2008b, Measuring stellar radial velocities with a dispersed fixed-delay interferometer. ApJ, 678, 1505–1510 {49}CrossRefGoogle Scholar
Mahajan, N, Wu, Y, 2014, Stability of the Kepler–11 system and its origin. ApJ, 795, 32 {317, 739}CrossRefGoogle Scholar
Mahapatra, G, Helling, C, Miguel, Y, 2017, Cloud formation in metal-rich atmospheres of hot super-Earths like 55 Cnc e and CoRoT–7 b. MNRAS, 472, 447–464 {728, 734}CrossRefGoogle Scholar
Mahtani, DP, Maxted, PFL, Anderson, DR, et al., 2013, Warm Spitzer occultation photometry of WASP–26 b at 3.6 and 4.5μm. MNRAS, 432, 693–701 {754}CrossRefGoogle Scholar
Maindl, TI, Dvorak, R, Lammer, H, et al., 2015, Impact induced surface heating by plan-etesimals on early Mars. A&A, 574, A22 {600}Google Scholar
Mainzer, A, Cushing, MC, Skrutskie, M, et al., 2011, The first ultra-cool brown dwarf discovered by the Wide-field Infrared Survey Explorer (WISE). ApJ, 726, 30 {433}CrossRefGoogle Scholar
Maire, AL, Boccaletti, A, Rameau, J, et al., 2014a, Search for cool giant exoplanets around young and nearby stars: VLT–NACO near-infrared phase-coronagraphic and differential imaging. A&A, 566, A126 {340}Google Scholar
Maire, AL, Boccaletti, A, Schneider, J, et al., 2012a, SPICES: a 1.5-mspace coronagraph for spectropolarimetric characterisation of cold exoplanets. SPIE Conf. Ser., volume 8442 {182, 247, 353}Google Scholar
Maire, AL, Bonnefoy, M, Ginski, C, et al., 2016, First light of the VLT planet finder SPHERE. II. The physical properties and the architecture of the young systems PZ Tel and HD 1160 revisited. A&A, 587, A56 {360}Google Scholar
Maire, AL, Galicher, R, Boccaletti, A, et al., 2012b, Atmospheric characterisation of cold exoplanets using a 1.5-m coronagraphic space telescope. A&A, 541, A83 {353}Google Scholar
Maire, AL, Skemer, AJ, Hinz, PM, et al., 2015, The LEECH Exoplanet Imaging Survey: further constraints on the planet architecture of the HR 8799 system. A&A, 576, A133 {359, 763}Google Scholar
Maire, AL, Stolker, T, Messina, S, et al., 2017, Testing giant planet formation in the transitional disk of SAO 206462 using deep VLT–SPHERE imaging. A&A, 601, A134 {466}Google Scholar
Maire, J, Wright, SA, Werthimer, D, et al., 2014b, A near-infrared SETI experiment: probability distribution of false coincidences. Ground-based and Airborne Instrumentation for Astronomy V, volume 9147 of Proc. SPIE, 91474K {646}Google Scholar
Maíz-Apellániz, J, 2001, The origin of the Local Bubble. ApJ, 560, L83–L86 {651}CrossRefGoogle Scholar
Majeau, C, Agol, E, Cowan, NB, 2012, A two-dimensional infraredmap of the extrasolar planet HD 189733 b. ApJ, 747, L20 {609, 615, 730}CrossRefGoogle Scholar
Majid, W, Winterhalter, D, Chandra, I, et al., 2006, Search for radio emission from ex-trasolar planets: preliminary analysis of GMRT data. European Planetary Science Congress, 266 {427}Google Scholar
Makalkin, AB, Dorofeeva, VA, 2014, Accretion disks around Jupiter and Saturn at the stage of regular satellite formation. Solar System Research, 48, 62–78 {687}CrossRefGoogle Scholar
Makarov, VV, 2010, Variability of surface flows on the Sun and the implications for exoplanet detection. ApJ, 715, 500–505 {37}CrossRefGoogle Scholar
Makarov, VV, 2012, Conditions of passage and entrapment of terrestrial planets in spin–orbit resonances. ApJ, 752, 73 {541, 666}CrossRefGoogle Scholar
Makarov, VV, 2013, Why is the Moon synchronously rotating? MNRAS, 434, L21–L25 {666}CrossRefGoogle Scholar
Makarov, VV, 2015, Equilibrium rotation of semiliquid exoplanets and satellites. ApJ, 810, 12 {605}CrossRefGoogle Scholar
Makarov, VV, Beichman, CA, Catanzarite, JH, et al., 2009, Star spot jitter in photometry, astrometry, and radial velocity measurements. ApJ, 707, L73–L76 {85}CrossRefGoogle Scholar
Makarov, VV, Berghea, C, 2014, Dynamical evolution and spin–orbit resonances of potentially habitable exoplanets: the case of GJ 667C. ApJ, 780, 124 {622, 717}CrossRefGoogle Scholar
Makarov, VV, Berghea, C, Efroimsky, M, 2012, Dynamical evolution and spin–orbit resonances of potentially habitable exoplanets: GJ 581 d. ApJ, 761, 83 {622, 717}CrossRefGoogle Scholar
Makarov, VV, Berghea, CT, Efroimsky, M, 2018, Spin–orbital tidal dynamics and tidal heating in the TRAPPIST–1 multi-planet system. ArXiv e-prints {750}
Makarov, VV, Efroimsky, M, 2013, No pseudo-synchronous rotation for terrestrial planets and moons. ApJ, 764, 27 {534, 535, 541}CrossRefGoogle Scholar
Makarov, VV, Efroimsky, M, 2014, Tidal dissipation in a homogeneous spherical body. II. Three examples: Mercury, IO, and Kepler–10 b. ApJ, 795, 7 {544, 739}CrossRefGoogle Scholar
Makarov, VV, Frouard, J, Dorland, B, 2016, Forced libration of tidally synchronised planets and moons. MNRAS, 456, 665–671 {541}CrossRefGoogle Scholar
Makarov, VV, Goldin, A, 2016a, Photometric and astrometric vagaries of the enigma star KIC–8462852. ApJ, 833, 78 {232, 747}CrossRefGoogle Scholar
Makarov, VV, Goldin, A, 2016b, Variability-induced motion in Kepler data. ApJS, 224, 19 {223}CrossRefGoogle Scholar
Makarov, VV, Goldin, A, 2017, Kepler data on KIC–7341653: a nearby M dwarf with monster flares and a phase-coherent variability. ApJ, 845, 149 {428}CrossRefGoogle Scholar
Makide, K, Nagashima, K, Krot, AN, et al., 2011, Heterogeneous distribution of 26Al at the birth of the solar system. ApJ, 733, L31 {651}CrossRefGoogle Scholar
Malacara, D, Thompson, BJ, 2004, Handbook of Optical Design (second edition). Marcel Dekker {45}Google Scholar
Malamud, U, Perets, HB, 2016, Post-main-sequence evolution of icy minor planets. I. Implications for water retention and white dwarf pollution. ApJ, 832, 160 {419}CrossRefGoogle Scholar
Malamud, U, Perets, HB, 2017a, Post-main-sequence evolution of icy minor planets. II. Water retention and white dwarf pollution around massive progenitor stars. ApJ, 842, 67 {419}CrossRefGoogle Scholar
Malamud, U, Perets, HB, 2017b, Post-main-sequence evolution of icy minor planets. III. Water retention in dwarf planets and exomoons and implications for white dwarf pollution. ApJ, 849, 8 {419}CrossRefGoogle Scholar
Malavolta, L, Borsato, L, Granata, V, et al., 2017, The Kepler–19 system: a thick-envelope super-Earth with two Neptune-mass companions characterised using radial velocities and transit timing variations. AJ, 153, 224 {272, 740}CrossRefGoogle Scholar
Malavolta, L, Mayo, AW, Louden, T, et al., 2018, An ultra-short period rocky super-Earth with a secondary eclipse and a Neptune-like companion around K2–141. AJ, 155, 107 {749}CrossRefGoogle Scholar
Malavolta, L, Nascimbeni, V, Piotto, G, et al., 2016, The GAPS programme with HARPS–N at TNG. XI. Pr 211 in M44: the first multi-planet system in an open cluster. A&A, 588, A118 {24, 61, 725}Google Scholar
Malbet, F, 1996, High angular resolution coronography for adaptive optics. A&AS, 115, 161–174 {334}Google Scholar
Malbet, F, Goullioud, R, Lagage, PO, et al., 2012a, NEAT: a spaceborne astrometric mission for the detection and characterisation of nearby habitable planetary systems. SPIE Conf. Ser., volume 8442 {100}Google Scholar
Malbet, F, Léger, A, Anglada Escudé G, et al., 2016, Microarcsecond astrometric observatory Theia: from dark matter to compact objects and nearby earths. Space Telescopes and Instrumentation 2016: Optical, Infrared, and Millimeter Wave, volume 9904 of Proc. SPIE, 99042F {100}Google Scholar
Malbet, F, Léger, A, Shao, M, et al., 2012b, High-precision astrometry for the detection and characterisation of nearby habitable planetary systems with the Nearby Earth Astrometric Telescope (NEAT). Exp. Astron., 34, 385–413 {100}CrossRefGoogle Scholar
Malbet, F, Yu, JW, Shao, M, 1995, High-dynamic-range imaging using a deformable mirror for space coronography. PASP, 107, 386–398 {353}CrossRefGoogle Scholar
Maldonado, J, Eiroa, C, Villaver, E, et al., 2012, Metallicity of solar-type stars with debris disks and planets. A&A, 541, A40 {389, 494}Google Scholar
Maldonado, J, Scandariato, G, Stelzer, B, et al., 2017, HADES radial velocity programme with HARPS–N at TNG. III. Flux–flux and activity–rotation relationships of early-Mdwarfs. A&A, 598, A27 {36}Google Scholar
Maldonado, J, Villaver, E, 2016, Evolved stars and the origin of abundance trends in planet hosts. A&A, 588, A98 {378, 484}Google Scholar
Maldonado, J, Villaver, E, Eiroa, C, 2013, The metallicity signature of evolved stars with planets. A&A, 554, A84 {389, 484}Google Scholar
Males, JR, Close, LM, Morzinski, KM, et al., 2014, Magellan adaptive optics first-light observations of the exoplanet fl Pic b. I. Direct imaging in the far-red optical with MagAO+VisAO and in the near-infrared with NICI. ApJ, 786, 32 {762}CrossRefGoogle Scholar
Males, JR, Skemer, AJ, Close, LM, 2013, Direct imaging in the habitable zone and the problem of orbital motion. ApJ, 771, 10 {342}CrossRefGoogle Scholar
Malhotra, R, 1993a, The origin of Pluto's peculiar orbit. Nature, 365, 819–821 {682, 695}CrossRefGoogle Scholar
Malhotra, R, 1993b, Three-body effects in the PSR B1257+12 planetary system. ApJ, 407, 266–275 {107}CrossRefGoogle Scholar
Malhotra, R, 1994, A mapping method for the gravitational few-body problemwith dissipation. Cel. Mech. Dyn. Astron., 60, 373–385 {513}CrossRefGoogle Scholar
Malhotra, R, 1995, The origin of Pluto's orbit: implications for the solar system beyond Neptune. AJ, 110, 420–429 {524, 685, 695}CrossRefGoogle Scholar
Malhotra, R, 1998, Orbital resonances and chaos in the solar system. Solar System Formation and Evolution, volume 149 of ASP Conf. Ser., 37 {317}Google Scholar
Malhotra, R, 2002, A dynamical mechanism for establishing apsidal resonance. ApJ, 575, L33–L36 {507}CrossRefGoogle Scholar
Malhotra, R, Black, D, Eck, A, et al., 1992, Resonant orbital evolution in the putative planetary system of PSR B1257+12. Nature, 356, 583–585 {107}CrossRefGoogle Scholar
Malhotra, R, Dermott, SF, 1990, The role of secondary resonances in the orbital history of Miranda. Icarus, 85, 444–480 {689}CrossRefGoogle Scholar
Malhotra, R, Minton, DA, 2008, Prospects for the habitability of OGLE–2006–BLG–109L. ApJ, 683, L67–L70 {759}CrossRefGoogle Scholar
Malhotra, R, Volk, K, Wang, X, 2016, Corralling a distant planet with extreme resonant Kuiper Belt Objects. ApJ, 824, L22 {687}CrossRefGoogle Scholar
Malik, M, Grosheintz, L, Mendonça, JM, et al., 2017, HELIOS: an open-source, GPU-accelerated radiative transfer code for self-consistent exoplanetary atmospheres. AJ, 153, 56 {606, 731, 752, 753, 754, 755}CrossRefGoogle Scholar
Malik, M, Meru, F, Mayer, L, et al., 2015, On the gap-opening criterion of migrating planets in protoplanetary disks. ApJ, 802, 56 {521}CrossRefGoogle Scholar
Malin, MC, Edgett, KS, Posiolova, LV, et al., 2006, Present-day impact cratering rate and contemporary gully activity on Mars. Science, 314, 1573 {672}CrossRefGoogle ScholarPubMed
Malkin, Z, 2012, The current best estimate of the Galactocentric distance of the Sun based on comparison of different statistical techniques. ArXiv e-prints {702}
Mallama, A, 2009, Characterisation of terrestrial exoplanets based on the phase curves and albedos of Mercury, Venus and Mars. Icarus, 204, 11–14 {235}CrossRefGoogle Scholar
Mallama, A, Krobusek, B, Pavlov, H, 2017, Comprehensive wide-band magnitudes and albedos for the planets, with applications to exoplanets and Planet Nine. Icarus, 282, 19–33 {687}CrossRefGoogle Scholar
Mallik, SV, 1999, Lithiumabundance and mass. A&A, 352, 495–507 {400}Google Scholar
Mallonn, M, Bernt, I, Herrero, E, et al., 2016, Broad-band spectrophotometry of HAT–P–32 b: search for a scattering signature in the planetary spectrum. MNRAS, 463, 604–614 {737}CrossRefGoogle Scholar
Mallonn, M, Nascimbeni, V, Weingrill, J, et al., 2015a, Broad-band spectrophotometry of the hot Jupiter HAT–P–12 b from the near-ultraviolet to the near-infrared. A&A, 583, A138 {736}Google Scholar
Mallonn, M, Strassmeier, KG, 2016, Transmission spectroscopy of HAT–P–32 bwith the LBT: confirmation of clouds/hazes in the planetary atmosphere. A&A, 590, A100 {588, 737}Google Scholar
Mallonn, M, von Essen, C, Weingrill, J, et al., 2015b, Transmission spectroscopy of the inflated exo-Saturn HAT–P–19 b. A&A, 580, A60 {736}Google Scholar
Mallonn, M, Wakeford, HR, 2017, Near-ultraviolet transit photometry of HAT–P–32 b with the Large Binocular Telescope: silicate aerosols in the planetary atmosphere. Astron. Nach., 338, 773–780 {737}CrossRefGoogle Scholar
Malmberg, D, Davies, MB, 2009, On the origin of eccentricities among extrasolar planets. MNRAS, 394, L26–L30 {499}CrossRefGoogle Scholar
Malmberg, D, Davies, MB, Chambers, JE, 2007a, The instability of planetary systems in binaries: how the Kozai mechanism leads to strong planet–planet interactions. MNRAS, 377, L1–L4 {528, 549}CrossRefGoogle Scholar
Malmberg, D, Davies, MB, Heggie, DC, 2011, The effects of fly-bys on planetary systems. MNRAS, 411, 859–877 {526}CrossRefGoogle Scholar
Malmberg, D, de Angeli, F, Davies, MB, et al., 2007b, Close encounters in young stellar clusters: implications for planetary systems in the solar neighbourhood. MNRAS, 378, 1207–1216 {158}CrossRefGoogle Scholar
Mal'Nev, AG, Orlov, VV, Petrova, AV, 2006, The dynamical evolution of stellar–planetary systems. Astronomy Reports, 50, 405–410 {521}Google Scholar
Malyshkin, L, Goodman, J, 2001, The timescale of runaway stochastic coagulation. Icarus, 150, 314–322 {474}CrossRefGoogle Scholar
Mamajek, E, 2017, Kinematics of the interstellar vagabond Oumuamua. RNAAS, 1, 21 {686, 692, 693}Google Scholar
Mamajek, EE, 2005, A moving cluster distance to the exoplanet 2M J1207 b in the TWHya association. ApJ, 634, 1385–1394 {763}CrossRefGoogle Scholar
Mamajek, EE, 2009, Initial conditions of planet formation: lifetimes of primordial disks. Amer. Inst. Phys. Conf. Ser., volume 1158, 3–10 {484}Google Scholar
Mamajek, EE, 2010, On the nature of the purported common proper motion companions to the exoplanet host star 51 Peg. Astron. Nach., 331, 704 {91, 715}CrossRefGoogle Scholar
Mamajek, EE, 2012, On the age and binarity of Fomalhaut. ApJ, 754, L20 {761}CrossRefGoogle Scholar
Mamajek, EE, Barenfeld, SA, Ivanov, VD, et al., 2015a, The closest known fly-by of a star to the solar system. ApJ, 800, L17 {655}CrossRefGoogle Scholar
Mamajek, EE, Bartlett, JL, Seifahrt, A, et al., 2013, The solar neighbourhood. 30. Fomalhaut C. AJ, 146, 154 {761}CrossRefGoogle Scholar
Mamajek, EE, Hillenbrand, LA, 2008, Improved age estimation for solar-type dwarfs using activity–rotation diagnostics. ApJ, 687, 1264–1293 {195, 306, 310, 380, 381}CrossRefGoogle Scholar
Mamajek, EE, Meyer, MR, 2007, An improbable solution to the underluminosity of 2M J1207 b: a hot protoplanet collision afterglow. ApJ, 668, L175–L178 {363, 368, 763}CrossRefGoogle Scholar
Mamajek, EE, Prsa, A, Torres, G, et al., 2015b, IAU2015 Resolution B3 on recommended nominal conversion constants for selected solar and planetary properties. ArXiv e-prints {6, 701, 702}
Mamajek, EE, Quillen, AC, Pecaut, MJ, et al., 2012, Planetary construction zones in oc-cultation: discovery of an extrasolar ring system transiting a young Sun-like star and future prospects for detecting eclipses by circumsecondary and circumplan-etary disks. AJ, 143, 72 {11, 218, 220, 751}CrossRefGoogle Scholar
Mamatsashvili, GR, Chagelishvili, GD, Bodo, G, et al., 2013, Revisiting linear dynamics of non-axisymmetric perturbations in weakly magnetised accretion disks. MNRAS, 435, 2552–2567 {461}CrossRefGoogle Scholar
Mancini, L, 2017, On the relationship between the planetary radius and the equilibrium temperature for transiting exoplanets. International Journal of Modern Physics D, 26, 1741012 {294}CrossRefGoogle Scholar
Mancini, L, Ciceri, S, Chen, G, et al., 2013a, Physical properties, transmission and emission spectra of the WASP–19 planetary system from multi-colour photometry. MNRAS, 436, 2–18 {212, 754}CrossRefGoogle Scholar
Mancini, L, Esposito, M, Covino, E, et al., 2015a, The GAPS Programme with HARPS–N at TNG. VIII. Observations of the Rossiter–McLaughlin effect and character-isation of the transiting planetary systems HAT–P–36 and WASP–11/HAT–P–10. A&A, 579, A136 {253, 737, 752}Google Scholar
Mancini, L, Giordano, M, Mollière, P, et al., 2016a, An optical transmission spectrum of the transiting hot Jupiter in the metal-poor WASP–98 planetary system. MNRAS, 461, 1053–1061 {756}CrossRefGoogle Scholar
Mancini, L, Hartman, JD, Penev, K, et al., 2015b, HATS–13 b and HATS–14 b: two transiting hot Jupiters from the HAT–South survey. A&A, 580, A63 {737}Google Scholar
Mancini, L, Kemmer, J, Southworth, J, et al., 2016b, An optical transmission spectrum of the giant planet WASP–36 b. MNRAS, 459, 1393–1402 {754}CrossRefGoogle Scholar
Mancini, L, Lillo-Box, J, Southworth, J, et al., 2016c, Kepler–539: a young extrasolar system with two giant planets on wide orbits and in gravitational interaction. A&A, 590, A112 {746}Google Scholar
Mancini, L, Nikolov, N, Southworth, J, et al., 2013b, Physical properties of the WASP–44 planetary system from simultaneous multi-colour photometry. MNRAS, 430, 2932–2942 {755}CrossRefGoogle Scholar
Mancini, L, Southworth, J, Ciceri, S, et al., 2013c, A lower radius and mass for the transiting extrasolar planet HAT–P–8 b. A&A, 551, A11 {736}Google Scholar
Mancini, L, Southworth, J, Ciceri, S, 2014a, Physical properties and transmission spectrum of the WASP–80 planetary system from multi-colour photometry. A&A, 562, A126 {756}Google Scholar
Mancini, L, Southworth, J, Ciceri, S, 2014b, Physical properties of the WASP–67 planetary system from multi-colour photometry. A&A, 568, A127 {166, 223, 224, 756}Google Scholar
Mancini, L, Southworth, J, Ciceri, S, 2014c, Physical properties, star-spot activity, orbital obliquity and transmission spectrum of the Qatar–2 planetary system from multicolour photometry. MNRAS, 443, 2391–2409 {212, 213, 591, 750}CrossRefGoogle Scholar
Mancini, L, Southworth, J, Raia, G, et al., 2017, Orbital alignment and star spot properties in the WASP–52 planetary system. MNRAS, 465, 843–857 {253, 755}CrossRefGoogle Scholar
Mancini, M, Schneider, R, Graziani, L, et al., 2015c, The dust mass in z>6 normal star-forming galaxies. MNRAS, 451, L70–L74 {495}CrossRefGoogle Scholar
Mandel, K, Agol, E, 2002, Analytic light curves for planetary transit searches. ApJ, 580, L171–L175 {195, 196, 200, 201, 225, 240}CrossRefGoogle Scholar
Mandel, L, Wolf, E, 1995, Optical Coherence and Quantum Optics. Cambridge University Press {336}CrossRefGoogle Scholar
Mandell, AM, Deming, D, Blake, GA, et al., 2011, Non-detection of L-band line emission from the exoplanet HD 189733 b. ApJ, 728, 18 {608, 609, 730}CrossRefGoogle Scholar
Mandell, AM, Ge, J, Murray, N, 2004, A search for 6Li in lithium-poor starswith planets. AJ, 127, 1147–1157 {403}CrossRefGoogle Scholar
Mandell, AM, Haynes, K, Sinukoff, E, et al., 2013, Exoplanet transit spectroscopy using WFC3: WASP–12 b, WASP–17 b, and WASP–19 b. ApJ, 779, 128 {588, 753, 754}CrossRefGoogle Scholar
Mandell, AM, Raymond, SN, Sigurdsson, S, 2007, Formation of Earth-like planets during and after giant planet migration. ApJ, 660, 823–844 {523, 632}CrossRefGoogle Scholar
Mandell, AM, Sigurdsson, S, 2003, Survival of terrestrial planets in the presence of giant planet migration. ApJ, 599, L111–L114 {523}CrossRefGoogle Scholar
Mandushev, G, O'Donovan, FT, Charbonneau, D, et al., 2007, TrES–4: a transiting hot Jupiter of very low density. ApJ, 667, L195–L198 {169, 302, 751}CrossRefGoogle Scholar
Mandushev, G, Quinn, SN, Buchhave, LA, et al., 2011, TrES–5: a massive Jupiter-sized planet transiting a cool G dwarf. ApJ, 741, 114 {169, 751}CrossRefGoogle Scholar
Maness, HL, Marcy, GW, Ford, EB, et al., 2007, The M dwarf GJ 436 and its Neptune-mass planet. PASP, 119, 90–101 {728}CrossRefGoogle Scholar
Manfroid, J, 2016, TRAPPIST-Nord. Le Ciel, 78, 324–531 {168}Google Scholar
Manjavacas, E, Goldman, B, Reffert, S, et al., 2013, Parallax measurements of cool brown dwarfs. A&A, 560, A52 {434}Google Scholar
Mankevich, SK, Orlov, EP, 2016, Interstellar laser communication: implementability criterion and optimisation conditions for the addressed signal search and sending. Quantum Electronics, 46, 966 {645}CrossRefGoogle Scholar
Mann, AW, Dupuy, T, Muirhead, PS, et al., 2017a, The gold standard: accurate stellar and planetary parameters for eight Kepler M dwarf systems enabled by parallaxes. AJ, 153, 267 {739, 741, 743, 746, 747}CrossRefGoogle Scholar
Mann, AW, Gaidos, E, Ansdell, M, 2013a, Spectro-thermometry of M dwarfs and their candidate planets: too hot, too cool, or just right? ApJ, 779, 188 {405}CrossRefGoogle Scholar
Mann, AW, Gaidos, E, Gaudi, BS, 2010, The invisible majority? Evolution and detection of outer planetary systems without gas giants. ApJ, 719, 1454–1469 {475}CrossRefGoogle Scholar
Mann, AW, Gaidos, E, Kraus, A, et al., 2013b, Testing themetal of late-type Kepler planet hosts with iron-clad methods. ApJ, 770, 43 {308, 389, 390}CrossRefGoogle Scholar
Mann, AW, Gaidos, E, Lépine, S, et al., 2012, They might be giants: luminosity class, planet occurrence, and planet-metallicity relation of the coolest Kepler target stars. ApJ, 753, 90 {290, 308, 390}CrossRefGoogle Scholar
Mann, AW, Gaidos, E, Mace, GN, et al., 2016a, Zodiacal Exoplanets in Time (ZEIT). I. A Neptune-sized planet orbiting an M4.5 dwarf in the Hyades star cluster. ApJ, 818, 46 {12, 159, 748}CrossRefGoogle Scholar
Mann, AW, Gaidos, E, Vanderburg, A, et al., 2017b, Zodiacal Exoplanets in Time (ZEIT). IV. Seven transiting planets in the Praesepe cluster. AJ, 153, 64 {159, 748}CrossRefGoogle Scholar
Mann, AW, Newton, ER, Rizzuto, AC, et al., 2016b, Zodiacal Exoplanets in Time (ZEIT). III. A short-period planet orbiting a pre-main-sequence star in the Upper Scorpius OB Association. AJ, 152, 61 {748}CrossRefGoogle Scholar
Mann, AW, Vanderburg, A, Rizzuto, AC, et al., 2018, Zodiacal Exoplanets in Time (ZEIT). VI. A three-planet system in the Hyades cluster including an Earth-sized planet. AJ, 155, 4 {159, 749}CrossRefGoogle Scholar
Mann, I, 2010, Interstellar dust in the solar system. ARA&A, 48, 173–203 {691, 692}Google Scholar
Mann, I, Köhler, M, Kimura, H, et al., 2006, Dust in the solar system and in extrasolar planetary systems. A&A Rev., 13, 159–228 {493}Google Scholar
Manser, CJ, Gänsicke, BT, Koester, D, et al., 2016a, Another one grinds the dust: variability of the planetary debris disk at the white dwarf SDSS J104341.53+085558.2. MNRAS, 462, 1461–1469 {417, 418, 419}CrossRefGoogle Scholar
Manser, CJ, Gänsicke, BT, Marsh, TR, et al., 2016b, Doppler imaging of the planetary debris disk at the white dwarf SDSS J122859.93+104032.9. MNRAS, 455, 4467–4478 {416}CrossRefGoogle Scholar
Mao, H, Hemley, RJ, 1994, Ultrahigh-pressure transitions in solid hydrogen. Reviews of Modern Physics, 66, 671–692 {567}CrossRefGoogle Scholar
Mao, S, 2008, Introduction to gravitational microlensing [unpublished]. ArXiv e-prints {123}
Mao, S, Paczyński, B, 1991, Gravitational microlensing by double stars and planetary systems. ApJ, 374, L37–L40 {120, 123, 124, 125, 138}CrossRefGoogle Scholar
Mao, S, Paczyński, B, 1996, Mass determination with gravitational microlensing. ApJ, 473, 57 {150}CrossRefGoogle Scholar
Mao, S, Witt, HJ, An, JH, 2014, Three-dimensional microlensing. MNRAS, 437, 1554–1560 {136}CrossRefGoogle Scholar
Maoz, D, Mazeh, T, McQuillan, A, 2015, Kepler and the seven dwarfs: detection of low-level day-time-scale periodic photometric variations in white dwarfs. MNRAS, 447, 1749–1760 {415}CrossRefGoogle Scholar
Marboeuf, U, Mousis, O, Ehrenreich, D, et al., 2008, Composition of ices in low-mass extrasolar planets. ApJ, 681, 1624–1630 {564}CrossRefGoogle Scholar
Marboeuf, U, Thiabaud, A, Alibert, Y, et al., 2014a, From planetesimals to planets: volatile molecules. A&A, 570, A36 {463, 565}Google Scholar
Marboeuf, U, Thiabaud, A, Alibert, Y, 2014b, Fromstellar nebula to planetesimals. A&A, 570, A35 {463, 565}Google Scholar
Marchal, C, Bozis, G, 1982, Hill stability and distance curves for the general three-body problem. Celestial Mechanics, 26, 311–333 {512}CrossRefGoogle Scholar
Marchi, S, 2007, Extrasolar planet taxonomy: a new statistical approach. ApJ, 666, 475–485 {53, 554}CrossRefGoogle Scholar
Marchi, S, Bottke, WF, O'Brien, DP, et al., 2014, Small crater populations on Vesta. Planet. Space Sci., 103, 96–103 {681}CrossRefGoogle Scholar
Marchi, S, Chapman, CR, Fassett, CI, et al., 2013, Global resurfacing of Mercury 4.0–4.1Gyr ago by heavy bombardment and volcanism. Nature, 499, 59–61 {671}CrossRefGoogle ScholarPubMed
Marchi, S, Ortolani, S, Nagasawa, M, et al., 2009, On the various origins of close-in extrasolar planets. MNRAS, 394, L93–L96 {254}CrossRefGoogle Scholar
Marchwinski, RC, Mahadevan, S, Robertson, P, et al., 2015, Toward understanding stellar radial velocity jitter as a function of wavelength: the Sun as a proxy. ApJ, 798, 63 {38}CrossRefGoogle Scholar
Marconi, A, Di Marcantonio, P, D'Odorico, V, et al., 2016, E-ELT–HIRES the high-resolution spectrograph for the E-ELT. SPIE Conf. Ser., volume 9908 of Proc. SPIE, 990823 {28, 46, 49}Google Scholar
Marcos-Arenal, P, Zima, W, De Ridder, J, et al., 2014, The PLATO Simulator: modelling of high-precision high-cadence space-based imaging. A&A, 566, A92 {180}Google Scholar
Marcq, E, 2012, A simple 1d radiative-convective atmospheric model designed for integration into coupled models of magma ocean planets. J. Geophys. Res. (Planets), 117, E01001 {576}CrossRefGoogle Scholar
Marcq, E, Salvador, A, Massol, H, et al., 2017, Thermal radiation of magma ocean planets using a 1d radiative-convective model of H2O-CO2 atmospheres. J. Geo-phys. Res. (Planets), 122, 1539–1553 {576}Google Scholar
Marcus, PS, 1993, Jupiter's Great Red Spot and other vortices. ARA&A, 31, 523–573 {462}Google Scholar
Marcus, PS, Lee, C, 1994, Jupiter's Great Red Spot and zonal winds as a self-consistent, one-layer, quasigeostrophic flow. Chaos, 4, 269–286 {462}CrossRefGoogle ScholarPubMed
Marcus, RA, Sasselov, D, Hernquist, L, et al., 2010a, Minimum radii of super-Earths: constraints from giant impacts. ApJ, 712, L73–L76 {573}CrossRefGoogle Scholar
Marcus, RA, Sasselov, D, Stewart, ST, et al., 2010b, Water/icy super-Earths: giant impacts and maximumwater content. ApJ, 719, L45–L49 {576}CrossRefGoogle Scholar
Marcus, RA, Stewart, ST, Sasselov, D, et al., 2009, Collisional stripping and disruption of super-Earths. ApJ, 700, L118–L122 {500}CrossRefGoogle Scholar
Marcy, GW, 2009a, Extrasolar planets: water world larger than Earth. Nature, 462, 853–854 {577}CrossRefGoogle Scholar
Marcy, GW, 2009b, Planet Hunter: a astrometric search of 65 nearby stars for Earth-mass planets. AAS Bulletin, volume 41, 507 {100}Google Scholar
Marcy, GW, Benitz, KJ, 1989, A search for substellar companions to low-mass stars. ApJ, 344, 441–453 {50}CrossRefGoogle Scholar
Marcy, GW, Butler, RP, 1992, Precision radial velocities with an iodine absorption cell. PASP, 104, 270–277 {28, 31}CrossRefGoogle Scholar
Marcy, GW, Butler, RP, 1996, A planetary companion to 70 Vir. ApJ, 464, L147–L149 {10, 50, 716}CrossRefGoogle Scholar
Marcy, GW, Butler, RP, 1998a, Detection of extrasolar giant planets. ARA&A, 36, 57–98 {55}Google Scholar
Marcy, GW, Butler, RP, 1998b, Doppler detection of extrasolar planets. Cool Stars, Stellar Systems, and the Sun, volume 154 of ASP Conf. Ser., 9–24 {54}Google Scholar
Marcy, GW, Butler, RP, 2000, Planets orbiting other suns. PASP, 112, 137–140 {54, 64, 441}CrossRefGoogle Scholar
Marcy, GW, Butler, RP, Fischer, D, et al., 2001a, A pair of resonant planets orbiting GJ 876. ApJ, 556, 296–301 {10, 67, 71, 717}CrossRefGoogle Scholar
Marcy, GW, Butler, RP, Fischer, D, 2005a, Observed properties of exoplanets: masses, orbits, and metallicities. Prog. Theor. Phys. Suppl., 158, 24–42 {62, 555, 557}CrossRefGoogle Scholar
Marcy, GW, Butler, RP, Fischer, DA, et al., 2002, A planet at 5 au around 55 Cnc. ApJ, 581, 1375–1388 {25, 71, 74, 728}CrossRefGoogle Scholar
Marcy, GW, Butler, RP, Vogt, SS, 2000, Sub-Saturn planetary candidates of HD 16141 and HD 46375. ApJ, 536, L43–L46 {718, 720}CrossRefGoogle ScholarPubMed
Marcy, GW, Butler, RP, Vogt, SS, et al., 1998, A planetary companion to a nearby M4 dwarf, GJ 876. ApJ, 505, L147–L149 {55, 59, 70, 71, 717}CrossRefGoogle Scholar
Marcy, GW, Butler, RP, Vogt, SS, 1999, Two new candidate planets in eccentric orbits. ApJ, 520, 239–247 {8, 723, 724}CrossRefGoogle Scholar
Marcy, GW, Butler, RP, Vogt, SS, 2001b, Two substellar companions orbiting HD 168443. ApJ, 555, 418–425 {8, 77, 723}CrossRefGoogle Scholar
Marcy, GW, Butler, RP, Vogt, SS, 2005b, Five new extrasolar planets. ApJ, 619, 570–584 {78, 720, 721, 722, 723}CrossRefGoogle Scholar
Marcy, GW, Butler, RP, Vogt, SS, 2008, Exoplanet properties from Lick, Keck and AAT. Physica Scripta Volume T, 130(1), 014001 {53, 66}Google Scholar
Marcy, GW, Butler, RP, Williams, E, et al., 1997, The planet around 51 Peg. ApJ, 481, 926–935 {51, 532, 535, 715}CrossRefGoogle Scholar
Marcy, GW, Fischer, DA, Butler, RP, et al., 2006, Properties of exoplanets: a Doppler study of 1330 stars. Planet Formation, 179–191, Cambridge University Press {53}
Marcy, GW, Isaacson, H, Howard, AW, et al., 2014, Masses, radii, and orbits of small Kepler planets: the transition from gaseous to rocky planets. ApJS, 210, 20 {288, 294, 500, 602, 740, 741, 742, 743, 745}CrossRefGoogle Scholar
Marcy, GW, Lindsay, V, Bergengren, J, et al., 1986, A dynamical search for sub-stellar objects. Astrophysics of Brown Dwarfs, 50–56 {55, 57}
Marcy, GW, Moore, D, 1989, The extremely low mass companion to GJ 623. ApJ, 341, 961–967 {50}CrossRefGoogle Scholar
Mardling, RA, 2007, Long-term tidal evolution of short-period planets with companions. MNRAS, 382, 1768–1790 {303, 537}CrossRefGoogle Scholar
Mardling, RA, 2010, The determination of planetary structure in tidally-relaxed inclined systems. MNRAS, 407, 1048–1069 {228, 305, 735, 736, 753}CrossRefGoogle Scholar
Mardling, RA, 2013, New developments for modern celestial mechanics. I. General coplanar three-body systems: application to exoplanets. MNRAS, 435, 2187–2226 {509}CrossRefGoogle Scholar
Mardling, RA, Lin, DNC, 2002, Calculating the tidal, spin, and dynamical evolution of extrasolar planetary systems. ApJ, 573, 829–844 {535, 536, 542, 713, 717}CrossRefGoogle Scholar
Marengo, M, Hulsebus, A, Willis, S, 2015, KIC–8462852: the infrared flux. ApJ, 814, L15 {233, 747}CrossRefGoogle Scholar
Marengo, M, Stapelfeldt, K, Werner, MW, et al., 2009, Spitzer–IRAC limits to planetary companions of Fomalhaut and yatt MC, et al., 2005, Structure in the Eri. ApJ, 700, 1647–1657 {365, 715, 761}Google Scholar
Margalit, B, Metzger, BD, 2017, Merger of a white dwarf-neutron star binary to 1029 carat diamonds: origin of the pulsar planets. MNRAS, 465, 2790–2803 {107}CrossRefGoogle Scholar
Margot, JL, Campbell, DB, Jurgens, RF, et al., 1999, Topography of the lunar poles from radar interferometry. Science, 284, 1658 {356}CrossRefGoogle ScholarPubMed
Margulis, L, Lovelock, JE, 1974, Biological modulation of the Earth's atmosphere. Icarus, 21, 471–484 {640}CrossRefGoogle Scholar
Marin, F, Grosso, N, 2017, Computation of the transmitted and polarised scattered fluxes by the exoplanet HD 189733 b in X-rays. ApJ, 835, 283 {731}CrossRefGoogle Scholar
Marino, S, Perez, S, Casassus, S, 2015, Shadows cast by a warp in the HD 142527 proto-planetary disk. ApJ, 798, L44 {466}CrossRefGoogle Scholar
Marino, S, Wyatt, MC, Kennedy, GM, et al., 2017a, ALMA observations of the multi-planet system 61 Vir: what lies outside super-Earth systems? MNRAS, 469, 3518–3531 {716}CrossRefGoogle Scholar
Marino, S, Wyatt, MC, Panić, O, et al., 2017b, ALMA observations of the ɲ Crv debris disk: inward scattering of CO-rich exocomets by a chain of 3-30 M⊕ planets? MNRAS, 465, 2595–2615 {496, 497}CrossRefGoogle Scholar
Marion, L, Absil, O, Ertel, S, et al., 2014, Searching for faint companions with VLTI–PIONIER. II. 92 main sequence stars from the Exozodi survey. A&A, 570, A127 {183, 348}Google Scholar
Mariotti, JM, Leger, A, Mennesson, B, et al., 1997, Detection and characterisation of Earth-like planets. IAU Colloq. 161, 299–311 {352, 618}
Markonis, Y, Koutsoyiannis, D, 2013, Climatic variability over time scales spanning nine orders of magnitude: connecting Milankovitch Cycles with Hurst–Kolmogorov dynamics. Surveys in Geophysics, 34, 181–207 {621, 681}CrossRefGoogle Scholar
Marks, RD, Vernin, J, Azouit, M, et al., 1999, Measurement of optical seeing on the high Antarctic plateau. A&AS, 134, 161–172 {84}Google Scholar
Markwardt, CB, 2009, Non-linear least-squares fitting in IDL with MPFIT. ASP Conf. Ser., volume 411, 251–254 {25}Google Scholar
Marleau, GD, Cumming, A, 2014, Constraining the initial entropy of directly detected exoplanets. MNRAS, 437, 1378–1399 {482, 483, 763}CrossRefGoogle Scholar
Marleau, GD, Klahr, H, Kuiper, R, et al., 2017, The planetary accretion shock. I. Framework for radiation-hydrodynamical simulations and first results. ApJ, 836, 221 {482, 763, 764}CrossRefGoogle Scholar
Marley, MS, 1991, Nonradial oscillations of Saturn. Icarus, 94, 420–435 {411}CrossRefGoogle Scholar
Marley, MS, 1998, Atmospheres of giant planets from Neptune to GJ 229B. Brown Dwarfs and Extrasolar Planets, volume 134 of ASP Conf. Ser., 383–393 {587}Google Scholar
Marley, MS, 2010, The atmospheres of extrasolar planets. EAS Pub. Ser., volume 41, 411–428 {581}CrossRefGoogle Scholar
Marley, MS, Ackerman, AS, Cuzzi, JN, et al., 2013, Clouds and hazes in exoplanet atmospheres, 367–391. University of Arizona Press {588, 591}
Marley, MS, Fortney, J, Seager, S, et al., 2007a, Atmospheres of extrasolar giant planets. Protostars and Planets V, 733–747 {571, 587}
Marley, MS, Fortney, JJ, Hubickyj, O, et al., 2007b, On the luminosity of young Jupiters. ApJ, 655, 541–549 {482, 483, 569, 581}CrossRefGoogle Scholar
Marley, MS, Gelino, C, Stephens, D, et al., 1999, Reflected spectra and albedos of ex-trasolar giant planets. I. Clear and cloudy atmospheres. ApJ, 513, 879–893 {286, 569, 579, 588, 589, 591}CrossRefGoogle Scholar
Marley, MS, Hubbard, WB, 1988, Thermodynamics of dense molecular hydrogen–heliummixtures at high pressure. Icarus, 73, 536–544 {567}CrossRefGoogle Scholar
Marley, MS, McKay, CP, 1999, Thermal structure of Uranus’ atmosphere. Icarus, 138, 268–286 {579}CrossRefGoogle ScholarPubMed
Marley, MS, Porco, CC, 1993, Planetary acoustic mode seismology: Saturn's rings. Icarus, 106, 508 {411}CrossRefGoogle Scholar
Marley, MS, Saumon, D, Cushing, M, et al., 2012, Masses, radii, and cloud properties of the HR 8799 planets. ApJ, 754, 135 {436, 588, 763}CrossRefGoogle Scholar
Marley, MS, Saumon, D, Goldblatt, C, 2010, A patchy cloud model for the L to T dwarf transition. ApJ, 723, L117–L121 {438}CrossRefGoogle Scholar
Marley, MS, Saumon, D, Guillot, T, et al., 1996, Atmospheric, evolutionary, and spectral models of the brown dwarf GJ 229B. Science, 272, 1919–1921 {431, 438, 579}CrossRefGoogle Scholar
Marley, MS, Seager, S, Saumon, D, et al., 2002, Clouds and chemistry: ultracool dwarf atmospheric properties from optical and infrared colours. ApJ, 568, 335–342 {579, 586}CrossRefGoogle Scholar
Marley, MS, Sengupta, S, 2011, Probing the physical properties of directly imaged gas giant exoplanets through polarisation. MNRAS, 417, 2874–2881 {247}CrossRefGoogle Scholar
Marmier, M, Ségransan, D, Udry, S, et al., 2013, The CORALIE survey for southern ex-trasolar planets. XVII. New and updated long-period and massive planets. A&A, 551, A90 {529, 719, 721, 723, 724}Google Scholar
Marocco, F, Andrei, AH, Smart, RL, et al., 2013, Parallaxes of southern extremely cool objects (PARSEC). II. Spectroscopic follow-up and parallaxes of 52 targets. AJ, 146, 161 {434}CrossRefGoogle Scholar
Marocco, F, Jones, HRA, Day-Jones, AC, et al., 2015, A large spectroscopic sample of L and T dwarfs from UKIDSS LAS: peculiar objects, binaries, and space density. MNRAS, 449, 3651–3692 {432, 435}CrossRefGoogle Scholar
Marocco, F, Smart, RL, Jones, HRA, et al., 2010, Parallaxes and physical properties of 11 mid-to-late T dwarfs. A&A, 524, A38 {434}Google Scholar
Marois, C, 2010, The International Deep Planet Survey (IDPS). In the Spirit of Lyot 2010 {358}
Marois, C, Doyon, R, Nadeau, D, et al., 2005, TRIDENT: an infrared differential imaging camera optimised for the detection of methanated substellar companions. PASP, 117, 745–756 {340}CrossRefGoogle Scholar
Marois, C, Doyon, R, Racine, R, et al., 2000, Efficient speckle noise attenuation in faint companion imaging. PASP, 112, 91–96 {339, 340}CrossRefGoogle Scholar
Marois, C, Lafrenière, D, Doyon, R, et al., 2006, Angular differential imaging: a powerful high-contrast imaging technique. ApJ, 641, 556–564 {340}CrossRefGoogle Scholar
Marois, C, Lafrenière, D, Macintosh, B, et al., 2008a, Confidence level and sensitivity limits in high-contrast imaging. ApJ, 673, 647–656 {339, 340}CrossRefGoogle Scholar
Marois, C, Macintosh, B, Barman, T, 2007, GQ Lup B visible and near-infrared photometric analysis. ApJ, 654, L151–L154 {762}CrossRefGoogle Scholar
Marois, C, Macintosh, B, Barman, T, et al., 2008b, Direct imaging of multiple planets orbiting the star HR 8799. Science, 322, 1348–1352 {10, 337, 340, 361, 362, 365, 366, 410, 763}CrossRefGoogle Scholar
Marois, C, Racine, R, Doyon, R, et al., 2004, Differential imaging with a multicolour detector assembly: a new exoplanet finder concept. ApJ, 615, L61–L64 {340}CrossRefGoogle Scholar
Marois, C, Zuckerman, B, Konopacky, QM, et al., 2010, Images of a fourth planet orbiting HR 8799. Nature, 468, 1080–1083 {11, 362, 365, 366, 763}CrossRefGoogle ScholarPubMed
Marsden, BG, 1967, The Sun-grazing comet group. AJ, 72, 1170 {509}CrossRefGoogle Scholar
Marsh, KA, Kirkpatrick, JD, Plavchan, P, 2010, A young planetary-mass object in the ρ Oph cloud core. ApJ, 709, L158–L162 {446}CrossRefGoogle Scholar
Marsh, KA, Mahoney, MJ, 1992, Evidence for unseen companions around T Tauri stars. ApJ, 395, L115–L118 {465}CrossRefGoogle Scholar
Marsh, KA, Velusamy, T, Ware, B, 2006, Point process algorithm: a new Bayesian approach for planet signal extraction with the Terrestrial Planet Finder-interferometer. AJ, 132, 1789–1795 {340}CrossRefGoogle Scholar
Marsh, KA, Wright, EL, Kirkpatrick, JD, et al., 2013, Parallaxes and proper motions of ultracool brown dwarfs of spectral types Y and late T. ApJ, 762, 119 {434}CrossRefGoogle Scholar
Marsh, ND, Svensmark, H, 2000, Low cloud properties influenced by cosmic rays. Phys. Rev. Lett., 85, 5004–5007 {655}CrossRefGoogle ScholarPubMed
Marsh, TR, Parsons, SG, Bours, MCP, et al., 2014, The planets around NNSer: still there. MNRAS, 437, 475–488 {115}CrossRefGoogle Scholar
Marshak, A, Várnai, T, Kostinski, A, 2017, Terrestrial glint seen from deep space: oriented ice crystals detected from the Lagrangian point. Geophys. Res. Lett., 44, 5197–5202 {238}CrossRefGoogle Scholar
Marshall, J, Horner, J, Carter, A, 2010, Dynamical simulations of the HR 8799 planetary system. Int. J. Astrobiol., 9, 259–264 {365, 763}CrossRefGoogle Scholar
Marshall, JP, Moro-Martín, A, Eiroa, C, et al., 2014, Correlations between the stellar, planetary, and debris components of exoplanet systems observed by Herschel. A&A, 565, A15 {493, 494}Google Scholar
Martí, JG, Beaugé, C, 2012, Stellar scattering and the origin of the planet around γ Cep A. A&A, 544, A97 {80, 714}Google Scholar
Martí, JG, Beaugé, C, 2015, Stellar scattering and the formation of hot Jupiters in binary systems. Int. J. Astrobiol., 14, 313–320 {529}CrossRefGoogle Scholar
Martí, JG, Cincotta, PM, Beaugé, C, 2016, Chaotic diffusion in the GJ 876 planetary system. MNRAS, 460, 1094–1105 {717}CrossRefGoogle Scholar
Martí, JG, Giuppone, CA, Beaugé, C, 2013, Dynamical analysis of the GJ 876 Laplace resonance. MNRAS, 433, 928–934 {717}CrossRefGoogle Scholar
Martin, A, McMinn, A, 2018, Sea ice, extremophiles and life on extra-terrestrial ocean worlds. Int. J. Astrobiol., 17, 1–16 {637}CrossRefGoogle Scholar
Martin, DV, 2017a, Circumbinary planets. II. When transits come and go. MNRAS, 465, 3235–3253 {261}CrossRefGoogle Scholar
Martin, DV, 2017b, Transit probability of precessing circumstellar planets in binaries and exo-moons. MNRAS, 467, 1694–1701 {261}Google Scholar
Martin, DV, Mazeh, T, Fabrycky, DC, 2015, No circumbinary planets transiting the tightest Kepler binaries: a possible fingerprint of a third star. MNRAS, 453, 3554–3567 {552, 553}CrossRefGoogle Scholar
Martin, DV, Triaud, AHMJ, 2014, Planets transiting non-eclipsing binaries. A&A, 570, A91 {194, 261, 550, 552, 553}Google Scholar
Martin, DV, Triaud, AHMJ, 2015, Circumbinary planets: why they are so likely to transit. MNRAS, 449, 781–793 {261, 553}CrossRefGoogle Scholar
Martin, DV, Triaud, AHMJ, 2016, Lidov–Kozai cycles towards the limit of circumbinary planets. MNRAS, 455, L46–L50 {553}CrossRefGoogle Scholar
Martin, EL, 1997, Quantitative spectroscopic criteria for the classification of pre-main sequence low-mass stars. A&A, 321, 492–496 {381}Google Scholar
Martín, EL, Delfosse, X, Guieu, S, 2004, Spectroscopic identification of DENIS-selected brown dwarf candidates in the Upper Sco OB association. AJ, 127, 449–454 {432}Google Scholar
Martín, EL, Dougados, C, Magnier, E, et al., 2001a, Four brown dwarfs in the Taurus star-forming region. ApJ, 561, L195–L198 {434}CrossRefGoogle Scholar
Martín, EL, Osorio, MRZ, 2003, Spectroscopic estimate of surface gravity for a planetary member in the ᓂ Ori cluster. ApJ, 593, L113–L116 {446}CrossRefGoogle Scholar
Martin, EL, Spruit, HC, Tata, R, 2011, A binary merger origin for inflated hot Jupiter planets. A&A, 535, A50 {498}Google Scholar
Martín, EL, Zapatero Osorio, MR, Barrado y Navascués D, et al., 2001b, Keck NIRC observations of planetary-mass candidate members in the ᓂ Ori open cluster. ApJ, 558, L117–L121 {446}CrossRefGoogle Scholar
Martín, EL, Zapatero Osorio, MR, Lehto, HJ, 2001c, Photometric variability in the ul-tracool dwarf BRI 0021–0214: evidence for dust clouds. ApJ, 557, 822–830 {440}Google Scholar
Martin, H, Albarède, F, Claeys, P, et al., 2006a, From Suns to life: a chronological approach to the history of life on Earth. IV. Building of a habitable planet. Earth Moon and Planets, 98, 97–151 {624}Google Scholar
Martin, H, Claeys, P, Gargaud, M, et al., 2006b, From Suns to life: a chronological approach to the history of life on Earth. VI. Environmental context. Earth Moon and Planets, 98, 205–245 {624}Google Scholar
Martin, RG, Armitage, PJ, Alexander, RD, 2013, Formation of circumbinary planets in a dead zone. ApJ, 773, 74 {551}CrossRefGoogle Scholar
Martin, RG, Livio, M, 2012, On the evolution of the snow line in protoplanetary disks. MNRAS, 425, L6–L9 {564, 565}CrossRefGoogle Scholar
Martin, RG, Livio, M, 2013a, On the evolution of the snow line in protoplanetary disks. II. Analytic approximations. MNRAS, 434, 633–638 {462, 565}CrossRefGoogle Scholar
Martin, RG, Livio, M, 2013b, On the formation and evolution of asteroid belts and their potential significance for life. MNRAS, 428, L11–L15 {637}CrossRefGoogle Scholar
Martin, RG, Livio, M, 2014, On the evolution of the CO snow line in protoplanetary disks. ApJ, 783, L28 {565}CrossRefGoogle Scholar
Martin, RG, Livio, M, 2015, The solar system as an exoplanetary system. ApJ, 810, 105 {451, 677}CrossRefGoogle Scholar
Martin, RG, Livio, M, 2016, On the formation of super-Earths with implications for the solar system. ApJ, 822, 90 {501}CrossRefGoogle Scholar
Martin, RG, Livio, M, Palaniswamy, D, 2016a, Why are pulsar planets rare? ApJ, 832, 122 {109}CrossRefGoogle Scholar
Martin, RG, Lubow, SH, 2011, Tidal truncation of circumplanetary disks. MNRAS, 413, 1447–1461 {463}CrossRefGoogle Scholar
Martin, RG, Lubow, SH, 2013, Propagation of the gravo-magneto disk instability. MNRAS, 432, 1616–1622 {459}CrossRefGoogle Scholar
Martin, RG, Lubow, SH, Livio, M, et al., 2012a, Dead zones around young stellar objects: dependence on physical parameters. MNRAS, 420, 3139–3146 {459}CrossRefGoogle Scholar
Martin, RG, Lubow, SH, Livio, M, 2012b, Dead zones around young stellar objects: FU Ori outbursts and transition disks. MNRAS, 423, 2718–2725 {459}CrossRefGoogle Scholar
Martin, RG, Lubow, SH, Nixon, C, et al., 2016b, Planet–disk evolution and the formation of Lidov–Kozai planets. MNRAS, 458, 4345–4353 {529}CrossRefGoogle Scholar
Martin, RG, Lubow, SH, Pringle, JE, et al., 2007, Planetary migration to large radii. MNRAS, 378, 1589–1600 {522}CrossRefGoogle Scholar
Martin, RG, Nixon, C, Lubow, SH, et al., 2014, The Lidov–Kozai mechanism in hydrodynamical disks. ApJ, 792, L33 {529}CrossRefGoogle Scholar
Martin, SR, Booth, AJ, 2010a, Demonstration of exoplanet detection using an infrared telescope array. A&A, 520, A96 {349}Google Scholar
Martin, SR, Booth, AJ, 2010b, Strong starlight suppression to enable direct detection of exoplanets in the habitable zone. A&A, 511, L1 {349}Google Scholar
Martinache, F, 2004, PIZZA: a phase-induced zonal Zernike apodisation designed for stellar coronagraphy. Journal of Optics A: Pure and Applied Optics, 6, 809–814 {334}CrossRefGoogle Scholar
Martinache, F, 2010, Kernel phase in Fizeau interferometry. ApJ, 724, 464–469 {341}CrossRefGoogle Scholar
Martinache, F, 2012, Super resolution from diffraction limited images with kernel-phases. SPIE Conf. Ser., volume 8445 {341}Google Scholar
Martinache, F, Guyon, O, Clergeon, C, et al., 2012a, Speckle control with a remapped-pupil PIAA coronagraph. PASP, 124, 1288–1294 {335}CrossRefGoogle Scholar
Martinache, F, Guyon, O, Clergeon, C, 2012b, The Subaru coronagraphic extreme AO project: first observations. SPIE Conf. Ser., volume 8447 {344}Google Scholar
Martinache, F, Lardière, O, 2006, Pupil densification: a panorama. EAS Pub. Ser., volume 22, 367–377 {355}CrossRefGoogle Scholar
Martinez, P, Aller-Carpentier, E, Kasper, M, et al., 2011, Laboratory comparison of coro-nagraphic concepts under dynamical seeing and high-order adaptive optics cor-rection. MNRAS, 414, 2112–2124 {334}CrossRefGoogle Scholar
Martinez, P, Boccaletti, A, Kasper, M, et al., 2008, Comparison of coronagraphs for high-contrast imaging in the context of extremely large telescopes. A&A, 492, 289–300 {336}Google Scholar
Martinez, P, Carpentier, EA, Kasper, M, 2010, Laboratory demonstration of efficient XAO coronagraphy in the context of VLT–SPHERE. PASP, 122, 916–923 {343}CrossRefGoogle Scholar
Martinez, P, Kasper, M, Costille, A, et al., 2013, Speckle temporal stability in XAO coro-nagraphic images. II. Refine model for quasi-static speckle temporal evolution for VLT–SPHERE. A&A, 554, A41 {339}Google Scholar
Martinez, P, Loose, C, Aller Carpentier, E, et al., 2012, Speckle temporal stability in XAO coronagraphic images. A&A, 541, A136 {339}Google Scholar
Martínez-Arnáiz, R, Maldonado, J, Montes, D, et al., 2010, Chromospheric activity and rotation of FGK stars in the solar vicinity: an estimation of the radial velocity jitter. A&A, 520, A79 {37}Google Scholar
Martínez-Barbosa, CA, Brown, AGA, Boekholt, T, et al., 2016, The evolution of the Sun's birth cluster and the search for the solar siblings with Gaia. MNRAS, 457, 1062–1075 {406}CrossRefGoogle Scholar
Martínez-Barbosa, CA, Jílková, L, Portegies Zwart, S, et al., 2017, The rate of stellar encounters along amigrating orbit of the Sun. MNRAS, 464, 2290–2300 {650, 655}CrossRefGoogle Scholar
Martínez Fiorenzano, AF, Gratton, RG, Desidera, S, et al., 2005, Line bisectors and radial velocity jitter from SARG spectra. A&A, 442, 775–784 {40}Google Scholar
Martins, JHC, Figueira, P, Santos, NC, et al., 2013, Spectroscopic direct detection of reflected light from extrasolar planets. MNRAS, 436, 1215–1224 {43, 715, 728}CrossRefGoogle Scholar
Martins, JHC, Santos, NC, Figueira, P, et al., 2015, Evidence for a spectroscopic direct detection of reflected light from 51 Peg b. A&A, 576, A134 {43, 715}Google Scholar
Martioli, E, McArthur, BE, Benedict, GF, et al., 2010, The mass of the candidate exo-planet companion to HD 136118 from HST astrometry and high-precision radial velocities. ApJ, 708, 625–634 {93}CrossRefGoogle Scholar
Marty, B, 2012, The origins and concentrations of water, carbon, nitrogen and noble gases on Earth. Earth Planet. Sci. Lett., 313, 56–66 {667}Google Scholar
Mary, DL, 2006, A statistical analysis of the detection limits of fast photometry. A&A, 452, 715–726 {188}Google Scholar
Marzari, F, 2010, Planet–planet gravitational scattering. Formation and Evolution of Exoplanets, chapter 223-242, Wiley {525}
Marzari, F, 2014, Dynamical behaviour of multi-planet systems close to their stability limit. MNRAS, 442, 1110–1116 {512}CrossRefGoogle Scholar
Marzari, F, Barbieri, M, 2007a, Planet dispersal in binary systems during transient multiple star phases. A&A, 472, 643–647 {549, 553}Google Scholar
Marzari, F, Barbieri, M, 2007b, Planets in binary systems: is the present configuration indicative of the formation process? A&A, 467, 347–351 {549}Google Scholar
Marzari, F, Dell'Oro, A, 2017, Collisional parameters of planetesimal belts, precursor of debris disks, perturbed by a nearby giant planet. MNRAS, 466, 3973–3988 {715, 719}CrossRefGoogle Scholar
Marzari, F, Gallina, G, 2016, Stability of multi-planet systems in binaries. A&A, 594, A89 {549}Google Scholar
Marzari, F, Picogna, G, 2013, Circumstellar disks do erase the effects of stellar fly-bys on planetary systems. A&A, 550, A64 {526}Google Scholar
Marzari, F, Picogna, G, Desidera, S, et al., 2012, Planetesimal accumulation around Kepler–16 (AB). LPI Science Conf Abstracts, volume 43, 1093 {739}Google Scholar
Marzari, F, Scholl, H, 2000, Planetesimal accretion in binary star systems. ApJ, 543, 328–339 {550}CrossRefGoogle Scholar
Marzari, F, Scholl, H, 2002, On the instability of Jupiter's Trojans. Icarus, 159, 328–338 {689}CrossRefGoogle Scholar
Marzari, F, Scholl, H, 2007, Dynamics of Jupiter Trojans during the 2:1 mean motion resonance crossing of Jupiter and Saturn. MNRAS, 380, 479–488 {697}CrossRefGoogle Scholar
Marzari, F, Scholl, H, 2013, Long term stability of Earth Trojans. Cel. Mech. Dyn. Astron., 117, 91–100 {690}CrossRefGoogle Scholar
Marzari, F, Scholl, H, Tricarico, P, 2005, Frequency map analysis of the 3:1 resonance between planets b and c in the 55 Cnc system. A&A, 442, 359–364 {728}Google Scholar
Marzari, F, Scholl, H, Tricarico, P, 2006, A numerical study of the 2:1 planetary resonance. A&A, 453, 341–348 {506}Google Scholar
Marzari, F, Thébault, P, 2011, On how optical depth tunes the effects of the interstellar mediumon debris disks. MNRAS, 416, 1890–1899 {495}CrossRefGoogle Scholar
Marzari, F, Thébault, P, Scholl, H, 2009, Planet formation in highly inclined binaries. A&A, 507, 505–511 {550}Google Scholar
Marzari, F, Thebault, P, Scholl, H, et al., 2013, Influence of the circumbinary disk gravity on planetesimal accumulation in the Kepler–16 system. A&A, 553, A71 {552, 739}Google Scholar
Marzari, F, Weidenschilling, SJ, 2002, Eccentric extrasolar planets: the jumping Jupiter model. Icarus, 156, 570–579 {525}CrossRefGoogle Scholar
Masciadri, E, Lascaux, F, Hagelin, S, et al., 2010a, Optical turbulence above the internal Antarctic plateau. EAS Pub. Ser., volume 40, 55–64 {347}CrossRefGoogle Scholar
Masciadri, E, Mundt, R, Henning, T, et al., 2005, A search for hot massive extrasolar planets around nearby young stars with the adaptive optics system NACO. ApJ, 625, 1004–1018 {358}CrossRefGoogle Scholar
Masciadri, E, Raga, A, 2004, Exoplanet recognition using a wavelet analysis technique. ApJ, 611, L137–L140 {340}CrossRefGoogle Scholar
Masciadri, E, Stoesz, J, Hagelin, S, et al., 2010b, Optical turbulence vertical distribution with standard and high resolution at Mt Graham. MNRAS, 404, 144–158 {332}Google Scholar
Mashhoon, B, 2003, Gravitoelectromagnetism: a brief review. ArXiv General Relativity and Quantum Cosmology e-prints {257}
Masiero, J, 2017, Palomar optical spectrum of hyperbolic near-Earth object Oumua-mua. ArXiv e-prints {693}
Mason, BD, Hartkopf, WI, Raghavan, D, et al., 2011, Know the star, know the planet. II. Speckle interferometry of exoplanet host stars. AJ, 142, 176 {332, 360}CrossRefGoogle Scholar
Mason, PA, Zuluaga, JI, Clark, JM, et al., 2013, Rotational synchronisation may enhance habitability for circumbinary planets: Kepler binary case studies. ApJ, 774, L26 {623, 739, 740, 741, 742}CrossRefGoogle Scholar
Mason, PA, Zuluaga, JI, Cuartas-Restrepo, PA, et al., 2015a, Circumbinary habitability niches. Int. J. Astrobiol., 14, 391–400 {550, 623}CrossRefGoogle Scholar
Mason, PA, Zuluaga, JI, Zhilkin, AG, et al., 2015b, Constraints on circumbinary habitability. Living Together: Planets, Host Stars and Binaries, volume 496 of ASP Conf. Ser., 405 {623}Google Scholar
Massarotti, A, 2008, Stellar rotation and planet ingestion in giants. AJ, 135, 2287–2290 {383}CrossRefGoogle Scholar
Masset, F, 2000, FARGO: a fast Eulerian transport algorithm for differentially rotating disks. A&AS, 141, 165–173 {462}Google Scholar
Masset, FS, 2001, On the co-orbital corotation torque in a viscous disk and its impact on planetary migration. ApJ, 558, 453–462 {519}CrossRefGoogle Scholar
Masset, FS, 2011, On type I migration near opacity transitions: a generalised Lindblad torque formula for planetary population synthesis. Cel. Mech. Dyn. Astron., 111, 131–160 {519}CrossRefGoogle Scholar
Masset, FS, Casoli, J, 2009, On the horseshoe drag of a low-mass planet. II. Migration in adiabatic disks. ApJ, 703, 857–876 {519}CrossRefGoogle Scholar
Masset, FS, Casoli, J, 2010, Saturated torque formula for planetary migration in viscous diskswith thermal diffusion: recipe for protoplanet population synthesis. ApJ, 723, 1393–1417 {519}CrossRefGoogle Scholar
Masset, FS, D'Angelo, G, Kley, W, 2006, On themigration of protogiant solid cores. ApJ, 652, 730–745 {518, 521}CrossRefGoogle Scholar
Masset, FS, Kley, W, 2006, Disk-planet interaction and migration. Planet Formation, 216–235, Cambridge University Press {467}
Masset, FS, Ogilvie, GI, 2004, On the saturation of corotation resonances: a numerical study. ApJ, 615, 1000–1010 {523}CrossRefGoogle Scholar
Masset, FS, Papaloizou, JCB, 2003, Runaway migration and the formation of hot Jupiters. ApJ, 588, 494–508 {521, 699}CrossRefGoogle Scholar
Masset, FS, Snellgrove, M, 2001, Reversing type II migration: resonance trapping of a lighter giant protoplanet. MNRAS, 320, L55–L59 {522, 698, 699}CrossRefGoogle Scholar
Mastrapa, RME, Glanzberg, H, Head, JN, et al., 2001, Survival of bacteria exposed to extreme acceleration: implications for panspermia. Earth Planet. Sci. Lett., 189, 1–2 {638}CrossRefGoogle Scholar
Mastrobuono-Battisti, A, Perets, HB, 2017, The composition of solar system asteroids and Earth/Mars moons, and the Earth-Moon composition similarity. MNRAS, 469, 3597–3609 {664}CrossRefGoogle Scholar
Mastrobuono-Battisti, A, Perets, HB, Raymond, SN, 2015, A primordial origin for the compositional similarity between the Earth and the Moon. Nature, 520, 212–215 {664}CrossRefGoogle Scholar
Masuda, K, 2014, Very lowdensity planets around Kepler–51 revealed with transit timing variations and an anomaly similar to a planet–planet eclipse event. ApJ, 783, 53 {15, 225, 741}CrossRefGoogle Scholar
Masuda, K, 2015, Spin–orbit angles of Kepler–13A b and HAT–P–7 b from gravity-darkened transit light curves. ApJ, 805, 28 {735, 739}CrossRefGoogle Scholar
Masuda, K, 2017, Eccentric companions to Kepler–448 b and Kepler–693 b: clues to the formation of warm Jupiters. AJ, 154, 64 {272, 746}CrossRefGoogle Scholar
Masuda, K, Hirano, T, Taruya, A, et al., 2013, Characterisation of the KOI–94 system with transit timing variation analysis: implication for the planet–planet eclipse. ApJ, 778, 185 {179, 225, 226, 272, 742}CrossRefGoogle Scholar
Masuda, K, Suto, Y, 2016, Transiting planets as a precision clock to constrain the time variation of the gravitational constant. PASJ, 68, L5 {257, 736, 738, 739, 745, 751}CrossRefGoogle Scholar
Masuda, K, Winn, JN, 2017, Reassessment of the null result of the HST search for planets in 47 Tuc. AJ, 153, 187 {159}CrossRefGoogle Scholar
Masunaga, H, Inutsuka Si, 2000, A radiation hydrodynamic model for protostellar collapse. II. The second collapse and the birth of a protostar. ApJ, 531, 350–365 {489}CrossRefGoogle Scholar
Matese, JJ, Whitman, PG, 1989, The Galactic disk tidal field and the nonrandom distribution of observed Oort cloud comets. Icarus, 82, 389–401 {686}CrossRefGoogle Scholar
Matese, JJ, Whitmire, DP, 2011, Persistent evidence of a Jovian mass solar companion in the Oort cloud. Icarus, 211, 926–938 {687}CrossRefGoogle Scholar
Matese, JJ, Whitmire, DP, Lissauer, JJ, 2005, A wide binary solar companion as a possible origin of Sedna-like objects. Earth Moon and Planets, 97, 459–470 {650}Google Scholar
Mathews, GS, Williams, JP, Ménard, F, 2012a, 880μm imaging of a transition disk in Upper Scorpius: holdover from the era of giant planet formation? ApJ, 753, 59 {465}CrossRefGoogle Scholar
Mathews, GS, Williams, JP, Ménard, F, et al., 2012b, The late stages of protoplanetary disk evolution: a millimeter survey of Upper Scorpius. ApJ, 745, 23 {465}CrossRefGoogle Scholar
Mathieu, RD, 1994, Pre-main-sequence binary stars. ARA&A, 32, 465–530 {547, 548}Google Scholar
Mathieu, RD, Ghez, AM, Jensen, ELN, et al., 2000, Young binary stars and associated disks. Protostars and Planets IV, 703–709 {548}
Mathis, JS, Rumpl, W, Nordsieck, KH, 1977, The size distribution of interstellar grains. ApJ, 217, 425–433 {496}CrossRefGoogle Scholar
Mathis, S, Auclair-Desrotour, P, Guenel, M, et al., 2016, The impact of rotation on turbulent tidal friction in stellar and planetary convective regions. A&A, 592, A33 {542}Google Scholar
Mathis, S, Le Poncin-Lafitte, C, Remus, F, 2013, Tides in planetary systems. Lecture Notes in Physics, Berlin Springer Verlag, volume 861 of Lecture Notes in Physics, Berlin Springer Verlag, 255 {531}Google Scholar
Mathis, S, Remus, F, 2013, Tides in planetary systems and inmultiple stars: a physical picture. Lecture Notes in Physics, Berlin Springer Verlag, volume 857 of Lecture Notes in Physics, Berlin Springer Verlag, 111–147 {545}Google Scholar
Mathur, S, Hekker, S, Trampedach, R, et al., 2011, Granulation in red giants: observations by the Kepler mission and three-dimensional convection simulations. ApJ, 741, 119 {307}CrossRefGoogle Scholar
Mathur, S, Huber, D, Batalha, NM, et al., 2017, Revised stellar properties of Kepler targets for the Q1–17 (DR25) transit detection run. ApJS, 229, 30 {307}CrossRefGoogle Scholar
Matijevic, G, Prša, A, Orosz, JA, et al., 2012, Kepler eclipsing binary stars. III. Classification of Kepler eclipsing binary light curves with locally linear embedding. AJ, 143, 123 {411}CrossRefGoogle Scholar
Matrà, L, Dent, WRF, Wyatt, MC, et al., 2017a, Exocometary gas structure, origin and physical properties around fl Pic through ALMA CO multitransition observations. MNRAS, 464, 1415–1433 {762}CrossRefGoogle Scholar
Matrà, L, MacGregor, MA, Kalas, P, et al., 2017b, Detection of exocometary CO within the 440Myr old Fomalhaut belt: a similar CO+CO2 ice abundance in exocomets and solar system comets. ApJ, 842, 9 {761}CrossRefGoogle Scholar
Matrà, L, Panić, O, Wyatt, MC, et al., 2015, CO mass upper limits in the Fomalhaut ring: the importance of NLTE excitation in debris disks and future prospectswith ALMA. MNRAS, 447, 3936–3947 {761}CrossRefGoogle Scholar
Matranga, M, Drake, JJ, Kashyap, VL, et al., 2010, Close binaries with infrared excess: destroyers of worlds? ApJ, 720, L164 {554}CrossRefGoogle Scholar
Matsakos, T, Königl, A, 2015, A hot Jupiter for breakfast? Early stellar ingestion of planets may be common. ApJ, 809, L20 {255, 311}CrossRefGoogle Scholar
Matsakos, T, Königl, A, 2016, On the origin of the sub-Jovian desert in the orbital-period-planetary-mass plane. ApJ, 820, L8 {294, 499}CrossRefGoogle Scholar
Matsakos, T, Königl, A, 2017, The gravitational interaction between planets on inclined orbits and proto-planetary disks as the origin of primordial spin–orbit misalignments. AJ, 153, 60 {654}CrossRefGoogle Scholar
Matsakos, T, Tzeferacos, P, Königl, A, 2016, A wind-driving disk model for the mm-wavelength polarisation structure of HL Tau. MNRAS, 463, 2716–2724 {466}CrossRefGoogle Scholar
Matsakos, T, Uribe, A, Königl, A, 2015, Classification of magnetised star–planet interactions: bow shocks, tails, and inspiraling flows. A&A, 578, A6 {422}Google Scholar
Matsui, T, Abe, Y, 1986, Impact-induced atmospheres and oceans on Earth and Venus. Nature, 322, 526–528 {576, 597}CrossRefGoogle Scholar
Matsumoto, K, Yamada, R, Kikuchi, F, et al., 2015a, Internal structure of the Moon inferred from Apollo seismic data and selenodetic data from GRAIL and LLR. Geo-phys. Res. Lett., 42, 7351–7358 {665}CrossRefGoogle Scholar
Matsumoto, Y, Kokubo, E, 2017, Formation of close-in super-Earths by giant impacts: effects of initial eccentricities and inclinations of protoplanets. AJ, 154, 27 {476}CrossRefGoogle Scholar
Matsumoto, Y, Nagasawa, M, Ida, S, 2012, The orbital stability of planets trapped in the first-order mean-motion resonances. Icarus, 221, 624–631 {501, 507}CrossRefGoogle Scholar
Matsumoto, Y, Nagasawa, M, Ida, S, 2015b, Eccentricity evolution through accretion of protoplanets. ApJ, 810, 106 {501}CrossRefGoogle Scholar
Matsumura, S, Brasser, R, Ida, S, 2016, Effects of dynamical evolution of giant planets on the delivery of atmophile elements during terrestrial planet formation. ApJ, 818, 15 {697}CrossRefGoogle Scholar
Matsumura, S, Brasser, R, Ida, S, 2017, N-body simulations of planet formation via pebble accretion. I. First results. A&A, 607, A67 {472}Google Scholar
Matsumura, S, Ida, S, Nagasawa, M, 2013, Effects of dynamical evolution of giant planets on survival of terrestrial planets. ApJ, 767, 129 {523}CrossRefGoogle Scholar
Matsumura, S, Peale, SJ, Rasio, FA, 2010a, Tidal evolution of close-in planets. ApJ, 725, 1995–2016 {310, 535, 539}CrossRefGoogle Scholar
Matsumura, S, Pudritz, RE, 2003, The origin of Jovian planets in protostellar disks: the role of dead zones. ApJ, 598, 645–656 {459}CrossRefGoogle Scholar
Matsumura, S, Pudritz, RE, 2005, Dead zones and the origin of planetary masses. ApJ, 618, L137–L140 {459, 521}CrossRefGoogle Scholar
Matsumura, S, Pudritz, RE, 2006, Dead zones and extrasolar planetary properties. MNRAS, 365, 572–584 {459}CrossRefGoogle Scholar
Matsumura, S, Pudritz, RE, Thommes, EW, 2007, Saving planetary systems: dead zones and planetary migration. ApJ, 660, 1609–1623 {459}CrossRefGoogle Scholar
Matsumura, S, Takeda, G, Rasio, FA, 2008, On the origins of eccentric close-in planets. ApJ, 686, L29–L32 {536, 544}CrossRefGoogle Scholar
Matsumura, S, Thommes, EW, Chatterjee, S, et al., 2010b, Unstable planetary systems out of gas disks. ApJ, 714, 194–206 {319, 507, 508, 525}CrossRefGoogle Scholar
Matsuo, T, Itoh, S, Shibai, H, et al., 2016, A new concept for spectrophotometry of exo-planets with space-borne telescopes. ApJ, 823, 139 {351, 355}CrossRefGoogle Scholar
Matsuo, T, Kotani, T, Murakami, N, et al., 2012, Second-Earth imager for TMT (SEIT): concept and its numerical simulation. Ground-based and Airborne Instrumentation for Astronomy IV, volume 8446 of Proc. SPIE, 84461K {346}Google Scholar
Matsuo, T, Murakami, N, Kotani, T, et al., 2014, High-contrast planet imager for the Kyoto 4-m segmented telescope. Ground-based and Airborne Instrumentation for Astronomy V, volume 9147 of Proc. SPIE, 91471V {346}Google Scholar
Matsuo, T, Shibai, H, Ootsubo, T, et al., 2007, Planetary formation scenarios revisited: core-accretion versus disk instability. ApJ, 662, 1282–1292 {391, 488}CrossRefGoogle Scholar
Matsuo, T, Traub, WA, Hattori, M, et al., 2011, A new concept for direct imaging and spectral characterisation of exoplanets in multi-planet systems. ApJ, 729, 50 {341}CrossRefGoogle Scholar
Matsuyama, I, Johnstone, D, Hollenbach, D, 2009, Dispersal of protoplanetary disks by central wind stripping. ApJ, 700, 10–19 {462}CrossRefGoogle Scholar
Matsuyama, I, Johnstone, D, Murray, N, 2003, Halting planet migration by photo-evaporation from the central source. ApJ, 585, L143–L146 {521}CrossRefGoogle Scholar
Matsuyama, I, Nimmo, F, Keane, JT, et al., 2016, , GRAIL, LLR Geophys. Res. Lett., 43, 8365–8375 {665}Google Scholar
Matter, A, Vannier, M, Morel, S, et al., 2010, First step to detect an extrasolar planet using simultaneous observations with the VLTI instruments AMBER and MIDI. A&A, 515, A69 {348, 716}Google Scholar
Matthews, B, Kennedy, G, Sibthorpe, B, et al., 2014a, Resolved imaging of the HR 8799 debris disk with Herschel. ApJ, 780, 97 {12, 763}CrossRefGoogle Scholar
Matthews, BC, Greaves, JS, Holland, WS, et al., 2007, An unbiased survey of 500 nearby stars for debris disks: a JCMT legacy programme. PASP, 119, 842–854 {493}CrossRefGoogle Scholar
Matthews, BC, Kavelaars, J, 2016, Insights into planet formation from debris disks: I. The solar system as an archetype for planetesimal evolution. Space Sci. Rev., 205, 213–230 {681}CrossRefGoogle Scholar
Matthews, BC, Kennedy, G, Sibthorpe, B, et al., 2015, The AU Mic debris disk: far-infrared and sub-mmresolved imaging. ApJ, 811, 100 {494}CrossRefGoogle Scholar
Matthews, BC, Krivov, AV, Wyatt, MC, et al., 2014b, Observations, modeling, and theory of debris disks. Protostars and Planets VI, 521–544 {492}
Matthews, N, Kieda, D, LeBohec, S, 2017, Development of a digital astronomical intensity interferometer: laboratory tests with thermal light. ArXiv e-prints {354}
Matthews, RAJ, 1994, The close approach of stars in the solar neighbourhood. QJRAS, 35, 1 {655}Google Scholar
Mattox, JR, Halpern, JP, Caraveo, PA, 1998, Timing the Geminga pulsar with gamma-ray observations. ApJ, 493, 891–893 {109}CrossRefGoogle Scholar
Mattsson, L, Gomez, HL, Andersen, AC, et al., 2014, The Herschel exploitation of local galaxy Andromeda (HELGA). V. Strengthening the case for substantial interstellar grain growth. MNRAS, 444, 797–807 {495}CrossRefGoogle Scholar
Matzner, CD, Levin, Y, 2005, Protostellar disks: formation, fragmentation, and the brown dwarf desert. ApJ, 628, 817–831 {65, 442, 488, 498, 523}CrossRefGoogle Scholar
Maunder, EW, 1904, Note on the distribution of sun spots in heliographic latitude, 1874–1902. MNRAS, 64, 747–761 {213}CrossRefGoogle Scholar
Maurice, M, Tosi, N, Samuel, H, et al., 2017, Onset of solid-state mantle convection and mixing during magma ocean solidification. J. Geophys. Res. (Planets), 122, 577–598 {576}Google Scholar
Maurin, AS, Selsis, F, Hersant, F, et al., 2012, Thermal phase curves of nontransiting terrestrial exoplanets. II. Characterising airless planets. A&A, 538, A95 {237}Google Scholar
Mawet, D, Absil, O, Delacroix, C, et al., 2013, L’-band AGPM vector vortex coronagraph first light on VLT–NACO: discovery of a late-type companion at two beamwidths from an F0V star. A&A, 552, L13 {337, 338}Google Scholar
Mawet, D, Absil, O, Montagnier, G, et al., 2012a, Direct imaging of extrasolar planets in star-forming regions: lessons learned from a false positive around IM Lup. A&A, 544, A131 {363}Google Scholar
Mawet, D, Choquet É, Absil, O, et al., 2017a, Characterisation of the inner disk around HD 141569A from Keck–NIRC2 L-band vortex coronagraphy. AJ, 153, 44 {338, 343}CrossRefGoogle Scholar
Mawet, D, Pueyo, L, Lawson, P, et al., 2012b, Review of small-angle coronagraphic techniques in the wake of ground-based second-generation adaptive optics systems. SPIE Conf. Ser., volume 8442 {333, 340, 342, 359}Google Scholar
Mawet, D, Riaud, P, Absil, O, et al., 2005, Annular groove phasemask coronagraph. ApJ, 633, 1191–1200 {334, 337}CrossRefGoogle Scholar
Mawet, D, Ruane, G, Xuan, W, et al., 2017b, Observing exoplanets with high-dispersion coronagraphy. II. Demonstration of an active single-mode fiber injection unit. ApJ, 838, 92 {341}CrossRefGoogle Scholar
Mawet, D, Serabyn, E, Liewer, K, et al., 2009, Optical vectorial vortex coronagraphs using liquid crystal polymers: theory, manufacturing and laboratory demonstration. Optics Express, 17, 1902–1918 {335, 336, 337}CrossRefGoogle ScholarPubMed
Mawet, D, Serabyn, E, Liewer, K, 2010, The vector vortex coronagraph: laboratory results and first light at Palomar Observatory. ApJ, 709, 53–57 {337, 340}CrossRefGoogle Scholar
Maxted, PFL, 2016, ellc: A fast, flexible light curve model for detached eclipsing binary stars and transiting exoplanets. A&A, 591, A111 {196}Google Scholar
Maxted, PFL, Anderson, DR, Collier Cameron, A, et al., 2010a, WASP–32 b: a transiting hot Jupiter planet orbiting a lithium-poor, solar-type star. PASP, 122, 1465–1470 {754}CrossRefGoogle Scholar
Maxted, PFL, Anderson, DR, Collier Cameron, A, 2011, WASP–41 b: a transiting hot Jupiter planet orbiting a magnetically active G8V star. PASP, 123, 547–554 {755}CrossRefGoogle Scholar
Maxted, PFL, Anderson, DR, Collier Cameron, A, 2013a, WASP–77A b: a transiting hot Jupiter in a wide binary system. PASP, 125, 48–55 {12, 756}CrossRefGoogle Scholar
Maxted, PFL, Anderson, DR, Collier Cameron, A, 2016, Five transiting hot Jupiters discovered using WASP–South, Euler, and TRAPPIST: WASP–119 b, WASP–124 b, WASP–126 b, WASP–129 b, and WASP–133 b. A&A, 591, A55 {757}Google Scholar
Maxted, PFL, Anderson, DR, Doyle, AP, et al., 2013b, Spitzer 3.6 and 4.5μm full-orbit light curves of WASP–18. MNRAS, 428, 2645–2660 {615, 753}CrossRefGoogle Scholar
Maxted, PFL, Anderson, DR, Gillon, M, et al., 2010b, WASP–22 b: a transiting hot Jupiter planet in a hierarchical triple system. AJ, 140, 2007–2012 {754}CrossRefGoogle Scholar
Maxted, PFL, Marsh, TR, Heber, U, et al., 2002, Photometry of four binary subdwarf B stars and the nature of their unseen companion stars. MNRAS, 333, 231–240 {234}CrossRefGoogle Scholar
Maxted, PFL, Marsh, TR, North, RC, 2000, KPD 1930+2752: a candidate Type Ia supernova progenitor. MNRAS, 317, L41–L44 {239}CrossRefGoogle Scholar
Maxted, PFL, Serenelli, AM, Southworth, J, 2015a, Bayesian mass and age estimates for transiting exoplanet host stars. A&A, 575, A36 {381}Google Scholar
Maxted, PFL, Serenelli, AM, Southworth, J, 2015b, Comparison of gyrochronological and isochronal age estimates for transiting exoplanet host stars. A&A, 577, A90 {384, 728, 731, 732, 733, 734, 736, 737, 739, 740, 742, 750, 752, 754, 755, 756}Google Scholar
May, EM, Rauscher, E, 2016, Examining Tatooine: atmospheric models of Neptune-like circumbinary planets. ApJ, 826, 225 {553}CrossRefGoogle Scholar
May, JL, Jennetti, T, 2004, Telescope resolution using negative refractive index materials. SPIE Conf. Ser., volume 5166, 220–227 {357}Google Scholar
Mayama, S, Hashimoto, J, Muto, T, et al., 2012, Subaru imaging of asymmetric features in a transition disk in Upper Scorpius. ApJ, 760, L26 {359, 465}CrossRefGoogle Scholar
Mayama, S, Tamura, M, Hanawa, T, et al., 2010, Direct imaging of bridged twin proto-planetary disks in a young multiple star. Science, 327, 306–307 {368}CrossRefGoogle Scholar
Mayer, L, 2010, Formation via disk instability. Formation and Evolution of Exoplanets, 71–100, Wiley {488}
Mayer, L, Lufkin, G, Quinn, T, et al., 2007, Fragmentation of gravitationally unstable gaseous protoplanetary disks with radiative transfer. ApJ, 661, L77–L80 {488, 490}CrossRefGoogle Scholar
Mayer, L, Peters, T, Pineda, JE, et al., 2016, Direct detection of precursors of gas giants formed by gravitational instability with ALMA. ApJ, 823, L36 {490}CrossRefGoogle Scholar
Mayer, L, Quinn, T, Wadsley, J, et al., 2004, The evolution of gravitationally unstable protoplanetary disks: fragmentation and possible giant planet formation. ApJ, 609, 1045–1064 {488}CrossRefGoogle Scholar
Mayer, L, Wadsley, J, Quinn, T, et al., 2005, Gravitational instability in binary proto-planetary disks: new constraints on giant planet formation. MNRAS, 363, 641–648 {79, 550}CrossRefGoogle Scholar
Mayhew, PJ, Bell, MA, Benton, TG, et al., 2012, Biodiversity tracks temperature over time. PNAS, 109(38), 15141–15145 {632}CrossRefGoogle ScholarPubMed
Mayne, NJ, Debras, F, Baraffe, I, et al., 2017, Results from a set of 3d numerical experiments of a hot Jupiter atmosphere. A&A, 604, A79 {733}Google Scholar
Mayo, AW, Vanderburg, A, Latham, DW, et al., 2018, 275 candidates and 149 validated planets orbiting bright stars in K2 campaigns), 0–10. AJ, 155, 136 {177, 749}CrossRefGoogle Scholar
Mayor, M, 1980, Metal abundances of F and G dwarfs determined by the radial velocity scanner CORAVEL. A&A, 87, L1–L2 {29}Google Scholar
Mayor, M, Bonfils, X, Forveille, T, et al., 2009a, The HARPS search for southern extra-solar planets. XVIII. An Earth-mass planet in the GJ 581 planetary system. A&A, 507, 487–494 {10, 46, 55, 59, 77, 716}Google Scholar
Mayor, M, Lovis, C, Santos, NC, 2014, Doppler spectroscopy as a path to the detection of Earth-like planets. Nature, 513, 328–335 {53, 157}CrossRefGoogle ScholarPubMed
Mayor, M, Marmier, M, Lovis, C, et al., 2011, The HARPS search for southern extrasolar planets. Occurrence, mass and orbital properties of super-Earths and Neptune-mass planets [unpublished]. ArXiv e-prints {11, 66, 67, 149, 485, 500, 724}
Mayor, M, Pepe, F, Queloz, D, et al., 2003, Setting new standards with HARPS. The Mes-senger, 114, 20–24 {32, 45, 46}Google Scholar
Mayor, M, Queloz, D, 1995, A Jupiter-mass companion to a solar-type star. Nature, 378, 355–359 {1, 10, 34, 46, 50, 715}CrossRefGoogle Scholar
Mayor, M, Queloz, D, 2012, From 51 Peg to Earth-type planets. New Astron. Rev., 56, 19–24 {51, 369, 715}CrossRefGoogle Scholar
Mayor, M, Udry, S, Lovis, C, et al., 2009b, The HARPS search for southern extrasolar planets. XIII. A planetary system with 3 super-Earths (4.2, 6.9, and 9.2 M⊕). A&A, 493, 639–644 {51, 52, 66, 77, 155, 719}Google Scholar
Mayor, M, Udry, S, Naef, D, et al., 2004, The CORALIE survey for southern extrasolar planets. XII. Orbital solutions for 16 extrasolar planets discovered with CORALIE. A&A, 415, 391–402 {70, 74, 414, 509, 718, 720, 721, 722, 723, 724}Google Scholar
Mazeh, T, 2008, Observational evidence for tidal interaction in close binary systems. EAS Pub. Ser., volume 29, 1–65 {534}CrossRefGoogle Scholar
Mazeh, T, Faigler, S, 2010, Detection of the ellipsoidal and the relativistic beaming effects in the CoRoT–3 light curve. A&A, 521, L59 {11, 173, 190, 236, 238, 239, 241, 733}Google Scholar
Mazeh, T, Guterman, P, Aigrain, S, et al., 2009a, Removing systematics from the CoRoT light curves. I. Magnitude-dependent zero point. A&A, 506, 431–434 {172, 190}Google Scholar
Mazeh, T, Holczer, T, Faigler, S, 2016, Dearth of short-period Neptunian exoplanets: a desert in period–mass and period–radius planes. A&A, 589, A75 {294, 499}Google Scholar
Mazeh, T, Holczer, T, Shporer, A, 2015a, Time variation of Kepler transits induced by stellar rotating spots: a way to distinguish between prograde and retrograde motion. I. Theory. ApJ, 800, 142 {215}CrossRefGoogle Scholar
Mazeh, T, Krymolowski, Y, Rosenfeld, G, 1997, The high eccentricity of the planet orbiting 16 Cyg B. ApJ, 477, L103–L106 {79, 80, 529, 715}CrossRefGoogle Scholar
Mazeh, T, Nachmani, G, Holczer, T, et al., 2013, Transit timing observations from Kepler. VIII. Catalogue of transit timing measurements of the first twelve quarters. ApJS, 208, 16 {263, 269, 270, 271, 272, 275, 305, 745}CrossRefGoogle Scholar
Mazeh, T, Nachmani, G, Sokol, G, et al., 2012, Kepler KOI–13.01: detection of beaming and ellipsoidal modulations pointing to a massive hot Jupiter. A&A, 541, A56 {11, 238, 242, 739}Google Scholar
Mazeh, T, Naef, D, Torres, G, et al., 2000, The spectroscopic orbit of the planetary companion transiting HD 209458. ApJ, 532, L55–L58 {185, 731}CrossRefGoogle ScholarPubMed
Mazeh, T, Perets, HB, McQuillan, A, et al., 2015b, Photometric amplitude distribution of stellar rotation of KOIs: indication for spin–orbit alignment of cool stars and high obliquity for hot stars. ApJ, 801, 3 {214}CrossRefGoogle Scholar
Mazeh, T, Shaham, J, 1979, The orbital evolution of close triple systems: the binary eccentricity. A&A, 77, 145–151 {528, 553}Google Scholar
Mazeh, T, Tsodikovich, Y, Segal, Y, et al., 2009b, TRIMOR: three-dimensional correlation technique to analyse multi-order spectra of triple stellar systems: application to HD 188753. MNRAS, 399, 906–913 {39, 80}CrossRefGoogle Scholar
Mazeh, T, Zucker, S, 1994, TODCOR: a two-dimensional correlation technique to analyze stellar spectra in search of faint companions. Ap&SS, 212, 349–356 {39}Google Scholar
Mazeh, T, Zucker, S, dalla Torre, A, et al., 1999, Analysis of the Hipparcos measurements of À And: a mass estimate of its outermost known planetary companion. ApJ, 522, L149–L151 {70, 94, 713}CrossRefGoogle Scholar
Mazeh, T, Zucker, S, Pont, F, 2005, An intriguing correlation between the masses and periods of the transiting planets. MNRAS, 356, 955–957 {293, 423}CrossRefGoogle Scholar
Mazin, BA, Meeker, SR, Strader, MJ, et al., 2013, ARCONS: a 2024 pixel optical through near-infrared cryogenic imaging spectrophotometer. PASP, 125, 1348 {183}CrossRefGoogle Scholar
Mbarek, R, Kempton, EMR, 2016, Clouds in super-Earth atmospheres: chemical equi-libriumcalculations. ApJ, 827, 121 {599, 735}CrossRefGoogle Scholar
McAlister, HA, ten Brummelaar, TA, Gies, DR, et al., 2005, First results from the CHARA array. I. An interferometric and spectroscopic study of the fast rotator α Leo (Regulus). ApJ, 628, 439–452 {216, 245}CrossRefGoogle Scholar
McArthur, BE, Benedict, GF, Barnes, R, et al., 2010, New observational constraints on the À And system with data from the Hubble Space Telescope and Hobby–Eberly Telescope. ApJ, 715, 1203–1220 {10, 69, 75, 92, 93, 243, 713}CrossRefGoogle Scholar
McArthur, BE, Benedict, GF, Henry, GW, et al., 2014, Astrometry, radial velocity, and photometry: the HD 128311 system remixed with data from HST, HET, and APT. ApJ, 795, 41 {93, 722}CrossRefGoogle Scholar
McArthur, BE, Endl, M, Cochran, WD, et al., 2004, Detection of a Neptune-mass planet in the 55 Cnc system using the Hobby–Eberly telescope. ApJ, 614, L81–L84 {71, 92, 728}CrossRefGoogle Scholar
McBreen, B, Hanlon, L, 1999, Gamma-ray bursts and the origin of chondrules and planets. A&A, 351, 759–765 {653}Google Scholar
McBreen, B, Winston, E, McBreen, S, et al., 2005, Gamma-ray bursts and other sources of giant lightning discharges in protoplanetary systems. A&A, 429, L41–L45 {653}Google Scholar
McBride, J, Graham, JR, Macintosh, B, et al., 2011, Experimental design for the Gemini Planet Imager. PASP, 123, 692–708 {344}CrossRefGoogle Scholar
McCabe, M, Lucas, H, 2010, On the origin and evolution of life in the Galaxy. Int. J. Astrobiol., 9, 217–226 {636}CrossRefGoogle Scholar
McCarthy, C, Butler, RP, Tinney, CG, et al., 2004, Multiple companions to HD 154857 and HD 160691. ApJ, 617, 575–579 {71, 713, 722}CrossRefGoogle Scholar
McCarthy, C, Zuckerman, B, 2004, The brown dwarf desert at 75–1200 au. AJ, 127, 2871–2884 {65, 357, 358, 414, 441}CrossRefGoogle Scholar
McCarthy, DW, Probst, RG, Low, FJ, 1985, Infrared detection of a close cool companion to Van Biesbroeck 8. ApJ, 290, L9–L13 {431}CrossRefGoogle Scholar
McCauliff, SD, Jenkins, JM, Catanzarite, J, et al., 2015, Automatic classification of Kepler planetary transit candidates. ApJ, 806, 6 {194, 197}CrossRefGoogle Scholar
McClure, MK, Manoj, P, Calvet, N, et al., 2012, Probing dynamical processes in the planet-forming region with dust mineralogy. ApJ, 759, L10 {762}CrossRefGoogle Scholar
McColley, G, 1936, The seventeenth-century doctrine of a plurality of worlds. Annals of Science, 1(4), 385–430 {639}CrossRefGoogle Scholar
McCook, GP, Sion, EM, 1987, A catalog of spectroscopically identified white dwarfs. ApJS, 65, 603–671 {413}CrossRefGoogle Scholar
McCook, GP, Sion, EM, 1999, A catalogue of spectroscopically identified white dwarfs. ApJS, 121, 1–130 {413}CrossRefGoogle Scholar
McCord, TB, Sotin, C, 2005, Ceres: evolution and current state. J. Geophys. Res. (Planets), 110, E05009 {565}CrossRefGoogle Scholar
McCormac, BM, Evans, JE, 1969, Consequences of very small planetary magnetic moments. Nature, 223, 1255 {663}CrossRefGoogle Scholar
McCormac, J, Pollacco, D, Wheatley, PJ, et al., 2017, The Next Generation Transit Survey: prototyping phase. PASP, 129(2), 025002 {167}CrossRefGoogle Scholar
McCormac, J, Skillen, I, Pollacco, D, et al., 2014, A search for photometric variability towards M71 with the Near-Infrared Transiting Exoplanet Telescope. MNRAS, 438, 3383–3398 {159, 182}CrossRefGoogle Scholar
McCracken, KG, Beer, J, Steinhilber, F, 2014, Evidence for planetary forcing of the cosmic ray intensity and solar activity throughout the past 9400 years. Sol. Phys., 289, 3207–3229 {656}CrossRefGoogle Scholar
McCracken, RA, Charsley, JM, Reid, DT, 2017a, Decade of astrocombs: recent advances in frequency combs for astronomy. Optics Express, 25, 15058 {33}CrossRefGoogle Scholar
McCracken, RA, Depagne É, Kuhn, RB, et al., 2017b, Wavelength calibration of a high resolution spectrograph with a partially stabilized 15-GHz astrocomb from 550–890 nm. Optics Express, 25, 6450 {33}CrossRefGoogle Scholar
McCrea, WH, 1960, The origin of the solar system. Phil. Trans. Soc. London A, 256, 245–266 {450}Google Scholar
McCrea, WH, 1988, Formation of the solar system: brief review and revised protoplanet theory. The Physics of the Planets, 421–439 {450}
McCullough, PR, Berta, ZK, Howard, AW, et al., 2012, SSET: spatially-scanned spectra of exoplanet transits. AAS Abstracts #219, 241.14 {185}Google Scholar
McCullough, PR, Burke, CJ, Valenti, JA, et al., 2008, XO–4 b: an extrasolar planet transiting an F5V star [unpublished]. ArXiv e-prints {757}
McCullough, PR, Crouzet, N, Deming, D, et al., 2014a, Water vapour in the spectrumof the exoplanet HD 189733 b. I. The transit. ApJ, 791, 55 {609, 730}CrossRefGoogle Scholar
McCullough, PR, Crouzet, N, Deming, D, 2014b, WFC3: precision infrared spectrophotometry with spatial scans of HD 189733 b and Vega. AAS Abstracts #223, 347.21 {185}Google Scholar
McCullough, PR, Stys, JE, Valenti, JA, et al., 2005, The XO project: searching for transiting extrasolar planet candidates. PASP, 117, 783–795 {169}CrossRefGoogle Scholar
McCullough, PR, Stys, JE, Valenti, JA, 2006, A transiting planet of a Sun-like star. ApJ, 648, 1228–1238 {757}CrossRefGoogle Scholar
McDonald, I, Kerins, E, 2018, Pre-discovery transits of the exoplanets WASP–18 b and WASP–33 b from Hipparcos. MNRAS, 477, L21–L24 {186, 735, 737, 754}CrossRefGoogle Scholar
McDonald, I, Kerins, E, Penny, M, et al., 2014, ExELS: an exoplanet legacy science proposal for the ESA Euclid mission. II. Hot exoplanets and sub-stellar systems. MNRAS, 445, 4137–4154 {143}CrossRefGoogle Scholar
McDougall, A, Albrow, MD, 2016, Microlensing observations rapid search for exo-planets: MORSE code for GPUs. MNRAS, 456, 565–570 {131}CrossRefGoogle Scholar
McElroy, MB, Prather, MJ, 1981, Noble gases in the terrestrial planets. Nature, 293, 535–539 {600}CrossRefGoogle Scholar
McElwain, MW, Brandt, TD, Janson, M, et al., 2012, Scientific design of a high contrast integral field spectrograph for the Subaru Telescope. SPIE Conf. Ser., volume 8446 {344}Google Scholar
McElwain, MW, Metchev, SA, Larkin, JE, et al., 2007, First high-contrast science with an integral field spectrograph: the substellar companion to GQ Lup. ApJ, 656, 505–514 {762}CrossRefGoogle Scholar
McEwen, AS, Isbell, NR, Edwards, KE, et al., 1992, New Voyager 1 hot spot identifications and the heat flow of Io. AAS Bulletin, volume 24, 935 {544}Google Scholar
McFadden, L, Thomas, PC, Carcich, B, et al., 2007, Observations of Vesta with HST–WFPC2 in 2007. AAS Bulletin, volume 38, 469 {478}Google Scholar
McFadden, PL, Merrill, RT, 1986, Geodynamo energy source constraints from palaeo-magnetic data. Physics of the Earth and Planetary Interiors, 43, 22–33 {663}CrossRefGoogle Scholar
McGinnis, PT, Alencar, SHP, Guimarães, MM, et al., 2015, CSI 2264: probing the inner disks of AA Tau-like systems in NGC 2264. A&A, 577, A11 {466}Google Scholar
McGlynn, TA, Chapman, RD, 1989, On the nondetection of extrasolar comets. ApJ, 346, L105–L108 {692}CrossRefGoogle Scholar
McGrath, MA, Nelan, E, Black, DC, et al., 2002, An upper limit to the mass of the radial velocity companion to ρ1 Cnc (55 Cnc). ApJ, 564, L27–L30 {92, 94, 728}CrossRefGoogle Scholar
McInerney, FA, Wing, SL, 2011, The Paleocene–Eocene Thermal Maximum: a perturbation of carbon cycle, climate, and biosphere with implications for the future. Ann. Rev. Earth Plan. Sci., 39, 489–516 {675}CrossRefGoogle Scholar
McIvor, T, Jardine, M, Holzwarth, V, 2006, Extrasolar planets, stellar winds and chromo-spheric hotspots. MNRAS, 367, L1–L5 {421, 425}CrossRefGoogle Scholar
McKay, CP, 1998, Life in the planetary context. Origins, volume 148 of ASP Conf. Ser., 449–455 {618}Google Scholar
McKay, CP, Pollack, JB, Courtin, R, 1989, The thermal structure of Titan's atmosphere. Icarus, 80, 23–53 {579}CrossRefGoogle ScholarPubMed
McKay, DS, Gibson EK Jr, Thomas-Keprta, KL, et al., 1996, Search for past life on Mars: possible relic biogenic activity in Martian meteorite ALH84001. Science, 273, 924–930 {636}CrossRefGoogle ScholarPubMed
McKee, CF, Ostriker, EC, 2007, Theory of star formation. ARA&A, 45, 565–687 {451, 452, 547}Google Scholar
McKee, CF, Taylor, JH, 2000, Astronomy and Astrophysics in the New Millennium: Report of the Astronomy and Astrophysics Survey Committee. National Academy Press, Washington DC {352, 353}Google Scholar
McKenna, J, Lyne, AG, 1988, Timing measurements of the binary millisecond pulsar in the globular cluster M4. Nature, 336, 226–228 {108}Google Scholar
McKenzie, NR, Horton, BK, Loomis, SE, et al., 2016, Continental arc volcanism as the principal driver of icehouse-greenhouse variability. Science, 352, 444–447 {676}CrossRefGoogle ScholarPubMed
McLaughlin, DB, 1924, Some results of a spectrographic study of the Algol system. ApJ, 60, 22–31 {248}CrossRefGoogle Scholar
McLean, IS, Sprayberry, D, 2003, Instrumentation at the Keck observatory. Instrument Design and Performance for Optical/Infrared Ground-based Telescopes, volume 4841 of Proc. SPIE, 1–6 {343}Google Scholar
McLeod, KK, Rodriguez, JE, Oelkers, RJ, et al., 2017, KELT–18 b: puffy planet, hot host, probably perturbed. AJ, 153, 263 {738}CrossRefGoogle Scholar
McMahon, RG, Banerji, M, Gonzalez, E, et al., 2013, First scientific results from the VISTA Hemisphere Survey (VHS). The Messenger, 154, 35–37 {433}Google Scholar
McMillan, RS, Moore, TL, Perry, ML, et al., 1994, Long, accurate time series measurements of radial velocities of solar-type stars. Ap&SS, 212, 271–280 {46}Google Scholar
McMillan, RS, Smith, PH, Perry, ML, et al., 1990, Long-term stability of a Fabry–Pérot interferometer used for measurement of stellar Doppler shift. SPIE Conf. Ser., volume 1235, 601–609 {46, 50}Google Scholar
McNally, CP, Hubbard, A, Mac Low, MM, et al., 2013, Mineral processing by short circuits in protoplanetary disks. ApJ, 767, L2 {653}CrossRefGoogle Scholar
McNally, CP, McClure, MK, 2017, Photophoretic levitation and trapping of dust in the inner regions of protoplanetary disks. ApJ, 834, 48 {458}CrossRefGoogle Scholar
McNeil, D, Duncan, M, Levison, HF, 2005, Effects of type I migration on terrestrial planet formation. AJ, 130, 2884–2899 {518}CrossRefGoogle Scholar
McNeil, DS, Nelson, RP, 2009, New methods for large dynamic range problems in planetary formation. MNRAS, 392, 537–552 {513}CrossRefGoogle Scholar
McNeil, DS, Nelson, RP, 2010, On the formation of hot Neptunes and super-Earths. MNRAS, 401, 1691–1708 {487, 500, 501, 502}CrossRefGoogle Scholar
McQuillan, A, Aigrain, S, Mazeh, T, 2013a, Measuring the rotation period distribution of field Mdwarfs with Kepler. MNRAS, 432, 1203–1216 {309, 310, 383}CrossRefGoogle Scholar
McQuillan, A, Mazeh, T, Aigrain, S, 2013b, Stellar rotation periods of the Kepler Objects of Interest: a dearth of close-in planets around fast rotators. ApJ, 775, L11 {254, 309, 310, 383}CrossRefGoogle Scholar
McQuillan, A, Mazeh, T, Aigrain, S, 2014, Rotation periods of 34 030 Kepler main-sequence stars: the full autocorrelation sample. ApJS, 211, 24 {309, 310, 383, 384, 386}CrossRefGoogle Scholar
McSween, HY, 1985, SNC meteorites: clues to Martian petrologic evolution? Reviews of Geophysics, 23, 391–416 {670}CrossRefGoogle Scholar
McSween, HY, Huss, GR, 2010, Cosmochemistry. Cambridge University Press {562}CrossRefGoogle Scholar
McTier, MAS, Kipping, DM, 2018, Findingmountains with molehills: the detectability of exotopography. MNRAS, 475, 4978–4985 {221, 616}CrossRefGoogle Scholar
Meadows, VS, 2008, Planetary environmental signatures for habitability and life. Exo-planets: Detection, Formation, Properties, Habitability, 259–284, Springer {640, 641}
Meadows, VS, 2017, Reflections on O2 as a biosignature in exoplanetary atmospheres. Astrobi-ology, 17, 1022–1052 {638}Google ScholarPubMed
Mecheri, R, Abdelatif, T, Irbah, A, et al., 2004, New values of gravitational moments J2 and J4 deduced from helioseismology. Sol. Phys., 222, 191–197 {258}CrossRefGoogle Scholar
Mede, K, Brandt, TD, 2017, The Exoplanet Simple Orbit Fitting Toolbox (ExoSOFT): an open-source tool for efficient fitting of astrometric and radial velocity data. AJ, 153, 135 {24}CrossRefGoogle Scholar
Medvedev, AS, Sethunadh, J, Hartogh, P, 2013, From cold to warm gas giants: a three-dimensional atmospheric general circulation modeling. Icarus, 225, 228–235 {591, 721, 722}CrossRefGoogle Scholar
Medvedev, YD, Vavilov, DE, Bondarenko, YS, et al., 2017, Improvement of the position of Planet X based on the motion of nearly parabolic comets. Astronomy Letters, 43, 120–125 {687}CrossRefGoogle Scholar
Meech, KJ, Weryk, R, Micheli, M, et al., 2017, A brief visit from a red and extremely elongated interstellar asteroid. Nature, 552, 378–381 {12, 693}CrossRefGoogle ScholarPubMed
Meeus, J, Vitagliano, A, 2004, Simultaneous transits. J. Br. Astron. Assoc., 114, 132–135 {227}Google Scholar
Meheut, H, Keppens, R, Casse, F, et al., 2012a, Formation and long-term evolution of 3d vortices in protoplanetary disks. A&A, 542, A9 {461}Google Scholar
Meheut, H, Meliani, Z, Varniere, P, et al., 2012b, Dust-trapping Rossby vortices in proto-planetary disks. A&A, 545, A134 {461}Google Scholar
Mehrabi, A, He, H, Khosroshahi, H, 2017, Magnetic activity analysis for a sample of G-type main sequence Kepler targets. ApJ, 834, 207 {383}CrossRefGoogle Scholar
Mehrabi, A, Rahvar, S, 2013, Studying wave optics in the light curves of exoplanet microlensing. MNRAS, 431, 1264–1274 {426}CrossRefGoogle Scholar
Meibom, S, Barnes, SA, Latham, DW, et al., 2011a, The Kepler cluster study: stellar rotation in NGC 6811. ApJ, 733, L9 {158, 309}CrossRefGoogle Scholar
Meibom, S, Barnes, SA, Platais, I, et al., 2015, A spin-down clock for cool stars from observations of a 2.5-billion-year-old cluster. Nature, 517, 589–591 {380}CrossRefGoogle ScholarPubMed
Meibom, S, Mathieu, RD, Stassun, KG, 2009, Stellar rotation in M35: mass–period relations, spin-down rates, and gyrochronology. ApJ, 695, 679–694 {310}CrossRefGoogle Scholar
Meibom, S, Mathieu, RD, Stassun, KG, et al., 2011b, The colour-period diagram and stellar rotational evolution: new rotation period measurements in the open clus-ter M34. ApJ, 733, 115 {380}CrossRefGoogle Scholar
Meibom, S, Torres, G, Fressin, F, et al., 2013, The same frequency of planets inside and outside open clusters of stars. Nature, 499, 55–58 {12, 159, 742}CrossRefGoogle Scholar
Meier, MMM, Holm-Alwmark, S, 2017, A tale of clusters: no resolvable periodicity in the terrestrial impact cratering record. MNRAS, 467, 2545–2551 {654}Google Scholar
Meier, MMM, Reufer, A, Wieler, R, 2014, On the origin and composition of Theia: constraints from new models of the giant impact. Icarus, 242, 316–328 {664}CrossRefGoogle Scholar
Meisner, AM, Bromley, BC, Nugent, PE, et al., 2017, Searching for Planet Nine with coadded WISE and NEOWISE-reactivation images. AJ, 153, 65 {687}CrossRefGoogle Scholar
Meisner, T, Wurm, G, Teiser, J, 2012, Experiments on cm-sized dust aggregates and their implications for planetesimal formation. A&A, 544, A138 {468}Google Scholar
Meisner, T, Wurm, G, Teiser, J, et al., 2013, Preplanetary scavengers: growing tall in dust collisions. A&A, 559, A123 {468}Google Scholar
Mejía, AC, Durisen, RH, Pickett, MK, et al., 2005, The thermal regulation of gravitational instabilities in protoplanetary disks. II. Extended simulations with varied cooling rates. ApJ, 619, 1098–1113 {489}CrossRefGoogle Scholar
Mékarnia, D, Chapellier, E, Guillot, T, et al., 2017, The – Scuti pulsations of fl Pic as observed by ASTEP from Antarctica. A&A, 608, L6 {762}Google Scholar
Mékarnia, D, Guillot, T, Rivet, JP, et al., 2016, Transiting planet candidates with ASTEP 400 at Dome C, Antarctica. MNRAS, 463, 45–62 {169}CrossRefGoogle Scholar
Mekhaldi, F, Muscheler, R, Adolphi, F, et al., 2015, Multiradionuclide evidence for the solar origin of the cosmic-ray events of 774/5 and 993/4. Nature Communications, 6, 8611 {628}CrossRefGoogle ScholarPubMed
Meléndez, J, Asplund, M, Gustafsson, B, et al., 2009, The peculiar solar composition and its possible relation to planet formation. ApJ, 704, L66–L70 {405}CrossRefGoogle Scholar
Meléndez, J, Bedell, M, Bean, JL, et al., 2017, The Solar Twin Planet Search. V. Close-in, low-mass planet candidates and evidence of planet accretion in the solar twin HIP 68468. A&A, 597, A34 {405}Google Scholar
Meléndez, J, Bergemann, M, Cohen, JG, et al., 2012, The remarkable solar twin HIP 56948: a prime target in the quest for other Earths. A&A, 543, A29 {405}Google Scholar
Meléndez, J, Schirbel, L, Monroe, TR, et al., 2014, HIP 114328: a new refractory-poor and Li-poor solar twin. A&A, 567, L3 {405}Google Scholar
Melis, C, Duchêne, G, Chomiuk, L, et al., 2011a, Microwave observations of edge-on protoplanetary disks: programme overview and first results. ApJ, 739, L7 {465}CrossRefGoogle Scholar
Melis, C, Dufour, P, 2017, Does a differentiated, carbonate-rich, rocky object pollute the white dwarf SDSS J1043+08555? ApJ, 834, 1 {418}CrossRefGoogle Scholar
Melis, C, Farihi, J, Dufour, P, et al., 2011b, Accretion of a terrestrial-like minor planet by a white dwarf. ApJ, 732, 90 {417}CrossRefGoogle Scholar
Melis, C, Gielen, C, Chen, CH, et al., 2010a, Shocks and a giant planet in the disk orbiting BP Pis? ApJ, 724, 470–479 {464}CrossRefGoogle Scholar
Melis, C, Jura, M, Albert, L, et al., 2010b, Echoes of a decaying planetary system: the gaseous and dusty disks surrounding three white dwarfs. ApJ, 722, 1078–1091 {416}CrossRefGoogle Scholar
Melis, C, Zuckerman, B, Rhee, JH, et al., 2012, Rapid disappearance of a warm, dusty circumstellar disk. Nature, 487, 74–76 {497}CrossRefGoogle ScholarPubMed
Melis, C, Zuckerman, B, Rhee, JH, 2013, Copious amounts of hot and cold dust orbiting the main sequence A-type stars HD 131488 and HD 121191. ApJ, 778, 12 {493}CrossRefGoogle Scholar
Melnikov, AV, 2017, Orbital dynamics of the planetary system HD 196885. Solar Sys-tem Research, 51, 327–334 {724}Google Scholar
Melo, C, Santos, NC, Gieren, W, et al., 2007, A new Neptune-mass planet orbiting HD 219828. A&A, 467, 721–727 {38, 49, 721, 724}Google Scholar
Melo, C, Santos, NC, Pont, F, et al., 2006, On the age of stars harbouring transiting planets. A&A, 460, 251–256 {381, 749, 750}Google Scholar
Melosh, HJ, 2003, Exchange of meteorites (and life?) between stellar systems. Astro-biology, 3, 207–215 {638}Google ScholarPubMed
Melosh, HJ, Freed, AM, Johnson, BC, et al., 2013, The origin of lunar mascon basins. Science, 340, 1552–1555 {665}CrossRefGoogle ScholarPubMed
Melosh, HJ, Vickery, AM, 1989, Impact erosion of the primordial atmosphere of Mars. Nature, 338, 487–489 {600, 602}CrossRefGoogle ScholarPubMed
Melott, AL, Bambach, RK, 2014, Analysis of periodicity of extinction using the 2012 geological timescale. Paleobiology, 40(2), 177–196, ISSN 0094-8373 {651}CrossRefGoogle Scholar
Melott, AL, Thomas, BC, 2009, Late Ordovician geographic patterns of extinction com-paredwith simulations of astrophysical ionising radiation damage. Paleobiology, 35, 311 {651}CrossRefGoogle Scholar
Melott, AL, Thomas, BC, 2012, Causes of an AD 774–775 14C increase. Nature, 491, E1 {628}CrossRefGoogle ScholarPubMed
Mendeleev, DI, 1877, L'origine du pétrole. Revue Scientifique, 2e Ser.,, 8, 409–416 {598}Google Scholar
Mendelowitz, C, Ge, J, Mandell, AM, et al., 2004, A search for sodium absorption from comets around HD 209458. ApJ, 601, 1120–1128 {731}CrossRefGoogle Scholar
Méndez, A, 2006, The planetary habitability classification. LPI Science Conf Abstracts, volume 37, 2396 {635}Google Scholar
Méndez, A, Rivera-Valentín, EG, 2017, The equilibrium temperature of planets in elliptical orbits. ApJ, 837, L1 {286, 620, 634}CrossRefGoogle Scholar
Mendigutía, I, Oudmaijer, RD, Garufi, A, et al., 2017, The protoplanetary system HD 100546 in Hα polarised light from SPHERE/ZIMPOL: a bar-like structure across the disk gap? A&A, 608, A104 {763}Google Scholar
Mendillo, CB, Chakrabarti, S, Cook, TA, et al., 2012, Flight demonstration of a milliarc-second pointing system for direct exoplanet imaging. Appl. Opt., 51, 7069 {350}CrossRefGoogle Scholar
Mendonça, JM, Grimm, SL, Grosheintz, L, et al., 2016, THOR: a new and flexible global circulation model to explore planetary atmospheres. ApJ, 829, 115 {593}CrossRefGoogle Scholar
Mendonça, JM, Malik, M, Demory, BO, et al., 2018, Revisiting the phase curves of WASP–43 b: confronting re-analysed Spitzer data with cloudy atmospheres. AJ, 155, 150 {755}CrossRefGoogle Scholar
Meng, HYA, Rieke, GH, Su, KYL, et al., 2012, Variability of the infrared excess of extreme debris disks. ApJ, 751, L17 {368, 497, 498}CrossRefGoogle Scholar
Meng, HYA, Rieke, GH, Su, KYL, 2017, The first 40 million years of circumstellar disk evolution: the signature of terrestrial planet formation. ApJ, 836, 34 {452}CrossRefGoogle Scholar
Meng, HYA, Su, KYL, Rieke, GH, et al., 2014, Large impacts around a solar-analogue star in the era of terrestrial planet formation. Science, 345, 1032–1035 {368}CrossRefGoogle Scholar
Meng, HYA, Su, KYL, Rieke, GH, 2015, Planetary collisions outside the solar system: time domain characterisation of extreme debris disks. ApJ, 805, 77 {498}CrossRefGoogle Scholar
Mengel, MW, Fares, R, Marsden, SC, et al., 2016, The evolving magnetic topology of τ Boo. MNRAS, 459, 4325–4342 {47, 714}CrossRefGoogle Scholar
Mengel, MW, Marsden, SC, Carter, BD, et al., 2017, A BCool survey of the magnetic fields of planet-hosting solar-type stars. MNRAS, 465, 2734–2747 {421}CrossRefGoogle Scholar
Mennesson, B, Absil, O, Lebreton, J, et al., 2013, An interferometric study of the Fomalhaut inner debris disk. II. Keck nuller mid-IR observations. ApJ, 763, 119 {761}CrossRefGoogle Scholar
Mennesson, B, Akeson, R, Appleby, E, et al., 2006, Long baseline nulling interferometry with the Keck telescopes: a progress report. IAU Colloq. 200: Direct Imaging of Exoplanets: Science and Techniques, 227–232 {349}
Mennesson, B, Gaudi, BS, Seager, S, et al., 2016, The Habitable Exoplanet (HabEx) imaging mission: preliminary science drivers and technical requirements. SPIE Conf. Ser., volume 9904 of Proc. SPIE, 99040L {353}Google Scholar
Mennesson, B, Léger, A, Ollivier, M, 2005, Direct detection and characterisation of ex-trasolar planets: the Mariotti space interferometer. Icarus, 178, 570–588 {352}CrossRefGoogle Scholar
Mennesson, B, Mariotti, JM, 1997, Array configurations for a space infrared nulling interferometer dedicated to the search for Earth-like extrasolar planets. Icarus, 128, 202–212 {352}CrossRefGoogle Scholar
Mennesson, B, Millan-Gabet, R, Colavita, MM, et al., 2012, Keck interferometer nuller science highlights. SPIE Conf. Ser., volume 8445 {349}Google Scholar
Mennesson, B, Shao, M, Levine, BM, et al., 2003, Optical planet discoverer: how to turn a 1.5-mclass space telescope into a powerful exo-planetary systems imager. SPIE Conf. Ser., volume 4860, 32–44 {334, 353}Google Scholar
Menou, K, 2012a, Atmospheric circulation and composition of GJ 1214 b. ApJ, 744, L16 {593, 613, 734}CrossRefGoogle Scholar
Menou, K, 2012b, Magnetic scaling laws for the atmospheres of hot giant exoplanets. ApJ, 745, 138 {591}CrossRefGoogle Scholar
Menou, K, 2012c, Thermo-resistive instability of hot planetary atmospheres. ApJ, 754, L9 {303}CrossRefGoogle Scholar
Menou, K, 2013, Water-trapped worlds. ApJ, 774, 51 {621}CrossRefGoogle Scholar
Menou, K, 2015, Climate stability of habitable Earth-like planets. Earth Planet. Sci. Lett., 429, 20–24 {630, 631}CrossRefGoogle Scholar
Menou, K, Cho, JYK, Seager, S, et al., 2003, Weather variability of close-in extrasolar giant planets. ApJ, 587, L113–L116 {593}CrossRefGoogle Scholar
Menou, K, Goodman, J, 2004, Low-mass protoplanet migration in T Tauri α-disks. ApJ, 606, 520–531 {521}CrossRefGoogle Scholar
Menou, K, Rauscher, E, 2009, Atmospheric circulation of hot Jupiters: a shallow three-dimensionalmodel. ApJ, 700, 887–897 {593, 596}CrossRefGoogle Scholar
Menou, K, Rauscher, E, 2010, Radiation hydrodynamics of hot Jupiter atmospheres. ApJ, 713, 1174–1182 {591}CrossRefGoogle Scholar
Menou, K, Tabachnik, S, 2003, Dynamical habitability of known extrasolar planetary systems. ApJ, 583, 473–488 {514, 623}CrossRefGoogle Scholar
Merín, B, Ardila, DR, Ribas Á, et al., 2014, Herschel–PACS photometry of transiting-planet host stars with candidate warmdebris disks. A&A, 569, A89 {494}Google Scholar
Merlin, F, 2015, New constraints on the surface of Pluto. A&A, 582, A39 {682}Google Scholar
Merlis, TM, Schneider, T, 2010, Atmospheric dynamics of Earth-like tidally-locked aquaplanets. Journal of Advances in Modeling Earth Systems, 2, 13 {593}CrossRefGoogle Scholar
Meru, F, Bate, MR, 2010, Exploring the conditions required to form giant planets via gravitational instability in massive protoplanetary disks. MNRAS, 406, 2279–2288 {488, 489, 490}CrossRefGoogle Scholar
Meru, F, Bate, MR, 2011a, Non-convergence of the critical cooling time-scale for fragmentation of self-gravitating disks. MNRAS, 411, L1–L5 {488}CrossRefGoogle Scholar
Meru, F, Bate, MR, 2011b, On the fragmentation criteria of self-gravitating protoplanetary disks. MNRAS, 410, 559–572 {488}CrossRefGoogle Scholar
Meru, F, Bate, MR, 2012, On the convergence of the critical cooling time scale for the fragmentation of self-gravitating disks. MNRAS, 427, 2022–2046 {490}CrossRefGoogle Scholar
Meru, F, Galvagni, M, Olczak, C, 2013a, Growth of grains in brown dwarf disks. ApJ, 774, L4 {446}CrossRefGoogle Scholar
Meru, F, Geretshauser, RJ, Schäfer, C, et al., 2013b, Growth and fragmentation of cm-sized dust aggregates: the dependence on aggregate size and porosity. MNRAS, 435, 2371–2390 {446, 469}CrossRefGoogle Scholar
Mesa, D, Gratton, R, Berton, A, et al., 2011, Simulation of planet detection with the VLT–SPHERE integral field spectrograph. A&A, 529, A131 {344}Google Scholar
Mesa, D, Gratton, R, Zurlo, A, et al., 2015, Performance of the planet finder VLT–SPHERE. II. Data analysis and results for IFS in laboratory. A&A, 576, A121 {344}Google Scholar
Mesa, D, Zurlo, A, Milli, J, et al., 2017, Upper limits for mass and radius of objects around Proxima Cen from SPHERE/VLT. MNRAS, 466, L118–L122 {714}CrossRefGoogle Scholar
Meschiari, S, 2012a, Circumbinary planet formation in the Kepler–16 system. I. N-body simulations. ApJ, 752, 71 {552, 739}CrossRefGoogle Scholar
Meschiari, S, 2012b, Planet formation in circumbinary configurations: turbulence inhibits planetesimal accretion. ApJ, 761, L7 {551}CrossRefGoogle Scholar
Meschiari, S, 2014, Circumbinary planet formation in the Kepler–16 system. II. A toy model for in situ planet formation within a debris belt. ApJ, 790, 41 {552, 739}CrossRefGoogle Scholar
Meschiari, S, Laughlin, G, 2008, The potential impact of groove modes on type II plan-etarymigration. ApJ, 679, L135–L138 {520}CrossRefGoogle Scholar
Meschiari, S, Laughlin, G, Vogt, SS, et al., 2011, The Lick–Carnegie Survey: four new exoplanet candidates. ApJ, 727, 117 {719, 720, 721, 723, 724}CrossRefGoogle Scholar
Meschiari, S, Laughlin, GP, 2010, Systemic: a testbed for characterising the detection of extrasolar planets. II. Numerical approaches to the transit timing inverse problem. ApJ, 718, 543–550 {25, 271}CrossRefGoogle Scholar
Meschiari, S, Wolf, AS, Rivera, E, et al., 2009, Systemic: a testbed for characterising the detection of extrasolar planets. I. The systemic console package. PASP, 121, 1016–1027 {25}CrossRefGoogle Scholar
Meshkat, T, Bailey, V, Rameau, J, et al., 2013, Further evidence of the planetary nature of HD 95086 b from Gemini–NICI H-band data. ApJ, 775, L40 {762}CrossRefGoogle Scholar
Meshkat, T, Bailey, VP, Su, KYL, et al., 2015, Searching for planets in holey debris disks with the apodising phase plate. ApJ, 800, 5 {494}CrossRefGoogle Scholar
Meshkat, T, Kenworthy, MA, Quanz, SP, et al., 2014, Optimised principal component analysis on coronagraphic images of the Fomalhaut system. ApJ, 780, 17 {761}CrossRefGoogle Scholar
Meshkat, T, Mawet, D, Bryan, ML, et al., 2017, A direct imaging survey of Spitzer-detected debris disks: occurrence of giant planets in dusty systems. AJ, 154, 245 {494}CrossRefGoogle Scholar
Mestel, L, 1965a, Problems of star formation I. QJRAS, 6, 161 {386}Google Scholar
Mestel, L, 1965a, Problems of star formation II. QJRAS, 6, 265 {386}Google Scholar
Mestre, MF, Cincotta, PM, Giordano, CM, 2011, Analytical relation between two chaos indicators: FLI and MEGNO. MNRAS, 414, L100–L103 {515, 516}CrossRefGoogle Scholar
Metcalfe, TS, Basu, S, Henry, TJ, et al., 2010, Discovery of a 1.6 year magnetic activity cycle in the exoplanet host star ι Hor. ApJ, 723, L213–L217 {421, 725}CrossRefGoogle Scholar
Metcalfe, TS, Buccino, AP, Brown, BP, et al., 2013, Magnetic activity cycles in the exo-planet host star yatt MC, et al., 2005, Structure in the Eri. ApJ, 763, L26 {421, 715}CrossRefGoogle Scholar
Metcalfe, TS, Chaplin, WJ, Appourchaux, T, et al., 2012, Asteroseismology of the solar analogues 16 Cyg A and B from Kepler observations. ApJ, 748, L10 {715}CrossRefGoogle Scholar
Metcalfe, TS, Creevey, OL, Davies, GR, 2015, Asteroseismic modeling of 16 Cyg A and B using the complete Kepler data set. ApJ, 811, L37 {715}CrossRefGoogle Scholar
Metchev, SA, Heinze, A, Apai, D, et al., 2015, Weather on otherworlds. II. Survey results: spots are ubiquitous on L and T dwarfs. ApJ, 799, 154 {440}CrossRefGoogle Scholar
Metchev, SA, Hillenbrand, LA, 2006, HD 203030B: an unusually cool young substellar companion near the L/T transition. ApJ, 651, 1166–1176 {362, 438, 763}CrossRefGoogle Scholar
Metchev, SA, Hillenbrand, LA, 2009, The Palomar/Keck adaptive optics survey of young solar analogues: evidence for a universal companion mass function. ApJS, 181, 62–109 {358}CrossRefGoogle Scholar
Metchev, SA, Marois, C, Zuckerman, B, 2009, Pre-discovery 2007 image of the HR 8799 planetary system. ApJ, 705, L204–L207 {763}CrossRefGoogle Scholar
Metropolis, N, Rosenbluth, AW, Rosenbluth, MN, et al., 1953, Equation-of-state calculations by fast computing machines. J. Chem. Phys., 21, 1087–1092 {25}CrossRefGoogle Scholar
Metzger, BD, Giannios, D, Spiegel, DS, 2012a, Optical and X-ray transients from planet-star mergers. MNRAS, 425, 2778–2798 {369}CrossRefGoogle Scholar
Metzger, BD, Rafikov, RR, Bochkarev, KV, 2012b, Global models of runaway accretion in white dwarf debris disks. MNRAS, 423, 505–528 {416}CrossRefGoogle Scholar
Metzger, BD, Shen, KJ, Stone, N, 2017, Secular dimming of KIC–8462852 following its consumption of a planet. MNRAS, 468, 4399–4407 {747}CrossRefGoogle Scholar
Meunier, N, Desort, M, Lagrange, A, 2010a, Using the Sun to estimate Earth-like planets detection capabilities. II. Impact of plages. A&A, 512, A39 {37, 38, 86}Google Scholar
Meunier, N, Lagrange, AM, 2013a, Using the Sun to estimate Earth-like planets detection capabilities. IV. Correcting for the convective component. A&A, 551, A101 {37, 38, 86}Google Scholar
Meunier, N, Lagrange, AM, 2013b, Using the Sun to study the impact of stellar activity on exoplanet detectability. Astron. Nach., 334, 141 {38, 86}CrossRefGoogle Scholar
Meunier, N, Lagrange, AM, Borgniet, S, 2017, A new method of correcting radial velocity time series for inhomogeneous convection. A&A, 607, A6 {30}Google Scholar
Meunier, N, Lagrange, AM, Borgniet, S, et al., 2015, Using the Sun to estimate Earth-like planet detection capabilities. VI. Simulation of granulation and supergranu-lation radial velocity and photometric time series. A&A, 583, A118 {38, 86}Google Scholar
Meunier, N, Lagrange, AM, Desort, M, 2010b, Reconstructing the solar integrated radial velocity using SOHO–MDI. A&A, 519, A66 {657}Google Scholar
Meyer, BS, Zinner, E, 2006, Nucleosynthesis. Meteorites and the Early Solar System II, 69–108, University of Arizona Press {653}
Meyer, E, Kürster, M, Arcidiacono, C, et al., 2011, Astrometry with the MCAO instrument MAD: an analysis of single-epoch data obtained in the layer-oriented mode. A&A, 532, A16 {83}Google Scholar
Meyer, MR, Amara, A, Reggiani, M, et al., 2017, Mdwarf exoplanet surface density distribution: a log-normal fit from 0.07–400 au. ArXiv e-prints {148, 484}
Meynet, G, Eggenberger, P, Privitera, G, et al., 2017, Star–planet interactions. IV. Possibility of detecting the orbit-shrinking of a planet around a red giant. A&A, 602, L7 {412}Google Scholar
Mia, R, Kushvah, BS, 2016, Orbital dynamics of exoplanetary systems Kepler–62, HD 200964 and Kepler–11. MNRAS, 457, 1089–1100 {508, 724, 739, 741}CrossRefGoogle Scholar
Micela, G, Sciortino, S, Serio, S, et al., 1985, Einstein X-ray survey of the Pleiades: the dependence of X-ray emission on stellar age. ApJ, 292, 172–180 {423}CrossRefGoogle Scholar
Michael, G, Basilevsky, A, Neukum, G, 2018, On the history of the early meteoritic bombardment of the Moon: was there a terminal lunar cataclysm? Icarus, 302, 80–103 {669}CrossRefGoogle Scholar
Michael, S, Durisen, RH, 2010, Stellar motion induced by gravitational instabilities in protoplanetary disks. MNRAS, 406, 279–289 {490}CrossRefGoogle Scholar
Michael, S, Durisen, RH, Boley, AC, 2011, Migration of gas giant planets in gravitationally unstable disks. ApJ, 737, L42 {489, 519}CrossRefGoogle Scholar
Michaely, E, Perets, HB, Grishin, E, 2017, On the existence of regular and irregular outer moons orbiting the Pluto–Charon system. ApJ, 836, 27 {682}CrossRefGoogle Scholar
Michalik, D, Lindegren, L, Hobbs, D, et al., 2014, Joint astrometric solution of Hippar-cos and Gaia: a recipe for the Hundred Thousand Proper Motions project. A&A, 571, A85 {99}Google Scholar
Michałowski, MJ, 2015, Dust production 680–850Myr after the Big Bang. A&A, 577, A80 {495}Google Scholar
Michel, P, DeMeo, FE, Bottke, WF, 2015, Asteroids IV. Univ. Arizona Press {651}CrossRefGoogle Scholar
Michel, P, Morbidelli, A, 2007, Review of the population of impactors and the impact cratering rate in the inner solar system. Meteor. Plan. Sci., 42, 1861–1869 {671}Google Scholar
Michikoshi, S, Inutsuka Si, Kokubo, E, et al., 2007, N-body simulation of planetesimal formation through gravitational instability of a dust layer. ApJ, 657, 521–532 {488}CrossRefGoogle Scholar
Michikoshi, S, Kokubo, E, 2011, Formation of a propeller structure by a moonlet in a dense planetary ring. ApJ, 732, L23 {691}CrossRefGoogle Scholar
Michikoshi, S, Kokubo, E, Inutsuka, SI, 2010, N-body simulation of planetesimal formation through gravitational instability of a dust layer in laminar gas disk. ApJ, 719, 1021–1031 {488}CrossRefGoogle Scholar
Michtchenko, TA, Beaugé, C, Ferraz-Mello, S, 2008a, Dynamic portrait of the planetary 2:1 mean-motion resonance. I. Systems with a more massive outer planet. MNRAS, 387, 747–758 {506}CrossRefGoogle Scholar
Michtchenko, TA, Beaugé, C, Ferraz-Mello, S, 2008b, Dynamic portrait of the planetary 2:1mean-motion resonance. II. Systems with amore massive inner planet. MNRAS, 391, 215–227 {506}CrossRefGoogle Scholar
Michtchenko, TA, Ferraz-Mello, S, 2001a, Modeling the 5:2 mean motion resonance in the Jupiter–Saturn planetary system. Icarus, 149, 357–374 {75}CrossRefGoogle Scholar
Michtchenko, TA, Ferraz-Mello, S, 2001b, Resonant structure of the outer solar system in the neighbourhood of the planets. AJ, 122, 474–481 {515}CrossRefGoogle Scholar
Michtchenko, TA, Ferraz-Mello, S, Beaugé, C, 2006, Modeling the 3d secular planetary three-body problem: discussion on the outer À And planetary system. Icarus, 181, 555–571 {69, 713}CrossRefGoogle Scholar
Michtchenko, TA, Malhotra, R, 2004, Secular dynamics of the three-body problem: application to the À And planetary system. Icarus, 168, 237–248 {69, 713}CrossRefGoogle Scholar
Michtchenko, TA, Rodríguez, A, 2011, Modelling the secular evolution of migrating planet pairs. MNRAS, 415, 2275–2292 {522}CrossRefGoogle Scholar
Mieremet, AL, Braat, JJM, 2003, Deep nulling bymeans of multiple-beam recombination. Appl. Opt., 42, 1867–1875 {349}CrossRefGoogle Scholar
Migaszewski, C, 2015, On the migration of two planets in a disk and the formation of mean motion resonances. MNRAS, 453, 1632–1643 {508}CrossRefGoogle Scholar
Migaszewski, C, 2016, On the migration of three planets in a protoplanetary disk and the formation of chains of meanmotion resonances. MNRAS, 458, 2051–2060 {510}CrossRefGoogle Scholar
Migaszewski, C, 2017, On the migration-induced formation of the 9:7 mean motion resonance. MNRAS, 469, 1131–1146 {509, 740}CrossRefGoogle Scholar
Migaszewski, C, Goździewski, K, 2008, A secular theory of coplanar, non-resonant planetary systems. MNRAS, 388, 789–802 {511}CrossRefGoogle Scholar
Migaszewski, C, Goździewski, K, 2011, The non-resonant, relativistic dynamics of circumbinary planets. MNRAS, 411, 565–583 {549}CrossRefGoogle Scholar
Migaszewski, C, Goździewski, K, Panichi, F, 2017, The origin and 9:7MMR dynamics of the Kepler–29 system. MNRAS, 465, 2366–2380 {509, 740}CrossRefGoogle Scholar
Migaszewski, C, Goździewski, K, Słonina, M, 2013, A linear distribution of orbits in compact planetary systems? MNRAS, 436, L25–L29 {510, 740}CrossRefGoogle Scholar
Migaszewski, C, Słonina, M, Goździewski, K, 2012, A dynamical analysis of the Kepler–11 system. MNRAS, 427, 770–789 {179, 502, 739}CrossRefGoogle Scholar
Miglio, A, Montalbán, J, 2005, Constraining fundamental stellar parameters using seismology: application to α Cen AB. A&A, 441, 615–629 {714}Google Scholar
Mignard, F, Klioner, S, Lindegren, L, et al., 2016, Gaia Data Release 1. Reference frame and optical properties of ICRF sources. A&A, 595, A5 {86}Google Scholar
Mignone, A, Bodo, G, Massaglia, S, et al., 2007, PLUTO: a numerical code for computational astrophysics. ApJS, 170, 228–242 {462}CrossRefGoogle Scholar
Miguel, Y, Brunini, A, 2010, Planet formation: statistics of spin rates and obliquities of extrasolar planets. MNRAS, 406, 1935–1943 {679, 680}Google Scholar
Miguel, Y, Guilera, OM, Brunini, A, 2011a, The diversity of planetary system architectures: contrasting theory with observations. MNRAS, 417, 314–332 {556}CrossRefGoogle Scholar
Miguel, Y, Guillot, T, Fayon, L, 2016, Jupiter internal structure: the effect of different equations of state. A&A, 596, A114 {658}Google Scholar
Miguel, Y, Ida, S, 2016, A semi-analytical model for exploring Galilean satellites formation from a massive disk. Icarus, 266, 1–14 {687}CrossRefGoogle Scholar
Miguel, Y, Kaltenegger, L, 2014, Exploring atmospheres of hot mini-Neptunes and extrasolar giant planets orbiting different stars with application to HD 97658 b, WASP–12 b, CoRoT–2 b, XO–1 b, and HD 189733 b. ApJ, 780, 166 {729, 730, 733, 753, 757}CrossRefGoogle Scholar
Miguel, Y, Kaltenegger, L, Fegley, B, et al., 2011b, Compositions of hot super-Earth atmospheres: exploring Kepler candidates. ApJ, 742, L19 {598}CrossRefGoogle Scholar
Miguel, Y, Kaltenegger, L, Linsky, JL, et al., 2015, The effect of Lyman α radiation on mini-Neptune atmospheres around M stars: application to GJ 436 b. MNRAS, 446, 345–353 {729}CrossRefGoogle Scholar
Mihalas, D, 1978, Stellar Atmospheres. Freeman, Second Edition {570}Google Scholar
Mikkola, S, 1984, Encounters of binaries. III. Fly-bys. MNRAS, 208, 75–82 {254}CrossRefGoogle Scholar
Mikkola, S, Innanen, K, 1995, Solar system chaos and the distribution of asteroid or-bits. MNRAS, 277, 497–501 {694}CrossRefGoogle Scholar
Mikkola, S, Innanen, K, Muinonen, K, et al., 1994, A preliminary analysis of the orbit of the Mars Trojan asteroid (5261) Eureka. Cel. Mech. Dyn. Astron., 58, 53–64 {74}CrossRefGoogle Scholar
Milani, A, Nobili, AM, Carpino, M, 1989, Dynamics of Pluto. Icarus, 82, 200–217 {677}CrossRefGoogle Scholar
Milankovitch, M, 1941, Kanon der Erdbestrahlungen und seine Anwendung auf das Eiszeitenproblem. Roy. Serbian Acad. Spec. Publ., 133, 1–633 {681}Google Scholar
Milankovitch, M, 1969, Canon of Insolation and the Ice Age Problem. Israel Program for Scientific Translations {681}
Miles-Páez, PA, Metchev, S, Luhman, KL, et al., 2017, The prototypical young L/T-transition dwarf HD 203030B likely has planetary mass. AJ, 154, 262 {763}CrossRefGoogle Scholar
Miles-Páez, PA, Pallé, E, Zapatero Osorio, MR, 2014, Simultaneous optical and near-infrared linear spectropolarimetry of the Earthshine. A&A, 562, L5 {641}Google Scholar
Militzer, B, 2013, Equation of state calculations of hydrogen–helium mixtures in solar and extrasolar giant planets. Phys. Rev. B, 87(1), 014202 {566}CrossRefGoogle Scholar
Militzer, B, Hubbard, WB, 2013, Ab initio equation of state for hydrogen–helium mixtures with recalibration of the giant-planet mass–radius relation. ApJ, 774, 148 {303, 566, 603}CrossRefGoogle Scholar
Militzer, B, Hubbard, WB, Vorberger, J, et al., 2008, A massive core in Jupiter predicted from first-principles simulations. ApJ, 688, L45 {660}CrossRefGoogle Scholar
Militzer, B, Soubiran, F, Wahl, SM, et al., 2016, Understanding Jupiter's interior. J. Geo-phys. Res. (Planets), 121, 1552–1572 {659}Google Scholar
Millan-Gabet, R, Malbet, F, Akeson, R, et al., 2007, The circumstellar environments of young stars at au scales. Protostars and Planets V, 539–554 {309}
Millan-Gabet, R, Serabyn, E, Mennesson, B, et al., 2011, Exozodiacal dust levels for nearby main-sequence stars: a survey with the Keck interferometer nuller. ApJ, 734, 67 {342, 349, 493}CrossRefGoogle Scholar
Millar-Blanchaer, MA, Graham, JR, Pueyo, L, et al., 2015, fl Pic inner disk in polarised light and new orbital parameters for fl Pic b. ApJ, 811, 18 {367, 762}CrossRefGoogle Scholar
Miller, AA, Irwin, J, Aigrain, S, et al., 2008, The Monitor project: the search for transits in the open cluster NGC 2362. MNRAS, 387, 349–363 {159}CrossRefGoogle Scholar
Miller, BP, Gallo, E, Wright, JT, et al., 2012, On the detectability of star–planet interaction. ApJ, 754, 137 {41, 188, 753}CrossRefGoogle Scholar
Miller, BP, Gallo, E, Wright, JT, 2015, A comprehensive statistical assessment of star–planet interaction. ApJ, 799, 163 {422}CrossRefGoogle Scholar
Miller, GRM, Collier Cameron, A, Simpson, EK, et al., 2010, The Doppler shadow of WASP–3 b: a tomographic analysis of Rossiter–McLaughlin observations. A&A, 523, A52 {252, 253, 751}Google Scholar
Miller, M, 2015, Exoplanet photometry of TrES–5 b using a DSLR camera. Society for Astronomical Sciences Annual Symposium, 34, 203–206 {751}Google Scholar
Miller, N, Fortney, JJ, 2011, The heavy-element masses of extrasolar giant planets, revealed. ApJ, 736, L29 {390, 485}CrossRefGoogle Scholar
Miller, N, Fortney, JJ, Jackson, B, 2009, Inflating and deflating hot Jupiters: coupled tidal and thermal evolution of known transiting planets. ApJ, 702, 1413–1427 {303}CrossRefGoogle Scholar
Miller, SL, 1953, A production of amino acids under possible primitive Earth conditions. Science, 117, 528–529 {592, 637}CrossRefGoogle ScholarPubMed
Miller, SR, Augustine, S, Olson, TL, et al., 2005, Discovery of a free-living chlorophyll d-producing cyanobacterium with a hybrid proteobacterial/cyanobacterial small-subunit rRNA gene. Proc. Nat. Acad. Sci., 102(3), 850–855 {629}CrossRefGoogle ScholarPubMed
Miller-Ricci, E, Fortney, JJ, 2010, The nature of the atmosphere of the transiting super-Earth GJ 1214 b. ApJ, 716, L74–L79 {734}CrossRefGoogle Scholar
Miller-Ricci, E, Meyer, MR, Seager, S, et al., 2009, On the emergent spectra of hot pro-toplanet collision afterglows. ApJ, 704, 770–780 {368, 576}CrossRefGoogle Scholar
Miller-Ricci, E, Rowe, JF, Sasselov, D, et al., 2008a, MOST space-based photometry of the transiting exoplanet system HD 189733: precise timing measurements for transits across an active star. ApJ, 682, 593–601 {186, 269, 730}Google Scholar
Miller-Ricci, E, Rowe, JF, Sasselov, D, 2008b, MOST space-based photometry of the transiting system HD 209458: transit timing to search for additional planets. ApJ, 682, 586–592 {186, 269, 732}Google Scholar
Miller-Ricci Kempton, E, Rauscher, E, 2012, Constraining high-speed winds in exo-planet atmospheres by observation of anomalous Doppler shifts during transit. ApJ, 751, 117 {44, 591, 596, 732}CrossRefGoogle Scholar
Miller-Ricci Kempton, E, Zahnle, K, Fortney, JJ, 2012, The atmospheric chemistry of GJ 1214 b: photochemistry and clouds. ApJ, 745, 3 {587, 613, 734}CrossRefGoogle Scholar
Millholland, S, Laughlin, G, 2017a, Constraints on the Planet Nine orbit and sky position within a framework of mean-motion resonances. AJ, 153, 91 {687}CrossRefGoogle Scholar
Millholland, S, Laughlin, G, 2017b, Supervised learning detection of sixty non-transiting hot Jupiter candidates. AJ, 154, 83 {194, 236}CrossRefGoogle Scholar
Millholland, S, Wang, S, Laughlin, G, 2016, On the detection of non-transiting hot Jupiters in multiple-planet systems. ApJ, 823, L7 {236, 263}CrossRefGoogle Scholar
Millholland, S, Wang, S, Laughlin, G, 2017, Kepler multi-planet systems exhibit unexpected intra-system uniformity in mass and radius. ApJ, 849, L33 {315}CrossRefGoogle Scholar
Milli, J, Hibon, P, Christiaens, V, et al., 2017a, Discovery of a low-mass companion inside the debris ring surrounding the F5V star HD 206893. A&A, 597, L2 {360, 367, 763}Google Scholar
Milli, J, Lagrange, AM, Mawet, D, et al., 2014, Very deep images of the innermost regions of the fl Pic debris disk at L’. A&A, 566, A91 {762}Google Scholar
Milli, J, Mouillet, D, Lagrange, AM, et al., 2012, Impact of angular differential imaging on circumstellar disk images. A&A, 545, A111 {340}Google Scholar
Milli, J, Mouillet, D, Mawet, D, et al., 2013, Prospects of detecting the polarimetric signature of the Earth-mass planet α Cen Bb with VLT–SPHERE/ZIMPOL. A&A, 556, A64 {247, 714}Google Scholar
Milli, J, Vigan, A, Mouillet, D, et al., 2017b, Near-infrared scattered light properties of the HR 4796A dust ring: a measured scattering phase function from 13.6-166.6 degrees. A&A, 599, A108 {342, 360}Google Scholar
Millour, F, 2008, All you ever wanted to know about optical long baseline stellar interferometry, but were too shy to ask your adviser. New Astron. Rev., 52, 177–185 {348}CrossRefGoogle Scholar
Millour, F, Vannier, M, Petrov, RG, et al., 2006, Extrasolar planets with VLTI–AMBER: what can we expect from current performances? IAU Colloq. 200: Direct Imaging of Exoplanets: Science and Techniques, 291–296 {348}
Mills, SM, Abbot, DS, 2013, Utility of the weak temperature gradient approximation for Earth-like tidally-locked exoplanets. ApJ, 774, L17 {621}CrossRefGoogle Scholar
Mills, SM, Fabrycky, DC, 2017a, Kepler–108: a mutually inclined giant planet system. AJ, 153, 45 {322, 743}CrossRefGoogle Scholar
Mills, SM, Fabrycky, DC, 2017b, Mass, density, and formation constraints in the compact, sub-Earth Kepler–444 systemincluding two Mars-mass planets. ApJ, 838, L11 {15, 746}CrossRefGoogle Scholar
Mills, SM, Mazeh, T, 2017, The planetarymass–radius relation and its dependence on orbital period as measured by transit timing variations and radial velocities. ApJ, 839, L8 {271, 603}CrossRefGoogle Scholar
Min, M, 2010, Dust composition in protoplanetary disks. Protoplanetary Dust: Astrophysical and Cosmochemical Perspectives, 161–190, Cambridge University Press {454, 456}
Min, M, 2017, Random sampling technique for ultra-fast computations of molecular opacities for exoplanet atmospheres. A&A, 607, A9 {570}Google Scholar
Min, M, Dullemond, CP, Kama, M, et al., 2011, The thermal structure and the location of the snow line in the protosolar nebula: axisymmetric models with full 3d radiative transfer. Icarus, 212, 416–426 {309}CrossRefGoogle Scholar
Min, M, Kama, M, Dominik, C, et al., 2010, The lunar phases of dust grains orbiting Fomalhaut. A&A, 509, L6 {761}Google Scholar
Min, M, Stolker, T, Dominik, C, et al., 2017, Connecting the shadows: probing inner disk geometries using shadows in transitional disks. A&A, 604, L10 {466}Google Scholar
Ming, Y, Hui-Gen, L, Hui, Z, et al., 2013, Eight planets in four multi-planet systems via transit timing variations in 1350 days. ApJ, 778, 110 {270, 742, 744, 745}Google Scholar
Minier, V, Lineweaver, C, 2006, A search for water masers toward extrasolar planets. A&A, 449, 805–808 {642}Google Scholar
Minniti, D, Butler, RP, López-Morales, M, et al., 2009, Low-mass companions for five solar-type stars from the Magellan planet search programme. ApJ, 693, 1424–1430 {46, 719, 720, 721, 722}CrossRefGoogle Scholar
Minniti, D, Fernández, JM, Díaz, RF, et al., 2007, Millimagnitude photometry for transiting extoplanet candidates. III. Accurate radius and period for OGLE–TR–111 b. ApJ, 660, 858–862 {168, 749}CrossRefGoogle Scholar
Minniti, D, Vandehei, T, Cook, KH, et al., 1998, Detection of lithium in a main sequence bulge star using Keck I as a 15mdiameter telescope. ApJ, 499, L175–L177 {136}CrossRefGoogle Scholar
Minton, DA, Malhotra, R, 2009, A record of planet migration in the main asteroid belt. Nature, 457, 1109–1111 {697}CrossRefGoogle ScholarPubMed
Minton, DA, Malhotra, R, 2011, Secular resonance sweeping of the main asteroid belt during planet migration. ApJ, 732, 53 {699}CrossRefGoogle Scholar
Miotello, A, Bruderer, S, van Dishoeck, EF, 2014, Protoplanetary disk masses from CO isotopologue line emission. A&A, 572, A96 {464}Google Scholar
Miralda-Escudé, J, 1996, Microlensing events from measurements of the deflection. ApJ, 470, L113–L116 {138}CrossRefGoogle Scholar
Miralda-Escudé, J, 2002, Orbital perturbations of transiting planets: a possible method to measure stellar quadrupoles and to detect Earth-mass planets. ApJ, 564, 1019–1023 {257, 259, 262, 263, 272}CrossRefGoogle Scholar
Miranda, R, Lai, D, 2015, Tidal truncation of inclined circumstellar and circumbinary disks in young stellar binaries. MNRAS, 452, 2396–2409 {550}CrossRefGoogle Scholar
Mirouh, GM, Garaud, P, Stellmach, S, et al., 2012, A new model for mixing by double-diffusive convection (semi-convection). I. The conditions for layer formation. ApJ, 750, 61 {567}CrossRefGoogle Scholar
Mishenina, T, Kovtyukh, V, Soubiran, C, et al., 2016, Behaviour of elements from lithium to europium in stars with and without planets. MNRAS, 462, 1563–1576 {378}CrossRefGoogle Scholar
Mishurov, YN, Acharova, IA, 2011, Is it possible to reveal the lost siblings of the Sun? MNRAS, 412, 1771–1777 {406}CrossRefGoogle Scholar
Mislis, D, Bachelet, E, Alsubai, KA, et al., 2016, SIDRA: a blind algorithm for signal detection in photometric surveys. MNRAS, 455, 626–633 {191, 194}CrossRefGoogle Scholar
Mislis, D, Heller, R, Schmitt, JHMM, et al., 2012, Estimating transiting exoplanet masses from precise optical photometry. A&A, 538, A4 {238, 239, 735}Google Scholar
Mislis, D, Hodgkin, S, 2012, A massive exoplanet candidate around KOI–13: independent confirmation by ellipsoidal variations. MNRAS, 422, 1512–1517 {739}CrossRefGoogle Scholar
Mislis, D, Mancini, L, Tregloan-Reed, J, et al., 2015, High-precision multiband time series photometry of exoplanets Qatar–1 b and TrES–5 b. MNRAS, 448, 2617–2623 {750, 751}CrossRefGoogle Scholar
Mislis, D, Pyrzas, S, Alsubai, KA, et al., 2017, The DOHA algorithm: a new recipe for cotrending large-scale transiting exoplanet survey light curves. MNRAS, 465, 3759–3766 {190}CrossRefGoogle Scholar
Mislis, D, Schmitt, JHMM, 2009, Detection of orbital parameter changes in the TrES–2 exoplanet? A&A, 500, L45–L49 {167, 224, 269, 273, 750}Google Scholar
Mislis, D, Schmitt, JHMM, Carone, L, et al., 2010a, An algorithm for correcting CoRoT raw light curves. A&A, 522, A86 {190}Google Scholar
Mislis, D, Schröter, S, Schmitt, JHMM, et al., 2010b, Multi-band transit observations of TrES–2 b. A&A, 510, A107 {751}Google Scholar
Misner, CW, Thorne, KS, Wheeler, JA, 1973, Gravitation. W. H. Freeman and Co. {30}Google Scholar
Misra, A, Krissansen-Totton, J, Koehler, MC, et al., 2015, Transient sulphate aerosols as a signature of exoplanet volcanism. Astrobiology, 15, 462–477 {670}CrossRefGoogle Scholar
Misra, A, Meadows, V, Claire, M, et al., 2014a, Using dimers to measure biosignatures and atmospheric pressure for terrestrial exoplanets. Astrobiology, 14, 67–86 {618}CrossRefGoogle Scholar
Misra, A, Meadows, V, Crisp, D, 2014b, The effects of refraction on transit transmission spectroscopy: application to Earth-like exoplanets. ApJ, 792, 61 {223}CrossRefGoogle Scholar
Misra, A, Meadows, VS, 2014, Discriminating between cloudy, hazy, and clear sky exo-planets using refraction. ApJ, 795, L14 {222, 223}CrossRefGoogle Scholar
Mitchell, DS, Reffert, S, Trifonov, T, et al., 2013, Precise radial velocities of giant stars. V. A brown dwarf and a planet orbiting the K giant stars τ Gem and 91 Aqr. A&A, 555, A87 {713, 715}Google Scholar
Mitchell, JL, Vallis, GK, Potter, SF, 2014, Effects of the seasonal cycle on superrotation in planetary atmospheres. ApJ, 787, 23 {596}CrossRefGoogle Scholar
Mitchell, TR, Stewart, GR, 2010, Evolution of the solar nebula and planet growth under the influence of photoevaporation. ApJ, 722, 1115–1130 {462, 463}CrossRefGoogle Scholar
Mitchell, TR, Stewart, GR, 2011, Photoevaporation as a truncation mechanism for circumplanetary disks. AJ, 142, 168 {463, 650}CrossRefGoogle Scholar
Mitra, D, Wettlaufer, JS, Brandenburg, A, 2013, Can planetesimals form by collisional fusion? ApJ, 773, 120 {471}CrossRefGoogle Scholar
Mittag, M, Robrade, J, Schmitt, JHMM, et al., 2017, Four-month chromospheric and coronal activity cycle in τ Boo. A&A, 600, A119 {714}Google Scholar
Mittal, T, Chen, CH, Jang-Condell, H, et al., 2015, The Spitzer infrared spectrograph debris disk catalogue. II. Silicate feature analysis of unresolved targets. ApJ, 798, 87 {492, 495}CrossRefGoogle Scholar
Mittlefehldt, DW, 2003, Achondrites. Treatise on Geochemistry, 1, 711 {670}Google Scholar
Miyagoshi, T, Kameyama, M, Ogawa, M, 2015, Thermal convection and the convective regime diagram in super-Earths. J. Geophys. Res. (Planets), 120, 1267–1278 {628}Google Scholar
Miyagoshi, T, Kameyama, M, Ogawa, M, 2017, Extremely long transition phase of thermal convection in the mantle of massive super-Earths. Earth, Planets, and Space, 69, 46 {628, 629}CrossRefGoogle Scholar
Miyagoshi, T, Tachinami, C, Kameyama, M, et al., 2014, On the vigour of mantle convection in super-Earths. ApJ, 780, L8 {598, 628}CrossRefGoogle Scholar
Miyake, F, Masuda, K, Nakamura, T, 2013, Another rapid event in the carbon-14 content of tree rings. Nature Communications, 4, 1748 {628}CrossRefGoogle ScholarPubMed
Miyake, F, Nagaya, K, Masuda, K, et al., 2012, A signature of cosmic-ray increase in AD 774–775 from tree rings in Japan. Nature, 486, 240–242 {628}CrossRefGoogle ScholarPubMed
Miyake, N, Sumi, T, Dong, S, et al., 2011, A sub-Saturn mass planet, MOA–2009–BLG–319Lb. ApJ, 728, 120–124 {141, 145, 759}CrossRefGoogle Scholar
Miyake, T, Suzuki, TK, Inutsuka Si, 2016, Dust dynamics in protoplanetary disk winds driven by magnetorotational turbulence: a mechanism for floating dust grains with characteristic sizes. ApJ, 821, 3 {461}CrossRefGoogle Scholar
Miyamoto, M, Yoshii, Y, 1995, Astrometry for determining the MACHO mass and trajectory. AJ, 110, 1427–1432 {138}CrossRefGoogle Scholar
Miyoshi, K, Takeuchi, T, Tanaka, H, et al., 1999, Gravitational Interaction between a protoplanet and a protoplanetary disk. I. Local three-dimensional simulations. ApJ, 516, 451–464 {518}CrossRefGoogle Scholar
Mizuki, T, Yamada, T, Carson, JC, et al., 2016, High-contrast imaging of yatt MC, et al., 2005, Structure in the Eri with ground-based instruments. A&A, 595, A79 {715}Google Scholar
Mizuno, H, 1980, Formation of the giant planets. Progress of Theoretical Physics, 64, 544–557 {480, 482}CrossRefGoogle Scholar
Mizuno, H, Nakazawa, K, Hayashi, C, 1978, Instability of a gaseous envelope surrounding a planetary core and formation of giant planets. Progress of Theoretical Physics, 60, 699–710 {480}CrossRefGoogle Scholar
Mizusawa, TF, Rebull, LM, Stauffer, JR, et al., 2012, Exploring the effects of stellar rotation and wind clearing: debris disks around F stars. AJ, 144, 135 {418}CrossRefGoogle Scholar
Mochejska, BJ, Stanek, KZ, Sasselov, DD, et al., 2002, Planets in stellar clusters extensive search. I. Discovery of 47 low-amplitude variables in the metal-rich cluster NGC 6791 withmillimagnitude image subtraction photometry. AJ, 123, 3460–3472 {159}CrossRefGoogle Scholar
Mochejska, BJ, Stanek, KZ, Sasselov, DD, 2004, Planets in stellar clusters extensive search. II. Discovery of 57 variables in the cluster NGC 2158 with millimagnitude image subtraction photometry. AJ, 128, 312–322 {158, 159}CrossRefGoogle Scholar
Mochejska, BJ, Stanek, KZ, Sasselov, DD, 2005, Planets in stellar clusters extensive search. III. A search for transiting planets in the metal-rich open cluster NGC 6791. AJ, 129, 2856–2868 {159}CrossRefGoogle Scholar
Mochejska, BJ, Stanek, KZ, Sasselov, DD, 2006, Planets in stellar clusters extensive search. IV. A detection of a possible transiting planet candidate in the open cluster NGC 2158. AJ, 131, 1090–1105 {159}CrossRefGoogle Scholar
Mochejska, BJ, Stanek, KZ, Sasselov, DD, 2008, Planets in stellar clusters extensive search. V. Search for planets and identification of 18 new variable stars in the old open cluster NGC 188. Acta Astronom-ica, 58, 263–278 {159}Google Scholar
Moeckel, N, Armitage, PJ, 2012, Hydrodynamic outcomes of planet scattering in transition disks. MNRAS, 419, 366–376 {319, 508}CrossRefGoogle Scholar
Moeckel, N, Bate, MR, 2010, On the evolution of a star cluster and its multiple stellar systems following gas dispersal. MNRAS, 404, 721–737 {448}CrossRefGoogle Scholar
Moeckel, N, Clarke, CJ, 2011, The formation of permanent soft binaries in dispersing clusters. MNRAS, 415, 1179–1187 {448}CrossRefGoogle Scholar
Moeckel, N, Raymond, SN, Armitage, PJ, 2008, Extrasolar planet eccentricities from scattering in the presence of residual gas disks. ApJ, 688, 1361–1367 {525}CrossRefGoogle Scholar
Moeckel, N, Veras, D, 2012, Exoplanets bouncing between binary stars. MNRAS, 422, 831–840 {517, 553}CrossRefGoogle Scholar
Moeller, R, Raguse, M, Leuko, S, et al., 2017, STARLIFE: an international campaign to study the role of Galactic cosmic radiation in astrobiological model systems. As-trobiology, 17, 101–109 {631}Google Scholar
Moerchen, MM, Telesco, CM, Packham, C, 2010, High spatial resolution imaging of thermal emission from debris disks. ApJ, 723, 1418–1435 {493}CrossRefGoogle Scholar
Moerchen, MM, Telesco, CM, Packham, C, et al., 2007, Mid-infrared resolution of a 3 au radius debris disk around ξ Lep. ApJ, 655, L109–L112 {497}CrossRefGoogle Scholar
Mogavero, F, 2017, Addressing the statistical mechanics of planet orbits in the solar system. A&A, 606, A79 {677}Google Scholar
Mogavero, F, Beaulieu, JP, 2016, Microlensing planet detection via geosynchronous and low Earth orbit satellites. A&A, 585, A62 {134}Google Scholar
Mohanty, S, Basri, G, 2003, Rotation and activity in mid-M to L field dwarfs. ApJ, 583, 451–472 {444}CrossRefGoogle Scholar
Mohanty, S, Greaves, J, Mortlock, D, et al., 2013, Protoplanetary disk masses from stars to brown dwarfs. ApJ, 773, 168 {309}CrossRefGoogle Scholar
Mohanty, S, Jayawardhana, R, Barrado yNavascués D, 2003, Magellan echelle spectroscopy of TWHydrae brown dwarfs. ApJ, 593, L109–L112 {443}CrossRefGoogle Scholar
Mohanty, S, Jayawardhana, R, Basri, G, 2005, The T Tauri phase down to nearly planetary masses: echelle spectra of 82 very low mass stars and brown dwarfs. ApJ, 626, 498–522 {444, 445}CrossRefGoogle Scholar
Mohanty, S, Jayawardhana, R, Huélamo, N, et al., 2007, The planetarymass companion 2M J1207: evidence for an edge-on disk. ApJ, 657, 1064–1091 {363, 368, 438, 763}CrossRefGoogle Scholar
Mohler-Fischer, M, Mancini, L, Hartman, JD, et al., 2013, HATS–2 b: a transiting extra-solar planet orbiting a K-type star showing star spot activity. A&A, 558, A55 {212, 213, 737}Google Scholar
Möhlmann, D, 2012, Widen the belt of habitability! Origins of Life and Evolution of the Biosphere, 42, 93–100 {619}CrossRefGoogle ScholarPubMed
Mohr, PJ, Newell, DB, Taylor, BN, 2016, CODATA recommended values of the fundamental physical constants: 2014. Reviews of Modern Physics, 88(3), 035009 {701}CrossRefGoogle Scholar
Mojzsis, SJ, Arrhenius, G, McKeegan, KD, et al., 1996, Evidence for life on Earth before 3800Myr ago. Nature, 384, 55–59 {636, 647}CrossRefGoogle ScholarPubMed
Mojzsis, SJ, Harrison, TM, Pidgeon, RT, 2001, Oxygen-isotope evidence from ancient zircons for liquid water at the Earth's surface 4300Myr ago. Nature, 409, 178–181 {667}CrossRefGoogle Scholar
Molaro, P, Monaco, L, Barbieri, M, et al., 2013, Detection of the Rossiter–McLaughlin effect in the 2012 June 6 Venus transit. MNRAS, 429, L79–L83 {251}CrossRefGoogle Scholar
Moldovan, R, Matthews, JM, Gladman, B, et al., 2010, Searching for Trojan asteroids in the HD 209458 system: MOST photometry and dynamical modeling. ApJ, 716, 315–323 {186, 732}CrossRefGoogle Scholar
Moll, R, Garaud, P, 2017, The effect of rotation on oscillatory double-diffusive convection (semiconvection). ApJ, 834, 44 {567}CrossRefGoogle Scholar
Moll, R, Garaud, P, Mankovich, C, et al., 2017, Double-diffusive erosion of the core of Jupiter. ApJ, 849, 24 {567}CrossRefGoogle Scholar
Mollerach, S, Roulet, E, 2002, Gravitational lensing and microlensing. STScI {120}CrossRefGoogle Scholar
Mollière, P, Mordasini, C, 2012, Deuterium burning in objects forming via the core accretion scenario: brown dwarfs or planets? A&A, 547, A105 {430, 480, 482}Google Scholar
Mollière, P, van Boekel, R, Bouwman, J, et al., 2017, Observing transiting planets with JWST: prime targets and their synthetic spectral observations. A&A, 600, A10 {181}Google Scholar
Mollière, P, van Boekel, R, Dullemond, C, et al., 2015, Model atmospheres of irradiated exoplanets: the influence of stellar parameters, metallicity, and the C/O ratio. ApJ, 813, 47 {570, 582, 606}CrossRefGoogle Scholar
Molyarova, T, Akimkin, V, Semenov, D, et al., 2017, Gas mass tracers in protoplanetary disks: CO is still the best. ApJ, 849, 130 {464}CrossRefGoogle Scholar
Mommert, M, Harris, AW, Kiss, C, et al., 2012, TNOs are cool: a survey of the trans-Neptunian region. V. Physical characterisation of 18 Plutinos using Herschel–PACS observations. A&A, 541, A93 {685}Google Scholar
Mommert, M, Hora, JL, Harris, AW, et al., 2014, The discovery of cometary activity in Near-Earth Asteroid (3552) Don Quixote. ApJ, 781, 25 {684, 685}CrossRefGoogle Scholar
Momose, M, Morita, A, Fukagawa, M, et al., 2015, Detailed structure of the outer disk around HD 169142 with polarized light in H-band. PASJ, 67, 83 {520}CrossRefGoogle Scholar
Monet, DG, Dahn, CC, Vrba, FJ, et al., 1992, US Naval Observatory CCD parallaxes of faint stars. I. Programme description and first results. AJ, 103, 638–665 {82}CrossRefGoogle Scholar
Monga, N, Desch, S, 2015, External photoevaporation of the solar nebula: Jupiter's noble gas enrichments. ApJ, 798, 9 {661}CrossRefGoogle Scholar
Monin, J, Clarke, CJ, Prato, L, et al., 2007, Disk evolution in young binaries: from observations to theory. Protostars and Planets V, 395–409 {548}
Monin, JL, Whelan, ET, Lefloch, B, et al., 2013, Amolecular outflowdriven by the brown dwarf binary FU Tau. A&A, 551, L1 {445, 762}Google Scholar
Monnier, JD, 2003, Optical interferometry in astronomy. Rep. Prog. Phys., 66, 789–857 {348}CrossRefGoogle Scholar
Monnier, JD, 2007, Phases in interferometry. New Astron. Rev., 51, 604–616 {183}CrossRefGoogle Scholar
Monnier, JD, Millan-Gabet, R, 2002, On the interferometric sizes of young stellar objects. ApJ, 579, 694–698 {309}CrossRefGoogle Scholar
Monnier, JD, Pedretti, E, Thureau, N, et al., 2006, Michigan Infrared Combiner (MIRC): commissioning results at the CHARA array. SPIE Conf. Ser., volume 6268 {183}Google Scholar
Monnier, JD, Zhao, M, Pedretti, E, et al., 2007, Imaging the surface of Altair. Science, 317, 342–345 {215}CrossRefGoogle ScholarPubMed
Monroe, TR, Meléndez, J, Ramírez, I, et al., 2013, High-precision abundances of the old solar twin HIP 102152: insights on Li depletion from the oldest sun. ApJ, 774, L32 {405}CrossRefGoogle Scholar
Montañés-Rodríguez, P, González-Merino, B, Pallé, E, et al., 2015, Jupiter as an exo-planet: ultraviolet to near-infrared transmission spectrum reveals hazes, a Na layer, and possibly stratospheric H2O-ice clouds. ApJ, 801, L8 {161}CrossRefGoogle Scholar
Montañés-Rodríguez, P, Pallé, E, Goode, PR, 2007, Measurements of the surface brightness of the Earthshine with applications to calibrate lunar flashes. AJ, 134, 1145–1149 {641}CrossRefGoogle Scholar
Montañés-Rodríguez, P, Pallé, E, Goode, PR, et al., 2005, Globally integrated measurements of the Earth's visible spectral albedo. ApJ, 629, 1175–1182 {641}CrossRefGoogle Scholar
Montañés-Rodríguez, P, Pallé, E, Goode, PR, 2006, Vegetation signature in the observed globally integrated spectrum of Earth considering simultaneous cloud data: applications for extrasolar planets. ApJ, 651, 544–552 {641}CrossRefGoogle Scholar
Montalbán, J, Rebolo, R, 2002, Planet accretion and the abundances of lithium isotopes. A&A, 386, 1039–1043 {400, 402}Google Scholar
Montalbán, J, Schatzman, E, 2000, Mixing by internal waves. III. Li and Be abundance dependence on spectral type, age and rotation. A&A, 354, 943–959 {400}Google Scholar
Montalto, M, 2010, Planetary transit timing variations induced by stellar binarity: the light travel time effect. A&A, 521, A60 {257}Google Scholar
Montalto, M, Boué, G, Oshagh, M, et al., 2014, Improvements on analytic modelling of stellar spots. MNRAS, 444, 1721–1728 {212}CrossRefGoogle Scholar
Montalto, M, Boué, G, Oshagh, M, 2015a, KS Integration: Kelvin–Stokes integration. Astrophysics Source Code Library {212}
Montalto, M, Gregorio, J, Boué, G, et al., 2012, A new analysis of the WASP–3 system: no evidence for an additional companion. MNRAS, 427, 2757–2771 {257, 752}CrossRefGoogle Scholar
Montalto, M, Iro, N, Santos, NC, et al., 2015b, Further constraints on the optical transmission spectrumof HAT–P–1 b. ApJ, 811, 55 {735}CrossRefGoogle Scholar
Montalto, M, Piotto, G, Desidera, S, et al., 2007, A new search for planet transits in NGC 6791. A&A, 470, 1137–1156 {159}Google Scholar
Montalto, M, Santos, NC, Boisse, I, et al., 2011, Exoplanet transmission spectroscopy: accounting for the eccentricity and the longitude of periastron. Superwinds in the upper atmosphere of HD 209458 b? A&A, 528, L17 {732}Google Scholar
Montanari, A, Campo Bagatin, A, Farinella, P, 1998, Earth cratering record and impact energy flux in the last 150Myr. Planet. Space Sci., 46, 271–281 {661}CrossRefGoogle Scholar
Montesinos, M, Cuello, N, 2018, Planetary-like spirals caused by moving shadows in transition disks. MNRAS, 475, L35–L39 {466}CrossRefGoogle Scholar
Montesinos, M, Perez, S, Casassus, S, et al., 2016, Spiral waves triggered by shadows in transition disks. ApJ, 823, L8 {466}CrossRefGoogle Scholar
Montet, BT, Bowler, BP, Shkolnik, EL, et al., 2015a, Dynamical masses of young M dwarfs: masses and orbital parameters of GJ 3305 AB, the wide binary companion to the imaged exoplanet host 51 Eri. ApJ, 813, L11 {761}CrossRefGoogle Scholar
Montet, BT, Crepp, JR, Johnson, JA, et al., 2014, The TRENDS high-contrast imaging survey. IV. The occurrence rate of giant planets around M dwarfs. ApJ, 781, 28 {148, 149, 404}CrossRefGoogle Scholar
Montet, BT, Johnson, JA, 2013, Model-independent stellar and planetary masses from multi-transiting exoplanetary systems. ApJ, 762, 112 {12, 270, 271, 739}CrossRefGoogle Scholar
Montet, BT, Morton, TD, Foreman-Mackey, D, et al., 2015b, Stellar and planetary properties of K2 campaign 1 candidates and validation of 17 planets, including a planet receiving Earth-like insolation. ApJ, 809, 25 {747, 748}CrossRefGoogle Scholar
Montet, BT, Simon, JD, 2016, KIC–8462852 faded throughout the Kepler mission. ApJ, 830, L39 {232, 747}CrossRefGoogle Scholar
Montet, BT, Tovar, G, Foreman-Mackey, D, 2017a, Long-term photometric variability in Kepler full-frame images: magnetic cycles of Sun-like stars. ApJ, 851, 116 {383}CrossRefGoogle Scholar
Montet, BT, Yee, JC, Penny, MT, 2017b, Measuring the Galactic distribution of transiting planets with WFIRST. PASP, 129(4), 044401 {181}CrossRefGoogle Scholar
Monteux, J, Andrault, D, Samuel, H, 2016a, On the cooling of a deep terrestrial magma ocean. Earth Planet. Sci. Lett., 448, 140–149 {576}CrossRefGoogle Scholar
Monteux, J, Collins, GS, Tobie, G, et al., 2016b, Consequences of large impacts on Ence-ladus’ core shape. Icarus, 264, 300–310 {689}CrossRefGoogle Scholar
Montgomery, SL, Welsh, BY, 2012, Detection of variable gaseous absorption features in the debris disks around young A-type stars. PASP, 124, 1042–1056 {282}CrossRefGoogle Scholar
Moons, M, Henrard, J, 1994, Surfaces of section in the Miranda-Umbriel 3:1 inclination problem. Cel. Mech. Dyn. Astron., 59, 129–148 {689}CrossRefGoogle Scholar
Moons, M, Morbidelli, A, 1995, Secular resonances inside mean motion commensu-rabilities: the 4:1, 3:1, 5:2 and 7:3 cases. Icarus, 114, 33–50 {694}CrossRefGoogle Scholar
Moons, M, Morbidelli, A, Migliorini, F, 1998, Dynamical structure of the 2:1 commen-surability with Jupiter and the origin of the resonant asteroids. Icarus, 135, 458–468 {694}CrossRefGoogle Scholar
Moór, A, Pascucci, I, Kóspál Á, et al., 2011, Structure and evolution of debris disks around F-type stars. I. Observations, database, and basic evolutionary aspects. ApJS, 193, 4 {493}CrossRefGoogle Scholar
Moore, A, Hasan, I, Quillen, AC, 2013, Limits on orbit crossing planetesimals in the resonant multiple planet system, KOI–730. MNRAS, 432, 1196–1202 {179, 321, 744}CrossRefGoogle Scholar
Moore, A, Quillen, AC, 2013, Effects of a planetesimal debris disk on stability scenarios for the extrasolar planetary system HR 8799. MNRAS, 430, 320–329 {365, 763}CrossRefGoogle Scholar
Moore, JR, Sharma, M, 2013, The K–Pg (K–T) impactor was likely a high-velocity comet. Lunar and Planetary Science Conference, volume 44 of Lunar and Planetary Inst. Technical Report, 2431 {671}Google Scholar
Moore, P, 1977, The Linné controversy: a look into the past. J. Br. Astron. Assoc., 87, 363–368 {639}Google Scholar
Moorhead, AV, Adams, FC, 2005, Giant planet migration through the action of disk torques and planet–planet scattering. Icarus, 178, 517–539 {476, 525}CrossRefGoogle Scholar
Moorhead, AV, Adams, FC, 2008, Eccentricity evolution of giant planet orbits due to circumstellar disk torques. Icarus, 193, 475–484 {522}CrossRefGoogle Scholar
Moorhead, AV, Ford, EB, Morehead, RC, et al., 2011, The distribution of transit durations for Kepler planet candidates and implications for their orbital eccentricities. ApJS, 197, 1 {210, 289, 323}CrossRefGoogle Scholar
Morais, MHM, Correia, ACM, 2008, Stellar wobble caused by a binary system: can it really bemistaken as an extrasolar planet? A&A, 491, 899–906 {39}Google Scholar
Morais, MHM, Correia, ACM, 2011, Stellar wobble caused by a nearby binary system: eccentric and inclined orbits. A&A, 525, A152 {23}Google Scholar
Morais, MHM, Correia, ACM, 2012, Precession due to a close binary system: an alternative explanation for V Oct? MNRAS, 419, 3447–3456 {550, 715}CrossRefGoogle Scholar
Morais, MHM, Giuppone, CA, 2012, Stability of prograde and retrograde planets in circular binaries. MNRAS, 424, 52–64 {508, 549}CrossRefGoogle Scholar
Morais, MHM, Namouni, F, 2013, Retrograde resonance in the planar three-body problem. Cel. Mech. Dyn. Astron., 117, 405–421 {508}CrossRefGoogle Scholar
Morais, MHM, Namouni, F, 2017, First trans-Neptunian object in polar resonance with Neptune. MNRAS, 472, L1–L4 {685}CrossRefGoogle Scholar
Morales, FY, Padgett, DL, Bryden, G, et al., 2012, WISE detections of dust in the habitable zones of planet-bearing stars. ApJ, 757, 7 {493, 494}CrossRefGoogle Scholar
Morales, FY, Rieke, GH, Werner, MW, et al., 2011, Common warm dust temperatures around main-sequence stars. ApJ, 730, L29 {282}CrossRefGoogle Scholar
Morales-Calderón, M, Stauffer, JR, Hillenbrand, LA, et al., 2011, Ysovar: the first sensitive, wide-area, mid-infrared photometric monitoring of the Orion Nebula Cluster. ApJ, 733, 50 {466}CrossRefGoogle Scholar
Morales-Calderón, M, Stauffer, JR, Kirkpatrick, JD, et al., 2006, A sensitive search for variability in late L dwarfs: the quest for weather. ApJ, 653, 1454–1463 {439, 440}Google Scholar
Moran, SM, Kuchner, MJ, Holman, MJ, 2004, The dynamical influence of a planet at semi-major axis 3.4 au on the dust around yatt MC, et al., 2005, Structure in the Eri. ApJ, 612, 1163–1170 {715}Google Scholar
Morard, G, Bouchet, J, Valencia, D, et al., 2011, The melting curve of iron at extreme pressures: implications for planetary cores. High Energy Density Physics, 7, 141–144 {566}CrossRefGoogle Scholar
Morata, O, Palau, A, González, RF, et al., 2015, First detection of thermal radio jets in a sample of proto-brown dwarf candidates. ApJ, 807, 55 {445}CrossRefGoogle Scholar
Morbidelli, A, 2002, Modern Celestial Mechanics: Aspects of Solar System Dynamics. Taylor and Francis, London {506}Google Scholar
Morbidelli, A, 2013, Dynamical evolution of planetary systems. Planets, Stars and Stellar Systems. Volume 3: Solar and Stellar Planetary Systems, 63 {695}CrossRefGoogle Scholar
Morbidelli, A, Bottke, WF, Froeschlé, C, et al., 2002, Origin and evolution of near-Earth objects. Asteroids III, 409–422 {662}
Morbidelli, A, Bottke, WF, Nesvorný, D, et al., 2009a, Asteroids were born big. Icarus, 204, 558–573 {473}CrossRefGoogle Scholar
Morbidelli, A, Brasser, R, Gomes, R, et al., 2010, Evidence from the asteroid belt for a violent past evolution of Jupiter's orbit. AJ, 140, 1391–1401 {697, 699}CrossRefGoogle Scholar
Morbidelli, A, Brasser, R, Tsiganis, K, et al., 2009b, Constructing the secular architecture of the solar system. I. The giant planets. A&A, 507, 1041–1052 {697}Google Scholar
Morbidelli, A, Chambers, J, Lunine, JI, et al., 2000, Source regions and time scales for the delivery of water to Earth. Meteor. Plan. Sci., 35, 1309–1320 {564, 565, 575, 667, 668}Google Scholar
Morbidelli, A, Crida, A, 2007, The dynamics of Jupiter and Saturn in the gaseous proto-planetary disk. Icarus, 191, 158–171 {522, 698, 699}CrossRefGoogle Scholar
Morbidelli, A, Henrard, J, 1991a, Secular resonances in the asteroid belt: theoretical perturbation approach and the problem of their location. Cel. Mech. Dyn. As-tron., 51, 131–167 {693}Google Scholar
Morbidelli, A, Henrard, J, 1991b, The main secular resonances V5, Vand Vin the asteroid belt. Cel. 6 16 Mech. Dyn. Astron., 51, 169–197 {693}CrossRefGoogle Scholar
Morbidelli, A, Levison, HF, 2004, Scenarios for the origin of the orbits of the trans-Neptunian objects 2000 CR105 and 2003 VB12 (Sedna). AJ, 128, 2564–2576 {650}CrossRefGoogle Scholar
Morbidelli, A, Levison, HF, 2008, Late evolution of planetary systems. Physica Scripta Volume T, 130(1), 014028 {524, 697}Google Scholar
Morbidelli, A, Levison, HF, Tsiganis, K, et al., 2005, Chaotic capture of Jupiter's Trojan asteroids in the early solar system. Nature, 435, 462–465 {273, 689, 694, 695, 697}CrossRefGoogle ScholarPubMed
Morbidelli, A, Lunine, JI, O'Brien, DP, et al., 2012a, Building terrestrial planets. Ann. Rev. Earth Plan. Sci., 40, 251–275 {467, 698}CrossRefGoogle Scholar
Morbidelli, A, Marchi, S, Bottke, WF, et al., 2012b, A sawtooth-like timeline for the first Gyr of lunar bombardment. Earth Planet. Sci. Lett., 355, 144–151 {669, 671}Google Scholar
Morbidelli, A, Moons, M, 1993, Secular resonances inmean motion commensurabili-ties: the 2:1 and 3:2 cases. Icarus, 102, 316–332 {694}CrossRefGoogle Scholar
Morbidelli, A, Nesvorny, D, 2012, Dynamics of pebbles in the vicinity of a growing planetary embryo: hydrodynamical simulations. A&A, 546, A18 {471}Google Scholar
Morbidelli, A, Petit, J, Gladman, B, et al., 2001, A plausible cause of the Late Heavy Bombardment. Meteor. Plan. Sci., 36, 371–380 {661, 669}Google Scholar
Morbidelli, A, Raymond, SN, 2016, Challenges in planet formation. J. Geophys. Res. (Planets), 121, 1962–1980 {9, 451, 500, 501, 693, 700}Google Scholar
Morbidelli, A, Szulágyi, J, Crida, A, et al., 2014, Meridional circulation of gas into gaps opened by giant planets in three-dimensional low-viscosity disks. Icarus, 232, 266–270 {467}CrossRefGoogle Scholar
Morbidelli, A, Tsiganis, K, Crida, A, et al., 2007, Dynamics of the giant planets of the solar system in the gaseous protoplanetary disk and their relationship to the current orbital architecture. AJ, 134, 1790–1798 {695, 696, 699}CrossRefGoogle Scholar
Morbidelli, A, Wood, BJ, 2015, Late accretion and the late veneer. American Geophysical Union Geophysical Monograph Series, 212, 71–82 {669, 671}Google Scholar
Mordasini, C, 2011, Planetary population synthesis: comparison of updated model results and observations. AAS Abstracts, volume 2, 1606 {556}Google Scholar
Mordasini, C, 2013, Luminosity of young Jupiters revisited: massive cores make hot planets. A&A, 558, A113 {482}Google Scholar
Mordasini, C, 2014, Grain opacity and the bulk composition of extrasolar planets. II. An analytical model for grain opacity in protoplanetary atmospheres. A&A, 572, A118 {482}Google Scholar
Mordasini, C, Alibert, Y, Benz, W, 2009a, Extrasolar planet population synthesis. I. Method, formation tracks, and mass-distance distribution. A&A, 501, 1139–1160 {484, 555, 556, 557}Google Scholar
Mordasini, C, Alibert, Y, Benz, W, et al., 2008, Giant planet formation by core accretion. ASP Conf. Ser., volume 398, 235–242 {479}Google Scholar
Mordasini, C, Alibert, Y, Benz, W, 2009b, Extrasolar planet population synthesis. II. Statistical comparison with observations. A&A, 501, 1161–1184 {392, 484, 555, 556}Google Scholar
Mordasini, C, Alibert, Y, Benz, W, 2012a, Extrasolar planet population synthesis. IV. Correlations with diskmetallic-ity, mass, and lifetime. A&A, 541, A97 {13, 60, 485, 556}Google Scholar
Mordasini, C, Alibert, Y, Georgy, C, et al., 2012b, Characterisation of exoplanets from their formation. II. The planetary mass–radius relationship. A&A, 547, A112 {502, 556, 557, 558, 602, 603}Google Scholar
Mordasini, C, Alibert, Y, Klahr, H, et al., 2011a, Theory of planet formation and comparison with observation. EPJWeb Conf., volume 11, 4001 {557}CrossRefGoogle Scholar
Mordasini, C, Alibert, Y, Klahr, H, 2012c, Characterisation of exoplanets from their formation. I. Models of combined planet formation and evolution. A&A, 547, A111 {482, 557}Google Scholar
Mordasini, C, Marleau, GD, Mollière, P, 2017, Characterisation of exoplanets from their formation. III. The statistics of planetary luminosities. A&A, 608, A72 {557}Google Scholar
Mordasini, C, Mayor, M, Udry, S, et al., 2011b, The HARPS search for southern extraso-lar planets. XXIV. Companions to HD 85390, HD 90156, and HD 103197: a Neptune analogue and two intermediate-mass planets. A&A, 526, A111 {721}Google Scholar
Mordasini, C, Mollière, P, Dittkrist, KM, et al., 2015, Global models of planet formation and evolution. Int. J. Astrobiol., 14, 201–232 {519, 556}CrossRefGoogle Scholar
Mordasini, C, van Boekel, R, Mollière, P, et al., 2016, The imprint of exoplanet formation history on observable present-day spectra of hot Jupiters. ApJ, 832, 41 {600}CrossRefGoogle Scholar
Morello, G, Tsiaras, A, Howarth, ID, et al., 2017, High-precision stellar limb-darkening in exoplanetary transits. AJ, 154, 111 {211}CrossRefGoogle Scholar
Morello, G, Waldmann, IP, Tinetti, G, 2016, Repeatability of Spitzer–IRAC exoplanetary eclipses with independent component analysis. ApJ, 820, 86 {606}CrossRefGoogle Scholar
Morello, G, Waldmann, IP, Tinetti, G, et al., 2014, A new look at Spitzer primary transit observations of the exoplanet HD 189733 b. ApJ, 786, 22 {609, 730}CrossRefGoogle Scholar
Morello, G, Waldmann, IP, Tinetti, G, 2015, Revisiting Spitzer transit observations with independent component analysis: new results for the GJ 436 system. ApJ, 802, 117 {729}CrossRefGoogle Scholar
Moreno, F, Licandro, J, Ortiz, JL, et al., 2011, (596) Scheila in outburst: a probable collision event in the main asteroid belt. ApJ, 738, 130 {684}CrossRefGoogle Scholar
Moresi, L, Solomatov, V, 1998, Mantle convection with a brittle lithosphere: thoughts on the global tectonic styles of the Earth and Venus. Geophysical Journal International, 133, 669–682 {629}CrossRefGoogle Scholar
Moretto, G, Kuhn, JR, Thiébaut, E, et al., 2014, New strategies for an extremely large telescope dedicated to extremely high contrast: the Colossus project. SPIE Conf. Ser., volume 9145, 1 {646}Google Scholar
Morgan, HL, Edmunds, MG, 2003, Dust formation in early galaxies. MNRAS, 343, 427–442 {495}CrossRefGoogle Scholar
Morgan, WW, Keenan, PC, 1973, Spectral classification. ARA&A, 11, 29–50 {435}Google Scholar
Morgan, WW, Keenan, PC, Kellman, E, 1943, An Atlas of Stellar Spectra, with an Outline of Spectral Classification. University of Chicago Press {435}Google Scholar
Mori, S, Okuzumi, S, 2016, Electron heating in magnetorotational instability: implications for turbulence strength in the outer regions of protoplanetary disks. ApJ, 817, 52 {461}CrossRefGoogle Scholar
Moriarty, J, Ballard, S, 2016, The Kepler dichotomy in planetary disks: linking Kepler observables to simulations of late-stage planet formation. ApJ, 832, 34 {290, 325}CrossRefGoogle Scholar
Moriarty, J, Fischer, D, 2015, Building massive compact planetesimal disks from the accretion of pebbles. ApJ, 809, 94 {473}CrossRefGoogle Scholar
Moriarty, J, Madhusudhan, N, Fischer, D, 2014, Chemistry in an evolving protoplanet-ary disk: effects on terrestrial planet composition. ApJ, 787, 81 {464}CrossRefGoogle Scholar
Morishima, R, 2017, Onset of oligarchic growth and implication for accretion histories of dwarf planets. Icarus, 281, 459–475 {475}CrossRefGoogle Scholar
Morishima, R, Stadel, J, Moore, B, 2010, From planetesimals to terrestrial planets: N-body simulations including the effects of nebular gas and giant planets. Icarus, 207, 517–535 {476, 694}CrossRefGoogle Scholar
Morison, I, 2006, SETI in the new millennium. Astronomy and Geophysics, 47(4), 040000–4 {644}CrossRefGoogle Scholar
Moriwaki, K, Nakagawa, Y, 2004, A planetesimal accretion zone in a circumbinary disk. ApJ, 609, 1065–1070 {549}CrossRefGoogle Scholar
Morley, CV, Fortney, JJ, Kempton, EMR, et al., 2013, Quantitatively assessing the role of clouds in the transmission spectrum of GJ 1214 b. ApJ, 775, 33 {613, 735}CrossRefGoogle Scholar
Morley, CV, Fortney, JJ, Marley, MS, et al., 2012, Neglected clouds in T and Y dwarf atmospheres. ApJ, 756, 172 {436, 438}CrossRefGoogle Scholar
Morley, CV, Fortney, JJ, Marley, MS, 2015, Thermal emission and reflected light spectra of super Earths with flat transmission spectra. ApJ, 815, 110 {570, 588, 589}CrossRefGoogle Scholar
Morley, CV, Knutson, H, Line, M, et al., 2017a, Forward and inverse modeling of the emission and transmission spectrum of GJ 436 b: investigating metal enrichment, tidal heating, and clouds. AJ, 153, 86 {729}CrossRefGoogle Scholar
Morley, CV, Kreidberg, L, Rustamkulov, Z, et al., 2017b, Observing the atmospheres of known temperate Earth-sized planets with JWST. ApJ, 850, 121 {734, 750}CrossRefGoogle Scholar
Morley, CV, Marley, MS, Fortney, JJ, et al., 2014, Water clouds in Y dwarfs and exo-planets. ApJ, 787, 78 {570, 591}CrossRefGoogle Scholar
Moro-Martín, A, Malhotra, R, Bryden, G, et al., 2010a, Locating planetesimal belts in the multiple-planet systems HD 128311, HD 202206, HD 82943, and HR 8799. ApJ, 717, 1123–1139 {494, 721, 722, 724, 763}CrossRefGoogle Scholar
Moro-Martín, A, Malhotra, R, Carpenter, JM, et al., 2007, The dust, planetesimals, and planets of HD 38529. ApJ, 668, 1165–1173 {494, 719}CrossRefGoogle Scholar
Moro-Martín, A, Marshall, JP, Kennedy, G, et al., 2015, Does the presence of planets affect the frequency and properties of extrasolar Kuiper Belts? Results from the Herschel debris and Dunes surveys. ApJ, 801, 143 {493}CrossRefGoogle Scholar
Moro-Martín, A, Rieke, GH, Su, KYL, 2010b, Could the planets around HR 8799 be brown dwarfs? ApJ, 721, L199–L202 {763}CrossRefGoogle Scholar
Moro-Martín, A, Turner, EL, Loeb, A, 2009, Will the Large Synoptic Survey Telescope (LSST) detect extrasolar planetesimals entering the solar system? ApJ, 704, 733–742 {692}CrossRefGoogle Scholar
Morris, BM, Agol, E, Davenport, JRA, et al., 2018a, Possible bright star spots on TRAPPIST–1. ApJ, 857, 39 {750}CrossRefGoogle Scholar
Morris, BM, Agol, E, Hawley, SL, 2018b, Photometric analysis and transit times of TRAPPIST–1 b and c. RNAAS, 2, 10 {750}Google Scholar
Morris, BM, Hawley, SL, Hebb, L, et al., 2017a, Chromospheric activity of HAT–P–11: an unusually active planet-hosting K star. ApJ, 848, 58 {736}CrossRefGoogle Scholar
Morris, BM, Hebb, L, Davenport, JRA, et al., 2017b, The star spots of HAT–P–11: evidence for a solar-like dynamo. ApJ, 846, 99 {214, 736}CrossRefGoogle Scholar
Morris, BM, Mandell, AM, Deming, D, 2013, Kepler's optical secondary eclipse of HAT–P–7 b and probable detection of planet-induced stellar gravity darkening. ApJ, 764, L22 {12, 163, 229, 735}CrossRefGoogle Scholar
Morris, SL, 1985, The ellipsoidal variable stars. ApJ, 295, 143–152 {239, 240}CrossRefGoogle Scholar
Morris, SL, Naftilan, SA, 1993, The equations of ellipsoidal star variability applied to HR 8427. ApJ, 419, 344 {239}CrossRefGoogle Scholar
Morrison, D, 1982, Satellites of Jupiter. University of Arizona Press {651}Google Scholar
Morrison, SJ, Kratter, KM, 2016, Orbital stability of multi-planet systems: behaviour at high masses. ApJ, 823, 118 {763}CrossRefGoogle Scholar
Mörth, HT, Schlamminger, L, 1979, Planetary motion, sun spots and climate. Solar-Terrestrial Influences on Weather and Climate, 193–207 {656}
Mortier, A, Collier Cameron, A, 2017, Stacked Bayesian general Lomb–Scargle peri-odogram: identifying stellar activity signals. A&A, 601, A110 {21, 25}Google Scholar
Mortier, A, Faria, JP, Correia, CM, et al., 2015, BGLS: a Bayesian formalism for the gen-eralised Lomb–Scargle periodogram. A&A, 573, A101 {21}Google Scholar
Mortier, A, Faria, JP, Santos, NC, et al., 2016, The HARPS search for southern extrasolar planets. XXXIX. HD 175607, the most metal-poor G dwarf with an orbiting sub-Neptune. A&A, 585, A135 {723}Google Scholar
Mortier, A, Santos, NC, Sousa, S, et al., 2013a, On the functional formof themetallicity-giant planet correlation. A&A, 551, A112 {484}Google Scholar
Mortier, A, Santos, NC, Sousa, SG, et al., 2013b, New and updated stellar parameters for 71 evolved planet hosts: on the metallicity–giant planet connection. A&A, 557, A70 {389}Google Scholar
Mortier, A, Santos, NC, Sousa, SG, 2013c, New and updated stellar parameters for 90 transit hosts: the effect of the surface gravity. A&A, 558, A106 {377}Google Scholar
Morton, TD, 2012, An efficient automated validation procedure for exoplanet transit candidates. ApJ, 761, 6 {197}CrossRefGoogle Scholar
Morton, TD, 2015, VESPA: false positive probabilities calculator. Astrophysics Source Code Library {197}
Morton, TD, Bryson, ST, Coughlin, JL, et al., 2016, False positive probabilities for all Kepler Objects of Interest: 1284 newly validated planets and 428 likely false positives. ApJ, 822, 86 {196, 634, 741, 742, 743, 744, 745, 746, 747}CrossRefGoogle Scholar
Morton, TD, Johnson, JA, 2011a, Discerning exoplanet migration models using spin–orbit measurements. ApJ, 729, 138 {255}CrossRefGoogle Scholar
Morton, TD, Johnson, JA, 2011b, On the low false positive probabilities of Kepler planet candidates. ApJ, 738, 170 {196, 197, 208}CrossRefGoogle Scholar
Morton, TD, Swift, J, 2014, The radius distribution of planets around cool stars. ApJ, 791, 10 {296, 308}CrossRefGoogle Scholar
Morton, TD, Winn, JN, 2014, Obliquities of Kepler stars: comparison of single- and multiple-transit systems. ApJ, 796, 47 {311}CrossRefGoogle Scholar
Morzinski, KM, Males, JR, Skemer, AJ, et al., 2015, Magellan adaptive optics first-light observations of the exoplanet fl Pic b. II. 3–5μm direct imaging with Mag AO+Clio, and the empirical bolometric luminosity of a self-luminous giant planet. ApJ, 815, 108 {367, 762}CrossRefGoogle Scholar
Moses, EI, et al., 2013a, The National Ignition Campaign: status and progress. Nuclear Fusion, 53(10), 104020 {645}CrossRefGoogle Scholar
Moses, JI, 2014, Chemical kinetics on extrasolar planets. Phil. Trans. Soc. London A, 372, 30073 {590, 591}Google ScholarPubMed
Moses, JI, Line, MR, Visscher, C, et al., 2013b, Compositional diversity in the atmospheres of hot Neptunes, with application to GJ 436 b. ApJ, 777, 34 {584, 587, 729}CrossRefGoogle Scholar
Moses, JI, Madhusudhan, N, Visscher, C, et al., 2013c, Chemical consequences of the C/O ratio on hot Jupiters: WASP–12 b, CoRoT–2 b, XO–1 b, and HD 189733 b. ApJ, 763, 25 {616, 730, 733, 753, 757}CrossRefGoogle Scholar
Moses, JI, Marley, MS, Zahnle, K, et al., 2016, On the composition of young, directly imaged giant planets. ApJ, 829, 66 {761, 763}CrossRefGoogle Scholar
Moses, JI, Poppe, AR, 2017, Dust ablation on the giant planets: consequences for stratospheric photochemistry. Icarus, 297, 33–58 {587}CrossRefGoogle Scholar
Moses, JI, Visscher, C, Fortney, JJ, et al., 2011, Disequilibrium carbon, oxygen, and nitrogen chemistry in the atmospheres of HD 189733 b and HD 209458 b. ApJ, 737, 15 {584, 587, 610, 730, 732}CrossRefGoogle Scholar
Moskovitz, N, Gaidos, E, 2011, Differentiation of planetesimals and the thermal consequences of melt migration. Meteor. Plan. Sci., 46, 903–918 {276, 470}Google Scholar
Moskovitz, NA, Gaidos, E, Williams, DM, 2009, The effect of lunar-like satellites on the orbital infrared light curves of Earth-analogue planets. Astrobiology, 9, 269–277 {276}CrossRefGoogle Scholar
Mosqueira, I, Estrada, PR, 2003a, Formation of the regular satellites of giant planets in an extended gaseous nebula. I. Subnebula model and accretion of satellites. Icarus, 163, 198–231 {687, 688}Google Scholar
Mosqueira, I, Estrada, PR, 2003b, Formation of the regular satellites of giant planets in an extended gaseous nebula. II. Satellite migration and survival. Icarus, 163, 232–255 {687}Google Scholar
Mosqueira, I, Estrada, PR, 2006, Jupiter's obliquity and a long-lived circumplanetary disk. Icarus, 180, 93–97 {681}CrossRefGoogle Scholar
Mosser, B, Baudin, F, Lanza, AF, et al., 2009, Short-lived spots in solar-like stars as observed by CoRoT. A&A, 506, 245–254 {385}Google Scholar
Mosser, B, Maillard, JP, Mékarnia, D, 2000, New attempt at detecting the Jovian oscillations. Icarus, 144, 104–113 {411}CrossRefGoogle Scholar
Motalebi, F, Udry, S, Gillon, M, et al., 2015, The HARPS–N Rocky Planet Search. I. HD 219134 b: a transiting rocky planet in a multi-planet system at 6.5 pc from the Sun. A&A, 584, A72 {170, 733}Google Scholar
Mottez, F, Heyvaerts, J, 2011a, A magnetic thrust action on small bodies orbiting a pulsar. A&A, 532, A22 {110}Google Scholar
Mottez, F, Heyvaerts, J, 2011b, Magnetic coupling of planets and small bodies with a pulsar wind. A&A, 532, A21 {110}Google Scholar
Mottola, S, DiMartino, M, Erikson, A, et al., 2011, Rotational properties of Jupiter Trojans. I. Light curves of 80 objects. AJ, 141, 170 {689}CrossRefGoogle Scholar
Mouillet, D, Larwood, JD, Papaloizou, JCB, et al., 1997, A planet on an inclined orbit as an explanation of the warp in the fl Pic disk. MNRAS, 292, 896 {495, 762}CrossRefGoogle Scholar
Moulds, VE, Watson, CA, Bonfils, X, et al., 2013, Finding exoplanets orbiting young active stars. I. Technique. MNRAS, 430, 1709–1721 {38}CrossRefGoogle Scholar
Moulton, FR, 1899, The limits of temporary stability of satellite motion, with an application to the question of the existence of an unseen body in the binary system 70 Oph. AJ, 20, 33–37 {83}CrossRefGoogle Scholar
Moulton, FR, 1905, On the evolution of the solar system. ApJ, 22, 165–180 {450}CrossRefGoogle Scholar
Mourard, D, Blazit, A, Bonneau, D, et al., 2006, Recent progress and future prospects of the GI2T interferometer. SPIE Conf. Ser., volume 6268, 7 {348}Google Scholar
Mousis, O, Lunine, JI, Petit, JM, et al., 2011, On the volatile enrichment and heavy elements in HD 189733 b. ApJ, 727, 77 {730}CrossRefGoogle Scholar
Mousis, O, Lunine, JI, Tinetti, G, et al., 2009, Elemental abundances and minimum mass of heavy elements in the envelope of HD 189733 b. A&A, 507, 1671–1674 {730}Google Scholar
Moutou, C, Aigrain, S, Almenara, J, et al., 2007a, Expected performance of the CoRoT planet search from light curve beauty contests. Transiting Extrasolar Planets Workshop, volume 366 of ASP Conf. Ser., 127 {191}Google Scholar
Moutou, C, Almenara, JM, Díaz, RF, et al., 2014a, CoRoT–22 b: a validated 4.9 R⊕ exo-planet in 10-d orbit. MNRAS, 444, 2783–2792 {191, 197, 734}CrossRefGoogle Scholar
Moutou, C, Boisse, I, Hébrard, G, et al., 2015a, SPIRou: a spectropolarimeter for the CFHT. SF2A-2015: Proceedings of the Annual meeting of the French Society of Astronomy and Astrophysics, 205–212 {48}
Moutou, C, Bonomo, AS, Bruno, G, et al., 2013a, SOPHIE velocimetry of Kepler transit candidates. IX. KOI–415 b: a long-period, eccentric transiting brown dwarf to an evolved Sun. A&A, 558, L6 {62}Google Scholar
Moutou, C, Bruntt, H, Guillot, T, et al., 2008, Transiting exoplanets from the CoRoT space mission. V. CoRoT–4 b: stellar and planetary parameters. A&A, 488, L47–L50 {733}Google Scholar
Moutou, C, Coustenis, A, Schneider, J, et al., 2001, Search for spectroscopical signatures of transiting HD 209458 b exosphere. A&A, 371, 260–266 {610, 731}Google Scholar
Moutou, C, Coustenis, A, Schneider, J, 2003, Searching for helium in the exosphere of HD 209458 b. A&A, 405, 341–348 {610, 731}Google Scholar
Moutou, C, Deleuil, M, Guillot, T, et al., 2013b, CoRoT: harvest of the exoplanet program. Icarus, 226, 1625–1634 {171, 173}CrossRefGoogle Scholar
Moutou, C, Díaz, RF, Udry, S, et al., 2011a, Spin–orbit inclinations of the exoplanetary systems HAT–P–8 b, HAT–P–9 b, HAT–P–16 b, and HAT–P–23 b. A&A, 533, A113 {736}Google Scholar
Moutou, C, Donati, JF, Lin, D, et al., 2016, The magnetic properties of the star Kepler–78. MNRAS, 459, 1993–2007 {742}CrossRefGoogle Scholar
Moutou, C, Donati, JF, Savalle, R, et al., 2007b, Spectropolarimetric observations of the transiting planetary system of the K dwarf HD 189733. A&A, 473, 651–660 {730}Google Scholar
Moutou, C, Hébrard, G, Bouchy, F, et al., 2009a, Photometric and spectroscopic detection of the primary transit of the 111-day period planet HD 80606 b. A&A, 498, L5–L8 {79, 158, 170, 729}Google Scholar
Moutou, C, Hébrard, G, Bouchy, F, 2014b, The SOPHIE search for northern extrasolar planets. VI. Three new hot Jupiters in multi-planet extrasolar systems. A&A, 563, A22 {718, 723, 725}Google Scholar
Moutou, C, Lo Curto, G, Mayor, M, et al., 2015b, The HARPS search for southern extra-solar planets. XXXVII. Five new long-period giant planets and a system update. A&A, 576, A48 {716, 718, 719, 721}Google Scholar
Moutou, C, Loeillet, B, Bouchy, F, et al., 2006, ELODIE metallicity-biased search for transiting hot Jupiters. IIII. A hot Jupiter orbiting the star HD 185269. A&A, 458, 327–329 {723}Google Scholar
Moutou, C, Mayor, M, Bouchy, F, et al., 2005a, The HARPS search for southern extraso-lar planets. IV. Three close-in planets around HD 2638, HD 27894 and HD 63454. A&A, 439, 367–373 {77, 718, 719, 720}Google Scholar
Moutou, C, Mayor, M, Lo Curto, G, et al., 2009b, The HARPS search for southern ex-trasolar planets. XV. Six long-period giant planets around BD–17 63, HD 20868, HD73267, HD131664, HD145377, and HD153950. A&A, 496, 513–519 {716, 719, 720, 722}Google Scholar
Moutou, C, Mayor, M, Lo Curto, G, 2011b, The HARPS search for southern extrasolar planets. XXVII. Seven new planetary systems. A&A, 527, A63 {718, 719, 721, 724}Google Scholar
Moutou, C, Pont, F, Barge, P, et al., 2005b, Comparative blind test of five planetary transit detection algorithms on realistic synthetic light curves. A&A, 437, 355–368 {157, 191}Google Scholar
Moutou, C, Pont, F, Bouchy, F, et al., 2004, Accurate radius and mass of the transiting exoplanet OGLE–TR–132 b. A&A, 424, L31–L34 {749}Google Scholar
Moutou, C, Vigan, A, Mesa, D, et al., 2017, Eccentricity in planetary systems and the role of binarity: sample definition, initial results, and the system of HD 211847. A&A, 602, A87 {360, 718}Google Scholar
Mocnik, T, Anderson, DR, Brown, DJA, et al., 2016a, WASP–157 b, a transiting hot Jupiter observed with K2. PASP, 128(12), 124403 {757}CrossRefGoogle Scholar
Mocnik, T, Clark, BJM, Anderson, DR, et al., 2016b, Star spots on WASP–85. AJ, 151, 150 {253, 756}CrossRefGoogle Scholar
Mocnik, T, Hellier, C, Anderson, DR, 2017a, K2 looks towards WASP–28 and WASP–151. ArXiv e-prints {253, 754, 757}
Mocnik, T, Hellier, C, Anderson, DR, 2018, Ephemeris refinement of a hot Jupiter K2–140 b. RNAAS, 2, 22 {749}Google Scholar
Mocnik, T, Hellier, C, Anderson, DR, et al., 2017b, Star spots on WASP–107 and pulsations of WASP–118. MNRAS, 469, 1622–1629 {756, 757}CrossRefGoogle Scholar
Mocnik, T, Southworth, J, Hellier, C, 2017c, Recurring sets of recurring star spot occul-tations on exoplanet host Qatar–2. MNRAS, 471, 394–403 {750}CrossRefGoogle Scholar
Movshovitz, N, Bodenheimer, P, Podolak, M, et al., 2010, Formation of Jupiter using opacities based on detailed grain physics. Icarus, 209, 616–624 {485, 660}CrossRefGoogle Scholar
Moya, A, Amado, PJ, Barrado, D, et al., 2010a, Age determination of the HR 8799 planetary system using asteroseismology. MNRAS, 405, L81–L85 {365, 410, 763}CrossRefGoogle Scholar
Moya, A, Amado, PJ, Barrado, D, 2010b, The planetary system host HR 8799: on its ‚ Boo nature. MNRAS, 406, 566–575 {763}Google Scholar
Moya, A, Bouy, H, Marchis, F, et al., 2011, High spatial resolution imaging of the star with a transiting planet WASP–33. A&A, 535, A110 {754}Google Scholar
Moya, A, Suárez, JC, GarcíaHernández, A, et al., 2017, Semi-empirical seismic relations of A-F stars from COROT and Kepler legacy data. MNRAS, 471, 2491–2497 {312}CrossRefGoogle Scholar
Moyano, M, Almeida, LA, von Essen, C, et al., 2017, Multi-band characterisation of the hot Jupiters: WASP–5 b, WASP–44 b and WASP–46 b. MNRAS, 471, 650–657 {752, 755}CrossRefGoogle Scholar
Mróz, P, Han, C, and, et al., 2017a, OGLE–2016–BLG–0596L b: a high-mass planet from a high-magnification pure-survey microlensing event. AJ, 153, 143 {760}CrossRefGoogle Scholar
Mróz, P, Ryu, YH, Skowron, J, et al., 2018, A Neptune-mass free-floating planet candidate discovered by microlensing surveys. AJ, 155, 121 {12, 150, 151, 760}CrossRefGoogle Scholar
Mróz, P, Udalski, A, Bond, IA, et al., 2017b, OGLE–2013–BLG–0132L b and OGLE–2013–BLG–1721L b: two Saturn-mass planets discovered around M dwarfs. AJ, 154, 205 {141, 760}CrossRefGoogle Scholar
Mróz, P, Udalski, A, Skowron, J, et al., 2017c, No large population of unbound or wide-orbit Jupiter-mass planets. Nature, 548, 183–186 {150}Google Scholar
Muñoz, DJ, Lai, D, 2015, Survival of planets around shrinking stellar binaries. Proc. Nat. Acad. Sci., 112, 9264–9269 {553}CrossRefGoogle ScholarPubMed
Muñoz, DJ, Lai, D, Liu, B, 2016, The formation efficiency of close-in planets via Lidov–Kozai migration: analytic calculations. MNRAS, 460, 1086–1093 {529}CrossRefGoogle Scholar
Muñoz-Gutiérrez, MA, Pichardo, B, Peimbert, A, 2017, Giant planets can act as stabil-ising agents on debris disks. AJ, 154, 17 {495}CrossRefGoogle Scholar
Muñoz-Gutiérrez, MA, Reyes-Ruiz, M, Pichardo, B, 2015, Chaotic dynamics of Comet 1P/Halley: Lyapunov exponent and survival time expectancy. MNRAS, 447, 3775–3784 {515}CrossRefGoogle Scholar
Mudryk, LR, Wu, Y, 2006, Resonance overlap is responsible for ejecting planets in binary systems. ApJ, 639, 423–431 {549}CrossRefGoogle Scholar
Muench, AA, Alves, J, Lada, CJ, et al., 2001, Evidence for circumstellar disks around young brown dwarfs in the Trapeziumcluster. ApJ, 558, L51–L54 {443}CrossRefGoogle Scholar
Mugnai, D, Ranfagni, A, Ruggeri, R, 2003, Pupils with super-resolution. Physics Letters A, 311, 77–81 {357}CrossRefGoogle Scholar
Mugrauer, M, Avila, G, Guirao, C, 2014a, FLECHAS: a new échelle spectrograph at the University Observatory Jena. Astron. Nach., 335, 417 {47}CrossRefGoogle Scholar
Mugrauer, M, Dinçel, B, 2016, Follow-up spectroscopic observations of HD 107148B: a new white dwarf companion of an exoplanet host star. Astron. Nach., 337, 627 {721}CrossRefGoogle Scholar
Mugrauer, M, Ginski, C, 2015, High-contrast imaging search for stellar and substellar companions of exoplanet host stars. MNRAS, 450, 3127–3136 {721, 722}CrossRefGoogle Scholar
Mugrauer, M, Ginski, C, Seeliger, M, 2014b, New wide stellar companions of exoplanet host stars. MNRAS, 439, 1063–1070 {360, 721}CrossRefGoogle Scholar
Mugrauer, M, Neuhaeuser, R, Guenther, E, et al., 2005a, The multiplicity of exoplanet host stars. Astron. Nach., 326, 629–630 {716}Google Scholar
Mugrauer, M, Neuhäuser, R, 2005, Gl86B: a white dwarf orbits an exoplanet host star. MNRAS, 361, L15–L19 {414}CrossRefGoogle Scholar
Mugrauer, M, Neuhäuser, R, 2009, The multiplicity of exoplanet host stars. New low-mass stellar companions of the exoplanet host stars HD 125612 and HD 212301. A&A, 494, 373–378 {551, 722, 724}Google Scholar
Mugrauer, M, Neuhäuser, R, Mazeh, T, 2007, The multiplicity of exoplanet host stars: spectroscopic confirmation of the companions GJ 3021B and HD 27442B, one new planet host triple-star system, and global statistics. A&A, 469, 755–770 {79, 414, 717, 719}Google Scholar
Mugrauer, M, Neuhäuser, R, Mazeh, T, et al., 2004a, Astrometric confirmation of awide low-mass companion to the planet host star HD 89744. Astron. Nach., 325, 718–722 {721}CrossRefGoogle Scholar
Mugrauer, M, Neuhäuser, R, Mazeh, T, 2004b, A low-mass stellar companion of the planet host star HD 75289. A&A, 425, 249–253 {720}Google Scholar
Mugrauer, M, Neuhäuser, R, Seifahrt, A, et al., 2005b, Four new wide binaries among exoplanet host stars. A&A, 440, 1051–1060 {718, 722, 724}Google Scholar
Mugrauer, M, Seifahrt, A, Neuhäuser, R, et al., 2006, HD3651B: the first directly imaged brown dwarf companion of an exoplanet host star. MNRAS, 373, L31–L35 {718}CrossRefGoogle Scholar
Mugrauer, M, Vogt, N, Neuhäuser, R, et al., 2010, Direct detection of a substellar companion to the young nearby star PZ Tel. A&A, 523, L1 {362}Google Scholar
Muhleman, DO, Grossman, AW, Butler, BJ, 1995, Radar investigations of Mars, Mercury, and Titan. Ann. Rev. Earth Plan. Sci., 23, 337–374 {355}CrossRefGoogle Scholar
Muhleman, DO, Holdridge, DB, Block, N, 1962, The astronomical unit determined by radar reflections from Venus. AJ, 67, 191 {356}CrossRefGoogle Scholar
Muirhead, PS, Becker, J, Feiden, GA, et al., 2014, Characterising the cool KOIs. VI. Hand K-band spectra of Kepler Mdwarf planet-candidate hosts. ApJS, 213, 5 {290, 405}CrossRefGoogle Scholar
Muirhead, PS, Edelstein, J, Erskine, DJ, et al., 2011, Precise stellar radial velocities of an M dwarf with a Michelson interferometer and a medium-resolution near-infrared spectrograph. PASP, 123, 709 {50}CrossRefGoogle Scholar
Muirhead, PS, Hamren, K, Schlawin, E, et al., 2012a, Characterising the cool KOIs. I. New effective temperatures, metallicities, masses, and radii of low-mass Kepler planet-candidate host stars. ApJ, 750, L37 {390}CrossRefGoogle Scholar
Muirhead, PS, Johnson, JA, Apps, K, et al., 2012b, Characterising the cool KOIs. III. KOI–961: a small star with large proper motion and three small planets. ApJ, 747, 144 {11, 14, 179, 290, 741}CrossRefGoogle Scholar
Muirhead, PS, Mann, AW, Vanderburg, A, et al., 2015, Kepler–445, Kepler–446 and the occurrence of compact multiples orbiting mid-M dwarf stars. ApJ, 801, 18 {197, 290, 746}CrossRefGoogle Scholar
Muirhead, PS, Vanderburg, A, Shporer, A, et al., 2013, Characterising the cool KOIs. V. KOI–256: a mutually eclipsing post-common-envelope binary. ApJ, 767, 111 {137, 223}CrossRefGoogle Scholar
Mulders, GD, Ciesla, FJ, Min, M, et al., 2015a, The snow line in viscous disks around low-mass stars: implications for water delivery to terrestrial planets in the habitable zone. ApJ, 807, 9 {564}CrossRefGoogle Scholar
Mulders, GD, Dominik, C, 2012, Probing the turbulent mixing strength in protoplanet-ary disks across the stellar mass range: no significant variations. A&A, 539, A9 {309}Google Scholar
Mulders, GD, Pascucci, I, Apai, D, 2015b, A stellar mass-dependent drop in planet occurrence rates. ApJ, 798, 112 {309}CrossRefGoogle Scholar
Mulders, GD, Pascucci, I, Apai, D, 2015c, An increase in themass of planetary systems around lower-mass stars. ApJ, 814, 130 {501}CrossRefGoogle Scholar
Mulders, GD, Pascucci, I, Apai, D, et al., 2016, A super-solar metallicity for stars with hot rocky exoplanets. AJ, 152, 187 {378}CrossRefGoogle Scholar
Mulet-Marquis, C, Baraffe, I, Aigrain, S, et al., 2009, Accuracy of stellar parameters of exoplanet-host stars determined from asteroseismology. A&A, 506, 153–158 {408}Google Scholar
Mullally, F, Coughlin, JL, Thompson, SE, et al., 2015, Planetary candidates observed by Kepler. VI. Planet sample from Q1–Q16 (47 months). ApJS, 217, 31 {196}CrossRefGoogle Scholar
Mullally, F, Coughlin, JL, Thompson, SE, 2016, Identifying false alarms in the Kepler planet candidate catalogue. PASP, 128(7), 074502 {196}CrossRefGoogle Scholar
Mullally, F, Reach, WT, Degennaro, S, et al., 2009, Spitzer planet limits around the pulsating white dwarf GD 66. ApJ, 694, 327–331 {111, 415}CrossRefGoogle Scholar
Mullally, F, von Hippel, T, Winget, DE, 2007, Spitzer white dwarf planet limits. 15th European Workshop on White Dwarfs, volume 372 of ASP Conf. Ser., 355–358 {415}Google Scholar
Mullally, F, Winget, DE, Degennaro, S, et al., 2008, Limits on planets around pulsating white dwarf stars. ApJ, 676, 573–583 {10, 111}CrossRefGoogle Scholar
Mülläri, AA, Orlov, VV, 1996, Encounters of the Sun with nearby stars in the past and future. Earth Moon and Planets, 72, 19–23 {655}CrossRefGoogle Scholar
Müller, A, Roccatagliata, V, Henning, T, et al., 2013a, Reanalysis of the FEROS observations of HIP 11952. A&A, 556, A3 {39, 724}Google Scholar
Müller, HM, Huber, KF, Czesla, S, et al., 2013b, High-precision stellar limb-darkening measurements: a transit study of 38 Kepler planetary candidates. A&A, 560, A112 {211}Google Scholar
Müller, HSP, Schlöder, F, Stutzki, J, et al., 2005a, The Cologne Database for Molecular Spectroscopy, CDMS: a useful tool for astronomers and spectroscopists. Journal of Molecular Structure, 742, 215–227 {570}CrossRefGoogle Scholar
Muller, RA, Morris, DE, 1986, Geomagnetic reversals from impacts on the Earth. Geo-phys. Res. Lett., 13, 1177–1180 {663}CrossRefGoogle Scholar
Müller, S, Löhne, T, Krivov, AV, 2010, The debris disk of Vega: a steady-state collisional cascade, naturally. ApJ, 708, 1728–1747 {496}CrossRefGoogle Scholar
Müller, TG, Ábrahám P, Crovisier, J, 2005b, Comets, asteroids and zodiacal light as seen by ISO. Space Science Reviews, 119, 141–155 {692}CrossRefGoogle Scholar
Müller, TG, O'Rourke, L, Barucci, AM, et al., 2012, Physical properties of OSIRIS–REx target asteroid (101955) 1999 RQ36, derived from Herschel, VLT–VISIR, and Spitzer. A&A, 548, A36 {681}Google Scholar
Müller, TWA, Haghighipour, N, 2014, Calculating the habitable zones of multiple star systems with a new interactive web site. ApJ, 782, 26 {623}CrossRefGoogle Scholar
Müller, TWA, Kley, W, 2012, Circumstellar disks in binary star systems: models for γ Cep and α Cen. A&A, 539, A18 {80, 714}Google Scholar
Müller, TWA, Kley, W, 2013, Modelling accretion in transition disks. A&A, 560, A40 {465}Google Scholar
Mumma, MJ, 1993, Natural lasers and masers in the solar system. Astrophysical Masers, volume 412 of Lecture Notes in Physics, Berlin Springer Verlag, 455–467 {642}Google Scholar
Munk, WH, Mac Donald, GJF, 1960, The Rotation of the Earth: a Geophysical Discussion. Cambridge University Press {533}Google Scholar
Mura, A, Wurz, P, Schneider, J, et al., 2011, Comet-like tail-formation of exospheres of hot rocky exoplanets: possible implications for CoRoT–7 b. Icarus, 211, 1–9 {733}CrossRefGoogle Scholar
Murakami, N, Uemura, R, Baba, N, et al., 2008, An eight-octant phase-mask corona-graph. PASP, 120, 1112–1118 {334}CrossRefGoogle Scholar
Muraki, Y, Han, C, Bennett, DP, et al., 2011, Discovery and mass measurements of a cold, 10 M⊕ planet and its host star. ApJ, 741, 22 {11, 141, 145, 147, 149, 759}CrossRefGoogle Scholar
Muraki, Y, Sumi, T, Abe, F, et al., 1999, Search for MACHOs by the MOA collaboration. Progress of Theoretical Physics Supplement, 133, 233–246 {122}CrossRefGoogle Scholar
Muralidharan, K, Deymier, P, Stimpfl, M, et al., 2008, Origin of water in the inner solar system: a kinetic Monte Carlo study of water adsorption on forsterite. Icarus, 198, 400–407 {667}CrossRefGoogle Scholar
Muranushi, T, Okuzumi, S, Inutsuka Si, 2012, Interdependence of electric discharge and magnetorotational instability in protoplanetary disks. ApJ, 760, 56 {461}CrossRefGoogle Scholar
Murgas, F, Pallé, E, Cabrera-Lavers, A, et al., 2012, Narrow-band Hα photometry of the super-Earth GJ 1214 b with GTC–OSIRIS tunable filters. A&A, 544, A41 {734}Google Scholar
Murgas, F, Pallé, E, Parviainen, H, et al., 2017, The GTC exoplanet transit spectroscopy survey. VII. An optical transmission spectrum of WASP–48 b. A&A, 605, A114 {755}Google Scholar
Murgas, F, Pallé, E, Zapatero Osorio, MR, et al., 2014, The GTC exoplanet transit spectroscopy survey. I. OSIRIS transmission spectroscopy of the short period planet WASP–43 b. A&A, 563, A41 {755}Google Scholar
Murphy, MT, Locke, CR, Light, PS, et al., 2012, Laser frequency comb techniques for precise astronomical spectroscopy. MNRAS, 422, 761–771 {33}CrossRefGoogle Scholar
Murphy, MT, Udem, T, Holzwarth, R, et al., 2007, High-precision wavelength calibration of astronomical spectrographs with laser frequency combs. MNRAS, 380, 839–847 {32}CrossRefGoogle Scholar
Murphy, SJ, 2012, An examination of some characteristics of Kepler short- and long-cadence data. MNRAS, 422, 665–671 {175}CrossRefGoogle Scholar
Murphy, SJ, 2014, Investigating the A-type stars using Kepler data. Ph. D. thesis, Jeremiah Hor-rocks Institute, University of Central Lancashire, Preston, UK {383}Google Scholar
Murphy, SJ, Bedding, TR, Shibahashi, H, 2016, A planet in an 840-d orbit around a Kepler main-sequence A star found from phase modulation of its pulsations. ApJ, 827, L17 {192, 747}CrossRefGoogle Scholar
Murphy, T, Bell, ME, Kaplan, DL, et al., 2015, Limits on low-frequency radio emission from southern exoplanetswith the Murchison Widefield Array. MNRAS, 446, 2560–2565 {426, 427, 715, 716, 717, 719, 721, 722, 723, 725, 753}Google Scholar
Murray, CD, 1998, Chaotic motion in the solar system. Encyclopedia of the Solar System, Academic Press, Orlando {514}Google Scholar
Murray, CD, Dermott, SF, 2000, Solar System Dynamics. Cambridge University Press {17, 258, 273, 320, 505, 506, 510, 511, 512, 513, 515, 533, 535, 622, 677, 678, 693}CrossRefGoogle Scholar
Murray, JB, Heggie, DC, 2014, Character and origin of the Phobos grooves. Planet. Space Sci., 102, 119–143 {689}CrossRefGoogle Scholar
Murray, N, Chaboyer, B, 2002, Are stars with planets polluted? ApJ, 566, 442–451 {388, 392, 393}CrossRefGoogle Scholar
Murray, N, Chaboyer, B, Arras, P, et al., 2001, Stellar pollution in the solar neighbour-hood. ApJ, 555, 801–815 {388}CrossRefGoogle Scholar
Murray, N, Hansen, B, Holman, M, et al., 1998, Migrating planets. Science, 279, 69–72 {518}CrossRefGoogle ScholarPubMed
Murray, N, Holman, M, 1997, Diffusive chaos in the outer asteroid belt. AJ, 114, 1246–1259 {694}CrossRefGoogle Scholar
Murray, N, Holman, M, 2001, The role of chaotic resonances in the solar system. Nature, 410, 773–779 {514}CrossRefGoogle ScholarPubMed
Murray, N, Paskowitz, M, Holman, M, 2002, Eccentricity evolution of migrating planets. ApJ, 565, 608–620 {522}CrossRefGoogle Scholar
Murray, N, Weingartner, JC, Capobianco, C, 2004, On the flux of extrasolar dust in Earth's atmosphere. ApJ, 600, 804–827 {683}CrossRefGoogle Scholar
Murray-Clay, RA, Chiang, EI, 2005, A signature of planetary migration: the origin of asymmetric capture in the 2:1 resonance. ApJ, 619, 623–638 {685, 695}CrossRefGoogle Scholar
Murray-Clay, RA, Chiang, EI, 2006, Brownian motion in planetary migration. ApJ, 651, 1194–1208 {524, 695}CrossRefGoogle Scholar
Murray-Clay, RA, Chiang, EI, Murray, N, 2009, Atmospheric escape from hot Jupiters. ApJ, 693, 23–42 {298, 601}CrossRefGoogle Scholar
Murray-Clay, RA, Schlichting, HE, 2011, Using Kuiper belt binaries to constrain Neptune's migration history. ApJ, 730, 132 {684}CrossRefGoogle Scholar
Musci, R, Weryk, RJ, Brown, P, et al., 2012, An optical survey for millimeter-sized interstellar meteoroids. ApJ, 745, 161 {683}CrossRefGoogle Scholar
Mushailov, BR, Teplitskaya, VS, 2012, On reliability of determining the orbital parameters of exoplanets by the Doppler method. Cosmic Research, 50, 421–430 {257}CrossRefGoogle Scholar
Musielak, ZE, Cuntz, M, Marshall, EA, et al., 2005, Stability of planetary orbits in binary systems. A&A, 434, 355–364 {549, 550, 551, 714, 716, 724}Google Scholar
Musiolik, G, Teiser, J, Jankowski, T, et al., 2016, Collisions of CO2 ice grains in planet formation. ApJ, 818, 16 {468}CrossRefGoogle Scholar
Musso, P, 2012, The problemof active SETI: an overview. Acta Astron., 78, 43–54 {648}CrossRefGoogle Scholar
Mustill, AJ, Davies, MB, Johansen, A, 2015, The destruction of inner planetary systems during high-eccentricity migration of gas giants. ApJ, 808, 14 {529}CrossRefGoogle Scholar
Mustill, AJ, Davies, MB, Johansen, A, 2017, The effects of external planets on inner systems: multiplicities, inclinations and pathways to eccentric warm Jupiters. MNRAS, 468, 3000–3023 {529, 741, 743}CrossRefGoogle Scholar
Mustill, AJ, Marshall, JP, Villaver, E, et al., 2013, Main-sequence progenitor configurations of the NN Ser candidate circumbinary planetary system are dynamically unstable. MNRAS, 436, 2515–2521 {115}CrossRefGoogle Scholar
Mustill, AJ, Raymond, SN, Davies, MB, 2016, Is there an exoplanet in the solar system? MNRAS, 460, L109–L113 {687}CrossRefGoogle Scholar
Mustill, AJ, Veras, D, Villaver, E, 2014, Long-term evolution of three-planet systems to the post-main sequence and beyond. MNRAS, 437, 1404–1419 {412, 416}CrossRefGoogle Scholar
Mustill, AJ, Villaver, E, 2012, Foretellings of Ragnarök: world-engulfing asymptotic giants and the inheritance of white dwarfs. ApJ, 761, 121 {517}CrossRefGoogle Scholar
Mustill, AJ, Wyatt, MC, 2011, A general model of resonance capture in planetary systems: first- and second-order resonances. MNRAS, 413, 554–572 {507, 692}CrossRefGoogle Scholar
Mustill, AJ, Wyatt, MC, 2012, Dependence of a planet's chaotic zone on particle eccentricity: the shape of debris disk inner edges. MNRAS, 419, 3074–3080 {763}CrossRefGoogle Scholar
Muterspaugh, MW, Lane, BF, Kulkarni, SR, et al., 2006, Limits to tertiary astrometric companions in binary systems. ApJ, 653, 1469–1479 {91}CrossRefGoogle Scholar
Muterspaugh, MW, Lane, BF, Kulkarni, SR, 2010a, The PHASES differential astrometry data archive. III. Limits to tertiary companions. AJ, 140, 1631–1645 {91}Google Scholar
Muterspaugh, MW, Lane, BF, Kulkarni, SR, 2010b, The PHASES differential astrometry data archive. V. Candidate substellar companions to binary systems. AJ, 140, 1657–1671 {11, 91, 551}Google Scholar
Muterspaugh, MW, Lane, BF, Kulkarni, SR, 2010c, The PHASES differential astrometry data archive. I. Measurements and description. AJ, 140, 1579–1622 {91}Google Scholar
Muto, T, Grady, CA, Hashimoto, J, et al., 2012, Discovery of small-scale spiral structures in the disk of HD135344B (SAO206462): implications for the physical state of the disk from spiral density wave theory. ApJ, 748, L22 {359, 367, 466}CrossRefGoogle Scholar
Muto, T, Takeuchi, T, Ida, S, 2011, On the interaction between a protoplanetary disk and a planet in an eccentric orbit: application of dynamical friction. ApJ, 737, 37 {521}CrossRefGoogle Scholar
Mutter, MM, Pierens, A, Nelson, RP, 2017a, The role of disk self-gravity in circumbinary planet systems. I. Disk structure and evolution. MNRAS, 465, 4735–4752 {739, 740}CrossRefGoogle Scholar
Mutter, MM, Pierens, A, Nelson, RP, 2017b, The role of disk self-gravity in circumbinary planet systems. II. Planet evo-lution. MNRAS, 469, 4504–4522 {551}CrossRefGoogle Scholar
Mužić, K, Scholz, A, Geers, V, et al., 2011, Substellar Objects in Nearby Young Clusters (SONYC). III. Chamaeleon I. ApJ, 732, 86 {434}CrossRefGoogle Scholar
Mužić, K, Scholz, A, Geers, V, 2012, Substellar Objects in Nearby Young Clusters (SONYC). V. New brown dwarfs in ρ Oph. ApJ, 744, 134 {434}CrossRefGoogle Scholar
Mužić, K, Scholz, A, Geers, VC, et al., 2014, Substellar Objects in Nearby Young Clusters (SONYC). VIII. Substellar population in Lupus 3. ApJ, 785, 159 {434}CrossRefGoogle Scholar
Mužić, K, Scholz, A, Geers, VC, 2015, Substellar Objects in Nearby Young Clusters (SONYC). IX. The planetary-mass domain of Cha I and updatedmass function in Lupus 3. ApJ, 810, 159 {434}CrossRefGoogle Scholar
Muzerolle, J, Allen, LE, Megeath, ST, et al., 2010, A Spitzer census of transition proto-planetary disks with au-scale inner holes. ApJ, 708, 1107–1118 {465}CrossRefGoogle Scholar
Muzerolle, J, Hillenbrand, L, Calvet, N, et al., 2003, Accretion in young stellar/substellar objects. ApJ, 592, 266–281 {443, 445}CrossRefGoogle Scholar
Naab, T, Ostriker, JP, 2006, A simple model for the evolution of disk galaxies: the Milky Way. MNRAS, 366, 899–917 {369}CrossRefGoogle Scholar
Naef, D, Latham, DW, Mayor, M, et al., 2001a, HD 80606 b, a planet on an extremely elongated orbit. A&A, 375, L27–L30 {158, 170, 729}Google Scholar
Naef, D, Mayor, M, Benz, W, et al., 2007, The HARPS search for southern extrasolar planets. IX. Exoplanets orbiting HD 100777, HD 190647, and HD 221287. A&A, 470, 721–726 {721, 723, 724}Google Scholar
Naef, D, Mayor, M, Beuzit, JL, et al., 2004, The ELODIE survey for northern extrasolar planets. III. Three planetary candidates detected with ELODIE. A&A, 414, 351–359 {70, 713, 715, 716, 720, 723, 728}Google Scholar
Naef, D, Mayor, M, Korzennik, SG, et al., 2003, The ELODIE survey for northern extra-solar planets. II. A Jovian planet on a long-period orbit around GJ 777 A. A&A, 410, 1051–1054 {723}Google Scholar
Naef, D, Mayor, M, Lo Curto, G, et al., 2010, The HARPS search for southern extrasolar planets. XXIII. Eight planetary companions to low-activity solar-type stars. A&A, 523, A15 {718, 719, 720, 722, 724}Google Scholar
Naef, D, Mayor, M, Pepe, F, et al., 2001b, The CORALIE survey for southern extrasolar planets. V. Three new extrasolar planets. A&A, 375, 205–218 {717, 720, 723}Google Scholar
Nagakane, M, Sumi, T, Koshimoto, N, et al., 2017, MOA–2012–BLG–505L b: a super-Earth-mass planet that probably resides in the Galactic bulge. AJ, 154, 35 {141, 759}CrossRefGoogle Scholar
Nagasawa, M, Ida, S, 2011, Orbital distributions of close-in planets and distant planets formed by scattering and dynamical tides. ApJ, 742, 72 {150, 529, 542}CrossRefGoogle Scholar
Nagasawa, M, Ida, S, Bessho, T, 2008, Formation of hot planets by a combination of planet scattering, tidal circularisation, and the Kozai mechanism. ApJ, 678, 498–508 {77, 321, 525}CrossRefGoogle Scholar
Nagasawa, M, Ida, S, Tanaka, H, 2001, Origin of high orbital eccentricity and inclination of asteroids. Earth, Planets, and Space, 53, 1085–1091 {693}CrossRefGoogle Scholar
Nagasawa, M, Lin, DNC, 2005, The dynamical evolution of the short-period extrasolar planet around À And in the pre-main-sequence stage. ApJ, 632, 1140–1156 {713}CrossRefGoogle Scholar
Nagasawa, M, Lin, DNC, Thommes, E, 2005, Dynamical shake-up of planetary systems. I. Embryo trapping and induced collisions by the sweeping secular resonance and embryo-disk tidal interaction. ApJ, 635, 578–598 {693}CrossRefGoogle Scholar
Nagasawa, M, Tanaka, H, Ida, S, 2000, Orbital evolution of asteroids during depletion of the solar nebula. AJ, 119, 1480–1497 {693, 694}CrossRefGoogle Scholar
Nagovitsyn, YA, Nagovitsyna, EY, Makarova, VV, 2009, The Gnevishev–Ohl rule for physical parameters of the solar magnetic field: the 400-year interval. Astronomy Letters, 35, 564–571 {656}CrossRefGoogle Scholar
Nagy, I, Ágas M, 2013, Stability of the Kepler–36 two-planet system. Astron. Nach., 334, 992 {179, 740}CrossRefGoogle Scholar
Najita, JR, Andrews, SM, Muzerolle, J, 2015, Demographics of transition disks in Ophiuchus and Taurus. MNRAS, 450, 3559–3567 {465}CrossRefGoogle Scholar
Najita, JR, Kenyon, SJ, 2014, The mass budget of planet-forming disks: isolating the epoch of planetesimal formation. MNRAS, 445, 3315–3329 {462}CrossRefGoogle Scholar
Najita, JR, Tiede, GP, Carr, JS, 2000, From stars to superplanets: the low-mass initial mass function in the young cluster IC 348. ApJ, 541, 977–1003 {446}CrossRefGoogle Scholar
Nakagawa, T, Shibai, H, Kaneda, H, et al., 2017, The next-generation infrared space mission Spica: project updates. Publication of Korean Astronomical Society, 32, 331–335 {182}Google Scholar
Nakagawa, T, Shibai, H, Onaka, T, et al., 2015, The next-generation infrared astronomy mission SPICA under the new framework. Publication of Korean Astronomical Society, 30, 621–624 {182}CrossRefGoogle Scholar
Nakagawa, Y, Sekiya, M, Hayashi, C, 1986, Settling and growth of dust particles in a laminar phase of a low-mass solar nebula. Icarus, 67, 375–390 {457}CrossRefGoogle Scholar
Nakajima, S, Hayashi, YY, Abe, Y, 1992, A study on the ’runaway greenhouse effect’ with a one-dimensional radiative-convective equilibrium model. Journal of Atmospheric Sciences, 49, 2256–2266 {619}2.0.CO;2>CrossRefGoogle Scholar
Nakajima, T, Oppenheimer, BR, Kulkarni, SR, et al., 1995, Discovery of a cool brown dwarf. Nature, 378, 463–465 {333, 357, 358, 362, 431, 437}CrossRefGoogle Scholar
Nakamichi, A, Mouri, H, Schmitt, D, et al., 2012, Coupled spin models for magnetic variation of planets and stars. MNRAS, 423, 2977–2990 {663}CrossRefGoogle Scholar
Nakamoto, T, Kita, NT, Tachiban, S, 2005, Chondrule age distribution and rate of heating events. Antarctic Meteorite Research, 18, 253–272 {653}Google Scholar
Namouni, F, 2010, The fate of moons of close-in giant exoplanets. ApJ, 719, L145–L147 {281, 504}CrossRefGoogle Scholar
Namouni, F, 2013, The excitation of planetary orbits by stellar jet variability and polarity reversal. Ap&SS, 343, 53–63 {531, 681}Google Scholar
Namouni, F, Morais, MHM, 2015, Resonance capture at arbitrary inclination. MNRAS, 446, 1998–2009 {508}CrossRefGoogle Scholar
Namouni, F, Morais, MHM, 2017, Resonance capture at arbitrary inclination. II. Effect of the radial drift rate. MNRAS, 467, 2673–2683 {508}CrossRefGoogle Scholar
Nan, R, Li, D, Jin, C, et al., 2011, The Five-hundred-meter Aperture Spherical radio Telescope project (FAST). Int. J. Mod. Phys. D, 20, 989–1024 {426}CrossRefGoogle Scholar
Nandez, JLA, Ivanova, N, Lombardi JC Jr, 2014, V1309 Sco: understanding a merger. ApJ, 786, 39 {498}CrossRefGoogle Scholar
Naoz, S, 2016, The eccentric Lidov–Kozai effect and its applications. ARA&A, 54, 441–489 {527, 528}Google Scholar
Naoz, S, Farr, WM, Lithwick, Y, et al., 2011, Hot Jupiters from secular planet–planet interactions. Nature, 473, 187–189 {525, 528}CrossRefGoogle ScholarPubMed
Naoz, S, Farr, WM, Lithwick, Y, 2013a, Secular dynamics in hierarchical three-body systems. MNRAS, 431, 2155–2171 {511, 528}CrossRefGoogle Scholar
Naoz, S, Farr, WM, Rasio, FA, 2012, On the formation of hot Jupiters in stellar binaries. ApJ, 754, L36 {529}CrossRefGoogle Scholar
Naoz, S, Kocsis, B, Loeb, A, et al., 2013b, Resonant post-Newtonian eccentricity excitation in hierarchical three-body systems. ApJ, 773, 187 {528}CrossRefGoogle Scholar
Naoz, S, Li, G, Zanardi, M, et al., 2017, The eccentric Kozai–Lidov mechanismfor outer test particle. AJ, 154, 18 {528}CrossRefGoogle Scholar
Naoz, S, Perets, HB, Ragozzine, D, 2010, The observed orbital properties of binary minor planets. ApJ, 719, 1775–1783 {529}CrossRefGoogle Scholar
Napier, WM, 2004, A mechanism for interstellar panspermia. MNRAS, 348, 46–51 {638}CrossRefGoogle Scholar
Napier, WM, Wickramasinghe, JT, Wickramasinghe, NC, 2007, The origin of life in comets. Int. J. Astrobiol., 6, 321–323 {637}CrossRefGoogle Scholar
Napiwotzki, R, Christlieb, N, Drechsel, H, et al., 2003, SPY: the ESO supernovae type Ia progenitor survey. The Messenger, 112, 25–30 {416}Google Scholar
Narayan, R, Cumming, A, Lin, DNC, 2005, Radial velocity detectability of low-mass ex-trasolar planets in close orbits. ApJ, 620, 1002–1009 {26, 37}CrossRefGoogle Scholar
Nardiello, D, Libralato, M, Bedin, LR, et al., 2016a, A PSF-based approach to Kepler/K2 data. III. Search for exoplanets and variable stars within the open cluster M67 (NGC 2682). MNRAS, 463, 1831–1843 {159}CrossRefGoogle Scholar
Nardiello, D, Libralato, M, Bedin, LR, 2016b, Variable stars in one open cluster within the Kepler/K2-Campaign-5 field: M67 (NGC 2682). MNRAS, 455, 2337–2344 {159}CrossRefGoogle Scholar
Narita, N, Enya, K, Sato, B, et al., 2007, Measurement of the Rossiter–McLaughlin effect in the transiting exoplanetary system TrES–1. PASJ, 59, 763–770 {750}CrossRefGoogle Scholar
Narita, N, Fukui, A, Ikoma, M, et al., 2013a, Multi-colour transit photometry of GJ 1214 b through BJHKs bands and a long-term monitoring of the stellar variability of GJ 1214. ApJ, 773, 144 {735}CrossRefGoogle Scholar
Narita, N, Fukui, A, Kusakabe, N, et al., 2015a, MuSCAT: a multicolour simultaneous camera for studying atmospheres of transiting exoplanets. Journal of Astronomical Telescopes, Instruments, and Systems, 1(4), 045001 {182}CrossRefGoogle Scholar
Narita, N, Hirano, T, Fukui, A, et al., 2015b, Characterisation of the K2–19 multiple-transiting planetary system via high-dispersion spectroscopy, AO imaging, and transit timing variations. ApJ, 815, 47 {272, 748}CrossRefGoogle Scholar
Narita, N, Hirano, T, Fukui, A, 2017, The K2–ESPRINT project. VI. K2–105 b, a hot Neptune around a metal-rich G-dwarf. PASJ, 69, 29 {748}CrossRefGoogle Scholar
Narita, N, Hirano, T, Sanchis-Ojeda, R, et al., 2010a, The Rossiter–McLaughlin effect of the transiting exoplanet XO–4 b. PASJ, 62, L61 {195, 757}CrossRefGoogle Scholar
Narita, N, Hirano, T, Sato, B, et al., 2009a, Improved measurement of the Rossiter–McLaughlin effect in the exoplanetary system HD 17156. PASJ, 61, 991–997 {729}CrossRefGoogle Scholar
Narita, N, Hirano, T, Sato, B, 2011, XO–2 b: a prograde planet with negligible eccentricity and an additional radial velocity variation. PASJ, 63, L67–L71 {757}CrossRefGoogle Scholar
Narita, N, Kudo, T, Bergfors, C, et al., 2010b, Search for outer massive bodies around transiting planetary systems: candidate faint stellar companions around HAT–P–7. PASJ, 62, 779–783 {163, 735}CrossRefGoogle Scholar
Narita, N, Nagayama, T, Suenaga, T, et al., 2013b, IRSF–SIRIUS JHKs simultaneous transit photometry of GJ 1214 b. PASJ, 65, 27 {735}CrossRefGoogle Scholar
Narita, N, Sato, B, Hirano, T, et al., 2009b, First evidence of a retrograde orbit of a transiting exoplanet HAT–P–7 b. PASJ, 61, L35–L40 {163, 253, 254, 529, 735}CrossRefGoogle Scholar
Narita, N, Sato, B, Hirano, T, 2010c, Spin–orbit alignment of the TrES–4 transiting planetary system and possible additional radial-velocity variation. PASJ, 62, 653–660 {751}CrossRefGoogle Scholar
Narita, N, Sato, B, Ohshima, O, et al., 2008, A possible spin–orbit misalignment in the transiting eccentric planet HD 17156b. PASJ, 60, L1–L5 {729}CrossRefGoogle Scholar
Narita, N, Suto, Y, Winn, JN, et al., 2005, Subaru–HDS transmission spectroscopy of the transiting extrasolar planet HD 209458 b. PASJ, 57, 471–480 {610, 731}Google Scholar
Narita, N, Takahashi, YH, Kuzuhara, M, et al., 2012, A common proper motion stellar companion to HAT–P–7. PASJ, 64, L7 {735}CrossRefGoogle Scholar
NASA, 1976, US Standard Atmosphere. modelweb.gsfc.nasa.gov/atmos/ {581}
Nascimbeni, V, Bedin, LR, Piotto, G, et al., 2012, An HST search for planets in the lower main sequence of the globular cluster NGC 6397. A&A, 541, A144 {159}Google Scholar
Nascimbeni, V, Cunial, A, Murabito, S, et al., 2013a, TASTE. III. A study of transit time variations in WASP–3 b. A&A, 549, A30 {184, 752}Google Scholar
Nascimbeni, V, Piotto, G, Bedin, LR, et al., 2011a, TASTE. I. The Asiago search for transit timing variations of exoplanets: overview and improved parameters for HAT–P–3 b and HAT–P–14 b. A&A, 527, A85 {184, 735, 736}Google Scholar
Nascimbeni, V, Piotto, G, Bedin, LR, 2011b, TASTE. II. A new observational study of transit time variations in HAT–P–13 b. A&A, 532, A24 {184, 269, 736}Google Scholar
Nascimbeni, V, Piotto, G, Pagano, I, et al., 2013b, The blue sky of GJ 3470 b: the atmosphere of a low-mass planet unveiled by ground-based photometry. A&A, 559, A32 {591, 729}Google Scholar
Nasiroglu, I, Goździewski, K, Słowikowska, A, et al., 2017, Is there a circumbinary planet around NSVS 14256825? AJ, 153, 137 {117}CrossRefGoogle Scholar
Natraj, V, Hovenier, JW, 2012, Polarised light reflected and transmitted by Rayleigh scattering atmospheres. ApJ, 748, 28 {246}CrossRefGoogle Scholar
Natta, A, Testi, L, 2001, Exploring brown dwarf disks. A&A, 376, L22–L25 {443}Google Scholar
Natta, A, Testi, L, Muzerolle, J, et al., 2004, Accretion in brown dwarfs: an infrared view. A&A, 424, 603–612 {445}Google Scholar
Naud, ME, Artigau É, Doyon, R, et al., 2017a, PSYM-WIDE: a survey for large-separation planetary-mass companions to late spectral type members of young moving groups. AJ, 154, 129 {446}CrossRefGoogle Scholar
Naud, ME, Artigau É, Malo, L, et al., 2014, Discovery of a wide planetary-mass companion to the young M3 star GU Psc. ApJ, 787, 5 {362, 762}CrossRefGoogle Scholar
Naud, ME, Artigau É, Rowe, JF, et al., 2017b, A search for photometric variability in the young T3.5 planetary-mass companion GU Psc b. AJ, 154, 138 {762}CrossRefGoogle Scholar
Nauenberg, M, 2002a, Determination of masses and other properties of extrasolar planetary systems with more than one planet. ApJ, 568, 369–376 {23, 71}CrossRefGoogle Scholar
Nauenberg, M, 2002b, Stability and eccentricity for two planets in a 1:1 resonance, and their possible occurrence in extrasolar planetary systems. AJ, 124, 2332–2338 {76}CrossRefGoogle Scholar
Nayakshin, S, 2010a, Formation of planets by tidal downsizing of giant planet embryos. MNRAS, 408, L36–L40 {489}CrossRefGoogle Scholar
Nayakshin, S, 2010b, Grain sedimentation inside giant planet embryos. MNRAS, 408, 2381–2396 {489}CrossRefGoogle Scholar
Nayakshin, S, 2011a, Formation of terrestrial planet cores inside giant planet embryos. MNRAS, 413, 1462–1478 {489}CrossRefGoogle Scholar
Nayakshin, S, 2011b, Hot super-Earths: disrupted young Jupiters? MNRAS, 416, 2974–2980 {500}CrossRefGoogle Scholar
Nayakshin, S, 2011c, Rotation of the solar system planets and the origin of the Moon in the context of the tidal downsizing hypothesis. MNRAS, 410, L1–L5 {680}CrossRefGoogle Scholar
Nayakshin, S, 2015a, Metal loading of giant gas planets. MNRAS, 446, 459–469 {490}CrossRefGoogle Scholar
Nayakshin, S, 2015b, Positive metallicity correlation for coreless giant planets. MNRAS, 448, L25–L29 {489}CrossRefGoogle Scholar
Nayakshin, S, 2015c, Tidal downsizing model. I. Numerical methods: saving giant planets from tidal disruptions. MNRAS, 454, 64–82 {490}CrossRefGoogle Scholar
Nayakshin, S, 2015d, Tidal downsizing model. II. Planet–metallicity correlations [unpublished]. ArXiv e-prints {490}
Nayakshin, S, 2016, Tidal downsizing model. IV. Destructive feedback in planets. MNRAS, 461, 3194–3211 {490}CrossRefGoogle Scholar
Nayakshin, S, 2017a, A desert of gas giant planets beyond tens of au: from feast to famine. MNRAS, 470, 2387–2409 {490}CrossRefGoogle Scholar
Nayakshin, S, 2017b, Dawes Review 7: the tidal downsizing hypothesis of planet formation. Publ. Astron. Soc. Australia, 34, e002 {490}CrossRefGoogle Scholar
Nayakshin, S, Cha, SH, 2012, An alternative origin for debris rings of planetesimals. MNRAS, 423, 2104–2119 {490}CrossRefGoogle Scholar
Nayakshin, S, Cha, SH, 2013, Radiative feedback from protoplanets in self-gravitating protoplanetary disks. MNRAS, 435, 2099–2108 {489}CrossRefGoogle Scholar
Nayakshin, S, Cha, SH, Bridges, JC, 2011, The tidal downsizing hypothesis for planet formation and the composition of solar system comets. MNRAS, 416, L50–L54 {490}CrossRefGoogle Scholar
Nayakshin, S, Fletcher, M, 2015, Tidal downsizing model. III. Planets from sub-Earths to brown dwarfs: structure and metallicity preferences. MNRAS, 452, 1654–1676 {490}CrossRefGoogle Scholar
Nayakshin, S, Helled, R, Boley, AC, 2014, Core-assisted gas capture instability: a new mode of giant planet formation by gravitationally unstable disks. MNRAS, 440, 3797–3808 {490}CrossRefGoogle Scholar
N'Diaye, M, Dohlen, K, Fusco, T, et al., 2013, Calibration of quasi-static aberrations in exoplanet direct-imaging instruments with a Zernike phase-mask sensor. A&A, 555, A94 {340}Google Scholar
N'Diaye, M, Soummer, R, Pueyo, L, et al., 2016, Apodised pupil Lyot coronagraphs for arbitrary apertures. V. Hybrid shaped pupil designs for imaging Earth-like planets with future space observatories. ApJ, 818, 163 {335}CrossRefGoogle Scholar
Nefs, SV, Snellen, IAG, de Mooij, EJW, 2012, Minimising follow-up for space-based transit surveys using full light curve analysis. A&A, 543, A63 {172, 733}Google Scholar
Neilson, HR, Lester, JB, 2013, Spherically symmetric model stellar atmospheres and limb darkening. II. Limb-darkening laws, gravity-darkening coefficients and angular diameter corrections for FGK dwarf stars. A&A, 556, A86 {211}Google Scholar
Neilson, HR, McNeil, JT, Ignace, R, et al., 2017, Limb darkening and planetary transits: testing centre-to-limb intensity variations and limb-darkening directly from model stellar atmospheres. ApJ, 845, 65 {211}CrossRefGoogle Scholar
Neish, CD, Bussey, DBJ, Spudis, P, et al., 2011, The nature of lunar volatiles as revealed by Mini-RF observations of the LCROSS impact site. J. Geophys. Res. (Planets), 116, E01005 {666}CrossRefGoogle Scholar
Nelemans, G, Yungelson, LR, Portegies Zwart, SF, 2001, The gravitational wave signal from the Galactic disk population of binaries containing two compact objects. A&A, 375, 890–898 {356}Google Scholar
Nellis, WJ, 2000, Metallisation of fluid hydrogen at 140 GPa (1.4 Mbar): implications for Jupiter. Planet. Space Sci., 48, 671–677 {427}CrossRefGoogle Scholar
Nelson, AF, 2000, Planet formation is unlikely in equal-mass binary systems with a » 50 au. ApJ, 537, L65–L68 {79, 550}CrossRefGoogle Scholar
Nelson, AF, Angel, JRP, 1998, The range of masses and periods explored by radial velocity searches for planetary companions. ApJ, 500, 940–957 {26, 54}CrossRefGoogle Scholar
Nelson, AF, Ruffert, M, 2013, Dynamics of core accretion. MNRAS, 429, 1791–1826 {481}CrossRefGoogle Scholar
Nelson, B, Ford, EB, Payne, MJ, 2014a, RUN DMC: an efficient, parallel code for analysing radial velocity observations using N-body integrations and differential evolution Markov Chain Monte Carlo. ApJS, 210, 11 {25}CrossRefGoogle Scholar
Nelson, BE, Ford, EB, Rasio, FA, 2017, Evidence for two hot-Jupiter formation paths. AJ, 154, 106 {529}CrossRefGoogle Scholar
Nelson, BE, Ford, EB, Wright, JT, et al., 2014b, The 55 Cnc planetary system: self-consistent N-body constraints and a dynamical analysis. MNRAS, 441, 442–451 {24, 25, 60, 71, 262, 728}CrossRefGoogle Scholar
Nelson, BE, Robertson, PM, Payne, MJ, et al., 2016, An empirically derived three-dimensional Laplace resonance in the GJ 876 planetary system. MNRAS, 455, 2484–2499 {717}CrossRefGoogle Scholar
Nelson, RP, Gressel, O, 2010, On the dynamics of planetesimals embedded in turbulent protoplanetary disks. MNRAS, 409, 639–661 {461}CrossRefGoogle Scholar
Nelson, RP, Papaloizou, JCB, 2002, Possible commensurabilities among pairs of extra-solar planets. MNRAS, 333, L26–L30 {507}CrossRefGoogle Scholar
Nelson, RP, Papaloizou, JCB, 2003, The interaction of a giant planet with a disk with MHD turbulence. II. The interaction of the planet with the disk. MNRAS, 339, 993–1005 {517}CrossRefGoogle Scholar
Nelson, RP, Papaloizou, JCB, 2004, The interaction of giant planets with a disk with MHD turbulence. IV. Migration rates of embedded protoplanets. MNRAS, 350, 849–864 {469, 517, 521}CrossRefGoogle Scholar
Nelson, RP, Papaloizou, JCB, Masset, F, et al., 2000, Themigration and growth of proto-planets in protostellar disks. MNRAS, 318, 18–36 {517}CrossRefGoogle Scholar
Nemchin, AA, Pidgeon, RT, Whitehouse, MJ, 2006, Re-evaluation of the origin and evolution of ¨ 4.2Ga zircons from the Jack Hills metasedimentary rocks. Earth Planet. Sci. Lett., 244, 218–233 {667}CrossRefGoogle Scholar
Nero, D, Bjorkman, JE, 2009, Did Fomalhaut, HR 8799, and HL Tau form planets via the gravitational instability? Placing limits on the required disk masses. ApJ, 702, L163–L167 {489, 761, 763}CrossRefGoogle Scholar
Neron de Surgy, O, Laskar, J, 1997, On the long-termevolution of the spin of the Earth. A&A, 318, 975–989 {535, 679, 681}Google Scholar
Neslušan, L, 2004, The significance of the Titius–Bode law and the peculiar location of the Earth's orbit. MNRAS, 351, 133–136 {510}CrossRefGoogle Scholar
Neslušan, L, Budaj, J, 2017, Mysterious eclipses in the light curve of KIC–8462852: a possible explanation. A&A, 600, A86 {232, 233, 747}Google Scholar
Nespral, D, Gandolfi, D, Deeg, HJ, et al., 2017, Mass determination of K2–19 b and K2–19 c from radial velocities and transit timing variations. A&A, 601, A128 {267, 748}Google Scholar
Ness, NF, Acuna, MH, Behannon, KW, et al., 1986, Magnetic fields at Uranus. Science, 233, 85–89 {426}CrossRefGoogle ScholarPubMed
Ness, NF, Acuna, MH, Burlaga, LF, et al., 1989, Magnetic fields at Neptune. Science, 246, 1473–1478 {426}CrossRefGoogle ScholarPubMed
Nesvold, ER, Kuchner, MJ, 2015a, A SMACK model of colliding planetesimals in the fl Pic debris disk. ApJ, 815, 61 {496, 762}CrossRefGoogle Scholar
Nesvold, ER, Kuchner, MJ, 2015b, Gap clearing by planets in a collisional debris disk. ApJ, 798, 83 {761, 762}CrossRefGoogle Scholar
Nesvold, ER, Kuchner, MJ, Rein, H, et al., 2013, SMACK: a new algorithm for modeling collisions and dynamics of planetesimals in debris disks. ApJ, 777, 144 {496}CrossRefGoogle Scholar
Nesvold, ER, Naoz, S, Fitzgerald, MP, 2017, HD 106906: a case study for external perturbations of a debris disk. ApJ, 837, L6 {763}CrossRefGoogle Scholar
Nesvold, ER, Naoz, S, Vican, L, et al., 2016, Circumstellar debris disks: diagnosing the unseen perturber. ApJ, 826, 19 {497}CrossRefGoogle Scholar
Nesvorný, D, 2009, Transit timing variations for eccentric and inclined exoplanets. ApJ, 701, 1116–1122 {263, 266, 267}CrossRefGoogle Scholar
Nesvorný, D, 2011, Young solar system's fifth giant planet? ApJ, 742, L22 {696}CrossRefGoogle Scholar
Nesvorný, D, 2015a, Evidence for slow migration of Neptune from the inclination distribution of Kuiper belt objects. AJ, 150, 73 {696}CrossRefGoogle Scholar
Nesvorný, D, 2015b, Jumping Neptune can explain the Kuiper belt kernel. AJ, 150, 68 {696}CrossRefGoogle Scholar
Nesvorný, D, Alvarellos, JLA, Dones, L, et al., 2003, Orbital and collisional evolution of the irregular satellites. AJ, 126, 398–429 {529, 688, 689}Google Scholar
Nesvorný, D, Beaugé, C, Dones, L, 2004, Collisional origin of families of irregular satellites. AJ, 127, 1768–1783 {689}Google Scholar
Nesvorný, D, Bottke, WF, Dones, L, et al., 2002, The recent breakup of an asteroid in the main-belt region. Nature, 417, 720–771 {474}CrossRefGoogle ScholarPubMed
Nesvorný, D, Jenniskens, P, Levison, HF, et al., 2010, Cometary origin of the zodiacal cloud and carbonaceous micrometeorites: implications for hot debris disks. ApJ, 713, 816–836 {342, 343, 691}CrossRefGoogle Scholar
Nesvorný, D, Kipping, D, Terrell, D, et al., 2013a, KOI–142, the king of transit variations, is a pair of planets near the 2:1 resonance. ApJ, 777, 3 {12, 179, 267, 270, 272, 279, 742}CrossRefGoogle Scholar
Nesvorný, D, Kipping, D, Terrell, D, 2014a, Photo-dynamical analysis of three Kepler Objects of Interest with significant transit timing variations. ApJ, 790, 31 {267, 744}CrossRefGoogle Scholar
Nesvorný, D, Kipping, DM, Buchhave, LA, et al., 2012, The detection and characteri-sation of a non-transiting planet by transit timing variations. Science, 336, 1133–1135 {209, 267, 272, 279, 322, 741}CrossRefGoogle Scholar
Nesvorný, D, Morbidelli, A, 1998, Three-body mean motion resonances and the chaotic structure of the asteroid belt. AJ, 116, 3029–3037 {694}CrossRefGoogle Scholar
Nesvorný, D, Morbidelli, A, 2008, Mass and orbit determination from transit timing variations of exoplanets. ApJ, 688, 636–646 {263, 266, 267}CrossRefGoogle Scholar
Nesvorný, D, Morbidelli, A, 2012, Statistical study of the early solar system instability with four, five, and six giant planets. AJ, 144, 117 {696, 697, 700}CrossRefGoogle Scholar
Nesvorný, D, Roig, F, Bottke, WF, 2017, Modeling the historical flux of planetary impactors. AJ, 153, 103 {669, 671}CrossRefGoogle Scholar
Nesvorný, D, Vokrouhlický, D, 2014, The effect of conjunctions on the transit timing variations of exoplanets. ApJ, 790, 58 {263, 265, 266, 267, 740, 744}CrossRefGoogle Scholar
Nesvorný, D, Vokrouhlický, D, 2016a, Dynamics and transit variations of resonant exoplanets. ApJ, 823,), 72 {265}CrossRefGoogle Scholar
Nesvorný, D, Vokrouhlický, D, 2016b, Neptune's orbital migration was grainy, not smooth. ApJ, 825, 94 {697}CrossRefGoogle Scholar
Nesvorný, D, Vokrouhlický, D, Deienno, R, 2014b, Capture of irregular satellites at Jupiter. ApJ, 784, 22 {688}CrossRefGoogle Scholar
Nesvorný, D, Vokrouhlický, D, Deienno, R, et al., 2014c, Excitation of the orbital inclination of Iapetus during planetary encounters. AJ, 148, 52 {689}CrossRefGoogle Scholar
Nesvorný, D, Vokrouhlický, D, Morbidelli, A, 2013b, Capture of Trojans by jumping Jupiter. ApJ, 768, 45 {689, 696}CrossRefGoogle Scholar
Nettelmann, N, 2011, Predictions on the core mass of Jupiter and of giant planets in general. Ap&SS, 336, 47–51 {658}Google Scholar
Nettelmann, N, Becker, A, Holst, B, et al., 2012, Jupitermodels with improved ab initio H equation of state. ApJ, 750, 52 {658, 660}CrossRefGoogle Scholar
Nettelmann, N, Fortney, JJ, Kramm, U, et al., 2011, Thermal evolution and structure models of the transiting super-Earth GJ 1214 b. ApJ, 733, 2 {734}CrossRefGoogle Scholar
Nettelmann, N, Holst, B, Kietzmann, A, et al., 2008, Ab Initio equation of state data for hydrogen, helium, and water and the internal structure of Jupiter. ApJ, 683, 1217-1228 {660}CrossRefGoogle Scholar
Nettelmann, N, Kramm, U, Redmer, R, et al., 2010, Interior structure models of GJ 436 b. A&A, 523, A26 {728}Google Scholar
Neubauer, D, Leitner, JJ, Firneis, MG, et al., 2013, The outer limit of the life supporting zone of exoplanets having CO2-rich atmospheres: virtual exoplanets and Kepler planetary candidates. Planet. Space Sci., 84, 163–172 {624}CrossRefGoogle Scholar
Neubauer, D, Vrtala, A, Leitner, JJ, et al., 2012, The life supporting zone of Kepler–22 b and the Kepler planetary candidates: KOI–268.01, KOI–701.03, KOI–854.01 and KOI–1026.01. Planet. Space Sci., 73, 397–406 {619, 740}Google Scholar
Neugebauer, G, Leighton, RB, 1969, Two-Micron Sky Survey: A Preliminary Catalogue. NASA SP, Washington {431}Google Scholar
Neuhäuser, R, Comeron, F, 1998, ROSAT X-ray detection of a young brown dwarf in the Chamaeleon I dark cloud. Science, 282, 83–85 {440}Google Scholar
Neuhäuser, R, Errmann, R, Berndt, A, et al., 2011, The young exoplanet transit initiative (YETI). Astron. Nach., 332, 547 {158, 171}CrossRefGoogle Scholar
Neuhäuser, R, Guenther, EW, 2004, Infrared spectroscopy of a brown dwarf companion candidate near the young star GSC 08047–00232 in Horologium. A&A, 420, 647–653 {441}Google Scholar
Neuhäuser, R, Guenther, EW, Wuchterl, G, et al., 2005, Evidence for a co-moving sub-stellar companion of GQ Lup. A&A, 435, L13–L16 {10, 361, 362, 447, 762}Google Scholar
Neuhäuser, R, Hohle, MM, Ginski, C, et al., 2015, The companion candidate near Fomalhaut: a background neutron star? MNRAS, 448, 376–389 {365, 761}CrossRefGoogle Scholar
Neuhäuser, R, Mugrauer, M, Fukagawa, M, et al., 2007a, Direct detection of exoplanet host star companion γ Cep B and revised masses for both stars and the sub-stellar object. A&A, 462, 777–780 {714}Google Scholar
Neuhäuser, R, Mugrauer, M, Seifahrt, A, et al., 2008, Astrometric and photometric monitoring of GQ Lup and its sub-stellar companion. A&A, 484, 281–291 {762}Google Scholar
Neuhäuser, R, Neuhäuser, DL, 2015, Solar activity around AD 775 from aurorae and radiocarbon. Astron. Nach., 336, 225 {628}CrossRefGoogle Scholar
Neuhäuser, R, Seifahrt, A, Röll, T, et al., 2007b, Detectability of planets in wide binaries by ground-based astrometry with AO. IAU Symp., volume 240, 261–263 {83}Google Scholar
Neumann, W, Breuer, D, Spohn, T, 2012, Differentiation and core formation in accret-ing planetesimals. A&A, 543, A141 {470}Google Scholar
Neumann, W, Breuer, D, Spohn, T, 2014, Modeling of compaction in planetesimals. A&A, 567, A120 {478}Google Scholar
Neves, V, Bonfils, X, Santos, NC, et al., 2012, Metallicity of M dwarfs. II. A comparative study of photometric metallicity scales. A&A, 538, A25 {405}Google Scholar
Neves, V, Bonfils, X, Santos, NC, 2013, Metallicity of M dwarfs. III. Planet-metallicity and planet-stellar mass correlations of the HARPS GTOMdwarf sample. A&A, 551, A36 {58}Google Scholar
Neveu, M, Queloz, D, Triaud, A, et al., 2013, Searching for additional companions to WASP planets. Protostars and Planets VI, 31 {304}Google Scholar
Neveu-Van Malle, M, Queloz, D, Anderson, DR, et al., 2014, WASP–94 A and B planets: hot-Jupiter cousins in a twin-star system. A&A, 572, A49 {12, 166, 253, 553, 756}Google Scholar
Neveu-Van Malle, M, Queloz, D, Anderson, DR, 2016, Hot Jupiters with relatives: discovery of additional planets in orbit around WASP–41 and WASP–47. A&A, 586, A93 {166, 253, 305, 523, 755}Google Scholar
Newcomb, S, 1881, Note on the frequency of use of the different digits in natural numbers. Amer. J. Math., 9, 201–205 {510}Google Scholar
Newhall, XX, Standish, EM, Williams, JG, 1983, DE 102: a numerically integrated ephemeris of the moon and planets spanning forty-four centuries. A&A, 125, 150–167 {677}Google Scholar
Newman, WI, Haynes, MP, Terzian, Y, 1994, Redshift data and statistical inference. ApJ, 431, 147–155 {510}CrossRefGoogle Scholar
Newman, WI, Symbalisty, EMD, Ahrens, TJ, et al., 1999, Impact erosion of planetary atmospheres: some surprising results. Icarus, 138, 224–240 {600}CrossRefGoogle Scholar
Newton, ER, Irwin, J, Charbonneau, D, et al., 2016, The impact of stellar rotation on the detectability of habitable planets around Mdwarfs. ApJ, 821, L19 {621}CrossRefGoogle Scholar
Ngo, H, Knutson, HA, Bryan, ML, et al., 2017, No difference in orbital parameters of radial velocity-detected giant planets between 0.1–5 au in single versus multi-stellar systems. AJ, 153, 242 {719, 721, 722, 723, 724}CrossRefGoogle Scholar
Ngo, H, Knutson, HA, Hinkley, S, et al., 2015, Friends of hot Jupiters. II. No correspondence between hot-Jupiter spin–orbit misalignment and the incidence of directly imaged stellar companions. ApJ, 800, 138 {305}CrossRefGoogle Scholar
Ngo, H, Knutson, HA, Hinkley, S, 2016, Friends of hot Jupiters. IV. Stellar companions beyond 50 au might facilitate giant planet formation, but most are unlikely to cause Lidov–Kozai migration. ApJ, 827, 8 {305}CrossRefGoogle Scholar
Nichols, JD, 2011, Magnetosphere-ionosphere coupling at Jupiter-like exoplanets with internal plasma sources: implications for detectability of auroral radio emissions. MNRAS, 414, 2125–2138 {425}CrossRefGoogle Scholar
Nichols, JD, 2012, Candidates for detecting exoplanetary radio emissions generated by magnetosphere–ionosphere coupling. MNRAS, 427, L75–L79 {426, 715}Google Scholar
Nichols, JD, Milan, SE, 2016, Stellar wind-magnetosphere interaction at exoplanets: computations of auroral radio powers. MNRAS, 461, 2353–2366 {422}CrossRefGoogle Scholar
Nichols, JD, Wynn, GA, Goad, M, et al., 2015, HST observations of the near ultraviolet transit of WASP–12 b. ApJ, 803, 9 {753}CrossRefGoogle Scholar
Nicholson, BA, Vidotto, AA, Mengel, M, et al., 2016, Temporal variability of the wind from the star τ Boo. MNRAS, 459, 1907–1915 {714}CrossRefGoogle Scholar
Nicholson, PD, Hedman, MM, Clark, RN, et al., 2008, A close look at Saturn's rings with Cassini–VIMS. Icarus, 193, 182–212 {690}CrossRefGoogle Scholar
Nicolet, A, Zolla, F, 2011, Invisibility cloaks, superlenses, and optical remote scattering. SPIE Conf. Ser., volume 8070, 19 {357}Google Scholar
Nidever, DL, Marcy, GW, Butler, RP, et al., 2002, Radial velocities for 889 late-type stars. ApJS, 141, 503–522 {29, 30, 55, 56}CrossRefGoogle Scholar
Niedzielski, A, Deka-Szymankiewicz, B, Adamczyk, M, et al., 2016a, The Penn State–Toruń Centre for Astronomy Planet Search stars. A&A, 585, A73 {55}Google Scholar
Niedzielski, A, Goździewski, K, Wolszczan, A, et al., 2009a, A planet in a 0.6 au orbit around the K0 giant HD 102272. ApJ, 693, 276–280 {56, 721}CrossRefGoogle Scholar
Niedzielski, A, Konacki, M, Wolszczan, A, et al., 2007, A planetary-mass companion to the K0 giant HD 17092. ApJ, 669, 1354–1358 {56, 718}CrossRefGoogle Scholar
Niedzielski, A, Nowak, G, Adamów, M, et al., 2009b, Substellar-mass companions to the K-dwarf BD+14 4559 and the K-giants HD 240210 and BD+20 2457. ApJ, 707, 768–777 {56, 61, 716, 724}CrossRefGoogle Scholar
Niedzielski, A, Villaver, E, Nowak, G, et al., 2016b, Tracking Advanced Planetary Systems (TAPAS) with HARPS–N. III. HD 5583 and BD+15 2375: two cool giants with warm companions. A&A, 588, A62 {716, 718}Google Scholar
Niedzielski, A, Villaver, E, Nowak, G, 2016c, Tracking Advanced Planetary Systems (TAPAS) with HARPS–N. IV. TYC 3667–1280–1: the most massive red giant star hosting a warm Jupiter. A&A, 589, L1 {725}Google Scholar
Niedzielski, A, Villaver, E, Wolszczan, A, et al., 2015a, Tracking Advanced Planetary Systems (TAPAS)with HARPS–N. I. Amultiple planetary system around the red giant star TYC 1422–614–1. A&A, 573, A36 {725}Google Scholar
Niedzielski, A, Wolszczan, A, 2008, A HET search for planets around evolved stars. IAU Symp., volume 249, 43–47 {56}Google Scholar
Niedzielski, A, Wolszczan, A, Nowak, G, et al., 2015b, Three red giants with substellar-mass companions. ApJ, 803, 1 {716, 721, 724}CrossRefGoogle Scholar
Nielsen, EL, Close, LM, Biller, BA, et al., 2008, Constraints on extrasolar planet populations from VLT–NACO/SDI and MMT–SDI and direct adaptive optics imaging surveys: giant planets are rare at large separations. ApJ, 674, 466-481 {358}CrossRefGoogle Scholar
Nielsen, EL, De Rosa, RJ, Rameau, J, et al., 2017, Evidence that the directly imaged planet HD 131399A b is a background star. AJ, 154, 218 {363, 763}CrossRefGoogle Scholar
Luhman, KL, Jayawardhana, R, 2002, An adaptive optics search for companions to stars with planets. ApJ, 566, 1132–1146 {361}CrossRefGoogle Scholar
Luhman, KL, Mamajek, EE, Allen, PR, et al., 2009, Discovery of a wide binary brown dwarf born in isolation. ApJ, 691, 1265–1275 {362, 762}CrossRefGoogle Scholar
Luhman, KL, Muench, AA, 2008, New low-mass stars and brown dwarfs with disks in the Chamaeleon I star-forming region. ApJ, 684, 654–662 {443}CrossRefGoogle Scholar
Luhman, KL, Patten, BM, Marengo, M, et al., 2007b, Discovery of two T dwarf companions with the Spitzer Space Telescope. ApJ, 654, 570–579 {362, 438, 762}CrossRefGoogle Scholar
Luhman, KL, Stauffer, JR, Muench, AA, et al., 2003, A census of the young cluster IC 348. ApJ, 593, 1093–1115 {442}CrossRefGoogle Scholar
Luhman, KL, Wilson, JC, Brandner, W, et al., 2006, Discovery of a young substellar companion in Chamaeleon. ApJ, 649, 894–899 {361, 362, 764}CrossRefGoogle Scholar
Luhmann, JG, Johnson, RE, Zhang, MHG, 1992, Evolutionary impact of sputtering of the Martian atmosphere by O(+) pickup ions. Geophys. Res. Lett., 19, 2151–2154 {631}CrossRefGoogle Scholar
Luhn, JK, Penny, MT, Gaudi, BS, 2016, Caustic structures and detectability of circum-binary planets in microlensing. ApJ, 827, 61 {126}CrossRefGoogle Scholar
Lukyanov, LG, Uralskaya, VS, 2012, Sundman stability of natural planet satellites. MNRAS, 421, 2316–2324 {276}CrossRefGoogle Scholar
Lumer, E, Forestini, M, Arnould, M, 1990, Application of an extended mixing length model to the convective envelope of the Sun and its Li and Be content. A&A, 240, 515–519 {400, 403}Google Scholar
Lund, MB, Pepper, J, Stassun, KG, 2015a, Transiting planets with LSST. I. Potential for LSST exoplanet detection. AJ, 149, 16 {170}CrossRefGoogle Scholar
Lund, MB, Rodriguez, JE, Zhou, G, et al., 2017a, KELT–20 b: a giant planet with a period of 3.5 d transiting the V = 7.6 early A star HD 185603. AJ, 154, 194 {738}CrossRefGoogle Scholar
Lund, MN, Handberg, R, Davies, GR, et al., 2015b, K2P2: a photometry pipeline for the K2 mission. ApJ, 806, 30 {176}CrossRefGoogle Scholar
Lund, MN, Lundkvist, M, Silva Aguirre, V, et al., 2014, Asteroseismic inference on the spin–orbit misalignment and stellar parameters of HAT–P–7. A&A, 570, A54 {163, 735}Google Scholar
Lund, MN, Silva Aguirre, V, Davies, GR, et al., 2017b, Standing on the shoulders of dwarfs: the Kepler asteroseismic legacy sample. I. Oscillation mode parameters. ApJ, 835, 172 {312}CrossRefGoogle Scholar
Lunine, JI, 1993, The atmospheres of Uranus and Neptune. ARA&A, 31, 217–263 {659}Google Scholar
Lunine, JI, 1999a, Earth: Evolution of a Habitable World. Cambridge University Press {624}Google Scholar
Lunine, JI, 1999b, In search of planets and life around other stars. society of photo, 96, 5353–5355 {624}Google Scholar
Lunine, JI, 2005, Astrobiology: AMulti-Disciplinary Approach. Benjamin Cummings {619}Google Scholar
Lunine, JI, 2006, Origin of water ice in the solar system. Meteorites and the Early Solar Sys-tem II, 309–319, University of Arizona Press {668}
Lunine, JI, Chambers, J, Morbidelli, A, et al., 2003, The origin of water on Mars. Icarus, 165, 1–8 {658, 667}CrossRefGoogle Scholar
Lunine, JI, Fischer, D, Hammel, HB, et al., 2008, Worlds beyond: a strategy for the detection and characterisation of exoplanets. Astrobiology, 8, 875–881 {632}Google Scholar
Lunine, JI, Hubbard, WB, Burrows, A, et al., 1989, The effect of gas and grain opacity on the cooling of brown dwarfs. ApJ, 338, 314–337 {436}CrossRefGoogle Scholar
Lunine, JI, Stevenson, DJ, 1982, Formation of the Galilean satellites in a gaseous nebula. Icarus, 52, 14–39 {577}CrossRefGoogle Scholar
Luo, L, Katz, B, Dong, S, 2016, Double-averaging can fail to characterise the longterm evolution of Lidov–Kozai cycles and derivation of an analytical correction. MNRAS, 458, 3060–3074 {528}CrossRefGoogle Scholar
Lupton, J, Butterfield, D, Lilley, M, et al., 2006, Submarine venting of liquid carbon dioxide on a Mariana Arc volcano. Geochemistry, Geophysics, Geosystems, 7(8), ISSN 1525-2027, q08007 {637}CrossRefGoogle Scholar
Lupu, RE, Marley, MS, Lewis, N, et al., 2016, Developing atmospheric retrieval methods for direct imaging spectroscopy of gas giants in reflected light. I. Methane abundances and basic cloud properties. AJ, 152, 217 {606, 721}CrossRefGoogle Scholar
Lupu, RE, Zahnle, K, Marley, MS, et al., 2014, The atmospheres of Earth-like planets after giant impact events. ApJ, 784, 27 {600}CrossRefGoogle Scholar
Luque, A, Gordillo-Vázquez, FJ, Pallé, E, 2015, Ground-based search for lightning in Jupiter with GTC–OSIRIS fast photometry and tunable filters. A&A, 577, A94 {591}Google Scholar
Lurie, JC, Henry, TJ, Jao, WC, et al., 2014, The solar neighbourhood. 34. A search for planets orbiting nearby M dwarfs using astrometry. AJ, 148, 91 {91, 375, 716, 717, 735}CrossRefGoogle Scholar
Lüst, R, 1952, Die Entwicklung einer um einen Zentralkörper rotierenden Gas-masse. I. Lösungen der hydrodynamischen Gleichungen mit turbulenter Rei-bung. Zeitschrift Naturforschung Teil A, 7, 87–98 {456}Google Scholar
Lutz, R, Schuh, S, Silvotti, R, 2012, EXOTIME: searching for planets andmeasuring P in sdB pulsators. Astron. Nach., 333, 1099 {112}CrossRefGoogle Scholar
Lutz, R, Schuh, S, Silvotti, R, et al., 2009, The planet-hosting subdwarf B star V391 Peg is a hybrid pulsator. A&A, 496, 469–473 {112}Google Scholar
Luu, J, Jewitt, D, 1996, Colour diversity among the Centaurs and Kuiper belt objects. AJ, 112, 2310 {685}CrossRefGoogle Scholar
Luyten, WJ, 1954, A search for faint blue stars. II. The Hyades and the south galactic polar region. AJ, 59, 224 {418}CrossRefGoogle Scholar
Luyten, WJ, 1956, The search for faint blue stars. IV. More blue stars in the Hyades region. AJ, 61, 261 {418}CrossRefGoogle Scholar
Luyten, WJ, 1979, LHS Catalogue: A Catalogue of Stars with Proper Motions Exceeding 0.5 arc-sec Annually. University of Minnesota {374}Google Scholar
Luzum, B, Capitaine, N, Fienga, A, et al., 2011, The IAU 2009 system of astronomical constants: the report of the IAU working group on numerical standards for Fundamental Astronomy. Cel. Mech. Dyn. Astron., 110, 293–304 {6, 701}CrossRefGoogle Scholar
Lv, KP, Norman, L, Li, YL, 2017, Oxygen-free biochemistry: the putative CHN foundation for exotic life in a hydrocarbon world? Astrobiology, 17, 1173–1181 {638}CrossRefGoogle Scholar
Lyapunov, AM, 1892, General Problem of the Stability of Motion. Translated from the Russian, Ann. Math. Studies 17, 1949; Princeton University Press {515}Google Scholar
Lydon, TJ, Sofia, S, 1996, A measurement of the shape of the solar disk: the solar quadrupole moment, the solar octopole moment, and the advance of perihelion of the planet Mercury. Phys. Rev. Lett., 76, 177–179 {258}CrossRefGoogle ScholarPubMed
Lykawka, PS, Horner, J, Jones, BW, et al., 2010, Formation and dynamical evolution of the Neptune Trojans: the influence of the initial solar system architecture. MNRAS, 404, 1272–1280 {697}Google Scholar
Lykawka, PS, Horner, J, Jones, BW, 2011, Origin and dynamical evolution of Neptune Trojans. II. Long-term evolution. MNRAS, 412, 537–550 {690}CrossRefGoogle Scholar
Lykawka, PS, Ito, T, 2013, Terrestrial planet formation during the migration and resonance crossings of the giant planets. ApJ, 773, 65 {697}CrossRefGoogle Scholar
Lykawka, PS, Ito, T, 2017, Terrestrial planet formation: constraining the formation of Mercury. ApJ, 838, 106 {476}CrossRefGoogle Scholar
Lykawka, PS, Mukai, T, 2006, Exploring the 7:4 mean motion resonance. II. Scattering evolutionary paths and resonance sticking. Planet. Space Sci., 54, 87–100 {685}CrossRefGoogle Scholar
Lykawka, PS, Mukai, T, 2007, Dynamical classification of trans-Neptunian objects: probing their origin, evolution, and interrelation. Icarus, 189, 213–232 {685}CrossRefGoogle Scholar
Lykawka, PS, Mukai, T, 2008, An outer planet beyond Pluto and the origin of the Trans-Neptunian Belt architecture. AJ, 135, 1161–1200 {685, 687}CrossRefGoogle Scholar
Lynch, CR, Murphy, T, Kaplan, DL, et al., 2017, A search for circularly polarised emission from young exoplanets. MNRAS, 467, 3447–3453 {748, 753}CrossRefGoogle Scholar
Lynch, P, 2003, On the significance of the Titius–Bode law for the distribution of the planets. MNRAS, 341, 1174–1178 {510}CrossRefGoogle Scholar
Lynden-Bell, D, Pringle, JE, 1974, The evolution of viscous disks and the origin of the nebular variables. MNRAS, 168, 603–637 {456}CrossRefGoogle Scholar
Lynds, R, Petrosian, V, 1986, Giant luminous arcs in galaxy clusters. AAS Bulletin, volume 18, 1014 {120}Google Scholar
Lyne, AG, Bailes, M, 1992, No planet orbiting PSR B1829–10. Nature, 355, 213–214 {109}CrossRefGoogle Scholar
Lyne, AG, Biggs, JD, Brinklow, A, et al., 1988, Discovery of a binary millisecond pulsar in the globular cluster M4. Nature, 332, 45–47 {108}CrossRefGoogle Scholar
Lyo, AR, Ohashi, N, Qi, C, et al., 2011, Millimeter observations of the transition disk around HD 135344B (SAO 206462). AJ, 142, 151 {466}CrossRefGoogle Scholar
Lyo, AR, Song, I, Lawson, WA, et al., 2006, A deep photometric survey of the ɲ Cha cluster down to the brown dwarf–planet boundary. MNRAS, 368, 1451–1455 {447}CrossRefGoogle Scholar
Lyon, R, Clampin, M, Petrone, P, et al., 2012, Telescopes in near space: Balloon Exo-planet Nulling Interferometer (Big BENI). AAS Abstracts #219, 155.14 {353}Google Scholar
Lyon, RG, Clampin, M, 2012, Space telescope sensitivity and controls for exoplanet imaging. Optical Engineering, 51(1), 011002 {338}Google Scholar
Lyon, RG, Gezari, DY, Melnick, GJ, et al., 2003, Extrasolar planetary imager (ESPI) for space-based Jovian planetary detection. SPIE Conf. Ser., volume 4860, 45–53 {353}Google Scholar
Lyon, SP, Johnson, JD, 1992, SESAME: the Los Alamos National Laboratory equation of state data base. LA–UR–92–3407 {566}
Lyot, B, 1939, The study of the solar corona and prominences without eclipses. MNRAS, 99, 580–594 {333}Google Scholar
Lyra, W, 2010, Naming the extrasolar planets. Bull. Astron. Soc. Brazil, 29, 26 {6}Google Scholar
Lyra, W, Johansen, A, Klahr, H, et al., 2008a, Embryos grown in the dead zone: assembling the first protoplanetary cores in low mass self-gravitating circumstellar disks of gas and solids. A&A, 491, L41–L44 {460}Google Scholar
Lyra, W, Johansen, A, Klahr, H, 2008b, Global magnetohydrodynamical models of turbulence in protoplanetary disks. I. A cylindrical potential on a Cartesian grid and transport of solids. A&A, 479, 883–901 {460}Google Scholar
Lyra, W, Johansen, A, Klahr, H, 2009, Standing on the shoulders of giants: Trojan Earths and vortex trapping in low mass self-gravitating protoplanetary disks of gas and solids. A&A, 493, 1125–1139 {460, 467}Google Scholar
Lyra, W, Klahr, H, 2011, The baroclinic instability in the context of layered accretion: self-sustained vortices and theirmagnetic stability in local compressible unstratified models of protoplanetary disks. A&A, 527, A138 {462}Google Scholar
Lyra, W, Kuchner, M, 2013, Formation of sharp eccentric rings in debris disks with gas but without planets. Nature, 499, 184–187 {496, 761}CrossRefGoogle ScholarPubMed
Lyra, W, Lin, MK, 2013, Steady state dust distributions in disk vortices: observational predictions and applications to transition disks. ApJ, 775, 17 {466}CrossRefGoogle Scholar
Lyra, W, Mac Low, MM, 2012, Rossby wave instability at dead zone boundaries in three-dimensional resistive magnetohydrodynamical global models of proto-planetary disks. ApJ, 756, 62 {459}CrossRefGoogle Scholar
Lyra, W, Paardekooper, SJ, Mac Low, MM, 2010, Orbital migration of low-mass planets in evolutionary radiativemodels: avoiding catastrophic infall. ApJ, 715, L68–L73 {519}CrossRefGoogle Scholar
Lyra, W, Richert, AJW, Boley, A, et al., 2016, On shocks driven by high-mass planets in radiatively inefficient disks. II. Three-dimensional global disk simulations. ApJ, 817, 102 {466, 467, 762}CrossRefGoogle Scholar
Lyra, W, Turner, NJ, McNally, CP, 2015, Rossby wave instability does not require sharp resistivity gradients. A&A, 574, A10 {467}Google Scholar
Lyttleton, RA, 1961, An accretion hypothesis for the origin of the solar system. MNRAS, 122, 399–407 {450}CrossRefGoogle Scholar
Ma, B, Ge, J, 2012, A newmulti-band radial velocity technique for detecting exoplanets around active stars. ApJ, 750, 172 {48}CrossRefGoogle Scholar
Ma, B, Ge, J, 2014, Statistical properties of brown dwarf companions: implications for different formation mechanisms. MNRAS, 439, 2781–2789 {64, 65}CrossRefGoogle Scholar
Ma, B, Ge, J, Wolszczan, A, et al., 2016a, Very low-mass stellar and substellar companions to solar-like stars from MARVELS. VI. A giant planet and a brown dwarf candidate in a close binary system HD 87646. AJ, 152, 112 {50, 721}Google Scholar
Ma, C, Arias, EF, Eubanks, TM, et al., 1998, The International Celestial Reference Frame as realised by VLBI. AJ, 116, 516–546 {86}CrossRefGoogle Scholar
Ma, DZ, Fu, YN, Wang, XL, 2017, The orbital configuration of the two interacting Jupiters in HD 155358 system. MNRAS, 470, 706–712 {722}CrossRefGoogle Scholar
Ma, Q, Matthews, LS, Land, V, et al., 2013, Charging of aggregate grains in astrophysical environments. ApJ, 763, 77 {469}CrossRefGoogle Scholar
Ma, S, Mao, S, Ida, S, et al., 2016b, Free-floating planets from core accretion theory: microlensing predictions. MNRAS, 461, L107–L111 {130}CrossRefGoogle Scholar
Maccone, C, 1994a, Recent developments on space missions to the solar foci. J. Br. Interplanet. Soc., 47, 508–512 {138}Google Scholar
Maccone, C, 1994b, Space missions outside the solar system to exploit the gravitational lens of the Sun. J. Br. Interplanet. Soc., 47, 45–52 {138}Google Scholar
Maccone, C, 2000, The gravitational lenses of α Cen A, B, C and of Barnard's star. Acta Astron., 47, 885–897 {138, 714}CrossRefGoogle Scholar
Maccone, C, 2008, FOCAL probe to 550–1000 au: a status review. J. Br. Interplanet. Soc., 61, 310–314 {138}Google Scholar
Maccone, C, 2011a, A belt of focal spheres between 550 and 17 kau for SETI and science. Acta Astron., 69, 939–948 {138}CrossRefGoogle Scholar
Maccone, C, 2011b, Exoplanet searches by future deep space missions. EPJ Web Conf., volume 11, 6007 {138}CrossRefGoogle Scholar
Maccone, C, 2011c, SETI and SEH (Statistical Equation for Habitables). Acta Astron., 68, 63–75 {644}CrossRefGoogle Scholar
Maccone, C, 2013, Sun focus comes first, interstellar comes second. J. Br. Interplanet. Soc., 66, 25–37 {138}Google Scholar
Maccone, C, Matloff, GL, 1994, SETI-Sail: a space mission to 550 au to exploit the gravitational lens of the Sun for SETI and astrophysics. J. Br. Interplanet. Soc., 47, 3–4 {138}Google Scholar
Maccone, C, Piantà, M, 1997, Magnifying the nearby stellar systems by FOCAL space missions to 550 au. Part I. J. Br. Interplanet. Soc., 50, 277–280 {138}Google Scholar
MacDonald, GJF, 1964, Tidal friction. Reviews of Geophysics and Space Physics, 2, 467–541 {533}CrossRefGoogle Scholar
MacDonald, MG, Ragozzine, D, Fabrycky, DC, et al., 2016, A dynamical analysis of the Kepler–80 system of five transiting planets. AJ, 152, 105 {190, 320, 742}CrossRefGoogle Scholar
MacDonald, RJ, Madhusudhan, N, 2017a, HD 209458 b in new light: evidence of N chemistry, patchy clouds and sub-solar water. MNRAS, 469, 1979–1996 {733}CrossRefGoogle Scholar
MacDonald, RJ, Madhusudhan, N, 2017b, Signatures of nitrogen chemistry in hot Jupiter atmospheres. ApJ, 850, L15 {733, 754, 756}CrossRefGoogle Scholar
Maceroni, C, Montalbán, J, Michel, E, et al., 2009, HD 174884: a strongly eccentric, short-period early-type binary system discovered by CoRoT. A&A, 508, 1375–1389 {230}Google Scholar
MacGregor, MA, Lawler, SM, Wilner, DJ, et al., 2016a, ALMA observations of the debris disk of solar analogue τ Cet. ApJ, 828, 113 {493, 714}CrossRefGoogle Scholar
MacGregor, MA, Matrà, L, Kalas, P, et al., 2017a, A complete ALMA map of the Fomalhaut debris disk. ApJ, 842, 8 {761}CrossRefGoogle Scholar
MacGregor, MA, Wilner, DJ, Chandler, C, et al., 2016b, Constraints on planetesimal collisionmodels in debris disks. ApJ, 823, 79 {496}CrossRefGoogle Scholar
MacGregor, MA, Wilner, DJ, Czekala, I, et al., 2017b, ALMA measurements of circum-stellar material in the GQ Lup system. ApJ, 835, 17 {762}CrossRefGoogle Scholar
Machalek, P, Greene, T, McCullough, PR, et al., 2010, Thermal emission and tidal heating of the heavy and eccentric planet XO–3 b. ApJ, 711, 111–118 {757}CrossRefGoogle Scholar
Machalek, P, McCullough, PR, Burke, CJ, et al., 2008, Thermal emission of exoplanet XO–1 b. ApJ, 684, 1427–1432 {757}CrossRefGoogle Scholar
Machalek, P, McCullough, PR, Burrows, A, et al., 2009, Detection of thermal emission of XO–2 b: evidence for a weak temperature inversion. ApJ, 701, 514–520 {757}CrossRefGoogle Scholar
Machida, MN, Inutsuka Si, Matsumoto, T, 2009, The circumbinary outflow: a proto-stellar outflow driven by a circumbinary disk. ApJ, 704, L10–L14 {444}CrossRefGoogle Scholar
Machida, MN, Inutsuka, SI, Matsumoto, T, 2011, Recurrent planet formation and intermittent protostellar outflows induced by episodic mass accretion. ApJ, 729, 42 {489}CrossRefGoogle Scholar
Machida, MN, Kokubo, E, Inutsuka, SI, et al., 2010, Gas accretion onto a protoplanet and formation of a gas giant planet. MNRAS, 405, 1227–1243 {481}Google Scholar
Macías, E, Anglada, G, Osorio, M, et al., 2017, Imaging a central ionised component, a narrow ring, and the CO snowline in the multigapped disk of HD 169142. ApJ, 838, 97 {467}CrossRefGoogle Scholar
Maciejewski, G, Dimitrov, D, Fernández, M, et al., 2016a, Departure from the constant-period ephemeris for the transiting exoplanet WASP–12. A&A, 588, L6 {260, 753}Google Scholar
Maciejewski, G, Dimitrov, D, Mancini, L, et al., 2016b, New transit observations for HAT–P–30 b, HAT–P–37 b, TrES–5 b, WASP–28 b, WASP–36 b and WASP–39 b. Acta Astronomica, 66, 55–74 {737, 751, 754, 755}Google Scholar
Maciejewski, G, Dimitrov, D, Neuhäuser, R, et al., 2010, Transit timing variation in exo-planet WASP–3 b. MNRAS, 407, 2625–2631 {269, 751}Google Scholar
Maciejewski, G, Dimitrov, D, Neuhäuser, R, 2011a, Transit timing variation and activity in the WASP–10 planetary system. MNRAS, 411, 1204–1212 {752}CrossRefGoogle Scholar
Maciejewski, G, Dimitrov, D, Seeliger, M, et al., 2013a, Multi-site campaign for transit timing variations of WASP–12 b: possible detection of a long-period signal of planetary origin. A&A, 551, A108 {165, 195, 256, 268, 269, 305, 753}Google Scholar
Maciejewski, G, Errmann, R, Raetz, S, et al., 2011b, High-precision photometry of WASP–12 b transits. A&A, 528, A65 {752}Google Scholar
Maciejewski, G, Fernández, M, Aceituno, FJ, et al., 2015, No variations in transit times for Qatar–1 b. A&A, 577, A109 {750}Google Scholar
Maciejewski, G, Ginski, C, Gilbert, H, et al., 2016c, On the orbital period of the exo-planet WASP–39 b. Information Bulletin on Variable Stars, 6177 {755}Google Scholar
Maciejewski, G, Niedzielski, A, Nowak, G, et al., 2014a, On the GJ 436 planetary system. Acta Astronomica, 64, 323–335 {729}Google Scholar
Maciejewski, G, Niedzielski, A, Wolszczan, A, et al., 2013b, Constraints on a second planet in the WASP–3 system. AJ, 146, 147 {752}CrossRefGoogle Scholar
Maciejewski, G, Ohlert, J, Dimitrov, D, et al., 2014b, Revisiting parameters for the WASP–1 planetary system. Acta Astronomica, 64, 27 {751}Google Scholar
Maciejewski, G, Puchalski, D, Saral, G, et al., 2013c, New mid-transit times for HAT–P–36 b, TrES–3 b, and WASP–43 b. IBVS, 6082, 1 {737, 751, 755}Google Scholar
Maciejewski, G, Raetz, S, Nettelmann, N, et al., 2011c, Analysis of new high-precision transit light curves of WASP–10 b: star spot occultations, small planetary radius, and high metallicity. A&A, 535, A7 {166, 213, 752}Google Scholar
Maciejewski, G, Seeliger, M, Adam, C, et al., 2011d, Refining parameters of the XO–5 planetary system with high-precision transit photometry. Acta Astronomica, 61, 25–35 {757}Google Scholar
Maciel, WJ, Costa, RDD, 2009, Abundance gradients in the Galactic disk: space and time variations. IAU Symp., volume 254, 38–43 {395}Google Scholar
Macintosh, BA, 2007, Direct detection of extrasolar planets with the Thirty Meter Telescope. In the Spirit of Bernard Lyot: The Direct Detection of Planets and Circum-stellar Disks in the 21st Century, 38 {346}Google Scholar
Macintosh, BA, Becklin, EE, Kaisler, D, et al., 2003, Deep Keck adaptive optics searches for extrasolar planets in the dust of yatt MC, et al., 2005, Structure in the Eri and Vega. ApJ, 594, 538–544 {715}Google Scholar
Macintosh, BA, Graham, JR, Barman, T, et al., 2015, Discovery and spectroscopy of the young Jovian planet 51 Eri b with the Gemini Planet Imager (GPI). Science, 350, 64–67 {360, 362, 588, 761}CrossRefGoogle Scholar
Macintosh, BA, Graham, JR, Ingraham, P, et al., 2014, First light of the Gemini Planet Imager (GPI). Proc. Nat. Acad. Sci., 111, 12661–12666 {12, 344, 360, 367}CrossRefGoogle Scholar
Macintosh, BA, Graham, JR, Palmer, DW, et al., 2008, The Gemini Planet Imager: from science to design to construction. SPIE Conf. Ser., volume 7015, 31 {344}Google Scholar
Macintosh, BA, Troy, M, Doyon, R, et al., 2006, Extreme adaptive optics for the Thirty Meter Telescope. SPIE Conf. Ser., volume 6272, 20 {346}Google Scholar
Mack, CE, Ge, J, Deshpande, R, et al., 2013, A cautionary tale: MARVELS brown dwarf candidate reveals itself to be a very long period, highly eccentric spectroscopic stellar binary. AJ, 145, 139 {50}CrossRefGoogle Scholar
Mack, CE, Schuler, SC, Stassun, KG, et al., 2014, Detailed abundances of planet-hosting wide binaries. I. Did planet formation imprint chemical signatures in the atmospheres of HD 20782/81? ApJ, 787, 98 {719}CrossRefGoogle Scholar
Mack, CE, Stassun, KG, Schuler, SC, et al., 2016, Detailed abundances of planet-hosting wide binaries. II. HD 80606 and HD 80607. ApJ, 818, 54 {729}CrossRefGoogle Scholar
Mackay, C, Dominik, M, Steele, IA, et al., 2017, Gravity Cam: wide-field high-resolution high-cadence imaging surveys in the visible from the ground. ArXiv e-prints {142, 333}
Mackay, CD, Baldwin, J, Law, N, et al., 2004, High-resolution imaging in the visible from the ground without adaptive optics: new techniques and results. Ground-based Instrumentation for Astronomy, volume 5492 of Proc. SPIE, 128–135 {333}Google Scholar
Mackay, DJC, 2003, Information Theory, Inference and Learning Algorithms. Cambridge University Press {25}Google Scholar
Mackebrandt, F, Mallonn, M, Ohlert, JM, et al., 2017, Transmission spectroscopy of the hot Jupiter TrES-3 b: Disproof of an overly large Rayleigh-like feature. A&A, 608, A26 {751}Google Scholar
MacLeod, M, Cantiello, M, Soares-Furtado, M, 2018, Planetary engulfment in the Hertzsprung–Russell diagram. ApJ, 853, L1 {412}CrossRefGoogle Scholar
Madhusudhan, N, 2012, C/O ratio as a dimension for characterising exoplanetary atmospheres. ApJ, 758, 36 {583, 614, 733, 752, 753, 754, 757}CrossRefGoogle Scholar
Madhusudhan, N, Agúndez, M, Moses, JI, et al., 2016, Exoplanetary atmospheres: chemistry, formation conditions, and habitability. Space Sci. Rev., 205, 285–348 {607}CrossRefGoogle ScholarPubMed
Madhusudhan, N, Amin, MA, Kennedy, GM, 2014a, Toward chemical constraints on hot Jupiter migration. ApJ, 794, L12 {499}CrossRefGoogle Scholar
Madhusudhan, N, Bitsch, B, Johansen, A, et al., 2017, Atmospheric signatures of giant exoplanet formation by pebble accretion. MNRAS, 469, 4102–4115 {471}CrossRefGoogle Scholar
Madhusudhan, N, Burrows, A, 2012, Analytic models for albedos, phase curves, and polarisation of reflected light from exoplanets. ApJ, 747, 25 {590, 591}CrossRefGoogle Scholar
Madhusudhan, N, Burrows, A, Currie, T, 2011a, Model atmospheres for massive gas giants with thick clouds: application to the HR 8799 planets and predictions for future detections. ApJ, 737, 34 {438, 588, 591, 763}CrossRefGoogle Scholar
Madhusudhan, N, Crouzet, N, McCullough, PR, et al., 2014b, H2O abundances in the atmospheres of three hot Jupiters. ApJ, 791, L9 {609, 610, 730, 732, 753}CrossRefGoogle Scholar
Madhusudhan, N, Harrington, J, Stevenson, KB, et al., 2011b, A high C/O ratio and weak thermal inversion in the atmosphere of exoplanet WASP–12 b. Nature, 469, 64–67 {583, 752}CrossRefGoogle Scholar
Madhusudhan, N, Knutson, H, Fortney, JJ, et al., 2014c, Exoplanetary atmospheres. Protostars and Planets VI, 739–762 {592}
Madhusudhan, N, Lee, KKM, Mousis, O, 2012, A possible carbon-rich interior in super-Earth 55 Cnc e. ApJ, 759, L40 {573, 728}CrossRefGoogle Scholar
Madhusudhan, N, Mousis, O, Johnson, TV, et al., 2011c, Carbon-rich giant planets: atmospheric chemistry, thermal inversions, spectra, and formation conditions. ApJ, 743, 191 {583, 752}CrossRefGoogle Scholar
Madhusudhan, N, Redfield, S, 2015, Optimal measures for characterising water-rich super-Earths. Int. J. Astrobiol., 14, 177–189 {728, 735}CrossRefGoogle Scholar
Madhusudhan, N, Seager, S, 2009, A temperature and abundance retrievalmethod for exoplanet atmospheres. ApJ, 707, 24–39 {208, 606}CrossRefGoogle Scholar
Madhusudhan, N, Seager, S, 2010, On the inference of thermal inversions in hot Jupiter atmospheres. ApJ, 725, 261–274 {591, 732, 735, 751}CrossRefGoogle Scholar
Madhusudhan, N, Seager, S, 2011, High metallicity and non-equilibrium chemistry in the day-side atmosphere of hot-Neptune GJ 436 b. ApJ, 729, 41 {728}CrossRefGoogle Scholar
Madhusudhan, N, Winn, JN, 2009, Empirical constraints on Trojan companions and orbital eccentricities in 25 transiting systems. ApJ, 693, 784–793 {274, 728}CrossRefGoogle Scholar
Madiedo, JM, Ortiz, JL, Morales, N, et al., 2014, A large lunar impact blast on 2013 September 11. MNRAS, 439, 2364–2369 {672}CrossRefGoogle Scholar
Maehara, H, Notsu, Y, Notsu, S, et al., 2017, Star spot activity and super-flares on solar-type stars. PASJ, 69, 41 {428}CrossRefGoogle Scholar
Maehara, H, Shibayama, T, Notsu, S, et al., 2012, Super-flares on solar-type stars. Nature, 485, 478–481 {428}CrossRefGoogle ScholarPubMed
Maggio, A, Pillitteri, I, Scandariato, G, et al., 2015, Coordinated X-ray and optical observations of star–planet Interaction in HD 17156. ApJ, 811, L2 {729}CrossRefGoogle Scholar
Magic, Z, Chiavassa, A, Collet, R, et al., 2015, The Stagger-grid: a grid of 3d stellar atmosphere models. IV. Limb darkening coefficients. A&A, 573, A90 {211}Google Scholar
Mahadevan, S, Ge, J, 2009, The use of absorption cells as a wavelength reference for precision radial velocity measurements in the near-infrared. ApJ, 692, 1590–1596 {32}CrossRefGoogle Scholar
Mahadevan, S, Ge, J, Fleming, SW, et al., 2008a, An inexpensive field-widened monolithic Michelson interferometer for precision radial velocity measurements. PASP, 120, 1001–1015 {49}CrossRefGoogle Scholar
Mahadevan, S, Halverson, S, Ramsey, L, et al., 2014a, Suppression of fibermodal noise induced radial velocity errors for bright emission-line calibration sources. ApJ, 786, 18 {34}CrossRefGoogle Scholar
Mahadevan, S, Ramsey, L, Bender, C, et al., 2012, The Habitable-zone Planet Finder (HPF): a stabilised fiber-fed NIR spectrograph for the Hobby–Eberly Telescope. SPIE Conf. Ser., volume 8446 {48}Google Scholar
Mahadevan, S, Ramsey, LW, Terrien, R, et al., 2014b, The Habitable-zone Planet Finder (HPF): a status update on the development of a stabilized fiber-fed near-infrared spectrograph for the for the Hobby–Eberly telescope. Ground-based and Airborne Instrumentation for Astronomy V, volume 9147 of Proc. SPIE, 91471G {46}Google Scholar
Mahadevan, S, van Eyken, J, Ge, J, et al., 2008b, Measuring stellar radial velocities with a dispersed fixed-delay interferometer. ApJ, 678, 1505–1510 {49}CrossRefGoogle Scholar
Mahajan, N, Wu, Y, 2014, Stability of the Kepler–11 system and its origin. ApJ, 795, 32 {317, 739}CrossRefGoogle Scholar
Mahapatra, G, Helling, C, Miguel, Y, 2017, Cloud formation in metal-rich atmospheres of hot super-Earths like 55 Cnc e and CoRoT–7 b. MNRAS, 472, 447–464 {728, 734}CrossRefGoogle Scholar
Mahtani, DP, Maxted, PFL, Anderson, DR, et al., 2013, Warm Spitzer occultation photometry of WASP–26 b at 3.6 and 4.5μm. MNRAS, 432, 693–701 {754}CrossRefGoogle Scholar
Maindl, TI, Dvorak, R, Lammer, H, et al., 2015, Impact induced surface heating by plan-etesimals on early Mars. A&A, 574, A22 {600}Google Scholar
Mainzer, A, Cushing, MC, Skrutskie, M, et al., 2011, The first ultra-cool brown dwarf discovered by the Wide-field Infrared Survey Explorer (WISE). ApJ, 726, 30 {433}CrossRefGoogle Scholar
Maire, AL, Boccaletti, A, Rameau, J, et al., 2014a, Search for cool giant exoplanets around young and nearby stars: VLT–NACO near-infrared phase-coronagraphic and differential imaging. A&A, 566, A126 {340}Google Scholar
Maire, AL, Boccaletti, A, Schneider, J, et al., 2012a, SPICES: a 1.5-mspace coronagraph for spectropolarimetric characterisation of cold exoplanets. SPIE Conf. Ser., volume 8442 {182, 247, 353}Google Scholar
Maire, AL, Bonnefoy, M, Ginski, C, et al., 2016, First light of the VLT planet finder SPHERE. II. The physical properties and the architecture of the young systems PZ Tel and HD 1160 revisited. A&A, 587, A56 {360}Google Scholar
Maire, AL, Galicher, R, Boccaletti, A, et al., 2012b, Atmospheric characterisation of cold exoplanets using a 1.5-m coronagraphic space telescope. A&A, 541, A83 {353}Google Scholar
Maire, AL, Skemer, AJ, Hinz, PM, et al., 2015, The LEECH Exoplanet Imaging Survey: further constraints on the planet architecture of the HR 8799 system. A&A, 576, A133 {359, 763}Google Scholar
Maire, AL, Stolker, T, Messina, S, et al., 2017, Testing giant planet formation in the transitional disk of SAO 206462 using deep VLT–SPHERE imaging. A&A, 601, A134 {466}Google Scholar
Maire, J, Wright, SA, Werthimer, D, et al., 2014b, A near-infrared SETI experiment: probability distribution of false coincidences. Ground-based and Airborne Instrumentation for Astronomy V, volume 9147 of Proc. SPIE, 91474K {646}Google Scholar
Maíz-Apellániz, J, 2001, The origin of the Local Bubble. ApJ, 560, L83–L86 {651}CrossRefGoogle Scholar
Majeau, C, Agol, E, Cowan, NB, 2012, A two-dimensional infraredmap of the extrasolar planet HD 189733 b. ApJ, 747, L20 {609, 615, 730}CrossRefGoogle Scholar
Majid, W, Winterhalter, D, Chandra, I, et al., 2006, Search for radio emission from ex-trasolar planets: preliminary analysis of GMRT data. European Planetary Science Congress, 266 {427}Google Scholar
Makalkin, AB, Dorofeeva, VA, 2014, Accretion disks around Jupiter and Saturn at the stage of regular satellite formation. Solar System Research, 48, 62–78 {687}CrossRefGoogle Scholar
Makarov, VV, 2010, Variability of surface flows on the Sun and the implications for exoplanet detection. ApJ, 715, 500–505 {37}CrossRefGoogle Scholar
Makarov, VV, 2012, Conditions of passage and entrapment of terrestrial planets in spin–orbit resonances. ApJ, 752, 73 {541, 666}CrossRefGoogle Scholar
Makarov, VV, 2013, Why is the Moon synchronously rotating? MNRAS, 434, L21–L25 {666}CrossRefGoogle Scholar
Makarov, VV, 2015, Equilibrium rotation of semiliquid exoplanets and satellites. ApJ, 810, 12 {605}CrossRefGoogle Scholar
Makarov, VV, Beichman, CA, Catanzarite, JH, et al., 2009, Star spot jitter in photometry, astrometry, and radial velocity measurements. ApJ, 707, L73–L76 {85}CrossRefGoogle Scholar
Makarov, VV, Berghea, C, 2014, Dynamical evolution and spin–orbit resonances of potentially habitable exoplanets: the case of GJ 667C. ApJ, 780, 124 {622, 717}CrossRefGoogle Scholar
Makarov, VV, Berghea, C, Efroimsky, M, 2012, Dynamical evolution and spin–orbit resonances of potentially habitable exoplanets: GJ 581 d. ApJ, 761, 83 {622, 717}CrossRefGoogle Scholar
Makarov, VV, Berghea, CT, Efroimsky, M, 2018, Spin–orbital tidal dynamics and tidal heating in the TRAPPIST–1 multi-planet system. ArXiv e-prints {750}
Makarov, VV, Efroimsky, M, 2013, No pseudo-synchronous rotation for terrestrial planets and moons. ApJ, 764, 27 {534, 535, 541}CrossRefGoogle Scholar
Makarov, VV, Efroimsky, M, 2014, Tidal dissipation in a homogeneous spherical body. II. Three examples: Mercury, IO, and Kepler–10 b. ApJ, 795, 7 {544, 739}CrossRefGoogle Scholar
Makarov, VV, Frouard, J, Dorland, B, 2016, Forced libration of tidally synchronised planets and moons. MNRAS, 456, 665–671 {541}CrossRefGoogle Scholar
Makarov, VV, Goldin, A, 2016a, Photometric and astrometric vagaries of the enigma star KIC–8462852. ApJ, 833, 78 {232, 747}CrossRefGoogle Scholar
Makarov, VV, Goldin, A, 2016b, Variability-induced motion in Kepler data. ApJS, 224, 19 {223}CrossRefGoogle Scholar
Makarov, VV, Goldin, A, 2017, Kepler data on KIC–7341653: a nearby M dwarf with monster flares and a phase-coherent variability. ApJ, 845, 149 {428}CrossRefGoogle Scholar
Makide, K, Nagashima, K, Krot, AN, et al., 2011, Heterogeneous distribution of 26Al at the birth of the solar system. ApJ, 733, L31 {651}CrossRefGoogle Scholar
Malacara, D, Thompson, BJ, 2004, Handbook of Optical Design (second edition). Marcel Dekker {45}Google Scholar
Malamud, U, Perets, HB, 2016, Post-main-sequence evolution of icy minor planets. I. Implications for water retention and white dwarf pollution. ApJ, 832, 160 {419}CrossRefGoogle Scholar
Malamud, U, Perets, HB, 2017a, Post-main-sequence evolution of icy minor planets. II. Water retention and white dwarf pollution around massive progenitor stars. ApJ, 842, 67 {419}CrossRefGoogle Scholar
Malamud, U, Perets, HB, 2017b, Post-main-sequence evolution of icy minor planets. III. Water retention in dwarf planets and exomoons and implications for white dwarf pollution. ApJ, 849, 8 {419}CrossRefGoogle Scholar
Malavolta, L, Borsato, L, Granata, V, et al., 2017, The Kepler–19 system: a thick-envelope super-Earth with two Neptune-mass companions characterised using radial velocities and transit timing variations. AJ, 153, 224 {272, 740}CrossRefGoogle Scholar
Malavolta, L, Mayo, AW, Louden, T, et al., 2018, An ultra-short period rocky super-Earth with a secondary eclipse and a Neptune-like companion around K2–141. AJ, 155, 107 {749}CrossRefGoogle Scholar
Malavolta, L, Nascimbeni, V, Piotto, G, et al., 2016, The GAPS programme with HARPS–N at TNG. XI. Pr 211 in M44: the first multi-planet system in an open cluster. A&A, 588, A118 {24, 61, 725}Google Scholar
Malbet, F, 1996, High angular resolution coronography for adaptive optics. A&AS, 115, 161–174 {334}Google Scholar
Malbet, F, Goullioud, R, Lagage, PO, et al., 2012a, NEAT: a spaceborne astrometric mission for the detection and characterisation of nearby habitable planetary systems. SPIE Conf. Ser., volume 8442 {100}Google Scholar
Malbet, F, Léger, A, Anglada Escudé G, et al., 2016, Microarcsecond astrometric observatory Theia: from dark matter to compact objects and nearby earths. Space Telescopes and Instrumentation 2016: Optical, Infrared, and Millimeter Wave, volume 9904 of Proc. SPIE, 99042F {100}Google Scholar
Malbet, F, Léger, A, Shao, M, et al., 2012b, High-precision astrometry for the detection and characterisation of nearby habitable planetary systems with the Nearby Earth Astrometric Telescope (NEAT). Exp. Astron., 34, 385–413 {100}CrossRefGoogle Scholar
Malbet, F, Yu, JW, Shao, M, 1995, High-dynamic-range imaging using a deformable mirror for space coronography. PASP, 107, 386–398 {353}CrossRefGoogle Scholar
Maldonado, J, Eiroa, C, Villaver, E, et al., 2012, Metallicity of solar-type stars with debris disks and planets. A&A, 541, A40 {389, 494}Google Scholar
Maldonado, J, Scandariato, G, Stelzer, B, et al., 2017, HADES radial velocity programme with HARPS–N at TNG. III. Flux–flux and activity–rotation relationships of early-Mdwarfs. A&A, 598, A27 {36}Google Scholar
Maldonado, J, Villaver, E, 2016, Evolved stars and the origin of abundance trends in planet hosts. A&A, 588, A98 {378, 484}Google Scholar
Maldonado, J, Villaver, E, Eiroa, C, 2013, The metallicity signature of evolved stars with planets. A&A, 554, A84 {389, 484}Google Scholar
Males, JR, Close, LM, Morzinski, KM, et al., 2014, Magellan adaptive optics first-light observations of the exoplanet fl Pic b. I. Direct imaging in the far-red optical with MagAO+VisAO and in the near-infrared with NICI. ApJ, 786, 32 {762}CrossRefGoogle Scholar
Males, JR, Skemer, AJ, Close, LM, 2013, Direct imaging in the habitable zone and the problem of orbital motion. ApJ, 771, 10 {342}CrossRefGoogle Scholar
Malhotra, R, 1993a, The origin of Pluto's peculiar orbit. Nature, 365, 819–821 {682, 695}CrossRefGoogle Scholar
Malhotra, R, 1993b, Three-body effects in the PSR B1257+12 planetary system. ApJ, 407, 266–275 {107}CrossRefGoogle Scholar
Malhotra, R, 1994, A mapping method for the gravitational few-body problemwith dissipation. Cel. Mech. Dyn. Astron., 60, 373–385 {513}CrossRefGoogle Scholar
Malhotra, R, 1995, The origin of Pluto's orbit: implications for the solar system beyond Neptune. AJ, 110, 420–429 {524, 685, 695}CrossRefGoogle Scholar
Malhotra, R, 1998, Orbital resonances and chaos in the solar system. Solar System Formation and Evolution, volume 149 of ASP Conf. Ser., 37 {317}Google Scholar
Malhotra, R, 2002, A dynamical mechanism for establishing apsidal resonance. ApJ, 575, L33–L36 {507}CrossRefGoogle Scholar
Malhotra, R, Black, D, Eck, A, et al., 1992, Resonant orbital evolution in the putative planetary system of PSR B1257+12. Nature, 356, 583–585 {107}CrossRefGoogle Scholar
Malhotra, R, Dermott, SF, 1990, The role of secondary resonances in the orbital history of Miranda. Icarus, 85, 444–480 {689}CrossRefGoogle Scholar
Malhotra, R, Minton, DA, 2008, Prospects for the habitability of OGLE–2006–BLG–109L. ApJ, 683, L67–L70 {759}CrossRefGoogle Scholar
Malhotra, R, Volk, K, Wang, X, 2016, Corralling a distant planet with extreme resonant Kuiper Belt Objects. ApJ, 824, L22 {687}CrossRefGoogle Scholar
Malik, M, Grosheintz, L, Mendonça, JM, et al., 2017, HELIOS: an open-source, GPU-accelerated radiative transfer code for self-consistent exoplanetary atmospheres. AJ, 153, 56 {606, 731, 752, 753, 754, 755}CrossRefGoogle Scholar
Malik, M, Meru, F, Mayer, L, et al., 2015, On the gap-opening criterion of migrating planets in protoplanetary disks. ApJ, 802, 56 {521}CrossRefGoogle Scholar
Malin, MC, Edgett, KS, Posiolova, LV, et al., 2006, Present-day impact cratering rate and contemporary gully activity on Mars. Science, 314, 1573 {672}CrossRefGoogle ScholarPubMed
Malkin, Z, 2012, The current best estimate of the Galactocentric distance of the Sun based on comparison of different statistical techniques. ArXiv e-prints {702}
Mallama, A, 2009, Characterisation of terrestrial exoplanets based on the phase curves and albedos of Mercury, Venus and Mars. Icarus, 204, 11–14 {235}CrossRefGoogle Scholar
Mallama, A, Krobusek, B, Pavlov, H, 2017, Comprehensive wide-band magnitudes and albedos for the planets, with applications to exoplanets and Planet Nine. Icarus, 282, 19–33 {687}CrossRefGoogle Scholar
Mallik, SV, 1999, Lithiumabundance and mass. A&A, 352, 495–507 {400}Google Scholar
Mallonn, M, Bernt, I, Herrero, E, et al., 2016, Broad-band spectrophotometry of HAT–P–32 b: search for a scattering signature in the planetary spectrum. MNRAS, 463, 604–614 {737}CrossRefGoogle Scholar
Mallonn, M, Nascimbeni, V, Weingrill, J, et al., 2015a, Broad-band spectrophotometry of the hot Jupiter HAT–P–12 b from the near-ultraviolet to the near-infrared. A&A, 583, A138 {736}Google Scholar
Mallonn, M, Strassmeier, KG, 2016, Transmission spectroscopy of HAT–P–32 bwith the LBT: confirmation of clouds/hazes in the planetary atmosphere. A&A, 590, A100 {588, 737}Google Scholar
Mallonn, M, von Essen, C, Weingrill, J, et al., 2015b, Transmission spectroscopy of the inflated exo-Saturn HAT–P–19 b. A&A, 580, A60 {736}Google Scholar
Mallonn, M, Wakeford, HR, 2017, Near-ultraviolet transit photometry of HAT–P–32 b with the Large Binocular Telescope: silicate aerosols in the planetary atmosphere. Astron. Nach., 338, 773–780 {737}CrossRefGoogle Scholar
Malmberg, D, Davies, MB, 2009, On the origin of eccentricities among extrasolar planets. MNRAS, 394, L26–L30 {499}CrossRefGoogle Scholar
Malmberg, D, Davies, MB, Chambers, JE, 2007a, The instability of planetary systems in binaries: how the Kozai mechanism leads to strong planet–planet interactions. MNRAS, 377, L1–L4 {528, 549}CrossRefGoogle Scholar
Malmberg, D, Davies, MB, Heggie, DC, 2011, The effects of fly-bys on planetary systems. MNRAS, 411, 859–877 {526}CrossRefGoogle Scholar
Malmberg, D, de Angeli, F, Davies, MB, et al., 2007b, Close encounters in young stellar clusters: implications for planetary systems in the solar neighbourhood. MNRAS, 378, 1207–1216 {158}CrossRefGoogle Scholar
Mal'Nev, AG, Orlov, VV, Petrova, AV, 2006, The dynamical evolution of stellar–planetary systems. Astronomy Reports, 50, 405–410 {521}Google Scholar
Malyshkin, L, Goodman, J, 2001, The timescale of runaway stochastic coagulation. Icarus, 150, 314–322 {474}CrossRefGoogle Scholar
Mamajek, E, 2017, Kinematics of the interstellar vagabond Oumuamua. RNAAS, 1, 21 {686, 692, 693}Google Scholar
Mamajek, EE, 2005, A moving cluster distance to the exoplanet 2M J1207 b in the TWHya association. ApJ, 634, 1385–1394 {763}CrossRefGoogle Scholar
Mamajek, EE, 2009, Initial conditions of planet formation: lifetimes of primordial disks. Amer. Inst. Phys. Conf. Ser., volume 1158, 3–10 {484}Google Scholar
Mamajek, EE, 2010, On the nature of the purported common proper motion companions to the exoplanet host star 51 Peg. Astron. Nach., 331, 704 {91, 715}CrossRefGoogle Scholar
Mamajek, EE, 2012, On the age and binarity of Fomalhaut. ApJ, 754, L20 {761}CrossRefGoogle Scholar
Mamajek, EE, Barenfeld, SA, Ivanov, VD, et al., 2015a, The closest known fly-by of a star to the solar system. ApJ, 800, L17 {655}CrossRefGoogle Scholar
Mamajek, EE, Bartlett, JL, Seifahrt, A, et al., 2013, The solar neighbourhood. 30. Fomalhaut C. AJ, 146, 154 {761}CrossRefGoogle Scholar
Mamajek, EE, Hillenbrand, LA, 2008, Improved age estimation for solar-type dwarfs using activity–rotation diagnostics. ApJ, 687, 1264–1293 {195, 306, 310, 380, 381}CrossRefGoogle Scholar
Mamajek, EE, Meyer, MR, 2007, An improbable solution to the underluminosity of 2M J1207 b: a hot protoplanet collision afterglow. ApJ, 668, L175–L178 {363, 368, 763}CrossRefGoogle Scholar
Mamajek, EE, Prsa, A, Torres, G, et al., 2015b, IAU2015 Resolution B3 on recommended nominal conversion constants for selected solar and planetary properties. ArXiv e-prints {6, 701, 702}
Mamajek, EE, Quillen, AC, Pecaut, MJ, et al., 2012, Planetary construction zones in oc-cultation: discovery of an extrasolar ring system transiting a young Sun-like star and future prospects for detecting eclipses by circumsecondary and circumplan-etary disks. AJ, 143, 72 {11, 218, 220, 751}CrossRefGoogle Scholar
Mamatsashvili, GR, Chagelishvili, GD, Bodo, G, et al., 2013, Revisiting linear dynamics of non-axisymmetric perturbations in weakly magnetised accretion disks. MNRAS, 435, 2552–2567 {461}CrossRefGoogle Scholar
Mancini, L, 2017, On the relationship between the planetary radius and the equilibrium temperature for transiting exoplanets. International Journal of Modern Physics D, 26, 1741012 {294}CrossRefGoogle Scholar
Mancini, L, Ciceri, S, Chen, G, et al., 2013a, Physical properties, transmission and emission spectra of the WASP–19 planetary system from multi-colour photometry. MNRAS, 436, 2–18 {212, 754}CrossRefGoogle Scholar
Mancini, L, Esposito, M, Covino, E, et al., 2015a, The GAPS Programme with HARPS–N at TNG. VIII. Observations of the Rossiter–McLaughlin effect and character-isation of the transiting planetary systems HAT–P–36 and WASP–11/HAT–P–10. A&A, 579, A136 {253, 737, 752}Google Scholar
Mancini, L, Giordano, M, Mollière, P, et al., 2016a, An optical transmission spectrum of the transiting hot Jupiter in the metal-poor WASP–98 planetary system. MNRAS, 461, 1053–1061 {756}CrossRefGoogle Scholar
Mancini, L, Hartman, JD, Penev, K, et al., 2015b, HATS–13 b and HATS–14 b: two transiting hot Jupiters from the HAT–South survey. A&A, 580, A63 {737}Google Scholar
Mancini, L, Kemmer, J, Southworth, J, et al., 2016b, An optical transmission spectrum of the giant planet WASP–36 b. MNRAS, 459, 1393–1402 {754}CrossRefGoogle Scholar
Mancini, L, Lillo-Box, J, Southworth, J, et al., 2016c, Kepler–539: a young extrasolar system with two giant planets on wide orbits and in gravitational interaction. A&A, 590, A112 {746}Google Scholar
Mancini, L, Nikolov, N, Southworth, J, et al., 2013b, Physical properties of the WASP–44 planetary system from simultaneous multi-colour photometry. MNRAS, 430, 2932–2942 {755}CrossRefGoogle Scholar
Mancini, L, Southworth, J, Ciceri, S, et al., 2013c, A lower radius and mass for the transiting extrasolar planet HAT–P–8 b. A&A, 551, A11 {736}Google Scholar
Mancini, L, Southworth, J, Ciceri, S, 2014a, Physical properties and transmission spectrum of the WASP–80 planetary system from multi-colour photometry. A&A, 562, A126 {756}Google Scholar
Mancini, L, Southworth, J, Ciceri, S, 2014b, Physical properties of the WASP–67 planetary system from multi-colour photometry. A&A, 568, A127 {166, 223, 224, 756}Google Scholar
Mancini, L, Southworth, J, Ciceri, S, 2014c, Physical properties, star-spot activity, orbital obliquity and transmission spectrum of the Qatar–2 planetary system from multicolour photometry. MNRAS, 443, 2391–2409 {212, 213, 591, 750}CrossRefGoogle Scholar
Mancini, L, Southworth, J, Raia, G, et al., 2017, Orbital alignment and star spot properties in the WASP–52 planetary system. MNRAS, 465, 843–857 {253, 755}CrossRefGoogle Scholar
Mancini, M, Schneider, R, Graziani, L, et al., 2015c, The dust mass in z>6 normal star-forming galaxies. MNRAS, 451, L70–L74 {495}CrossRefGoogle Scholar
Mandel, K, Agol, E, 2002, Analytic light curves for planetary transit searches. ApJ, 580, L171–L175 {195, 196, 200, 201, 225, 240}CrossRefGoogle Scholar
Mandel, L, Wolf, E, 1995, Optical Coherence and Quantum Optics. Cambridge University Press {336}CrossRefGoogle Scholar
Mandell, AM, Deming, D, Blake, GA, et al., 2011, Non-detection of L-band line emission from the exoplanet HD 189733 b. ApJ, 728, 18 {608, 609, 730}CrossRefGoogle Scholar
Mandell, AM, Ge, J, Murray, N, 2004, A search for 6Li in lithium-poor starswith planets. AJ, 127, 1147–1157 {403}CrossRefGoogle Scholar
Mandell, AM, Haynes, K, Sinukoff, E, et al., 2013, Exoplanet transit spectroscopy using WFC3: WASP–12 b, WASP–17 b, and WASP–19 b. ApJ, 779, 128 {588, 753, 754}CrossRefGoogle Scholar
Mandell, AM, Raymond, SN, Sigurdsson, S, 2007, Formation of Earth-like planets during and after giant planet migration. ApJ, 660, 823–844 {523, 632}CrossRefGoogle Scholar
Mandell, AM, Sigurdsson, S, 2003, Survival of terrestrial planets in the presence of giant planet migration. ApJ, 599, L111–L114 {523}CrossRefGoogle Scholar
Mandushev, G, O'Donovan, FT, Charbonneau, D, et al., 2007, TrES–4: a transiting hot Jupiter of very low density. ApJ, 667, L195–L198 {169, 302, 751}CrossRefGoogle Scholar
Mandushev, G, Quinn, SN, Buchhave, LA, et al., 2011, TrES–5: a massive Jupiter-sized planet transiting a cool G dwarf. ApJ, 741, 114 {169, 751}CrossRefGoogle Scholar
Maness, HL, Marcy, GW, Ford, EB, et al., 2007, The M dwarf GJ 436 and its Neptune-mass planet. PASP, 119, 90–101 {728}CrossRefGoogle Scholar
Manfroid, J, 2016, TRAPPIST-Nord. Le Ciel, 78, 324–531 {168}Google Scholar
Manjavacas, E, Goldman, B, Reffert, S, et al., 2013, Parallax measurements of cool brown dwarfs. A&A, 560, A52 {434}Google Scholar
Mankevich, SK, Orlov, EP, 2016, Interstellar laser communication: implementability criterion and optimisation conditions for the addressed signal search and sending. Quantum Electronics, 46, 966 {645}CrossRefGoogle Scholar
Mann, AW, Dupuy, T, Muirhead, PS, et al., 2017a, The gold standard: accurate stellar and planetary parameters for eight Kepler M dwarf systems enabled by parallaxes. AJ, 153, 267 {739, 741, 743, 746, 747}CrossRefGoogle Scholar
Mann, AW, Gaidos, E, Ansdell, M, 2013a, Spectro-thermometry of M dwarfs and their candidate planets: too hot, too cool, or just right? ApJ, 779, 188 {405}CrossRefGoogle Scholar
Mann, AW, Gaidos, E, Gaudi, BS, 2010, The invisible majority? Evolution and detection of outer planetary systems without gas giants. ApJ, 719, 1454–1469 {475}CrossRefGoogle Scholar
Mann, AW, Gaidos, E, Kraus, A, et al., 2013b, Testing themetal of late-type Kepler planet hosts with iron-clad methods. ApJ, 770, 43 {308, 389, 390}CrossRefGoogle Scholar
Mann, AW, Gaidos, E, Lépine, S, et al., 2012, They might be giants: luminosity class, planet occurrence, and planet-metallicity relation of the coolest Kepler target stars. ApJ, 753, 90 {290, 308, 390}CrossRefGoogle Scholar
Mann, AW, Gaidos, E, Mace, GN, et al., 2016a, Zodiacal Exoplanets in Time (ZEIT). I. A Neptune-sized planet orbiting an M4.5 dwarf in the Hyades star cluster. ApJ, 818, 46 {12, 159, 748}CrossRefGoogle Scholar
Mann, AW, Gaidos, E, Vanderburg, A, et al., 2017b, Zodiacal Exoplanets in Time (ZEIT). IV. Seven transiting planets in the Praesepe cluster. AJ, 153, 64 {159, 748}CrossRefGoogle Scholar
Mann, AW, Newton, ER, Rizzuto, AC, et al., 2016b, Zodiacal Exoplanets in Time (ZEIT). III. A short-period planet orbiting a pre-main-sequence star in the Upper Scorpius OB Association. AJ, 152, 61 {748}CrossRefGoogle Scholar
Mann, AW, Vanderburg, A, Rizzuto, AC, et al., 2018, Zodiacal Exoplanets in Time (ZEIT). VI. A three-planet system in the Hyades cluster including an Earth-sized planet. AJ, 155, 4 {159, 749}CrossRefGoogle Scholar
Mann, I, 2010, Interstellar dust in the solar system. ARA&A, 48, 173–203 {691, 692}Google Scholar
Mann, I, Köhler, M, Kimura, H, et al., 2006, Dust in the solar system and in extrasolar planetary systems. A&A Rev., 13, 159–228 {493}Google Scholar
Manser, CJ, Gänsicke, BT, Koester, D, et al., 2016a, Another one grinds the dust: variability of the planetary debris disk at the white dwarf SDSS J104341.53+085558.2. MNRAS, 462, 1461–1469 {417, 418, 419}CrossRefGoogle Scholar
Manser, CJ, Gänsicke, BT, Marsh, TR, et al., 2016b, Doppler imaging of the planetary debris disk at the white dwarf SDSS J122859.93+104032.9. MNRAS, 455, 4467–4478 {416}CrossRefGoogle Scholar
Mao, H, Hemley, RJ, 1994, Ultrahigh-pressure transitions in solid hydrogen. Reviews of Modern Physics, 66, 671–692 {567}CrossRefGoogle Scholar
Mao, S, 2008, Introduction to gravitational microlensing [unpublished]. ArXiv e-prints {123}
Mao, S, Paczyński, B, 1991, Gravitational microlensing by double stars and planetary systems. ApJ, 374, L37–L40 {120, 123, 124, 125, 138}CrossRefGoogle Scholar
Mao, S, Paczyński, B, 1996, Mass determination with gravitational microlensing. ApJ, 473, 57 {150}CrossRefGoogle Scholar
Mao, S, Witt, HJ, An, JH, 2014, Three-dimensional microlensing. MNRAS, 437, 1554–1560 {136}CrossRefGoogle Scholar
Maoz, D, Mazeh, T, McQuillan, A, 2015, Kepler and the seven dwarfs: detection of low-level day-time-scale periodic photometric variations in white dwarfs. MNRAS, 447, 1749–1760 {415}CrossRefGoogle Scholar
Marboeuf, U, Mousis, O, Ehrenreich, D, et al., 2008, Composition of ices in low-mass extrasolar planets. ApJ, 681, 1624–1630 {564}CrossRefGoogle Scholar
Marboeuf, U, Thiabaud, A, Alibert, Y, et al., 2014a, From planetesimals to planets: volatile molecules. A&A, 570, A36 {463, 565}Google Scholar
Marboeuf, U, Thiabaud, A, Alibert, Y, 2014b, Fromstellar nebula to planetesimals. A&A, 570, A35 {463, 565}Google Scholar
Marchal, C, Bozis, G, 1982, Hill stability and distance curves for the general three-body problem. Celestial Mechanics, 26, 311–333 {512}CrossRefGoogle Scholar
Marchi, S, 2007, Extrasolar planet taxonomy: a new statistical approach. ApJ, 666, 475–485 {53, 554}CrossRefGoogle Scholar
Marchi, S, Bottke, WF, O'Brien, DP, et al., 2014, Small crater populations on Vesta. Planet. Space Sci., 103, 96–103 {681}CrossRefGoogle Scholar
Marchi, S, Chapman, CR, Fassett, CI, et al., 2013, Global resurfacing of Mercury 4.0–4.1Gyr ago by heavy bombardment and volcanism. Nature, 499, 59–61 {671}CrossRefGoogle ScholarPubMed
Marchi, S, Ortolani, S, Nagasawa, M, et al., 2009, On the various origins of close-in extrasolar planets. MNRAS, 394, L93–L96 {254}CrossRefGoogle Scholar
Marchwinski, RC, Mahadevan, S, Robertson, P, et al., 2015, Toward understanding stellar radial velocity jitter as a function of wavelength: the Sun as a proxy. ApJ, 798, 63 {38}CrossRefGoogle Scholar
Marconi, A, Di Marcantonio, P, D'Odorico, V, et al., 2016, E-ELT–HIRES the high-resolution spectrograph for the E-ELT. SPIE Conf. Ser., volume 9908 of Proc. SPIE, 990823 {28, 46, 49}Google Scholar
Marcos-Arenal, P, Zima, W, De Ridder, J, et al., 2014, The PLATO Simulator: modelling of high-precision high-cadence space-based imaging. A&A, 566, A92 {180}Google Scholar
Marcq, E, 2012, A simple 1d radiative-convective atmospheric model designed for integration into coupled models of magma ocean planets. J. Geophys. Res. (Planets), 117, E01001 {576}CrossRefGoogle Scholar
Marcq, E, Salvador, A, Massol, H, et al., 2017, Thermal radiation of magma ocean planets using a 1d radiative-convective model of H2O-CO2 atmospheres. J. Geo-phys. Res. (Planets), 122, 1539–1553 {576}Google Scholar
Marcus, PS, 1993, Jupiter's Great Red Spot and other vortices. ARA&A, 31, 523–573 {462}Google Scholar
Marcus, PS, Lee, C, 1994, Jupiter's Great Red Spot and zonal winds as a self-consistent, one-layer, quasigeostrophic flow. Chaos, 4, 269–286 {462}CrossRefGoogle ScholarPubMed
Marcus, RA, Sasselov, D, Hernquist, L, et al., 2010a, Minimum radii of super-Earths: constraints from giant impacts. ApJ, 712, L73–L76 {573}CrossRefGoogle Scholar
Marcus, RA, Sasselov, D, Stewart, ST, et al., 2010b, Water/icy super-Earths: giant impacts and maximumwater content. ApJ, 719, L45–L49 {576}CrossRefGoogle Scholar
Marcus, RA, Stewart, ST, Sasselov, D, et al., 2009, Collisional stripping and disruption of super-Earths. ApJ, 700, L118–L122 {500}CrossRefGoogle Scholar
Marcy, GW, 2009a, Extrasolar planets: water world larger than Earth. Nature, 462, 853–854 {577}CrossRefGoogle Scholar
Marcy, GW, 2009b, Planet Hunter: a astrometric search of 65 nearby stars for Earth-mass planets. AAS Bulletin, volume 41, 507 {100}Google Scholar
Marcy, GW, Benitz, KJ, 1989, A search for substellar companions to low-mass stars. ApJ, 344, 441–453 {50}CrossRefGoogle Scholar
Marcy, GW, Butler, RP, 1992, Precision radial velocities with an iodine absorption cell. PASP, 104, 270–277 {28, 31}CrossRefGoogle Scholar
Marcy, GW, Butler, RP, 1996, A planetary companion to 70 Vir. ApJ, 464, L147–L149 {10, 50, 716}CrossRefGoogle Scholar
Marcy, GW, Butler, RP, 1998a, Detection of extrasolar giant planets. ARA&A, 36, 57–98 {55}Google Scholar
Marcy, GW, Butler, RP, 1998b, Doppler detection of extrasolar planets. Cool Stars, Stellar Systems, and the Sun, volume 154 of ASP Conf. Ser., 9–24 {54}Google Scholar
Marcy, GW, Butler, RP, 2000, Planets orbiting other suns. PASP, 112, 137–140 {54, 64, 441}CrossRefGoogle Scholar
Marcy, GW, Butler, RP, Fischer, D, et al., 2001a, A pair of resonant planets orbiting GJ 876. ApJ, 556, 296–301 {10, 67, 71, 717}CrossRefGoogle Scholar
Marcy, GW, Butler, RP, Fischer, D, 2005a, Observed properties of exoplanets: masses, orbits, and metallicities. Prog. Theor. Phys. Suppl., 158, 24–42 {62, 555, 557}CrossRefGoogle Scholar
Marcy, GW, Butler, RP, Fischer, DA, et al., 2002, A planet at 5 au around 55 Cnc. ApJ, 581, 1375–1388 {25, 71, 74, 728}CrossRefGoogle Scholar
Marcy, GW, Butler, RP, Vogt, SS, 2000, Sub-Saturn planetary candidates of HD 16141 and HD 46375. ApJ, 536, L43–L46 {718, 720}CrossRefGoogle ScholarPubMed
Marcy, GW, Butler, RP, Vogt, SS, et al., 1998, A planetary companion to a nearby M4 dwarf, GJ 876. ApJ, 505, L147–L149 {55, 59, 70, 71, 717}CrossRefGoogle Scholar
Marcy, GW, Butler, RP, Vogt, SS, 1999, Two new candidate planets in eccentric orbits. ApJ, 520, 239–247 {8, 723, 724}CrossRefGoogle Scholar
Marcy, GW, Butler, RP, Vogt, SS, 2001b, Two substellar companions orbiting HD 168443. ApJ, 555, 418–425 {8, 77, 723}CrossRefGoogle Scholar
Marcy, GW, Butler, RP, Vogt, SS, 2005b, Five new extrasolar planets. ApJ, 619, 570–584 {78, 720, 721, 722, 723}CrossRefGoogle Scholar
Marcy, GW, Butler, RP, Vogt, SS, 2008, Exoplanet properties from Lick, Keck and AAT. Physica Scripta Volume T, 130(1), 014001 {53, 66}Google Scholar
Marcy, GW, Butler, RP, Williams, E, et al., 1997, The planet around 51 Peg. ApJ, 481, 926–935 {51, 532, 535, 715}CrossRefGoogle Scholar
Marcy, GW, Fischer, DA, Butler, RP, et al., 2006, Properties of exoplanets: a Doppler study of 1330 stars. Planet Formation, 179–191, Cambridge University Press {53}
Marcy, GW, Isaacson, H, Howard, AW, et al., 2014, Masses, radii, and orbits of small Kepler planets: the transition from gaseous to rocky planets. ApJS, 210, 20 {288, 294, 500, 602, 740, 741, 742, 743, 745}CrossRefGoogle Scholar
Marcy, GW, Lindsay, V, Bergengren, J, et al., 1986, A dynamical search for sub-stellar objects. Astrophysics of Brown Dwarfs, 50–56 {55, 57}
Marcy, GW, Moore, D, 1989, The extremely low mass companion to GJ 623. ApJ, 341, 961–967 {50}CrossRefGoogle Scholar
Mardling, RA, 2007, Long-term tidal evolution of short-period planets with companions. MNRAS, 382, 1768–1790 {303, 537}CrossRefGoogle Scholar
Mardling, RA, 2010, The determination of planetary structure in tidally-relaxed inclined systems. MNRAS, 407, 1048–1069 {228, 305, 735, 736, 753}CrossRefGoogle Scholar
Mardling, RA, 2013, New developments for modern celestial mechanics. I. General coplanar three-body systems: application to exoplanets. MNRAS, 435, 2187–2226 {509}CrossRefGoogle Scholar
Mardling, RA, Lin, DNC, 2002, Calculating the tidal, spin, and dynamical evolution of extrasolar planetary systems. ApJ, 573, 829–844 {535, 536, 542, 713, 717}CrossRefGoogle Scholar
Marengo, M, Hulsebus, A, Willis, S, 2015, KIC–8462852: the infrared flux. ApJ, 814, L15 {233, 747}CrossRefGoogle Scholar
Marengo, M, Stapelfeldt, K, Werner, MW, et al., 2009, Spitzer–IRAC limits to planetary companions of Fomalhaut and yatt MC, et al., 2005, Structure in the Eri. ApJ, 700, 1647–1657 {365, 715, 761}Google Scholar
Margalit, B, Metzger, BD, 2017, Merger of a white dwarf-neutron star binary to 1029 carat diamonds: origin of the pulsar planets. MNRAS, 465, 2790–2803 {107}CrossRefGoogle Scholar
Margot, JL, Campbell, DB, Jurgens, RF, et al., 1999, Topography of the lunar poles from radar interferometry. Science, 284, 1658 {356}CrossRefGoogle ScholarPubMed
Margulis, L, Lovelock, JE, 1974, Biological modulation of the Earth's atmosphere. Icarus, 21, 471–484 {640}CrossRefGoogle Scholar
Marin, F, Grosso, N, 2017, Computation of the transmitted and polarised scattered fluxes by the exoplanet HD 189733 b in X-rays. ApJ, 835, 283 {731}CrossRefGoogle Scholar
Marino, S, Perez, S, Casassus, S, 2015, Shadows cast by a warp in the HD 142527 proto-planetary disk. ApJ, 798, L44 {466}CrossRefGoogle Scholar
Marino, S, Wyatt, MC, Kennedy, GM, et al., 2017a, ALMA observations of the multi-planet system 61 Vir: what lies outside super-Earth systems? MNRAS, 469, 3518–3531 {716}CrossRefGoogle Scholar
Marino, S, Wyatt, MC, Panić, O, et al., 2017b, ALMA observations of the ɲ Crv debris disk: inward scattering of CO-rich exocomets by a chain of 3-30 M⊕ planets? MNRAS, 465, 2595–2615 {496, 497}CrossRefGoogle Scholar
Marion, L, Absil, O, Ertel, S, et al., 2014, Searching for faint companions with VLTI–PIONIER. II. 92 main sequence stars from the Exozodi survey. A&A, 570, A127 {183, 348}Google Scholar
Mariotti, JM, Leger, A, Mennesson, B, et al., 1997, Detection and characterisation of Earth-like planets. IAU Colloq. 161, 299–311 {352, 618}
Markonis, Y, Koutsoyiannis, D, 2013, Climatic variability over time scales spanning nine orders of magnitude: connecting Milankovitch Cycles with Hurst–Kolmogorov dynamics. Surveys in Geophysics, 34, 181–207 {621, 681}CrossRefGoogle Scholar
Marks, RD, Vernin, J, Azouit, M, et al., 1999, Measurement of optical seeing on the high Antarctic plateau. A&AS, 134, 161–172 {84}Google Scholar
Markwardt, CB, 2009, Non-linear least-squares fitting in IDL with MPFIT. ASP Conf. Ser., volume 411, 251–254 {25}Google Scholar
Marleau, GD, Cumming, A, 2014, Constraining the initial entropy of directly detected exoplanets. MNRAS, 437, 1378–1399 {482, 483, 763}CrossRefGoogle Scholar
Marleau, GD, Klahr, H, Kuiper, R, et al., 2017, The planetary accretion shock. I. Framework for radiation-hydrodynamical simulations and first results. ApJ, 836, 221 {482, 763, 764}CrossRefGoogle Scholar
Marley, MS, 1991, Nonradial oscillations of Saturn. Icarus, 94, 420–435 {411}CrossRefGoogle Scholar
Marley, MS, 1998, Atmospheres of giant planets from Neptune to GJ 229B. Brown Dwarfs and Extrasolar Planets, volume 134 of ASP Conf. Ser., 383–393 {587}Google Scholar
Marley, MS, 2010, The atmospheres of extrasolar planets. EAS Pub. Ser., volume 41, 411–428 {581}CrossRefGoogle Scholar
Marley, MS, Ackerman, AS, Cuzzi, JN, et al., 2013, Clouds and hazes in exoplanet atmospheres, 367–391. University of Arizona Press {588, 591}
Marley, MS, Fortney, J, Seager, S, et al., 2007a, Atmospheres of extrasolar giant planets. Protostars and Planets V, 733–747 {571, 587}
Marley, MS, Fortney, JJ, Hubickyj, O, et al., 2007b, On the luminosity of young Jupiters. ApJ, 655, 541–549 {482, 483, 569, 581}CrossRefGoogle Scholar
Marley, MS, Gelino, C, Stephens, D, et al., 1999, Reflected spectra and albedos of ex-trasolar giant planets. I. Clear and cloudy atmospheres. ApJ, 513, 879–893 {286, 569, 579, 588, 589, 591}CrossRefGoogle Scholar
Marley, MS, Hubbard, WB, 1988, Thermodynamics of dense molecular hydrogen–heliummixtures at high pressure. Icarus, 73, 536–544 {567}CrossRefGoogle Scholar
Marley, MS, McKay, CP, 1999, Thermal structure of Uranus’ atmosphere. Icarus, 138, 268–286 {579}CrossRefGoogle ScholarPubMed
Marley, MS, Porco, CC, 1993, Planetary acoustic mode seismology: Saturn's rings. Icarus, 106, 508 {411}CrossRefGoogle Scholar
Marley, MS, Saumon, D, Cushing, M, et al., 2012, Masses, radii, and cloud properties of the HR 8799 planets. ApJ, 754, 135 {436, 588, 763}CrossRefGoogle Scholar
Marley, MS, Saumon, D, Goldblatt, C, 2010, A patchy cloud model for the L to T dwarf transition. ApJ, 723, L117–L121 {438}CrossRefGoogle Scholar
Marley, MS, Saumon, D, Guillot, T, et al., 1996, Atmospheric, evolutionary, and spectral models of the brown dwarf GJ 229B. Science, 272, 1919–1921 {431, 438, 579}CrossRefGoogle Scholar
Marley, MS, Seager, S, Saumon, D, et al., 2002, Clouds and chemistry: ultracool dwarf atmospheric properties from optical and infrared colours. ApJ, 568, 335–342 {579, 586}CrossRefGoogle Scholar
Marley, MS, Sengupta, S, 2011, Probing the physical properties of directly imaged gas giant exoplanets through polarisation. MNRAS, 417, 2874–2881 {247}CrossRefGoogle Scholar
Marmier, M, Ségransan, D, Udry, S, et al., 2013, The CORALIE survey for southern ex-trasolar planets. XVII. New and updated long-period and massive planets. A&A, 551, A90 {529, 719, 721, 723, 724}Google Scholar
Marocco, F, Andrei, AH, Smart, RL, et al., 2013, Parallaxes of southern extremely cool objects (PARSEC). II. Spectroscopic follow-up and parallaxes of 52 targets. AJ, 146, 161 {434}CrossRefGoogle Scholar
Marocco, F, Jones, HRA, Day-Jones, AC, et al., 2015, A large spectroscopic sample of L and T dwarfs from UKIDSS LAS: peculiar objects, binaries, and space density. MNRAS, 449, 3651–3692 {432, 435}CrossRefGoogle Scholar
Marocco, F, Smart, RL, Jones, HRA, et al., 2010, Parallaxes and physical properties of 11 mid-to-late T dwarfs. A&A, 524, A38 {434}Google Scholar
Marois, C, 2010, The International Deep Planet Survey (IDPS). In the Spirit of Lyot 2010 {358}
Marois, C, Doyon, R, Nadeau, D, et al., 2005, TRIDENT: an infrared differential imaging camera optimised for the detection of methanated substellar companions. PASP, 117, 745–756 {340}CrossRefGoogle Scholar
Marois, C, Doyon, R, Racine, R, et al., 2000, Efficient speckle noise attenuation in faint companion imaging. PASP, 112, 91–96 {339, 340}CrossRefGoogle Scholar
Marois, C, Lafrenière, D, Doyon, R, et al., 2006, Angular differential imaging: a powerful high-contrast imaging technique. ApJ, 641, 556–564 {340}CrossRefGoogle Scholar
Marois, C, Lafrenière, D, Macintosh, B, et al., 2008a, Confidence level and sensitivity limits in high-contrast imaging. ApJ, 673, 647–656 {339, 340}CrossRefGoogle Scholar
Marois, C, Macintosh, B, Barman, T, 2007, GQ Lup B visible and near-infrared photometric analysis. ApJ, 654, L151–L154 {762}CrossRefGoogle Scholar
Marois, C, Macintosh, B, Barman, T, et al., 2008b, Direct imaging of multiple planets orbiting the star HR 8799. Science, 322, 1348–1352 {10, 337, 340, 361, 362, 365, 366, 410, 763}CrossRefGoogle Scholar
Marois, C, Racine, R, Doyon, R, et al., 2004, Differential imaging with a multicolour detector assembly: a new exoplanet finder concept. ApJ, 615, L61–L64 {340}CrossRefGoogle Scholar
Marois, C, Zuckerman, B, Konopacky, QM, et al., 2010, Images of a fourth planet orbiting HR 8799. Nature, 468, 1080–1083 {11, 362, 365, 366, 763}CrossRefGoogle ScholarPubMed
Marsden, BG, 1967, The Sun-grazing comet group. AJ, 72, 1170 {509}CrossRefGoogle Scholar
Marsh, KA, Kirkpatrick, JD, Plavchan, P, 2010, A young planetary-mass object in the ρ Oph cloud core. ApJ, 709, L158–L162 {446}CrossRefGoogle Scholar
Marsh, KA, Mahoney, MJ, 1992, Evidence for unseen companions around T Tauri stars. ApJ, 395, L115–L118 {465}CrossRefGoogle Scholar
Marsh, KA, Velusamy, T, Ware, B, 2006, Point process algorithm: a new Bayesian approach for planet signal extraction with the Terrestrial Planet Finder-interferometer. AJ, 132, 1789–1795 {340}CrossRefGoogle Scholar
Marsh, KA, Wright, EL, Kirkpatrick, JD, et al., 2013, Parallaxes and proper motions of ultracool brown dwarfs of spectral types Y and late T. ApJ, 762, 119 {434}CrossRefGoogle Scholar
Marsh, ND, Svensmark, H, 2000, Low cloud properties influenced by cosmic rays. Phys. Rev. Lett., 85, 5004–5007 {655}CrossRefGoogle ScholarPubMed
Marsh, TR, Parsons, SG, Bours, MCP, et al., 2014, The planets around NNSer: still there. MNRAS, 437, 475–488 {115}CrossRefGoogle Scholar
Marshak, A, Várnai, T, Kostinski, A, 2017, Terrestrial glint seen from deep space: oriented ice crystals detected from the Lagrangian point. Geophys. Res. Lett., 44, 5197–5202 {238}CrossRefGoogle Scholar
Marshall, J, Horner, J, Carter, A, 2010, Dynamical simulations of the HR 8799 planetary system. Int. J. Astrobiol., 9, 259–264 {365, 763}CrossRefGoogle Scholar
Marshall, JP, Moro-Martín, A, Eiroa, C, et al., 2014, Correlations between the stellar, planetary, and debris components of exoplanet systems observed by Herschel. A&A, 565, A15 {493, 494}Google Scholar
Martí, JG, Beaugé, C, 2012, Stellar scattering and the origin of the planet around γ Cep A. A&A, 544, A97 {80, 714}Google Scholar
Martí, JG, Beaugé, C, 2015, Stellar scattering and the formation of hot Jupiters in binary systems. Int. J. Astrobiol., 14, 313–320 {529}CrossRefGoogle Scholar
Martí, JG, Cincotta, PM, Beaugé, C, 2016, Chaotic diffusion in the GJ 876 planetary system. MNRAS, 460, 1094–1105 {717}CrossRefGoogle Scholar
Martí, JG, Giuppone, CA, Beaugé, C, 2013, Dynamical analysis of the GJ 876 Laplace resonance. MNRAS, 433, 928–934 {717}CrossRefGoogle Scholar
Martin, A, McMinn, A, 2018, Sea ice, extremophiles and life on extra-terrestrial ocean worlds. Int. J. Astrobiol., 17, 1–16 {637}CrossRefGoogle Scholar
Martin, DV, 2017a, Circumbinary planets. II. When transits come and go. MNRAS, 465, 3235–3253 {261}CrossRefGoogle Scholar
Martin, DV, 2017b, Transit probability of precessing circumstellar planets in binaries and exo-moons. MNRAS, 467, 1694–1701 {261}Google Scholar
Martin, DV, Mazeh, T, Fabrycky, DC, 2015, No circumbinary planets transiting the tightest Kepler binaries: a possible fingerprint of a third star. MNRAS, 453, 3554–3567 {552, 553}CrossRefGoogle Scholar
Martin, DV, Triaud, AHMJ, 2014, Planets transiting non-eclipsing binaries. A&A, 570, A91 {194, 261, 550, 552, 553}Google Scholar
Martin, DV, Triaud, AHMJ, 2015, Circumbinary planets: why they are so likely to transit. MNRAS, 449, 781–793 {261, 553}CrossRefGoogle Scholar
Martin, DV, Triaud, AHMJ, 2016, Lidov–Kozai cycles towards the limit of circumbinary planets. MNRAS, 455, L46–L50 {553}CrossRefGoogle Scholar
Martin, EL, 1997, Quantitative spectroscopic criteria for the classification of pre-main sequence low-mass stars. A&A, 321, 492–496 {381}Google Scholar
Martín, EL, Delfosse, X, Guieu, S, 2004, Spectroscopic identification of DENIS-selected brown dwarf candidates in the Upper Sco OB association. AJ, 127, 449–454 {432}Google Scholar
Martín, EL, Dougados, C, Magnier, E, et al., 2001a, Four brown dwarfs in the Taurus star-forming region. ApJ, 561, L195–L198 {434}CrossRefGoogle Scholar
Martín, EL, Osorio, MRZ, 2003, Spectroscopic estimate of surface gravity for a planetary member in the ᓂ Ori cluster. ApJ, 593, L113–L116 {446}CrossRefGoogle Scholar
Martin, EL, Spruit, HC, Tata, R, 2011, A binary merger origin for inflated hot Jupiter planets. A&A, 535, A50 {498}Google Scholar
Martín, EL, Zapatero Osorio, MR, Barrado y Navascués D, et al., 2001b, Keck NIRC observations of planetary-mass candidate members in the ᓂ Ori open cluster. ApJ, 558, L117–L121 {446}CrossRefGoogle Scholar
Martín, EL, Zapatero Osorio, MR, Lehto, HJ, 2001c, Photometric variability in the ul-tracool dwarf BRI 0021–0214: evidence for dust clouds. ApJ, 557, 822–830 {440}Google Scholar
Martin, H, Albarède, F, Claeys, P, et al., 2006a, From Suns to life: a chronological approach to the history of life on Earth. IV. Building of a habitable planet. Earth Moon and Planets, 98, 97–151 {624}Google Scholar
Martin, H, Claeys, P, Gargaud, M, et al., 2006b, From Suns to life: a chronological approach to the history of life on Earth. VI. Environmental context. Earth Moon and Planets, 98, 205–245 {624}Google Scholar
Martin, RG, Armitage, PJ, Alexander, RD, 2013, Formation of circumbinary planets in a dead zone. ApJ, 773, 74 {551}CrossRefGoogle Scholar
Martin, RG, Livio, M, 2012, On the evolution of the snow line in protoplanetary disks. MNRAS, 425, L6–L9 {564, 565}CrossRefGoogle Scholar
Martin, RG, Livio, M, 2013a, On the evolution of the snow line in protoplanetary disks. II. Analytic approximations. MNRAS, 434, 633–638 {462, 565}CrossRefGoogle Scholar
Martin, RG, Livio, M, 2013b, On the formation and evolution of asteroid belts and their potential significance for life. MNRAS, 428, L11–L15 {637}CrossRefGoogle Scholar
Martin, RG, Livio, M, 2014, On the evolution of the CO snow line in protoplanetary disks. ApJ, 783, L28 {565}CrossRefGoogle Scholar
Martin, RG, Livio, M, 2015, The solar system as an exoplanetary system. ApJ, 810, 105 {451, 677}CrossRefGoogle Scholar
Martin, RG, Livio, M, 2016, On the formation of super-Earths with implications for the solar system. ApJ, 822, 90 {501}CrossRefGoogle Scholar
Martin, RG, Livio, M, Palaniswamy, D, 2016a, Why are pulsar planets rare? ApJ, 832, 122 {109}CrossRefGoogle Scholar
Martin, RG, Lubow, SH, 2011, Tidal truncation of circumplanetary disks. MNRAS, 413, 1447–1461 {463}CrossRefGoogle Scholar
Martin, RG, Lubow, SH, 2013, Propagation of the gravo-magneto disk instability. MNRAS, 432, 1616–1622 {459}CrossRefGoogle Scholar
Martin, RG, Lubow, SH, Livio, M, et al., 2012a, Dead zones around young stellar objects: dependence on physical parameters. MNRAS, 420, 3139–3146 {459}CrossRefGoogle Scholar
Martin, RG, Lubow, SH, Livio, M, 2012b, Dead zones around young stellar objects: FU Ori outbursts and transition disks. MNRAS, 423, 2718–2725 {459}CrossRefGoogle Scholar
Martin, RG, Lubow, SH, Nixon, C, et al., 2016b, Planet–disk evolution and the formation of Lidov–Kozai planets. MNRAS, 458, 4345–4353 {529}CrossRefGoogle Scholar
Martin, RG, Lubow, SH, Pringle, JE, et al., 2007, Planetary migration to large radii. MNRAS, 378, 1589–1600 {522}CrossRefGoogle Scholar
Martin, RG, Nixon, C, Lubow, SH, et al., 2014, The Lidov–Kozai mechanism in hydrodynamical disks. ApJ, 792, L33 {529}CrossRefGoogle Scholar
Martin, SR, Booth, AJ, 2010a, Demonstration of exoplanet detection using an infrared telescope array. A&A, 520, A96 {349}Google Scholar
Martin, SR, Booth, AJ, 2010b, Strong starlight suppression to enable direct detection of exoplanets in the habitable zone. A&A, 511, L1 {349}Google Scholar
Martinache, F, 2004, PIZZA: a phase-induced zonal Zernike apodisation designed for stellar coronagraphy. Journal of Optics A: Pure and Applied Optics, 6, 809–814 {334}CrossRefGoogle Scholar
Martinache, F, 2010, Kernel phase in Fizeau interferometry. ApJ, 724, 464–469 {341}CrossRefGoogle Scholar
Martinache, F, 2012, Super resolution from diffraction limited images with kernel-phases. SPIE Conf. Ser., volume 8445 {341}Google Scholar
Martinache, F, Guyon, O, Clergeon, C, et al., 2012a, Speckle control with a remapped-pupil PIAA coronagraph. PASP, 124, 1288–1294 {335}CrossRefGoogle Scholar
Martinache, F, Guyon, O, Clergeon, C, 2012b, The Subaru coronagraphic extreme AO project: first observations. SPIE Conf. Ser., volume 8447 {344}Google Scholar
Martinache, F, Lardière, O, 2006, Pupil densification: a panorama. EAS Pub. Ser., volume 22, 367–377 {355}CrossRefGoogle Scholar
Martinez, P, Aller-Carpentier, E, Kasper, M, et al., 2011, Laboratory comparison of coro-nagraphic concepts under dynamical seeing and high-order adaptive optics cor-rection. MNRAS, 414, 2112–2124 {334}CrossRefGoogle Scholar
Martinez, P, Boccaletti, A, Kasper, M, et al., 2008, Comparison of coronagraphs for high-contrast imaging in the context of extremely large telescopes. A&A, 492, 289–300 {336}Google Scholar
Martinez, P, Carpentier, EA, Kasper, M, 2010, Laboratory demonstration of efficient XAO coronagraphy in the context of VLT–SPHERE. PASP, 122, 916–923 {343}CrossRefGoogle Scholar
Martinez, P, Kasper, M, Costille, A, et al., 2013, Speckle temporal stability in XAO coro-nagraphic images. II. Refine model for quasi-static speckle temporal evolution for VLT–SPHERE. A&A, 554, A41 {339}Google Scholar
Martinez, P, Loose, C, Aller Carpentier, E, et al., 2012, Speckle temporal stability in XAO coronagraphic images. A&A, 541, A136 {339}Google Scholar
Martínez-Arnáiz, R, Maldonado, J, Montes, D, et al., 2010, Chromospheric activity and rotation of FGK stars in the solar vicinity: an estimation of the radial velocity jitter. A&A, 520, A79 {37}Google Scholar
Martínez-Barbosa, CA, Brown, AGA, Boekholt, T, et al., 2016, The evolution of the Sun's birth cluster and the search for the solar siblings with Gaia. MNRAS, 457, 1062–1075 {406}CrossRefGoogle Scholar
Martínez-Barbosa, CA, Jílková, L, Portegies Zwart, S, et al., 2017, The rate of stellar encounters along amigrating orbit of the Sun. MNRAS, 464, 2290–2300 {650, 655}CrossRefGoogle Scholar
Martínez Fiorenzano, AF, Gratton, RG, Desidera, S, et al., 2005, Line bisectors and radial velocity jitter from SARG spectra. A&A, 442, 775–784 {40}Google Scholar
Martins, JHC, Figueira, P, Santos, NC, et al., 2013, Spectroscopic direct detection of reflected light from extrasolar planets. MNRAS, 436, 1215–1224 {43, 715, 728}CrossRefGoogle Scholar
Martins, JHC, Santos, NC, Figueira, P, et al., 2015, Evidence for a spectroscopic direct detection of reflected light from 51 Peg b. A&A, 576, A134 {43, 715}Google Scholar
Martioli, E, McArthur, BE, Benedict, GF, et al., 2010, The mass of the candidate exo-planet companion to HD 136118 from HST astrometry and high-precision radial velocities. ApJ, 708, 625–634 {93}CrossRefGoogle Scholar
Marty, B, 2012, The origins and concentrations of water, carbon, nitrogen and noble gases on Earth. Earth Planet. Sci. Lett., 313, 56–66 {667}Google Scholar
Mary, DL, 2006, A statistical analysis of the detection limits of fast photometry. A&A, 452, 715–726 {188}Google Scholar
Marzari, F, 2010, Planet–planet gravitational scattering. Formation and Evolution of Exoplanets, chapter 223-242, Wiley {525}Google Scholar
Marzari, F, 2014, Dynamical behaviour of multi-planet systems close to their stability limit. MNRAS, 442, 1110–1116 {512}CrossRefGoogle Scholar
Marzari, F, Barbieri, M, 2007a, Planet dispersal in binary systems during transient multiple star phases. A&A, 472, 643–647 {549, 553}Google Scholar
Marzari, F, Barbieri, M, 2007b, Planets in binary systems: is the present configuration indicative of the formation process? A&A, 467, 347–351 {549}Google Scholar
Marzari, F, Dell'Oro, A, 2017, Collisional parameters of planetesimal belts, precursor of debris disks, perturbed by a nearby giant planet. MNRAS, 466, 3973–3988 {715, 719}CrossRefGoogle Scholar
Marzari, F, Gallina, G, 2016, Stability of multi-planet systems in binaries. A&A, 594, A89 {549}Google Scholar
Marzari, F, Picogna, G, 2013, Circumstellar disks do erase the effects of stellar fly-bys on planetary systems. A&A, 550, A64 {526}Google Scholar
Marzari, F, Picogna, G, Desidera, S, et al., 2012, Planetesimal accumulation around Kepler–16 (AB). LPI Science Conf Abstracts, volume 43, 1093 {739}Google Scholar
Marzari, F, Scholl, H, 2000, Planetesimal accretion in binary star systems. ApJ, 543, 328–339 {550}CrossRefGoogle Scholar
Marzari, F, Scholl, H, 2002, On the instability of Jupiter's Trojans. Icarus, 159, 328–338 {689}CrossRefGoogle Scholar
Marzari, F, Scholl, H, 2007, Dynamics of Jupiter Trojans during the 2:1 mean motion resonance crossing of Jupiter and Saturn. MNRAS, 380, 479–488 {697}CrossRefGoogle Scholar
Marzari, F, Scholl, H, 2013, Long term stability of Earth Trojans. Cel. Mech. Dyn. Astron., 117, 91–100 {690}CrossRefGoogle Scholar
Marzari, F, Scholl, H, Tricarico, P, 2005, Frequency map analysis of the 3:1 resonance between planets b and c in the 55 Cnc system. A&A, 442, 359–364 {728}Google Scholar
Marzari, F, Scholl, H, Tricarico, P, 2006, A numerical study of the 2:1 planetary resonance. A&A, 453, 341–348 {506}Google Scholar
Marzari, F, Thébault, P, 2011, On how optical depth tunes the effects of the interstellar mediumon debris disks. MNRAS, 416, 1890–1899 {495}CrossRefGoogle Scholar
Marzari, F, Thébault, P, Scholl, H, 2009, Planet formation in highly inclined binaries. A&A, 507, 505–511 {550}Google Scholar
Marzari, F, Thebault, P, Scholl, H, et al., 2013, Influence of the circumbinary disk gravity on planetesimal accumulation in the Kepler–16 system. A&A, 553, A71 {552, 739}Google Scholar
Marzari, F, Weidenschilling, SJ, 2002, Eccentric extrasolar planets: the jumping Jupiter model. Icarus, 156, 570–579 {525}CrossRefGoogle Scholar
Masciadri, E, Lascaux, F, Hagelin, S, et al., 2010a, Optical turbulence above the internal Antarctic plateau. EAS Pub. Ser., volume 40, 55–64 {347}CrossRefGoogle Scholar
Masciadri, E, Mundt, R, Henning, T, et al., 2005, A search for hot massive extrasolar planets around nearby young stars with the adaptive optics system NACO. ApJ, 625, 1004–1018 {358}CrossRefGoogle Scholar
Masciadri, E, Raga, A, 2004, Exoplanet recognition using a wavelet analysis technique. ApJ, 611, L137–L140 {340}CrossRefGoogle Scholar
Masciadri, E, Stoesz, J, Hagelin, S, et al., 2010b, Optical turbulence vertical distribution with standard and high resolution at Mt Graham. MNRAS, 404, 144–158 {332}Google Scholar
Mashhoon, B, 2003, Gravitoelectromagnetism: a brief review. ArXiv General Relativity and Quantum Cosmology e-prints {257}
Masiero, J, 2017, Palomar optical spectrum of hyperbolic near-Earth object Oumua-mua. ArXiv e-prints {693}
Mason, BD, Hartkopf, WI, Raghavan, D, et al., 2011, Know the star, know the planet. II. Speckle interferometry of exoplanet host stars. AJ, 142, 176 {332, 360}CrossRefGoogle Scholar
Mason, PA, Zuluaga, JI, Clark, JM, et al., 2013, Rotational synchronisation may enhance habitability for circumbinary planets: Kepler binary case studies. ApJ, 774, L26 {623, 739, 740, 741, 742}CrossRefGoogle Scholar
Mason, PA, Zuluaga, JI, Cuartas-Restrepo, PA, et al., 2015a, Circumbinary habitability niches. Int. J. Astrobiol., 14, 391–400 {550, 623}CrossRefGoogle Scholar
Mason, PA, Zuluaga, JI, Zhilkin, AG, et al., 2015b, Constraints on circumbinary habitability. Living Together: Planets, Host Stars and Binaries, volume 496 of ASP Conf. Ser., 405 {623}Google Scholar
Massarotti, A, 2008, Stellar rotation and planet ingestion in giants. AJ, 135, 2287–2290 {383}CrossRefGoogle Scholar
Masset, F, 2000, FARGO: a fast Eulerian transport algorithm for differentially rotating disks. A&AS, 141, 165–173 {462}Google Scholar
Masset, FS, 2001, On the co-orbital corotation torque in a viscous disk and its impact on planetary migration. ApJ, 558, 453–462 {519}CrossRefGoogle Scholar
Masset, FS, 2011, On type I migration near opacity transitions: a generalised Lindblad torque formula for planetary population synthesis. Cel. Mech. Dyn. Astron., 111, 131–160 {519}CrossRefGoogle Scholar
Masset, FS, Casoli, J, 2009, On the horseshoe drag of a low-mass planet. II. Migration in adiabatic disks. ApJ, 703, 857–876 {519}CrossRefGoogle Scholar
Masset, FS, Casoli, J, 2010, Saturated torque formula for planetary migration in viscous diskswith thermal diffusion: recipe for protoplanet population synthesis. ApJ, 723, 1393–1417 {519}CrossRefGoogle Scholar
Masset, FS, D'Angelo, G, Kley, W, 2006, On themigration of protogiant solid cores. ApJ, 652, 730–745 {518, 521}CrossRefGoogle Scholar
Masset, FS, Kley, W, 2006, Disk-planet interaction and migration. Planet Formation, 216–235, Cambridge University Press {467}
Masset, FS, Ogilvie, GI, 2004, On the saturation of corotation resonances: a numerical study. ApJ, 615, 1000–1010 {523}CrossRefGoogle Scholar
Masset, FS, Papaloizou, JCB, 2003, Runaway migration and the formation of hot Jupiters. ApJ, 588, 494–508 {521, 699}CrossRefGoogle Scholar
Masset, FS, Snellgrove, M, 2001, Reversing type II migration: resonance trapping of a lighter giant protoplanet. MNRAS, 320, L55–L59 {522, 698, 699}CrossRefGoogle Scholar
Mastrapa, RME, Glanzberg, H, Head, JN, et al., 2001, Survival of bacteria exposed to extreme acceleration: implications for panspermia. Earth Planet. Sci. Lett., 189, 1–2 {638}CrossRefGoogle Scholar
Mastrobuono-Battisti, A, Perets, HB, 2017, The composition of solar system asteroids and Earth/Mars moons, and the Earth-Moon composition similarity. MNRAS, 469, 3597–3609 {664}CrossRefGoogle Scholar
Mastrobuono-Battisti, A, Perets, HB, Raymond, SN, 2015, A primordial origin for the compositional similarity between the Earth and the Moon. Nature, 520, 212–215 {664}CrossRefGoogle Scholar
Masuda, K, 2014, Very lowdensity planets around Kepler–51 revealed with transit timing variations and an anomaly similar to a planet–planet eclipse event. ApJ, 783, 53 {15, 225, 741}CrossRefGoogle Scholar
Masuda, K, 2015, Spin–orbit angles of Kepler–13A b and HAT–P–7 b from gravity-darkened transit light curves. ApJ, 805, 28 {735, 739}CrossRefGoogle Scholar
Masuda, K, 2017, Eccentric companions to Kepler–448 b and Kepler–693 b: clues to the formation of warm Jupiters. AJ, 154, 64 {272, 746}CrossRefGoogle Scholar
Masuda, K, Hirano, T, Taruya, A, et al., 2013, Characterisation of the KOI–94 system with transit timing variation analysis: implication for the planet–planet eclipse. ApJ, 778, 185 {179, 225, 226, 272, 742}CrossRefGoogle Scholar
Masuda, K, Suto, Y, 2016, Transiting planets as a precision clock to constrain the time variation of the gravitational constant. PASJ, 68, L5 {257, 736, 738, 739, 745, 751}CrossRefGoogle Scholar
Masuda, K, Winn, JN, 2017, Reassessment of the null result of the HST search for planets in 47 Tuc. AJ, 153, 187 {159}CrossRefGoogle Scholar
Masunaga, H, Inutsuka Si, 2000, A radiation hydrodynamic model for protostellar collapse. II. The second collapse and the birth of a protostar. ApJ, 531, 350–365 {489}CrossRefGoogle Scholar
Matese, JJ, Whitman, PG, 1989, The Galactic disk tidal field and the nonrandom distribution of observed Oort cloud comets. Icarus, 82, 389–401 {686}CrossRefGoogle Scholar
Matese, JJ, Whitmire, DP, 2011, Persistent evidence of a Jovian mass solar companion in the Oort cloud. Icarus, 211, 926–938 {687}CrossRefGoogle Scholar
Matese, JJ, Whitmire, DP, Lissauer, JJ, 2005, A wide binary solar companion as a possible origin of Sedna-like objects. Earth Moon and Planets, 97, 459–470 {650}Google Scholar
Mathews, GS, Williams, JP, Ménard, F, 2012a, 880μm imaging of a transition disk in Upper Scorpius: holdover from the era of giant planet formation? ApJ, 753, 59 {465}CrossRefGoogle Scholar
Mathews, GS, Williams, JP, Ménard, F, et al., 2012b, The late stages of protoplanetary disk evolution: a millimeter survey of Upper Scorpius. ApJ, 745, 23 {465}CrossRefGoogle Scholar
Mathieu, RD, 1994, Pre-main-sequence binary stars. ARA&A, 32, 465–530 {547, 548}Google Scholar
Mathieu, RD, Ghez, AM, Jensen, ELN, et al., 2000, Young binary stars and associated disks. Protostars and Planets IV, 703–709 {548}
Mathis, JS, Rumpl, W, Nordsieck, KH, 1977, The size distribution of interstellar grains. ApJ, 217, 425–433 {496}CrossRefGoogle Scholar
Mathis, S, Auclair-Desrotour, P, Guenel, M, et al., 2016, The impact of rotation on turbulent tidal friction in stellar and planetary convective regions. A&A, 592, A33 {542}Google Scholar
Mathis, S, Le Poncin-Lafitte, C, Remus, F, 2013, Tides in planetary systems. Lecture Notes in Physics, Berlin Springer Verlag, volume 861 of Lecture Notes in Physics, Berlin Springer Verlag, 255 {531}Google Scholar
Mathis, S, Remus, F, 2013, Tides in planetary systems and inmultiple stars: a physical picture. Lecture Notes in Physics, Berlin Springer Verlag, volume 857 of Lecture Notes in Physics, Berlin Springer Verlag, 111–147 {545}Google Scholar
Mathur, S, Hekker, S, Trampedach, R, et al., 2011, Granulation in red giants: observations by the Kepler mission and three-dimensional convection simulations. ApJ, 741, 119 {307}CrossRefGoogle Scholar
Mathur, S, Huber, D, Batalha, NM, et al., 2017, Revised stellar properties of Kepler targets for the Q1–17 (DR25) transit detection run. ApJS, 229, 30 {307}CrossRefGoogle Scholar
Matijevic, G, Prša, A, Orosz, JA, et al., 2012, Kepler eclipsing binary stars. III. Classification of Kepler eclipsing binary light curves with locally linear embedding. AJ, 143, 123 {411}CrossRefGoogle Scholar
Matrà, L, Dent, WRF, Wyatt, MC, et al., 2017a, Exocometary gas structure, origin and physical properties around fl Pic through ALMA CO multitransition observations. MNRAS, 464, 1415–1433 {762}CrossRefGoogle Scholar
Matrà, L, MacGregor, MA, Kalas, P, et al., 2017b, Detection of exocometary CO within the 440Myr old Fomalhaut belt: a similar CO+CO2 ice abundance in exocomets and solar system comets. ApJ, 842, 9 {761}CrossRefGoogle Scholar
Matrà, L, Panić, O, Wyatt, MC, et al., 2015, CO mass upper limits in the Fomalhaut ring: the importance of NLTE excitation in debris disks and future prospectswith ALMA. MNRAS, 447, 3936–3947 {761}CrossRefGoogle Scholar
Matranga, M, Drake, JJ, Kashyap, VL, et al., 2010, Close binaries with infrared excess: destroyers of worlds? ApJ, 720, L164 {554}CrossRefGoogle Scholar
Matsakos, T, Königl, A, 2015, A hot Jupiter for breakfast? Early stellar ingestion of planets may be common. ApJ, 809, L20 {255, 311}CrossRefGoogle Scholar
Matsakos, T, Königl, A, 2016, On the origin of the sub-Jovian desert in the orbital-period-planetary-mass plane. ApJ, 820, L8 {294, 499}CrossRefGoogle Scholar
Matsakos, T, Königl, A, 2017, The gravitational interaction between planets on inclined orbits and proto-planetary disks as the origin of primordial spin–orbit misalignments. AJ, 153, 60 {654}CrossRefGoogle Scholar
Matsakos, T, Tzeferacos, P, Königl, A, 2016, A wind-driving disk model for the mm-wavelength polarisation structure of HL Tau. MNRAS, 463, 2716–2724 {466}CrossRefGoogle Scholar
Matsakos, T, Uribe, A, Königl, A, 2015, Classification of magnetised star–planet interactions: bow shocks, tails, and inspiraling flows. A&A, 578, A6 {422}Google Scholar
Matsui, T, Abe, Y, 1986, Impact-induced atmospheres and oceans on Earth and Venus. Nature, 322, 526–528 {576, 597}CrossRefGoogle Scholar
Matsumoto, K, Yamada, R, Kikuchi, F, et al., 2015a, Internal structure of the Moon inferred from Apollo seismic data and selenodetic data from GRAIL and LLR. Geo-phys. Res. Lett., 42, 7351–7358 {665}CrossRefGoogle Scholar
Matsumoto, Y, Kokubo, E, 2017, Formation of close-in super-Earths by giant impacts: effects of initial eccentricities and inclinations of protoplanets. AJ, 154, 27 {476}CrossRefGoogle Scholar
Matsumoto, Y, Nagasawa, M, Ida, S, 2012, The orbital stability of planets trapped in the first-order mean-motion resonances. Icarus, 221, 624–631 {501, 507}CrossRefGoogle Scholar
Matsumoto, Y, Nagasawa, M, Ida, S, 2015b, Eccentricity evolution through accretion of protoplanets. ApJ, 810, 106 {501}CrossRefGoogle Scholar
Matsumura, S, Brasser, R, Ida, S, 2016, Effects of dynamical evolution of giant planets on the delivery of atmophile elements during terrestrial planet formation. ApJ, 818, 15 {697}CrossRefGoogle Scholar
Matsumura, S, Brasser, R, Ida, S, 2017, N-body simulations of planet formation via pebble accretion. I. First results. A&A, 607, A67 {472}Google Scholar
Matsumura, S, Ida, S, Nagasawa, M, 2013, Effects of dynamical evolution of giant planets on survival of terrestrial planets. ApJ, 767, 129 {523}CrossRefGoogle Scholar
Matsumura, S, Peale, SJ, Rasio, FA, 2010a, Tidal evolution of close-in planets. ApJ, 725, 1995–2016 {310, 535, 539}CrossRefGoogle Scholar
Matsumura, S, Pudritz, RE, 2003, The origin of Jovian planets in protostellar disks: the role of dead zones. ApJ, 598, 645–656 {459}CrossRefGoogle Scholar
Matsumura, S, Pudritz, RE, 2005, Dead zones and the origin of planetary masses. ApJ, 618, L137–L140 {459, 521}CrossRefGoogle Scholar
Matsumura, S, Pudritz, RE, 2006, Dead zones and extrasolar planetary properties. MNRAS, 365, 572–584 {459}CrossRefGoogle Scholar
Matsumura, S, Pudritz, RE, Thommes, EW, 2007, Saving planetary systems: dead zones and planetary migration. ApJ, 660, 1609–1623 {459}CrossRefGoogle Scholar
Matsumura, S, Takeda, G, Rasio, FA, 2008, On the origins of eccentric close-in planets. ApJ, 686, L29–L32 {536, 544}CrossRefGoogle Scholar
Matsumura, S, Thommes, EW, Chatterjee, S, et al., 2010b, Unstable planetary systems out of gas disks. ApJ, 714, 194–206 {319, 507, 508, 525}CrossRefGoogle Scholar
Matsuo, T, Itoh, S, Shibai, H, et al., 2016, A new concept for spectrophotometry of exo-planets with space-borne telescopes. ApJ, 823, 139 {351, 355}CrossRefGoogle Scholar
Matsuo, T, Kotani, T, Murakami, N, et al., 2012, Second-Earth imager for TMT (SEIT): concept and its numerical simulation. Ground-based and Airborne Instrumentation for Astronomy IV, volume 8446 of Proc. SPIE, 84461K {346}Google Scholar
Matsuo, T, Murakami, N, Kotani, T, et al., 2014, High-contrast planet imager for the Kyoto 4-m segmented telescope. Ground-based and Airborne Instrumentation for Astronomy V, volume 9147 of Proc. SPIE, 91471V {346}Google Scholar
Matsuo, T, Shibai, H, Ootsubo, T, et al., 2007, Planetary formation scenarios revisited: core-accretion versus disk instability. ApJ, 662, 1282–1292 {391, 488}CrossRefGoogle Scholar
Matsuo, T, Traub, WA, Hattori, M, et al., 2011, A new concept for direct imaging and spectral characterisation of exoplanets in multi-planet systems. ApJ, 729, 50 {341}CrossRefGoogle Scholar
Matsuyama, I, Johnstone, D, Hollenbach, D, 2009, Dispersal of protoplanetary disks by central wind stripping. ApJ, 700, 10–19 {462}CrossRefGoogle Scholar
Matsuyama, I, Johnstone, D, Murray, N, 2003, Halting planet migration by photo-evaporation from the central source. ApJ, 585, L143–L146 {521}CrossRefGoogle Scholar
Matsuyama, I, Nimmo, F, Keane, JT, et al., 2016, , GRAIL, LLR Geophys. Res. Lett., 43, 8365–8375 {665}Google Scholar
Matter, A, Vannier, M, Morel, S, et al., 2010, First step to detect an extrasolar planet using simultaneous observations with the VLTI instruments AMBER and MIDI. A&A, 515, A69 {348, 716}Google Scholar
Matthews, B, Kennedy, G, Sibthorpe, B, et al., 2014a, Resolved imaging of the HR 8799 debris disk with Herschel. ApJ, 780, 97 {12, 763}CrossRefGoogle Scholar
Matthews, BC, Greaves, JS, Holland, WS, et al., 2007, An unbiased survey of 500 nearby stars for debris disks: a JCMT legacy programme. PASP, 119, 842–854 {493}CrossRefGoogle Scholar
Matthews, BC, Kavelaars, J, 2016, Insights into planet formation from debris disks: I. The solar system as an archetype for planetesimal evolution. Space Sci. Rev., 205, 213–230 {681}CrossRefGoogle Scholar
Matthews, BC, Kennedy, G, Sibthorpe, B, et al., 2015, The AU Mic debris disk: far-infrared and sub-mmresolved imaging. ApJ, 811, 100 {494}CrossRefGoogle Scholar
Matthews, BC, Krivov, AV, Wyatt, MC, et al., 2014b, Observations, modeling, and theory of debris disks. Protostars and Planets VI, 521–544 {492}
Matthews, N, Kieda, D, LeBohec, S, 2017, Development of a digital astronomical intensity interferometer: laboratory tests with thermal light. ArXiv e-prints {354}
Matthews, RAJ, 1994, The close approach of stars in the solar neighbourhood. QJRAS, 35, 1 {655}Google Scholar
Mattox, JR, Halpern, JP, Caraveo, PA, 1998, Timing the Geminga pulsar with gamma-ray observations. ApJ, 493, 891–893 {109}CrossRefGoogle Scholar
Mattsson, L, Gomez, HL, Andersen, AC, et al., 2014, The Herschel exploitation of local galaxy Andromeda (HELGA). V. Strengthening the case for substantial interstellar grain growth. MNRAS, 444, 797–807 {495}CrossRefGoogle Scholar
Matzner, CD, Levin, Y, 2005, Protostellar disks: formation, fragmentation, and the brown dwarf desert. ApJ, 628, 817–831 {65, 442, 488, 498, 523}CrossRefGoogle Scholar
Maunder, EW, 1904, Note on the distribution of sun spots in heliographic latitude, 1874–1902. MNRAS, 64, 747–761 {213}CrossRefGoogle Scholar
Maurice, M, Tosi, N, Samuel, H, et al., 2017, Onset of solid-state mantle convection and mixing during magma ocean solidification. J. Geophys. Res. (Planets), 122, 577–598 {576}Google Scholar
Maurin, AS, Selsis, F, Hersant, F, et al., 2012, Thermal phase curves of nontransiting terrestrial exoplanets. II. Characterising airless planets. A&A, 538, A95 {237}Google Scholar
Mawet, D, Absil, O, Delacroix, C, et al., 2013, L’-band AGPM vector vortex coronagraph first light on VLT–NACO: discovery of a late-type companion at two beamwidths from an F0V star. A&A, 552, L13 {337, 338}Google Scholar
Mawet, D, Absil, O, Montagnier, G, et al., 2012a, Direct imaging of extrasolar planets in star-forming regions: lessons learned from a false positive around IM Lup. A&A, 544, A131 {363}Google Scholar
Mawet, D, Choquet É, Absil, O, et al., 2017a, Characterisation of the inner disk around HD 141569A from Keck–NIRC2 L-band vortex coronagraphy. AJ, 153, 44 {338, 343}CrossRefGoogle Scholar
Mawet, D, Pueyo, L, Lawson, P, et al., 2012b, Review of small-angle coronagraphic techniques in the wake of ground-based second-generation adaptive optics systems. SPIE Conf. Ser., volume 8442 {333, 340, 342, 359}Google Scholar
Mawet, D, Riaud, P, Absil, O, et al., 2005, Annular groove phasemask coronagraph. ApJ, 633, 1191–1200 {334, 337}CrossRefGoogle Scholar
Mawet, D, Ruane, G, Xuan, W, et al., 2017b, Observing exoplanets with high-dispersion coronagraphy. II. Demonstration of an active single-mode fiber injection unit. ApJ, 838, 92 {341}CrossRefGoogle Scholar
Mawet, D, Serabyn, E, Liewer, K, et al., 2009, Optical vectorial vortex coronagraphs using liquid crystal polymers: theory, manufacturing and laboratory demonstration. Optics Express, 17, 1902–1918 {335, 336, 337}CrossRefGoogle ScholarPubMed
Mawet, D, Serabyn, E, Liewer, K, 2010, The vector vortex coronagraph: laboratory results and first light at Palomar Observatory. ApJ, 709, 53–57 {337, 340}CrossRefGoogle Scholar
Maxted, PFL, 2016, ellc: A fast, flexible light curve model for detached eclipsing binary stars and transiting exoplanets. A&A, 591, A111 {196}Google Scholar
Maxted, PFL, Anderson, DR, Collier Cameron, A, et al., 2010a, WASP–32 b: a transiting hot Jupiter planet orbiting a lithium-poor, solar-type star. PASP, 122, 1465–1470 {754}CrossRefGoogle Scholar
Maxted, PFL, Anderson, DR, Collier Cameron, A, 2011, WASP–41 b: a transiting hot Jupiter planet orbiting a magnetically active G8V star. PASP, 123, 547–554 {755}CrossRefGoogle Scholar
Maxted, PFL, Anderson, DR, Collier Cameron, A, 2013a, WASP–77A b: a transiting hot Jupiter in a wide binary system. PASP, 125, 48–55 {12, 756}CrossRefGoogle Scholar
Maxted, PFL, Anderson, DR, Collier Cameron, A, 2016, Five transiting hot Jupiters discovered using WASP–South, Euler, and TRAPPIST: WASP–119 b, WASP–124 b, WASP–126 b, WASP–129 b, and WASP–133 b. A&A, 591, A55 {757}Google Scholar
Maxted, PFL, Anderson, DR, Doyle, AP, et al., 2013b, Spitzer 3.6 and 4.5μm full-orbit light curves of WASP–18. MNRAS, 428, 2645–2660 {615, 753}CrossRefGoogle Scholar
Maxted, PFL, Anderson, DR, Gillon, M, et al., 2010b, WASP–22 b: a transiting hot Jupiter planet in a hierarchical triple system. AJ, 140, 2007–2012 {754}CrossRefGoogle Scholar
Maxted, PFL, Marsh, TR, Heber, U, et al., 2002, Photometry of four binary subdwarf B stars and the nature of their unseen companion stars. MNRAS, 333, 231–240 {234}CrossRefGoogle Scholar
Maxted, PFL, Marsh, TR, North, RC, 2000, KPD 1930+2752: a candidate Type Ia supernova progenitor. MNRAS, 317, L41–L44 {239}CrossRefGoogle Scholar
Maxted, PFL, Serenelli, AM, Southworth, J, 2015a, Bayesian mass and age estimates for transiting exoplanet host stars. A&A, 575, A36 {381}Google Scholar
Maxted, PFL, Serenelli, AM, Southworth, J, 2015b, Comparison of gyrochronological and isochronal age estimates for transiting exoplanet host stars. A&A, 577, A90 {384, 728, 731, 732, 733, 734, 736, 737, 739, 740, 742, 750, 752, 754, 755, 756}Google Scholar
May, EM, Rauscher, E, 2016, Examining Tatooine: atmospheric models of Neptune-like circumbinary planets. ApJ, 826, 225 {553}CrossRefGoogle Scholar
May, JL, Jennetti, T, 2004, Telescope resolution using negative refractive index materials. SPIE Conf. Ser., volume 5166, 220–227 {357}Google Scholar
Mayama, S, Hashimoto, J, Muto, T, et al., 2012, Subaru imaging of asymmetric features in a transition disk in Upper Scorpius. ApJ, 760, L26 {359, 465}CrossRefGoogle Scholar
Mayama, S, Tamura, M, Hanawa, T, et al., 2010, Direct imaging of bridged twin proto-planetary disks in a young multiple star. Science, 327, 306–307 {368}CrossRefGoogle Scholar
Mayer, L, 2010, Formation via disk instability. Formation and Evolution of Exoplanets, 71–100, Wiley {488}
Mayer, L, Lufkin, G, Quinn, T, et al., 2007, Fragmentation of gravitationally unstable gaseous protoplanetary disks with radiative transfer. ApJ, 661, L77–L80 {488, 490}CrossRefGoogle Scholar
Mayer, L, Peters, T, Pineda, JE, et al., 2016, Direct detection of precursors of gas giants formed by gravitational instability with ALMA. ApJ, 823, L36 {490}CrossRefGoogle Scholar
Mayer, L, Quinn, T, Wadsley, J, et al., 2004, The evolution of gravitationally unstable protoplanetary disks: fragmentation and possible giant planet formation. ApJ, 609, 1045–1064 {488}CrossRefGoogle Scholar
Mayer, L, Wadsley, J, Quinn, T, et al., 2005, Gravitational instability in binary proto-planetary disks: new constraints on giant planet formation. MNRAS, 363, 641–648 {79, 550}CrossRefGoogle Scholar
Mayhew, PJ, Bell, MA, Benton, TG, et al., 2012, Biodiversity tracks temperature over time. PNAS, 109(38), 15141–15145 {632}CrossRefGoogle ScholarPubMed
Mayne, NJ, Debras, F, Baraffe, I, et al., 2017, Results from a set of 3d numerical experiments of a hot Jupiter atmosphere. A&A, 604, A79 {733}Google Scholar
Mayo, AW, Vanderburg, A, Latham, DW, et al., 2018, 275 candidates and 149 validated planets orbiting bright stars in K2 campaigns), 0–10. AJ, 155, 136 {177, 749}CrossRefGoogle Scholar
Mayor, M, 1980, Metal abundances of F and G dwarfs determined by the radial velocity scanner CORAVEL. A&A, 87, L1–L2 {29}Google Scholar
Mayor, M, Bonfils, X, Forveille, T, et al., 2009a, The HARPS search for southern extra-solar planets. XVIII. An Earth-mass planet in the GJ 581 planetary system. A&A, 507, 487–494 {10, 46, 55, 59, 77, 716}Google Scholar
Mayor, M, Lovis, C, Santos, NC, 2014, Doppler spectroscopy as a path to the detection of Earth-like planets. Nature, 513, 328–335 {53, 157}CrossRefGoogle ScholarPubMed
Mayor, M, Marmier, M, Lovis, C, et al., 2011, The HARPS search for southern extrasolar planets. Occurrence, mass and orbital properties of super-Earths and Neptune-mass planets [unpublished]. ArXiv e-prints {11, 66, 67, 149, 485, 500, 724}
Mayor, M, Pepe, F, Queloz, D, et al., 2003, Setting new standards with HARPS. The Mes-senger, 114, 20–24 {32, 45, 46}Google Scholar
Mayor, M, Queloz, D, 1995, A Jupiter-mass companion to a solar-type star. Nature, 378, 355–359 {1, 10, 34, 46, 50, 715}CrossRefGoogle Scholar
Mayor, M, Queloz, D, 2012, From 51 Peg to Earth-type planets. New Astron. Rev., 56, 19–24 {51, 369, 715}CrossRefGoogle Scholar
Mayor, M, Udry, S, Lovis, C, et al., 2009b, The HARPS search for southern extrasolar planets. XIII. A planetary system with 3 super-Earths (4.2, 6.9, and 9.2 M⊕). A&A, 493, 639–644 {51, 52, 66, 77, 155, 719}Google Scholar
Mayor, M, Udry, S, Naef, D, et al., 2004, The CORALIE survey for southern extrasolar planets. XII. Orbital solutions for 16 extrasolar planets discovered with CORALIE. A&A, 415, 391–402 {70, 74, 414, 509, 718, 720, 721, 722, 723, 724}Google Scholar
Mazeh, T, 2008, Observational evidence for tidal interaction in close binary systems. EAS Pub. Ser., volume 29, 1–65 {534}CrossRefGoogle Scholar
Mazeh, T, Faigler, S, 2010, Detection of the ellipsoidal and the relativistic beaming effects in the CoRoT–3 light curve. A&A, 521, L59 {11, 173, 190, 236, 238, 239, 241, 733}Google Scholar
Mazeh, T, Guterman, P, Aigrain, S, et al., 2009a, Removing systematics from the CoRoT light curves. I. Magnitude-dependent zero point. A&A, 506, 431–434 {172, 190}Google Scholar
Mazeh, T, Holczer, T, Faigler, S, 2016, Dearth of short-period Neptunian exoplanets: a desert in period–mass and period–radius planes. A&A, 589, A75 {294, 499}Google Scholar
Mazeh, T, Holczer, T, Shporer, A, 2015a, Time variation of Kepler transits induced by stellar rotating spots: a way to distinguish between prograde and retrograde motion. I. Theory. ApJ, 800, 142 {215}CrossRefGoogle Scholar
Mazeh, T, Krymolowski, Y, Rosenfeld, G, 1997, The high eccentricity of the planet orbiting 16 Cyg B. ApJ, 477, L103–L106 {79, 80, 529, 715}CrossRefGoogle Scholar
Mazeh, T, Nachmani, G, Holczer, T, et al., 2013, Transit timing observations from Kepler. VIII. Catalogue of transit timing measurements of the first twelve quarters. ApJS, 208, 16 {263, 269, 270, 271, 272, 275, 305, 745}CrossRefGoogle Scholar
Mazeh, T, Nachmani, G, Sokol, G, et al., 2012, Kepler KOI–13.01: detection of beaming and ellipsoidal modulations pointing to a massive hot Jupiter. A&A, 541, A56 {11, 238, 242, 739}Google Scholar
Mazeh, T, Naef, D, Torres, G, et al., 2000, The spectroscopic orbit of the planetary companion transiting HD 209458. ApJ, 532, L55–L58 {185, 731}CrossRefGoogle ScholarPubMed
Mazeh, T, Perets, HB, McQuillan, A, et al., 2015b, Photometric amplitude distribution of stellar rotation of KOIs: indication for spin–orbit alignment of cool stars and high obliquity for hot stars. ApJ, 801, 3 {214}CrossRefGoogle Scholar
Mazeh, T, Shaham, J, 1979, The orbital evolution of close triple systems: the binary eccentricity. A&A, 77, 145–151 {528, 553}Google Scholar
Mazeh, T, Tsodikovich, Y, Segal, Y, et al., 2009b, TRIMOR: three-dimensional correlation technique to analyse multi-order spectra of triple stellar systems: application to HD 188753. MNRAS, 399, 906–913 {39, 80}CrossRefGoogle Scholar
Mazeh, T, Zucker, S, 1994, TODCOR: a two-dimensional correlation technique to analyze stellar spectra in search of faint companions. Ap&SS, 212, 349–356 {39}Google Scholar
Mazeh, T, Zucker, S, dalla Torre, A, et al., 1999, Analysis of the Hipparcos measurements of À And: a mass estimate of its outermost known planetary companion. ApJ, 522, L149–L151 {70, 94, 713}CrossRefGoogle Scholar
Mazeh, T, Zucker, S, Pont, F, 2005, An intriguing correlation between the masses and periods of the transiting planets. MNRAS, 356, 955–957 {293, 423}CrossRefGoogle Scholar
Mazin, BA, Meeker, SR, Strader, MJ, et al., 2013, ARCONS: a 2024 pixel optical through near-infrared cryogenic imaging spectrophotometer. PASP, 125, 1348 {183}CrossRefGoogle Scholar
Mbarek, R, Kempton, EMR, 2016, Clouds in super-Earth atmospheres: chemical equi-libriumcalculations. ApJ, 827, 121 {599, 735}CrossRefGoogle Scholar
McAlister, HA, ten Brummelaar, TA, Gies, DR, et al., 2005, First results from the CHARA array. I. An interferometric and spectroscopic study of the fast rotator α Leo (Regulus). ApJ, 628, 439–452 {216, 245}CrossRefGoogle Scholar
McArthur, BE, Benedict, GF, Barnes, R, et al., 2010, New observational constraints on the À And system with data from the Hubble Space Telescope and Hobby–Eberly Telescope. ApJ, 715, 1203–1220 {10, 69, 75, 92, 93, 243, 713}CrossRefGoogle Scholar
McArthur, BE, Benedict, GF, Henry, GW, et al., 2014, Astrometry, radial velocity, and photometry: the HD 128311 system remixed with data from HST, HET, and APT. ApJ, 795, 41 {93, 722}CrossRefGoogle Scholar
McArthur, BE, Endl, M, Cochran, WD, et al., 2004, Detection of a Neptune-mass planet in the 55 Cnc system using the Hobby–Eberly telescope. ApJ, 614, L81–L84 {71, 92, 728}CrossRefGoogle Scholar
McBreen, B, Hanlon, L, 1999, Gamma-ray bursts and the origin of chondrules and planets. A&A, 351, 759–765 {653}Google Scholar
McBreen, B, Winston, E, McBreen, S, et al., 2005, Gamma-ray bursts and other sources of giant lightning discharges in protoplanetary systems. A&A, 429, L41–L45 {653}Google Scholar
McBride, J, Graham, JR, Macintosh, B, et al., 2011, Experimental design for the Gemini Planet Imager. PASP, 123, 692–708 {344}CrossRefGoogle Scholar
McCabe, M, Lucas, H, 2010, On the origin and evolution of life in the Galaxy. Int. J. Astrobiol., 9, 217–226 {636}CrossRefGoogle Scholar
McCarthy, C, Butler, RP, Tinney, CG, et al., 2004, Multiple companions to HD 154857 and HD 160691. ApJ, 617, 575–579 {71, 713, 722}CrossRefGoogle Scholar
McCarthy, C, Zuckerman, B, 2004, The brown dwarf desert at 75–1200 au. AJ, 127, 2871–2884 {65, 357, 358, 414, 441}CrossRefGoogle Scholar
McCarthy, DW, Probst, RG, Low, FJ, 1985, Infrared detection of a close cool companion to Van Biesbroeck 8. ApJ, 290, L9–L13 {431}CrossRefGoogle Scholar
McCauliff, SD, Jenkins, JM, Catanzarite, J, et al., 2015, Automatic classification of Kepler planetary transit candidates. ApJ, 806, 6 {194, 197}CrossRefGoogle Scholar
McClure, MK, Manoj, P, Calvet, N, et al., 2012, Probing dynamical processes in the planet-forming region with dust mineralogy. ApJ, 759, L10 {762}CrossRefGoogle Scholar
McColley, G, 1936, The seventeenth-century doctrine of a plurality of worlds. Annals of Science, 1(4), 385–430 {639}CrossRefGoogle Scholar
McCook, GP, Sion, EM, 1987, A catalog of spectroscopically identified white dwarfs. ApJS, 65, 603–671 {413}CrossRefGoogle Scholar
McCook, GP, Sion, EM, 1999, A catalogue of spectroscopically identified white dwarfs. ApJS, 121, 1–130 {413}CrossRefGoogle Scholar
McCord, TB, Sotin, C, 2005, Ceres: evolution and current state. J. Geophys. Res. (Planets), 110, E05009 {565}CrossRefGoogle Scholar
McCormac, BM, Evans, JE, 1969, Consequences of very small planetary magnetic moments. Nature, 223, 1255 {663}CrossRefGoogle Scholar
McCormac, J, Pollacco, D, Wheatley, PJ, et al., 2017, The Next Generation Transit Survey: prototyping phase. PASP, 129(2), 025002 {167}CrossRefGoogle Scholar
McCormac, J, Skillen, I, Pollacco, D, et al., 2014, A search for photometric variability towards M71 with the Near-Infrared Transiting Exoplanet Telescope. MNRAS, 438, 3383–3398 {159, 182}CrossRefGoogle Scholar
McCracken, KG, Beer, J, Steinhilber, F, 2014, Evidence for planetary forcing of the cosmic ray intensity and solar activity throughout the past 9400 years. Sol. Phys., 289, 3207–3229 {656}CrossRefGoogle Scholar
McCracken, RA, Charsley, JM, Reid, DT, 2017a, Decade of astrocombs: recent advances in frequency combs for astronomy. Optics Express, 25, 15058 {33}CrossRefGoogle Scholar
McCracken, RA, Depagne É, Kuhn, RB, et al., 2017b, Wavelength calibration of a high resolution spectrograph with a partially stabilized 15-GHz astrocomb from 550–890 nm. Optics Express, 25, 6450 {33}CrossRefGoogle Scholar
McCrea, WH, 1960, The origin of the solar system. Phil. Trans. Soc. London A, 256, 245–266 {450}Google Scholar
McCrea, WH, 1988, Formation of the solar system: brief review and revised protoplanet theory. The Physics of the Planets, 421–439 {450}
McCullough, PR, Berta, ZK, Howard, AW, et al., 2012, SSET: spatially-scanned spectra of exoplanet transits. AAS Abstracts #219, 241.14 {185}Google Scholar
McCullough, PR, Burke, CJ, Valenti, JA, et al., 2008, XO–4 b: an extrasolar planet transiting an F5V star [unpublished]. ArXiv e-prints {757}
McCullough, PR, Crouzet, N, Deming, D, et al., 2014a, Water vapour in the spectrumof the exoplanet HD 189733 b. I. The transit. ApJ, 791, 55 {609, 730}CrossRefGoogle Scholar
McCullough, PR, Crouzet, N, Deming, D, 2014b, WFC3: precision infrared spectrophotometry with spatial scans of HD 189733 b and Vega. AAS Abstracts #223, 347.21 {185}Google Scholar
McCullough, PR, Stys, JE, Valenti, JA, et al., 2005, The XO project: searching for transiting extrasolar planet candidates. PASP, 117, 783–795 {169}CrossRefGoogle Scholar
McCullough, PR, Stys, JE, Valenti, JA, 2006, A transiting planet of a Sun-like star. ApJ, 648, 1228–1238 {757}CrossRefGoogle Scholar
McDonald, I, Kerins, E, 2018, Pre-discovery transits of the exoplanets WASP–18 b and WASP–33 b from Hipparcos. MNRAS, 477, L21–L24 {186, 735, 737, 754}CrossRefGoogle Scholar
McDonald, I, Kerins, E, Penny, M, et al., 2014, ExELS: an exoplanet legacy science proposal for the ESA Euclid mission. II. Hot exoplanets and sub-stellar systems. MNRAS, 445, 4137–4154 {143}CrossRefGoogle Scholar
McDougall, A, Albrow, MD, 2016, Microlensing observations rapid search for exo-planets: MORSE code for GPUs. MNRAS, 456, 565–570 {131}CrossRefGoogle Scholar
McElroy, MB, Prather, MJ, 1981, Noble gases in the terrestrial planets. Nature, 293, 535–539 {600}CrossRefGoogle Scholar
McElwain, MW, Brandt, TD, Janson, M, et al., 2012, Scientific design of a high contrast integral field spectrograph for the Subaru Telescope. SPIE Conf. Ser., volume 8446 {344}Google Scholar
McElwain, MW, Metchev, SA, Larkin, JE, et al., 2007, First high-contrast science with an integral field spectrograph: the substellar companion to GQ Lup. ApJ, 656, 505–514 {762}CrossRefGoogle Scholar
McEwen, AS, Isbell, NR, Edwards, KE, et al., 1992, New Voyager 1 hot spot identifications and the heat flow of Io. AAS Bulletin, volume 24, 935 {544}Google Scholar
McFadden, L, Thomas, PC, Carcich, B, et al., 2007, Observations of Vesta with HST–WFPC2 in 2007. AAS Bulletin, volume 38, 469 {478}Google Scholar
McFadden, PL, Merrill, RT, 1986, Geodynamo energy source constraints from palaeo-magnetic data. Physics of the Earth and Planetary Interiors, 43, 22–33 {663}CrossRefGoogle Scholar
McGinnis, PT, Alencar, SHP, Guimarães, MM, et al., 2015, CSI 2264: probing the inner disks of AA Tau-like systems in NGC 2264. A&A, 577, A11 {466}Google Scholar
McGlynn, TA, Chapman, RD, 1989, On the nondetection of extrasolar comets. ApJ, 346, L105–L108 {692}CrossRefGoogle Scholar
McGrath, MA, Nelan, E, Black, DC, et al., 2002, An upper limit to the mass of the radial velocity companion to ρ1 Cnc (55 Cnc). ApJ, 564, L27–L30 {92, 94, 728}CrossRefGoogle Scholar
McInerney, FA, Wing, SL, 2011, The Paleocene–Eocene Thermal Maximum: a perturbation of carbon cycle, climate, and biosphere with implications for the future. Ann. Rev. Earth Plan. Sci., 39, 489–516 {675}CrossRefGoogle Scholar
McIvor, T, Jardine, M, Holzwarth, V, 2006, Extrasolar planets, stellar winds and chromo-spheric hotspots. MNRAS, 367, L1–L5 {421, 425}CrossRefGoogle Scholar
McKay, CP, 1998, Life in the planetary context. Origins, volume 148 of ASP Conf. Ser., 449–455 {618}Google Scholar
McKay, CP, Pollack, JB, Courtin, R, 1989, The thermal structure of Titan's atmosphere. Icarus, 80, 23–53 {579}CrossRefGoogle ScholarPubMed
McKay, DS, Gibson EK Jr, Thomas-Keprta, KL, et al., 1996, Search for past life on Mars: possible relic biogenic activity in Martian meteorite ALH84001. Science, 273, 924–930 {636}CrossRefGoogle ScholarPubMed
McKee, CF, Ostriker, EC, 2007, Theory of star formation. ARA&A, 45, 565–687 {451, 452, 547}Google Scholar
McKee, CF, Taylor, JH, 2000, Astronomy and Astrophysics in the New Millennium: Report of the Astronomy and Astrophysics Survey Committee. National Academy Press, Washington DC {352, 353}Google Scholar
McKenna, J, Lyne, AG, 1988, Timing measurements of the binary millisecond pulsar in the globular cluster M4. Nature, 336, 226–228 {108}Google Scholar
McKenzie, NR, Horton, BK, Loomis, SE, et al., 2016, Continental arc volcanism as the principal driver of icehouse-greenhouse variability. Science, 352, 444–447 {676}CrossRefGoogle ScholarPubMed
McLaughlin, DB, 1924, Some results of a spectrographic study of the Algol system. ApJ, 60, 22–31 {248}CrossRefGoogle Scholar
McLean, IS, Sprayberry, D, 2003, Instrumentation at the Keck observatory. Instrument Design and Performance for Optical/Infrared Ground-based Telescopes, volume 4841 of Proc. SPIE, 1–6 {343}Google Scholar
McLeod, KK, Rodriguez, JE, Oelkers, RJ, et al., 2017, KELT–18 b: puffy planet, hot host, probably perturbed. AJ, 153, 263 {738}CrossRefGoogle Scholar
McMahon, RG, Banerji, M, Gonzalez, E, et al., 2013, First scientific results from the VISTA Hemisphere Survey (VHS). The Messenger, 154, 35–37 {433}Google Scholar
McMillan, RS, Moore, TL, Perry, ML, et al., 1994, Long, accurate time series measurements of radial velocities of solar-type stars. Ap&SS, 212, 271–280 {46}Google Scholar
McMillan, RS, Smith, PH, Perry, ML, et al., 1990, Long-term stability of a Fabry–Pérot interferometer used for measurement of stellar Doppler shift. SPIE Conf. Ser., volume 1235, 601–609 {46, 50}Google Scholar
McNally, CP, Hubbard, A, Mac Low, MM, et al., 2013, Mineral processing by short circuits in protoplanetary disks. ApJ, 767, L2 {653}CrossRefGoogle Scholar
McNally, CP, McClure, MK, 2017, Photophoretic levitation and trapping of dust in the inner regions of protoplanetary disks. ApJ, 834, 48 {458}CrossRefGoogle Scholar
McNeil, D, Duncan, M, Levison, HF, 2005, Effects of type I migration on terrestrial planet formation. AJ, 130, 2884–2899 {518}CrossRefGoogle Scholar
McNeil, DS, Nelson, RP, 2009, New methods for large dynamic range problems in planetary formation. MNRAS, 392, 537–552 {513}CrossRefGoogle Scholar
McNeil, DS, Nelson, RP, 2010, On the formation of hot Neptunes and super-Earths. MNRAS, 401, 1691–1708 {487, 500, 501, 502}CrossRefGoogle Scholar
McQuillan, A, Aigrain, S, Mazeh, T, 2013a, Measuring the rotation period distribution of field Mdwarfs with Kepler. MNRAS, 432, 1203–1216 {309, 310, 383}CrossRefGoogle Scholar
McQuillan, A, Mazeh, T, Aigrain, S, 2013b, Stellar rotation periods of the Kepler Objects of Interest: a dearth of close-in planets around fast rotators. ApJ, 775, L11 {254, 309, 310, 383}CrossRefGoogle Scholar
McQuillan, A, Mazeh, T, Aigrain, S, 2014, Rotation periods of 34 030 Kepler main-sequence stars: the full autocorrelation sample. ApJS, 211, 24 {309, 310, 383, 384, 386}CrossRefGoogle Scholar
McSween, HY, 1985, SNC meteorites: clues to Martian petrologic evolution? Reviews of Geophysics, 23, 391–416 {670}CrossRefGoogle Scholar
McSween, HY, Huss, GR, 2010, Cosmochemistry. Cambridge University Press {562}CrossRefGoogle Scholar
McTier, MAS, Kipping, DM, 2018, Findingmountains with molehills: the detectability of exotopography. MNRAS, 475, 4978–4985 {221, 616}CrossRefGoogle Scholar
Meadows, VS, 2008, Planetary environmental signatures for habitability and life. Exo-planets: Detection, Formation, Properties, Habitability, 259–284, Springer {640, 641}
Meadows, VS, 2017, Reflections on O2 as a biosignature in exoplanetary atmospheres. Astrobi-ology, 17, 1022–1052 {638}Google ScholarPubMed
Mecheri, R, Abdelatif, T, Irbah, A, et al., 2004, New values of gravitational moments J2 and J4 deduced from helioseismology. Sol. Phys., 222, 191–197 {258}CrossRefGoogle Scholar
Mede, K, Brandt, TD, 2017, The Exoplanet Simple Orbit Fitting Toolbox (ExoSOFT): an open-source tool for efficient fitting of astrometric and radial velocity data. AJ, 153, 135 {24}CrossRefGoogle Scholar
Medvedev, AS, Sethunadh, J, Hartogh, P, 2013, From cold to warm gas giants: a three-dimensional atmospheric general circulation modeling. Icarus, 225, 228–235 {591, 721, 722}CrossRefGoogle Scholar
Medvedev, YD, Vavilov, DE, Bondarenko, YS, et al., 2017, Improvement of the position of Planet X based on the motion of nearly parabolic comets. Astronomy Letters, 43, 120–125 {687}CrossRefGoogle Scholar
Meech, KJ, Weryk, R, Micheli, M, et al., 2017, A brief visit from a red and extremely elongated interstellar asteroid. Nature, 552, 378–381 {12, 693}CrossRefGoogle ScholarPubMed
Meeus, J, Vitagliano, A, 2004, Simultaneous transits. J. Br. Astron. Assoc., 114, 132–135 {227}Google Scholar
Meheut, H, Keppens, R, Casse, F, et al., 2012a, Formation and long-term evolution of 3d vortices in protoplanetary disks. A&A, 542, A9 {461}Google Scholar
Meheut, H, Meliani, Z, Varniere, P, et al., 2012b, Dust-trapping Rossby vortices in proto-planetary disks. A&A, 545, A134 {461}Google Scholar
Mehrabi, A, He, H, Khosroshahi, H, 2017, Magnetic activity analysis for a sample of G-type main sequence Kepler targets. ApJ, 834, 207 {383}CrossRefGoogle Scholar
Mehrabi, A, Rahvar, S, 2013, Studying wave optics in the light curves of exoplanet microlensing. MNRAS, 431, 1264–1274 {426}CrossRefGoogle Scholar
Meibom, S, Barnes, SA, Latham, DW, et al., 2011a, The Kepler cluster study: stellar rotation in NGC 6811. ApJ, 733, L9 {158, 309}CrossRefGoogle Scholar
Meibom, S, Barnes, SA, Platais, I, et al., 2015, A spin-down clock for cool stars from observations of a 2.5-billion-year-old cluster. Nature, 517, 589–591 {380}CrossRefGoogle ScholarPubMed
Meibom, S, Mathieu, RD, Stassun, KG, 2009, Stellar rotation in M35: mass–period relations, spin-down rates, and gyrochronology. ApJ, 695, 679–694 {310}CrossRefGoogle Scholar
Meibom, S, Mathieu, RD, Stassun, KG, et al., 2011b, The colour-period diagram and stellar rotational evolution: new rotation period measurements in the open clus-ter M34. ApJ, 733, 115 {380}CrossRefGoogle Scholar
Meibom, S, Torres, G, Fressin, F, et al., 2013, The same frequency of planets inside and outside open clusters of stars. Nature, 499, 55–58 {12, 159, 742}CrossRefGoogle Scholar
Meier, MMM, Holm-Alwmark, S, 2017, A tale of clusters: no resolvable periodicity in the terrestrial impact cratering record. MNRAS, 467, 2545–2551 {654}Google Scholar
Meier, MMM, Reufer, A, Wieler, R, 2014, On the origin and composition of Theia: constraints from new models of the giant impact. Icarus, 242, 316–328 {664}CrossRefGoogle Scholar
Meisner, AM, Bromley, BC, Nugent, PE, et al., 2017, Searching for Planet Nine with coadded WISE and NEOWISE-reactivation images. AJ, 153, 65 {687}CrossRefGoogle Scholar
Meisner, T, Wurm, G, Teiser, J, 2012, Experiments on cm-sized dust aggregates and their implications for planetesimal formation. A&A, 544, A138 {468}Google Scholar
Meisner, T, Wurm, G, Teiser, J, et al., 2013, Preplanetary scavengers: growing tall in dust collisions. A&A, 559, A123 {468}Google Scholar
Mejía, AC, Durisen, RH, Pickett, MK, et al., 2005, The thermal regulation of gravitational instabilities in protoplanetary disks. II. Extended simulations with varied cooling rates. ApJ, 619, 1098–1113 {489}CrossRefGoogle Scholar
Mékarnia, D, Chapellier, E, Guillot, T, et al., 2017, The – Scuti pulsations of fl Pic as observed by ASTEP from Antarctica. A&A, 608, L6 {762}Google Scholar
Mékarnia, D, Guillot, T, Rivet, JP, et al., 2016, Transiting planet candidates with ASTEP 400 at Dome C, Antarctica. MNRAS, 463, 45–62 {169}CrossRefGoogle Scholar
Mekhaldi, F, Muscheler, R, Adolphi, F, et al., 2015, Multiradionuclide evidence for the solar origin of the cosmic-ray events of 774/5 and 993/4. Nature Communications, 6, 8611 {628}CrossRefGoogle ScholarPubMed
Meléndez, J, Asplund, M, Gustafsson, B, et al., 2009, The peculiar solar composition and its possible relation to planet formation. ApJ, 704, L66–L70 {405}CrossRefGoogle Scholar
Meléndez, J, Bedell, M, Bean, JL, et al., 2017, The Solar Twin Planet Search. V. Close-in, low-mass planet candidates and evidence of planet accretion in the solar twin HIP 68468. A&A, 597, A34 {405}Google Scholar
Meléndez, J, Bergemann, M, Cohen, JG, et al., 2012, The remarkable solar twin HIP 56948: a prime target in the quest for other Earths. A&A, 543, A29 {405}Google Scholar
Meléndez, J, Schirbel, L, Monroe, TR, et al., 2014, HIP 114328: a new refractory-poor and Li-poor solar twin. A&A, 567, L3 {405}Google Scholar
Melis, C, Duchêne, G, Chomiuk, L, et al., 2011a, Microwave observations of edge-on protoplanetary disks: programme overview and first results. ApJ, 739, L7 {465}CrossRefGoogle Scholar
Melis, C, Dufour, P, 2017, Does a differentiated, carbonate-rich, rocky object pollute the white dwarf SDSS J1043+08555? ApJ, 834, 1 {418}CrossRefGoogle Scholar
Melis, C, Farihi, J, Dufour, P, et al., 2011b, Accretion of a terrestrial-like minor planet by a white dwarf. ApJ, 732, 90 {417}CrossRefGoogle Scholar
Melis, C, Gielen, C, Chen, CH, et al., 2010a, Shocks and a giant planet in the disk orbiting BP Pis? ApJ, 724, 470–479 {464}CrossRefGoogle Scholar
Melis, C, Jura, M, Albert, L, et al., 2010b, Echoes of a decaying planetary system: the gaseous and dusty disks surrounding three white dwarfs. ApJ, 722, 1078–1091 {416}CrossRefGoogle Scholar
Melis, C, Zuckerman, B, Rhee, JH, et al., 2012, Rapid disappearance of a warm, dusty circumstellar disk. Nature, 487, 74–76 {497}CrossRefGoogle ScholarPubMed
Melis, C, Zuckerman, B, Rhee, JH, 2013, Copious amounts of hot and cold dust orbiting the main sequence A-type stars HD 131488 and HD 121191. ApJ, 778, 12 {493}CrossRefGoogle Scholar
Melnikov, AV, 2017, Orbital dynamics of the planetary system HD 196885. Solar Sys-tem Research, 51, 327–334 {724}Google Scholar
Melo, C, Santos, NC, Gieren, W, et al., 2007, A new Neptune-mass planet orbiting HD 219828. A&A, 467, 721–727 {38, 49, 721, 724}Google Scholar
Melo, C, Santos, NC, Pont, F, et al., 2006, On the age of stars harbouring transiting planets. A&A, 460, 251–256 {381, 749, 750}Google Scholar
Melosh, HJ, 2003, Exchange of meteorites (and life?) between stellar systems. Astro-biology, 3, 207–215 {638}Google ScholarPubMed
Melosh, HJ, Freed, AM, Johnson, BC, et al., 2013, The origin of lunar mascon basins. Science, 340, 1552–1555 {665}CrossRefGoogle ScholarPubMed
Melosh, HJ, Vickery, AM, 1989, Impact erosion of the primordial atmosphere of Mars. Nature, 338, 487–489 {600, 602}CrossRefGoogle ScholarPubMed
Melott, AL, Bambach, RK, 2014, Analysis of periodicity of extinction using the 2012 geological timescale. Paleobiology, 40(2), 177–196, ISSN 0094-8373 {651}CrossRefGoogle Scholar
Melott, AL, Thomas, BC, 2009, Late Ordovician geographic patterns of extinction com-paredwith simulations of astrophysical ionising radiation damage. Paleobiology, 35, 311 {651}CrossRefGoogle Scholar
Melott, AL, Thomas, BC, 2012, Causes of an AD 774–775 14C increase. Nature, 491, E1 {628}CrossRefGoogle ScholarPubMed
Mendeleev, DI, 1877, L'origine du pétrole. Revue Scientifique, 2e Ser.,, 8, 409–416 {598}Google Scholar
Mendelowitz, C, Ge, J, Mandell, AM, et al., 2004, A search for sodium absorption from comets around HD 209458. ApJ, 601, 1120–1128 {731}CrossRefGoogle Scholar
Méndez, A, 2006, The planetary habitability classification. LPI Science Conf Abstracts, volume 37, 2396 {635}Google Scholar
Méndez, A, Rivera-Valentín, EG, 2017, The equilibrium temperature of planets in elliptical orbits. ApJ, 837, L1 {286, 620, 634}CrossRefGoogle Scholar
Mendigutía, I, Oudmaijer, RD, Garufi, A, et al., 2017, The protoplanetary system HD 100546 in Hα polarised light from SPHERE/ZIMPOL: a bar-like structure across the disk gap? A&A, 608, A104 {763}Google Scholar
Mendillo, CB, Chakrabarti, S, Cook, TA, et al., 2012, Flight demonstration of a milliarc-second pointing system for direct exoplanet imaging. Appl. Opt., 51, 7069 {350}CrossRefGoogle Scholar
Mendonça, JM, Grimm, SL, Grosheintz, L, et al., 2016, THOR: a new and flexible global circulation model to explore planetary atmospheres. ApJ, 829, 115 {593}CrossRefGoogle Scholar
Mendonça, JM, Malik, M, Demory, BO, et al., 2018, Revisiting the phase curves of WASP–43 b: confronting re-analysed Spitzer data with cloudy atmospheres. AJ, 155, 150 {755}CrossRefGoogle Scholar
Meng, HYA, Rieke, GH, Su, KYL, et al., 2012, Variability of the infrared excess of extreme debris disks. ApJ, 751, L17 {368, 497, 498}CrossRefGoogle Scholar
Meng, HYA, Rieke, GH, Su, KYL, 2017, The first 40 million years of circumstellar disk evolution: the signature of terrestrial planet formation. ApJ, 836, 34 {452}CrossRefGoogle Scholar
Meng, HYA, Su, KYL, Rieke, GH, et al., 2014, Large impacts around a solar-analogue star in the era of terrestrial planet formation. Science, 345, 1032–1035 {368}CrossRefGoogle Scholar
Meng, HYA, Su, KYL, Rieke, GH, 2015, Planetary collisions outside the solar system: time domain characterisation of extreme debris disks. ApJ, 805, 77 {498}CrossRefGoogle Scholar
Mengel, MW, Fares, R, Marsden, SC, et al., 2016, The evolving magnetic topology of τ Boo. MNRAS, 459, 4325–4342 {47, 714}CrossRefGoogle Scholar
Mengel, MW, Marsden, SC, Carter, BD, et al., 2017, A BCool survey of the magnetic fields of planet-hosting solar-type stars. MNRAS, 465, 2734–2747 {421}CrossRefGoogle Scholar
Mennesson, B, Absil, O, Lebreton, J, et al., 2013, An interferometric study of the Fomalhaut inner debris disk. II. Keck nuller mid-IR observations. ApJ, 763, 119 {761}CrossRefGoogle Scholar
Mennesson, B, Akeson, R, Appleby, E, et al., 2006, Long baseline nulling interferometry with the Keck telescopes: a progress report. IAU Colloq. 200: Direct Imaging of Exoplanets: Science and Techniques, 227–232 {349}
Mennesson, B, Gaudi, BS, Seager, S, et al., 2016, The Habitable Exoplanet (HabEx) imaging mission: preliminary science drivers and technical requirements. SPIE Conf. Ser., volume 9904 of Proc. SPIE, 99040L {353}Google Scholar
Mennesson, B, Léger, A, Ollivier, M, 2005, Direct detection and characterisation of ex-trasolar planets: the Mariotti space interferometer. Icarus, 178, 570–588 {352}CrossRefGoogle Scholar
Mennesson, B, Mariotti, JM, 1997, Array configurations for a space infrared nulling interferometer dedicated to the search for Earth-like extrasolar planets. Icarus, 128, 202–212 {352}CrossRefGoogle Scholar
Mennesson, B, Millan-Gabet, R, Colavita, MM, et al., 2012, Keck interferometer nuller science highlights. SPIE Conf. Ser., volume 8445 {349}Google Scholar
Mennesson, B, Shao, M, Levine, BM, et al., 2003, Optical planet discoverer: how to turn a 1.5-mclass space telescope into a powerful exo-planetary systems imager. SPIE Conf. Ser., volume 4860, 32–44 {334, 353}Google Scholar
Menou, K, 2012a, Atmospheric circulation and composition of GJ 1214 b. ApJ, 744, L16 {593, 613, 734}CrossRefGoogle Scholar
Menou, K, 2012b, Magnetic scaling laws for the atmospheres of hot giant exoplanets. ApJ, 745, 138 {591}CrossRefGoogle Scholar
Menou, K, 2012c, Thermo-resistive instability of hot planetary atmospheres. ApJ, 754, L9 {303}CrossRefGoogle Scholar
Menou, K, 2013, Water-trapped worlds. ApJ, 774, 51 {621}CrossRefGoogle Scholar
Menou, K, 2015, Climate stability of habitable Earth-like planets. Earth Planet. Sci. Lett., 429, 20–24 {630, 631}CrossRefGoogle Scholar
Menou, K, Cho, JYK, Seager, S, et al., 2003, Weather variability of close-in extrasolar giant planets. ApJ, 587, L113–L116 {593}CrossRefGoogle Scholar
Menou, K, Goodman, J, 2004, Low-mass protoplanet migration in T Tauri α-disks. ApJ, 606, 520–531 {521}CrossRefGoogle Scholar
Menou, K, Rauscher, E, 2009, Atmospheric circulation of hot Jupiters: a shallow three-dimensionalmodel. ApJ, 700, 887–897 {593, 596}CrossRefGoogle Scholar
Menou, K, Rauscher, E, 2010, Radiation hydrodynamics of hot Jupiter atmospheres. ApJ, 713, 1174–1182 {591}CrossRefGoogle Scholar
Menou, K, Tabachnik, S, 2003, Dynamical habitability of known extrasolar planetary systems. ApJ, 583, 473–488 {514, 623}CrossRefGoogle Scholar
Merín, B, Ardila, DR, Ribas Á, et al., 2014, Herschel–PACS photometry of transiting-planet host stars with candidate warmdebris disks. A&A, 569, A89 {494}Google Scholar
Merlin, F, 2015, New constraints on the surface of Pluto. A&A, 582, A39 {682}Google Scholar
Merlis, TM, Schneider, T, 2010, Atmospheric dynamics of Earth-like tidally-locked aquaplanets. Journal of Advances in Modeling Earth Systems, 2, 13 {593}CrossRefGoogle Scholar
Meru, F, Bate, MR, 2010, Exploring the conditions required to form giant planets via gravitational instability in massive protoplanetary disks. MNRAS, 406, 2279–2288 {488, 489, 490}CrossRefGoogle Scholar
Meru, F, Bate, MR, 2011a, Non-convergence of the critical cooling time-scale for fragmentation of self-gravitating disks. MNRAS, 411, L1–L5 {488}CrossRefGoogle Scholar
Meru, F, Bate, MR, 2011b, On the fragmentation criteria of self-gravitating protoplanetary disks. MNRAS, 410, 559–572 {488}CrossRefGoogle Scholar
Meru, F, Bate, MR, 2012, On the convergence of the critical cooling time scale for the fragmentation of self-gravitating disks. MNRAS, 427, 2022–2046 {490}CrossRefGoogle Scholar
Meru, F, Galvagni, M, Olczak, C, 2013a, Growth of grains in brown dwarf disks. ApJ, 774, L4 {446}CrossRefGoogle Scholar
Meru, F, Geretshauser, RJ, Schäfer, C, et al., 2013b, Growth and fragmentation of cm-sized dust aggregates: the dependence on aggregate size and porosity. MNRAS, 435, 2371–2390 {446, 469}CrossRefGoogle Scholar
Mesa, D, Gratton, R, Berton, A, et al., 2011, Simulation of planet detection with the VLT–SPHERE integral field spectrograph. A&A, 529, A131 {344}Google Scholar
Mesa, D, Gratton, R, Zurlo, A, et al., 2015, Performance of the planet finder VLT–SPHERE. II. Data analysis and results for IFS in laboratory. A&A, 576, A121 {344}Google Scholar
Mesa, D, Zurlo, A, Milli, J, et al., 2017, Upper limits for mass and radius of objects around Proxima Cen from SPHERE/VLT. MNRAS, 466, L118–L122 {714}CrossRefGoogle Scholar
Meschiari, S, 2012a, Circumbinary planet formation in the Kepler–16 system. I. N-body simulations. ApJ, 752, 71 {552, 739}CrossRefGoogle Scholar
Meschiari, S, 2012b, Planet formation in circumbinary configurations: turbulence inhibits planetesimal accretion. ApJ, 761, L7 {551}CrossRefGoogle Scholar
Meschiari, S, 2014, Circumbinary planet formation in the Kepler–16 system. II. A toy model for in situ planet formation within a debris belt. ApJ, 790, 41 {552, 739}CrossRefGoogle Scholar
Meschiari, S, Laughlin, G, 2008, The potential impact of groove modes on type II plan-etarymigration. ApJ, 679, L135–L138 {520}CrossRefGoogle Scholar
Meschiari, S, Laughlin, G, Vogt, SS, et al., 2011, The Lick–Carnegie Survey: four new exoplanet candidates. ApJ, 727, 117 {719, 720, 721, 723, 724}CrossRefGoogle Scholar
Meschiari, S, Laughlin, GP, 2010, Systemic: a testbed for characterising the detection of extrasolar planets. II. Numerical approaches to the transit timing inverse problem. ApJ, 718, 543–550 {25, 271}CrossRefGoogle Scholar
Meschiari, S, Wolf, AS, Rivera, E, et al., 2009, Systemic: a testbed for characterising the detection of extrasolar planets. I. The systemic console package. PASP, 121, 1016–1027 {25}CrossRefGoogle Scholar
Meshkat, T, Bailey, V, Rameau, J, et al., 2013, Further evidence of the planetary nature of HD 95086 b from Gemini–NICI H-band data. ApJ, 775, L40 {762}CrossRefGoogle Scholar
Meshkat, T, Bailey, VP, Su, KYL, et al., 2015, Searching for planets in holey debris disks with the apodising phase plate. ApJ, 800, 5 {494}CrossRefGoogle Scholar
Meshkat, T, Kenworthy, MA, Quanz, SP, et al., 2014, Optimised principal component analysis on coronagraphic images of the Fomalhaut system. ApJ, 780, 17 {761}CrossRefGoogle Scholar
Meshkat, T, Mawet, D, Bryan, ML, et al., 2017, A direct imaging survey of Spitzer-detected debris disks: occurrence of giant planets in dusty systems. AJ, 154, 245 {494}CrossRefGoogle Scholar
Mestel, L, 1965a, Problems of star formation I. QJRAS, 6,), 161 {386}Google Scholar
Mestel, L, 1965b, Problems of star formation II. QJRAS, 6, 265 {386}Google Scholar
Mestre, MF, Cincotta, PM, Giordano, CM, 2011, Analytical relation between two chaos indicators: FLI and MEGNO. MNRAS, 414, L100–L103 {515, 516}CrossRefGoogle Scholar
Metcalfe, TS, Basu, S, Henry, TJ, et al., 2010, Discovery of a 1.6 year magnetic activity cycle in the exoplanet host star ι Hor. ApJ, 723, L213–L217 {421, 725}CrossRefGoogle Scholar
Metcalfe, TS, Buccino, AP, Brown, BP, et al., 2013, Magnetic activity cycles in the exo-planet host star yatt MC, et al., 2005, Structure in the Eri. ApJ, 763, L26 {421, 715}CrossRefGoogle Scholar
Metcalfe, TS, Chaplin, WJ, Appourchaux, T, et al., 2012, Asteroseismology of the solar analogues 16 Cyg A and B from Kepler observations. ApJ, 748, L10 {715}CrossRefGoogle Scholar
Metcalfe, TS, Creevey, OL, Davies, GR, 2015, Asteroseismic modeling of 16 Cyg A and B using the complete Kepler data set. ApJ, 811, L37 {715}CrossRefGoogle Scholar
Metchev, SA, Heinze, A, Apai, D, et al., 2015, Weather on otherworlds. II. Survey results: spots are ubiquitous on L and T dwarfs. ApJ, 799, 154 {440}CrossRefGoogle Scholar
Metchev, SA, Hillenbrand, LA, 2006, HD 203030B: an unusually cool young substellar companion near the L/T transition. ApJ, 651, 1166–1176 {362, 438, 763}CrossRefGoogle Scholar
Metchev, SA, Hillenbrand, LA, 2009, The Palomar/Keck adaptive optics survey of young solar analogues: evidence for a universal companion mass function. ApJS, 181, 62–109 {358}CrossRefGoogle Scholar
Metchev, SA, Marois, C, Zuckerman, B, 2009, Pre-discovery 2007 image of the HR 8799 planetary system. ApJ, 705, L204–L207 {763}CrossRefGoogle Scholar
Metropolis, N, Rosenbluth, AW, Rosenbluth, MN, et al., 1953, Equation-of-state calculations by fast computing machines. J. Chem. Phys., 21, 1087–1092 {25}CrossRefGoogle Scholar
Metzger, BD, Giannios, D, Spiegel, DS, 2012a, Optical and X-ray transients from planet-star mergers. MNRAS, 425, 2778–2798 {369}CrossRefGoogle Scholar
Metzger, BD, Rafikov, RR, Bochkarev, KV, 2012b, Global models of runaway accretion in white dwarf debris disks. MNRAS, 423, 505–528 {416}CrossRefGoogle Scholar
Metzger, BD, Shen, KJ, Stone, N, 2017, Secular dimming of KIC–8462852 following its consumption of a planet. MNRAS, 468, 4399–4407 {747}CrossRefGoogle Scholar
Meunier, N, Desort, M, Lagrange, A, 2010a, Using the Sun to estimate Earth-like planets detection capabilities. II. Impact of plages. A&A, 512, A39 {37, 38, 86}Google Scholar
Meunier, N, Lagrange, AM, 2013a, Using the Sun to estimate Earth-like planets detection capabilities. IV. Correcting for the convective component. A&A, 551, A101 {37, 38, 86}Google Scholar
Meunier, N, Lagrange, AM, 2013b, Using the Sun to study the impact of stellar activity on exoplanet detectability. Astron. Nach., 334, 141 {38, 86}CrossRefGoogle Scholar
Meunier, N, Lagrange, AM, Borgniet, S, 2017, A new method of correcting radial velocity time series for inhomogeneous convection. A&A, 607, A6 {30}Google Scholar
Meunier, N, Lagrange, AM, Borgniet, S, et al., 2015, Using the Sun to estimate Earth-like planet detection capabilities. VI. Simulation of granulation and supergranu-lation radial velocity and photometric time series. A&A, 583, A118 {38, 86}Google Scholar
Meunier, N, Lagrange, AM, Desort, M, 2010b, Reconstructing the solar integrated radial velocity using SOHO–MDI. A&A, 519, A66 {657}Google Scholar
Meyer, BS, Zinner, E, 2006, Nucleosynthesis. Meteorites and the Early Solar System II, 69–108, University of Arizona Press {653}
Meyer, E, Kürster, M, Arcidiacono, C, et al., 2011, Astrometry with the MCAO instrument MAD: an analysis of single-epoch data obtained in the layer-oriented mode. A&A, 532, A16 {83}Google Scholar
Meyer, MR, Amara, A, Reggiani, M, et al., 2017, Mdwarf exoplanet surface density distribution: a log-normal fit from 0.07–400 au. ArXiv e-prints {148, 484}
Meynet, G, Eggenberger, P, Privitera, G, et al., 2017, Star–planet interactions. IV. Possibility of detecting the orbit-shrinking of a planet around a red giant. A&A, 602, L7 {412}Google Scholar
Mia, R, Kushvah, BS, 2016, Orbital dynamics of exoplanetary systems Kepler–62, HD 200964 and Kepler–11. MNRAS, 457, 1089–1100 {508, 724, 739, 741}CrossRefGoogle Scholar
Micela, G, Sciortino, S, Serio, S, et al., 1985, Einstein X-ray survey of the Pleiades: the dependence of X-ray emission on stellar age. ApJ, 292, 172–180 {423}CrossRefGoogle Scholar
Michael, G, Basilevsky, A, Neukum, G, 2018, On the history of the early meteoritic bombardment of the Moon: was there a terminal lunar cataclysm? Icarus, 302, 80–103 {669}CrossRefGoogle Scholar
Michael, S, Durisen, RH, 2010, Stellar motion induced by gravitational instabilities in protoplanetary disks. MNRAS, 406, 279–289 {490}CrossRefGoogle Scholar
Michael, S, Durisen, RH, Boley, AC, 2011, Migration of gas giant planets in gravitationally unstable disks. ApJ, 737, L42 {489, 519}CrossRefGoogle Scholar
Michaely, E, Perets, HB, Grishin, E, 2017, On the existence of regular and irregular outer moons orbiting the Pluto–Charon system. ApJ, 836, 27 {682}CrossRefGoogle Scholar
Michalik, D, Lindegren, L, Hobbs, D, et al., 2014, Joint astrometric solution of Hippar-cos and Gaia: a recipe for the Hundred Thousand Proper Motions project. A&A, 571, A85 {99}Google Scholar
Michałowski, MJ, 2015, Dust production 680–850Myr after the Big Bang. A&A, 577, A80 {495}Google Scholar
Michel, P, DeMeo, FE, Bottke, WF, 2015, Asteroids IV. Univ. Arizona Press {651}CrossRefGoogle Scholar
Michel, P, Morbidelli, A, 2007, Review of the population of impactors and the impact cratering rate in the inner solar system. Meteor. Plan. Sci., 42, 1861–1869 {671}Google Scholar
Michikoshi, S, Inutsuka Si, Kokubo, E, et al., 2007, N-body simulation of planetesimal formation through gravitational instability of a dust layer. ApJ, 657, 521–532 {488}CrossRefGoogle Scholar
Michikoshi, S, Kokubo, E, 2011, Formation of a propeller structure by a moonlet in a dense planetary ring. ApJ, 732, L23 {691}CrossRefGoogle Scholar
Michikoshi, S, Kokubo, E, Inutsuka, SI, 2010, N-body simulation of planetesimal formation through gravitational instability of a dust layer in laminar gas disk. ApJ, 719, 1021–1031 {488}CrossRefGoogle Scholar
Michtchenko, TA, Beaugé, C, Ferraz-Mello, S, 2008a, Dynamic portrait of the planetary 2:1 mean-motion resonance. I. Systems with a more massive outer planet. MNRAS, 387, 747–758 {506}CrossRefGoogle Scholar
Michtchenko, TA, Beaugé, C, Ferraz-Mello, S, 2008b, Dynamic portrait of the planetary 2:1mean-motion resonance. II. Systems with amore massive inner planet. MNRAS, 391, 215–227 {506}CrossRefGoogle Scholar
Michtchenko, TA, Ferraz-Mello, S, 2001a, Modeling the 5:2 mean motion resonance in the Jupiter–Saturn planetary system. Icarus, 149, 357–374 {75}CrossRefGoogle Scholar
Michtchenko, TA, Ferraz-Mello, S, 2001b, Resonant structure of the outer solar system in the neighbourhood of the planets. AJ, 122, 474–481 {515}CrossRefGoogle Scholar
Michtchenko, TA, Ferraz-Mello, S, Beaugé, C, 2006, Modeling the 3d secular planetary three-body problem: discussion on the outer À And planetary system. Icarus, 181, 555–571 {69, 713}CrossRefGoogle Scholar
Michtchenko, TA, Malhotra, R, 2004, Secular dynamics of the three-body problem: application to the À And planetary system. Icarus, 168, 237–248 {69, 713}CrossRefGoogle Scholar
Michtchenko, TA, Rodríguez, A, 2011, Modelling the secular evolution of migrating planet pairs. MNRAS, 415, 2275–2292 {522}CrossRefGoogle Scholar
Mieremet, AL, Braat, JJM, 2003, Deep nulling bymeans of multiple-beam recombination. Appl. Opt., 42, 1867–1875 {349}CrossRefGoogle Scholar
Migaszewski, C, 2015, On the migration of two planets in a disk and the formation of mean motion resonances. MNRAS, 453, 1632–1643 {508}CrossRefGoogle Scholar
Migaszewski, C, 2016, On the migration of three planets in a protoplanetary disk and the formation of chains of meanmotion resonances. MNRAS, 458, 2051–2060 {510}CrossRefGoogle Scholar
Migaszewski, C, 2017, On the migration-induced formation of the 9:7 mean motion resonance. MNRAS, 469, 1131–1146 {509, 740}CrossRefGoogle Scholar
Migaszewski, C, Goździewski, K, 2008, A secular theory of coplanar, non-resonant planetary systems. MNRAS, 388, 789–802 {511}CrossRefGoogle Scholar
Migaszewski, C, Goździewski, K, 2011, The non-resonant, relativistic dynamics of circumbinary planets. MNRAS, 411, 565–583 {549}CrossRefGoogle Scholar
Migaszewski, C, Goździewski, K, Panichi, F, 2017, The origin and 9:7MMR dynamics of the Kepler–29 system. MNRAS, 465, 2366–2380 {509, 740}CrossRefGoogle Scholar
Migaszewski, C, Goździewski, K, Słonina, M, 2013, A linear distribution of orbits in compact planetary systems? MNRAS, 436, L25–L29 {510, 740}CrossRefGoogle Scholar
Migaszewski, C, Słonina, M, Goździewski, K, 2012, A dynamical analysis of the Kepler–11 system. MNRAS, 427, 770–789 {179, 502, 739}CrossRefGoogle Scholar
Miglio, A, Montalbán, J, 2005, Constraining fundamental stellar parameters using seismology: application to α Cen AB. A&A, 441, 615–629 {714}Google Scholar
Mignard, F, Klioner, S, Lindegren, L, et al., 2016, Gaia Data Release 1. Reference frame and optical properties of ICRF sources. A&A, 595, A5 {86}Google Scholar
Mignone, A, Bodo, G, Massaglia, S, et al., 2007, PLUTO: a numerical code for computational astrophysics. ApJS, 170, 228–242 {462}CrossRefGoogle Scholar
Miguel, Y, Brunini, A, 2010, Planet formation: statistics of spin rates and obliquities of extrasolar planets. MNRAS, 406, 1935–1943 {679, 680}Google Scholar
Miguel, Y, Guilera, OM, Brunini, A, 2011a, The diversity of planetary system architectures: contrasting theory with observations. MNRAS, 417, 314–332 {556}CrossRefGoogle Scholar
Miguel, Y, Guillot, T, Fayon, L, 2016, Jupiter internal structure: the effect of different equations of state. A&A, 596, A114 {658}Google Scholar
Miguel, Y, Ida, S, 2016, A semi-analytical model for exploring Galilean satellites formation from a massive disk. Icarus, 266, 1–14 {687}CrossRefGoogle Scholar
Miguel, Y, Kaltenegger, L, 2014, Exploring atmospheres of hot mini-Neptunes and extrasolar giant planets orbiting different stars with application to HD 97658 b, WASP–12 b, CoRoT–2 b, XO–1 b, and HD 189733 b. ApJ, 780, 166 {729, 730, 733, 753, 757}CrossRefGoogle Scholar
Miguel, Y, Kaltenegger, L, Fegley, B, et al., 2011b, Compositions of hot super-Earth atmospheres: exploring Kepler candidates. ApJ, 742, L19 {598}CrossRefGoogle Scholar
Miguel, Y, Kaltenegger, L, Linsky, JL, et al., 2015, The effect of Lyman α radiation on mini-Neptune atmospheres around M stars: application to GJ 436 b. MNRAS, 446, 345–353 {729}CrossRefGoogle Scholar
Mihalas, D, 1978, Stellar Atmospheres. Freeman, Second Edition {570}Google Scholar
Mikkola, S, 1984, Encounters of binaries. III. Fly-bys. MNRAS, 208, 75–82 {254}CrossRefGoogle Scholar
Mikkola, S, Innanen, K, 1995, Solar system chaos and the distribution of asteroid or-bits. MNRAS, 277, 497–501 {694}CrossRefGoogle Scholar
Mikkola, S, Innanen, K, Muinonen, K, et al., 1994, A preliminary analysis of the orbit of the Mars Trojan asteroid (5261) Eureka. Cel. Mech. Dyn. Astron., 58, 53–64 {74}CrossRefGoogle Scholar
Milani, A, Nobili, AM, Carpino, M, 1989, Dynamics of Pluto. Icarus, 82, 200–217 {677}CrossRefGoogle Scholar
Milankovitch, M, 1941, Kanon der Erdbestrahlungen und seine Anwendung auf das Eiszeitenproblem. Roy. Serbian Acad. Spec. Publ., 133, 1–633 {681}Google Scholar
Milankovitch, M, 1969, Canon of Insolation and the Ice Age Problem. Israel Program for Scientific Translations {681}
Miles-Páez, PA, Metchev, S, Luhman, KL, et al., 2017, The prototypical young L/T-transition dwarf HD 203030B likely has planetary mass. AJ, 154, 262 {763}CrossRefGoogle Scholar
Miles-Páez, PA, Pallé, E, Zapatero Osorio, MR, 2014, Simultaneous optical and near-infrared linear spectropolarimetry of the Earthshine. A&A, 562, L5 {641}Google Scholar
Militzer, B, 2013, Equation of state calculations of hydrogen–helium mixtures in solar and extrasolar giant planets. Phys. Rev. B, 87(1), 014202 {566}CrossRefGoogle Scholar
Militzer, B, Hubbard, WB, 2013, Ab initio equation of state for hydrogen–helium mixtures with recalibration of the giant-planet mass–radius relation. ApJ, 774, 148 {303, 566, 603}CrossRefGoogle Scholar
Militzer, B, Hubbard, WB, Vorberger, J, et al., 2008, A massive core in Jupiter predicted from first-principles simulations. ApJ, 688, L45 {660}CrossRefGoogle Scholar
Militzer, B, Soubiran, F, Wahl, SM, et al., 2016, Understanding Jupiter's interior. J. Geo-phys. Res. (Planets), 121, 1552–1572 {659}Google Scholar
Millan-Gabet, R, Malbet, F, Akeson, R, et al., 2007, The circumstellar environments of young stars at au scales. Protostars and Planets V, 539–554 {309}
Millan-Gabet, R, Serabyn, E, Mennesson, B, et al., 2011, Exozodiacal dust levels for nearby main-sequence stars: a survey with the Keck interferometer nuller. ApJ, 734, 67 {342, 349, 493}CrossRefGoogle Scholar
Millar-Blanchaer, MA, Graham, JR, Pueyo, L, et al., 2015, fl Pic inner disk in polarised light and new orbital parameters for fl Pic b. ApJ, 811, 18 {367, 762}CrossRefGoogle Scholar
Miller, AA, Irwin, J, Aigrain, S, et al., 2008, The Monitor project: the search for transits in the open cluster NGC 2362. MNRAS, 387, 349–363 {159}CrossRefGoogle Scholar
Miller, BP, Gallo, E, Wright, JT, et al., 2012, On the detectability of star–planet interaction. ApJ, 754, 137 {41, 188, 753}CrossRefGoogle Scholar
Miller, BP, Gallo, E, Wright, JT, 2015, A comprehensive statistical assessment of star–planet interaction. ApJ, 799, 163 {422}CrossRefGoogle Scholar
Miller, GRM, Collier Cameron, A, Simpson, EK, et al., 2010, The Doppler shadow of WASP–3 b: a tomographic analysis of Rossiter–McLaughlin observations. A&A, 523, A52 {252, 253, 751}Google Scholar
Miller, M, 2015, Exoplanet photometry of TrES–5 b using a DSLR camera. Society for Astronomical Sciences Annual Symposium, 34, 203–206 {751}Google Scholar
Miller, N, Fortney, JJ, 2011, The heavy-element masses of extrasolar giant planets, revealed. ApJ, 736, L29 {390, 485}CrossRefGoogle Scholar
Miller, N, Fortney, JJ, Jackson, B, 2009, Inflating and deflating hot Jupiters: coupled tidal and thermal evolution of known transiting planets. ApJ, 702, 1413–1427 {303}CrossRefGoogle Scholar
Miller, SL, 1953, A production of amino acids under possible primitive Earth conditions. Science, 117, 528–529 {592, 637}CrossRefGoogle ScholarPubMed
Miller, SR, Augustine, S, Olson, TL, et al., 2005, Discovery of a free-living chlorophyll d-producing cyanobacterium with a hybrid proteobacterial/cyanobacterial small-subunit rRNA gene. Proc. Nat. Acad. Sci., 102(3), 850–855 {629}CrossRefGoogle ScholarPubMed
Miller-Ricci, E, Fortney, JJ, 2010, The nature of the atmosphere of the transiting super-Earth GJ 1214 b. ApJ, 716, L74–L79 {734}CrossRefGoogle Scholar
Miller-Ricci, E, Meyer, MR, Seager, S, et al., 2009, On the emergent spectra of hot pro-toplanet collision afterglows. ApJ, 704, 770–780 {368, 576}CrossRefGoogle Scholar
Miller-Ricci, E, Rowe, JF, Sasselov, D, et al., 2008a, MOST space-based photometry of the transiting exoplanet system HD 189733: precise timing measurements for transits across an active star. ApJ, 682, 593–601 {186, 269, 730}Google Scholar
Miller-Ricci, E, Rowe, JF, Sasselov, D, 2008b, MOST space-based photometry of the transiting system HD 209458: transit timing to search for additional planets. ApJ, 682, 586–592 {186, 269, 732}Google Scholar
Miller-Ricci Kempton, E, Rauscher, E, 2012, Constraining high-speed winds in exo-planet atmospheres by observation of anomalous Doppler shifts during transit. ApJ, 751, 117 {44, 591, 596, 732}CrossRefGoogle Scholar
Miller-Ricci Kempton, E, Zahnle, K, Fortney, JJ, 2012, The atmospheric chemistry of GJ 1214 b: photochemistry and clouds. ApJ, 745, 3 {587, 613, 734}CrossRefGoogle Scholar
Millholland, S, Laughlin, G, 2017a, Constraints on the Planet Nine orbit and sky position within a framework of mean-motion resonances. AJ, 153, 91 {687}CrossRefGoogle Scholar
Millholland, S, Laughlin, G, 2017b, Supervised learning detection of sixty non-transiting hot Jupiter candidates. AJ, 154, 83 {194, 236}CrossRefGoogle Scholar
Millholland, S, Wang, S, Laughlin, G, 2016, On the detection of non-transiting hot Jupiters in multiple-planet systems. ApJ, 823, L7 {236, 263}CrossRefGoogle Scholar
Millholland, S, Wang, S, Laughlin, G, 2017, Kepler multi-planet systems exhibit unexpected intra-system uniformity in mass and radius. ApJ, 849, L33 {315}CrossRefGoogle Scholar
Milli, J, Hibon, P, Christiaens, V, et al., 2017a, Discovery of a low-mass companion inside the debris ring surrounding the F5V star HD 206893. A&A, 597, L2 {360, 367, 763}Google Scholar
Milli, J, Lagrange, AM, Mawet, D, et al., 2014, Very deep images of the innermost regions of the fl Pic debris disk at L’. A&A, 566, A91 {762}Google Scholar
Milli, J, Mouillet, D, Lagrange, AM, et al., 2012, Impact of angular differential imaging on circumstellar disk images. A&A, 545, A111 {340}Google Scholar
Milli, J, Mouillet, D, Mawet, D, et al., 2013, Prospects of detecting the polarimetric signature of the Earth-mass planet α Cen Bb with VLT–SPHERE/ZIMPOL. A&A, 556, A64 {247, 714}Google Scholar
Milli, J, Vigan, A, Mouillet, D, et al., 2017b, Near-infrared scattered light properties of the HR 4796A dust ring: a measured scattering phase function from 13.6-166.6 degrees. A&A, 599, A108 {342, 360}Google Scholar
Millour, F, 2008, All you ever wanted to know about optical long baseline stellar interferometry, but were too shy to ask your adviser. New Astron. Rev., 52, 177–185 {348}CrossRefGoogle Scholar
Millour, F, Vannier, M, Petrov, RG, et al., 2006, Extrasolar planets with VLTI–AMBER: what can we expect from current performances? IAU Colloq. 200: Direct Imaging of Exoplanets: Science and Techniques, 291–296 {348}
Mills, SM, Abbot, DS, 2013, Utility of the weak temperature gradient approximation for Earth-like tidally-locked exoplanets. ApJ, 774, L17 {621}CrossRefGoogle Scholar
Mills, SM, Fabrycky, DC, 2017a, Kepler–108: a mutually inclined giant planet system. AJ, 153, 45 {322, 743}CrossRefGoogle Scholar
Mills, SM, Fabrycky, DC, 2017b, Mass, density, and formation constraints in the compact, sub-Earth Kepler–444 systemincluding two Mars-mass planets. ApJ, 838, L11 {15, 746}CrossRefGoogle Scholar
Mills, SM, Mazeh, T, 2017, The planetarymass–radius relation and its dependence on orbital period as measured by transit timing variations and radial velocities. ApJ, 839, L8 {271, 603}CrossRefGoogle Scholar
Min, M, 2010, Dust composition in protoplanetary disks. Protoplanetary Dust: Astrophysical and Cosmochemical Perspectives, 161–190, Cambridge University Press {454, 456}
Min, M, 2017, Random sampling technique for ultra-fast computations of molecular opacities for exoplanet atmospheres. A&A, 607, A9 {570}Google Scholar
Min, M, Dullemond, CP, Kama, M, et al., 2011, The thermal structure and the location of the snow line in the protosolar nebula: axisymmetric models with full 3d radiative transfer. Icarus, 212, 416–426 {309}CrossRefGoogle Scholar
Min, M, Kama, M, Dominik, C, et al., 2010, The lunar phases of dust grains orbiting Fomalhaut. A&A, 509, L6 {761}Google Scholar
Min, M, Stolker, T, Dominik, C, et al., 2017, Connecting the shadows: probing inner disk geometries using shadows in transitional disks. A&A, 604, L10 {466}Google Scholar
Ming, Y, Hui-Gen, L, Hui, Z, et al., 2013, Eight planets in four multi-planet systems via transit timing variations in 1350 days. ApJ, 778, 110 {270, 742, 744, 745}Google Scholar
Minier, V, Lineweaver, C, 2006, A search for water masers toward extrasolar planets. A&A, 449, 805–808 {642}Google Scholar
Minniti, D, Butler, RP, López-Morales, M, et al., 2009, Low-mass companions for five solar-type stars from the Magellan planet search programme. ApJ, 693, 1424–1430 {46, 719, 720, 721, 722}CrossRefGoogle Scholar
Minniti, D, Fernández, JM, Díaz, RF, et al., 2007, Millimagnitude photometry for transiting extoplanet candidates. III. Accurate radius and period for OGLE–TR–111 b. ApJ, 660, 858–862 {168, 749}CrossRefGoogle Scholar
Minniti, D, Vandehei, T, Cook, KH, et al., 1998, Detection of lithium in a main sequence bulge star using Keck I as a 15mdiameter telescope. ApJ, 499, L175–L177 {136}CrossRefGoogle Scholar
Minton, DA, Malhotra, R, 2009, A record of planet migration in the main asteroid belt. Nature, 457, 1109–1111 {697}CrossRefGoogle ScholarPubMed
Minton, DA, Malhotra, R, 2011, Secular resonance sweeping of the main asteroid belt during planet migration. ApJ, 732, 53 {699}CrossRefGoogle Scholar
Miotello, A, Bruderer, S, van Dishoeck, EF, 2014, Protoplanetary disk masses from CO isotopologue line emission. A&A, 572, A96 {464}Google Scholar
Miralda-Escudé, J, 1996, Microlensing events from measurements of the deflection. ApJ, 470, L113–L116 {138}CrossRefGoogle Scholar
Miralda-Escudé, J, 2002, Orbital perturbations of transiting planets: a possible method to measure stellar quadrupoles and to detect Earth-mass planets. ApJ, 564, 1019–1023 {257, 259, 262, 263, 272}CrossRefGoogle Scholar
Miranda, R, Lai, D, 2015, Tidal truncation of inclined circumstellar and circumbinary disks in young stellar binaries. MNRAS, 452, 2396–2409 {550}CrossRefGoogle Scholar
Mirouh, GM, Garaud, P, Stellmach, S, et al., 2012, A new model for mixing by double-diffusive convection (semi-convection). I. The conditions for layer formation. ApJ, 750, 61 {567}CrossRefGoogle Scholar
Mishenina, T, Kovtyukh, V, Soubiran, C, et al., 2016, Behaviour of elements from lithium to europium in stars with and without planets. MNRAS, 462, 1563–1576 {378}CrossRefGoogle Scholar
Mishurov, YN, Acharova, IA, 2011, Is it possible to reveal the lost siblings of the Sun? MNRAS, 412, 1771–1777 {406}CrossRefGoogle Scholar
Mislis, D, Bachelet, E, Alsubai, KA, et al., 2016, SIDRA: a blind algorithm for signal detection in photometric surveys. MNRAS, 455, 626–633 {191, 194}CrossRefGoogle Scholar
Mislis, D, Heller, R, Schmitt, JHMM, et al., 2012, Estimating transiting exoplanet masses from precise optical photometry. A&A, 538, A4 {238, 239, 735}Google Scholar
Mislis, D, Hodgkin, S, 2012, A massive exoplanet candidate around KOI–13: independent confirmation by ellipsoidal variations. MNRAS, 422, 1512–1517 {739}CrossRefGoogle Scholar
Mislis, D, Mancini, L, Tregloan-Reed, J, et al., 2015, High-precision multiband time series photometry of exoplanets Qatar–1 b and TrES–5 b. MNRAS, 448, 2617–2623 {750, 751}CrossRefGoogle Scholar
Mislis, D, Pyrzas, S, Alsubai, KA, et al., 2017, The DOHA algorithm: a new recipe for cotrending large-scale transiting exoplanet survey light curves. MNRAS, 465, 3759–3766 {190}CrossRefGoogle Scholar
Mislis, D, Schmitt, JHMM, 2009, Detection of orbital parameter changes in the TrES–2 exoplanet? A&A, 500, L45–L49 {167, 224, 269, 273, 750}Google Scholar
Mislis, D, Schmitt, JHMM, Carone, L, et al., 2010a, An algorithm for correcting CoRoT raw light curves. A&A, 522, A86 {190}Google Scholar
Mislis, D, Schröter, S, Schmitt, JHMM, et al., 2010b, Multi-band transit observations of TrES–2 b. A&A, 510, A107 {751}Google Scholar
Misner, CW, Thorne, KS, Wheeler, JA, 1973, Gravitation. W. H. Freeman and Co. {30}Google Scholar
Misra, A, Krissansen-Totton, J, Koehler, MC, et al., 2015, Transient sulphate aerosols as a signature of exoplanet volcanism. Astrobiology, 15, 462–477 {670}CrossRefGoogle Scholar
Misra, A, Meadows, V, Claire, M, et al., 2014a, Using dimers to measure biosignatures and atmospheric pressure for terrestrial exoplanets. Astrobiology, 14, 67–86 {618}CrossRefGoogle Scholar
Misra, A, Meadows, V, Crisp, D, 2014b, The effects of refraction on transit transmission spectroscopy: application to Earth-like exoplanets. ApJ, 792, 61 {223}CrossRefGoogle Scholar
Misra, A, Meadows, VS, 2014, Discriminating between cloudy, hazy, and clear sky exo-planets using refraction. ApJ, 795, L14 {222, 223}CrossRefGoogle Scholar
Mitchell, DS, Reffert, S, Trifonov, T, et al., 2013, Precise radial velocities of giant stars. V. A brown dwarf and a planet orbiting the K giant stars τ Gem and 91 Aqr. A&A, 555, A87 {713, 715}Google Scholar
Mitchell, JL, Vallis, GK, Potter, SF, 2014, Effects of the seasonal cycle on superrotation in planetary atmospheres. ApJ, 787, 23 {596}CrossRefGoogle Scholar
Mitchell, TR, Stewart, GR, 2010, Evolution of the solar nebula and planet growth under the influence of photoevaporation. ApJ, 722, 1115–1130 {462, 463}CrossRefGoogle Scholar
Mitchell, TR, Stewart, GR, 2011, Photoevaporation as a truncation mechanism for circumplanetary disks. AJ, 142, 168 {463, 650}CrossRefGoogle Scholar
Mitra, D, Wettlaufer, JS, Brandenburg, A, 2013, Can planetesimals form by collisional fusion? ApJ, 773, 120 {471}CrossRefGoogle Scholar
Mittag, M, Robrade, J, Schmitt, JHMM, et al., 2017, Four-month chromospheric and coronal activity cycle in τ Boo. A&A, 600, A119 {714}Google Scholar
Mittal, T, Chen, CH, Jang-Condell, H, et al., 2015, The Spitzer infrared spectrograph debris disk catalogue. II. Silicate feature analysis of unresolved targets. ApJ, 798, 87 {492, 495}CrossRefGoogle Scholar
Mittlefehldt, DW, 2003, Achondrites. Treatise on Geochemistry, 1, 711 {670}Google Scholar
Miyagoshi, T, Kameyama, M, Ogawa, M, 2015, Thermal convection and the convective regime diagram in super-Earths. J. Geophys. Res. (Planets), 120, 1267–1278 {628}Google Scholar
Miyagoshi, T, Kameyama, M, Ogawa, M, 2017, Extremely long transition phase of thermal convection in the mantle of massive super-Earths. Earth, Planets, and Space, 69, 46 {628, 629}CrossRefGoogle Scholar
Miyagoshi, T, Tachinami, C, Kameyama, M, et al., 2014, On the vigour of mantle convection in super-Earths. ApJ, 780, L8 {598, 628}CrossRefGoogle Scholar
Miyake, F, Masuda, K, Nakamura, T, 2013, Another rapid event in the carbon-14 content of tree rings. Nature Communications, 4, 1748 {628}CrossRefGoogle ScholarPubMed
Miyake, F, Nagaya, K, Masuda, K, et al., 2012, A signature of cosmic-ray increase in AD 774–775 from tree rings in Japan. Nature, 486, 240–242 {628}CrossRefGoogle ScholarPubMed
Miyake, N, Sumi, T, Dong, S, et al., 2011, A sub-Saturn mass planet, MOA–2009–BLG–319Lb. ApJ, 728, 120–124 {141, 145, 759}CrossRefGoogle Scholar
Miyake, T, Suzuki, TK, Inutsuka Si, 2016, Dust dynamics in protoplanetary disk winds driven by magnetorotational turbulence: a mechanism for floating dust grains with characteristic sizes. ApJ, 821, 3 {461}CrossRefGoogle Scholar
Miyamoto, M, Yoshii, Y, 1995, Astrometry for determining the MACHO mass and trajectory. AJ, 110, 1427–1432 {138}CrossRefGoogle Scholar
Miyoshi, K, Takeuchi, T, Tanaka, H, et al., 1999, Gravitational Interaction between a protoplanet and a protoplanetary disk. I. Local three-dimensional simulations. ApJ, 516, 451–464 {518}CrossRefGoogle Scholar
Mizuki, T, Yamada, T, Carson, JC, et al., 2016, High-contrast imaging of yatt MC, et al., 2005, Structure in the Eri with ground-based instruments. A&A, 595, A79 {715}Google Scholar
Mizuno, H, 1980, Formation of the giant planets. Progress of Theoretical Physics, 64, 544–557 {480, 482}CrossRefGoogle Scholar
Mizuno, H, Nakazawa, K, Hayashi, C, 1978, Instability of a gaseous envelope surrounding a planetary core and formation of giant planets. Progress of Theoretical Physics, 60, 699–710 {480}CrossRefGoogle Scholar
Mizusawa, TF, Rebull, LM, Stauffer, JR, et al., 2012, Exploring the effects of stellar rotation and wind clearing: debris disks around F stars. AJ, 144, 135 {418}CrossRefGoogle Scholar
Mochejska, BJ, Stanek, KZ, Sasselov, DD, et al., 2002, Planets in stellar clusters extensive search. I. Discovery of 47 low-amplitude variables in the metal-rich cluster NGC 6791 withmillimagnitude image subtraction photometry. AJ, 123, 3460–3472 {159}CrossRefGoogle Scholar
Mochejska, BJ, Stanek, KZ, Sasselov, DD, 2004, Planets in stellar clusters extensive search. II. Discovery of 57 variables in the cluster NGC 2158 with millimagnitude image subtraction photometry. AJ, 128, 312–322 {158, 159}CrossRefGoogle Scholar
Mochejska, BJ, Stanek, KZ, Sasselov, DD, 2005, Planets in stellar clusters extensive search. III. A search for transiting planets in the metal-rich open cluster NGC 6791. AJ, 129, 2856–2868 {159}CrossRefGoogle Scholar
Mochejska, BJ, Stanek, KZ, Sasselov, DD, 2006, Planets in stellar clusters extensive search. IV. A detection of a possible transiting planet candidate in the open cluster NGC 2158. AJ, 131, 1090–1105 {159}CrossRefGoogle Scholar
Mochejska, BJ, Stanek, KZ, Sasselov, DD, 2008, Planets in stellar clusters extensive search. V. Search for planets and identification of 18 new variable stars in the old open cluster NGC 188. Acta Astronom-ica, 58, 263–278 {159}Google Scholar
Moeckel, N, Armitage, PJ, 2012, Hydrodynamic outcomes of planet scattering in transition disks. MNRAS, 419, 366–376 {319, 508}CrossRefGoogle Scholar
Moeckel, N, Bate, MR, 2010, On the evolution of a star cluster and its multiple stellar systems following gas dispersal. MNRAS, 404, 721–737 {448}CrossRefGoogle Scholar
Moeckel, N, Clarke, CJ, 2011, The formation of permanent soft binaries in dispersing clusters. MNRAS, 415, 1179–1187 {448}CrossRefGoogle Scholar
Moeckel, N, Raymond, SN, Armitage, PJ, 2008, Extrasolar planet eccentricities from scattering in the presence of residual gas disks. ApJ, 688, 1361–1367 {525}CrossRefGoogle Scholar
Moeckel, N, Veras, D, 2012, Exoplanets bouncing between binary stars. MNRAS, 422, 831–840 {517, 553}CrossRefGoogle Scholar
Moeller, R, Raguse, M, Leuko, S, et al., 2017, STARLIFE: an international campaign to study the role of Galactic cosmic radiation in astrobiological model systems. As-trobiology, 17, 101–109 {631}Google Scholar
Moerchen, MM, Telesco, CM, Packham, C, 2010, High spatial resolution imaging of thermal emission from debris disks. ApJ, 723, 1418–1435 {493}CrossRefGoogle Scholar
Moerchen, MM, Telesco, CM, Packham, C, et al., 2007, Mid-infrared resolution of a 3 au radius debris disk around ξ Lep. ApJ, 655, L109–L112 {497}CrossRefGoogle Scholar
Mogavero, F, 2017, Addressing the statistical mechanics of planet orbits in the solar system. A&A, 606, A79 {677}Google Scholar
Mogavero, F, Beaulieu, JP, 2016, Microlensing planet detection via geosynchronous and low Earth orbit satellites. A&A, 585, A62 {134}Google Scholar
Mohanty, S, Basri, G, 2003, Rotation and activity in mid-M to L field dwarfs. ApJ, 583, 451–472 {444}CrossRefGoogle Scholar
Mohanty, S, Greaves, J, Mortlock, D, et al., 2013, Protoplanetary disk masses from stars to brown dwarfs. ApJ, 773, 168 {309}CrossRefGoogle Scholar
Mohanty, S, Jayawardhana, R, Barrado yNavascués D, 2003, Magellan echelle spectroscopy of TWHydrae brown dwarfs. ApJ, 593, L109–L112 {443}CrossRefGoogle Scholar
Mohanty, S, Jayawardhana, R, Basri, G, 2005, The T Tauri phase down to nearly planetary masses: echelle spectra of 82 very low mass stars and brown dwarfs. ApJ, 626, 498–522 {444, 445}CrossRefGoogle Scholar
Mohanty, S, Jayawardhana, R, Huélamo, N, et al., 2007, The planetarymass companion 2M J1207: evidence for an edge-on disk. ApJ, 657, 1064–1091 {363, 368, 438, 763}CrossRefGoogle Scholar
Mohler-Fischer, M, Mancini, L, Hartman, JD, et al., 2013, HATS–2 b: a transiting extra-solar planet orbiting a K-type star showing star spot activity. A&A, 558, A55 {212, 213, 737}Google Scholar
Möhlmann, D, 2012, Widen the belt of habitability! Origins of Life and Evolution of the Biosphere, 42, 93–100 {619}CrossRefGoogle ScholarPubMed
Mohr, PJ, Newell, DB, Taylor, BN, 2016, CODATA recommended values of the fundamental physical constants: 2014. Reviews of Modern Physics, 88(3), 035009 {701}CrossRefGoogle Scholar
Mojzsis, SJ, Arrhenius, G, McKeegan, KD, et al., 1996, Evidence for life on Earth before 3800Myr ago. Nature, 384, 55–59 {636, 647}CrossRefGoogle ScholarPubMed
Mojzsis, SJ, Harrison, TM, Pidgeon, RT, 2001, Oxygen-isotope evidence from ancient zircons for liquid water at the Earth's surface 4300Myr ago. Nature, 409, 178–181 {667}CrossRefGoogle Scholar
Molaro, P, Monaco, L, Barbieri, M, et al., 2013, Detection of the Rossiter–McLaughlin effect in the 2012 June 6 Venus transit. MNRAS, 429, L79–L83 {251}CrossRefGoogle Scholar
Moldovan, R, Matthews, JM, Gladman, B, et al., 2010, Searching for Trojan asteroids in the HD 209458 system: MOST photometry and dynamical modeling. ApJ, 716, 315–323 {186, 732}CrossRefGoogle Scholar
Moll, R, Garaud, P, 2017, The effect of rotation on oscillatory double-diffusive convection (semiconvection). ApJ, 834, 44 {567}CrossRefGoogle Scholar
Moll, R, Garaud, P, Mankovich, C, et al., 2017, Double-diffusive erosion of the core of Jupiter. ApJ, 849, 24 {567}CrossRefGoogle Scholar
Mollerach, S, Roulet, E, 2002, Gravitational lensing and microlensing. STScI {120}CrossRefGoogle Scholar
Mollière, P, Mordasini, C, 2012, Deuterium burning in objects forming via the core accretion scenario: brown dwarfs or planets? A&A, 547, A105 {430, 480, 482}Google Scholar
Mollière, P, van Boekel, R, Bouwman, J, et al., 2017, Observing transiting planets with JWST: prime targets and their synthetic spectral observations. A&A, 600, A10 {181}Google Scholar
Mollière, P, van Boekel, R, Dullemond, C, et al., 2015, Model atmospheres of irradiated exoplanets: the influence of stellar parameters, metallicity, and the C/O ratio. ApJ, 813, 47 {570, 582, 606}CrossRefGoogle Scholar
Molyarova, T, Akimkin, V, Semenov, D, et al., 2017, Gas mass tracers in protoplanetary disks: CO is still the best. ApJ, 849, 130 {464}CrossRefGoogle Scholar
Mommert, M, Harris, AW, Kiss, C, et al., 2012, TNOs are cool: a survey of the trans-Neptunian region. V. Physical characterisation of 18 Plutinos using Herschel–PACS observations. A&A, 541, A93 {685}Google Scholar
Mommert, M, Hora, JL, Harris, AW, et al., 2014, The discovery of cometary activity in Near-Earth Asteroid (3552) Don Quixote. ApJ, 781, 25 {684, 685}CrossRefGoogle Scholar
Momose, M, Morita, A, Fukagawa, M, et al., 2015, Detailed structure of the outer disk around HD 169142 with polarized light in H-band. PASJ, 67, 83 {520}CrossRefGoogle Scholar
Monet, DG, Dahn, CC, Vrba, FJ, et al., 1992, US Naval Observatory CCD parallaxes of faint stars. I. Programme description and first results. AJ, 103, 638–665 {82}CrossRefGoogle Scholar
Monga, N, Desch, S, 2015, External photoevaporation of the solar nebula: Jupiter's noble gas enrichments. ApJ, 798, 9 {661}CrossRefGoogle Scholar
Monin, J, Clarke, CJ, Prato, L, et al., 2007, Disk evolution in young binaries: from observations to theory. Protostars and Planets V, 395–409 {548}
Monin, JL, Whelan, ET, Lefloch, B, et al., 2013, Amolecular outflowdriven by the brown dwarf binary FU Tau. A&A, 551, L1 {445, 762}Google Scholar
Monnier, JD, 2003, Optical interferometry in astronomy. Rep. Prog. Phys., 66, 789–857 {348}CrossRefGoogle Scholar
Monnier, JD, 2007, Phases in interferometry. New Astron. Rev., 51, 604–616 {183}CrossRefGoogle Scholar
Monnier, JD, Millan-Gabet, R, 2002, On the interferometric sizes of young stellar objects. ApJ, 579, 694–698 {309}CrossRefGoogle Scholar
Monnier, JD, Pedretti, E, Thureau, N, et al., 2006, Michigan Infrared Combiner (MIRC): commissioning results at the CHARA array. SPIE Conf. Ser., volume 6268 {183}Google Scholar
Monnier, JD, Zhao, M, Pedretti, E, et al., 2007, Imaging the surface of Altair. Science, 317, 342–345 {215}CrossRefGoogle ScholarPubMed
Monroe, TR, Meléndez, J, Ramírez, I, et al., 2013, High-precision abundances of the old solar twin HIP 102152: insights on Li depletion from the oldest sun. ApJ, 774, L32 {405}CrossRefGoogle Scholar
Montañés-Rodríguez, P, González-Merino, B, Pallé, E, et al., 2015, Jupiter as an exo-planet: ultraviolet to near-infrared transmission spectrum reveals hazes, a Na layer, and possibly stratospheric H2O-ice clouds. ApJ, 801, L8 {161}CrossRefGoogle Scholar
Montañés-Rodríguez, P, Pallé, E, Goode, PR, 2007, Measurements of the surface brightness of the Earthshine with applications to calibrate lunar flashes. AJ, 134, 1145–1149 {641}CrossRefGoogle Scholar
Montañés-Rodríguez, P, Pallé, E, Goode, PR, et al., 2005, Globally integrated measurements of the Earth's visible spectral albedo. ApJ, 629, 1175–1182 {641}CrossRefGoogle Scholar
Montañés-Rodríguez, P, Pallé, E, Goode, PR, 2006, Vegetation signature in the observed globally integrated spectrum of Earth considering simultaneous cloud data: applications for extrasolar planets. ApJ, 651, 544–552 {641}CrossRefGoogle Scholar
Montalbán, J, Rebolo, R, 2002, Planet accretion and the abundances of lithium isotopes. A&A, 386, 1039–1043 {400, 402}Google Scholar
Montalbán, J, Schatzman, E, 2000, Mixing by internal waves. III. Li and Be abundance dependence on spectral type, age and rotation. A&A, 354, 943–959 {400}Google Scholar
Montalto, M, 2010, Planetary transit timing variations induced by stellar binarity: the light travel time effect. A&A, 521, A60 {257}Google Scholar
Montalto, M, Boué, G, Oshagh, M, et al., 2014, Improvements on analytic modelling of stellar spots. MNRAS, 444, 1721–1728 {212}CrossRefGoogle Scholar
Montalto, M, Boué, G, Oshagh, M, 2015a, KS Integration: Kelvin–Stokes integration. Astrophysics Source Code Library {212}
Montalto, M, Gregorio, J, Boué, G, et al., 2012, A new analysis of the WASP–3 system: no evidence for an additional companion. MNRAS, 427, 2757–2771 {257, 752}CrossRefGoogle Scholar
Montalto, M, Iro, N, Santos, NC, et al., 2015b, Further constraints on the optical transmission spectrumof HAT–P–1 b. ApJ, 811, 55 {735}CrossRefGoogle Scholar
Montalto, M, Piotto, G, Desidera, S, et al., 2007, A new search for planet transits in NGC 6791. A&A, 470, 1137–1156 {159}Google Scholar
Montalto, M, Santos, NC, Boisse, I, et al., 2011, Exoplanet transmission spectroscopy: accounting for the eccentricity and the longitude of periastron. Superwinds in the upper atmosphere of HD 209458 b? A&A, 528, L17 {732}Google Scholar
Montanari, A, Campo Bagatin, A, Farinella, P, 1998, Earth cratering record and impact energy flux in the last 150Myr. Planet. Space Sci., 46, 271–281 {661}CrossRefGoogle Scholar
Montesinos, M, Cuello, N, 2018, Planetary-like spirals caused by moving shadows in transition disks. MNRAS, 475, L35–L39 {466}CrossRefGoogle Scholar
Montesinos, M, Perez, S, Casassus, S, et al., 2016, Spiral waves triggered by shadows in transition disks. ApJ, 823, L8 {466}CrossRefGoogle Scholar
Montet, BT, Bowler, BP, Shkolnik, EL, et al., 2015a, Dynamical masses of young M dwarfs: masses and orbital parameters of GJ 3305 AB, the wide binary companion to the imaged exoplanet host 51 Eri. ApJ, 813, L11 {761}CrossRefGoogle Scholar
Montet, BT, Crepp, JR, Johnson, JA, et al., 2014, The TRENDS high-contrast imaging survey. IV. The occurrence rate of giant planets around M dwarfs. ApJ, 781, 28 {148, 149, 404}CrossRefGoogle Scholar
Montet, BT, Johnson, JA, 2013, Model-independent stellar and planetary masses from multi-transiting exoplanetary systems. ApJ, 762, 112 {12, 270, 271, 739}CrossRefGoogle Scholar
Montet, BT, Morton, TD, Foreman-Mackey, D, et al., 2015b, Stellar and planetary properties of K2 campaign 1 candidates and validation of 17 planets, including a planet receiving Earth-like insolation. ApJ, 809, 25 {747, 748}CrossRefGoogle Scholar
Montet, BT, Simon, JD, 2016, KIC–8462852 faded throughout the Kepler mission. ApJ, 830, L39 {232, 747}CrossRefGoogle Scholar
Montet, BT, Tovar, G, Foreman-Mackey, D, 2017a, Long-term photometric variability in Kepler full-frame images: magnetic cycles of Sun-like stars. ApJ, 851, 116 {383}CrossRefGoogle Scholar
Montet, BT, Yee, JC, Penny, MT, 2017b, Measuring the Galactic distribution of transiting planets with WFIRST. PASP, 129(4), 044401 {181}CrossRefGoogle Scholar
Monteux, J, Andrault, D, Samuel, H, 2016a, On the cooling of a deep terrestrial magma ocean. Earth Planet. Sci. Lett., 448, 140–149 {576}CrossRefGoogle Scholar
Monteux, J, Collins, GS, Tobie, G, et al., 2016b, Consequences of large impacts on Ence-ladus’ core shape. Icarus, 264, 300–310 {689}CrossRefGoogle Scholar
Montgomery, SL, Welsh, BY, 2012, Detection of variable gaseous absorption features in the debris disks around young A-type stars. PASP, 124, 1042–1056 {282}CrossRefGoogle Scholar
Moons, M, Henrard, J, 1994, Surfaces of section in the Miranda-Umbriel 3:1 inclination problem. Cel. Mech. Dyn. Astron., 59, 129–148 {689}CrossRefGoogle Scholar
Moons, M, Morbidelli, A, 1995, Secular resonances inside mean motion commensu-rabilities: the 4:1, 3:1, 5:2 and 7:3 cases. Icarus, 114, 33–50 {694}CrossRefGoogle Scholar
Moons, M, Morbidelli, A, Migliorini, F, 1998, Dynamical structure of the 2:1 commen-surability with Jupiter and the origin of the resonant asteroids. Icarus, 135, 458–468 {694}CrossRefGoogle Scholar
Moór, A, Pascucci, I, Kóspál Á, et al., 2011, Structure and evolution of debris disks around F-type stars. I. Observations, database, and basic evolutionary aspects. ApJS, 193, 4 {493}CrossRefGoogle Scholar
Moore, A, Hasan, I, Quillen, AC, 2013, Limits on orbit crossing planetesimals in the resonant multiple planet system, KOI–730. MNRAS, 432, 1196–1202 {179, 321, 744}CrossRefGoogle Scholar
Moore, A, Quillen, AC, 2013, Effects of a planetesimal debris disk on stability scenarios for the extrasolar planetary system HR 8799. MNRAS, 430, 320–329 {365, 763}CrossRefGoogle Scholar
Moore, JR, Sharma, M, 2013, The K–Pg (K–T) impactor was likely a high-velocity comet. Lunar and Planetary Science Conference, volume 44 of Lunar and Planetary Inst. Technical Report, 2431 {671}Google Scholar
Moore, P, 1977, The Linné controversy: a look into the past. J. Br. Astron. Assoc., 87, 363–368 {639}Google Scholar
Moorhead, AV, Adams, FC, 2005, Giant planet migration through the action of disk torques and planet–planet scattering. Icarus, 178, 517–539 {476, 525}CrossRefGoogle Scholar
Moorhead, AV, Adams, FC, 2008, Eccentricity evolution of giant planet orbits due to circumstellar disk torques. Icarus, 193, 475–484 {522}CrossRefGoogle Scholar
Moorhead, AV, Ford, EB, Morehead, RC, et al., 2011, The distribution of transit durations for Kepler planet candidates and implications for their orbital eccentricities. ApJS, 197, 1 {210, 289, 323}CrossRefGoogle Scholar
Morais, MHM, Correia, ACM, 2008, Stellar wobble caused by a binary system: can it really bemistaken as an extrasolar planet? A&A, 491, 899–906 {39}Google Scholar
Morais, MHM, Correia, ACM, 2011, Stellar wobble caused by a nearby binary system: eccentric and inclined orbits. A&A, 525, A152 {23}Google Scholar
Morais, MHM, Correia, ACM, 2012, Precession due to a close binary system: an alternative explanation for V Oct? MNRAS, 419, 3447–3456 {550, 715}CrossRefGoogle Scholar
Morais, MHM, Giuppone, CA, 2012, Stability of prograde and retrograde planets in circular binaries. MNRAS, 424, 52–64 {508, 549}CrossRefGoogle Scholar
Morais, MHM, Namouni, F, 2013, Retrograde resonance in the planar three-body problem. Cel. Mech. Dyn. Astron., 117, 405–421 {508}CrossRefGoogle Scholar
Morais, MHM, Namouni, F, 2017, First trans-Neptunian object in polar resonance with Neptune. MNRAS, 472, L1–L4 {685}CrossRefGoogle Scholar
Morales, FY, Padgett, DL, Bryden, G, et al., 2012, WISE detections of dust in the habitable zones of planet-bearing stars. ApJ, 757, 7 {493, 494}CrossRefGoogle Scholar
Morales, FY, Rieke, GH, Werner, MW, et al., 2011, Common warm dust temperatures around main-sequence stars. ApJ, 730, L29 {282}CrossRefGoogle Scholar
Morales-Calderón, M, Stauffer, JR, Hillenbrand, LA, et al., 2011, Ysovar: the first sensitive, wide-area, mid-infrared photometric monitoring of the Orion Nebula Cluster. ApJ, 733, 50 {466}CrossRefGoogle Scholar
Morales-Calderón, M, Stauffer, JR, Kirkpatrick, JD, et al., 2006, A sensitive search for variability in late L dwarfs: the quest for weather. ApJ, 653, 1454–1463 {439, 440}Google Scholar
Moran, SM, Kuchner, MJ, Holman, MJ, 2004, The dynamical influence of a planet at semi-major axis 3.4 au on the dust around yatt MC, et al., 2005, Structure in the Eri. ApJ, 612, 1163–1170 {715}Google Scholar
Morard, G, Bouchet, J, Valencia, D, et al., 2011, The melting curve of iron at extreme pressures: implications for planetary cores. High Energy Density Physics, 7, 141–144 {566}CrossRefGoogle Scholar
Morata, O, Palau, A, González, RF, et al., 2015, First detection of thermal radio jets in a sample of proto-brown dwarf candidates. ApJ, 807, 55 {445}CrossRefGoogle Scholar
Morbidelli, A, 2002, Modern Celestial Mechanics: Aspects of Solar System Dynamics. Taylor and Francis, London {506}Google Scholar
Morbidelli, A, 2013, Dynamical evolution of planetary systems. Planets, Stars and Stellar Systems. Volume 3: Solar and Stellar Planetary Systems, 63 {695}CrossRefGoogle Scholar
Morbidelli, A, Bottke, WF, Froeschlé, C, et al., 2002, Origin and evolution of near-Earth objects. Asteroids III, 409–422 {662}
Morbidelli, A, Bottke, WF, Nesvorný, D, et al., 2009a, Asteroids were born big. Icarus, 204, 558–573 {473}CrossRefGoogle Scholar
Morbidelli, A, Brasser, R, Gomes, R, et al., 2010, Evidence from the asteroid belt for a violent past evolution of Jupiter's orbit. AJ, 140, 1391–1401 {697, 699}CrossRefGoogle Scholar
Morbidelli, A, Brasser, R, Tsiganis, K, et al., 2009b, Constructing the secular architecture of the solar system. I. The giant planets. A&A, 507, 1041–1052 {697}Google Scholar
Morbidelli, A, Chambers, J, Lunine, JI, et al., 2000, Source regions and time scales for the delivery of water to Earth. Meteor. Plan. Sci., 35, 1309–1320 {564, 565, 575, 667, 668}Google Scholar
Morbidelli, A, Crida, A, 2007, The dynamics of Jupiter and Saturn in the gaseous proto-planetary disk. Icarus, 191, 158–171 {522, 698, 699}CrossRefGoogle Scholar
Morbidelli, A, Henrard, J, 1991a, Secular resonances in the asteroid belt: theoretical perturbation approach and the problem of their location. Cel. Mech. Dyn. As-tron., 51, 131–167 {693}Google Scholar
Morbidelli, A, Henrard, J, 1991b, The main secular resonances V5, Vand Vin the asteroid belt. Cel. 6 16 Mech. Dyn. Astron., 51, 169–197 {693}CrossRefGoogle Scholar
Morbidelli, A, Levison, HF, 2004, Scenarios for the origin of the orbits of the trans-Neptunian objects 2000 CR105 and 2003 VB12 (Sedna). AJ, 128, 2564–2576 {650}CrossRefGoogle Scholar
Morbidelli, A, Levison, HF, 2008, Late evolution of planetary systems. Physica Scripta Volume T, 130(1), 014028 {524, 697}Google Scholar
Morbidelli, A, Levison, HF, Tsiganis, K, et al., 2005, Chaotic capture of Jupiter's Trojan asteroids in the early solar system. Nature, 435, 462–465 {273, 689, 694, 695, 697}CrossRefGoogle ScholarPubMed
Morbidelli, A, Lunine, JI, O'Brien, DP, et al., 2012a, Building terrestrial planets. Ann. Rev. Earth Plan. Sci., 40, 251–275 {467, 698}CrossRefGoogle Scholar
Morbidelli, A, Marchi, S, Bottke, WF, et al., 2012b, A sawtooth-like timeline for the first Gyr of lunar bombardment. Earth Planet. Sci. Lett., 355, 144–151 {669, 671}Google Scholar
Morbidelli, A, Moons, M, 1993, Secular resonances inmean motion commensurabili-ties: the 2:1 and 3:2 cases. Icarus, 102, 316–332 {694}CrossRefGoogle Scholar
Morbidelli, A, Nesvorny, D, 2012, Dynamics of pebbles in the vicinity of a growing planetary embryo: hydrodynamical simulations. A&A, 546, A18 {471}Google Scholar
Morbidelli, A, Petit, J, Gladman, B, et al., 2001, A plausible cause of the Late Heavy Bombardment. Meteor. Plan. Sci., 36, 371–380 {661, 669}Google Scholar
Morbidelli, A, Raymond, SN, 2016, Challenges in planet formation. J. Geophys. Res. (Planets), 121, 1962–1980 {9, 451, 500, 501, 693, 700}Google Scholar
Morbidelli, A, Szulágyi, J, Crida, A, et al., 2014, Meridional circulation of gas into gaps opened by giant planets in three-dimensional low-viscosity disks. Icarus, 232, 266–270 {467}CrossRefGoogle Scholar
Morbidelli, A, Tsiganis, K, Crida, A, et al., 2007, Dynamics of the giant planets of the solar system in the gaseous protoplanetary disk and their relationship to the current orbital architecture. AJ, 134, 1790–1798 {695, 696, 699}CrossRefGoogle Scholar
Morbidelli, A, Wood, BJ, 2015, Late accretion and the late veneer. American Geophysical Union Geophysical Monograph Series, 212, 71–82 {669, 671}Google Scholar
Mordasini, C, 2011, Planetary population synthesis: comparison of updated model results and observations. AAS Abstracts, volume 2, 1606 {556}Google Scholar
Mordasini, C, 2013, Luminosity of young Jupiters revisited: massive cores make hot planets. A&A, 558, A113 {482}Google Scholar
Mordasini, C, 2014, Grain opacity and the bulk composition of extrasolar planets. II. An analytical model for grain opacity in protoplanetary atmospheres. A&A, 572, A118 {482}Google Scholar
Mordasini, C, Alibert, Y, Benz, W, 2009a, Extrasolar planet population synthesis. I. Method, formation tracks, and mass-distance distribution. A&A, 501, 1139–1160 {484, 555, 556, 557}Google Scholar
Mordasini, C, Alibert, Y, Benz, W, et al., 2008, Giant planet formation by core accretion. ASP Conf. Ser., volume 398, 235–242 {479}Google Scholar
Mordasini, C, Alibert, Y, Benz, W, 2009b, Extrasolar planet population synthesis. II. Statistical comparison with observations. A&A, 501, 1161–1184 {392, 484, 555, 556}Google Scholar
Mordasini, C, Alibert, Y, Benz, W, 2012a, Extrasolar planet population synthesis. IV. Correlations with diskmetallic-ity, mass, and lifetime. A&A, 541, A97 {13, 60, 485, 556}Google Scholar
Mordasini, C, Alibert, Y, Georgy, C, et al., 2012b, Characterisation of exoplanets from their formation. II. The planetary mass–radius relationship. A&A, 547, A112 {502, 556, 557, 558, 602, 603}Google Scholar
Mordasini, C, Alibert, Y, Klahr, H, et al., 2011a, Theory of planet formation and comparison with observation. EPJWeb Conf., volume 11, 4001 {557}CrossRefGoogle Scholar
Mordasini, C, Alibert, Y, Klahr, H, 2012c, Characterisation of exoplanets from their formation. I. Models of combined planet formation and evolution. A&A, 547, A111 {482, 557}Google Scholar
Mordasini, C, Marleau, GD, Mollière, P, 2017, Characterisation of exoplanets from their formation. III. The statistics of planetary luminosities. A&A, 608, A72 {557}Google Scholar
Mordasini, C, Mayor, M, Udry, S, et al., 2011b, The HARPS search for southern extraso-lar planets. XXIV. Companions to HD 85390, HD 90156, and HD 103197: a Neptune analogue and two intermediate-mass planets. A&A, 526, A111 {721}Google Scholar
Mordasini, C, Mollière, P, Dittkrist, KM, et al., 2015, Global models of planet formation and evolution. Int. J. Astrobiol., 14, 201–232 {519, 556}CrossRefGoogle Scholar
Mordasini, C, van Boekel, R, Mollière, P, et al., 2016, The imprint of exoplanet formation history on observable present-day spectra of hot Jupiters. ApJ, 832, 41 {600}CrossRefGoogle Scholar
Morello, G, Tsiaras, A, Howarth, ID, et al., 2017, High-precision stellar limb-darkening in exoplanetary transits. AJ, 154, 111 {211}CrossRefGoogle Scholar
Morello, G, Waldmann, IP, Tinetti, G, 2016, Repeatability of Spitzer–IRAC exoplanetary eclipses with independent component analysis. ApJ, 820, 86 {606}CrossRefGoogle Scholar
Morello, G, Waldmann, IP, Tinetti, G, et al., 2014, A new look at Spitzer primary transit observations of the exoplanet HD 189733 b. ApJ, 786, 22 {609, 730}CrossRefGoogle Scholar
Morello, G, Waldmann, IP, Tinetti, G, 2015, Revisiting Spitzer transit observations with independent component analysis: new results for the GJ 436 system. ApJ, 802, 117 {729}CrossRefGoogle Scholar
Moreno, F, Licandro, J, Ortiz, JL, et al., 2011, (596) Scheila in outburst: a probable collision event in the main asteroid belt. ApJ, 738, 130 {684}CrossRefGoogle Scholar
Moresi, L, Solomatov, V, 1998, Mantle convection with a brittle lithosphere: thoughts on the global tectonic styles of the Earth and Venus. Geophysical Journal International, 133, 669–682 {629}CrossRefGoogle Scholar
Moretto, G, Kuhn, JR, Thiébaut, E, et al., 2014, New strategies for an extremely large telescope dedicated to extremely high contrast: the Colossus project. SPIE Conf. Ser., volume 9145, 1 {646}Google Scholar
Morgan, HL, Edmunds, MG, 2003, Dust formation in early galaxies. MNRAS, 343, 427–442 {495}CrossRefGoogle Scholar
Morgan, WW, Keenan, PC, 1973, Spectral classification. ARA&A, 11, 29–50 {435}Google Scholar
Morgan, WW, Keenan, PC, Kellman, E, 1943, An Atlas of Stellar Spectra, with an Outline of Spectral Classification. University of Chicago Press {435}Google Scholar
Mori, S, Okuzumi, S, 2016, Electron heating in magnetorotational instability: implications for turbulence strength in the outer regions of protoplanetary disks. ApJ, 817, 52 {461}CrossRefGoogle Scholar
Moriarty, J, Ballard, S, 2016, The Kepler dichotomy in planetary disks: linking Kepler observables to simulations of late-stage planet formation. ApJ, 832, 34 {290, 325}CrossRefGoogle Scholar
Moriarty, J, Fischer, D, 2015, Building massive compact planetesimal disks from the accretion of pebbles. ApJ, 809, 94 {473}CrossRefGoogle Scholar
Moriarty, J, Madhusudhan, N, Fischer, D, 2014, Chemistry in an evolving protoplanet-ary disk: effects on terrestrial planet composition. ApJ, 787, 81 {464}CrossRefGoogle Scholar
Morishima, R, 2017, Onset of oligarchic growth and implication for accretion histories of dwarf planets. Icarus, 281, 459–475 {475}CrossRefGoogle Scholar
Morishima, R, Stadel, J, Moore, B, 2010, From planetesimals to terrestrial planets: N-body simulations including the effects of nebular gas and giant planets. Icarus, 207, 517–535 {476, 694}CrossRefGoogle Scholar
Morison, I, 2006, SETI in the new millennium. Astronomy and Geophysics, 47(4), 040000–4 {644}CrossRefGoogle Scholar
Moriwaki, K, Nakagawa, Y, 2004, A planetesimal accretion zone in a circumbinary disk. ApJ, 609, 1065–1070 {549}CrossRefGoogle Scholar
Morley, CV, Fortney, JJ, Kempton, EMR, et al., 2013, Quantitatively assessing the role of clouds in the transmission spectrum of GJ 1214 b. ApJ, 775, 33 {613, 735}CrossRefGoogle Scholar
Morley, CV, Fortney, JJ, Marley, MS, et al., 2012, Neglected clouds in T and Y dwarf atmospheres. ApJ, 756, 172 {436, 438}CrossRefGoogle Scholar
Morley, CV, Fortney, JJ, Marley, MS, 2015, Thermal emission and reflected light spectra of super Earths with flat transmission spectra. ApJ, 815, 110 {570, 588, 589}CrossRefGoogle Scholar
Morley, CV, Knutson, H, Line, M, et al., 2017a, Forward and inverse modeling of the emission and transmission spectrum of GJ 436 b: investigating metal enrichment, tidal heating, and clouds. AJ, 153, 86 {729}CrossRefGoogle Scholar
Morley, CV, Kreidberg, L, Rustamkulov, Z, et al., 2017b, Observing the atmospheres of known temperate Earth-sized planets with JWST. ApJ, 850, 121 {734, 750}CrossRefGoogle Scholar
Morley, CV, Marley, MS, Fortney, JJ, et al., 2014, Water clouds in Y dwarfs and exo-planets. ApJ, 787, 78 {570, 591}CrossRefGoogle Scholar
Moro-Martín, A, Malhotra, R, Bryden, G, et al., 2010a, Locating planetesimal belts in the multiple-planet systems HD 128311, HD 202206, HD 82943, and HR 8799. ApJ, 717, 1123–1139 {494, 721, 722, 724, 763}CrossRefGoogle Scholar
Moro-Martín, A, Malhotra, R, Carpenter, JM, et al., 2007, The dust, planetesimals, and planets of HD 38529. ApJ, 668, 1165–1173 {494, 719}CrossRefGoogle Scholar
Moro-Martín, A, Marshall, JP, Kennedy, G, et al., 2015, Does the presence of planets affect the frequency and properties of extrasolar Kuiper Belts? Results from the Herschel debris and Dunes surveys. ApJ, 801, 143 {493}CrossRefGoogle Scholar
Moro-Martín, A, Rieke, GH, Su, KYL, 2010b, Could the planets around HR 8799 be brown dwarfs? ApJ, 721, L199–L202 {763}CrossRefGoogle Scholar
Moro-Martín, A, Turner, EL, Loeb, A, 2009, Will the Large Synoptic Survey Telescope (LSST) detect extrasolar planetesimals entering the solar system? ApJ, 704, 733–742 {692}CrossRefGoogle Scholar
Morris, BM, Agol, E, Davenport, JRA, et al., 2018a, Possible bright star spots on TRAPPIST–1. ApJ, 857, 39 {750}CrossRefGoogle Scholar
Morris, BM, Agol, E, Hawley, SL, 2018b, Photometric analysis and transit times of TRAPPIST–1 b and c. RNAAS, 2, 10 {750}Google Scholar
Morris, BM, Hawley, SL, Hebb, L, et al., 2017a, Chromospheric activity of HAT–P–11: an unusually active planet-hosting K star. ApJ, 848, 58 {736}CrossRefGoogle Scholar
Morris, BM, Hebb, L, Davenport, JRA, et al., 2017b, The star spots of HAT–P–11: evidence for a solar-like dynamo. ApJ, 846, 99 {214, 736}CrossRefGoogle Scholar
Morris, BM, Mandell, AM, Deming, D, 2013, Kepler's optical secondary eclipse of HAT–P–7 b and probable detection of planet-induced stellar gravity darkening. ApJ, 764, L22 {12, 163, 229, 735}CrossRefGoogle Scholar
Morris, SL, 1985, The ellipsoidal variable stars. ApJ, 295, 143–152 {239, 240}CrossRefGoogle Scholar
Morris, SL, Naftilan, SA, 1993, The equations of ellipsoidal star variability applied to HR 8427. ApJ, 419, 344 {239}CrossRefGoogle Scholar
Morrison, D, 1982, Satellites of Jupiter. University of Arizona Press {651}Google Scholar
Morrison, SJ, Kratter, KM, 2016, Orbital stability of multi-planet systems: behaviour at high masses. ApJ, 823, 118 {763}CrossRefGoogle Scholar
Mörth, HT, Schlamminger, L, 1979, Planetary motion, sun spots and climate. Solar-Terrestrial Influences on Weather and Climate, 193–207 {656}
Mortier, A, Collier Cameron, A, 2017, Stacked Bayesian general Lomb–Scargle peri-odogram: identifying stellar activity signals. A&A, 601, A110 {21, 25}Google Scholar
Mortier, A, Faria, JP, Correia, CM, et al., 2015, BGLS: a Bayesian formalism for the gen-eralised Lomb–Scargle periodogram. A&A, 573, A101 {21}Google Scholar
Mortier, A, Faria, JP, Santos, NC, et al., 2016, The HARPS search for southern extrasolar planets. XXXIX. HD 175607, the most metal-poor G dwarf with an orbiting sub-Neptune. A&A, 585, A135 {723}Google Scholar
Mortier, A, Santos, NC, Sousa, S, et al., 2013a, On the functional formof themetallicity-giant planet correlation. A&A, 551, A112 {484}Google Scholar
Mortier, A, Santos, NC, Sousa, SG, et al., 2013b, New and updated stellar parameters for 71 evolved planet hosts: on the metallicity–giant planet connection. A&A, 557, A70 {389}Google Scholar
Mortier, A, Santos, NC, Sousa, SG, 2013c, New and updated stellar parameters for 90 transit hosts: the effect of the surface gravity. A&A, 558, A106 {377}Google Scholar
Morton, TD, 2012, An efficient automated validation procedure for exoplanet transit candidates. ApJ, 761, 6 {197}CrossRefGoogle Scholar
Morton, TD, 2015, VESPA: false positive probabilities calculator. Astrophysics Source Code Library {197}
Morton, TD, Bryson, ST, Coughlin, JL, et al., 2016, False positive probabilities for all Kepler Objects of Interest: 1284 newly validated planets and 428 likely false positives. ApJ, 822, 86 {196, 634, 741, 742, 743, 744, 745, 746, 747}CrossRefGoogle Scholar
Morton, TD, Johnson, JA, 2011a, Discerning exoplanet migration models using spin–orbit measurements. ApJ, 729, 138 {255}CrossRefGoogle Scholar
Morton, TD, Johnson, JA, 2011b, On the low false positive probabilities of Kepler planet candidates. ApJ, 738, 170 {196, 197, 208}CrossRefGoogle Scholar
Morton, TD, Swift, J, 2014, The radius distribution of planets around cool stars. ApJ, 791, 10 {296, 308}CrossRefGoogle Scholar
Morton, TD, Winn, JN, 2014, Obliquities of Kepler stars: comparison of single- and multiple-transit systems. ApJ, 796, 47 {311}CrossRefGoogle Scholar
Morzinski, KM, Males, JR, Skemer, AJ, et al., 2015, Magellan adaptive optics first-light observations of the exoplanet fl Pic b. II. 3–5μm direct imaging with Mag AO+Clio, and the empirical bolometric luminosity of a self-luminous giant planet. ApJ, 815, 108 {367, 762}CrossRefGoogle Scholar
Moses, EI, et al., 2013a, The National Ignition Campaign: status and progress. Nuclear Fusion, 53(10), 104020 {645}CrossRefGoogle Scholar
Moses, JI, 2014, Chemical kinetics on extrasolar planets. Phil. Trans. Soc. London A, 372, 30073 {590, 591}Google ScholarPubMed
Moses, JI, Line, MR, Visscher, C, et al., 2013b, Compositional diversity in the atmospheres of hot Neptunes, with application to GJ 436 b. ApJ, 777, 34 {584, 587, 729}CrossRefGoogle Scholar
Moses, JI, Madhusudhan, N, Visscher, C, et al., 2013c, Chemical consequences of the C/O ratio on hot Jupiters: WASP–12 b, CoRoT–2 b, XO–1 b, and HD 189733 b. ApJ, 763, 25 {616, 730, 733, 753, 757}CrossRefGoogle Scholar
Moses, JI, Marley, MS, Zahnle, K, et al., 2016, On the composition of young, directly imaged giant planets. ApJ, 829, 66 {761, 763}CrossRefGoogle Scholar
Moses, JI, Poppe, AR, 2017, Dust ablation on the giant planets: consequences for stratospheric photochemistry. Icarus, 297, 33–58 {587}CrossRefGoogle Scholar
Moses, JI, Visscher, C, Fortney, JJ, et al., 2011, Disequilibrium carbon, oxygen, and nitrogen chemistry in the atmospheres of HD 189733 b and HD 209458 b. ApJ, 737, 15 {584, 587, 610, 730, 732}CrossRefGoogle Scholar
Moskovitz, N, Gaidos, E, 2011, Differentiation of planetesimals and the thermal consequences of melt migration. Meteor. Plan. Sci., 46, 903–918 {276, 470}Google Scholar
Moskovitz, NA, Gaidos, E, Williams, DM, 2009, The effect of lunar-like satellites on the orbital infrared light curves of Earth-analogue planets. Astrobiology, 9, 269–277 {276}CrossRefGoogle Scholar
Mosqueira, I, Estrada, PR, 2003a, Formation of the regular satellites of giant planets in an extended gaseous nebula. I. Subnebula model and accretion of satellites. Icarus, 163, 198–231 {687, 688}Google Scholar
Mosqueira, I, Estrada, PR, 2003b, Formation of the regular satellites of giant planets in an extended gaseous nebula. II. Satellite migration and survival. Icarus, 163, 232–255 {687}Google Scholar
Mosqueira, I, Estrada, PR, 2006, Jupiter's obliquity and a long-lived circumplanetary disk. Icarus, 180, 93–97 {681}CrossRefGoogle Scholar
Mosser, B, Baudin, F, Lanza, AF, et al., 2009, Short-lived spots in solar-like stars as observed by CoRoT. A&A, 506, 245–254 {385}Google Scholar
Mosser, B, Maillard, JP, Mékarnia, D, 2000, New attempt at detecting the Jovian oscillations. Icarus, 144, 104–113 {411}CrossRefGoogle Scholar
Motalebi, F, Udry, S, Gillon, M, et al., 2015, The HARPS–N Rocky Planet Search. I. HD 219134 b: a transiting rocky planet in a multi-planet system at 6.5 pc from the Sun. A&A, 584, A72 {170, 733}Google Scholar
Mottez, F, Heyvaerts, J, 2011a, A magnetic thrust action on small bodies orbiting a pulsar. A&A, 532, A22 {110}Google Scholar
Mottez, F, Heyvaerts, J, 2011b, Magnetic coupling of planets and small bodies with a pulsar wind. A&A, 532, A21 {110}Google Scholar
Mottola, S, DiMartino, M, Erikson, A, et al., 2011, Rotational properties of Jupiter Trojans. I. Light curves of 80 objects. AJ, 141, 170 {689}CrossRefGoogle Scholar
Mouillet, D, Larwood, JD, Papaloizou, JCB, et al., 1997, A planet on an inclined orbit as an explanation of the warp in the fl Pic disk. MNRAS, 292, 896 {495, 762}CrossRefGoogle Scholar
Moulds, VE, Watson, CA, Bonfils, X, et al., 2013, Finding exoplanets orbiting young active stars. I. Technique. MNRAS, 430, 1709–1721 {38}CrossRefGoogle Scholar
Moulton, FR, 1899, The limits of temporary stability of satellite motion, with an application to the question of the existence of an unseen body in the binary system 70 Oph. AJ, 20, 33–37 {83}CrossRefGoogle Scholar
Moulton, FR, 1905, On the evolution of the solar system. ApJ, 22, 165–180 {450}CrossRefGoogle Scholar
Mourard, D, Blazit, A, Bonneau, D, et al., 2006, Recent progress and future prospects of the GI2T interferometer. SPIE Conf. Ser., volume 6268, 7 {348}Google Scholar
Mousis, O, Lunine, JI, Petit, JM, et al., 2011, On the volatile enrichment and heavy elements in HD 189733 b. ApJ, 727, 77 {730}CrossRefGoogle Scholar
Mousis, O, Lunine, JI, Tinetti, G, et al., 2009, Elemental abundances and minimum mass of heavy elements in the envelope of HD 189733 b. A&A, 507, 1671–1674 {730}Google Scholar
Moutou, C, Aigrain, S, Almenara, J, et al., 2007a, Expected performance of the CoRoT planet search from light curve beauty contests. Transiting Extrasolar Planets Workshop, volume 366 of ASP Conf. Ser., 127 {191}Google Scholar
Moutou, C, Almenara, JM, Díaz, RF, et al., 2014a, CoRoT–22 b: a validated 4.9 R⊕ exo-planet in 10-d orbit. MNRAS, 444, 2783–2792 {191, 197, 734}CrossRefGoogle Scholar
Moutou, C, Boisse, I, Hébrard, G, et al., 2015a, SPIRou: a spectropolarimeter for the CFHT. SF2A-2015: Proceedings of the Annual meeting of the French Society of Astronomy and Astrophysics, 205–212 {48}
Moutou, C, Bonomo, AS, Bruno, G, et al., 2013a, SOPHIE velocimetry of Kepler transit candidates. IX. KOI–415 b: a long-period, eccentric transiting brown dwarf to an evolved Sun. A&A, 558, L6 {62}Google Scholar
Moutou, C, Bruntt, H, Guillot, T, et al., 2008, Transiting exoplanets from the CoRoT space mission. V. CoRoT–4 b: stellar and planetary parameters. A&A, 488, L47–L50 {733}Google Scholar
Moutou, C, Coustenis, A, Schneider, J, et al., 2001, Search for spectroscopical signatures of transiting HD 209458 b exosphere. A&A, 371, 260–266 {610, 731}Google Scholar
Moutou, C, Coustenis, A, Schneider, J, 2003, Searching for helium in the exosphere of HD 209458 b. A&A, 405, 341–348 {610, 731}Google Scholar
Moutou, C, Deleuil, M, Guillot, T, et al., 2013b, CoRoT: harvest of the exoplanet program. Icarus, 226, 1625–1634 {171, 173}CrossRefGoogle Scholar
Moutou, C, Díaz, RF, Udry, S, et al., 2011a, Spin–orbit inclinations of the exoplanetary systems HAT–P–8 b, HAT–P–9 b, HAT–P–16 b, and HAT–P–23 b. A&A, 533, A113 {736}Google Scholar
Moutou, C, Donati, JF, Lin, D, et al., 2016, The magnetic properties of the star Kepler–78. MNRAS, 459, 1993–2007 {742}CrossRefGoogle Scholar
Moutou, C, Donati, JF, Savalle, R, et al., 2007b, Spectropolarimetric observations of the transiting planetary system of the K dwarf HD 189733. A&A, 473, 651–660 {730}Google Scholar
Moutou, C, Hébrard, G, Bouchy, F, et al., 2009a, Photometric and spectroscopic detection of the primary transit of the 111-day period planet HD 80606 b. A&A, 498, L5–L8 {79, 158, 170, 729}Google Scholar
Moutou, C, Hébrard, G, Bouchy, F, 2014b, The SOPHIE search for northern extrasolar planets. VI. Three new hot Jupiters in multi-planet extrasolar systems. A&A, 563, A22 {718, 723, 725}Google Scholar
Moutou, C, Lo Curto, G, Mayor, M, et al., 2015b, The HARPS search for southern extra-solar planets. XXXVII. Five new long-period giant planets and a system update. A&A, 576, A48 {716, 718, 719, 721}Google Scholar
Moutou, C, Loeillet, B, Bouchy, F, et al., 2006, ELODIE metallicity-biased search for transiting hot Jupiters. IIII. A hot Jupiter orbiting the star HD 185269. A&A, 458, 327–329 {723}Google Scholar
Moutou, C, Mayor, M, Bouchy, F, et al., 2005a, The HARPS search for southern extraso-lar planets. IV. Three close-in planets around HD 2638, HD 27894 and HD 63454. A&A, 439, 367–373 {77, 718, 719, 720}Google Scholar
Moutou, C, Mayor, M, Lo Curto, G, et al., 2009b, The HARPS search for southern ex-trasolar planets. XV. Six long-period giant planets around BD–17 63, HD 20868, HD73267, HD131664, HD145377, and HD153950. A&A, 496, 513–519 {716, 719, 720, 722}Google Scholar
Moutou, C, Mayor, M, Lo Curto, G, 2011b, The HARPS search for southern extrasolar planets. XXVII. Seven new planetary systems. A&A, 527, A63 {718, 719, 721, 724}Google Scholar
Moutou, C, Pont, F, Barge, P, et al., 2005b, Comparative blind test of five planetary transit detection algorithms on realistic synthetic light curves. A&A, 437, 355–368 {157, 191}Google Scholar
Moutou, C, Pont, F, Bouchy, F, et al., 2004, Accurate radius and mass of the transiting exoplanet OGLE–TR–132 b. A&A, 424, L31–L34 {749}Google Scholar
Moutou, C, Vigan, A, Mesa, D, et al., 2017, Eccentricity in planetary systems and the role of binarity: sample definition, initial results, and the system of HD 211847. A&A, 602, A87 {360, 718}Google Scholar
Mocnik, T, Anderson, DR, Brown, DJA, et al., 2016a, WASP–157 b, a transiting hot Jupiter observed with K2. PASP, 128(12), 124403 {757}CrossRefGoogle Scholar
Mocnik, T, Clark, BJM, Anderson, DR, et al., 2016b, Star spots on WASP–85. AJ, 151, 150 {253, 756}CrossRefGoogle Scholar
Mocnik, T, Hellier, C, Anderson, DR, 2017a, K2 looks towards WASP–28 and WASP–151. ArXiv e-prints {253, 754, 757}
Mocnik, T, Hellier, C, Anderson, DR, 2018, Ephemeris refinement of a hot Jupiter K2–140 b. RNAAS, 2, 22 {749}Google Scholar
Mocnik, T, Hellier, C, Anderson, DR, et al., 2017b, Star spots on WASP–107 and pulsations of WASP–118. MNRAS, 469, 1622–1629 {756, 757}CrossRefGoogle Scholar
Mocnik, T, Southworth, J, Hellier, C, 2017c, Recurring sets of recurring star spot occul-tations on exoplanet host Qatar–2. MNRAS, 471, 394–403 {750}CrossRefGoogle Scholar
Movshovitz, N, Bodenheimer, P, Podolak, M, et al., 2010, Formation of Jupiter using opacities based on detailed grain physics. Icarus, 209, 616–624 {485, 660}CrossRefGoogle Scholar
Moya, A, Amado, PJ, Barrado, D, et al., 2010a, Age determination of the HR 8799 planetary system using asteroseismology. MNRAS, 405, L81–L85 {365, 410, 763}CrossRefGoogle Scholar
Moya, A, Amado, PJ, Barrado, D, 2010b, The planetary system host HR 8799: on its ‚ Boo nature. MNRAS, 406, 566–575 {763}Google Scholar
Moya, A, Bouy, H, Marchis, F, et al., 2011, High spatial resolution imaging of the star with a transiting planet WASP–33. A&A, 535, A110 {754}Google Scholar
Moya, A, Suárez, JC, GarcíaHernández, A, et al., 2017, Semi-empirical seismic relations of A-F stars from COROT and Kepler legacy data. MNRAS, 471, 2491–2497 {312}CrossRefGoogle Scholar
Moyano, M, Almeida, LA, von Essen, C, et al., 2017, Multi-band characterisation of the hot Jupiters: WASP–5 b, WASP–44 b and WASP–46 b. MNRAS, 471, 650–657 {752, 755}CrossRefGoogle Scholar
Mróz, P, Han, C, and, et al., 2017a, OGLE–2016–BLG–0596L b: a high-mass planet from a high-magnification pure-survey microlensing event. AJ, 153, 143 {760}CrossRefGoogle Scholar
Mróz, P, Ryu, YH, Skowron, J, et al., 2018, A Neptune-mass free-floating planet candidate discovered by microlensing surveys. AJ, 155, 121 {12, 150, 151, 760}CrossRefGoogle Scholar
Mróz, P, Udalski, A, Bond, IA, et al., 2017b, OGLE–2013–BLG–0132L b and OGLE–2013–BLG–1721L b: two Saturn-mass planets discovered around M dwarfs. AJ, 154, 205 {141, 760}CrossRefGoogle Scholar
Mróz, P, Udalski, A, Skowron, J, et al., 2017c, No large population of unbound or wide-orbit Jupiter-mass planets. Nature, 548, 183–186 {150}Google Scholar
Muñoz, DJ, Lai, D, 2015, Survival of planets around shrinking stellar binaries. Proc. Nat. Acad. Sci., 112, 9264–9269 {553}CrossRefGoogle ScholarPubMed
Muñoz, DJ, Lai, D, Liu, B, 2016, The formation efficiency of close-in planets via Lidov–Kozai migration: analytic calculations. MNRAS, 460, 1086–1093 {529}CrossRefGoogle Scholar
Muñoz-Gutiérrez, MA, Pichardo, B, Peimbert, A, 2017, Giant planets can act as stabil-ising agents on debris disks. AJ, 154, 17 {495}CrossRefGoogle Scholar
Muñoz-Gutiérrez, MA, Reyes-Ruiz, M, Pichardo, B, 2015, Chaotic dynamics of Comet 1P/Halley: Lyapunov exponent and survival time expectancy. MNRAS, 447, 3775–3784 {515}CrossRefGoogle Scholar
Mudryk, LR, Wu, Y, 2006, Resonance overlap is responsible for ejecting planets in binary systems. ApJ, 639, 423–431 {549}CrossRefGoogle Scholar
Muench, AA, Alves, J, Lada, CJ, et al., 2001, Evidence for circumstellar disks around young brown dwarfs in the Trapeziumcluster. ApJ, 558, L51–L54 {443}CrossRefGoogle Scholar
Mugnai, D, Ranfagni, A, Ruggeri, R, 2003, Pupils with super-resolution. Physics Letters A, 311, 77–81 {357}CrossRefGoogle Scholar
Mugrauer, M, Avila, G, Guirao, C, 2014a, FLECHAS: a new échelle spectrograph at the University Observatory Jena. Astron. Nach., 335, 417 {47}CrossRefGoogle Scholar
Mugrauer, M, Dinçel, B, 2016, Follow-up spectroscopic observations of HD 107148B: a new white dwarf companion of an exoplanet host star. Astron. Nach., 337, 627 {721}CrossRefGoogle Scholar
Mugrauer, M, Ginski, C, 2015, High-contrast imaging search for stellar and substellar companions of exoplanet host stars. MNRAS, 450, 3127–3136 {721, 722}CrossRefGoogle Scholar
Mugrauer, M, Ginski, C, Seeliger, M, 2014b, New wide stellar companions of exoplanet host stars. MNRAS, 439, 1063–1070 {360, 721}CrossRefGoogle Scholar
Mugrauer, M, Neuhaeuser, R, Guenther, E, et al., 2005a, The multiplicity of exoplanet host stars. Astron. Nach., 326, 629–630 {716}Google Scholar
Mugrauer, M, Neuhäuser, R, 2005, Gl86B: a white dwarf orbits an exoplanet host star. MNRAS, 361, L15–L19 {414}CrossRefGoogle Scholar
Mugrauer, M, Neuhäuser, R, 2009, The multiplicity of exoplanet host stars. New low-mass stellar companions of the exoplanet host stars HD 125612 and HD 212301. A&A, 494, 373–378 {551, 722, 724}Google Scholar
Mugrauer, M, Neuhäuser, R, Mazeh, T, 2007, The multiplicity of exoplanet host stars: spectroscopic confirmation of the companions GJ 3021B and HD 27442B, one new planet host triple-star system, and global statistics. A&A, 469, 755–770 {79, 414, 717, 719}Google Scholar
Mugrauer, M, Neuhäuser, R, Mazeh, T, et al., 2004a, Astrometric confirmation of awide low-mass companion to the planet host star HD 89744. Astron. Nach., 325, 718–722 {721}CrossRefGoogle Scholar
Mugrauer, M, Neuhäuser, R, Mazeh, T, 2004b, A low-mass stellar companion of the planet host star HD 75289. A&A, 425, 249–253 {720}Google Scholar
Mugrauer, M, Neuhäuser, R, Seifahrt, A, et al., 2005b, Four new wide binaries among exoplanet host stars. A&A, 440, 1051–1060 {718, 722, 724}Google Scholar
Mugrauer, M, Seifahrt, A, Neuhäuser, R, et al., 2006, HD3651B: the first directly imaged brown dwarf companion of an exoplanet host star. MNRAS, 373, L31–L35 {718}CrossRefGoogle Scholar
Mugrauer, M, Vogt, N, Neuhäuser, R, et al., 2010, Direct detection of a substellar companion to the young nearby star PZ Tel. A&A, 523, L1 {362}Google Scholar
Muhleman, DO, Grossman, AW, Butler, BJ, 1995, Radar investigations of Mars, Mercury, and Titan. Ann. Rev. Earth Plan. Sci., 23, 337–374 {355}CrossRefGoogle Scholar
Muhleman, DO, Holdridge, DB, Block, N, 1962, The astronomical unit determined by radar reflections from Venus. AJ, 67, 191 {356}CrossRefGoogle Scholar
Muirhead, PS, Becker, J, Feiden, GA, et al., 2014, Characterising the cool KOIs. VI. Hand K-band spectra of Kepler Mdwarf planet-candidate hosts. ApJS, 213, 5 {290, 405}CrossRefGoogle Scholar
Muirhead, PS, Edelstein, J, Erskine, DJ, et al., 2011, Precise stellar radial velocities of an M dwarf with a Michelson interferometer and a medium-resolution near-infrared spectrograph. PASP, 123, 709 {50}CrossRefGoogle Scholar
Muirhead, PS, Hamren, K, Schlawin, E, et al., 2012a, Characterising the cool KOIs. I. New effective temperatures, metallicities, masses, and radii of low-mass Kepler planet-candidate host stars. ApJ, 750, L37 {390}CrossRefGoogle Scholar
Muirhead, PS, Johnson, JA, Apps, K, et al., 2012b, Characterising the cool KOIs. III. KOI–961: a small star with large proper motion and three small planets. ApJ, 747, 144 {11, 14, 179, 290, 741}CrossRefGoogle Scholar
Muirhead, PS, Mann, AW, Vanderburg, A, et al., 2015, Kepler–445, Kepler–446 and the occurrence of compact multiples orbiting mid-M dwarf stars. ApJ, 801, 18 {197, 290, 746}CrossRefGoogle Scholar
Muirhead, PS, Vanderburg, A, Shporer, A, et al., 2013, Characterising the cool KOIs. V. KOI–256: a mutually eclipsing post-common-envelope binary. ApJ, 767, 111 {137, 223}CrossRefGoogle Scholar
Mulders, GD, Ciesla, FJ, Min, M, et al., 2015a, The snow line in viscous disks around low-mass stars: implications for water delivery to terrestrial planets in the habitable zone. ApJ, 807, 9 {564}CrossRefGoogle Scholar
Mulders, GD, Dominik, C, 2012, Probing the turbulent mixing strength in protoplanet-ary disks across the stellar mass range: no significant variations. A&A, 539, A9 {309}Google Scholar
Mulders, GD, Pascucci, I, Apai, D, 2015b, A stellar mass-dependent drop in planet occurrence rates. ApJ, 798, 112 {309}CrossRefGoogle Scholar
Mulders, GD, Pascucci, I, Apai, D, 2015c, An increase in themass of planetary systems around lower-mass stars. ApJ, 814, 130 {501}CrossRefGoogle Scholar
Mulders, GD, Pascucci, I, Apai, D, et al., 2016, A super-solar metallicity for stars with hot rocky exoplanets. AJ, 152, 187 {378}CrossRefGoogle Scholar
Mulet-Marquis, C, Baraffe, I, Aigrain, S, et al., 2009, Accuracy of stellar parameters of exoplanet-host stars determined from asteroseismology. A&A, 506, 153–158 {408}Google Scholar
Mullally, F, Coughlin, JL, Thompson, SE, et al., 2015, Planetary candidates observed by Kepler. VI. Planet sample from Q1–Q16 (47 months). ApJS, 217, 31 {196}CrossRefGoogle Scholar
Mullally, F, Coughlin, JL, Thompson, SE, 2016, Identifying false alarms in the Kepler planet candidate catalogue. PASP, 128(7), 074502 {196}CrossRefGoogle Scholar
Mullally, F, Reach, WT, Degennaro, S, et al., 2009, Spitzer planet limits around the pulsating white dwarf GD 66. ApJ, 694, 327–331 {111, 415}CrossRefGoogle Scholar
Mullally, F, von Hippel, T, Winget, DE, 2007, Spitzer white dwarf planet limits. 15th European Workshop on White Dwarfs, volume 372 of ASP Conf. Ser., 355–358 {415}Google Scholar
Mullally, F, Winget, DE, Degennaro, S, et al., 2008, Limits on planets around pulsating white dwarf stars. ApJ, 676, 573–583 {10, 111}CrossRefGoogle Scholar
Mülläri, AA, Orlov, VV, 1996, Encounters of the Sun with nearby stars in the past and future. Earth Moon and Planets, 72, 19–23 {655}CrossRefGoogle Scholar
Müller, A, Roccatagliata, V, Henning, T, et al., 2013a, Reanalysis of the FEROS observations of HIP 11952. A&A, 556, A3 {39, 724}Google Scholar
Müller, HM, Huber, KF, Czesla, S, et al., 2013b, High-precision stellar limb-darkening measurements: a transit study of 38 Kepler planetary candidates. A&A, 560, A112 {211}Google Scholar
Müller, HSP, Schlöder, F, Stutzki, J, et al., 2005a, The Cologne Database for Molecular Spectroscopy, CDMS: a useful tool for astronomers and spectroscopists. Journal of Molecular Structure, 742, 215–227 {570}CrossRefGoogle Scholar
Muller, RA, Morris, DE, 1986, Geomagnetic reversals from impacts on the Earth. Geo-phys. Res. Lett., 13, 1177–1180 {663}CrossRefGoogle Scholar
Müller, S, Löhne, T, Krivov, AV, 2010, The debris disk of Vega: a steady-state collisional cascade, naturally. ApJ, 708, 1728–1747 {496}CrossRefGoogle Scholar
Müller, TG, Ábrahám P, Crovisier, J, 2005b, Comets, asteroids and zodiacal light as seen by ISO. Space Science Reviews, 119, 141–155 {692}CrossRefGoogle Scholar
Müller, TG, O'Rourke, L, Barucci, AM, et al., 2012, Physical properties of OSIRIS–REx target asteroid (101955) 1999 RQ36, derived from Herschel, VLT–VISIR, and Spitzer. A&A, 548, A36 {681}Google Scholar
Müller, TWA, Haghighipour, N, 2014, Calculating the habitable zones of multiple star systems with a new interactive web site. ApJ, 782, 26 {623}CrossRefGoogle Scholar
Müller, TWA, Kley, W, 2012, Circumstellar disks in binary star systems: models for γ Cep and α Cen. A&A, 539, A18 {80, 714}Google Scholar
Müller, TWA, Kley, W, 2013, Modelling accretion in transition disks. A&A, 560, A40 {465}Google Scholar
Mumma, MJ, 1993, Natural lasers and masers in the solar system. Astrophysical Masers, volume 412 of Lecture Notes in Physics, Berlin Springer Verlag, 455–467 {642}Google Scholar
Munk, WH, Mac Donald, GJF, 1960, The Rotation of the Earth: a Geophysical Discussion. Cambridge University Press {533}Google Scholar
Mura, A, Wurz, P, Schneider, J, et al., 2011, Comet-like tail-formation of exospheres of hot rocky exoplanets: possible implications for CoRoT–7 b. Icarus, 211, 1–9 {733}CrossRefGoogle Scholar
Murakami, N, Uemura, R, Baba, N, et al., 2008, An eight-octant phase-mask corona-graph. PASP, 120, 1112–1118 {334}CrossRefGoogle Scholar
Muraki, Y, Han, C, Bennett, DP, et al., 2011, Discovery and mass measurements of a cold, 10 M⊕ planet and its host star. ApJ, 741, 22 {11, 141, 145, 147, 149, 759}CrossRefGoogle Scholar
Muraki, Y, Sumi, T, Abe, F, et al., 1999, Search for MACHOs by the MOA collaboration. Progress of Theoretical Physics Supplement, 133, 233–246 {122}CrossRefGoogle Scholar
Muralidharan, K, Deymier, P, Stimpfl, M, et al., 2008, Origin of water in the inner solar system: a kinetic Monte Carlo study of water adsorption on forsterite. Icarus, 198, 400–407 {667}CrossRefGoogle Scholar
Muranushi, T, Okuzumi, S, Inutsuka Si, 2012, Interdependence of electric discharge and magnetorotational instability in protoplanetary disks. ApJ, 760, 56 {461}CrossRefGoogle Scholar
Murgas, F, Pallé, E, Cabrera-Lavers, A, et al., 2012, Narrow-band Hα photometry of the super-Earth GJ 1214 b with GTC–OSIRIS tunable filters. A&A, 544, A41 {734}Google Scholar
Murgas, F, Pallé, E, Parviainen, H, et al., 2017, The GTC exoplanet transit spectroscopy survey. VII. An optical transmission spectrum of WASP–48 b. A&A, 605, A114 {755}Google Scholar
Murgas, F, Pallé, E, Zapatero Osorio, MR, et al., 2014, The GTC exoplanet transit spectroscopy survey. I. OSIRIS transmission spectroscopy of the short period planet WASP–43 b. A&A, 563, A41 {755}Google Scholar
Murphy, MT, Locke, CR, Light, PS, et al., 2012, Laser frequency comb techniques for precise astronomical spectroscopy. MNRAS, 422, 761–771 {33}CrossRefGoogle Scholar
Murphy, MT, Udem, T, Holzwarth, R, et al., 2007, High-precision wavelength calibration of astronomical spectrographs with laser frequency combs. MNRAS, 380, 839–847 {32}CrossRefGoogle Scholar
Murphy, SJ, 2012, An examination of some characteristics of Kepler short- and long-cadence data. MNRAS, 422, 665–671 {175}CrossRefGoogle Scholar
Murphy, SJ, 2014, Investigating the A-type stars using Kepler data. Ph. D. thesis, Jeremiah Hor-rocks Institute, University of Central Lancashire, Preston, UK {383}Google Scholar
Murphy, SJ, Bedding, TR, Shibahashi, H, 2016, A planet in an 840-d orbit around a Kepler main-sequence A star found from phase modulation of its pulsations. ApJ, 827, L17 {192, 747}CrossRefGoogle Scholar
Murphy, T, Bell, ME, Kaplan, DL, et al., 2015, Limits on low-frequency radio emission from southern exoplanetswith the Murchison Widefield Array. MNRAS, 446, 2560–2565 {426, 427, 715, 716, 717, 719, 721, 722, 723, 725, 753}Google Scholar
Murray, CD, 1998, Chaotic motion in the solar system. Encyclopedia of the Solar System, Academic Press, Orlando {514}Google Scholar
Murray, CD, Dermott, SF, 2000, Solar System Dynamics. Cambridge University Press {17, 258, 273, 320, 505, 506, 510, 511, 512, 513, 515, 533, 535, 622, 677, 678, 693}CrossRefGoogle Scholar
Murray, JB, Heggie, DC, 2014, Character and origin of the Phobos grooves. Planet. Space Sci., 102, 119–143 {689}CrossRefGoogle Scholar
Murray, N, Chaboyer, B, 2002, Are stars with planets polluted? ApJ, 566, 442–451 {388, 392, 393}CrossRefGoogle Scholar
Murray, N, Chaboyer, B, Arras, P, et al., 2001, Stellar pollution in the solar neighbour-hood. ApJ, 555, 801–815 {388}CrossRefGoogle Scholar
Murray, N, Hansen, B, Holman, M, et al., 1998, Migrating planets. Science, 279, 69–72 {518}CrossRefGoogle ScholarPubMed
Murray, N, Holman, M, 1997, Diffusive chaos in the outer asteroid belt. AJ, 114, 1246–1259 {694}CrossRefGoogle Scholar
Murray, N, Holman, M, 2001, The role of chaotic resonances in the solar system. Nature, 410, 773–779 {514}CrossRefGoogle ScholarPubMed
Murray, N, Paskowitz, M, Holman, M, 2002, Eccentricity evolution of migrating planets. ApJ, 565, 608–620 {522}CrossRefGoogle Scholar
Murray, N, Weingartner, JC, Capobianco, C, 2004, On the flux of extrasolar dust in Earth's atmosphere. ApJ, 600, 804–827 {683}CrossRefGoogle Scholar
Murray-Clay, RA, Chiang, EI, 2005, A signature of planetary migration: the origin of asymmetric capture in the 2:1 resonance. ApJ, 619, 623–638 {685, 695}CrossRefGoogle Scholar
Murray-Clay, RA, Chiang, EI, 2006, Brownian motion in planetary migration. ApJ, 651, 1194–1208 {524, 695}CrossRefGoogle Scholar
Murray-Clay, RA, Chiang, EI, Murray, N, 2009, Atmospheric escape from hot Jupiters. ApJ, 693, 23–42 {298, 601}CrossRefGoogle Scholar
Murray-Clay, RA, Schlichting, HE, 2011, Using Kuiper belt binaries to constrain Neptune's migration history. ApJ, 730, 132 {684}CrossRefGoogle Scholar
Musci, R, Weryk, RJ, Brown, P, et al., 2012, An optical survey for millimeter-sized interstellar meteoroids. ApJ, 745, 161 {683}CrossRefGoogle Scholar
Mushailov, BR, Teplitskaya, VS, 2012, On reliability of determining the orbital parameters of exoplanets by the Doppler method. Cosmic Research, 50, 421–430 {257}CrossRefGoogle Scholar
Musielak, ZE, Cuntz, M, Marshall, EA, et al., 2005, Stability of planetary orbits in binary systems. A&A, 434, 355–364 {549, 550, 551, 714, 716, 724}Google Scholar
Musiolik, G, Teiser, J, Jankowski, T, et al., 2016, Collisions of CO2 ice grains in planet formation. ApJ, 818, 16 {468}CrossRefGoogle Scholar
Musso, P, 2012, The problemof active SETI: an overview. Acta Astron., 78, 43–54 {648}CrossRefGoogle Scholar
Mustill, AJ, Davies, MB, Johansen, A, 2015, The destruction of inner planetary systems during high-eccentricity migration of gas giants. ApJ, 808, 14 {529}CrossRefGoogle Scholar
Mustill, AJ, Davies, MB, Johansen, A, 2017, The effects of external planets on inner systems: multiplicities, inclinations and pathways to eccentric warm Jupiters. MNRAS, 468, 3000–3023 {529, 741, 743}CrossRefGoogle Scholar
Mustill, AJ, Marshall, JP, Villaver, E, et al., 2013, Main-sequence progenitor configurations of the NN Ser candidate circumbinary planetary system are dynamically unstable. MNRAS, 436, 2515–2521 {115}CrossRefGoogle Scholar
Mustill, AJ, Raymond, SN, Davies, MB, 2016, Is there an exoplanet in the solar system? MNRAS, 460, L109–L113 {687}CrossRefGoogle Scholar
Mustill, AJ, Veras, D, Villaver, E, 2014, Long-term evolution of three-planet systems to the post-main sequence and beyond. MNRAS, 437, 1404–1419 {412, 416}CrossRefGoogle Scholar
Mustill, AJ, Villaver, E, 2012, Foretellings of Ragnarök: world-engulfing asymptotic giants and the inheritance of white dwarfs. ApJ, 761, 121 {517}CrossRefGoogle Scholar
Mustill, AJ, Wyatt, MC, 2011, A general model of resonance capture in planetary systems: first- and second-order resonances. MNRAS, 413, 554–572 {507, 692}CrossRefGoogle Scholar
Mustill, AJ, Wyatt, MC, 2012, Dependence of a planet's chaotic zone on particle eccentricity: the shape of debris disk inner edges. MNRAS, 419, 3074–3080 {763}CrossRefGoogle Scholar
Muterspaugh, MW, Lane, BF, Kulkarni, SR, et al., 2006, Limits to tertiary astrometric companions in binary systems. ApJ, 653, 1469–1479 {91}CrossRefGoogle Scholar
Muterspaugh, MW, Lane, BF, Kulkarni, SR, 2010a, The PHASES differential astrometry data archive. III. Limits to tertiary companions. AJ, 140, 1631–1645 {91}Google Scholar
Muterspaugh, MW, Lane, BF, Kulkarni, SR, 2010b, The PHASES differential astrometry data archive. V. Candidate substellar companions to binary systems. AJ, 140, 1657–1671 {11, 91, 551}Google Scholar
Muterspaugh, MW, Lane, BF, Kulkarni, SR, 2010c, The PHASES differential astrometry data archive. I. Measurements and description. AJ, 140, 1579–1622 {91}Google Scholar
Muto, T, Grady, CA, Hashimoto, J, et al., 2012, Discovery of small-scale spiral structures in the disk of HD135344B (SAO206462): implications for the physical state of the disk from spiral density wave theory. ApJ, 748, L22 {359, 367, 466}CrossRefGoogle Scholar
Muto, T, Takeuchi, T, Ida, S, 2011, On the interaction between a protoplanetary disk and a planet in an eccentric orbit: application of dynamical friction. ApJ, 737, 37 {521}CrossRefGoogle Scholar
Mutter, MM, Pierens, A, Nelson, RP, 2017a, The role of disk self-gravity in circumbinary planet systems. I. Disk structure and evolution. MNRAS, 465, 4735–4752 {739, 740}CrossRefGoogle Scholar
Mutter, MM, Pierens, A, Nelson, RP, 2017b, The role of disk self-gravity in circumbinary planet systems. II. Planet evo-lution. MNRAS, 469, 4504–4522 {551}CrossRefGoogle Scholar
Mužić, K, Scholz, A, Geers, V, et al., 2011, Substellar Objects in Nearby Young Clusters (SONYC). III. Chamaeleon I. ApJ, 732, 86 {434}CrossRefGoogle Scholar
Mužić, K, Scholz, A, Geers, V, 2012, Substellar Objects in Nearby Young Clusters (SONYC). V. New brown dwarfs in ρ Oph. ApJ, 744, 134 {434}CrossRefGoogle Scholar
Mužić, K, Scholz, A, Geers, VC, et al., 2014, Substellar Objects in Nearby Young Clusters (SONYC). VIII. Substellar population in Lupus 3. ApJ, 785, 159 {434}CrossRefGoogle Scholar
Mužić, K, Scholz, A, Geers, VC, 2015, Substellar Objects in Nearby Young Clusters (SONYC). IX. The planetary-mass domain of Cha I and updatedmass function in Lupus 3. ApJ, 810, 159 {434}CrossRefGoogle Scholar
Muzerolle, J, Allen, LE, Megeath, ST, et al., 2010, A Spitzer census of transition proto-planetary disks with au-scale inner holes. ApJ, 708, 1107–1118 {465}CrossRefGoogle Scholar
Muzerolle, J, Hillenbrand, L, Calvet, N, et al., 2003, Accretion in young stellar/substellar objects. ApJ, 592, 266–281 {443, 445}CrossRefGoogle Scholar
Naab, T, Ostriker, JP, 2006, A simple model for the evolution of disk galaxies: the Milky Way. MNRAS, 366, 899–917 {369}CrossRefGoogle Scholar
Naef, D, Latham, DW, Mayor, M, et al., 2001a, HD 80606 b, a planet on an extremely elongated orbit. A&A, 375, L27–L30 {158, 170, 729}Google Scholar
Naef, D, Mayor, M, Benz, W, et al., 2007, The HARPS search for southern extrasolar planets. IX. Exoplanets orbiting HD 100777, HD 190647, and HD 221287. A&A, 470, 721–726 {721, 723, 724}Google Scholar
Naef, D, Mayor, M, Beuzit, JL, et al., 2004, The ELODIE survey for northern extrasolar planets. III. Three planetary candidates detected with ELODIE. A&A, 414, 351–359 {70, 713, 715, 716, 720, 723, 728}Google Scholar
Naef, D, Mayor, M, Korzennik, SG, et al., 2003, The ELODIE survey for northern extra-solar planets. II. A Jovian planet on a long-period orbit around GJ 777 A. A&A, 410, 1051–1054 {723}Google Scholar
Naef, D, Mayor, M, Lo Curto, G, et al., 2010, The HARPS search for southern extrasolar planets. XXIII. Eight planetary companions to low-activity solar-type stars. A&A, 523, A15 {718, 719, 720, 722, 724}Google Scholar
Naef, D, Mayor, M, Pepe, F, et al., 2001b, The CORALIE survey for southern extrasolar planets. V. Three new extrasolar planets. A&A, 375, 205–218 {717, 720, 723}Google Scholar
Nagakane, M, Sumi, T, Koshimoto, N, et al., 2017, MOA–2012–BLG–505L b: a super-Earth-mass planet that probably resides in the Galactic bulge. AJ, 154, 35 {141, 759}CrossRefGoogle Scholar
Nagasawa, M, Ida, S, 2011, Orbital distributions of close-in planets and distant planets formed by scattering and dynamical tides. ApJ, 742, 72 {150, 529, 542}CrossRefGoogle Scholar
Nagasawa, M, Ida, S, Bessho, T, 2008, Formation of hot planets by a combination of planet scattering, tidal circularisation, and the Kozai mechanism. ApJ, 678, 498–508 {77, 321, 525}CrossRefGoogle Scholar
Nagasawa, M, Ida, S, Tanaka, H, 2001, Origin of high orbital eccentricity and inclination of asteroids. Earth, Planets, and Space, 53, 1085–1091 {693}CrossRefGoogle Scholar
Nagasawa, M, Lin, DNC, 2005, The dynamical evolution of the short-period extrasolar planet around À And in the pre-main-sequence stage. ApJ, 632, 1140–1156 {713}CrossRefGoogle Scholar
Nagasawa, M, Lin, DNC, Thommes, E, 2005, Dynamical shake-up of planetary systems. I. Embryo trapping and induced collisions by the sweeping secular resonance and embryo-disk tidal interaction. ApJ, 635, 578–598 {693}CrossRefGoogle Scholar
Nagasawa, M, Tanaka, H, Ida, S, 2000, Orbital evolution of asteroids during depletion of the solar nebula. AJ, 119, 1480–1497 {693, 694}CrossRefGoogle Scholar
Nagovitsyn, YA, Nagovitsyna, EY, Makarova, VV, 2009, The Gnevishev–Ohl rule for physical parameters of the solar magnetic field: the 400-year interval. Astronomy Letters, 35, 564–571 {656}CrossRefGoogle Scholar
Nagy, I, Ágas M, 2013, Stability of the Kepler–36 two-planet system. Astron. Nach., 334, 992 {179, 740}CrossRefGoogle Scholar
Najita, JR, Andrews, SM, Muzerolle, J, 2015, Demographics of transition disks in Ophiuchus and Taurus. MNRAS, 450, 3559–3567 {465}CrossRefGoogle Scholar
Najita, JR, Kenyon, SJ, 2014, The mass budget of planet-forming disks: isolating the epoch of planetesimal formation. MNRAS, 445, 3315–3329 {462}CrossRefGoogle Scholar
Najita, JR, Tiede, GP, Carr, JS, 2000, From stars to superplanets: the low-mass initial mass function in the young cluster IC 348. ApJ, 541, 977–1003 {446}CrossRefGoogle Scholar
Nakagawa, T, Shibai, H, Kaneda, H, et al., 2017, The next-generation infrared space mission Spica: project updates. Publication of Korean Astronomical Society, 32, 331–335 {182}Google Scholar
Nakagawa, T, Shibai, H, Onaka, T, et al., 2015, The next-generation infrared astronomy mission SPICA under the new framework. Publication of Korean Astronomical Society, 30, 621–624 {182}CrossRefGoogle Scholar
Nakagawa, Y, Sekiya, M, Hayashi, C, 1986, Settling and growth of dust particles in a laminar phase of a low-mass solar nebula. Icarus, 67, 375–390 {457}CrossRefGoogle Scholar
Nakajima, S, Hayashi, YY, Abe, Y, 1992, A study on the ’runaway greenhouse effect’ with a one-dimensional radiative-convective equilibrium model. Journal of Atmospheric Sciences, 49, 2256–2266 {619}2.0.CO;2>CrossRefGoogle Scholar
Nakajima, T, Oppenheimer, BR, Kulkarni, SR, et al., 1995, Discovery of a cool brown dwarf. Nature, 378, 463–465 {333, 357, 358, 362, 431, 437}CrossRefGoogle Scholar
Nakamichi, A, Mouri, H, Schmitt, D, et al., 2012, Coupled spin models for magnetic variation of planets and stars. MNRAS, 423, 2977–2990 {663}CrossRefGoogle Scholar
Nakamoto, T, Kita, NT, Tachiban, S, 2005, Chondrule age distribution and rate of heating events. Antarctic Meteorite Research, 18, 253–272 {653}Google Scholar
Namouni, F, 2010, The fate of moons of close-in giant exoplanets. ApJ, 719, L145–L147 {281, 504}CrossRefGoogle Scholar
Namouni, F, 2013, The excitation of planetary orbits by stellar jet variability and polarity reversal. Ap&SS, 343, 53–63 {531, 681}Google Scholar
Namouni, F, Morais, MHM, 2015, Resonance capture at arbitrary inclination. MNRAS, 446, 1998–2009 {508}CrossRefGoogle Scholar
Namouni, F, Morais, MHM, 2017, Resonance capture at arbitrary inclination. II. Effect of the radial drift rate. MNRAS, 467, 2673–2683 {508}CrossRefGoogle Scholar
Nan, R, Li, D, Jin, C, et al., 2011, The Five-hundred-meter Aperture Spherical radio Telescope project (FAST). Int. J. Mod. Phys. D, 20, 989–1024 {426}CrossRefGoogle Scholar
Nandez, JLA, Ivanova, N, Lombardi JC Jr, 2014, V1309 Sco: understanding a merger. ApJ, 786, 39 {498}CrossRefGoogle Scholar
Naoz, S, 2016, The eccentric Lidov–Kozai effect and its applications. ARA&A, 54, 441–489 {527, 528}Google Scholar
Naoz, S, Farr, WM, Lithwick, Y, et al., 2011, Hot Jupiters from secular planet–planet interactions. Nature, 473, 187–189 {525, 528}CrossRefGoogle ScholarPubMed
Naoz, S, Farr, WM, Lithwick, Y, 2013a, Secular dynamics in hierarchical three-body systems. MNRAS, 431, 2155–2171 {511, 528}CrossRefGoogle Scholar
Naoz, S, Farr, WM, Rasio, FA, 2012, On the formation of hot Jupiters in stellar binaries. ApJ, 754, L36 {529}CrossRefGoogle Scholar
Naoz, S, Kocsis, B, Loeb, A, et al., 2013b, Resonant post-Newtonian eccentricity excitation in hierarchical three-body systems. ApJ, 773, 187 {528}CrossRefGoogle Scholar
Naoz, S, Li, G, Zanardi, M, et al., 2017, The eccentric Kozai–Lidov mechanismfor outer test particle. AJ, 154, 18 {528}CrossRefGoogle Scholar
Naoz, S, Perets, HB, Ragozzine, D, 2010, The observed orbital properties of binary minor planets. ApJ, 719, 1775–1783 {529}CrossRefGoogle Scholar
Napier, WM, 2004, A mechanism for interstellar panspermia. MNRAS, 348, 46–51 {638}CrossRefGoogle Scholar
Napier, WM, Wickramasinghe, JT, Wickramasinghe, NC, 2007, The origin of life in comets. Int. J. Astrobiol., 6, 321–323 {637}CrossRefGoogle Scholar
Napiwotzki, R, Christlieb, N, Drechsel, H, et al., 2003, SPY: the ESO supernovae type Ia progenitor survey. The Messenger, 112, 25–30 {416}Google Scholar
Narayan, R, Cumming, A, Lin, DNC, 2005, Radial velocity detectability of low-mass ex-trasolar planets in close orbits. ApJ, 620, 1002–1009 {26, 37}CrossRefGoogle Scholar
Nardiello, D, Libralato, M, Bedin, LR, et al., 2016a, A PSF-based approach to Kepler/K2 data. III. Search for exoplanets and variable stars within the open cluster M67 (NGC 2682). MNRAS, 463, 1831–1843 {159}CrossRefGoogle Scholar
Nardiello, D, Libralato, M, Bedin, LR, 2016b, Variable stars in one open cluster within the Kepler/K2-Campaign-5 field: M67 (NGC 2682). MNRAS, 455, 2337–2344 {159}CrossRefGoogle Scholar
Narita, N, Enya, K, Sato, B, et al., 2007, Measurement of the Rossiter–McLaughlin effect in the transiting exoplanetary system TrES–1. PASJ, 59, 763–770 {750}CrossRefGoogle Scholar
Narita, N, Fukui, A, Ikoma, M, et al., 2013a, Multi-colour transit photometry of GJ 1214 b through BJHKs bands and a long-term monitoring of the stellar variability of GJ 1214. ApJ, 773, 144 {735}CrossRefGoogle Scholar
Narita, N, Fukui, A, Kusakabe, N, et al., 2015a, MuSCAT: a multicolour simultaneous camera for studying atmospheres of transiting exoplanets. Journal of Astronomical Telescopes, Instruments, and Systems, 1(4), 045001 {182}CrossRefGoogle Scholar
Narita, N, Hirano, T, Fukui, A, et al., 2015b, Characterisation of the K2–19 multiple-transiting planetary system via high-dispersion spectroscopy, AO imaging, and transit timing variations. ApJ, 815, 47 {272, 748}CrossRefGoogle Scholar
Narita, N, Hirano, T, Fukui, A, 2017, The K2–ESPRINT project. VI. K2–105 b, a hot Neptune around a metal-rich G-dwarf. PASJ, 69, 29 {748}CrossRefGoogle Scholar
Narita, N, Hirano, T, Sanchis-Ojeda, R, et al., 2010a, The Rossiter–McLaughlin effect of the transiting exoplanet XO–4 b. PASJ, 62, L61 {195, 757}CrossRefGoogle Scholar
Narita, N, Hirano, T, Sato, B, et al., 2009a, Improved measurement of the Rossiter–McLaughlin effect in the exoplanetary system HD 17156. PASJ, 61, 991–997 {729}CrossRefGoogle Scholar
Narita, N, Hirano, T, Sato, B, 2011, XO–2 b: a prograde planet with negligible eccentricity and an additional radial velocity variation. PASJ, 63, L67–L71 {757}CrossRefGoogle Scholar
Narita, N, Kudo, T, Bergfors, C, et al., 2010b, Search for outer massive bodies around transiting planetary systems: candidate faint stellar companions around HAT–P–7. PASJ, 62, 779–783 {163, 735}CrossRefGoogle Scholar
Narita, N, Nagayama, T, Suenaga, T, et al., 2013b, IRSF–SIRIUS JHKs simultaneous transit photometry of GJ 1214 b. PASJ, 65, 27 {735}CrossRefGoogle Scholar
Narita, N, Sato, B, Hirano, T, et al., 2009b, First evidence of a retrograde orbit of a transiting exoplanet HAT–P–7 b. PASJ, 61, L35–L40 {163, 253, 254, 529, 735}CrossRefGoogle Scholar
Narita, N, Sato, B, Hirano, T, 2010c, Spin–orbit alignment of the TrES–4 transiting planetary system and possible additional radial-velocity variation. PASJ, 62, 653–660 {751}CrossRefGoogle Scholar
Narita, N, Sato, B, Ohshima, O, et al., 2008, A possible spin–orbit misalignment in the transiting eccentric planet HD 17156b. PASJ, 60, L1–L5 {729}CrossRefGoogle Scholar
Narita, N, Suto, Y, Winn, JN, et al., 2005, Subaru–HDS transmission spectroscopy of the transiting extrasolar planet HD 209458 b. PASJ, 57, 471–480 {610, 731}Google Scholar
Narita, N, Takahashi, YH, Kuzuhara, M, et al., 2012, A common proper motion stellar companion to HAT–P–7. PASJ, 64, L7 {735}CrossRefGoogle Scholar
NASA, 1976, US Standard Atmosphere. modelweb.gsfc.nasa.gov/atmos/ {581}
Nascimbeni, V, Bedin, LR, Piotto, G, et al., 2012, An HST search for planets in the lower main sequence of the globular cluster NGC 6397. A&A, 541, A144 {159}Google Scholar
Nascimbeni, V, Cunial, A, Murabito, S, et al., 2013a, TASTE. III. A study of transit time variations in WASP–3 b. A&A, 549, A30 {184, 752}Google Scholar
Nascimbeni, V, Piotto, G, Bedin, LR, et al., 2011a, TASTE. I. The Asiago search for transit timing variations of exoplanets: overview and improved parameters for HAT–P–3 b and HAT–P–14 b. A&A, 527, A85 {184, 735, 736}Google Scholar
Nascimbeni, V, Piotto, G, Bedin, LR, 2011b, TASTE. II. A new observational study of transit time variations in HAT–P–13 b. A&A, 532, A24 {184, 269, 736}Google Scholar
Nascimbeni, V, Piotto, G, Pagano, I, et al., 2013b, The blue sky of GJ 3470 b: the atmosphere of a low-mass planet unveiled by ground-based photometry. A&A, 559, A32 {591, 729}Google Scholar
Nasiroglu, I, Goździewski, K, Słowikowska, A, et al., 2017, Is there a circumbinary planet around NSVS 14256825? AJ, 153, 137 {117}CrossRefGoogle Scholar
Natraj, V, Hovenier, JW, 2012, Polarised light reflected and transmitted by Rayleigh scattering atmospheres. ApJ, 748, 28 {246}CrossRefGoogle Scholar
Natta, A, Testi, L, 2001, Exploring brown dwarf disks. A&A, 376, L22–L25 {443}Google Scholar
Natta, A, Testi, L, Muzerolle, J, et al., 2004, Accretion in brown dwarfs: an infrared view. A&A, 424, 603–612 {445}Google Scholar
Naud, ME, Artigau É, Doyon, R, et al., 2017a, PSYM-WIDE: a survey for large-separation planetary-mass companions to late spectral type members of young moving groups. AJ, 154, 129 {446}CrossRefGoogle Scholar
Naud, ME, Artigau É, Malo, L, et al., 2014, Discovery of a wide planetary-mass companion to the young M3 star GU Psc. ApJ, 787, 5 {362, 762}CrossRefGoogle Scholar
Naud, ME, Artigau É, Rowe, JF, et al., 2017b, A search for photometric variability in the young T3.5 planetary-mass companion GU Psc b. AJ, 154, 138 {762}CrossRefGoogle Scholar
Nauenberg, M, 2002a, Determination of masses and other properties of extrasolar planetary systems with more than one planet. ApJ, 568, 369–376 {23, 71}CrossRefGoogle Scholar
Nauenberg, M, 2002b, Stability and eccentricity for two planets in a 1:1 resonance, and their possible occurrence in extrasolar planetary systems. AJ, 124, 2332–2338 {76}CrossRefGoogle Scholar
Nayakshin, S, 2010a, Formation of planets by tidal downsizing of giant planet embryos. MNRAS, 408, L36–L40 {489}CrossRefGoogle Scholar
Nayakshin, S, 2010b, Grain sedimentation inside giant planet embryos. MNRAS, 408, 2381–2396 {489}CrossRefGoogle Scholar
Nayakshin, S, 2011a, Formation of terrestrial planet cores inside giant planet embryos. MNRAS, 413, 1462–1478 {489}CrossRefGoogle Scholar
Nayakshin, S, 2011b, Hot super-Earths: disrupted young Jupiters? MNRAS, 416, 2974–2980 {500}CrossRefGoogle Scholar
Nayakshin, S, 2011c, Rotation of the solar system planets and the origin of the Moon in the context of the tidal downsizing hypothesis. MNRAS, 410, L1–L5 {680}CrossRefGoogle Scholar
Nayakshin, S, 2015a, Metal loading of giant gas planets. MNRAS, 446, 459–469 {490}CrossRefGoogle Scholar
Nayakshin, S, 2015b, Positive metallicity correlation for coreless giant planets. MNRAS, 448, L25–L29 {489}CrossRefGoogle Scholar
Nayakshin, S, 2015c, Tidal downsizing model. I. Numerical methods: saving giant planets from tidal disruptions. MNRAS, 454, 64–82 {490}CrossRefGoogle Scholar
Nayakshin, S, 2015d, Tidal downsizing model. II. Planet–metallicity correlations [unpublished]. ArXiv e-prints {490}
Nayakshin, S, 2016, Tidal downsizing model. IV. Destructive feedback in planets. MNRAS, 461, 3194–3211 {490}CrossRefGoogle Scholar
Nayakshin, S, 2017a, A desert of gas giant planets beyond tens of au: from feast to famine. MNRAS, 470, 2387–2409 {490}CrossRefGoogle Scholar
Nayakshin, S, 2017b, Dawes Review 7: the tidal downsizing hypothesis of planet formation. Publ. Astron. Soc. Australia, 34, e002 {490}CrossRefGoogle Scholar
Nayakshin, S, Cha, SH, 2012, An alternative origin for debris rings of planetesimals. MNRAS, 423, 2104–2119 {490}CrossRefGoogle Scholar
Nayakshin, S, Cha, SH, 2013, Radiative feedback from protoplanets in self-gravitating protoplanetary disks. MNRAS, 435, 2099–2108 {489}CrossRefGoogle Scholar
Nayakshin, S, Cha, SH, Bridges, JC, 2011, The tidal downsizing hypothesis for planet formation and the composition of solar system comets. MNRAS, 416, L50–L54 {490}CrossRefGoogle Scholar
Nayakshin, S, Fletcher, M, 2015, Tidal downsizing model. III. Planets from sub-Earths to brown dwarfs: structure and metallicity preferences. MNRAS, 452, 1654–1676 {490}CrossRefGoogle Scholar
Nayakshin, S, Helled, R, Boley, AC, 2014, Core-assisted gas capture instability: a new mode of giant planet formation by gravitationally unstable disks. MNRAS, 440, 3797–3808 {490}CrossRefGoogle Scholar
N'Diaye, M, Dohlen, K, Fusco, T, et al., 2013, Calibration of quasi-static aberrations in exoplanet direct-imaging instruments with a Zernike phase-mask sensor. A&A, 555, A94 {340}Google Scholar
N'Diaye, M, Soummer, R, Pueyo, L, et al., 2016, Apodised pupil Lyot coronagraphs for arbitrary apertures. V. Hybrid shaped pupil designs for imaging Earth-like planets with future space observatories. ApJ, 818, 163 {335}CrossRefGoogle Scholar
Nefs, SV, Snellen, IAG, de Mooij, EJW, 2012, Minimising follow-up for space-based transit surveys using full light curve analysis. A&A, 543, A63 {172, 733}Google Scholar
Neilson, HR, Lester, JB, 2013, Spherically symmetric model stellar atmospheres and limb darkening. II. Limb-darkening laws, gravity-darkening coefficients and angular diameter corrections for FGK dwarf stars. A&A, 556, A86 {211}Google Scholar
Neilson, HR, McNeil, JT, Ignace, R, et al., 2017, Limb darkening and planetary transits: testing centre-to-limb intensity variations and limb-darkening directly from model stellar atmospheres. ApJ, 845, 65 {211}CrossRefGoogle Scholar
Neish, CD, Bussey, DBJ, Spudis, P, et al., 2011, The nature of lunar volatiles as revealed by Mini-RF observations of the LCROSS impact site. J. Geophys. Res. (Planets), 116, E01005 {666}CrossRefGoogle Scholar
Nelemans, G, Yungelson, LR, Portegies Zwart, SF, 2001, The gravitational wave signal from the Galactic disk population of binaries containing two compact objects. A&A, 375, 890–898 {356}Google Scholar
Nellis, WJ, 2000, Metallisation of fluid hydrogen at 140 GPa (1.4 Mbar): implications for Jupiter. Planet. Space Sci., 48, 671–677 {427}CrossRefGoogle Scholar
Nelson, AF, 2000, Planet formation is unlikely in equal-mass binary systems with a » 50 au. ApJ, 537, L65–L68 {79, 550}CrossRefGoogle Scholar
Nelson, AF, Angel, JRP, 1998, The range of masses and periods explored by radial velocity searches for planetary companions. ApJ, 500, 940–957 {26, 54}CrossRefGoogle Scholar
Nelson, AF, Ruffert, M, 2013, Dynamics of core accretion. MNRAS, 429, 1791–1826 {481}CrossRefGoogle Scholar
Nelson, B, Ford, EB, Payne, MJ, 2014a, RUN DMC: an efficient, parallel code for analysing radial velocity observations using N-body integrations and differential evolution Markov Chain Monte Carlo. ApJS, 210, 11 {25}CrossRefGoogle Scholar
Nelson, BE, Ford, EB, Rasio, FA, 2017, Evidence for two hot-Jupiter formation paths. AJ, 154, 106 {529}CrossRefGoogle Scholar
Nelson, BE, Ford, EB, Wright, JT, et al., 2014b, The 55 Cnc planetary system: self-consistent N-body constraints and a dynamical analysis. MNRAS, 441, 442–451 {24, 25, 60, 71, 262, 728}CrossRefGoogle Scholar
Nelson, BE, Robertson, PM, Payne, MJ, et al., 2016, An empirically derived three-dimensional Laplace resonance in the GJ 876 planetary system. MNRAS, 455, 2484–2499 {717}CrossRefGoogle Scholar
Nelson, RP, Gressel, O, 2010, On the dynamics of planetesimals embedded in turbulent protoplanetary disks. MNRAS, 409, 639–661 {461}CrossRefGoogle Scholar
Nelson, RP, Papaloizou, JCB, 2002, Possible commensurabilities among pairs of extra-solar planets. MNRAS, 333, L26–L30 {507}CrossRefGoogle Scholar
Nelson, RP, Papaloizou, JCB, 2003, The interaction of a giant planet with a disk with MHD turbulence. II. The interaction of the planet with the disk. MNRAS, 339, 993–1005 {517}CrossRefGoogle Scholar
Nelson, RP, Papaloizou, JCB, 2004, The interaction of giant planets with a disk with MHD turbulence. IV. Migration rates of embedded protoplanets. MNRAS, 350, 849–864 {469, 517, 521}CrossRefGoogle Scholar
Nelson, RP, Papaloizou, JCB, Masset, F, et al., 2000, Themigration and growth of proto-planets in protostellar disks. MNRAS, 318, 18–36 {517}CrossRefGoogle Scholar
Nemchin, AA, Pidgeon, RT, Whitehouse, MJ, 2006, Re-evaluation of the origin and evolution of ¨ 4.2Ga zircons from the Jack Hills metasedimentary rocks. Earth Planet. Sci. Lett., 244, 218–233 {667}CrossRefGoogle Scholar
Nero, D, Bjorkman, JE, 2009, Did Fomalhaut, HR 8799, and HL Tau form planets via the gravitational instability? Placing limits on the required disk masses. ApJ, 702, L163–L167 {489, 761, 763}CrossRefGoogle Scholar
Neron de Surgy, O, Laskar, J, 1997, On the long-termevolution of the spin of the Earth. A&A, 318, 975–989 {535, 679, 681}Google Scholar
Neslušan, L, 2004, The significance of the Titius–Bode law and the peculiar location of the Earth's orbit. MNRAS, 351, 133–136 {510}CrossRefGoogle Scholar
Neslušan, L, Budaj, J, 2017, Mysterious eclipses in the light curve of KIC–8462852: a possible explanation. A&A, 600, A86 {232, 233, 747}Google Scholar
Nespral, D, Gandolfi, D, Deeg, HJ, et al., 2017, Mass determination of K2–19 b and K2–19 c from radial velocities and transit timing variations. A&A, 601, A128 {267, 748}Google Scholar
Ness, NF, Acuna, MH, Behannon, KW, et al., 1986, Magnetic fields at Uranus. Science, 233, 85–89 {426}CrossRefGoogle ScholarPubMed
Ness, NF, Acuna, MH, Burlaga, LF, et al., 1989, Magnetic fields at Neptune. Science, 246, 1473–1478 {426}CrossRefGoogle ScholarPubMed
Nesvold, ER, Kuchner, MJ, 2015a, A SMACK model of colliding planetesimals in the fl Pic debris disk. ApJ, 815, 61 {496, 762}CrossRefGoogle Scholar
Nesvold, ER, Kuchner, MJ, 2015b, Gap clearing by planets in a collisional debris disk. ApJ, 798, 83 {761, 762}CrossRefGoogle Scholar
Nesvold, ER, Kuchner, MJ, Rein, H, et al., 2013, SMACK: a new algorithm for modeling collisions and dynamics of planetesimals in debris disks. ApJ, 777, 144 {496}CrossRefGoogle Scholar
Nesvold, ER, Naoz, S, Fitzgerald, MP, 2017, HD 106906: a case study for external perturbations of a debris disk. ApJ, 837, L6 {763}CrossRefGoogle Scholar
Nesvold, ER, Naoz, S, Vican, L, et al., 2016, Circumstellar debris disks: diagnosing the unseen perturber. ApJ, 826, 19 {497}CrossRefGoogle Scholar
Nesvorný, D, 2009, Transit timing variations for eccentric and inclined exoplanets. ApJ, 701, 1116–1122 {263, 266, 267}CrossRefGoogle Scholar
Nesvorný, D, 2011, Young solar system's fifth giant planet? ApJ, 742, L22 {696}CrossRefGoogle Scholar
Nesvorný, D, 2015a, Evidence for slow migration of Neptune from the inclination distribution of Kuiper belt objects. AJ, 150, 73 {696}CrossRefGoogle Scholar
Nesvorný, D, 2015b, Jumping Neptune can explain the Kuiper belt kernel. AJ, 150, 68 {696}CrossRefGoogle Scholar
Nesvorný, D, Alvarellos, JLA, Dones, L, et al., 2003, Orbital and collisional evolution of the irregular satellites. AJ, 126, 398–429 {529, 688, 689}Google Scholar
Nesvorný, D, Beaugé, C, Dones, L, 2004, Collisional origin of families of irregular satellites. AJ, 127, 1768–1783 {689}Google Scholar
Nesvorný, D, Bottke, WF, Dones, L, et al., 2002, The recent breakup of an asteroid in the main-belt region. Nature, 417, 720–771 {474}CrossRefGoogle ScholarPubMed
Nesvorný, D, Jenniskens, P, Levison, HF, et al., 2010, Cometary origin of the zodiacal cloud and carbonaceous micrometeorites: implications for hot debris disks. ApJ, 713, 816–836 {342, 343, 691}CrossRefGoogle Scholar
Nesvorný, D, Kipping, D, Terrell, D, et al., 2013a, KOI–142, the king of transit variations, is a pair of planets near the 2:1 resonance. ApJ, 777, 3 {12, 179, 267, 270, 272, 279, 742}CrossRefGoogle Scholar
Nesvorný, D, Kipping, D, Terrell, D, 2014a, Photo-dynamical analysis of three Kepler Objects of Interest with significant transit timing variations. ApJ, 790, 31 {267, 744}CrossRefGoogle Scholar
Nesvorný, D, Kipping, DM, Buchhave, LA, et al., 2012, The detection and characteri-sation of a non-transiting planet by transit timing variations. Science, 336, 1133–1135 {209, 267, 272, 279, 322, 741}CrossRefGoogle Scholar
Nesvorný, D, Morbidelli, A, 1998, Three-body mean motion resonances and the chaotic structure of the asteroid belt. AJ, 116, 3029–3037 {694}CrossRefGoogle Scholar
Nesvorný, D, Morbidelli, A, 2008, Mass and orbit determination from transit timing variations of exoplanets. ApJ, 688, 636–646 {263, 266, 267}CrossRefGoogle Scholar
Nesvorný, D, Morbidelli, A, 2012, Statistical study of the early solar system instability with four, five, and six giant planets. AJ, 144, 117 {696, 697, 700}CrossRefGoogle Scholar
Nesvorný, D, Roig, F, Bottke, WF, 2017, Modeling the historical flux of planetary impactors. AJ, 153, 103 {669, 671}CrossRefGoogle Scholar
Nesvorný, D, Vokrouhlický, D, 2014, The effect of conjunctions on the transit timing variations of exoplanets. ApJ, 790, 58 {263, 265, 266, 267, 740, 744}CrossRefGoogle Scholar
Nesvorný, D, Vokrouhlický, D, 2016a, Dynamics and transit variations of resonant exoplanets. ApJ, 823,), 72 {265}CrossRefGoogle Scholar
Nesvorný, D, Vokrouhlický, D, 2016b, Neptune's orbital migration was grainy, not smooth. ApJ, 825, 94 {697}CrossRefGoogle Scholar
Nesvorný, D, Vokrouhlický, D, Deienno, R, 2014b, Capture of irregular satellites at Jupiter. ApJ, 784, 22 {688}CrossRefGoogle Scholar
Nesvorný, D, Vokrouhlický, D, Deienno, R, et al., 2014c, Excitation of the orbital inclination of Iapetus during planetary encounters. AJ, 148, 52 {689}CrossRefGoogle Scholar
Nesvorný, D, Vokrouhlický, D, Morbidelli, A, 2013b, Capture of Trojans by jumping Jupiter. ApJ, 768, 45 {689, 696}CrossRefGoogle Scholar
Nettelmann, N, 2011, Predictions on the core mass of Jupiter and of giant planets in general. Ap&SS, 336, 47–51 {658}Google Scholar
Nettelmann, N, Becker, A, Holst, B, et al., 2012, Jupitermodels with improved ab initio H equation of state. ApJ, 750, 52 {658, 660}CrossRefGoogle Scholar
Nettelmann, N, Fortney, JJ, Kramm, U, et al., 2011, Thermal evolution and structure models of the transiting super-Earth GJ 1214 b. ApJ, 733, 2 {734}CrossRefGoogle Scholar
Nettelmann, N, Holst, B, Kietzmann, A, et al., 2008, Ab Initio equation of state data for hydrogen, helium, and water and the internal structure of Jupiter. ApJ, 683, 1217-1228 {660}CrossRefGoogle Scholar
Nettelmann, N, Kramm, U, Redmer, R, et al., 2010, Interior structure models of GJ 436 b. A&A, 523, A26 {728}Google Scholar
Neubauer, D, Leitner, JJ, Firneis, MG, et al., 2013, The outer limit of the life supporting zone of exoplanets having CO2-rich atmospheres: virtual exoplanets and Kepler planetary candidates. Planet. Space Sci., 84, 163–172 {624}CrossRefGoogle Scholar
Neubauer, D, Vrtala, A, Leitner, JJ, et al., 2012, The life supporting zone of Kepler–22 b and the Kepler planetary candidates: KOI–268.01, KOI–701.03, KOI–854.01 and KOI–1026.01. Planet. Space Sci., 73, 397–406 {619, 740}Google Scholar
Neugebauer, G, Leighton, RB, 1969, Two-Micron Sky Survey: A Preliminary Catalogue. NASA SP, Washington {431}Google Scholar
Neuhäuser, R, Comeron, F, 1998, ROSAT X-ray detection of a young brown dwarf in the Chamaeleon I dark cloud. Science, 282, 83–85 {440}Google Scholar
Neuhäuser, R, Errmann, R, Berndt, A, et al., 2011, The young exoplanet transit initiative (YETI). Astron. Nach., 332, 547 {158, 171}CrossRefGoogle Scholar
Neuhäuser, R, Guenther, EW, 2004, Infrared spectroscopy of a brown dwarf companion candidate near the young star GSC 08047–00232 in Horologium. A&A, 420, 647–653 {441}Google Scholar
Neuhäuser, R, Guenther, EW, Wuchterl, G, et al., 2005, Evidence for a co-moving sub-stellar companion of GQ Lup. A&A, 435, L13–L16 {10, 361, 362, 447, 762}Google Scholar
Neuhäuser, R, Hohle, MM, Ginski, C, et al., 2015, The companion candidate near Fomalhaut: a background neutron star? MNRAS, 448, 376–389 {365, 761}CrossRefGoogle Scholar
Neuhäuser, R, Mugrauer, M, Fukagawa, M, et al., 2007a, Direct detection of exoplanet host star companion γ Cep B and revised masses for both stars and the sub-stellar object. A&A, 462, 777–780 {714}Google Scholar
Neuhäuser, R, Mugrauer, M, Seifahrt, A, et al., 2008, Astrometric and photometric monitoring of GQ Lup and its sub-stellar companion. A&A, 484, 281–291 {762}Google Scholar
Neuhäuser, R, Neuhäuser, DL, 2015, Solar activity around AD 775 from aurorae and radiocarbon. Astron. Nach., 336, 225 {628}CrossRefGoogle Scholar
Neuhäuser, R, Seifahrt, A, Röll, T, et al., 2007b, Detectability of planets in wide binaries by ground-based astrometry with AO. IAU Symp., volume 240, 261–263 {83}Google Scholar
Neumann, W, Breuer, D, Spohn, T, 2012, Differentiation and core formation in accret-ing planetesimals. A&A, 543, A141 {470}Google Scholar
Neumann, W, Breuer, D, Spohn, T, 2014, Modeling of compaction in planetesimals. A&A, 567, A120 {478}Google Scholar
Neves, V, Bonfils, X, Santos, NC, et al., 2012, Metallicity of M dwarfs. II. A comparative study of photometric metallicity scales. A&A, 538, A25 {405}Google Scholar
Neves, V, Bonfils, X, Santos, NC, 2013, Metallicity of M dwarfs. III. Planet-metallicity and planet-stellar mass correlations of the HARPS GTOMdwarf sample. A&A, 551, A36 {58}Google Scholar
Neveu, M, Queloz, D, Triaud, A, et al., 2013, Searching for additional companions to WASP planets. Protostars and Planets VI, 31 {304}Google Scholar
Neveu-Van Malle, M, Queloz, D, Anderson, DR, et al., 2014, WASP–94 A and B planets: hot-Jupiter cousins in a twin-star system. A&A, 572, A49 {12, 166, 253, 553, 756}Google Scholar
Neveu-Van Malle, M, Queloz, D, Anderson, DR, 2016, Hot Jupiters with relatives: discovery of additional planets in orbit around WASP–41 and WASP–47. A&A, 586, A93 {166, 253, 305, 523, 755}Google Scholar
Newcomb, S, 1881, Note on the frequency of use of the different digits in natural numbers. Amer. J. Math., 9, 201–205 {510}Google Scholar
Newhall, XX, Standish, EM, Williams, JG, 1983, DE 102: a numerically integrated ephemeris of the moon and planets spanning forty-four centuries. A&A, 125, 150–167 {677}Google Scholar
Newman, WI, Haynes, MP, Terzian, Y, 1994, Redshift data and statistical inference. ApJ, 431, 147–155 {510}CrossRefGoogle Scholar
Newman, WI, Symbalisty, EMD, Ahrens, TJ, et al., 1999, Impact erosion of planetary atmospheres: some surprising results. Icarus, 138, 224–240 {600}CrossRefGoogle Scholar
Newton, ER, Irwin, J, Charbonneau, D, et al., 2016, The impact of stellar rotation on the detectability of habitable planets around Mdwarfs. ApJ, 821, L19 {621}CrossRefGoogle Scholar
Ngo, H, Knutson, HA, Bryan, ML, et al., 2017, No difference in orbital parameters of radial velocity-detected giant planets between 0.1–5 au in single versus multi-stellar systems. AJ, 153, 242 {719, 721, 722, 723, 724}CrossRefGoogle Scholar
Ngo, H, Knutson, HA, Hinkley, S, et al., 2015, Friends of hot Jupiters. II. No correspondence between hot-Jupiter spin–orbit misalignment and the incidence of directly imaged stellar companions. ApJ, 800, 138 {305}CrossRefGoogle Scholar
Ngo, H, Knutson, HA, Hinkley, S, 2016, Friends of hot Jupiters. IV. Stellar companions beyond 50 au might facilitate giant planet formation, but most are unlikely to cause Lidov–Kozai migration. ApJ, 827, 8 {305}CrossRefGoogle Scholar
Nichols, JD, 2011, Magnetosphere-ionosphere coupling at Jupiter-like exoplanets with internal plasma sources: implications for detectability of auroral radio emissions. MNRAS, 414, 2125–2138 {425}CrossRefGoogle Scholar
Nichols, JD, 2012, Candidates for detecting exoplanetary radio emissions generated by magnetosphere–ionosphere coupling. MNRAS, 427, L75–L79 {426, 715}Google Scholar
Nichols, JD, Milan, SE, 2016, Stellar wind-magnetosphere interaction at exoplanets: computations of auroral radio powers. MNRAS, 461, 2353–2366 {422}CrossRefGoogle Scholar
Nichols, JD, Wynn, GA, Goad, M, et al., 2015, HST observations of the near ultraviolet transit of WASP–12 b. ApJ, 803, 9 {753}CrossRefGoogle Scholar
Nicholson, BA, Vidotto, AA, Mengel, M, et al., 2016, Temporal variability of the wind from the star τ Boo. MNRAS, 459, 1907–1915 {714}CrossRefGoogle Scholar
Nicholson, PD, Hedman, MM, Clark, RN, et al., 2008, A close look at Saturn's rings with Cassini–VIMS. Icarus, 193, 182–212 {690}CrossRefGoogle Scholar
Nicolet, A, Zolla, F, 2011, Invisibility cloaks, superlenses, and optical remote scattering. SPIE Conf. Ser., volume 8070, 19 {357}Google Scholar
Nidever, DL, Marcy, GW, Butler, RP, et al., 2002, Radial velocities for 889 late-type stars. ApJS, 141, 503–522 {29, 30, 55, 56}CrossRefGoogle Scholar
Niedzielski, A, Deka-Szymankiewicz, B, Adamczyk, M, et al., 2016a, The Penn State–Toruń Centre for Astronomy Planet Search stars. A&A, 585, A73 {55}Google Scholar
Niedzielski, A, Goździewski, K, Wolszczan, A, et al., 2009a, A planet in a 0.6 au orbit around the K0 giant HD 102272. ApJ, 693, 276–280 {56, 721}CrossRefGoogle Scholar
Niedzielski, A, Konacki, M, Wolszczan, A, et al., 2007, A planetary-mass companion to the K0 giant HD 17092. ApJ, 669, 1354–1358 {56, 718}CrossRefGoogle Scholar
Niedzielski, A, Nowak, G, Adamów, M, et al., 2009b, Substellar-mass companions to the K-dwarf BD+14 4559 and the K-giants HD 240210 and BD+20 2457. ApJ, 707, 768–777 {56, 61, 716, 724}CrossRefGoogle Scholar
Niedzielski, A, Villaver, E, Nowak, G, et al., 2016b, Tracking Advanced Planetary Systems (TAPAS) with HARPS–N. III. HD 5583 and BD+15 2375: two cool giants with warm companions. A&A, 588, A62 {716, 718}Google Scholar
Niedzielski, A, Villaver, E, Nowak, G, 2016c, Tracking Advanced Planetary Systems (TAPAS) with HARPS–N. IV. TYC 3667–1280–1: the most massive red giant star hosting a warm Jupiter. A&A, 589, L1 {725}Google Scholar
Niedzielski, A, Villaver, E, Wolszczan, A, et al., 2015a, Tracking Advanced Planetary Systems (TAPAS)with HARPS–N. I. Amultiple planetary system around the red giant star TYC 1422–614–1. A&A, 573, A36 {725}Google Scholar
Niedzielski, A, Wolszczan, A, 2008, A HET search for planets around evolved stars. IAU Symp., volume 249, 43–47 {56}Google Scholar
Niedzielski, A, Wolszczan, A, Nowak, G, et al., 2015b, Three red giants with substellar-mass companions. ApJ, 803, 1 {716, 721, 724}CrossRefGoogle Scholar
Nielsen, EL, Close, LM, Biller, BA, et al., 2008, Constraints on extrasolar planet populations from VLT–NACO/SDI and MMT–SDI and direct adaptive optics imaging surveys: giant planets are rare at large separations. ApJ, 674, 466-481 {358}CrossRefGoogle Scholar
Nielsen, EL, De Rosa, RJ, Rameau, J, et al., 2017, Evidence that the directly imaged planet HD 131399A b is a background star. AJ, 154, 218 {363, 763}CrossRefGoogle Scholar
Nielsen, EL, De Rosa, RJ, Rameau, J, et al., 2017, Evidence that the directly imaged planet HD 131399A b is a background star. AJ, 154, 218 {363, 763}CrossRefGoogle Scholar
Nielsen, EL, Liu, MC, Wahhaj, Z, et al., 2012, The Gemini–NICI planet-finding campaign: discovery of a multiple system orbiting the young a star HD 1160. ApJ, 750, 53 {358}CrossRefGoogle Scholar
Nielsen, EL, Liu, MC, Wahhaj, Z, 2013a, The Gemini–NICI planet-finding campaign: the frequency of giant planets around young B and A stars. ApJ, 776, 4 {358}CrossRefGoogle Scholar
Nielsen, EL, Liu, MC, Wahhaj, Z, 2014, The Gemini–NICI planet-finding campaign: the orbit of the young exo-planet β Pic b. ApJ, 794, 158 {367, 762}CrossRefGoogle Scholar
Nielsen, MB, Gizon, L, Schunker, H, et al., 2013b, Rotation periods of 12 000 main-sequence Kepler stars: dependence on stellar spectral type and comparison with v sini observations. A&A, 557, L10 {309, 383}Google Scholar
Nielsen, MB, Karoff, C, 2012, Star spot simulations for Kepler. Astron. Nach., 333, 1036 {212}CrossRefGoogle Scholar
Niemann, HB, Atreya, SK, Carignan, GR, et al., 1998, The composition of the Jovian atmosphere as determined by the Galileo probe mass spectrometer. J. Geo-phys. Res., 103, 22831–22846 {578, 586}CrossRefGoogle ScholarPubMed
Niemczura, E, Murphy, SJ, Smalley, B, et al., 2015, Spectroscopic survey of Kepler stars. I. Mercator–HERMES observations of A- and F-type stars. MNRAS, 450, 2764–2783 {390}CrossRefGoogle Scholar
Nieto, MM, 1972, The Titius–Bode Law of Planetary Distances: Its History and Theory. Pergamon Press, Oxford {510}Google Scholar
Nikolov, N, Chen, G, Fortney, JJ, et al., 2013, Refined physical properties and g’, r’, i’, z’, J A&A, 553, A26 {754}Google Scholar
Nikolov, N, Henning, T, Koppenhoefer, J, et al., 2012, WASP–4 b transit observations with GROND. A&A, 539, A159 {752}Google Scholar
Nikolov, N, Sainsbury-Martinez, F, 2015, Radial velocity eclipse mapping of exo-planets. ApJ, 808, 57 {251}CrossRefGoogle Scholar
Nikolov, N, Sing, DK, Burrows, AS, et al., 2015, HST hot-Jupiter transmission spectral survey: haze in the atmosphere of WASP–6 b. MNRAS, 447, 463–478 {591, 752}CrossRefGoogle Scholar
Nikolov, N, Sing, DK, Gibson, NP, et al., 2016, VLT FORS2 comparative transmission spectroscopy: detection of Na in the atmosphere of WASP–39 b from the ground. ApJ, 832, 191 {755}CrossRefGoogle Scholar
Nikolov, N, Sing, DK, Goyal, J, et al., 2018, Hubble Pan CET: an isothermal day-side atmosphere for the bloated gas-giant HAT–P–32A b. MNRAS, 474, 1705–1717 {737}CrossRefGoogle Scholar
Nikolov, N, Sing, DK, Pont, F, et al., 2014, HST hot Jupiter transmission spectral survey: a detection of Na and strong optical absorption in HAT–P–1 b. MNRAS, 437, 46–66 {163, 735}CrossRefGoogle Scholar
Nilsson, R, Brandeker, A, Olofsson, G, et al., 2012, VLT imaging of the β Pic gas disk. A&A, 544, A134 {762}Google Scholar
Nilsson, R, Liseau, R, Brandeker, A, et al., 2010, Kuiper belts around nearby stars. A&A, 518, A40 {493}Google Scholar
Nimmo, F, Kleine, T, 2007, How rapidly did Mars accrete? Uncertainties in the Hf–W timing of core formation. Icarus, 191, 497–504 {652}CrossRefGoogle Scholar
Nimmo, F, Korycansky, DG, 2012, Impact-driven ice loss in outer solar system satellites: consequences for the late heavy bombardment. Icarus, 219, 508–510 {697}CrossRefGoogle Scholar
Nimmo, F, Umurhan, O, Lisse, CM, et al., 2017, Mean radius and shape of Pluto and Charon from New Horizons images. Icarus, 287, 12–29 {682}CrossRefGoogle Scholar
Niraula, P, Redfield, S, Dai, F, et al., 2017, Three super-Earths transiting the nearby star GJ 9827. AJ, 154, 266 {749}CrossRefGoogle Scholar
Nisenson, P, Papaliolios, C, 2001, Detection of Earth-like planets using apodised telescopes. ApJ, 548, L201–L205 {351}CrossRefGoogle Scholar
Nissen, PE, 2013, The carbon-to-oxygen ratio in stars with planets. A&A, 552, A73 {388}Google Scholar
Nissen, PE, 2015, High-precision abundances of elements in solar twin stars: trendswith stellar age and elemental condensation temperature. A&A, 579, A52 {405}Google Scholar
Nissen, PE, Edvardsson, B, 1992, Oxygen abundances in F and G dwarfs derived from the forbidden OI line at 630 nm. A&A, 261, 255–262 {399}Google Scholar
Nitadori, K, Aarseth, SJ, 2012, Accelerating NBODY6 with graphics processing units. MNRAS, 424, 545–552 {513}CrossRefGoogle Scholar
Niv, A, Biener, G, Kleiner, V, et al., 2006, Manipulation of the Pancharatnam phase in vectorial vortices. Optics Express, 14, 4208–4220 {337}CrossRefGoogle ScholarPubMed
Noack, L, Breuer, D, 2014, Plate tectonics on rocky exoplanets: influence of initial conditions and mantle rheology. Planet. Space Sci., 98, 41–49 {628, 629}CrossRefGoogle Scholar
Noack, L, Rivoldini, A, Van Hoolst, T, 2017a, Volcanism and outgassing of stagnant-lid planets: implications for the habitable zone. Physics of the Earth and Planetary Interiors, 269, 40–57 {629}CrossRefGoogle Scholar
Noack, L, Snellen, I, Rauer, H, 2017b, Water in extrasolar planets and implications for habitability. Space Sci. Rev., 212, 877–898 {642}CrossRefGoogle Scholar
Nobili, AM, 1988, Long term dynamics of the outer solar system: review of LONGSTOP project. IAU Colloq. 96: The Few Body Problem, volume 140 of As-trophys. Space Sci. Lib., 147–163 {677}Google Scholar
Noble, M, Musielak, ZE, Cuntz, M, 2002, Orbital stability of terrestrial planets inside the habitable zones of extrasolar planetary systems. ApJ, 572, 1024–1030 {623}CrossRefGoogle Scholar
Noda, S, Ishiwatari, M, Nakajima, K, et al., 2017, The circulation pattern and day-night heat transport in the atmosphere of a synchronously rotating aquaplanet: dependence on planetary rotation rate. Icarus, 282, 1–18 {631}CrossRefGoogle Scholar
Nogami, D, Notsu, Y, Honda, S, et al., 2014, Two sun-like super-flare stars rotating as slow as the Sun. PASJ, 66, L4 {428}CrossRefGoogle Scholar
Noguchi, K, Aoki, W, Kawanomoto, S, et al., 2002, High Dispersion Spectrograph for the Subaru telescope. PASJ, 54, 855–864 {46, 47}CrossRefGoogle Scholar
Noll, KS, Geballe, TR, Marley, MS, 1997a, Detection of abundant COin the brown dwarf GJ 229 B. ApJ, 489, L87–90 {582}CrossRefGoogle Scholar
Noll, KS, Grundy, WM, Stephens, DC, et al., 2008, Evidence for two populations of classical trans-Neptunian objects: the strong inclination dependence of classical binaries. Icarus, 194, 758–768 {684}CrossRefGoogle Scholar
Noll, KS, Roush, TL, Cruikshank, DP, et al., 1997b, Detection of ozone on Saturn's satellites Rhea and Dione. Nature, 388, 45–47 {640}CrossRefGoogle Scholar
Nomura, H, Tsukagoshi, T, Kawabe, R, et al., 2016, ALMA observations of a gap and a ring in the protoplanetary disk around TWHya. ApJ, 819, L7 {466}CrossRefGoogle Scholar
Nordhaus, J, Spiegel, DS, 2013, On the orbits of low-mass companions to white dwarfs and the fates of the known exoplanets. MNRAS, 432, 500–505 {412}CrossRefGoogle Scholar
Nordhaus, J, Spiegel, DS, Ibgui, L, et al., 2010, Tides and tidal engulfment in post-main-sequence binaries: period gaps for planets and brown dwarfs around white dwarfs. MNRAS, 408, 631–641 {111, 412}CrossRefGoogle Scholar
Nordström, B, Andersen, J, Holmberg, J, et al., 2004a, The Geneva–Copenhagen survey of the solar neighbourhood. Publ. Astron. Soc. Australia, 21, 129–133 {389}CrossRefGoogle Scholar
Nordström, B, Mayor, M, Andersen, J, et al., 2004b, The Geneva–Copenhagen survey of the solar neighbourhood: ages, metallicities, and kinematic properties of ~14 000 F and G dwarfs. A&A, 418, 989–1019 {379, 388, 389}Google Scholar
North, TSH, Campante, TL, Miglio, A, et al., 2017a, The masses of retired A stars with asteroseismology: Kepler and K2 observations of exoplanet hosts. MNRAS, 472, 1866–1878 {409}CrossRefGoogle Scholar
North, TSH, Chaplin, WJ, Gilliland, RL, et al., 2017b, A simple model to describe intrinsic stellar noise for exoplanet detection around red giants. MNRAS, 465, 1308–1315 {188}CrossRefGoogle Scholar
Nortmann, L, Pallé, E, Murgas, F, et al., 2016, The GTC exoplanet transit spectroscopy survey. IV. Confirmation of the flat transmission spectrum of HAT–P–32 b. A&A, 594, A65 {737}Google Scholar
Norton, AJ, Payne, SG, Evans, T, et al., 2011, Short-period eclipsing binary candidates identified using Super WASP. A&A, 528, A90 {164}Google Scholar
Notsu, S, Nomura, H, Ishimoto, D, et al., 2016, Candidate water vapour lines to locate the H2O-snow line through high-dispersion spectroscopic observations. I. The case of a T Tauri star. ApJ, 827, 113 {565}CrossRefGoogle Scholar
Notsu, Y, Shibayama, T, Maehara, H, et al., 2013, Super-flares on solar-type stars observed with Kepler II. Photometric variability of super-flare-generating stars: a signature of stellar rotation and starspots. ApJ, 771, 127 {428}CrossRefGoogle Scholar
Novaković, B, Cellino, A, Knežević, Z, 2011, Families among high-inclination asteroids. Icarus, 216, 69–81 {684}CrossRefGoogle Scholar
Nowaczyk, NR, Arz, HW, Frank, U, et al., 2012, Dynamics of the Laschamp geomagnetic excursion from Black Sea sediments. Earth Planet. Sci. Lett., 351, 54–69 {663}Google Scholar
Nowajewski, P, Rojas, M, Rojo, P, et al., 2018, Atmospheric dynamics and habitability range in Earth-like aquaplanets obliquity simulations. Icarus, 305, 84–90 {621}CrossRefGoogle Scholar
Nowak, G, Niedzielski, A, 2008, The PSU/TCfA search for planets around evolved stars: bisector analysis of activity of a sample of red giants. ASP Conf. Ser., volume 398, 171–172 {39, 40, 56}Google Scholar
Nowak, G, Niedzielski, A, Wolszczan, A, et al., 2013, BD+15 2940 and HD 233604: two giants with planets close to the engulfment zone. ApJ, 770, 53 {401, 716, 724}CrossRefGoogle Scholar
Nowak, M, Lacour, S, Lapeyrère, V, et al., 2016, Reaching sub-milimag photometric precision on β Pic with a nanosat: the Pic Sat mission. Space Telescopes and Instrumentation 2016: Optical, Infrared, and Millimeter Wave, volume 9904 of Proc. SPIE, 99044L {224}Google Scholar
Noyes, RW, Bakos GÁ, Torres, G, et al., 2008, HAT–P–6 b: a hot Jupiter transiting a bright F star. ApJ, 673, L79–L82 {163, 735}CrossRefGoogle Scholar
Noyes, RW, Jha, S, Korzennik, S, et al., 1997a, The AFOE programmeof extrasolar planet research. Planets Beyond the Solar System and the Next Generation of Space Missions, volume 119 of ASP Conf. Ser., 119–122 {46}Google Scholar
Noyes, RW, Jha, S, Korzennik, SG, et al., 1997b, A planet orbiting the star ρ CrB. ApJ, 483, L111–L114 {715}CrossRefGoogle Scholar
Noyes, RW, Weiss, NO, Vaughan, AH, 1984, The relation between stellar rotation and activity cycle periods. ApJ, 287, 769–773 {195}CrossRefGoogle Scholar
Noyola, JP, Satyal, S, Musielak, ZE, 2014, Detection of exomoons through observation of radio emissions. ApJ, 791, 25 {281, 715, 717}CrossRefGoogle Scholar
Noyola, JP, Satyal, S, Musielak, ZE, 2016, On the radio detection of multiple-exomoon systems due to plasma torus sharing. ApJ, 821, 97 {281}CrossRefGoogle Scholar
Nuñez, PD, Scott, NJ, Mennesson, B, et al., 2017, A near-infrared interferometric survey of debris disk stars. VI. Extending the exozodiacal light survey with CHARA–Jou FLU. A&A, 608, A113 {348}Google Scholar
Nucita, AA, de Paolis, F, Ingrosso, G, et al., 2017, Astrometric microlensing. International Journal of Modern Physics D, 26, 1741015 {138}CrossRefGoogle Scholar
Nugroho, SK, Kawahara, H, Masuda, K, et al., 2017, High-resolution spectroscopic detection of TiO and a stratosphere in the day-side of WASP–33 b. AJ, 154, 221 {754}CrossRefGoogle Scholar
Nuth, JA, 2008, What was the volatile composition of the planetesimals that formed the Earth? Earth Moon and Planets, 102, 435–445 {667}CrossRefGoogle Scholar
Nutzman, P, Charbonneau, D, 2008, Design considerations for a ground-based transit search for habitable planets orbiting Mdwarfs. PASP, 120, 317–327 {160, 167}CrossRefGoogle Scholar
Nutzman, P, Charbonneau, D, Winn, JN, et al., 2009, A precise estimate of the radius of the exoplanet HD 149026 b from Spitzer photometry. ApJ, 692, 229–235 {729}CrossRefGoogle Scholar
Nutzman, P, Fabrycky, DC, Fortney, JJ, 2011a, Using star spots to measure the spin–orbit alignment of transiting planets. ApJ, 740, L10 {214, 215, 733}CrossRefGoogle Scholar
Nutzman, P, Gilliland, RL, McCullough, PR, et al., 2011b, Precise estimates of the physical parameters for the exoplanet system HD 17156 enabled by HST–FGS transit and asteroseismic observations. ApJ, 726, 3 {410, 729}CrossRefGoogle Scholar
Nymeyer, S, Harrington, J, Hardy, RA, et al., 2011, Spitzer secondary eclipses of WASP–18 b. ApJ, 742, 35 {286, 595, 614, 753}CrossRefGoogle Scholar
Oakley, PHH, Cash, W, 2009, Construction of an Earth model: analysis of exoplanet light curves and mapping the next Earth with the new worlds observer. ApJ, 700, 1428–1439 {221}CrossRefGoogle Scholar
Oasa, Y, Tamura, M, Sugitani, K, 1999, A deep near-infrared survey of the Chamaeleon I dark cloud core. ApJ, 526, 336–343 {446}CrossRefGoogle Scholar
Oberbeck, VR, Fogleman, G, 1989, Estimates of the maximum time required to originate life. Origins of Life and Evolution of the Biosphere, 19, 549–560 {636}CrossRefGoogle ScholarPubMed
Öberg, KI, Murray-Clay, RA, Bergin, EA, 2011, The effects of snow lines on C/O in planetary atmospheres. ApJ, 743, L16 {583, 752}CrossRefGoogle Scholar
Obermeier, C, Henning, T, Schlieder, JE, et al., 2016a, K2 discovers a busy bee: an unusual transiting Neptune found in the Beehive Cluster. AJ, 152, 223 {159, 748}CrossRefGoogle Scholar
Obermeier, C, Koppenhoefer, J, Saglia, RP, et al., 2016b, Pan-Planets: searching for hot Jupiters around cool dwarfs. A&A, 587, A49 {13, 171}Google Scholar
Oberst, TE, Beatty, TG, Bieryla, A, et al., 2014, The KELT survey for transiting planets. Search for Life Beyond the Solar System. Exoplanets, Biosignatures and Instruments, 3P {165}Google Scholar
Oberst, TE, Rodriguez, JE, Colón, KD, et al., 2017, KELT–16 b: a highly irradiated, ultrashort period hot Jupiter nearing tidal disruption. AJ, 153, 97 {231, 738}CrossRefGoogle Scholar
Obertas, A, Van Laerhoven, C, Tamayo, D, 2017, The stability of tightly-packed, evenly-spaced systems of Earth-mass planets orbiting a Sun-like star. Icarus, 293, 52–58 {318}CrossRefGoogle Scholar
O'Brien, DP, Geissler, P, Greenberg, R, 2002, A melt-through model for chaos formation on Europa. Icarus, 156, 152–161 {626}CrossRefGoogle Scholar
O'Brien, DP, Greenberg, R, 2003, Steady-state size distributions for collisional populations: analytical solution with size-dependent strength. Icarus, 164, 334–345 {496}CrossRefGoogle Scholar
O'Brien, DP, Morbidelli, A, Bottke, WF, 2007, The primordial excitation and clearing of the asteroid belt, revisited. Icarus, 191, 434–452 {694}CrossRefGoogle Scholar
O'Brien, DP, Morbidelli, A, Levison, HF, 2006, Terrestrial planet formation with strong dynamical friction. Icarus, 184, 39–58 {476, 477, 667, 668, 697}Google Scholar
O'Brien, DP, Travis, BJ, Feldman, WC, et al., 2015, The potential for volcanism on Ceres due to crustal thickening and pressurisation of a subsurface ocean. Lunar and Planetary Science Conference, volume 46 of Lunar and Planetary Science Conference, 2831 {565}Google Scholar
O'Brien, DP, Walsh, KJ, Morbidelli, A, et al., 2014, Water delivery and giant impacts in the Grand Tack scenario. Icarus, 239, 74–84 {668, 699}Google Scholar
Ochiai, H, Nagasawa, M, Ida, S, 2014, Extrasolar binary planets. I. Formation by tidal capture during planet–planet scattering. ApJ, 790, 92 {216, 688}CrossRefGoogle Scholar
Ockert-Bell, ME, Burns, JA, Daubar, IJ, et al., 1999, The structure of Jupiter's ring system as revealed by the Galileo imaging experiment. Icarus, 138, 188–213 {691}CrossRefGoogle Scholar
O'Connell, DJK, 1951, The so-called periastron effect in close eclipsing binaries. Publications of the Riverview College Observatory, 2, 85–100 {240}Google Scholar
O'Dell, CR, Wen, Z, Hu, X, 1993, Discovery of new objects in the Orion nebula on HST images: shocks, compact sources, and protoplanetary disks. ApJ, 410, 696–700 {462}CrossRefGoogle Scholar
Odert, P, Leitzinger, M, Hanslmeier, A, et al., 2010, Implications of stellar activity for exoplanetary atmospheres. Int. J. Astrobiol., 9, 239–243 {601}CrossRefGoogle Scholar
O'Donovan, FT, Charbonneau, D, Bakos GÁ, et al., 2007, TrES–3: a nearby, massive, transiting hot Jupiter in a 31-hour orbit. ApJ, 663, L37–L40 {169, 224, 751}CrossRefGoogle Scholar
O'Donovan, FT, Charbonneau, D, Harrington, J, et al., 2010, Detection of planetary emission from the exoplanet Tres–2 using Spitzer–IRAC. ApJ, 710, 1551–1556 {614, 751}Google Scholar
O'Donovan, FT, Charbonneau, D, Mandushev, G, et al., 2006a, TrES–2: the first transiting planet in the Kepler field. ApJ, 651, L61–L64 {167, 169, 206, 224, 750}CrossRefGoogle Scholar
O'Donovan, FT, Charbonneau, D, Torres, G, et al., 2006b, Rejecting astrophysical false positives from the TrES transiting planet survey: the example of GSC 03885–00829. ApJ, 644, 1237–1245 {169}Google Scholar
Oelkers, RJ, 2017, The Transiting Exoplanet Survey Satellite (TESS). Journal of the American Association of Variable Star Observers (JAAVSO), 45, 126 {180}Google Scholar
Oelkers, RJ, Macri, LM, Marshall, JL, et al., 2016, A wide-field survey for transiting hot Jupiters and eclipsing pre-main-sequence binaries in young stellar associations. AJ, 152, 75 {159}CrossRefGoogle Scholar
Oetiker, B, Kowalczyk, M, Nietfeld, B, et al., 2010, Wide angle telescope transit search: a low-elevation component of the TrES network. PASP, 122, 41–48 {169}CrossRefGoogle Scholar
Ofir, A, 2008, An algorithm for photometric identification of transiting circumbinary planets. MNRAS, 387, 1597–1604 {79, 117, 160, 191, 193}CrossRefGoogle Scholar
Ofir, A, 2014a, Optimising the search for transiting planets in long time series. A&A, 561, A138 {193}Google Scholar
Ofir, A, 2014b, Position angles and coplanarity of multiple systems from transit timing. A&A, 561, A51 {256}Google Scholar
Ofir, A, Alonso, R, Bonomo, AS, et al., 2010, The SARS algorithm: detrending CoRoT light curves with Sysrem using simultaneous external parameters. MNRAS, 404, L99–L103 {190, 191}CrossRefGoogle Scholar
Ofir, A, Deeg, HJ, Lacy, CHS, 2009, Searching for transiting circumbinary planets in CoRoT and ground-based data using CB-BLS. A&A, 506, 445–453 {160}Google Scholar
Ofir, A, Dreizler, S, 2013, An independent planet search in the Kepler dataset. I. One hundred new candidates and revised Kepler objects of interest. A&A, 555, A58 {191, 192, 298, 740, 742, 743, 744, 746}Google Scholar
Ofir, A, Dreizler, S, Zechmeister, M, et al., 2014, An independent planet search in the Kepler dataset. II. An extremely low-density super-Earth mass planet around Kepler–87. A&A, 561, A103 {190, 191, 742}Google Scholar
Ofir, A, Xie, JW, Jiang, CF, et al., 2018, A spectral approach to transit timing variations. ApJS, 234, 9 {269, 271}CrossRefGoogle Scholar
Ogihara, M, Duncan, MJ, Ida, S, 2010, Eccentricity trap: trapping of resonantly interacting planets near the disk inner edge. ApJ, 721, 1184–1192 {521}CrossRefGoogle Scholar
Ogihara, M, Ida, S, 2009, N-body simulations of planetary accretion around M dwarf stars. ApJ, 699, 824–838 {476, 501}CrossRefGoogle Scholar
Ogihara, M, Ida, S, 2012, N-body simulations of satellite formation around giant planets: origin of orbital configuration of the Galileanmoons. ApJ, 753, 60 {627, 688}CrossRefGoogle Scholar
Ogihara, M, Ida, S, Morbidelli, A, 2007, Accretion of terrestrial planets from oligarchs in a turbulent disk. Icarus, 188, 522–534 {475}CrossRefGoogle Scholar
Ogihara, M, Inutsuka Si, Kobayashi, H, 2013, Crowding-out of giants by dwarfs: an origin for the lack of companion planets in hot Jupiter systems. ApJ, 778, L9 {304}CrossRefGoogle Scholar
Ogihara, M, Kobayashi, H, 2013, Condition for capture into first-order mean motion resonances and application to constraints on the origin of resonant systems. ApJ, 775, 34 {507, 508}CrossRefGoogle Scholar
Ogihara, M, Kobayashi, H, Inutsuka Si, 2014, N-body simulations of terrestrial planet formation under the influence of a hot Jupiter. ApJ, 787, 172 {304}CrossRefGoogle Scholar
Ogihara, M, Kobayashi, H, Inutsuka Si, et al., 2015a, Formation of terrestrial planets in disks evolving via disk winds and implications for the origin of the solar system's terrestrial planets. A&A, 579, A65 {519}Google Scholar
Ogihara, M, Morbidelli, A, Guillot, T, 2015b, A reassessment of the in situ formation of close-in super-Earths. A&A, 578, A36 {501, 519}Google Scholar
Ogihara, M, Morbidelli, A, Guillot, T, 2015c, Suppression of type Imigration by disk winds. A&A, 584, L1 {519}Google Scholar
Ogilvie, GI, 2014, Tidal dissipation in stars and giant planets. ARA&A, 52, 171–210 {531, 532, 533, 534, 535, 537, 538, 539, 542}Google Scholar
Ogilvie, GI, Lesur, G, 2012, On the interaction between tides and convection. MNRAS, 422, 1975–1987 {541}CrossRefGoogle Scholar
Ogilvie, GI, Lin, DNC, 2004, Tidal dissipation in rotating giant planets. ApJ, 610, 477–509 {533, 535, 536}CrossRefGoogle Scholar
Ogilvie, GI, Lin, DNC, 2007, Tidal dissipation in rotating solar-type stars. ApJ, 661, 1180–1191 {535, 537}CrossRefGoogle Scholar
Ogilvie, GI, Lubow, SH, 2003, Saturation of the corotation resonance in a gaseous disk. ApJ, 587, 398–406 {523}CrossRefGoogle Scholar
O'Gorman, PA, Schneider, T, 2008, The hydrological cycle over a wide range of climates simulated with an idealised GCM. Journal of Climate, 21, 3815 {593}CrossRefGoogle Scholar
Oh, S, Price-Whelan, AM, Brewer, JM, et al., 2018, Kronos and Krios: evidence for accretion of a massive, rocky planetary system in a comoving pair of solar-type stars. ApJ, 854, 138 {401}CrossRefGoogle Scholar
Ohanian, HC, 1973, Focusing of gravitational radiation. Phys. Rev. D, 8, 2734–2735 {137}CrossRefGoogle Scholar
Ohashi, N, Saigo, K, Aso, Y, et al., 2014, Formation of a Keplerian disk in the infalling envelope around L1527 IRS: transformation from infalling motions to Kepler motions. ApJ, 796, 131 {464}CrossRefGoogle Scholar
Ohishi, N, Yoshizawa, M, Nishikawa, J, et al., 2008, Recent progress at the MIRA: development of fringe tracking system. SPIE Conf. Ser., volume 7013, 4 {348}Google Scholar
Ohno, K, Okuzumi, S, 2017, A condensation-coalescence cloud model for exo-planetary atmospheres: formulation and test applications to terrestrial and Jovian clouds. ApJ, 835, 261 {591}CrossRefGoogle Scholar
Ohta, Y, Fukagawa, M, Sitko, ML, et al., 2016, Extreme asymmetry in the polarised disk of V1247 Ori. PASJ, 68, 53 {340}CrossRefGoogle Scholar
Ohta, Y, Taruya, A, Suto, Y, 2005, The Rossiter–McLaughlin effect and analytic radial velocity curves for transiting extrasolar planetary systems. ApJ, 622, 1118–1135 {249, 385}CrossRefGoogle Scholar
Ohtsuki, K, Yasui, Y, Daisaka, H, 2013, Accretion rates of moonlets embedded in cir-cumplanetary particle disks. AJ, 146, 25 {463}CrossRefGoogle Scholar
Oishi, JS, Mac Low, M, Menou, K, 2007, Turbulent torques on protoplanets in a dead zone. ApJ, 670, 805–819 {459}CrossRefGoogle Scholar
Oishi, M, Kamaya, H, 2016a, A simple evolutional model of habitable zone around host stars with various mass and low metallicity. Ap&SS, 361, 66 {624}Google Scholar
Oishi, M, Kamaya, H, 2016b, A simple evolutional model of the ultraviolet habitable zone and the possibility of the persistent life existence: the effects of mass and metallicity. ApJ, 833, 293 {628}CrossRefGoogle Scholar
Oka, A, Nakamoto, T, Ida, S, 2011, Evolution of snow line in optically thick protoplanet-ary disks: effects of water ice opacity and dust grain size. ApJ, 738, 141 {564}CrossRefGoogle Scholar
Okamoto, YK, Kataza, H, Honda, M, et al., 2004, An early extrasolar planetary system revealed by planetesimal belts in β Pic. Nature, 431, 660–663 {493, 762}CrossRefGoogle Scholar
O'Keefe, JD, Ahrens, TJ, 1982, Cometary and meteorite swarm impact on planetary surfaces. J. Geophys. Res., 87, 6668–6680 {600}CrossRefGoogle Scholar
Oklopčić, A, Hirata, CM, Heng, K, 2016, Raman scattering by molecular hydrogen and nitrogen in exoplanetary atmospheres. ApJ, 832, 30 {591}CrossRefGoogle Scholar
Oks, E, 2015, Stable conic-helical orbits of planets around binary stars: analytical results. ApJ, 804, 106 {550}CrossRefGoogle Scholar
Okuzumi, S, Hirose, S, 2011, Modeling magnetorotational turbulence in protoplanet-ary disks with dead zones. ApJ, 742, 65 {459}CrossRefGoogle Scholar
Okuzumi, S, Hirose, S, 2012, Planetesimal formation in magnetorotationally dead zones: critical dependence on the net vertical magnetic flux. ApJ, 753, L8 {459}CrossRefGoogle Scholar
Okuzumi, S, Momose, M, Sirono Si, et al., 2016, Sintering-induced dust ring formation in protoplanetary disks: application to the HL Tau disk. ApJ, 821, 82 {466}CrossRefGoogle Scholar
Okuzumi, S, Tanaka, H, Kobayashi, H, et al., 2012, Rapid coagulation of porous dust aggregates outside the snow line: a pathway to icy planetesimal formation. ApJ, 752, 106 {457, 469, 565}CrossRefGoogle Scholar
Okuzumi, S, Tanaka, H, Sakagami Ma, 2009, Numerical modeling of the coagulation and porosity evolution of dust aggregates. ApJ, 707, 1247–1263 {457}CrossRefGoogle Scholar
Okuzumi, S, Tanaka, H, Takeuchi, T, et al., 2011a, Electrostatic barrier against dust growth in protoplanetary disks. I. Classifying the evolution of size distribution. ApJ, 731, 95 {469}CrossRefGoogle Scholar
Okuzumi, S, Tanaka, H, Takeuchi, T, 2011b, Electrostatic barrier against dust growth in protoplanetary disks. II. Measuring the size of the frozen zone. ApJ, 731, 96 {469}CrossRefGoogle Scholar
Oldham, RD, 1906, The constitution of the interior of the Earth as revealed by earthquakes. QJ Geol. Soc. London, 62(459-486) {663}Google Scholar
Oliva, E, Baffa, C, Busoni, L, et al., 2015a, T-REX OU4 HIRES: the high resolution spectrograph for the E-ELT. Mem. Soc. Astron. Italiana, 86, 474 {46}Google Scholar
Oliva, E, Biliotti, V, Baffa, C, et al., 2012a, Performances and results of the detector acquisition system of the GIANO spectrometer. High Energy, Optical, and Infrared Detectors for Astronomy V, volume 8453 of Proc. SPIE, 84532T {48}Google Scholar
Oliva, E, Hatzes, A, Piskunov, N, et al., 2012b, CRIRES+: upgrading VLT–CRIRES to cross-dispersed mode. SPIE Conf. Ser., volume 8446 {46, 48}Google Scholar
Oliva, E, Origlia, L, Maiolino, R, et al., 2012c, The GIANO spectrometer: towards its first light at the TNG. Ground-based and Airborne Instrumentation for Astronomy IV, volume 8446 of Proc. SPIE, 84463T {46, 48}Google Scholar
Oliva, E, Origlia, L, Maiolino, R, 2013, A TNG–GIANO high-resolution infrared spectrum of the airglow emission. A&A, 555, A78 {47}Google Scholar
Oliva, E, Origlia, L, Scuderi, S, et al., 2015b, Lines and continuum sky emission in the near infrared: observational constraints from deep high spectral resolution spectra with TNG–GIANO. A&A, 581, A47 {47}Google Scholar
Oliveira, I, Olofsson, J, Pontoppidan, KM, et al., 2011, On the evolution of dust mineralogy, from protoplanetary disks to planetary systems. ApJ, 734, 51 {464}CrossRefGoogle Scholar
Ollivier, M, 2007, Towards the spectroscopic analysis of Earth-like planets: the Darwin/TPF project. Comptes Rendus Physique, 8, 408–414 {352}CrossRefGoogle Scholar
Ollivier, M, Absil, O, Allard, F, et al., 2009, PEGASE, an infrared interferometer to study stellar environments and low mass companions around nearby stars. Exp. As-tron., 23, 403–434 {353}Google Scholar
Ollivier, M, Gillon, M, Santerne, A, et al., 2012, Transiting exoplanets from the CoRoT space mission. XXII. CoRoT–16 b: a hot Jupiter with a hint of eccentricity around a faint solar-like star. A&A, 541, A149 {734}Google Scholar
Ollivier, M, LeDuigou, JM, Mourard, D, et al., 2006, PEGASE: aDarwin/TPF pathfinder. IAU Colloq. 200: Direct Imaging of Exoplanets: Science and Techniques, 241–246 {353}
Olmedo, M, Lloyd, J, Mamajek, EE, et al., 2015, Deep GALEX ultraviolet survey of the Kepler field. I. Point source catalogue. ApJ, 813, 100 {176}CrossRefGoogle Scholar
Olmi, L, Bolli, P, Cresci, L, et al., 2017, Laboratory measurements of super-resolving Toraldo pupils for radio astronomical applications. Exp. Astron., 43, 285–309 {357}CrossRefGoogle Scholar
Olson, P, Christensen, UR, 2006, Dipole moment scaling for convection-driven planetary dynamos. Earth Planet. Sci. Lett., 250, 561–571 {631}CrossRefGoogle Scholar
Olsson-Francis, K, Cockell, CS, 2010, Experimental methods for studying microbial survival in extraterrestrial environments. Journal of microbiological methods, 80(1), 113, ISSN 0167-7012 {637}CrossRefGoogle ScholarPubMed
O'Malley-James, JT, Cockell, CS, Greaves, JS, et al., 2014, Swansong biospheres. II. The final signs of life on terrestrial planets near the end of their habitable lifetimes. Int. J. Astrobiol., 13, 229–243 {624}CrossRefGoogle Scholar
O'Malley-James, JT, Greaves, JS, Raven, JA, et al., 2013, Swansong biospheres: refuges for life and novel microbial biospheres on terrestrial planets near the end of their habitable lifetimes. Int. J. Astrobiol., 12, 99–112 {624, 632}CrossRefGoogle Scholar
O'Malley-James, JT, Greaves, JS, Raven, JA, 2015, In search of future Earths: assessing the possibility of finding earth analogues in the later stages of their habitable lifetimes. Astrobiology, 15, 400–411 {625}CrossRefGoogle ScholarPubMed
O'Malley-James, JT, Kaltenegger, L, 2017, Ultraviolet surface habitability of the TRAPPIST–1 system. MNRAS, 469, L26–L30 {750}Google Scholar
O'Malley-James, JT, Raven, JA, Cockell, CS, et al., 2012, Life and light: exotic photosynthesis in binary andmultiple-star systems. Astrobiology, 12, 115–124 {629}CrossRefGoogle ScholarPubMed
Omiya, M, Han, I, Izumioura, H, et al., 2012, A planetary companion to the intermediate-mass giant HD 100655. PASJ, 64, 34 {721}CrossRefGoogle Scholar
Omiya, M, Han, I, Izumiura, H, et al., 2011, Korean–Japanese planet search pro-gramme: substellar companions around intermediate-mass giants. Amer. Inst. Phys. Conf. Ser., volume 1331, 122–129 {55}Google Scholar
O'Mullane, W, Lammers, U, Lindegren, L, et al., 2011, Implementing the Gaia astro-metric global iterative solution (AGIS) in Java. Exp. Astron., 31, 215–241 {95}Google Scholar
O'Neal, D, Saar, SH, Neff, JE, 1998, Spectroscopic evidence for nonuniform star spot properties on II Peg. ApJ, 501, L73–L76 {114}CrossRefGoogle Scholar
O'Neill, C, Lenardic, A, 2007, Geological consequences of super-sized Earths. Geo-phys. Res. Lett., 34, 19204 {626, 628, 629}CrossRefGoogle Scholar
O'Neill, HSC, Palme, H, 2008, Collisional erosion and the non-chondritic composition of the terrestrial planets. Phil. Trans. Soc. London A, 366, 4205–4238 {419}Google ScholarPubMed
Onitsuka, M, Fukui, A, Narita, N, et al., 2017, Multi-colour simultaneous photometry of the T Tauri star with planetary candidate, CVSO 30. PASJ, 69, L2 {750}CrossRefGoogle Scholar
Oort, JH, 1950, The structure of the cloud of comets surrounding the solar system and a hypothesis concerning its origin. Bull. Astron. Inst. Netherlands, 11, 91–110 {661, 662, 686}Google Scholar
Öpik, E, 1932, Note on stellar perturbations of nearly parabolic orbits. Proc. Amer. Acad. Arts Sci., 67(6), 169–183 {686}CrossRefGoogle Scholar
Oppenheimer, BR, Baranec, C, Beichman, C, et al., 2013, Reconnaissance of the HR 8799 exosolar system. I. Near-infrared spectroscopy. ApJ, 768, 24 {366, 763}CrossRefGoogle Scholar
Oppenheimer, BR, Beichman, C, Brenner, D, et al., 2012, Project 1640: the world's first ExAO coronagraphic hyperspectral imager for comparative planetary science. Adaptive Optics Systems III, volume 8447 of Proc. SPIE, 844720 {343}Google Scholar
Oppenheimer, BR, Golimowski, DA, Kulkarni, SR, et al., 2001, A coronagraphic survey for companions of stars within 8 pc. AJ, 121, 2189–2211 {357, 441}CrossRefGoogle Scholar
Oppenheimer, BR, Hinkley, S, 2009, High-contrast observations in optical and infrared astronomy. ARA&A, 47, 253–289 {334}Google Scholar
Oppenheimer, BR, Kulkarni, SR, Matthews, K, et al., 1995, Infrared spectrumof the cool brown dwarf GJ 229 B. Science, 270, 1478–1479 {431, 436}CrossRefGoogle Scholar
Orellana, M, Cieza, LA, Schreiber, MR, et al., 2012, Transition disks: four candidates for ongoing giant planet formation in Ophiuchus. A&A, 539, A41 {465}Google Scholar
Oreshenko, M, Heng, K, Demory, BO, 2016, Optical phase curves as diagnostics for aerosol composition in exoplanetary atmospheres. MNRAS, 457, 3420–3429 {593, 738}CrossRefGoogle Scholar
Oreshenko, M, Lavie, B, Grimm, SL, et al., 2017, Retrieval analysis of the emission spectrum of WASP–12 b: sensitivity of outcomes to prior assumptions and implications for formation history. ApJ, 847, L3 {753}CrossRefGoogle Scholar
Origlia, L, Oliva, E, Maiolino, R, et al., 2010, SIMPLE: a high-resolution near-infrared spectrometer for the E–ELT. Ground-based and Airborne Instrumentation for Astronomy III, volume 7735 of Proc. SPIE, 77352B {49}Google Scholar
Ormel, CW, 2014, An atmospheric structure equation for grain growth. ApJ, 789, L18 {469}CrossRefGoogle Scholar
Ormel, CW, Cuzzi, JN, 2007, Closed-form expressions for particle relative velocities induced by turbulence. A&A, 466, 413–420 {469}Google Scholar
Ormel, CW, Dullemond, CP, Spaans, M, 2010a, A new condition for the transition from runaway to oligarchic growth. ApJ, 714, L103–L107 {474, 475}CrossRefGoogle Scholar
Ormel, CW, Dullemond, CP, Spaans, M, 2010b, Accretion among preplanetary bodies: the many faces of runaway growth. Icarus, 210, 507–538 {473, 474}CrossRefGoogle Scholar
Ormel, CW, Ida, S, Tanaka, H, 2012, Migration rates of planets due to scattering of plan-etesimals. ApJ, 758, 80 {524}CrossRefGoogle Scholar
Ormel, CW, Klahr, H, 2010, The effect of gas drag on the growth of protoplanets: analytical expressions for the accretion of small bodies in laminar disks. A&A, 520, A43 {471}Google Scholar
Ormel, CW, Kobayashi, H, 2012, Understanding how planets become massive. I. Description and validation of a new toy model. ApJ, 747, 115 {471}CrossRefGoogle Scholar
Ormel, CW, Kuiper, R, Shi, JM, 2015, Hydrodynamics of embedded planets first atmospheres. I. A centrifugal growth barrier for 2d flows. MNRAS, 446, 1026–1040 {462}CrossRefGoogle Scholar
Ormel, CW, Liu, B, Schoonenberg, D, 2017, Formation of TRAPPIST–1 and other compact systems. A&A, 604, A1 {473, 750}Google Scholar
Ormel, CW, Okuzumi, S, 2013, The fate of planetesimals in turbulent disks with dead zones. II. Limits on the viability of runaway accretion. ApJ, 771, 44 {459}CrossRefGoogle Scholar
Ormel, CW, Spaans, M, 2008, Monte Carlo simulation of particle interactions at high dynamic range: advancing beyond the Googol. ApJ, 684, 1291-1309 {470}CrossRefGoogle Scholar
Ormel, CW, Spaans, M, Tielens, AGGM, 2007, Dust coagulation in protoplanetary disks: porosity matters. A&A, 461, 215–232 {469, 470}Google Scholar
Orosz, JA, Hauschildt, PH, 2000, The use of the Next Gen model atmospheres for cool giants in a light curve synthesis code. A&A, 364, 265–281 {201, 239, 240, 327}Google Scholar
Orosz, JA, Welsh, WF, Carter, JA, et al., 2012a, Kepler–47: a transiting circumbinary multi-planet system. Science, 337, 1511 {12, 193, 327, 551, 552, 553, 741}CrossRefGoogle Scholar
Orosz, JA, Welsh, WF, Carter, JA, 2012b, The Neptune-sized circumbinary planet Kepler–38 b. ApJ, 758, 87 {327, 551, 553, 740}CrossRefGoogle Scholar
O'Rourke, JG, Knutson, HA, Zhao, M, et al., 2014, Warm Spitzer and Palomar near-IR secondary eclipse photometry of two hot Jupiters: WASP–48 b and HAT–P–23 b. ApJ, 781, 109 {736, 755}CrossRefGoogle Scholar
O'Rourke, JG, Korenaga, J, 2012, Terrestrial planet evolution in the stagnant-lid regime: size effects and the formation of self-destabilising crust. Icarus, 221, 1043–1060 {628}Google Scholar
Ortiz, JL, Duffard, R, Pinilla-Alonso, N, et al., 2015a, Possible ringmaterial around Centaur (2060) Chiron. A&A, 576, A18 {691}Google Scholar
Ortiz, JL, Moreno, F, Molina, A, et al., 2007, Possible patterns in the distribution of planetary formation regions. MNRAS, 379, 1222–1226 {510}CrossRefGoogle Scholar
Ortiz, JL, Santos-Sanz, P, Sicardy, B, et al., 2017, The size, shape, density and ring of the dwarf planet Haumea from a stellar occultation. Nature, 550, 219–223 {691}CrossRefGoogle ScholarPubMed
Ortiz, M, Gandolfi, D, Reffert, S, et al., 2015b, Kepler–432 b: a massive warm Jupiter in a 52-d eccentric orbit transiting a giant star. A&A, 573, L6 {745}Google Scholar
Ortiz, M, Reffert, S, Trifonov, T, et al., 2016, Precise radial velocities of giant stars. IX. HD 59686 Ab: a massive circumstellar planet orbiting a giant star in a 13.6 au eccentric binary system. A&A, 595, A55 {720}Google Scholar
Osborn, HP, Armstrong, DJ, Brown, DJA, et al., 2016, Single transit candidates from K2: detection and period estimation. MNRAS, 457, 2273–2286 {192, 193, 196}CrossRefGoogle Scholar
Osborn, HP, Rodriguez, JE, Kenworthy, MA, et al., 2017a, Periodic eclipses of the young star PDS 110 discovered with WASP and KELT photometry. MNRAS, 471, 740–749 {217}CrossRefGoogle Scholar
Osborn, HP, Santerne, A, Barros, SCC, et al., 2017b, K2–110 b: a massive mini-Neptune exoplanet. A&A, 604, A19 {748}Google Scholar
Osborn, J, 2012, Adaptive pupil masking for quasi-static speckle suppression. MNRAS, 424, 2284–2291 {340}CrossRefGoogle Scholar
Osborn, J, 2015, Scintillation correction for astronomical photometry on large and extremely large telescopeswith tomographic atmospheric reconstruction. MNRAS, 446, 1305–1311 {189}CrossRefGoogle Scholar
Osborn, J, Föhring, D, Dhillon, VS, et al., 2015, Atmospheric scintillation in astronomical photometry. MNRAS, 452, 1707–1716 {189}CrossRefGoogle Scholar
Osborn, J, Wilson, RW, Dhillon, VS, et al., 2011, Conjugate-plane photometry: reducing scintillation in ground-based photometry. MNRAS, 411, 1223–1230 {188, 189, 190}CrossRefGoogle Scholar
Oseledec, VI, 1968, A multiplicative ergodic theorem: the Lyapunov characteristic numbers of dynamical systems. Moscow Math. Soc., 19(197-231) {515}Google Scholar
Oshagh, M, 2018, Noise sources in photometry and radial velocities. Asteroseismology and Exoplanets: Listening to the Stars and Searching for New Worlds, 49, 239 {53}Google Scholar
Oshagh, M, Boisse, I, Boué, G, et al., 2013a, SOAP–T: a tool to study the light curve and radial velocity of a system with a transiting planet and a rotating spotted star. A&A, 549, A35 {212, 253, 736, 752}Google Scholar
Oshagh, M, Boué, G, Figueira, P, et al., 2013b, Probing the effect of gravitational micro-lensing on the measurements of the Rossiter–McLaughlin effect. A&A, 558, A65 {137, 223, 251}Google Scholar
Oshagh, M, Dreizler, S, Santos, NC, et al., 2016, Can stellar activity make a planet seem misaligned? A&A, 593, A25 {211, 250}Google Scholar
Oshagh, M, Grigahcène, A, Benomar, O, et al., 2013c, Successful asteroseismology for a better characterisation of the exoplanet HAT–P–7 b. Advances in Solid State Physics, volume 31, 227 {163, 735}Google Scholar
Oshagh, M, Heller, R, Dreizler, S, 2017, How eclipse time variations, eclipse duration variations, and radial velocities can reveal S-type planets in close eclipsing binaries. MNRAS, 466, 4683–4691 {194}Google Scholar
Oshagh, M, Santos, NC, Boisse, I, et al., 2013d, Effect of stellar spots on high-precision transit light-curve. A&A, 556, A19 {212}Google Scholar
Oshagh, M, Santos, NC, Figueira, P, et al., 2015, Polar stellar-spots and grazing planetary transits: possible explanation for the low number of discovered grazing planets. A&A, 583, L1 {224}Google Scholar
Oskvarek, JD, Perry, EC, 1976, Temperature limits on the early Archaean ocean from oxygen isotope variations in the Isua supracrustal sequence, West Greenland. Nature, 259, 192–194 {576}CrossRefGoogle Scholar
Osorio, M, Anglada, G, Carrasco-González, C, et al., 2014, Imaging the inner and outer gaps of the pre-transition disk of HD 169142 at 7mm. ApJ, 791, L36 {367, 467}CrossRefGoogle Scholar
Østensen, RH, 2009, Asteroseismology and evolution of extreme horizontal branch stars. Communications in Asteroseismology, 159, 75–87 {111}CrossRefGoogle Scholar
Østensen, RH, Green, EM, Bloemen, S, et al., 2010, 2M J1938+4603: a rich, multi-mode pulsating sdB star with an eclipsing dM companion observed with Kepler. MNRAS, 408, L51–L55 {116, 746}CrossRefGoogle Scholar
Osterman, S, Diddams, S, Beasley, M, et al., 2007, A proposed laser frequency comb-based wavelength reference for high-resolution spectroscopy. Techniques and Instrumentation for Detection of Exoplanets III, volume 6693 of Proc. SPIE, 66931G {33}Google Scholar
Ostriker, JP, Turner, EL, 1986, The inclusion of interaction terms into population dynamics equations of interstellar colonisation. J. Br. Interplanet. Soc., 39, 141 {647}Google Scholar
Ostro, SJ, 1993, Planetary radar astronomy. Reviews of Modern Physics, 65, 1235–1279 {355}CrossRefGoogle Scholar
Ostro, SJ, Campbell, DB, Chandler, JF, et al., 1991, Asteroid radar astrometry. AJ, 102, 1490–1502 {356}CrossRefGoogle Scholar
Ostro, SJ, Campbell, DB, Simpson, RA, et al., 1992, Europa, Ganymede, and Callisto: new radar results from Arecibo and Goldstone. J. Geophys. Res., 97, 18 {356}CrossRefGoogle Scholar
Ostro, SJ, Shoemaker, EM, 1990, The extraordinary radar echoes from Europa, Ganymede, and Callisto: a geological perspective. Icarus, 85, 335–345 {356}CrossRefGoogle Scholar
Oti, JE, Canales, VF, Cagigal, MP, 2005a, Improvements on the optical differentiation wavefront sensor. MNRAS, 360, 1448–1454 {332}CrossRefGoogle Scholar
Oti, JE, Canales, VF, Cagigal, MP, 2005b, The optical differentiation coronagraph. ApJ, 630, 631–636 {334}CrossRefGoogle Scholar
O'Toole, SJ, Butler, RP, Tinney, CG, et al., 2007, New planets around three G dwarfs. ApJ, 660, 1636–1641 {719, 722, 723}Google Scholar
O'Toole, SJ, Jones, HRA, Tinney, CG, et al., 2009a, The frequency of low-mass exo-planets. ApJ, 701, 1732–1741 {55}CrossRefGoogle Scholar
O'Toole, SJ, Tinney, CG, Butler, RP, et al., 2009b, A Neptune-mass planet orbiting the nearby G dwarf HD 16417. ApJ, 697, 1263–1268 {36, 55, 718}CrossRefGoogle Scholar
O'Toole, SJ, Tinney, CG, Jones, HRA, 2008, The impact of stellar oscillations on Doppler velocity planet searches. MNRAS, 386, 516–520 {36, 37}CrossRefGoogle Scholar
Otor, OJ, Montet, BT, Johnson, JA, et al., 2016, The orbit and mass of the third planet in the Kepler–56 system. AJ, 152, 165 {741}CrossRefGoogle Scholar
Otten, GPPL, Snik, F, Kenworthy, MA, et al., 2017, On-sky performance analysis of the vector apodizing phase plate coronagraph on MagAO/Clio2. ApJ, 834, 175 {343}CrossRefGoogle Scholar
Ouyed, R, Fundamenski, WR, Cripps, GR, et al., 1998, D-D Fusion in the Interior of Jupiter? ApJ, 501, 367–374 {302, 303}CrossRefGoogle Scholar
Ouyed, R, Jaikumar, P, 2016, Nuclear fusion in the deuterated cores of inflated hot Jupiters. Ap&SS, 361, 89 {302, 303}Google Scholar
Owen, JE, 2014a, Accreting planets as dust dams in transition disks. ApJ, 789, 59 {466}CrossRefGoogle Scholar
Owen, JE, 2014b, Snow lines as probes of turbulent diffusion in protoplanetary disks. ApJ, 790, L7 {565}CrossRefGoogle Scholar
Owen, JE, 2016, The origin and evolution of transition disks: successes, problems, and open questions. Publ. Astron. Soc. Australia, 33, e005 {466}CrossRefGoogle Scholar
Owen, JE, Adams, FC, 2014, Magnetically controlled mass-loss from extrasolar planets in close orbits. MNRAS, 444, 3761–3779 {422}CrossRefGoogle Scholar
Owen, JE, Adams, FC, 2016, Hot Jupiter breezes: time-dependent outflows from extrasolar planets. MNRAS, 456, 3053–3067 {591}CrossRefGoogle Scholar
Owen, JE, Alvarez, MA, 2016, UV driven evaporation of close-in planets: energy-limited, recombination-limited, and photon-limited flows. ApJ, 816, 34 {601}CrossRefGoogle Scholar
Owen, JE, Clarke, CJ, 2012, Two populations of transition disks? MNRAS, 426, L96–L100 {465}CrossRefGoogle Scholar
Owen, JE, Ercolano, B, Clarke, CJ, et al., 2010, Radiation-hydrodynamic models of X-ray and EUV photoevaporating protoplanetary disks. MNRAS, 401, 1415–1428 {650}CrossRefGoogle Scholar
Owen, JE, Hudoba de Badyn M, Clarke, CJ, et al., 2013, Characterising thermal sweeping: a rapid disk dispersal mechanism. MNRAS, 436, 1430–1438 {462}CrossRefGoogle Scholar
Owen, JE, Kollmeier, JA, 2017, Dust traps as planetary birth sites: basics and vortex formation. MNRAS, 467, 3379–3392 {460}CrossRefGoogle Scholar
Owen, JE, Lai, D, 2017, Generating large misalignments in gapped and binary disks. MNRAS, 469, 2834–2844 {466}CrossRefGoogle Scholar
Owen, JE, Menou, K, 2016, Disk-fed giant planet formation. ApJ, 819, L14 {483}CrossRefGoogle Scholar
Owen, JE, Mohanty, S, 2016, Habitability of terrestrial-mass planets in the habitable zone of M dwarfs. I. H/He-dominated atmospheres. MNRAS, 459, 4088–4108 {622}CrossRefGoogle Scholar
Owen, JE, Morton, TD, 2016, The initial physical conditions of Kepler–36 b and c. ApJ, 819, L10 {740}CrossRefGoogle Scholar
Owen, JE, Wu, Y, 2013, Kepler planets: a tale of evaporation. ApJ, 775, 105 {298, 309, 315}CrossRefGoogle Scholar
Owen, JE, Wu, Y, 2016, Atmospheres of low-mass planets: the ‘boil-off’. ApJ, 817, 107 {601, 602}CrossRefGoogle Scholar
Owen, JE, Wu, Y, 2017, The evaporation valley in the Kepler planets. ApJ, 847, 29 {299}CrossRefGoogle Scholar
Owen, TC, 1980, The search for early forms of life in other planetary systems: future possibilities afforded by spectroscopic techniques. Strategies for the Search for Life in the Universe, volume 83 of Astrophys. Space Sci. Lib., 177–183 {619, 638, 640}Google Scholar
Owen, TC, Bar-Nun, A, 1995, Comets, impacts, and atmospheres. Icarus, 116, 215–226 {668}CrossRefGoogle ScholarPubMed
Owen, TC, Mahaffy, P, Niemann, HB, et al., 1999, A low-temperature origin for the plan-etesimals that formed Jupiter. Nature, 402, 269–270 {578, 661}CrossRefGoogle ScholarPubMed
Owen, TC, Roush, TL, Cruikshank, DP, et al., 1993, Surface ices and the atmospheric composition of Pluto. Science, 261, 745–748 {682}CrossRefGoogle ScholarPubMed
Ozernoy, LM, Gorkavyi, NN, Mather, JC, et al., 2000, Signatures of exosolar planets in dust debris disks. ApJ, 537, L147–L151 {492}CrossRefGoogle Scholar
Ozima, M, Miura, YN, Podosek, FA, 2004, Orphan radiogenic noble gases in lunar brec-cias: evidence for planet pollution of the Sun? Icarus, 170, 17–23 {661}CrossRefGoogle Scholar
Paardekooper, S, Baruteau, C, Crida, A, et al., 2010a, A torque formula for non-isothermal type I planetary migration. I. Unsaturated horseshoe drag. MNRAS, 401, 1950–1964 {519, 556}CrossRefGoogle Scholar
Paardekooper, S, Mellema, G, 2006, Halting type I planet migration in non-isothermal disks. A&A, 459, L17–L20 {518, 521}Google Scholar
Paardekooper, S, Papaloizou, JCB, 2009, On corotation torques, horseshoe drag and the possibility of sustained stalled or outward protoplanetary migration. MNRAS, 394, 2283–2296 {519}CrossRefGoogle Scholar
Paardekooper, SJ, 2007, Dust accretion onto high-mass planets. A&A, 462, 355–369 {480}Google Scholar
Paardekooper, SJ, 2014, Dynamical corotation torques on low-mass planets. MNRAS, 444, 2031–2042 {519}CrossRefGoogle Scholar
Paardekooper, SJ, Baruteau, C, Kley, W, 2011a, A torque formula for non-isothermal type I planetary migration. II. Effects of diffusion. MNRAS, 410, 293–303 {519}CrossRefGoogle Scholar
Paardekooper, SJ, Baruteau, C, Meru, F, 2011b, Numerical convergence in self-gravitating disk simulations: initial conditions and edge effects. MNRAS, 416, L65–L69 {490}CrossRefGoogle Scholar
Paardekooper, SJ, Leinhardt, ZM, 2010, Planetesimal collisions in binary systems. MNRAS, 403, L64–L68 {80, 550, 714}CrossRefGoogle Scholar
Paardekooper, SJ, Leinhardt, ZM, Thébault, P, et al., 2012, How not to build Tatooine: the difficulty of in situ formation of circumbinary planets Kepler–16 b, Kepler–34 b, and Kepler–35 b. ApJ, 754, L16 {551, 552, 739, 740}CrossRefGoogle Scholar
Paardekooper, SJ, Lesur, G, Papaloizou, JCB, 2010b, Vortex migration in protoplanetary disks. ApJ, 725, 146–158 {461}CrossRefGoogle Scholar
Paardekooper, SJ, Mellema, G, 2004, Planets opening dust gaps in gas disks. A&A, 425, L9–L12 {465}Google Scholar
Paardekooper, SJ, Papaloizou, JCB, 2008, On disk protoplanet interactions in a non-barotropic disk with thermal diffusion. A&A, 485, 877–895 {518}Google Scholar
Paardekooper, SJ, Rein, H, Kley, W, 2013, The formation of systems with closely spaced low-mass planets and the application to Kepler–36. MNRAS, 434, 3018–3029 {179, 503, 504, 511, 740}CrossRefGoogle Scholar
Paardekooper, SJ, Thébault, P, Mellema, G, 2008, Planetesimal and gas dynamics in binaries. MNRAS, 386, 973–988 {550}CrossRefGoogle Scholar
Pace, G, Pasquini, L, 2004, The age-activity-rotation relationship in solar-type stars. A&A, 426, 1021–1034 {381}Google Scholar
Pace, GW, Walker, JCG, 1975, Time markers in interstellar communication. Nature, 254, 400–401 {648}CrossRefGoogle Scholar
Pacheco-Vázquez, S, Fuente, A, Baruteau, C, et al., 2016, High spatial resolution imaging of SO and H2CO in AB Auriga: the first SO image in a transition disk. A&A, 589, A60 {370}Google Scholar
Pacucci, F, Ferrara, A, D'Onghia, E, 2013, Detectability of free-floating planets in open clusters with the James Webb Space Telescope. ApJ, 778, L42 {447, 526}CrossRefGoogle Scholar
Paczyński, B, 1976, Common envelope binaries. Structure and Evolution of Close Binary Systems, volume 73 of IAU Symp., 75 {113}Google Scholar
Paczyński, B, 1986a, Gravitational microlensing at large optical depth. ApJ, 301, 503–516 {119, 120}CrossRefGoogle Scholar
Paczyński, B, 1986b, Gravitational microlensing by the Galactic halo. ApJ, 304, 1–5 {120, 122}CrossRefGoogle Scholar
Paczyński, B, 1991, Gravitational microlensing of the Galactic bulge stars. ApJ, 371, L63–L67 {120}CrossRefGoogle Scholar
Paczyński, B, 1995, The masses of nearby dwarfs can be determined with gravitational micro-lensing. Acta Astronomica, 45, 345–348 {138}Google Scholar
Paczyński, B, 1996, Gravitational microlensing in the local group. ARA&A, 34, 419–460 {120, 121, 122, 123, 138}Google Scholar
Paczyński, B, 1998, Gravitational microlensing with the Space Interferometry Mission. ApJ, 494, L23–26 {138}CrossRefGoogle Scholar
Padgett, M, Courtial, J, Allen, L, 2004, Light's orbital angularmomentum. Physics Today, 57(5), 050000–40 {336}CrossRefGoogle Scholar
Padoan, P, Nordlund, Å, 2002, The stellar initial mass function from turbulent fragmentation. ApJ, 576, 870–879 {441}CrossRefGoogle Scholar
Padoan, P, Nordlund, Å, 2004, The ‘mysterious’ origin of brown dwarfs. ApJ, 617, 559–564 {431, 441, 442}CrossRefGoogle Scholar
Padoan, P, Nordlund, A, Jones, BJT, 1997, The universality of the stellar initial mass function. MNRAS, 288, 145–152 {441}CrossRefGoogle Scholar
Páez, RI, Efthymiopoulos, C, 2015, Trojan resonant dynamics, stability, and chaotic diffusion, for parameters relevant to exoplanetary systems. Cel. Mech. Dyn. As-tron., 121, 139–170 {273}Google Scholar
Pagano, I, Lanza, AF, Leto, G, et al., 2009, CoRoT–2 magnetic activity: hints for possible star–planet interaction. Earth Moon and Planets, 105, 373–378 {387, 733}CrossRefGoogle Scholar
Pagano, M, Truitt, A, Young, PA, et al., 2015, The chemical composition of τ Cet and possible effects on terrestrial planets. ApJ, 803, 90 {714}CrossRefGoogle Scholar
Pahlevan, K, Morbidelli, A, 2015, Collisionless encounters and the origin of the lunar inclination. Nature, 527, 492–494 {665}CrossRefGoogle ScholarPubMed
Pahlevan, K, Stevenson, DJ, 2007, Equilibration in the aftermath of the lunar-forming giant impact. Earth Planet. Sci. Lett., 262, 438–449 {664}CrossRefGoogle Scholar
Pajdosz, G, 1995, Non-evolutionary secular period increase in pulsating DA white dwarfs. A&A, 295, L17–L19 {111}Google Scholar
Pajola, M, Lazzarin, M, Bertini, I, et al., 2012, Spectrophotometric investigation of Phobos with the Rosetta OSIRIS-NAC camera and implications for its collisional capture. MNRAS, 427, 3230–3243 {688}CrossRefGoogle Scholar
Pál, A, 2008, Properties of analytic transit light-curve models. MNRAS, 390, 281–288 {201, 225}CrossRefGoogle Scholar
Pál, A, 2009, An analytical solution for Kepler's problem. MNRAS, 396, 1737–1742 {18, 27}CrossRefGoogle Scholar
Pál, A, 2010, Analysis of radial velocity variations in multiple planetary systems. MNRAS, 409, 975–984 {720, 722}CrossRefGoogle Scholar
Pál, A, 2012, Light-curve modelling for mutual transits. MNRAS, 420, 1630–1635 {196, 225, 327}CrossRefGoogle Scholar
Pál, A, Bakos GÁ, 2006, Astrometry in wide-field surveys. PASP, 118, 1474–1483 {156}CrossRefGoogle Scholar
Pál, A, Bakos GÁ, Fernandez, J, et al., 2009, Independent confirmation and refined parameters of the hot Jupiter XO–5 b. ApJ, 700, 783–790 {757}CrossRefGoogle Scholar
Pál, A, Bakos GÁ, Torres, G, et al., 2008, HAT–P–7 b: an extremely hot massive planet transiting a bright star in the Kepler field. ApJ, 680, 1450–1456 {300, 411, 735}CrossRefGoogle Scholar
Pál, A, Bakos GÁ, Torres, G, 2010, Refined stellar, orbital and planetary parameters of the eccentric HAT–P–2 planetary system. MNRAS, 401, 2665–2674 {292, 735}CrossRefGoogle Scholar
Pál, A, Kocsis, B, 2008, Periastron precession measurements in transiting extrasolar planetary systems at the level of general relativity. MNRAS, 389, 191–198 {259, 262, 272}CrossRefGoogle Scholar
Pál, A, Sárneczky, K, Szabó, GM, et al., 2011, Transit timing variations in the HAT–P–13 system. MNRAS, 413, L43–L46 {163, 269, 736}CrossRefGoogle Scholar
Palacios, DM, 2005, An optical vortex coronagraph. SPIE Conf. Ser., volume 5905, 196–205 {334}Google Scholar
Palacios, DM, Hunyadi, SL, 2006, Low-order aberration sensitivity of an optical vortex coronagraph. Optics Letters, 31, 2981–2983 {337}CrossRefGoogle ScholarPubMed
Palau, A, de Gregorio-Monsalvo, I, Morata Ò, et al., 2012, A search for pre-substellar cores and proto-brown dwarf candidates in Taurus: multiwavelength analysis in the B213-L1495 clouds. MNRAS, 424, 2778–2791 {445}CrossRefGoogle Scholar
Palau, A, Zapata, LA, Rodríguez, LF, et al., 2014, IC 348–SMM2E: a Class 0 proto-brown dwarf candidate forming as a scaled-down version of low-mass stars. MNRAS, 444, 833–845 {445}CrossRefGoogle Scholar
Pallavicini, R, Golub, L, Rosner, R, et al., 1981, Relations among stellar X-ray emission observed from Einstein, stellar rotation and bolometric luminosity. ApJ, 248, 279–290 {423}CrossRefGoogle Scholar
Pallé, E, Chen, G, Alonso, R, et al., 2016a, The GTC exoplanet transit spectroscopy survey. III. No asymmetries in the transit of CoRoT–29 b. A&A, 589, A62 {216, 734}Google Scholar
Palle, E, Chen, G, Prieto-Arranz, J, et al., 2017, Feature-rich transmission spectrum for WASP–127 b: cloud-free skies for the puffiest known super-Neptune? A&A, 602, L15 {757}Google Scholar
Pallé, E, Ford, EB, Seager, S, et al., 2008a, Identifying the rotation rate and the presence of dynamic weather on extrasolar Earth-like planets from photometric observations. ApJ, 676, 1319–1329 {221, 641}CrossRefGoogle Scholar
Pallé, E, Goode, PR, Montañés-Rodríguez, P, et al., 2016b, Earth's albedo variations 1998–2014 asmeasured from ground-based Earthshine observations. Geo-phys. Res. Lett., 43, 4531–4538 {641}Google Scholar
Pallé, E, Montañés-Rodríguez, P, Vazquez, M, et al., 2008b, Cloudiness and apparent rotation rate of Earth-like planets. ASP Conf. Ser., volume 398, 399–402 {587}Google Scholar
Pallé, E, Osorio, MRZ, Barrena, R, et al., 2009, Earth's transmission spectrumfrom lunar eclipse observations. Nature, 459, 814–816 {641}CrossRefGoogle ScholarPubMed
Pallé, E, Zapatero Osorio, MR, GarcíaMuñoz, A, 2011, Characterising the atmospheres of transiting rocky planets around late-type dwarfs. ApJ, 728, 19 {618}CrossRefGoogle Scholar
Pallé, PL, Grundahl, F, Triviño Hage A, et al., 2013, Observations of the radial velocity of the Sun. Journal of Physics Conference Series, 440(1), 012051 {657}Google Scholar
Palme, H, Fegley, B, 1990, High-temperature condensation of iron-rich olivine in the solar nebula. Earth Planet. Sci. Lett., 101, 180–195 {562}CrossRefGoogle Scholar
Palme, H, Zipfel, J, 2017, The chemistry of solar system materials: Sun, planets, asteroids, meteorites and dust. Assessment and Mitigation of Asteroid Impact Hazards: Proceedings of the 2015 Barcelona Asteroid Day, 46 {652}CrossRefGoogle Scholar
Palmer, BA, Engleman, R, 1983, Atlas of the Thorium Spectrum. Los Alamos National Laboratory {32}Google Scholar
Pan, L, Padoan, P, 2010, Relative velocity of inertial particles in turbulent flows. Journal of Fluid Mechanics, 661, 73–107 {469}CrossRefGoogle Scholar
Pan, L, Padoan, P, 2014, Turbulence-induced relative velocity of dust particles. IV. The collision kernel. ApJ, 797, 101 {469}CrossRefGoogle Scholar
Pan, L, Padoan, P, Scalo, J, et al., 2011, Turbulent clustering of protoplanetary dust and planetesimal formation. ApJ, 740, 6 {460}CrossRefGoogle Scholar
Pan, M, Chiang, E, 2010, The propeller and the frog. ApJ, 722, L178–L182 {691}CrossRefGoogle Scholar
Pan, M, Chiang, E, 2012, Care and feeding of frogs. AJ, 143, 9 {691}CrossRefGoogle Scholar
Pan, M, Nesvold, ER, Kuchner, MJ, 2016, Apocentre glow in eccentric debris disks: implications for Fomalhaut and yatt MC, et al., 2005, Structure in the Eri. ApJ, 832, 81 {495, 715, 761}CrossRefGoogle Scholar
Pan, M, Rein, H, Chiang, E, et al., 2012, Stochastic flights of propellers. MNRAS, 427, 2788–2796 {691}CrossRefGoogle Scholar
Pan, M, Wu, Y, 2016, On the mass and origin of Chariklo's rings. ApJ, 821, 18 {691}CrossRefGoogle Scholar
Panchuk, VE, Klochkova, VG, Sachkov, ME, et al., 2015, Dopplermethods of search and monitoring of exoplanets. Solar System Research, 49, 420–429 {53}CrossRefGoogle Scholar
Panchuk, VE, Klochkova, VG, Yushkin, MV, et al., 2009, High-resolution spectrograph of the 6-mBTA telescope. Opticheski Zhurnal, 76(42-48) {50}Google Scholar
Panchuk, VE, Sachkov, ME, Yushkin, MV, et al., 2010, Integral methods in astronomical spectroscopy. Astrophysical Bulletin, 65, 75–94 {50}CrossRefGoogle Scholar
Panei, JA, Althaus, LG, Benvenuto, OG, 2000, Mass–radius relations for white dwarf stars of different internal compositions. A&A, 353, 970–977 {413}Google Scholar
Panić, O, Holland, WS, Wyatt, MC, et al., 2013, First results of the SONS survey: submil-limeter detections of debris disks. MNRAS, 435, 1037–1046 {493}CrossRefGoogle Scholar
Panić, O, Ratzka, T, Mulders, GD, et al., 2014, Resolving the HD 100546 disk in themid-infrared: small inner disk and asymmetry near the gap. A&A, 562, A101 {762}Google Scholar
Panichi, F, Goździewski, K, Migaszewski, C, et al., 2017a, The architecture and formation of the Kepler–30 planetary system. ArXiv e-prints {271, 740}
Panichi, F, Goździewski, K, Turchetti, G, 2017b, The reversibility error method (REM): a new, dynamical fast indicator for planetary dynamics. MNRAS, 468, 469–491 {516, 719, 740, 741}CrossRefGoogle Scholar
Panov, KP, 2009, The orbital distances law in planetary systems. The Open Astronomy Journal, 2, 90–94 {510}CrossRefGoogle Scholar
Papaloizou, JCB, 2003, Disk–planet interactions: migration and resonances in extra-solar planetary systems. Cel. Mech. Dyn. Astron., 87, 53–83 {507, 522}CrossRefGoogle Scholar
Papaloizou, JCB, 2005, Disk–planet interactions and early evolution in young planetary systems. Cel. Mech. Dyn. Astron., 91, 33–57 {521}CrossRefGoogle Scholar
Papaloizou, JCB, 2011, Tidal interactions in multi-planet systems. Cel. Mech. Dyn. Astron., 111, 83–103 {320, 504, 544, 716, 718}CrossRefGoogle Scholar
Papaloizou, JCB, 2015, Three body resonances in close orbiting planetary systems: tidal dissipation and orbital evolution. Int. J. Astrobiol., 14, 291–304 {320, 508, 741}CrossRefGoogle Scholar
Papaloizou, JCB, 2016, Consequences of tidal interaction between disks and orbiting protoplanets for the evolution of multi-planet systems with architecture resembling that of Kepler–444. Cel. Mech. Dyn. Astron., 126, 157–187 {746}CrossRefGoogle Scholar
Papaloizou, JCB, Ivanov, PB, 2010, Dynamic tides in rotating objects: numerical investigation of inertial waves in convective or barotropic stars and planets. MNRAS, 407, 1631–1656 {542}CrossRefGoogle Scholar
Papaloizou, JCB, Larwood, JD, 2000, On the orbital evolution and growth of protoplan-ets embedded in a gaseous disk. MNRAS, 315, 823–833 {518}CrossRefGoogle Scholar
Papaloizou, JCB, Lin, DNC, 1984, On the tidal interaction between protoplanets and the primordial solar nebula. I. Linear calculation of the role of angular momen-tumexchange. ApJ, 285, 818–834 {520}CrossRefGoogle Scholar
Papaloizou, JCB, Nelson, RP, 2003, The interaction of a giant planet with a disk with MHD turbulence. I. The initial turbulent disk models. MNRAS, 339, 983–992 {517}CrossRefGoogle Scholar
Papaloizou, JCB, Nelson, RP, Kley, W, et al., 2007, Disk–planet interactions during planet formation. Protostars and Planets V, 655–668 {521}
Papaloizou, JCB, Nelson, RP, Masset, F, 2001, Orbital eccentricity growth through disk-companion tidal interaction. A&A, 366, 263–275 {523}Google Scholar
Papaloizou, JCB, Szuszkiewicz, E, 2005, On themigration-induced resonances in a system of two planets with masses in the Earth mass range. MNRAS, 363, 153–176 {319, 504, 507}CrossRefGoogle Scholar
Papaloizou, JCB, Terquem, C, 1999, Critical protoplanetary core masses in proto-planetary disks and the formation of short-period giant planets. ApJ, 521, 823–838 {480, 483}CrossRefGoogle Scholar
Papaloizou, JCB, Terquem, C, 2001, Dynamical relaxation andmassive extrasolar planets. MNRAS, 325, 221–230 {525}CrossRefGoogle Scholar
Papaloizou, JCB, Terquem, C, 2006, Planet formation and migration. Rep. Prog. Phys., 69, 119–180 {467, 517, 520}CrossRefGoogle Scholar
Papaloizou, JCB, Terquem, C, 2010, On the dynamics of multiple systems of hot super-Earths and Neptunes: tidal circularisation, resonance and the HD 40307 system. MNRAS, 405, 573–592 {508, 719}Google Scholar
Paprotny, Z, 1977, Nonradio methods of SETI. Postepy Astronautyki, 10, 39–67 {646}Google Scholar
Papuc, AM, Davies, GF, 2008, The internal activity and thermal evolution of Earth-like planets. Icarus, 195, 447–458 {598}CrossRefGoogle Scholar
Paquette, C, Pelletier, C, Fontaine, G, et al., 1986, Diffusion in white dwarfs: new results and comparative study. ApJS, 61, 197–217 {417}CrossRefGoogle Scholar
Paradise, A, Menou, K, 2017, GCM simulations of unstable climates in the habitable zone. ApJ, 848, 33 {631}CrossRefGoogle Scholar
Parfenov, SY, Semenov, DA, Sobolev, AM, et al., 2016, Towards detecting methanol emission in low-mass protoplanetary disks with ALMA: the role of non-LTE excitation. MNRAS, 460, 2648–2663 {463}CrossRefGoogle Scholar
Parisi, MG, 2011, Last giant impact on Uranus: constraints on oligarchic masses in the trans-Saturn region. A&A, 534, A28 {680}Google Scholar
Parisi, MG, Del Valle, L, 2011, Last giant impact on the Neptunian system: constraints on oligarchicmasses in the trans-Saturnian region. A&A, 530, A46 {681}Google Scholar
Park, BG, Jeon, YB, Lee, CU, et al., 2006, Microlensing sensitivity to Earth-mass planets in the habitable zone. ApJ, 643, 1233–1238 {123}CrossRefGoogle Scholar
Park, C, Jaffe, DT, Yuk, IS, et al., 2014, Design and early performance of IGRINS (Immersion Grating Infrared Spectrometer). Ground-based and Airborne Instrumentation for Astronomy V, volume 9147 of Proc. SPIE, 91471D {42, 46, 48}Google Scholar
Park, RS, Folkner, WM, Konopliv, AS, et al., 2017, Precession of Mercury's perihelion from ranging to the MESSENGER spacecraft. AJ, 153, 121 {258}CrossRefGoogle Scholar
ParkeLoyd, RO, Koskinen, TT, France, K, et al., 2017, Ultraviolet CII and Si III transit spectroscopy and modeling of the evaporating atmosphere of GJ 436b. ApJ, 834, L17 {729}Google Scholar
Parker, AH, Buie, MW, Grundy, WM, et al., 2016, Discovery of a Makemakean moon. ApJ, 825, L9 {682}CrossRefGoogle Scholar
Parker, AH, Kavelaars, JJ, 2010, Destruction of binary minor planets during Neptune scattering. ApJ, 722, L204–L208 {684}CrossRefGoogle Scholar
Parker, AH, Kavelaars, JJ, 2012, Collisional evolution of ultra-wide trans-Neptunian binaries. ApJ, 744, 139 {684}CrossRefGoogle Scholar
Parker, AH, Kavelaars, JJ, Petit, JM, et al., 2011, Characterisation of seven ultra-wide trans-Neptunian binaries. ApJ, 743, 1 {684}CrossRefGoogle Scholar
Parker, EN, 1975, The generation of magnetic fields in astrophysical bodies. X. Magnetic buoyancy and the solar dynamo. ApJ, 198, 205–209 {382}CrossRefGoogle Scholar
Parker, RJ, Church, RP, Davies, MB, et al., 2014, Supernova enrichment and dynamical histories of solar-type stars in clusters. MNRAS, 437, 946–958 {651}CrossRefGoogle Scholar
Parker, RJ, Goodwin, SP, 2009, The role of cluster evolution in disrupting planetary systems and disks: the Kozai mechanism. MNRAS, 397, 1041–1045 {529, 549}CrossRefGoogle Scholar
Parker, RJ, Lichtenberg, T, Quanz, SP, 2017, Was Planet Nine captured in the Sun's natal star-forming region? MNRAS, 472, L75–L79 {687}CrossRefGoogle Scholar
Parker, RJ, Quanz, SP, 2012, The effects of dynamical interactions on planets in young substructured star clusters. MNRAS, 419, 2448–2458 {448, 526}CrossRefGoogle Scholar
Parker, RJ, Quanz, SP, 2013, On the frequency of planetary systems around G dwarfs. MNRAS, 436, 650–658 {552}CrossRefGoogle Scholar
Parmentier, V, Fortney, JJ, Showman, AP, et al., 2016, Transitions in the cloud composition of hot Jupiters. ApJ, 828, 22 {590, 591, 616}CrossRefGoogle Scholar
Parmentier, V, Guillot, T, 2014, A non-grey analytical model for irradiated atmospheres. I. Derivation. A&A, 562, A133 {591}Google Scholar
Parmentier, V, Guillot, T, Fortney, JJ, et al., 2015, A non-grey analytical model for irradiated atmospheres. II. Analytical versus numerical solutions. A&A, 574, A35 {591}Google Scholar
Parmentier, V, Showman, AP, Lian, Y, 2013, 3d mixing in hot Jupiters atmospheres. I. Application to the day/night cold trap in HD 209458 b. A&A, 558, A91 {732}Google Scholar
Parnell, J, 2005, Plate tectonics and the detection of land-based biosignatures on Mars and extrasolar planets. Int. J. Astrobiol., 4, 175–186 {628}CrossRefGoogle Scholar
Parsons, SG, Marsh, TR, Bours, MCP, et al., 2014, Timing variations in the secondary eclipse of NN Ser. MNRAS, 438, L91–L95 {113, 114, 115}CrossRefGoogle Scholar
Parsons, SG, Marsh, TR, Copperwheat, CM, et al., 2010a, Orbital period variations in eclipsing post-common-envelope binaries. MNRAS, 407, 2362–2382 {113, 114, 117}CrossRefGoogle Scholar
Parsons, SG, Marsh, TR, Copperwheat, CM, 2010b, Precise mass and radius values for the white dwarf and low mass Mdwarf in the pre-cataclysmic binary NN Ser. MNRAS, 402, 2591–2608 {114}CrossRefGoogle Scholar
Paruta, P, Hendrix, T, Keppens, R, 2016, Dust grain coagulation modelling: from discrete to continuous. Astronomy and Computing, 16, 155–165 {469}CrossRefGoogle Scholar
Parviainen, H, 2015a, PYTRANSIT: fast and easy exoplanet transit modelling in PYTHON. MNRAS, 450, 3233–3238 {195}CrossRefGoogle Scholar
Parviainen, H, 2015b, PyTransit: transit light curvemodeling. Astrophysics Source Code Library {195}
Parviainen, H, Aigrain, S, 2015, LDTK: Limb Darkening Toolkit. MNRAS, 453, 3821–3826 {211}CrossRefGoogle Scholar
Parviainen, H, Aigrain, S, Thatte, N, et al., 2015, Exoplanet transmission spectroscopy using KMOS. MNRAS, 453, 3875–3885 {732, 735, 754}CrossRefGoogle Scholar
Parviainen, H, Deeg, HJ, Belmonte, JA, 2013, Secondary eclipses in the CoRoT light curves: a homogeneous search based on Bayesian model selection. A&A, 550, A67 {173, 733, 734}Google Scholar
Parviainen, H, Gandolfi, D, Deleuil, M, et al., 2014, Transiting exoplanets from the CoRoT space mission. XXV. CoRoT–27 b: a massive and dense planet on a short-period orbit. A&A, 562, A140 {734}Google Scholar
Parviainen, H, Pallé, E, Chen, G, et al., 2018, The GTC exoplanet transit spectroscopy survey. VIII. Flat transmission spectrumfor the warmgas giant WASP–80 b. A&A, 609, A33 {756}Google Scholar
Parviainen, H, Pallé, E, Nortmann, L, et al., 2016, The GTC exoplanet transit spectroscopy survey. II. An overly large Rayleigh-like feature for exoplanet TrES–3 b. A&A, 585, A114 {751}Google Scholar
Pasachoff, JM, 2010, Resource Letter SPh–1: Solar physics. Am. J. Phys., 78, 890–901 {649}CrossRefGoogle Scholar
Pasachoff, JM, Schneider, G, Widemann, T, 2011, High-resolution satellite imaging of the 2004 transit of Venus and asymmetries in the Cytherean atmosphere. AJ, 141, 112 {161}CrossRefGoogle Scholar
Pascucci, I, Apai, D, Hardegree-Ullman, EE, et al., 2008, Medium-separation binaries do not affect the first steps of planet formation. ApJ, 673, 477–486 {550}CrossRefGoogle Scholar
Pascucci, I, Apai, D, Henning, T, et al., 2003, The first detailed look at a brown dwarf disk. ApJ, 590, L111–L114 {443}CrossRefGoogle Scholar
Pascucci, I, Apai, D, Luhman, K, et al., 2009, The different evolution of gas and dust in disks around Sun-like and cool stars. ApJ, 696, 143–159 {309, 444}CrossRefGoogle Scholar
Pascucci, I, Gorti, U, Hollenbach, D, et al., 2006, Formation and evolution of planetary systems: upper limits to the gas mass in disks around Sun-like stars. ApJ, 651, 1177–1193 {464, 522}CrossRefGoogle Scholar
Pascucci, I, Tachibana, S, 2010, The clearing of protoplanetary disks and of the pro-tosolar nebula. Protoplanetary Dust: Astrophysical and Cosmochemical Perspectives, 263–298, Cambridge University Press {462}
Pascucci, I, Testi, L, Herczeg, GJ, et al., 2016, A steeper than linear disk mass–stellar mass scaling relation. ApJ, 831, 125 {456}CrossRefGoogle Scholar
Pasquini, L, Avila, G, Dekker, H, et al., 2008a, CODEX: the high-resolution visual spectrograph for the E-ELT. SPIE Conf. Ser., volume 7014, 51 {49}Google Scholar
Pasquini, L, Avila, G, Delabre, B, et al., 2008b, Codex. Precision Spectroscopy in Astrophysics, 249–253 {49}
Pasquini, L, Brucalassi, A, Ruiz, MT, et al., 2012, Search for giant planets in M67. I. Overview. A&A, 545, A139 {56, 61}Google Scholar
Pasquini, L, Cristiani, S, Garcia-Lopez, R, et al., 2010, CODEX: an ultra-stable high resolution spectrograph for the E-ELT. The Messenger, 140, 20–21 {28}Google Scholar
Pasquini, L, Döllinger, MP, Weiss, A, et al., 2007, Evolved stars suggest an external origin of the enhanced metallicity in planet-hosting stars. A&A, 473, 979–982 {60, 390}Google Scholar
Pasquini, L, Liu, Q, Pallavicini, R, 1994, Lithium abundances of nearby solar-like stars. A&A, 287, 191–205 {400}Google Scholar
Pasquini, L, Manescau, A, Avila, G, et al., 2009, ESPRESSO: a high resolution spectrograph for the combined coudé focus of the VLT. Science with the VLT in the ELT Era, 395–400 {49}
Passy, JC, Mac Low, MM, DeMarco, O, 2012, On the survival of brown dwarfs and planets engulfed by their giant host star. ApJ, 759, L30 {412, 724}CrossRefGoogle Scholar
Pástor, P, 2016, Locations of stationary/periodic solutions in mean motion resonances according to the properties of dust grains. MNRAS, 460, 524–534 {460}CrossRefGoogle Scholar
Paszun, D, Dominik, C, 2009, Collisional evolution of dust aggregates: from compaction to catastrophic destruction. A&A, 507, 1023–1040 {469}Google Scholar
Patel, RI, Metchev, SA, Heinze, A, 2014, A sensitive identification of warm debris disks in the solar neighbourhood through precise calibration of saturated WISE photometry. ApJS, 212, 10 {493}CrossRefGoogle Scholar
Patel, RI, Metchev, SA, Heinze, A, et al., 2017, The faintest WISE debris disks: enhanced methods for detection and verification. AJ, 153, 54 {493}CrossRefGoogle Scholar
Patel, SG, Vogt, SS, Marcy, GW, et al., 2007, Fourteen new companions from the Keck and Lick radial velocity survey including five brown dwarf candidates. ApJ, 665, 744–753 {67}CrossRefGoogle Scholar
Patience, J, Bulger, J, King, RR, et al., 2011, Spatially resolved submillimeter imaging of the HR 8799 debris disk. A&A, 531, L17 {763}Google Scholar
Patience, J, King, RR, de Rosa, RJ, et al., 2010, The highest resolution near infrared spec-trumof the imaged planetary mass companion 2MJ1207 b. A&A, 517, A76 {438, 763}Google Scholar
Patience, J, King, RR, De Rosa, RJ, et al., 2012, Spectroscopy across the brown dwarf/planetary mass boundary. I. Near-infrared JHK spectra. A&A, 540, A85 {762}Google Scholar
Patience, J, White, RJ, Ghez, AM, et al., 2002, Stellar companions to stars with planets. ApJ, 581, 654–665 {80, 714, 715, 722}CrossRefGoogle Scholar
Patla, B, Nemiroff, RJ, 2008, Gravitational lensing characteristics of the transparent Sun. ApJ, 685, 1297–1303 {137}CrossRefGoogle Scholar
Patra, KC, Winn, JN, Holman, MJ, et al., 2017, The apparently decaying orbit of WASP–12 b. AJ, 154, 4 {753}CrossRefGoogle Scholar
Patruno, A, Kama, M, 2017, Neutron star planets: atmospheric processes and irradiation. A&A, 608, A147 {110, 625}Google Scholar
Patten, BM, Stauffer, JR, Burrows, A, et al., 2006, Spitzer IRAC photometry of M, L, and T dwarfs. ApJ, 651, 502–516 {607}CrossRefGoogle Scholar
Patterson, C, 1956, Age of meteorites and the Earth. Geochim. Cosmochim. Acta, 10, 230–237 {653}CrossRefGoogle Scholar
Pätzold, M, Carone, L, Rauer, H, 2004, Tidal interactions of close-in extrasolar planets: the OGLE cases. A&A, 427, 1075–1080 {167, 542, 749}Google Scholar
Pätzold, M, Endl, M, Csizmadia, S, et al., 2012, Transiting exoplanets from the CoRoT space mission. XXIII. CoRoT–21 b: a doomed large Jupiter around a faint sub-giant. A&A, 545, A6 {173, 734}Google Scholar
Pätzold, M, Rauer, H, 2002, Where are the massive close-in extrasolar planets? ApJ, 568, L117–L120 {521}CrossRefGoogle Scholar
Paulson, DB, Cochran, WD, Hatzes, AP, 2004a, Searching for planets in the Hyades. V. Limits on planet detection in the presence of stellar activity. AJ, 127, 3579–3586 {61}CrossRefGoogle Scholar
Paulson, DB, Saar, SH, Cochran, WD, et al., 2002, Searching for planets in the Hyades. II. Some implications of stellar magnetic activity. AJ, 124, 572–582 {61}CrossRefGoogle Scholar
Paulson, DB, Saar, SH, Cochran, WD, 2004b, Searching for planets in the Hyades. III. The quest for short-period planets. AJ, 127, 1644–1652 {61, 85}CrossRefGoogle Scholar
Paulson, DB, Sneden, C, Cochran, WD, 2003, Searching for planets in the Hyades. IV. Differential abundance analysis of Hyades dwarfs. AJ, 125, 3185–3195 {61}CrossRefGoogle Scholar
Paulson, DB, Yelda, S, 2006, Differential radial velocities and stellar parameters of nearby young stars. PASP, 118, 706–715 {392}CrossRefGoogle Scholar
Paučo, R, 2017, Towards an explanation of orbits in the extreme trans-Neptunian region: the effect of Milgromian dynamics. A&A, 603, A11 {684}Google Scholar
Pavlov, AA, Brown, LL, Kasting, JF, 2001a, Ultraviolet shielding of NH3 and O2 by organic hazes in the Archean atmosphere. J. Geophys. Res., 106, 23267–23288 {674}CrossRefGoogle Scholar
Pavlov, AA, Hurtgen, MT, Kasting, JF, et al., 2003, Methane-rich Proterozoic atmosphere? Geology, 31, 87–91 {673}2.0.CO;2>CrossRefGoogle Scholar
Pavlov, AA, Kasting, JF, Brown, LL, et al., 2000, Greenhouse warming by CH4 in the atmosphere of early Earth. J. Geophys. Res., 105, 11981–11990 {673}CrossRefGoogle ScholarPubMed
Pavlov, AA, Kasting, JF, Eigenbrode, JL, et al., 2001b, Organic haze in Earth's early atmosphere: source of low-13C late Archean kerogens? Geology, 29, 1003 {641}2.0.CO;2>CrossRefGoogle Scholar
Pavlov, DA, Williams, JG, Suvorkin, VV, 2016, Determining parameters of Moon's orbital and rotational motion from LLR observations using GRAIL and IERS-recommendedmodels. Cel. Mech. Dyn. Astron., 126, 61–88 {665}CrossRefGoogle Scholar
Pawellek, N, Krivov, AV, 2015, The dust grain size–stellar luminosity trend in debris disks. MNRAS, 454, 3207–3221 {495}CrossRefGoogle Scholar
Pawellek, N, Krivov, AV, Marshall, JP, et al., 2014, Disk radii and grain sizes in Herschel-resolved debris disks. ApJ, 792, 65 {492, 493, 717, 718}CrossRefGoogle Scholar
Payne, JL, McClain, CR, Boyer, AG, et al., 2011, The evolutionary consequences of oxy-genic photosynthesis: a body size perspective. Photosynthesis Research, 107(1), 37–57, ISSN 1573-5079 {629}CrossRefGoogle ScholarPubMed
Payne, MJ, Deck, KM, Holman, MJ, et al., 2013, Stability of satellites in closely-packed planetary systems. ApJ, 775, L44 {276, 317}CrossRefGoogle Scholar
Payne, MJ, Ford, EB, 2011, An analysis of jitter and transit timing variations in the HAT–P–13 system. ApJ, 729, 98 {736}CrossRefGoogle Scholar
Payne, MJ, Ford, EB, Veras, D, 2010, Transit timing variations for inclined and retrograde exoplanetary systems. ApJ, 712, L86 {263, 265, 266, 272}CrossRefGoogle Scholar
Payne, MJ, Ford, EB, Wyatt, MC, et al., 2009a, Dynamical simulations of the planetary system HD 69830. MNRAS, 393, 1219–1234 {720}CrossRefGoogle Scholar
Payne, MJ, Lodato, G, 2007, The potential for Earth-mass planet formation around brown dwarfs. MNRAS, 381, 1597–1606 {446}CrossRefGoogle Scholar
Payne, MJ, Veras, D, Gänsicke, BT, et al., 2017, The fate of exomoons in white dwarf planetary systems. MNRAS, 464, 2557–2564 {417}CrossRefGoogle Scholar
Payne, MJ, Veras, D, Holman, MJ, et al., 2016, Liberating exomoons inwhite dwarf planetary systems. MNRAS, 457, 217–231 {417}CrossRefGoogle Scholar
Payne, MJ, Wyatt, MC, Thébault, P, 2009b, Outward migration of terrestrial embryos in binary systems. MNRAS, 400, 1936–1944 {550}CrossRefGoogle Scholar
Paz-Chinchón, F, Leão, IC, Bravo, JP, et al., 2015, The rotational behaviour of Kepler stars with planets. ApJ, 803, 69 {385, 386, 387}CrossRefGoogle Scholar
Peña Ramírez, K, Béjar, VJS, Zapatero Osorio, MR, 2016, A new free-floating planet in the Upper Scorpius association. A&A, 586, A157 {434}Google Scholar
Peña Ramírez, K, Béjar, VJS, Zapatero Osorio, MR, et al., 2012, New isolated planetary-mass objects and the stellar and substellar mass function of the ¾ Ori cluster. ApJ, 754, 30 {443, 446, 447}CrossRefGoogle Scholar
Peacock, A, Verhoeve, P, Rando, N, et al., 1996, Single optical photon detection with a superconducting tunnel junction. Nature, 381, 135–137 {183}CrossRefGoogle Scholar
Peale, SJ, 1969, Generalised Cassini's laws. AJ, 74, 483 {678}CrossRefGoogle Scholar
Peale, SJ, 1976, Orbital resonances in the solar system. ARA&A, 14, 215–246 {73, 505, 506, 507, 678}Google Scholar
Peale, SJ, 1977, Rotation histories of the natural satellites. Planetary Satellites, 87–112 {535}
Peale, SJ, 1988a, Speculative histories of the Uranian satellite system. Icarus, 74, 153–171 {689}CrossRefGoogle Scholar
Peale, SJ, 1988b, The rotational dynamics of Mercury and the state of its core. Mercury, 461–493, University of Arizona Press {679}
Peale, SJ, 1994, On the detection of mutual perturbations as proof of planets around PSR B1257+12. Ap&SS, 212, 77–89 {107}Google Scholar
Peale, SJ, 1997, Expectations from a microlensing search for planets. Icarus, 127, 269–289 {123}CrossRefGoogle Scholar
Peale, SJ, 1999, Origin and evolution of the natural satellites. ARA&A, 37, 533–602 {533, 687}Google Scholar
Peale, SJ, 2001, Probability of detecting a planetary companion during a microlensing event. ApJ, 552, 889–911 {123}CrossRefGoogle Scholar
Peale, SJ, 2003, Comparison of a ground-based microlensing search for planets with a search from space. AJ, 126, 1595–1603 {143}CrossRefGoogle Scholar
Peale, SJ, 2008, Obliquity tides in hot Jupiters. ASP Conf. Ser., volume 398, 281–292 {303}Google Scholar
Peale, SJ, Cassen, P, 1978, Contribution of tidal dissipation to lunar thermal history. Icarus, 36, 245–269 {599}CrossRefGoogle Scholar
Peale, SJ, Cassen, P, Reynolds, RT, 1979, Melting of Io by tidal dissipation. Science, 203, 892–894 {544}CrossRefGoogle ScholarPubMed
Peale, SJ, Gold, T, 1965, Rotation of the planet Mercury. Nature, 206, 1240–1241 {535, 541, 678}CrossRefGoogle Scholar
Pearce, TD, Wyatt, MC, 2014, Dynamical evolution of an eccentric planet and a less massive debris disk. MNRAS, 443, 2541–2560 {496, 525}CrossRefGoogle Scholar
Pearce, TD, Wyatt, MC, Kennedy, GM, 2014, Imaged substellar companions: not as eccentric as they appear? The effect of an unseen inner mass on derived orbits. MNRAS, 437, 2686–2701 {342}CrossRefGoogle Scholar
Pearl, JC, Conrath, BJ, 1991, The albedo, effective temperature, and energy balance of Neptune, as determined from Voyager data. J. Geophys. Res., 96, 18 {661}CrossRefGoogle Scholar
Pearson, DG, Brenker, FE, Nestola, F, et al., 2014a, Hydrous mantle transition zone indicated by ringwoodite included within diamond. Nature, 507, 221–224 {667}CrossRefGoogle Scholar
Pearson, KA, Palafox, L, Griffith, CA, 2018, Searching for exoplanets using artificial intelligence. MNRAS, 474, 478–491 {194}CrossRefGoogle Scholar
Pearson, KA, Turner, JD, Sagan, TG, 2014b, Photometric observation of HAT–P–16 b in the near-ultraviolet. New Astron., 27, 102–110 {736}CrossRefGoogle Scholar
Pearson, TJ, Readhead, ACS, 1984, Image formation by self-calibration in radio astronomy. ARA&A, 22, 97–130 {183}Google Scholar
Pecaut, MJ, Mamajek, EE, Bubar, EJ, 2012, A revised age for Upper Scorpius and the star formation history among the F-type members of the Sco–Cen OB association. ApJ, 746, 154 {764}CrossRefGoogle Scholar
Pedichini, F, Stangalini, M, Ambrosino, F, et al., 2017, High contrast imaging in the visible: first experimental results at the Large Binocular Telescope. AJ, 154, 74 {332}CrossRefGoogle Scholar
Pedretti, E, Labeyrie, A, Arnold, L, et al., 2000, First images on the sky from a hyperte-lescope. A&AS, 147, 285–290 {355}Google Scholar
Peek, KMG, Johnson, JA, Fischer, DA, et al., 2009, Old, rich, and eccentric: two Jovian planets orbiting evolved metal-rich stars. PASP, 121, 613–620 {718, 721}CrossRefGoogle Scholar
Pejcha, O, Heyrovský, D, 2009, Extended-source effect and chromaticity in two-point-mass microlensing. ApJ, 690, 1772–1796 {128}CrossRefGoogle Scholar
Pelat, D, Rouan, D, Pickel, D, 2010, The achromatic chessboard, a new concept of a phase shifter for nulling interferometry. II. Theoretical performance assessment. A&A, 524, A80 {349}Google Scholar
Pelupessy, FI, Portegies Zwart, S, 2013, The formation of planets in circumbinary disks. MNRAS, 429, 895–902 {550, 551}CrossRefGoogle Scholar
Pendleton, YJ, Black, DC, 1983, Further studies on criteria for the onset of dynamical instability in general three-body systems. AJ, 88, 1415–1419 {548}CrossRefGoogle Scholar
Pendry, JB, 2000, Negative refraction makes a perfect lens. Phys. Rev. Lett., 85, 3966–3969 {357}CrossRefGoogle ScholarPubMed
Penev, K, Bakos GÁ, Bayliss, D, et al., 2013, HATS–1 b: the first transiting planet discovered by HATSouth. AJ, 145, 5 {12, 162, 163, 190, 737}CrossRefGoogle Scholar
Penev, K, Barranco, J, Sasselov, D, 2009a, Direct calculation of the turbulent dissipation efficiency in anelastic convection. ApJ, 705, 285–297 {541}CrossRefGoogle Scholar
Penev, K, Hartman, JD, Bakos GÁ, et al., 2016, HATS–18 b: an extreme short-period massive transiting planet spinning up its star. AJ, 152, 127 {231, 737}CrossRefGoogle Scholar
Penev, K, Jackson, B, Spada, F, et al., 2012, Constraining tidal dissipation in stars from the destruction rates of exoplanets. ApJ, 751, 96 {231, 537}CrossRefGoogle Scholar
Penev, K, Sasselov, D, 2011, Tidal evolution of close-in extrasolar planets: high stellar Q from new theoreticalmodels. ApJ, 731, 67 {537}CrossRefGoogle Scholar
Penev, K, Sasselov, D, Robinson, F, et al., 2007, On dissipation inside turbulent convection zones from three-dimensional simulations of solar convection. ApJ, 655, 1166–1171 {541}CrossRefGoogle Scholar
Penev, K, Sasselov, D, Robinson, F, 2009b, Dissipation efficiency in turbulent convective zones in low-mass stars. ApJ, 704, 930–936 {541}CrossRefGoogle Scholar
Penn, J, Vallis, GK, 2017, The thermal phase curve offset on tidally and nontidally locked exoplanets: a shallow water model. ApJ, 842, 101 {596}CrossRefGoogle Scholar
Penna, JL, Andrei, AH, Boscardin, SC, et al., 2010, A solar cycle lengthwise series of solar diameter measurements. Solar and Stellar Variability: Impact on Earth and Planets, volume 264 of IAU Symp., 49–54 {40, 657}Google Scholar
Penny, A, 2012, Transmitting (and listening) may be good (or bad). Acta Astron., 78, 69–71 {648}CrossRefGoogle Scholar
Penny, AJ, 2013, The SETI episode in the 1967 discovery of pulsars. European Physical Journal H, 38, 535–547 {645, 648}CrossRefGoogle Scholar
Penny, MT, 2014, Speeding up low-mass planetary microlensing simulations and modeling: the caustic region of influence. ApJ, 790, 142 {131}CrossRefGoogle Scholar
Penny, MT, Henderson, CB, Clanton, C, 2016, Is the Galactic bulge devoid of planets? ApJ, 830, 150 {144}CrossRefGoogle Scholar
Penny, MT, Kerins, E, Rattenbury, N, et al., 2013, ExELS: an exoplanet legacy science proposal for the ESA Euclidmission. I. Cold exoplanets. MNRAS, 434, 2–22 {143}CrossRefGoogle Scholar
Penny, MT, Mao, S, Kerins, E, 2011, Detectability of orbital motion in stellar binary and planetary microlenses. MNRAS, 412, 607–626 {133}CrossRefGoogle Scholar
Penny, MT, Rattenbury, NJ, Gaudi, BS, et al., 2017, Predictions for the detection and characterisation of a population of free-floating planets with K2 Campaign 9. AJ, 153, 161 {135, 150, 176}CrossRefGoogle Scholar
Penrose, R, 1989, The Emperor's New Mind. Concerning Computers, Minds and Laws of Physics. Oxford University Press {632}Google Scholar
Penz, T, Micela, G, 2008, X-ray induced mass loss effects on exoplanets orbiting dM stars. A&A, 479, 579–584 {601}Google Scholar
Penz, T, Micela, G, Lammer, H, 2008, Influence of the evolving stellar X-ray luminosity distribution on exoplanetary mass loss. A&A, 477, 309–314 {423, 601}Google Scholar
Pepe, F, Collier Cameron, A, Latham, DW, et al., 2013a, An Earth-sized planet with an Earth-like density. Nature, 503, 377–380 {12, 179, 742}CrossRefGoogle Scholar
Pepe, F, Correia, ACM, Mayor, M, et al., 2007, The HARPS search for southern extrasolar planets. VIII. μ Ara, a system with four planets. A&A, 462, 769–776 {25, 70, 71, 74, 76, 409, 515, 713}Google Scholar
Pepe, F, Cristiani, S, Rebolo, R, et al., 2013b, ESPRESSO: an Echelle SPectrograph for Rocky Exoplanets Search and Stable Spectroscopic Observations. The Messenger, 153, 6–16 {49}Google Scholar
Pepe, F, Ehrenreich, D, Meyer, MR, 2014a, Instrumentation for the detection and char-acterisation of exoplanets. Nature, 513, 358–366 {28, 35, 53, 617}CrossRefGoogle Scholar
Pepe, F, Lovis, C, 2008, From HARPS to CODEX: exploring the limits of Doppler measurements. Physica Scripta Volume T, 130(1), 014007 {34, 45, 49}Google Scholar
Pepe, F, Lovis, C, Ségransan, D, et al., 2011, The HARPS search for Earth-like planets in the habitable zone. I. Very low-mass planets around HD 20794, HD 85512, and HD 192310. A&A, 534, A58 {11, 38, 59, 719, 721, 723}Google Scholar
Pepe, F, Mayor, M, Delabre, B, et al., 2000, HARPS: a new high-resolution spectrograph for the search of extrasolar planets. SPIE Conf. Ser., volume 4008, 582–592 {45}Google Scholar
Pepe, F, Mayor, M, Galland, F, et al., 2002, The CORALIE survey for southern extra-solar planets. VII. Two short-period Saturnian companions to HD 108147 and HD 168746. A&A, 388, 632–638 {29, 37, 721, 723}Google Scholar
Pepe, F, Mayor, M, Queloz, D, et al., 2004a, The HARPS search for southern extrasolar planets. I. HD 330075 b: a new hot Jupiter. A&A, 423, 385–389 {10, 724}Google Scholar
Pepe, F, Mayor, M, Queloz, D, 2004b, Towards 1ms-1 radial velocity accuracy. Planetary Systems in the Universe, volume 202 of IAU Symp., 103 {34}Google Scholar
Pepe, F, Molaro, P, Cristiani, S, et al., 2014b, ESPRESSO: the next European exoplanet hunter. Astron. Nach., 335, 8 {28, 46, 49}CrossRefGoogle Scholar
Pepli ński, A, Artymowicz, P, Mellema, G, 2008a, Numerical simulations of type III planetary migration. I. Disk model and convergence tests. MNRAS, 386, 164–178 {521}Google Scholar
Pepli ński, A, Artymowicz, P, Mellema, G, 2008b, Numerical simulations of type III planetary migration. II. Inward migration of massive planets. MNRAS, 386, 179–198 {521}Google Scholar
Pepli ński, A, Artymowicz, P, Mellema, G, 2008c, Numerical simulations of type III planetary migration. III. Outwardmigra-tion of massive planets. MNRAS, 387, 1063–1079 {521}Google Scholar
Peplowski, PN, Evans, LG, Hauck, SA, et al., 2011, Radioactive elements on Mercury's surface from MESSENGER: implications for the planet's formation and evolution. Science, 333, 1850 {476}CrossRefGoogle ScholarPubMed
Pepper, J, Burke, CJ, 2006, Survey for transiting extrasolar planets in stellar systems. IV. Variables in the field of NGC 1245. AJ, 132, 1177–1188 {159}CrossRefGoogle Scholar
Pepper, J, Gaudi, BS, 2005, Searching for transiting planets in stellar systems. ApJ, 631, 581–596 {158}CrossRefGoogle Scholar
Pepper, J, Gaudi, BS, 2006, Toward the detection of transiting hot Earths and hot Neptunes in open clusters. Acta Astronomica, 56, 183–197 {158}Google Scholar
Pepper, J, Gillen, E, Parviainen, H, et al., 2017a, A low-mass exoplanet candidate detected by K2 transiting the Praesepe Mdwarf JS 183. AJ, 153, 177 {159, 748}CrossRefGoogle Scholar
Pepper, J, Gould, A, Depoy, DL, 2004, KELT: The Kilodegree Extremely Little Telescope. The Search for Other Worlds, volume 713 of Amer. Inst. Phys. Conf. Ser., 185–188 {165}Google Scholar
Pepper, J, Kuhn, RB, Siverd, R, et al., 2012, The KELT-south telescope. PASP, 124, 230–241 {165}CrossRefGoogle Scholar
Pepper, J, Pogge, RW, DePoy, DL, et al., 2007, The Kilodegree Extremely Little Telescope (KELT): a small robotic telescope for large-area synoptic surveys. PASP, 119, 923–935 {165}CrossRefGoogle Scholar
Pepper, J, Rodriguez, JE, Collins, KA, et al., 2017b, KELT–11 b: a highly inflated sub-Saturn exoplanet transiting the V = 8 subgiant HD 93396. AJ, 153, 215 {738}CrossRefGoogle Scholar
Pepper, J, Siverd, RJ, Beatty, TG, et al., 2013, KELT–3 b: a hot Jupiter transiting a V = 9.8 late-F star. ApJ, 773, 64 {738}CrossRefGoogle Scholar
Peralta, J, Imamura, T, Read, PL, et al., 2014a, Analytical solution for waves in planets with atmospheric superrotation. I. Acoustic and inertia-gravity waves. ApJS, 213, 17 {596, 729, 734, 739, 740, 742}CrossRefGoogle Scholar
Peralta, J, Imamura, T, Read, PL, 2014b, Analytical solution for waves in planets with atmospheric superrotation. II. Lamb, surface, and centrifugal waves. ApJS, 213, 18 {596}CrossRefGoogle Scholar
Pere, C, Tanga, P, Widemann, T, et al., 2016, Multilayer modeling of the aureole photometry during the Venus transit: comparison between SDO–HMI and VEx–SOIR data. A&A, 595, A115 {222}Google Scholar
Perets, HB, 2011, Binary planetesimals and their role in planet formation. ApJ, 727, L3 {471}CrossRefGoogle Scholar
Perets, HB, Kouwenhoven, MBN, 2012, On the origin of planets at very wide orbits from the recapture of free floating planets. ApJ, 750, 83 {447, 448}CrossRefGoogle Scholar
Perets, HB, Kratter, KM, 2012, The triple evolution dynamical instability: stellar collisions in the field and the formation of exotic binaries. ApJ, 760, 99 {517}CrossRefGoogle Scholar
Perets, HB, Murray-Clay, RA, 2011, Wind-shearing in gaseous protoplanetary disks and the evolution of binary planetesimals. ApJ, 733, 56 {471}CrossRefGoogle Scholar
Perets, HB, Naoz, S, 2009, Kozai cycles, tidal friction, and the dynamical evolution of binaryminor planets. ApJ, 699, L17–L21 {529}CrossRefGoogle Scholar
Pérez, LM, Isella, A, Carpenter, JM, et al., 2014, Large-scale asymmetries in the transition disks of HD 135344B (SAO 206462) and SR 21. ApJ, 783, L13 {367, 466}CrossRefGoogle Scholar
Perez, S, Dunhill, A, Casassus, S, et al., 2015, Planet formation signposts: observability of circumplanetary disks via gas kinematics. ApJ, 811, L5 {463, 762}CrossRefGoogle Scholar
Perez-Becker, D, Chiang, E, 2011, Surface layer accretion in transition and conventional disks: from PAHs to planets. ApJ, 727, 2 {465}CrossRefGoogle Scholar
Perez-Becker, D, Chiang, E, 2013, Catastrophic evaporation of rocky planets. MNRAS, 433, 2294–2309 {232, 298, 747}CrossRefGoogle Scholar
Perez-Becker, D, Showman, AP, 2013, Atmospheric heat redistribution on hot Jupiters. ApJ, 776, 134 {591, 729, 730, 732, 735, 753}CrossRefGoogle Scholar
Pérez-Invernón, FJ, Luque, A, Gordillo-Vázquez, FJ, 2017, Three-dimensional modeling of lightning-induced electromagnetic pulses on Venus, Jupiter, and Saturn. J. Geophys. Res. (Space Physics), 122, 7636–7653 {591}Google Scholar
Perger, M, García-Piquer, A, Ribas, I, et al., 2017a, HADES radial velocity programme with HARPS–N at TNG. II. Data treatment and simulations. A&A, 598, A26 {29}Google Scholar
Perger, M, Ribas, I, Damasso, M, et al., 2017b, HADES radial velocity programme with HARPS–N at TNG. VI. GJ 3942 b behind dominant activity signals. A&A, 608, A63 {717}Google Scholar
Péricaud, J, Di Folco, E, Dutrey, A, et al., 2017, The hybrid disks: a search and study to better understand evolution of disks. A&A, 600, A62 {465}Google Scholar
Perna, R, Heng, K, Pont, F, 2012, The effects of irradiation on hot Jovian atmospheres: heat redistribution and energy dissipation. ApJ, 751, 59 {593, 596}CrossRefGoogle Scholar
Perna, R, Menou, K, Rauscher, E, 2010a, Magnetic drag on hot Jupiter atmospheric winds. ApJ, 719, 1421–1426 {303, 593, 596, 732}CrossRefGoogle Scholar
Perna, R, Menou, K, Rauscher, E, 2010b, Ohmic dissipation in the atmospheres of hot Jupiters. ApJ, 724, 313–317 {303, 730, 732}CrossRefGoogle Scholar
Perri, F, Cameron, AGW, 1974, Hydrodynamic instability of the solar nebula in the presence of a planetary core. Icarus, 22, 416–425 {482}CrossRefGoogle Scholar
Perrier, C, Mariotti, J, 1987, On the binary nature of VB 8. ApJ, 312, L27–L30 {431}CrossRefGoogle Scholar
Perrier, C, Sivan, JP, Naef, D, et al., 2003, The ELODIE survey for northern extrasolar planets. I. Six new extrasolar planet candidates. A&A, 410, 1039–1049 {78, 718, 719, 720, 721}Google Scholar
Perrin, G, Lacour, S, Woillez, J, et al., 2006, High dynamic range imaging by pupil single-mode filtering and remapping. MNRAS, 373, 747–751 {335}CrossRefGoogle Scholar
Perrin, MD, Duchene, G, Millar-Blanchaer, M, et al., 2015, Polarimetrywith the Gemini Planet Imager (GPI): methods, performance at first light, and the circumstellar ring around HR 4796A. ApJ, 799, 182 {344, 358, 360, 367}CrossRefGoogle Scholar
Perrin, MD, Sivaramakrishnan, A, Makidon, RB, et al., 2003, The structure of high Strehl ratio point-spread functions. ApJ, 596, 702–712 {339}CrossRefGoogle Scholar
Perruchot, S, Bouchy, F, Chazelas, B, et al., 2011, Higher-precision radial velocitymea-surements with the SOPHIE spectrograph using octagonal-section fibers. SPIE Conf. Ser., volume 8151 {34}Google Scholar
Perruchot, S, Kohler, D, Bouchy, F, et al., 2008, The SOPHIE spectrograph: design and technical key-points for high throughput and high stability. SPIE Conf. Ser., volume 7014, 17 {45, 46}Google Scholar
Perryman, MAC, 2000, Extrasolar planets. Rep. Prog. Phys., 63, 1209–1272 {xix}CrossRefGoogle Scholar
Perryman, MAC, 2009, Astronomical Applications of Astrometry: Ten Years of Exploitation of the Hipparcos Satellite Data. Cambridge University Press {94, 373, 374, 701, 702}Google Scholar
Perryman, MAC, 2012, The history of astrometry. European Physical Journal H, 37, 745–792 {82}CrossRefGoogle Scholar
Perryman, MAC, Brown, AGA, Lebreton, Y, et al., 1998, The Hyades: distance, structure, dynamics, and age. A&A, 331, 81–120 {418}Google Scholar
Perryman, MAC, de Boer, KS, Gilmore, G, et al., 2001, Gaia: composition, formation and evolution of the Galaxy. A&A, 369, 339–363 {85, 95, 96, 413, 415}Google Scholar
Perryman, MAC, Favata, F, Peacock, A, et al., 1999, Optical STJ observations of the Crab pulsar. A&A, 346, L30–L32 {183}Google Scholar
Perryman, MAC, Foden, CL, Peacock, A, 1993, Optical photon counting using superconducting tunnel junctions. Nuclear Instruments and Methods in Physics Research A, 325, 319–325 {183, 357}CrossRefGoogle Scholar
Perryman, MAC, Hainaut, O, Dravins, D, et al., 2005, ESA–ESO Working Group on Ex-trasolar Planets. Technical report, ESA/ESO {345, 346}
Perryman, MAC, Hartman, J, Bakos GÁ, et al., 2014a, Astrometric exoplanet detection with Gaia. ApJ, 797, 14 {63, 96, 97, 98, 99, 160, 177, 217, 305, 380, 404}CrossRefGoogle Scholar
Perryman, MAC, Lindegren, L, Arenou, F, et al., 1996, Hipparcos distances and mass limits for the planetary candidates: 47 UMa, 70 Vir, and 51 Peg. A&A, 310, L21–L24 {94, 95, 715, 716}Google Scholar
Perryman, MAC, Lindegren, L, Kovalevsky, J, et al., 1997a, The Hipparcos Catalogue. A&A, 323, L49–L52 {6, 93, 373}Google Scholar
Perryman, MAC, Schulze-Hartung, T, 2011, The barycentric motion of exoplanet host stars: tests of solar spin–orbit coupling. A&A, 525, A65 {87, 656, 720, 723}Google Scholar
Perryman, MAC, Spergel, DN, Lindegren, L, 2014b, The Gaia inertial reference frame and the tilting of the Milky Way disk. ApJ, 789, 166 {92}CrossRefGoogle Scholar
Perryman, MAC, et al., 1997b, The Hipparcos and Tycho catalogues. ESA SP–1200, European Space Agency {89, 93, 94, 373}Google Scholar
Perryman, MAC, 2000, Gaia: composition, formation and evolution of the Galaxy (Concept and Technology Study). Technical report, ESA–SCI(2000)4 {95, 96}
Persi, P, Marenzi, AR, Olofsson, G, et al., 2000, ISOCAM observations of the Chamaeleon I dark cloud. A&A, 357, 219–224 {443}Google Scholar
Peslier, AH, Schönbächler, M, Busemann, H, et al., 2017, Water in the Earth's interior: distribution and origin. Space Sci. Rev., 212, 743–810 {667}Google Scholar
Pesnell, WD, Thompson, BJ, Chamberlin, PC, 2012, The Solar Dynamics Observatory (SDO). Sol. Phys., 275, 3–15 {650}CrossRefGoogle Scholar
Peter, D, Feldt, M, Henning, T, et al., 2010, PYRAMIR: exploring the on-sky performance of the world's first near-infrared pyramid wavefront sensor. PASP, 122, 63–70 {332}CrossRefGoogle Scholar
Peters, MA, Groff, T, Kasdin, NJ, et al., 2012, Conceptual design of the Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS) for Subaru. SPIE Conf. Ser., volume 8446 {344}Google Scholar
Peters, MA, Turner, EL, 2013, On the direct imaging of tidally-heated exomoons. ApJ, 769, 98 {276}CrossRefGoogle Scholar
Peters-Limbach, MA, Groff, TD, Kasdin, NJ, et al., 2013, The optical design of CHARIS: an exoplanet IFS for the Subaru telescope. Techniques and Instrumentation for Detection of Exoplanets VI, volume 8864 of Proc. SPIE, 88641N {344}Google Scholar
Petersen, SV, Dutton, A, Lohmann, KC, 2016, End-Cretaceous extinction in Antarctica linked to both Deccan volcanism and meteorite impact via climate change. Nature Communications, 7, 12079 {672}CrossRefGoogle ScholarPubMed
Peterson, DM, Hummel, CA, Pauls, TA, et al., 2006, Vega is a rapidly rotating star. Nature, 440, 896–899 {215}CrossRefGoogle ScholarPubMed
Petigura, EA, Crossfield, IJM, Isaacson, H, et al., 2018a, Planet candidates from K2 Campaigns 5–8 and follow-up optical spectroscopy. AJ, 155, 21 {177}CrossRefGoogle Scholar
Petigura, EA, Howard, AW, Lopez, ED, et al., 2016, Two transiting low density sub-Saturns from K2. ApJ, 818, 36 {748}CrossRefGoogle Scholar
Petigura, EA, Howard, AW, Marcy, GW, 2013a, Prevalence of Earth-size planets orbiting Sun-like stars. Proc. Nat. Acad. Sci., 110, 19273–19278 {289, 290}CrossRefGoogle Scholar
Petigura, EA, Howard, AW, Marcy, GW, et al., 2017a, The California–Kepler survey. I. High-resolution spectroscopy of 1305 stars hosting Kepler transiting planets. AJ, 154, 107 {176, 390}CrossRefGoogle Scholar
Petigura, EA, Marcy, GW, 2012, Identification and removal of noise modes in Kepler photometry. PASP, 124, 1073–1082 {190, 289}CrossRefGoogle Scholar
Petigura, EA, Marcy, GW, Howard, AW, 2013b, A plateau in the planet population below twice the size of Earth. ApJ, 770, 69 {191, 193, 289, 290, 295, 296, 308, 500}CrossRefGoogle Scholar
Petigura, EA, Marcy, GW, Winn, JN, et al., 2018b, The California–Kepler Survey. IV. Metal-rich stars host a greater diversity of planets. AJ, 155, 89 {176, 390}CrossRefGoogle Scholar
Petigura, EA, Schlieder, JE, Crossfield, IJM, et al., 2015, Two transiting Earth-size planets near resonance orbiting a nearby cool star. ApJ, 811, 102 {748}CrossRefGoogle Scholar
Petigura, EA, Sinukoff, E, Lopez, ED, et al., 2017b, Four sub-Saturns with dissimilar densities: windows into planetary cores and envelopes. AJ, 153, 142 {748}CrossRefGoogle Scholar
Petit, AC, Laskar, J, Boué, G, 2017, AMD-stability in the presence of first-order mean motion resonances. A&A, 607, A35 {513}Google Scholar
Petit, C, Fusco, T, Charton, J, et al., 2008, The VLT–SPHERE XAO system: design and performance. SPIE Conf. Ser., volume 7015, 35 {343}Google Scholar
Petit, JR, Jouzel, J, Raynaud, D, et al., 1999, Climate and atmospheric history of the past 420 000 years from the Vostok ice core, Antarctica. Nature, 399, 429–436 {674}CrossRefGoogle Scholar
Petit, P, Donati, JF, Hébrard, E, et al., 2015, A maximum entropy approach to detect close-in giant planets around active stars. A&A, 584, A84 {38}Google Scholar
Petrovich, C, 2015a, Hot Jupiters from coplanar high-eccentricity migration. ApJ, 805, 75 {523}CrossRefGoogle Scholar
Petrovich, C, 2015b, Steady-state planet migration by the Lidov–Kozai mechanism in stellar binaries. ApJ, 799, 27 {530}CrossRefGoogle Scholar
Petrovich, C, 2015c, The stability and fates of hierarchical two-planet systems. ApJ, 808, 120 {525}CrossRefGoogle Scholar
Petrovich, C, Malhotra, R, Tremaine, S, 2013, Planets near mean-motion resonances. ApJ, 770, 24 {506, 508}CrossRefGoogle Scholar
Petrovich, C, Muñoz, DJ, 2017, Planetary engulfment as a trigger for white dwarf pollution. ApJ, 834, 116 {417}CrossRefGoogle Scholar
Petrovich, C, Tremaine, S, 2016, Warm Jupiters from secular planet–planet interactions. ApJ, 829, 132 {530}CrossRefGoogle Scholar
Petrovich, C, Tremaine, S, Rafikov, R, 2014, Scattering outcomes of close-in planets: constraints on planet migration. ApJ, 786, 101 {525}CrossRefGoogle Scholar
Petrucci, R, Jofré, E, Ferrero, LV, et al., 2018, A search for transit timing variations and orbital decay in WASP–46 b. MNRAS, 473, 5126–5141 {755}CrossRefGoogle Scholar
Petrucci, R, Jofré, E, Melita, M, et al., 2015, Transit timing variation analysis in southern stars: the case of WASP–28. MNRAS, 446, 1389–1398 {754}CrossRefGoogle Scholar
Petrucci, R, Jofré, E, Schwartz, M, et al., 2013, No transit timing variations in WASP–4. ApJ, 779, L23 {752}CrossRefGoogle Scholar
Pettengill, GH, Dyce, RB, 1965, A radar determination of the rotation of the planet Mercury. Nature, 206, 1240–1240 {356, 541, 678, 679}CrossRefGoogle Scholar
Pfahl, E, 2005, Cluster origin of the triple star HD 188753 and its planet. ApJ, 635, L89–L92 {80}CrossRefGoogle Scholar
Pfahl, E, Arras, P, Paxton, B, 2008, Ellipsoidal oscillations induced by substellar companions: a prospect for the Kepler mission. ApJ, 679, 783–796 {239}CrossRefGoogle Scholar
Pfahl, E, Muterspaugh, M, 2006, Impact of stellar dynamics on the frequency of giant planets in close binaries. ApJ, 652, 1694–1697 {550}CrossRefGoogle Scholar
Pfalzner, S, 2013, Early evolution of the birth cluster of the solar system. A&A, 549, A82 {650}Google Scholar
Pfalzner, S, Steinhausen, M, Menten, K, 2014, Short dissipation times of protoplanetary disks: an artefact of selection effects? ApJ, 793, L34 {462}CrossRefGoogle Scholar
Pfalzner, S, Vogel, P, Scharwächter, J, et al., 2005, Parameter study of star–disk encounters. A&A, 437, 967–976 {650}Google Scholar
Pfyffer, S, Alibert, Y, Benz, W, et al., 2015, Theoretical models of planetary system formation. II. Post-formation evolution. A&A, 579, A37 {525}Google Scholar
Phan-Bao, N, Bessell, MS, Martín, EL, et al., 2008a, Discovery of new nearby L and late-M dwarfs at low Galactic latitude from the DENIS data base. MNRAS, 383, 831–844 {432}CrossRefGoogle Scholar
Phan-Bao, N, Lee, CF, Ho, PTP, et al., 2011, Molecular outflows in the substellar domain: millimeter observations of young very low mass objects in Taurus and ρ Oph. ApJ, 735, 14 {445}CrossRefGoogle Scholar
Phan-Bao, N, Lee, CF, Ho, PTP, 2014a, Characterisation of molecular outflows in the substellar domain. ApJ, 795, 70 {445}CrossRefGoogle Scholar
Phan-Bao, N, Lee, CF, Ho, PTP, 2014b, Submillimeter array observations of the proto brown dwarf candidate SSTB213 J041757. A&A, 564, A32 {445}Google Scholar
Phan-Bao, N, Riaz, B, Lee, CF, et al., 2008b, First confirmed detection of a bipolar molecular outflow from a young brown dwarf. ApJ, 689, L141 {445}CrossRefGoogle Scholar
Philippov, AA, Rafikov, RR, 2013, Analysis of spin–orbit misalignment in the eclipsing binary DI Her. ApJ, 768, 112 {215}CrossRefGoogle Scholar
Philippov, JP, Chobanu, MI, 2016, Nemesis, Tyche, Planet Nine Hypotheses. I. Can we detect the bodies using gravitational lensing? Publ. Astron. Soc. Australia, 33, e033 {138, 687}CrossRefGoogle Scholar
Phillips, DF, Glenday, A, Li, CH, et al., 2012a, Calibration of an echelle spectrograph with an astro-comb: a laser frequency comb with very high repetition rate. SPIE Conf. Ser., volume 8446 {33}Google Scholar
Phillips, DF, Glenday, AG, Li, CH, et al., 2012b, Calibration of an astrophysical spectrograph below 1 m/s using a laser frequency comb. Optics Express, 20, 13711–13726 {33}CrossRefGoogle Scholar
Phillips, JA, Thorsett, SE, 1994, Planets around pulsars: a review. Ap&SS, 212, 91–106 {106, 107}Google Scholar
Phinney, ES, Hansen, BMS, 1993, The pulsar planet production process. Planets Around Pulsars, volume 36 of ASP Conf. Ser., 371–390 {107}Google Scholar
Pichardo, B, Sparke, LS, Aguilar, LA, 2005, Circumstellar and circumbinary disks in eccentric stellar binaries. MNRAS, 359, 521–530 {550, 551}CrossRefGoogle Scholar
Pichierri, G, Morbidelli, A, Lai, D, 2017, Extreme secular excitation of eccentricity inside mean motion resonance: small bodies driven into star-grazing orbits by planetary perturbations. A&A, 605, A23 {509}Google Scholar
Pickering, WH, 1902, Is the moon a dead planet? Century, 591, 7 {639}Google Scholar
Pickett, HM, Poynter, RL, Cohen, EA, et al., 1998, Submillimeter, millimeter and microwave spectral line catalogue. J. Quant. Spec. Radiat. Transf., 60, 883–890 {570}CrossRefGoogle Scholar
Picogna, G, Marzari, F, 2014, Effects of stellar fly-bys on planetary systems: 3d modeling of the circumstellar disk's damping effects. A&A, 564, A28 {526}Google Scholar
Pierens, A, Baruteau, C, Hersant, F, 2011, On the dynamics of resonant super-Earths in disks with turbulence driven by stochastic forcing. A&A, 531, A5 {522}Google Scholar
Pierens, A, Baruteau, C, Hersant, F, 2012, Protoplanetary migration in non-isothermal disks with turbulence driven by stochastic forcing. MNRAS, 427, 1562–1573 {519}CrossRefGoogle Scholar
Pierens, A, Cossou, C, Raymond, SN, 2013, Making giant planet cores: convergent migration and growth of planetary embryos in non-isothermal disks. A&A, 558, A105 {507}Google Scholar
Pierens, A, Nelson, RP, 2007, On the migration of protoplanets embedded in circum-binary disks. A&A, 472, 993–1001 {551}Google Scholar
Pierens, A, Nelson, RP, 2008a, Constraints on resonant-trapping for two planets embedded in a proto-planetary disk. A&A, 482, 333–340 {114, 522, 698}Google Scholar
Pierens, A, Nelson, RP, 2008b, On the evolution of multiple low mass planets embedded in a circum-binary disk. A&A, 478, 939–949 {551}Google Scholar
Pierens, A, Nelson, RP, 2008c, On the formation and migration of giant planets in circumbinary disks. A&A, 483, 633–642 {550, 551}Google Scholar
Pierens, A, Nelson, RP, 2010, Growth and orbital evolution of giant planets in layered protoplanetary disks. A&A, 520, A14 {459}Google Scholar
Pierens, A, Nelson, RP, 2013, Migration and gas accretion scenarios for the Kepler–16, Kepler–34, and Kepler–35 circumbinary planets. A&A, 556, A134 {551, 552, 739, 740}Google Scholar
Pierens, A, Raymond, SN, 2011, Two phase, inward-then-outward migration of Jupiter and Saturn in the gaseous solar nebula. A&A, 533, A131 {698}Google Scholar
Pierens, A, Raymond, SN, 2016, Migration of accreting planets in radiative disks from dynamical torques. MNRAS, 462, 4130–4140 {519, 551}CrossRefGoogle Scholar
Pierens, A, Raymond, SN, Nesvorny, D, et al., 2014, Outward migration of Jupiter and Saturn in 3:2 or 2:1 resonance in radiative disks: implications for the Grand Tack and Nice models. ApJ, 795, L11 {698}CrossRefGoogle Scholar
Pierrehumbert, RT, 2000, Climate change and the tropical Pacific: the sleeping dragon wakes. Proc. Nat. Acad. Sci., 97, 1355–1358 {596}CrossRefGoogle ScholarPubMed
Pierrehumbert, RT, 2005, Climate dynamics of a hard snowball Earth. J. Geophys. Res. (Atmospheres), 110, D01111 {630}Google Scholar
Pierrehumbert, RT, 2010, Principles of Planetary Climate. Cambridge University Press {630}CrossRefGoogle Scholar
Pierrehumbert, RT, 2011a, A palette of climates for GJ 581 g. ApJ, 726, L8 {593, 621, 716}CrossRefGoogle Scholar
Pierrehumbert, RT, 2011b, Principles of Planetary Climate. Cambridge University Press {626}Google Scholar
Pierrehumbert, RT, Abbot, DS, Voigt, A, et al., 2011, Climate of the Neoproterozoic. Ann. Rev. Earth Plan. Sci., 39, 417–460 {676}CrossRefGoogle Scholar
Pierrehumbert, RT, Gaidos, E, 2011, Hydrogen greenhouse planets beyond the habitable zone. ApJ, 734, L13 {624}CrossRefGoogle Scholar
Pieters, CM, Goswami, JN, Clark, RN, et al., 2009, Character and spatial distribution of OH/H2O on the surface of the Moon seen by M3 on Chandrayaan 1. Science, 326, 568 {666}CrossRefGoogle ScholarPubMed
Piétu, V, Dutrey, A, Guilloteau, S, 2007, Probing the structure of protoplanetary disks: a comparative study of DM Tau, LkCa 15, and MWC 480. A&A, 467, 163–178 {456, 764}Google Scholar
Piétu, V, Dutrey, A, Guilloteau, S, et al., 2006, Resolving the inner dust disks surrounding LkCa 15 and MWC 480 atmmwavelengths. A&A, 460, L43–L47 {465}Google Scholar
Piirola, V, Berdyugin, A, Berdyugina, S, 2014, DIPOL-2: a double image high precision polarimeter. SPIE Conf. Ser., volume 9147, 8 {247}Google Scholar
Pike, RE, Lawler, S, Brasser, R, et al., 2017, The structure of the distant Kuiper belt in a Nicemodel scenario. AJ, 153, 127 {697}CrossRefGoogle Scholar
Pike, RE, Lawler, SM, 2017, Details of resonant structures within a Nice model Kuiper belt: predictions for high-perihelion TNO detections. AJ, 154, 171 {697}CrossRefGoogle Scholar
Pilarčík, L, Wolf, M, Zasche, P, 2014, Period changes of the eclipsing dwarf nova OY Car. Contributions of the Astronomical Observatory Skalnate Pleso, 43, 475–476 {116}Google Scholar
Pilat-Lohinger, E, Bazsó, A, Funk, B, 2016, A quick method to identify secular resonances in multi-planet systems with a binary companion. AJ, 152, 139 {719}CrossRefGoogle Scholar
Pilat-Lohinger, E, Dvorak, R, 2002, Stability of S-type orbits in binaries. Cel. Mech. Dyn. Astron., 82, 143–153 {549, 551}CrossRefGoogle Scholar
Pilat-Lohinger, E, Funk, B, Dvorak, R, 2003, Stability limits in double stars: a study of inclined planetary orbits. A&A, 400, 1085–1094 {549, 551}Google Scholar
Pilat-Lohinger, E, Robutel, P, Süli Á, et al., 2008a, On the stability of Earth-like planets in multi-planet systems. Cel. Mech. Dyn. Astron., 102, 83–95 {623}CrossRefGoogle Scholar
Pilat-Lohinger, E, Süli Á, Robutel, P, et al., 2008b, The influence of giant planets near a mean motion resonance on Earth-like planets in the habitable zone of Sun-like stars. ApJ, 681, 1639–1645 {623}CrossRefGoogle Scholar
Pilbratt, GL, Riedinger, JR, Passvogel, T, et al., 2010, Herschel Space Observatory: an ESA facility for far-infrared and sub-mm astronomy. A&A, 518, L1 {443}Google Scholar
Pilcher, CB, 2003, Biosignatures of early Earths. Astrobiology, 3, 471–486 {673}CrossRefGoogle ScholarPubMed
Pilipp, W, Hartquist, TW, Morfill, GE, 1992, Large electric fields in acoustic waves and the stimulation of lightning discharges. ApJ, 387, 364–371 {653}CrossRefGoogle Scholar
Pilipp, W, Hartquist, TW, Morfill, GE, et al., 1998, Chondrule formation by lightning in the protosolar nebula? A&A, 331, 121–146 {653}Google Scholar
Pillitteri, I, Günther, HM, Wolk, SJ, et al., 2011, X-ray activity phasedwith planet motion in HD 189733? ApJ, 741, L18 {11, 243, 730}CrossRefGoogle Scholar
Pillitteri, I, Maggio, A, Micela, G, et al., 2015, Far ultraviolet variability of HD 189733: is the star accreting material from its hot Jupiter? ApJ, 805, 52 {731}CrossRefGoogle Scholar
Pillitteri, I, Wolk, SJ, Cohen, O, et al., 2010, XMM–Newton observations of HD 189733 during planetary transits. ApJ, 722, 1216–1225 {243, 730}CrossRefGoogle Scholar
Pillitteri, I, Wolk, SJ, Lopez-Santiago, J, et al., 2014a, The corona of HD 189733 and its X-ray activity. ApJ, 785, 145 {730}CrossRefGoogle Scholar
Pillitteri, I, Wolk, SJ, Sciortino, S, et al., 2014b, No X-rays from WASP–18: implications for its age, activity, and the influence of its massive hot Jupiter. A&A, 567, A128 {753}Google Scholar
Pilyavsky, G, Mahadevan, S, Kane, SR, et al., 2011, A search for the transit of HD 168443 b: improved orbital parameters and photometry. ApJ, 743, 162 {8, 184, 723}CrossRefGoogle Scholar
Pinamonti, M, Sozzetti, A, Bonomo, AS, et al., 2017, Searching for planetary signals in Doppler time series: a performance evaluation of tools for periodogramanalysis. MNRAS, 468, 3775–3784 {21}CrossRefGoogle Scholar
Pineda, JE, Quanz, SP, Meru, F, et al., 2014, Resolved images of the protoplanetary disk around HD 100546 with ALMA. ApJ, 788, L34 {367, 371, 466, 762}CrossRefGoogle Scholar
Pinhas, A, Madhusudhan, N, Clarke, C, 2016, Efficiency of planetesimal ablation in giant planetary envelopes. MNRAS, 463, 4516–4532 {600}CrossRefGoogle Scholar
Pinho, LGF, Porto de Mello GF, 2003, Astrobiologically interesting stars in the solar neighbourhood. Bull. Astron. Soc. Brazil, 23, 128–128 {405}Google Scholar
Pinho, LGF, Porto de Mello GF, de Medeiros, JR, et al., 2003, The Sol project: the Sun in time. Bull. Astron. Soc. Brazil, 23, 126–126 {405}Google Scholar
Pinilla, P, Benisty, M, Birnstiel, T, 2012a, Ring shaped dust accumulation in transition disks. A&A, 545, A81 {465}Google Scholar
Pinilla, P, Birnstiel, T, Benisty, M, et al., 2013, Explaining millimeter-sized particles in brown dwarf disks. A&A, 554, A95 {446}Google Scholar
Pinilla, P, Birnstiel, T, Ricci, L, et al., 2012b, Trapping dust particles in the outer regions of protoplanetary disks. A&A, 538, A114 {469}Google Scholar
Pinilla, P, Birnstiel, T, Walsh, C, 2015, Sequential planet formation in the HD 100546 protoplanetary disk? A&A, 580, A105 {762}Google Scholar
Pinilla, P, Flock, M, Ovelar Md, J, et al., 2016, Can dead zones create structures like a transition disk? A&A, 596, A81 {459}Google Scholar
Pinotti, R, 2013, The most common habitable planets: atmospheric characterisation of the subgroup of fast rotators. MNRAS, 429, 3619–3626 {620}CrossRefGoogle Scholar
Pinotti, R, Arany-Prado, L, Lyra, W, et al., 2005, A link between the semi-major axis of extrasolar gas giant planets and stellar metallicity. MNRAS, 364, 29–36 {392}CrossRefGoogle Scholar
Pinotti, R, Boechat-Roberty, HM, 2016, Molecular formation along the atmospheric mass loss of HD 209458 b and similar hot Jupiters. Planet. Space Sci., 121, 83–93 {732}CrossRefGoogle Scholar
Pinotti, R, Boechat-Roberty, HM, Porto de Mello GF, 2017, Zero age planetary orbit of gas giant planets revisited: reinforcement of the link with stellar metallicity. MNRAS, 464, 3309–3314 {392}CrossRefGoogle Scholar
Pinsonneault, MH, 1997, Mixing in stars. ARA&A, 35, 557–605 {400, 652}Google Scholar
Pinsonneault, MH, An, D, Molenda-Zakowicz, J, et al., 2012, A revised effective temperature scale for the Kepler Input Catalogue. ApJS, 199, 30 {307}CrossRefGoogle Scholar
Pinsonneault, MH, Deliyannis, CP, Demarque, P, 1992, Evolutionary models of halo stars with rotation. II. Effects of metallicity on lithium depletion, and possible implications for the primordial lithiumabundance. ApJS, 78, 179–203 {400}CrossRefGoogle Scholar
Pinsonneault, MH, DePoy, DL, Coffee, M, 2001, The mass of the convective zone in FGK main-sequence stars and the effect of accreted planetary material on apparent metallicity determinations. ApJ, 556, L59–L62 {393}CrossRefGoogle Scholar
Pinsonneault, MH, Elsworth, Y, Epstein, C, et al., 2014, The APOKASC catalogue: an asteroseismic and spectroscopic joint survey of targets in the Kepler fields. ApJS, 215, 19 {176, 409, 432}CrossRefGoogle Scholar
Pinsonneault, MH, Kawaler, SD, Sofia, S, et al., 1989, Evolutionary models of the rotating Sun. ApJ, 338, 424–452 {402}CrossRefGoogle Scholar
Pinte, C, Dent, WRF, Ménard, F, et al., 2016, Dust and gas in the disk of HL Tau: surface density, dust settling, and dust-to-gas ratio. ApJ, 816, 25 {466}CrossRefGoogle Scholar
Pinte, C, Ménard, F, Berger, JP, et al., 2008, The inner radius of T Tauri disks estimated from near-infrared interferometry: the importance of scattered light. ApJ, 673, L63 {309}CrossRefGoogle Scholar
Pintr, P, Peřinová, V, Lukš, A, et al., 2014, Relative stellar occurrence of exoplanets in habitable zones of the main sequence F, G, K stars. Planet. Space Sci., 99, 1–6 {634}CrossRefGoogle Scholar
Pires, P, Giuliatti Winter, SM, Gomes, RS, 2015, The evolution of a Pluto-like system during themigration of the ice giants. Icarus, 246, 330–338 {697}CrossRefGoogle Scholar
Piskorz, D, Benneke, B, Crockett, NR, et al., 2016, Evidence for the direct detection of the thermal spectrum of the non-transiting hot gas giant HD 88133 b. ApJ, 832, 131 {285, 721}CrossRefGoogle Scholar
Piskorz, D, Benneke, B, Crockett, NR, 2017, Detection of water vapour in the thermal spectrum of the non-transiting hot Jupiter ν And b. AJ, 154, 78 {42, 713}CrossRefGoogle Scholar
Piskorz, D, Knutson, HA, Ngo, H, et al., 2015, Friends of hot Jupiters. III. An infrared spectroscopic search for low-mass stellar companions. ApJ, 814, 148 {305}CrossRefGoogle Scholar
Piskunov, N, Snik, F, Dolgopolov, A, et al., 2011, HARPSpol: the new polarimetric mode for HARPS. The Messenger, 143, 7–10 {47}Google Scholar
Piso, AMA, Pegues, J, Öberg KI, 2016, The role of ice compositions for snow lines and the C/N/O ratios in active disks. ApJ, 833, 203 {564}CrossRefGoogle Scholar
Piso, AMA, Youdin, AN, 2014, On the minimum core mass for giant planet formation at wide separations. ApJ, 786, 21 {483}CrossRefGoogle Scholar
Piso, AMA, Youdin, AN, Murray-Clay, RA, 2015, Minimumcore masses for giant planet formation with realistic equations of state and opacities. ApJ, 800, 82 {483}CrossRefGoogle Scholar
Pitjeva, E, 2003, The dynamic estimation of the mass of the main asteroid belt. IAU Joint Discussion, volume 19 {701}Google Scholar
Pitjeva, EV, 2005, Relativistic effects and solar oblateness from radar observations of planets and spacecraft. Astronomy Letters, 31, 340–349 {356, 657, 701}CrossRefGoogle Scholar
Pitjeva, EV, Pitjev, NP, 2012, Changes in the Sun's mass and gravitational constant estimated using modern observations of planets and spacecraft. Solar System Research, 46, 78–87 {657}CrossRefGoogle Scholar
Pizzolato, N, Maggio, A, Micela, G, et al., 2003, The stellar activity-rotation relationship revisited: dependence of saturated and non-saturated X-ray emission regimes on stellar mass for late-type dwarfs. A&A, 397, 147–157 {423}Google Scholar
Placek, B, Angerhausen, D, Knuth, KH, 2017, Analyzing exoplanet phase curve information content: toward optimized observing strategies. AJ, 154, 154 {181}CrossRefGoogle Scholar
Placek, B, Knuth, KH, Angerhausen, D, 2014, EXONEST: Bayesian model selection applied to the detection and characterisation of exoplanets via photometric variations. ApJ, 795, 112 {238, 739}CrossRefGoogle Scholar
Placek, B, Knuth, KH, Angerhausen, D, 2016, Combining photometry from Kepler and TESS to improve short-period exo-planet characterisation. PASP, 128(7), 074503 {180}CrossRefGoogle Scholar
Placek, B, Knuth, KH, Angerhausen, D, et al., 2015, Characterisation of Kepler–91 b and the investigation of a potential Trojan companion using EXONEST. ApJ, 814, 147 {238, 275, 742}CrossRefGoogle Scholar
Platz, T, Byrne, PK, Massironi, M, et al., 2015, Volcanismand tectonism across the inner solar system: an overview. Geological Society of London Special Publications, 401, 1–56 {670}CrossRefGoogle Scholar
Plávalová, E, 2012, Taxonomy of the extrasolar planet. Astrobiology, 12, 361–369 {6, 554}CrossRefGoogle ScholarPubMed
Plávalová, E, Solovaya, NA, 2013, Analysis of the motion of an extrasolar planet in a binary system. AJ, 146, 108 {80, 549, 715, 718}CrossRefGoogle Scholar
Plavchan, P, Bilinski, C, 2013, Stars do not eat their young migrating planets: empirical constraints on planet migration halting mechanisms. ApJ, 769, 86 {308, 521}CrossRefGoogle Scholar
Plavchan, P, Bilinski, C, Currie, T, 2014, Investigation of Kepler Objects of Interest stellar parameters from observed transit durations. PASP, 126, 34–47 {323}CrossRefGoogle Scholar
Plavchan, P, Bottom, M, Gao, P, et al., 2013a, Precision near-infrared radial velocity instrumentation. II. Non-circular core fiber scrambler. SPIE Conf. Ser., volume 8864 {34}Google Scholar
Plavchan, P, Chen, X, Pohl, G, 2015, What is the mass of α Cen Bb? ApJ, 805, 174 {714}CrossRefGoogle Scholar
Plavchan, P, Gee, AH, Stapelfeldt, K, et al., 2008a, The peculiar periodic YSO WL 4 in ρ Oph. ApJ, 684, L37 {553}CrossRefGoogle Scholar
Plavchan, P, Güth, T, Laohakunakorn, N, et al., 2013b, The identification of 93 day periodic photometric variability for YSO YLW16A. A&A, 554, A110 {553}Google Scholar
Plavchan, P, Jura, M, Kirkpatrick, JD, et al., 2008b, Near-infrared variability in the 2MASS calibration fields: a search for planetary transit candidates. ApJS, 175, 191–228 {160}CrossRefGoogle Scholar
Plotnick, RE, 1980, Relationship between biological extinctions and geomagnetic reversals. Geology, 8, 578 {663}2.0.CO;2>CrossRefGoogle Scholar
Poch, O, Frey, J, Roditi, I, et al., 2017, Remote sensing of potential biosignatures from rocky, liquid, or icy (exo)planetary surfaces. Astrobiology, 17, 231–252 {641}CrossRefGoogle ScholarPubMed
Podlewska-Gaca, E, Papaloizou, JCB, Szuszkiewicz, E, 2012, Outward migration of a super-Earth in a disk with outward propagating density waves excited by a giant planet. MNRAS, 421, 1736–1756 {519, 717}CrossRefGoogle Scholar
Podlewska-Gaca, E, Szuszkiewicz, E, 2011, Occurrence of the 2:1 commensurability in a gas giant-super-Earth system. MNRAS, 417, 2253–2263 {509}CrossRefGoogle Scholar
Podlewska-Gaca, E, Szuszkiewicz, E, 2014, How the presence of a gas giant affects the formation of mean-motion resonances between two low-mass planets in a locally isothermal gaseous disk. MNRAS, 438, 2538–2546 {508}CrossRefGoogle Scholar
Podolak, M, 2003, The contribution of small grains to the opacity of protoplanetary atmospheres. Icarus, 165, 428–437 {482}CrossRefGoogle Scholar
Podolak, M, Cameron, AGW, 1974, Models of the giant planets. Icarus, 22, 123–148 {660}CrossRefGoogle Scholar
Podolak, M, Helled, R, 2012, What do we really know about Uranus and Neptune? ApJ, 759, L32 {659, 660, 661}CrossRefGoogle Scholar
Podolak, M, Hubbard, WB, 1998, Ices in the giant planets. Solar System Ices, volume 227 of Astrophys. Space Sci. Lib., 735 {661}CrossRefGoogle Scholar
Podolak, M, Hubbard, WB, Stevenson, DJ, 1991, Model of Uranus’ interior and magnetic field. Uranus, 29–61, University of Arizona Press {9, 577}
Podolak, M, Mayer, L, Quinn, T, 2011, Evolution of coated grains in spiral shocks of self-gravitating protoplanetary disks. ApJ, 734, 56 {461}CrossRefGoogle Scholar
Podolak, M, Pollack, JB, Reynolds, RT, 1988, Interactions of planetesimals with proto-planetary atmospheres. Icarus, 73, 163–179 {480, 482}CrossRefGoogle Scholar
Podolak, M, Weizman, A, Marley, M, 1995, Comparative models of Uranus and Neptune. Planet. Space Sci., 43, 1517–1522 {9, 573, 659}CrossRefGoogle Scholar
Podolak, M, Zucker, S, 2004, A note on the snow line in protostellar accretion disks. Meteor. Plan. Sci., 39, 1859–1868 {565}Google Scholar
Podsiadlowski, P, 1993, Planet formation scenarios. Planets Around Pulsars, volume 36 of ASP Conf. Ser., 149–165 {107}Google Scholar
Poglitsch, A, Waelkens, C, Geis, N, et al., 2010, The Photodetector Array Camera and Spectrometer (PACS) on the Herschel Space Observatory. A&A, 518, L2 {443}Google Scholar
Pohl, A, Benisty, M, Pinilla, P, et al., 2017a, The circumstellar disk HD 169142: gas, dust, and planets acting in concert? ApJ, 850, 52 {467}CrossRefGoogle Scholar
Pohl, A, Pinilla, P, Benisty, M, et al., 2015, Scattered light images of spiral arms in marginally gravitationally unstable diskswith an embedded planet. MNRAS, 453, 1768–1778 {367}CrossRefGoogle Scholar
Pohl, A, Sissa, E, Langlois, M, et al., 2017b, New constraints on the disk characteristics and companion candidates around T Cha with VLT–SPHERE. A&A, 605, A34 {360}Google Scholar
Poindexter, S, Afonso, C, Bennett, DP, et al., 2005, Systematic analysis of 22 micro-lensing parallax candidates. ApJ, 633, 914–930 {134, 434}CrossRefGoogle Scholar
Poleski, R, 2016, Empirical microlensing event rates predicted by a phenomenological model. MNRAS, 455, 3656–3661 {124}CrossRefGoogle Scholar
Poleski, R, Skowron, J, Udalski, A, et al., 2014a, Triple microlens OGLE–2008–BLG–92L: binary stellar system with a circumprimary Uranus-type planet. ApJ, 795, 42 {130, 141, 145, 148, 760}CrossRefGoogle Scholar
Poleski, R, Udalski, A, Bond, IA, et al., 2017, A companion on the planet/brown dwarf mass boundary on a wide orbit discovered by gravitational microlensing. A&A, 604, A103 {141, 759}Google Scholar
Poleski, R, Udalski, A, Dong, S, et al., 2014b, Super-massive planets around late-type stars: the case of OGLE–2012–BLG–406L b. ApJ, 782, 47 {141, 760}CrossRefGoogle Scholar
Poleski, R, Yee, J, 2018, Microlensing model fitting with Mulens Model. ArXiv e-prints {131}
Poleski, R, Zhu, W, Christie, GW, et al., 2016, The Spitzer microlensing program as a probe for globular cluster planets: analysis of OGLE–2015–BLG–448. ApJ, 823, 63 {134}CrossRefGoogle Scholar
Polichtchouk, I, Cho, JYK, Watkins, C, et al., 2014, Intercomparison of general circulation models for hot extrasolar planets. Icarus, 229, 355–377 {591}CrossRefGoogle Scholar
Pollacco, D, Skillen, I, Collier Cameron, A, et al., 2006, The WASP project and the Su-per WASP cameras. PASP, 118, 1407–1418 {164}CrossRefGoogle Scholar
Pollacco, D, Skillen, I, Collier Cameron, A, 2008, WASP–3 b: a strongly irradiated transiting gas-giant planet. MNRAS, 385, 1576–1584 {164, 423, 751}CrossRefGoogle Scholar
Pollack, JB, 1984, Origin and history of the outer planets: theoretical models and observations–constraints. ARA&A, 22, 389–424 {480, 487}Google Scholar
Pollack, JB, Black, DC, 1979, Implications of the gas compositional measurements of Pioneer Venus for the origin of planetary atmospheres. Science, 205, 56–59 {600}CrossRefGoogle ScholarPubMed
Pollack, JB, Black, DC, 1982, Noble gases in planetary atmospheres: implications for the origin and evolution of atmospheres. Icarus, 51, 169–198 {597, 600}CrossRefGoogle Scholar
Pollack, JB, Hubickyj, O, Bodenheimer, P, et al., 1996, Formation of the giant planets by concurrent accretion of solids and gas. Icarus, 124, 62–85 {293, 392, 470, 475, 480, 481, 486}CrossRefGoogle Scholar
Pollack, JB, Podolak, M, Bodenheimer, P, et al., 1986, Planetesimal dissolution in the envelopes of the forming, giant planets. Icarus, 67, 409–443 {480, 486}CrossRefGoogle Scholar
Pols, OR, Tout, CA, Eggleton, PP, et al., 1995, Approximate input physics for stellarmod-eling. MNRAS, 274, 964–974 {566}CrossRefGoogle Scholar
Pont, F, 2009, Empirical evidence for tidal evolution in transiting planetary systems. MNRAS, 396, 1789–1796 {226, 227, 249, 310, 542, 543}CrossRefGoogle Scholar
Pont, F, Aigrain, S, Zucker, S, 2011a, Reassessing the radial-velocity evidence for planets around CoRoT–7. MNRAS, 411, 1953–1962 {733}CrossRefGoogle Scholar
Pont, F, Bouchy, F, 2005, Exoplanet transit search at Dome C. EAS Pub. Ser., volume 14, 155–160 {171}CrossRefGoogle Scholar
Pont, F, Bouchy, F, Melo, C, et al., 2005, Doppler follow-up of OGLE planetary transit candidates in Carina. A&A, 438, 1123–1140 {168}Google Scholar
Pont, F, Bouchy, F, Queloz, D, et al., 2004, The missing link: a 4-day period transiting exoplanet around OGLE–TR–111. A&A, 426, L15–L18 {168, 749}Google Scholar
Pont, F, Endl, M, Cochran, WD, et al., 2010, The spin–orbit angle of the transiting hot Jupiter CoRoT–1 b. MNRAS, 402, L1–L5 {733}CrossRefGoogle Scholar
Pont, F, Gilliland, RL, Knutson, H, et al., 2009a, Transit infrared spectroscopy of the hot Neptune around GJ 436 with HST. MNRAS, 393, L6–L10 {728}CrossRefGoogle Scholar
Pont, F, Gilliland, RL, Moutou, C, et al., 2007a, HST time-series photometry of the planetary transit of HD 189733: no moon, no rings, star spots. A&A, 476, 1347–1355 {185, 212, 281, 609, 730}Google Scholar
Pont, F, Hébrard, G, Irwin, JM, et al., 2009b, Spin–orbit misalignment in the HD 80606 planetary system. A&A, 502, 695–703 {729}Google Scholar
Pont, F, Husnoo, N, Mazeh, T, et al., 2011b, Determining eccentricities of transiting planets: a divide in themass–period plane. MNRAS, 414, 1278–1284 {499}CrossRefGoogle Scholar
Pont, F, Knutson, H, Gilliland, RL, et al., 2008a, Detection of atmospheric haze on an extrasolar planet: the 0.55–1.05μm transmission spectrum of HD 189733 b wit HST. MNRAS, 385, 109–118 {208, 580, 591, 608, 609, 612, 730}CrossRefGoogle Scholar
Pont, F, Moutou, C, Gillon, M, et al., 2007b, The ‘666’ collaboration on OGLE transits. I. Accurate radii of the planets OGLE–TR–10 b and OGLE–TR–56 b with VLT deconvolution photometry. A&A, 465, 1069–1074 {749}Google Scholar
Pont, F, Sing, DK, Gibson, NP, et al., 2013, The prevalence of dust on the exoplanet HD 189733 b from HST and Spitzer observations. MNRAS, 432, 2917–2944 {608, 730}CrossRefGoogle Scholar
Pont, F, Tamuz, O, Udalski, A, et al., 2008b, A transiting planet among 23 new near-threshold candidates from OGLE: OGLE–TR–182. A&A, 487, 749–754 {155, 168, 749}Google Scholar
Pont, F, Zucker, S, Queloz, D, 2006, The effect of red noise on planetary transit detection. MNRAS, 373, 231–242 {188, 190, 195}CrossRefGoogle Scholar
Pope, BJS, Parviainen, H, Aigrain, S, 2016, Transiting exoplanet candidates from K2 Campaigns 5 and 6. MNRAS, 461, 3399–3409 {177, 748, 750, 755}CrossRefGoogle Scholar
Popova, EA, 2017, On the dynamics of the exoplanetary system Kepler–413. Solar Sys-tem Research, 51, 436–440 {745}Google Scholar
Popova, EA, Shevchenko, II, 2012, Planetary dynamics inαCen: the stability diagrams. Astronomy Letters, 38, 581–588 {714}CrossRefGoogle Scholar
Popova, EA, Shevchenko, II, 2013, Kepler–16 b: safe in a resonance cell. ApJ, 769, 152 {739}CrossRefGoogle Scholar
Popova, EA, Shevchenko, II, 2016a, On possible circumbinary configurations of the planetary systems of α Cen and EZ Aquarii. Astronomy Letters, 42, 260–267 {714}CrossRefGoogle Scholar
Popova, EA, Shevchenko, II, 2016b, On the stability of circumbinary planetary systems. Astronomy Letters, 42, 474–481 {550}CrossRefGoogle Scholar
Popowski, P, Griest, K, Thomas, CL, et al., 2005, Microlensing optical depth toward the Galactic bulge using clump giants from MACHO. ApJ, 631, 879–905 {123}CrossRefGoogle Scholar
Popp, M, Eggl, S, 2017, Climate variations on Earth-like circumbinary planets. Nature Communications, 8, 14957 {623}CrossRefGoogle ScholarPubMed
Poppe, AR, 2016, An improved model for interplanetary dust fluxes in the outer solar system. Icarus, 264, 369–386 {685}CrossRefGoogle Scholar
Poppenhaeger, K, Auchettl, K, Wolk, SJ, 2017, A test of the neutron star hypothesis for Fomalhaut b. MNRAS, 468, 4018–4024 {761}CrossRefGoogle Scholar
Poppenhaeger, K, Czesla, S, Schröter, S, et al., 2012a, The high-energy environment in the super-Earth system CoRoT–7. A&A, 541, A26 {734}Google Scholar
Poppenhaeger, K, Günther, HM, Schmitt, JHMM, 2012b, A magnetic cycle of τ Boo? The coronal and chromospheric view. Astron. Nach., 333, 26 {714}CrossRefGoogle Scholar
Poppenhaeger, K, Lenz, LF, Reiners, A, et al., 2011, A search for star–planet interactions in the ν And system at X-ray and optical wavelengths. A&A, 528, A58 {305, 713}Google Scholar
Poppenhaeger, K, Robrade, J, Schmitt, JHMM, 2010, Coronal properties of planet-bearing stars. A&A, 515, A98 {424}Google Scholar
Poppenhaeger, K, Schmitt, JHMM, 2011a, A correlation between host star activity and planet mass for close-in extrasolar planets? ApJ, 735, 59 {424}CrossRefGoogle Scholar
Poppenhaeger, K, Schmitt, JHMM, 2011b, Star–planet interactions and selection effects from planet detectionmeth-ods. Astron. Nach., 332, 1052 {422}CrossRefGoogle Scholar
Poppenhaeger, K, Schmitt, JHMM, Wolk, SJ, 2013, Transit observations of the hot Jupiter HD 189733 b at X-ray wavelengths. ApJ, 773, 62 {12, 243, 730}CrossRefGoogle Scholar
Poppenhaeger, K, Wolk, SJ, 2014, Indications for an influence of hot Jupiters on the rotation and activity of their host stars. A&A, 565, L1 {305}Google Scholar
Popper, DM, Etzel, PB, 1981, Photometric orbits of seven detached eclipsing binaries. AJ, 86, 102–120 {197}CrossRefGoogle Scholar
Porco, CC, Baker, E, Barbara, J, et al., 2005, Cassini imaging science: initial results on Saturn's rings and small satellites. Science, 307, 1226–1236 {690}Google ScholarPubMed
PortegiesZwart, SF, 2009, The lost siblings of the Sun. ApJ, 696, L13–L16 {406}CrossRefGoogle Scholar
PortegiesZwart, SF, 2013, Planet-mediated precision reconstruction of the evolution of the cataclysmic variable HU Aqr. MNRAS, 429, L45–L49 {115}Google Scholar
PortegiesZwart, SF, Jílková, L, 2015, The fragility of planetary systems. MNRAS, 451, 144–148 {526, 655}Google Scholar
PortegiesZwart, SF, McMillan, SLW, 2005, Planets in triple star systems: the case of HD 188753. ApJ, 633, L141–L144 {80}Google Scholar
Porter, SB, Grundy, WM, 2011, Post-capture evolution of potentially habitable exo-moons. ApJ, 736, L14 {504, 627}CrossRefGoogle Scholar
Porter, SB, Grundy, WM, 2012, KCTF evolution of trans-Neptunian binaries: connecting formation to observation. Icarus, 220, 947–957 {684}CrossRefGoogle Scholar
Porto de Mello, GF, da Silva, L, 1997, HR 6060: the closest ever solar twin? ApJ, 482, L89–92 {405}CrossRefGoogle Scholar
Porto de Mello, GF, da Silva, R, da Silva, L, 2000, A survey of solar twin stars within 50 pc of the Sun. Bioastronomy 99, volume 213 of ASP Conf. Ser., 73–79 {405}Google Scholar
Porto de Mello, GF, del Peloso, EF, Ghezzi, L, 2006, Astrobiologically interesting stars within 10 pc of the Sun. Astrobiology, 6, 308–331 {405}CrossRefGoogle Scholar
Postman, M, Argabright, V, Arnold, B, et al., 2009, Advanced Technology Large-Aperture Space Telescope (ATLAST): a technology roadmap for the next decade. ArXiv e-prints {353}
Pott, J, Woillez, J, Akeson, RL, et al., 2009, Astrometry with the Keck Interferometer: the ASTRA project and its science. New Astron. Rev., 53, 363–372 {91}CrossRefGoogle Scholar
Potter, SB, Romero-Colmenero, E, Ramsay, G, et al., 2011, Possible detection of two giant extrasolar planets orbiting the eclipsing polar UZ For. MNRAS, 416, 2202–2211 {105, 116}CrossRefGoogle Scholar
Poulet, F, Lucchetti, A, Bibring, JP, et al., 2016, Origin of the local structures at the Philae landing site and possible implications on the formation and evolution of comet 67P/Churyumov–Gerasimenko. MNRAS, 462, S23–S32 {473}CrossRefGoogle Scholar
Poulton, CJ, Greaves, JS, Collier Cameron, A, 2006, Detecting a rotation in the Є Eri debris disk. MNRAS, 372, 53–59 {715}CrossRefGoogle Scholar
Poupinet, G, Pillet, R, Souriau, A, 1983, Possible heterogeneity of the Earth's core deduced from PKIKP travel times. Nature, 305(5931), 204–206 {663}CrossRefGoogle Scholar
Pourbaix, D, 2001, The Hipparcos observations and the mass of sub-stellar objects. A&A, 369, L22–L25 {94}Google Scholar
Pourbaix, D, 2002, Precision and accuracy of the orbital parameters derived from 2d and 1d space observations of visual or astrometric binaries. A&A, 385, 686–692 {87}Google Scholar
Pourbaix, D, Arenou, F, 2001, Screening the Hipparcos-based astrometric orbits of sub-stellar objects. A&A, 372, 935–944 {94}Google Scholar
Pourbaix, D, Jorissen, A, 2000, Re-processing the Hipparcos Transit Data and Intermediate Astrometric Data of spectroscopic binaries. I. Ba, CH and Tc-poor S stars. A&AS, 145, 161–183 {88}Google Scholar
Poveda, A, Lara, P, 2008, The exo-planetary system of 55 Cnc and the Titius–Bode Law. Revista Mexicana de Astronomia y Astrofisica, 44, 243–246 {510, 728}Google Scholar
Povich, MS, Giampapa, MS, Valenti, JA, et al., 2001, Limits on line bisector variability for stars with extrasolar planets. AJ, 121, 1136–1146 {40}CrossRefGoogle Scholar
Poyneer, LA, Bauman, B, Cornelissen, S, et al., 2011, The use of a high-order MEMS deformable mirror in the Gemini Planet Imager. SPIE Conf. Ser., volume 7931, 3 {344}Google Scholar
Poyneer, LA, Véran, JP, 2008, Toward feasible and effective predictive wavefront control for adaptive optics. Adaptive Optics Systems, volume 7015 of Proc. SPIE, 70151E {357}Google Scholar
Pradel, N, Charlot, P, Lestrade, J, 2006, Astrometric accuracy of phase-referenced observations with the VLBA and EVN. A&A, 452, 1099–1106 {101}Google Scholar
Prantzos, N, 2008, On the Galactic habitable zone. Space Science Reviews, 135, 313–322 {625}CrossRefGoogle Scholar
Prato, L, Mace, GN, Rice, EL, et al., 2015, Radial velocity variability of field brown dwarfs. ApJ, 808, 12 {434}CrossRefGoogle Scholar
Pratt, MR, Alcock, C, Allsman, RA, et al., 1996, Real-time detection of gravitational microlensing. Astrophysical Applications of Gravitational Lensing, volume 173, 221–226 {140}Google Scholar
Pravdo, SH, Angelini, L, Drake, SA, et al., 1996, The X-ray evidence that the 51 Peg companion is a planet. New Astron., 1, 171–176 {715}CrossRefGoogle Scholar
Pravdo, SH, Shaklan, SB, 1996, Astrometric detection of extrasolar planets: results of a feasibility study with the Palomar 5m telescope. ApJ, 465, 264–277 {82, 90}CrossRefGoogle Scholar
Pravdo, SH, Shaklan, SB, 2009a, Ten years of STEPS astrometry. AAS Abstracts, volume 214, 306.07 {90}Google Scholar
Pravdo, SH, Shaklan, SB, 2009b, An ultracool star's candidate planet. ApJ, 700, 623–632 {90}CrossRefGoogle Scholar
Pravdo, SH, Shaklan, SB, Lisman, PD, 2010, Occulting ozone observatory ability to discover and locate single and multiple Earth-like planets in habitable zones. Space Telescopes and Instrumentation 2010, volume 7731 of Proc. SPIE, 77314Z {182}Google Scholar
Pravdo, SH, Shaklan, SB, Lloyd, J, et al., 2005, Discovering M-dwarf companions with STEPS. Astrometry in the Age of the Next Generation of Large Telescopes, volume 338 of ASP Conf. Ser., 288–292 {90}Google Scholar
Prentice, AJR, 1978a, Origin of the solar system. I. Gravitational contraction of the turbulent proto-Sun and the shedding of a concentric system of gaseous Laplacian rings. Moon and Planets, 19, 341–398 {450}Google Scholar
Prentice, AJR, 1978b, Towards a modern Laplacian theory for the formation of the solar system. Origin of the Solar System, 111–161, Wiley {450}
Press, WH, Teukolsky, SA, Vetterling, WT, et al., 2007, Numerical Recipes: The Art of Scientific Computing. Cambridge University Press, Third Edition {25, 202, 225, 513}Google Scholar
Preusse, S, Kopp, A, Büchner, J, et al., 2006, A magnetic communication scenario for hot Jupiters. A&A, 460, 317–322 {421, 425, 713, 723}Google Scholar
Pribulla, T, Vaňko, M, Ammler-von Eiff M, et al., 2012, The Dwarf project: eclipsing binaries –precise clocks to discover exoplanets. Astron. Nach., 333, 754 {112}CrossRefGoogle Scholar
Pribulla, T, Garai, Z, Hambálek, L, et al., 2015, Affordable échelle spectroscopy with a 0.6-m telescope. Astron. Nach., 336, 682 {47}CrossRefGoogle Scholar
Price, A, Bissinger, R, Laughlin, GP, et al., 2005, Planetary transits of the trans-Atlantic exoplanet survey candidate TrES–1 b. J. Am. Assoc. Variable Star Obs., 34, 17–22 {750}Google Scholar
Price, EM, Rogers, LA, 2014, Transit light curves with finite integration time: Fisher information analysis. ApJ, 794, 92 {263}CrossRefGoogle Scholar
Price, EM, Rogers, LA, Johnson, JA, et al., 2015, How low can you go? The photo-eccentric effect for planets of various sizes. ApJ, 799, 17 {210}CrossRefGoogle Scholar
Price, RE, Giovannelli, D, 2017, A review of the geochemistry and microbiology of marine shallow-water hydrothermal vents. Reference Module in Earth Systems and Environmental Sciences, Elsevier, ISBN 978-0-12-409548-9 {637}
Price-Whelan, AM, Hogg, DW, Foreman-Mackey, D, et al., 2017, The Joker: a custom Monte Carlo sampler for binary-star and exoplanet radial velocity data. ApJ, 837, 20 {25}CrossRefGoogle Scholar
Pringle, JE, 1981, Accretion disks in astrophysics. ARA&A, 19, 137–162 {455}Google Scholar
Prinn, RG, Barshay, SS, 1977, CO on Jupiter and implications for atmospheric convection. Science, 198, 1031–1034 {584}CrossRefGoogle Scholar
Privitera, G, Meynet, G, Eggenberger, P, et al., 2016a, High surface magnetic field in red giants as a new signature of planet engulfment? A&A, 593, L15 {422}Google Scholar
Privitera, G, Meynet, G, Eggenberger, P, 2016b, Star–planet interactions. I. Stellar rotation and planetary orbits. A&A, 591, A45 {422}Google Scholar
Privitera, G, Meynet, G, Eggenberger, P, 2016c, Star–planet interactions. II. Is planet engulfment the origin of fast rotating red giants? A&A, 593, A128 {422}Google Scholar
Probst, RA, Wang, L, Doerr, HP, et al., 2015, Comb-calibrated solar spectroscopy through a multiplexed single-mode fiber channel. New Journal of Physics, 17(2), 023048 {33}CrossRefGoogle Scholar
Proedrou, E, Hocke, K, 2016, Characterising the three-dimensional ozone distribution of a tidally-locked Earth-like planet. Earth, Planets, and Space, 68, 96 {621}CrossRefGoogle Scholar
Proedrou, E, Hocke, K, Wurz, P, 2016, The middle atmospheric circulation of a tidally-locked Earth-like planet and the role of the sea surface temperature. Progress in Earth and Planetary Science, 3, 22 {599}CrossRefGoogle Scholar
Proffitt, CR, Sahu, K, Livio, M, et al., 2004, Limits on the optical brightness of the yatt MC, et al., 2005, Structure in the Eri dust ring. ApJ, 612, 481–495 {715}Google Scholar
Proft, S, Demleitner, M, Wambsganss, J, 2011, Prediction of astrometric microlensing events during the Gaia mission. A&A, 536, A50 {138, 139}Google Scholar
Proskurowski, G, Lilley, MD, Seewald, JS, et al., 2008, Abiogenic hydrocarbon production at Lost City Hydrothermal Field. Science, 319, 604–607 {598}CrossRefGoogle ScholarPubMed
Protopapas, P, Jimenez, R, Alcock, C, 2005, Fast identification of transits from light-curves. MNRAS, 362, 460–468 {156, 190}CrossRefGoogle Scholar
Provencal, JL, 1997, White dwarfs and planetary systems. Planets Beyond the Solar System and the Next Generation of Space Missions, volume 119 of ASP Conf. Ser., 123–126 {111}Google Scholar
Pruzan, P, Chervin, JC, Wolanin, E, et al., 2003, Phase diagram of ice in the VII–VIII–X domain: vibrational and structural data for strongly compressed ice VIII. Journal of Raman Spectroscopy, 34, 591–610 {569}CrossRefGoogle Scholar
Prša, A, Batalha, NM, Slawson, RW, et al., 2011, Kepler eclipsing binary stars. I. Cata-logue and principal characterisation of 1879 eclipsing binaries in the first data release. AJ, 141, 83 {178, 411}CrossRefGoogle Scholar
Prša, A, Conroy, KE, Horvat, M, et al., 2016, Physics of eclipsing binaries. II. Toward the increased model fidelity. ApJS, 227, 29 {196}CrossRefGoogle Scholar
Prša, A, Robin, A, Barclay, T, 2015, Stellar statistics along the ecliptic and the impact on the K2 mission concept. Int. J. Astrobiol., 14, 165–172 {380}CrossRefGoogle Scholar
Przybilla, N, Aschenbrenner, P, Buder, S, 2017, Candidate exoplanet host HD 131399A: a nascent Amstar. A&A, 604, L9 {763}Google Scholar
Pshirkov, MS, Baskaran, D, Postnov, KA, 2010, Observing gravitational wave bursts in pulsar timing measurements. MNRAS, 402, 417–423 {109}CrossRefGoogle Scholar
Psychoyos, D, Hadjidemetriou, JD, 2005, Dynamics of 2:1 resonant extrasolar systems application to HD 82943 and GJ 876. Cel. Mech. Dyn. Astron., 92, 135–156 {717, 721}CrossRefGoogle Scholar
Pu, B, Valencia, D, 2017, Ohmic dissipation in mini-Neptunes. ApJ, 846, 47 {303}CrossRefGoogle Scholar
Pu, B, Wu, Y, 2015, Spacing of Kepler planets: sculpting by dynamical instability. ApJ, 807, 44 {318, 484}Google Scholar
Pudritz, RE, Ouyed, R, Fendt, C, et al., 2007, Disk winds, jets, and outflows: theoretical and computational foundations. Protostars and Planets V, 277–294 {453}
Pueyo, L, 2016, Detection and characterisation of exoplanets using projections on Karhunen–Loeve eigenimages: forwardmodeling. ApJ, 824, 117 {340}CrossRefGoogle Scholar
Pueyo, L, Crepp, JR, Vasisht, G, et al., 2012, Application of a damped locally optimised combination of images method to the spectral characterisation of faint companions using an integral field spectrograph. ApJS, 199, 6 {340, 341}CrossRefGoogle Scholar
Pueyo, L, Kasdin, NJ, Carlotti, A, et al., 2011, Design of phase induced amplitude apodi-sation coronagraphs over square apertures. ApJS, 195, 25 {335}CrossRefGoogle Scholar
Pueyo, L, Norman, C, 2013, High-contrast imaging with an arbitrary aperture: active correction of aperture discontinuities. ApJ, 769, 102 {338}CrossRefGoogle Scholar
Pueyo, L, Soummer, R, Hoffmann, J, et al., 2015, Reconnaissance of the HR 8799 exoso-lar system. II. Astrometry and orbital motion. ApJ, 803, 31 {763}CrossRefGoogle Scholar
Puig, L, Pilbratt, GL, Heske, A, et al., 2016, ARIEL: an ESAM4 mission candidate. Space Telescopes and Instrumentation 2016: Optical, Infrared, and Millimeter Wave, volume 9904 of Proc. SPIE, 99041W {181}Google Scholar
Punzi, KM, Kastner, JH, Melis, C, et al., 2018, Is the young star RZ Psc consuming its own (planetary) offspring? AJ, 155, 33 {283}CrossRefGoogle Scholar
Püsküllü, Ç, Soydugan, F, Erdem, A, et al., 2017, Photometric investigation of hot exo-planets: TrES–3 b and Qatar–1 b. New Astron., 55, 39–47 {750, 751}CrossRefGoogle Scholar
Qi, C, Öberg KI, Wilner, DJ, et al., 2013a, First detection of c-C3H2 in a circumstellar disk. ApJ, 765, L14 {370}CrossRefGoogle Scholar
Qi, C, Öberg KI, Wilner, DJ, 2013b, Imaging of the CO snow line in a solar nebula analogue. Science, 341, 630–632 {466, 467}CrossRefGoogle Scholar
Qian, S, Dai, Z, Liao, W, et al., 2009, A substellar companion to the white dwarf-red dwarf eclipsing binary NN Ser. ApJ, 706, L96–L99 {115}CrossRefGoogle Scholar
Qian, S, Liao, W, Zhu, L, et al., 2010a, A giant planet in orbit around a magnetic-braking hibernating cataclysmic variable. MNRAS, 401, L34–L38 {117}CrossRefGoogle Scholar
Qian, S, Liao, W, Zhu, L, 2010b, Detection of a giant extrasolar planet orbiting the eclipsing polar DP Leo. ApJ, 708, L66–L68 {105, 114}CrossRefGoogle Scholar
Qian, SB, Liu, L, Liao, WP, et al., 2011, Detection of a planetary system orbiting the eclipsing polar HU Aqr. MNRAS, 414, L16–L20 {105, 115, 116}CrossRefGoogle Scholar
Qian, SB, Liu, L, Zhu, LY, et al., 2012a, A circumbinary planet in orbit around the short-period white dwarf eclipsing binary RR Cae. MNRAS, 422, L24 {105, 116}CrossRefGoogle Scholar
Qian, SB, Zhu, LY, Dai, ZB, et al., 2012b, Circumbinary planets orbiting the rapidly pulsating subdwarf B-type binary NY Vir. ApJ, 745, L23 {105, 116}CrossRefGoogle Scholar
Qian, Y, 2003, The origin of the heavy elements: recent progress in the understanding of the r-process. Progress in Particle and Nuclear Physics, 50, 153–199 {398}CrossRefGoogle Scholar
Qu, ZQ, Sun, J, Song, W, et al., 2013, Polarimetric properties of Mercury-like and Venus-like exoplanets. Planet. Space Sci., 78, 33–37 {247}CrossRefGoogle Scholar
Quanz, SP, 2015, High-contrast imaging constraints on gas giant planet formation: the Herbig Ae/Be star opportunity. Ap&SS, 357, 148 {762}Google Scholar
Quanz, SP, Amara, A, Meyer, MR, et al., 2013a, A young protoplanet candidate embedded in the circumstellar disk of HD 100546. ApJ, 766, L1 {367, 466, 762}CrossRefGoogle Scholar
Quanz, SP, Amara, A, Meyer, MR, 2015a, Confirmation and characterisation of the protoplanet HD 100546 b: direct evidence for gas giant planet formation at 50 au. ApJ, 807, 64 {362, 466, 762}CrossRefGoogle Scholar
Quanz, SP, Avenhaus, H, Buenzli, E, et al., 2013b, Gaps in the HD169142 protoplanetary disk revealed by polarimetric imaging: signs of ongoing planet formation? ApJ, 766, L2 {340, 367, 466, 467}CrossRefGoogle Scholar
Quanz, SP, Birkmann, SM, Apai, D, et al., 2012a, Resolving the inner regions of the HD 97048 circumstellar disk with VLT–NACO polarimetric differential imaging. A&A, 538, A92 {340}Google Scholar
Quanz, SP, Crepp, JR, Janson, M, et al., 2012b, Searching for young Jupiter analogues around AP Col: L-band high-contrast imaging of the closest pre-main-sequence star. ApJ, 754, 127 {374}CrossRefGoogle Scholar
Quanz, SP, Crossfield, I, Meyer, MR, et al., 2015b, Direct detection of exoplanets in the 3–10μmrange with E–ELT–METIS. Int. J. Astrobiol., 14, 279–289 {346}CrossRefGoogle Scholar
Quanz, SP, Goldman, B, Henning, T, et al., 2010a, Search for very low-mass brown dwarfs and free-floating planetary-mass objects in Taurus. ApJ, 708, 770–784 {442, 446, 447}CrossRefGoogle Scholar
Quanz, SP, Lafrenière, D, Meyer, MR, et al., 2012c, Direct imaging constraints on planet populations detected by microlensing. A&A, 541, A133 {150}Google Scholar
Quanz, SP, Meyer, MR, Kenworthy, MA, et al., 2010b, First results from VLT–NACO apo-dising phase plate: 4μmimages of the exoplanet β Pic b. ApJ, 722, L49–L53 {367, 762}CrossRefGoogle Scholar
Quanz, SP, Schmid, HM, Geissler, K, et al., 2011, VLT–NACO polarimetric differential imaging of HD 100546: disk structure and dust grain properties between 10–140 au. ApJ, 738, 23 {340, 762}CrossRefGoogle Scholar
Quarles, B, Cuntz, M, Musielak, ZE, 2012a, The stability of the suggested planet in the V Oct system: a numerical and statistical study. MNRAS, 421, 2930–2939 {715}CrossRefGoogle Scholar
Quarles, B, Lissauer, JJ, 2016, Long-term stability of planets in the α Cen system. AJ, 151, 111 {714}CrossRefGoogle Scholar
Quarles, B, Lissauer, JJ, Kaib, N, 2018, Long-term stability of planets in the α Cen system. II. Forced eccentricities. AJ, 155, 64 {714}CrossRefGoogle Scholar
Quarles, B, Musielak, ZE, Cuntz, M, 2012b, Habitability of Earth-mass planets and moons in Kepler–16. ApJ, 750, 14 {739}CrossRefGoogle Scholar
Quarles, B, Musielak, ZE, Cuntz, M, 2012c, Study of resonances for the restricted 3-body problem. Astron. Nach., 333, 551–560 {507}CrossRefGoogle Scholar
Quarles, B, Quintana, EV, Lopez, E, et al., 2017, Plausible compositions of the seven TRAPPIST–1 planets using long-termdynamical simulations. ApJ, 842, L5 {750}CrossRefGoogle Scholar
Queloz, D, 1995, Echelle spectroscopy with a CCD at low signal-to-noise ratio. New Developments in Array Technology and Applications, volume 167 of IAU Symp., 221–28 {29}Google Scholar
Queloz, D, 2015, Ground-based search of small transiting planets on bright stars: the arrival of new generation of facilities NGTS and SPECULOOS. IAUGeneral Assembly, 22, 2257570 {171}Google Scholar
Queloz, D, Anderson, D, Collier Cameron, A, et al., 2010, WASP–8 b: a retrograde transiting planet in a multiple system. A&A, 517, L1–L4 {166, 253, 304, 752}Google Scholar
Queloz, D, Bouchy, F, Moutou, C, et al., 2009, The CoRoT–7 planetary system: two orbiting super-Earths. A&A, 506, 303–319 {733}Google Scholar
Queloz, D, Eggenberger, A, Mayor, M, et al., 2000a, Detection of a spectroscopic transit by the planet orbiting the star HD 209458. A&A, 359, L13–L17 {10, 248, 249, 253, 731}Google Scholar
Queloz, D, Henry, GW, Sivan, JP, et al., 2001, No planet for HD 166435. A&A, 379, 279–287 {36, 37, 39, 40, 55, 85}Google Scholar
Queloz, D, Mayor, M, Naef, D, et al., 2004, Four Jovian extrasolar planets detected with CORALIE. Planetary Systems in the Universe, volume 202 of IAU Symp., 106 {718}Google Scholar
Queloz, D, Mayor, M, Weber, L, et al., 2000b, The CORALIE survey for southern extra-solar planets. I. A planet orbiting the star GJ 86. A&A, 354, 99–102 {46, 78, 393, 551, 716}Google Scholar
Quillen, AC, 2002, Using a Hipparcos-derived Hertzsprung-Russell diagram to limit the metallicity scatter of stars in the Hyades: are stars polluted? AJ, 124, 400–403 {393}CrossRefGoogle Scholar
Quillen, AC, 2006a, Predictions for a planet just inside Fomalhaut's eccentric ring. MNRAS, 372, L14–L18 {365, 492, 761}CrossRefGoogle Scholar
Quillen, AC, 2006b, Reducing the probability of capture into resonance. MNRAS, 365, 1367–1382 {507}Google Scholar
Quillen, AC, 2010, Pinpointing planets in circumstellar disks. Formation and Evolution of Exo-planets, 27–48, Wiley {493}
Quillen, AC, 2011, Three-body resonance overlap in closely spaced multiple-planet systems. MNRAS, 418, 1043–1054 {508}CrossRefGoogle Scholar
Quillen, AC, Blackman, EG, Frank, A, et al., 2004, On the planet and the disk of CoKu Tau 4. ApJ, 612, L137–L140 {465}CrossRefGoogle Scholar
Quillen, AC, Bodman, E, Moore, A, 2013, Origin scenarios for the Kepler–36 planetary system. MNRAS, 435, 2256–2267 {179, 504, 740}CrossRefGoogle Scholar
Quillen, AC, Faber, P, 2006, Chaotic zone boundary for low free eccentricity particles near an eccentric planet. MNRAS, 373, 1245–1250 {507}CrossRefGoogle Scholar
Quillen, AC, Hasan, I, Moore, A, 2012, Capture of irregular satellites via binary planetesimal exchange reactions inmigrating planetary systems. MNRAS, 425, 2507–2518 {471, 504, 688}CrossRefGoogle Scholar
Quillen, AC, Holman, M, 2000, Production of star-grazing and star-impacting plan-etesimals via orbital migration of extrasolar planets. AJ, 119, 397–402 {393}CrossRefGoogle Scholar
Quillen, AC, Kueter-Young, A, Frouard, J, et al., 2016, Tidal spin down rates of homogeneous triaxial viscoelastic bodies. MNRAS, 463, 1543–1553 {542}CrossRefGoogle Scholar
Quillen, AC, Morbidelli, A, Moore, A, 2007, Planetary embryos and planetesimals residing in thin debris disks. MNRAS, 380, 1642–1648 {493}CrossRefGoogle Scholar
Quillen, AC, Thorndike, S, 2002, Structure in the yatt MC, et al., 2005, Structure in the Eri dusty disk caused by mean motion resonances with a 0.3 eccentricity planet at periastron. ApJ, 578, L149–L152 {715}CrossRefGoogle Scholar
Quinlan, GD, Tremaine, S, 1990, Symmetric multistep methods for the numerical integration of planetary orbits. AJ, 100, 1694–1700 {513}CrossRefGoogle Scholar
Quinn, SN, Bakos GÁ, Hartman, J, et al., 2012a, HAT–P–25 b: a hot-Jupiter transiting a moderately faint G star. ApJ, 745, 80 {737}CrossRefGoogle Scholar
Quinn, SN, White, RJ, 2016, Obliquities of exoplanet host stars from precise distances and stellar angular diameters. ApJ, 833, 173 {180, 385}CrossRefGoogle Scholar
Quinn, SN, White, RJ, Latham, DW, et al., 2012b, Two ‘b's in the Beehive: the discovery of the first hot Jupiters in an open cluster. ApJ, 756, L33 {56, 61, 725}CrossRefGoogle Scholar
Quinn, SN, White, RJ, Latham, DW, 2014, HD 285507 b: an eccentric hot Jupiter in the Hyades open cluster. ApJ, 787, 27 {12, 61, 724}CrossRefGoogle Scholar
Quinn, SN, White, TR, Latham, DW, et al., 2015, Kepler–432: a red giant interactingwith one of its two long-period giant planets. ApJ, 803, 49 {745}CrossRefGoogle Scholar
Quintana, EV, Adams, FC, Lissauer, JJ, et al., 2007, Terrestrial planet formation around individual stars within binary star systems. ApJ, 660, 807–822 {549, 550}CrossRefGoogle Scholar
Quintana, EV, Barclay, T, Borucki, WJ, et al., 2016, The frequency of giant impacts on Earth-like worlds. ApJ, 821, 126 {476}CrossRefGoogle Scholar
Quintana, EV, Barclay, T, Raymond, SN, et al., 2014, An Earth-sized planet in the habitable zone of a cool star. Science, 344, 277–280 {634, 744}CrossRefGoogle ScholarPubMed
Quintana, EV, Lissauer, JJ, 2006, Terrestrial planet formation surrounding close binary stars. Icarus, 185, 1–20 {549, 551}CrossRefGoogle Scholar
Quintana, EV, Lissauer, JJ, 2014, The effect of planets beyond the ice line on the accretion of volatiles by habitable-zone rocky planets. ApJ, 786, 33 {564}CrossRefGoogle Scholar
Quintana, EV, Lissauer, JJ, Chambers, JE, et al., 2002, Terrestrial planet formation in the α Cen System. ApJ, 576, 982–996 {549, 550, 714}CrossRefGoogle Scholar
Quintana, EV, Rowe, JF, Barclay, T, et al., 2013, Confirmation of hot Jupiter Kepler–41 b via phase curve analysis. ApJ, 767, 137 {198, 239, 741}CrossRefGoogle Scholar
Quirrenbach, A, 2001, Optical Interferometry. ARA&A, 39, 353–401 {348}Google Scholar
Quirrenbach, A, 2005, Coronographicmethods for the detection of terrestrial planets. ArXiv Astrophysics e-prints {334, 351}
Quirrenbach, A, 2009, The development of astronomical interferometry. Exp. Astron., 26, 49–63 {348}CrossRefGoogle Scholar
Quirrenbach, A, Amado, PJ, Caballero, JA, et al., 2011a, CARMENES: Calar Alto high-resolution search for M dwarfs with exo-earths with near-infrared and optical echelle spectrographs. IAU Symp., volume 276, 545–546 {48}Google Scholar
Quirrenbach, A, Amado, PJ, Caballero, JA, 2014, CARMENES instrument overview. Ground-based and Airborne Instrumentation for Astronomy V, volume 9147 of Proc. SPIE, 91471F {48, 55, 57}Google Scholar
Quirrenbach, A, Amado, PJ, Caballero, JA, 2016, CARMENES: an overview six months after first light. Ground-based and Airborne Instrumentation for Astronomy VI, volume 9908 of Proc. SPIE, 990812 {38}Google Scholar
Quirrenbach, A, Amado, PJ, Seifert, W, et al., 2012, CARMENES: I. Instrument and survey overview. SPIE Conf. Ser., volume 8446 {32, 34, 46, 48}Google Scholar
Quirrenbach, A, Geisler, R, Henning, T, et al., 2011b, ESPRI: astrometric planet search with PRIMA at the VLTI. Research, Science and Technology of Brown Dwarfs and Exoplanets, 16, 07005 {91}Google Scholar
Quirrenbach, A, Reffert, S, Bergmann, C, 2011c, Planets around giant stars. Amer. Inst. Phys. Conf. Ser., volume 1331, 102–109 {55, 715}Google Scholar
Quist, CF, 2001, Astrometric detection of sub-stellar companions with Gaia. A&A, 370, 672–679 {96}Google Scholar
Rabien, S, Ageorges, N, Angel, R, et al., 2008, The laser guide star programme for the LBT. SPIE Conf. Ser., volume 7015, 28 {332}Google Scholar
Rabinowitz, D, Schwamb, ME, Hadjiyska, E, et al., 2013, The peculiar photometric properties of 2010WG9: a slowly rotating Trans-Neptunian Object from the Oort cloud. AJ, 146, 17 {687}CrossRefGoogle Scholar
Rabl, G, Dvorak, R, 1988, Satellite-type planetary orbits in double stars: a numerical approach. A&A, 191, 385–391 {548, 549, 551}Google Scholar
Rabus, M, Alonso, R, Belmonte, JA, et al., 2009a, A cool star spot or a second transiting planet in the TrES–1 system? A&A, 494, 391–397 {212, 750}Google Scholar
Rabus, M, Alonso, R, Deeg, HJ, et al., 2009b, Transit timing variability in TrES–1. IAU Symp., volume 253, 432–435 {269}Google Scholar
Rabus, M, Brown, TM, Deeg, HJ, et al., 2007, Update and recent results of the STARE instrument. Transiting Extrasolar Planets Workshop, volume 366 of ASP Conf. Ser., 96–98 {169}Google Scholar
Rabus, M, Deeg, HJ, Alonso, R, et al., 2009c, Transit timing analysis of the exoplanets TrES–1 and TrES–2. A&A, 508, 1011–1020 {269, 750}Google Scholar
Rabus, M, Jordán, A, Hartman, JD, et al., 2016, HATS–11 b and HATS–12 b: two transiting hot Jupiters orbiting subsolar metallicity stars selected for the K2 campaign 7. AJ, 152, 88 {737}CrossRefGoogle Scholar
Racine, R, Walker, GAH, Nadeau, D, et al., 1999, Speckle noise and the detection of faint companions. PASP, 111, 587–594 {339, 340}CrossRefGoogle Scholar
Rackham, B, Espinoza, N, Apai, D, et al., 2017, ACCESS I: an optical transmission spectrum of GJ 1214 b reveals a heterogeneous stellar photosphere. ApJ, 834, 151 {735}CrossRefGoogle Scholar
Raddi, R, Gänsicke, BT, Koester, D, et al., 2015, Is the oxygen-rich white dwarf SDSS J1242+5226 accreting H2O-abundant debris? 19th European Workshop on White Dwarfs, volume 493 of ASP Conf. Ser., 273 {419}Google Scholar
Radigan, J, Jayawardhana, R, Lafrenière, D, et al., 2012, Large-amplitude variations of an L/T transition brown dwarf: multi-wavelength observations of patchy, high-contrast cloud features. ApJ, 750, 105 {436}CrossRefGoogle Scholar
Radigan, J, Lafrenière, D, Jayawardhana, R, et al., 2008, Discovery of a wide substellar companion to a nearby low-mass star. ApJ, 689, 471-477 {438}CrossRefGoogle Scholar
Radigan, J, Lafrenière, D, Jayawardhana, R, 2014, Strong brightness variations signal cloudy-to-clear transition of brown dwarfs. ApJ, 793, 75 {440}CrossRefGoogle Scholar
Raettig, N, Lyra, W, Klahr, H, 2013, A parameter study for baroclinic vortex amplification. ApJ, 765, 115 {462}CrossRefGoogle Scholar
Raetz, S, Maciejewski, G, Ginski, C, et al., 2014, Transit timing of TrES–2: a combined analysis of ground- and space-based photometry. MNRAS, 444, 1351–1368 {751}CrossRefGoogle Scholar
Raetz, S, Maciejewski, G, Seeliger, M, et al., 2015, WASP–14 b: transit timing analysis of 19 light curves. MNRAS, 451, 4139–4149 {171, 753}CrossRefGoogle Scholar
Raetz, S, Mugrauer, M, Schmidt, TOB, et al., 2009a, Planetary transit observations at the University Observatory Jena: TrES–2. Astron. Nach., 330, 459 {750}CrossRefGoogle Scholar
Raetz, S, Mugrauer, M, Schmidt, TOB, 2009b, Planetary transit observations at the University Observatory Jena: XO–1 b and TrES–1. Astron. Nach., 330, 475 {750, 757}CrossRefGoogle Scholar
Raetz, S, Schmidt, TOB, Czesla, S, et al., 2016, YETI observations of the young transiting planet candidate CVSO 30 b. MNRAS, 460, 2834–2852 {750}CrossRefGoogle Scholar
Rafikov, RR, 2003a, The growth of planetary embryos: orderly, runaway, or oligarchic? AJ, 125, 942–961 {470, 474, 475}CrossRefGoogle Scholar
Rafikov, RR, 2003b, Planetesimal disk evolution driven by embryo-planetesimal gravitational scattering. AJ, 125, 922–941 {474}Google Scholar
Rafikov, RR, 2004, Fast accretion of small planetesimals by protoplanetary cores. AJ, 128, 1348–1363 {471, 472}CrossRefGoogle Scholar
Rafikov, RR, 2005, Can giant planets formby direct gravitational instability? ApJ, 621, L69–L72 {488, 489, 498}CrossRefGoogle Scholar
Rafikov, RR, 2006, Atmospheres of protoplanetary cores: criticalmass for nucleated instability. ApJ, 648, 666–682 {498, 624}CrossRefGoogle Scholar
Rafikov, RR, 2007, Convective cooling and fragmentation of gravitationally unstable disks. ApJ, 662, 642–650 {488, 490}CrossRefGoogle Scholar
Rafikov, RR, 2009a, Properties of gravitoturbulent accretion disks. ApJ, 704, 281–291 {488}CrossRefGoogle Scholar
Rafikov, RR, 2009b, Stellar proper motion and the timing of planetary transits. ApJ, 700, 965–970 {256, 259}CrossRefGoogle Scholar
Rafikov, RR, 2011a, Constraint on the giant planet production by core accretion. ApJ, 727, 86 {483}CrossRefGoogle Scholar
Rafikov, RR, 2011b, Runaway accretion of metals from compact disks of debris on to white dwarfs. MNRAS, 416, L55–L59 {416}CrossRefGoogle Scholar
Rafikov, RR, 2013a, Building Tatooine: suppression of the direct secular excitation in Kepler circumbinary planet formation. ApJ, 764, L16 {551, 552}CrossRefGoogle Scholar
Rafikov, RR, 2013b, Planet formation in small separation binaries: not so secularly excited by the companion. ApJ, 765, L8 {80, 551, 714, 724}CrossRefGoogle Scholar
Rafikov, RR, 2016, Protoplanetary disk heating and evolution driven by spiral density waves. ApJ, 831, 122 {467}CrossRefGoogle Scholar
Rafikov, RR, Garmilla, JA, 2012, Inner edges of compact debris disks aroundmetal-rich white dwarfs. ApJ, 760, 123 {416}CrossRefGoogle Scholar
Rafikov, RR, Silsbee, K, 2015a, Planet formation in stellar binaries. I. Planetesimal dynamics in massive protoplanetary disks. ApJ, 798, 69 {550}CrossRefGoogle Scholar
Rafikov, RR, Silsbee, K, 2015b, Planet formation in stellar binaries. II. Overcoming the fragmentation barrier in α Cen and γ Cep-like systems. ApJ, 798, 70 {80, 550, 714}CrossRefGoogle Scholar
Rafikov, RR, Slepian, ZS, 2010, Dynamical evolution of thin dispersion-dominated planetesimal disks. AJ, 139, 565–579 {323}CrossRefGoogle Scholar
Ragazzoni, R, 1996, Pupil plane wavefront sensing with an oscillating prism. Journal of Modern Optics, 43, 289–293 {332}CrossRefGoogle Scholar
Raghavan, D, Henry, TJ, Mason, BD, et al., 2006, Two suns in the sky: stellarmultiplicity in exoplanet systems. ApJ, 646, 523–542 {373, 551, 716, 719}CrossRefGoogle Scholar
Raghavan, D, McAlister, HA, Henry, TJ, et al., 2010, A survey of stellar families: multiplicity of solar-type stars. ApJS, 190, 1–42 {547, 552}CrossRefGoogle Scholar
Ragland, S, Wizinowich, P, Akeson, R, et al., 2008, Recent progress at the Keck Interferometer: operations and science. SPIE Conf. Ser., volume 7013, 10 {91}Google Scholar
Ragozzine, D, Holman, MJ, 2010, The value of systemswith multiple transiting planets [unpublished]. ArXiv e-prints {225, 269}
Ragozzine, D, Wolf, AS, 2009, Probing the interiors of very hot Jupiters using transit light curves. ApJ, 698, 1778–1794 {13, 219, 228, 257, 258, 259, 262, 288, 733, 749, 751, 752}CrossRefGoogle Scholar
Rahmstorf, S, Archer, D, Ebel, DS, et al., 2004, Cosmic rays, carbon dioxide, and climate. EOS Transactions, 85, 38–41 {655}Google Scholar
Rahoma, WA, 2016, Investigating exoplanet orbital evolution around binary star systems with mass loss. Journal of Astronomy and Space Sciences, 33, 257–264 {517}CrossRefGoogle Scholar
Rahvar, S, 2015, Gravitational microlensing. I. A unique astrophysical tool. Int. J. Mod. Phys. D, 24, 1530020 {120}CrossRefGoogle Scholar
Rahvar, S, 2016a, Eclipsing negative-parity image of gravitational microlensing by a giant-lens star. MNRAS, 459, 2875–2881 {135}CrossRefGoogle Scholar
Rahvar, S, 2016b, Gravitational microlensing events as a target for the SETI project. ApJ, 828, 19 {137}CrossRefGoogle Scholar
Rainer, M, Poretti, E, Mathias, P, et al., 2012, The CoRoT ground-based asteroseismo-logical programme. Astron. Nach., 333, 1061 {409}CrossRefGoogle Scholar
Rajan, A, Rameau, J, De Rosa, RJ, et al., 2017, Characterising 51 Eri b from 1–5μm: a partly cloudy exoplanet. AJ, 154, 10 {360, 483, 761}CrossRefGoogle Scholar
Rajpaul, V, Aigrain, S, Osborne, MA, et al., 2015, A Gaussian process framework for modelling stellar activity signals in radial velocity data. MNRAS, 452, 2269–2291 {36, 37}CrossRefGoogle Scholar
Rajpaul, V, Aigrain, S, Roberts, S, 2016, Ghost in the time series: no planet for α Cen B. MNRAS, 456, L6–L10 {59, 552, 714}CrossRefGoogle Scholar
Rajpaul, V, Buchhave, LA, Aigrain, S, 2017, Pinning down the mass of Kepler–10 c: the importance of sampling and model comparison. MNRAS, 471, L125–L130 {739}CrossRefGoogle Scholar
Ramakrishna, SA, 2005, Physics of negative refractive index materials. Rep. Prog. Phys., 68, 449–521 {357}CrossRefGoogle Scholar
Rambaux, N, Castillo-Rogez, J, 2013, Tides on satellites of giant planets. Lecture Notes in Physics, Berlin Springer Verlag, volume 861 of Lecture Notes in Physics, Berlin Springer Verlag, 167 {689}Google Scholar
Rambaux, N, Castillo-Rogez, J, Dehant, V, et al., 2011, Constraining Ceres’ interior from its rotational motion. A&A, 535, A43 {565}Google Scholar
Rameau, J, Chauvin, G, Lagrange, AM, et al., 2012, High-contrast imaging of the close environment of HD 142527: VLT–NACO adaptive optics thermal and angular differential imaging. A&A, 546, A24 {466}Google Scholar
Rameau, J, Chauvin, G, Lagrange, AM, 2013a, A survey of young, nearby, and dusty stars conducted to understand the formation of wide-orbit giant planets. VLT–NACO adaptive optics thermal and angular differential imaging. A&A, 553, A60 {358, 360}Google Scholar
Rameau, J, Chauvin, G, Lagrange, AM, 2013b, Confirmation of the planet around HD 95086 by direct imaging. ApJ, 779, L26 {12, 358, 762}CrossRefGoogle Scholar
Rameau, J, Chauvin, G, Lagrange, AM, 2013c, Discovery of a probable 4–5 Jupiter-mass exoplanet to HD 95086 by direct imaging. ApJ, 772, L15 {362, 405, 762}CrossRefGoogle Scholar
Rameau, J, Follette, KB, Pueyo, L, et al., 2017, An optical/near-infrared investigation of HD 100546 b with Gemini–GPI and Mag AO. AJ, 153, 244 {763}CrossRefGoogle Scholar
Rameau, J, Nielsen, EL, De Rosa, RJ, et al., 2016, Constraints on the architecture of the HD 95086 planetary system with the Gemini Planet Imager (GPI). ApJ, 822, L29 {762}CrossRefGoogle Scholar
Ramírez, I, Asplund, M, Baumann, P, et al., 2010, A possible signature of terrestrial planet formation in the chemical composition of solar analogues. A&A, 521, A33 {405}Google Scholar
Ramírez, I, Bajkova, AT, Bobylev, VV, et al., 2014a, Elemental abundances of solar sibling candidates. ApJ, 787, 154 {406}CrossRefGoogle Scholar
Ramírez, I, Fish, JR, Lambert, DL, et al., 2012, Lithiumabundances in nearby FGKdwarf and subgiant stars: internal destruction, Galactic chemical evolution, and exo-planets. ApJ, 756, 46 {401}CrossRefGoogle Scholar
Ramírez, I, Khanal, S, Aleo, P, et al., 2015, The dissimilar chemical composition of the planet-hosting stars of the XO–2 binary system. ApJ, 808, 13 {757}CrossRefGoogle Scholar
Ramírez, I, Meléndez, J, 2004, Cooler and bigger than previously thought? Planetary host stellar parameters from the infrared fluxmethod. ApJ, 609, 417–422 {377}CrossRefGoogle Scholar
Ramírez, I, Meléndez, J, 2005a, The effective temperature scale of FGK stars. I. Determination of temperatures and angular diameters with the infrared flux method. ApJ, 626, 446–464 {377}CrossRefGoogle Scholar
Ramírez, I, Meléndez, J, 2005b, The effective temperature scale of FGK stars. II. Teff–colour–[Fe/H] calibrations. ApJ, 626, 465–485 {377}CrossRefGoogle Scholar
Ramírez, I, Meléndez, J, Asplund, M, 2009, Accurate abundance patterns of solar twins and analogues: does the anomalous solar chemical composition come from planet formation? A&A, 508, L17–L20 {405}Google Scholar
Ramírez, I, Meléndez, J, Asplund, M, 2014b, Chemical signatures of planets: beyond solar-twins. A&A, 561, A7 {405}Google Scholar
Ramírez, I, Meléndez, J, Bean, J, et al., 2014c, The solar twin planet search. I. Fundamental parameters of the stellar sample. A&A, 572, A48 {55, 59, 405}Google Scholar
Ramírez, I, Meléndez, J, Cornejo, D, et al., 2011, Elemental abundance differences in the 16 Cyg binary system: a signature of gas giant planet formation? ApJ, 740, 76 {715}CrossRefGoogle Scholar
Ramirez, R, Gómez-Muñoz, MA, Vázquez, R, et al., 2018, New numerical determination of habitability in the Galaxy: the SETI connection. Int. J. Astrobiol., 17, 34–43 {644}CrossRefGoogle Scholar
Ramirez, RM, Kaltenegger, L, 2014, The habitable zones of pre-main-sequence stars. ApJ, 797, L25 {625}CrossRefGoogle Scholar
Ramirez, RM, Kaltenegger, L, 2016, Habitable zones of post-main sequence stars. ApJ, 823, 6 {625}CrossRefGoogle Scholar
Ramirez, RM, Kaltenegger, L, 2017, A volcanic hydrogen habitable zone. ApJ, 837, L4 {629}CrossRefGoogle Scholar
Ramm, DJ, 2015, Line-depth-ratio temperatures for the close binary V Oct: new evidence supporting the conjectured circumstellar retrograde planet. MNRAS, 449, 4428–4442 {715}CrossRefGoogle Scholar
Ramm, DJ, Nelson, BE, Endl, M, et al., 2016, The conjectured S-type retrograde planet in V Oct: more evidence including four years of iodine-cell radial velocities. MNRAS, 460, 3706–3719 {715}CrossRefGoogle Scholar
Ramm, DJ, Pourbaix, D, Hearnshaw, JB, et al., 2009, Spectroscopic orbits for K giants β Ret and V Oct: what is causing a low-amplitude radial velocity resonant perturbation in V Oct? MNRAS, 394, 1695–1710 {715}CrossRefGoogle Scholar
Ramón-Fox, FG, Sada, PV, 2013, Parameters of recent transits of HAT–P–23 b. Rev. Mex. Astron. Astrofis., 49, 71–77 {736}Google Scholar
Ramos, XS, Charalambous, C, Benítez-Llambay, P, et al., 2017, Planetary migration and the origin of the 2:1 and 3:2 (near)-resonant population of close-in exoplanets. A&A, 602, A101 {508, 721, 763}Google Scholar
Rampadarath, H, Morgan, JS, Tingay, SJ, et al., 2012, The first VLBI SETI experiment. AJ, 144, 38 {645}CrossRefGoogle Scholar
Rampino, MR, 2002, Supereruptions as a threat to civilisations on Earth-like planets. Icarus, 156, 562–569 {647}CrossRefGoogle Scholar
Rampino, MR, 2015, Disk dark matter in the Galaxy and potential cycles of extraterrestrial impacts, mass extinctions and geological events. MNRAS, 448, 1816–1820 {654}CrossRefGoogle Scholar
Rampino, MR, Caldeira, K, 2015, Periodic impact cratering and extinction events over the last 260 million years. MNRAS, 454, 3480–3484 {654}CrossRefGoogle Scholar
Rampino, MR, Stothers, RB, 1988, Flood basalt volcanism during the past 250 million years. Science, 241, 663–668 {670}CrossRefGoogle ScholarPubMed
Ramsay, G, Brooks, A, Hakala, P, et al., 2014, RATS–Kepler: a deep high-cadence survey of the Kepler field. MNRAS, 437, 132–146 {176}CrossRefGoogle Scholar
Ramsey, LW, Barnes, J, Redman, SL, et al., 2008, A pathfinder instrument for precision radial velocities in the near-infrared. PASP, 120, 887–894 {46}CrossRefGoogle Scholar
Ramsley, KR, Head, JW, 2013, The origin of Phobos grooves from ejecta launched from impact craters on Mars: tests of the hypothesis. Planet. Space Sci., 75, 69–95 {689}CrossRefGoogle Scholar
Ranc, C, Cassan, A, Albrow, MD, et al., 2015, MOA–2007–BLG–197: exploring the brown dwarf desert. A&A, 580, A125 {65, 759}Google Scholar
Randich, S, Schmitt, JHMM, Prosser, CF, et al., 1996, The X-ray properties of the young open cluster around α Per. A&A, 305, 785 {423}Google Scholar
Ranjan, S, Charbonneau, D, Désert, JM, et al., 2014, Atmospheric characterisation of five hot Jupiters with the HST–WFC3. ApJ, 785, 148 {733, 751, 752}CrossRefGoogle Scholar
Ransom, SM, Greenhill, LJ, Herrnstein, JR, et al., 2001, A binary millisecond pulsar in globular cluster NGC 6544. ApJ, 546, L25–L28 {105, 108}CrossRefGoogle Scholar
Rappaport, S, Barclay, T, DeVore, J, et al., 2014, KOI–2700 b: a planet candidate with dusty effluents on a 22-hr orbit. ApJ, 784, 40 {232}CrossRefGoogle Scholar
Rappaport, S, Gary, BL, Kaye, T, et al., 2016, Drifting asteroid fragments around WD 1145+017. MNRAS, 458, 3904–3917 {418}CrossRefGoogle Scholar
Rappaport, S, Gary, BL, Vanderburg, A, et al., 2018a, WD 1145+017: optical activity during 2016–2017 and limits on the X-ray flux. MNRAS, 474, 933–946 {418}CrossRefGoogle Scholar
Rappaport, S, Levine, A, Chiang, E, et al., 2012, Possible disintegrating short-period super-Mercury orbiting KIC–12557548. ApJ, 752, 1 {11, 179, 232, 747}CrossRefGoogle Scholar
Rappaport, S, Sanchis-Ojeda, R, Rogers, LA, et al., 2013, The Roche limit for close-orbiting planets: minimum density, composition constraints, and application to the 4.2-hr planet KOI–1843.03. ApJ, 773, L15 {298, 536, 746}CrossRefGoogle Scholar
Rappaport, S, Vanderburg, A, Jacobs, T, et al., 2018b, Likely transiting exocomets detected by Kepler. MNRAS, 474, 1453–1468 {283}CrossRefGoogle Scholar
Rappaport, S, Verbunt, F, Joss, PC, 1983, A new technique for calculations of binary stellar evolution, with application to magnetic braking. ApJ, 275, 713–731 {114}CrossRefGoogle Scholar
Rapson, VA, Kastner, JH, Millar-Blanchaer, MA, et al., 2015, Peering into the giant-planet-forming region of the TW Hya disk with the Gemini Planet Imager (GPI). ApJ, 815, L26 {360, 466}CrossRefGoogle Scholar
Rasch, PJ, Tilmes, S, Turco, RP, et al., 2008, An overview of geoengineering of climate using stratospheric sulphate aerosols. Philosophical Transactions of the Royal Society of London Series A, 366, 4007–4037 {233}CrossRefGoogle ScholarPubMed
Rasio, FA, Ford, EB, 1996, Dynamical instabilities and the formation of extrasolar planetary systems. Science, 274, 954–956 {298, 393, 525, 535}CrossRefGoogle ScholarPubMed
Rasio, FA, Nicholson, PD, Shapiro, SL, et al., 1992, An observational test for the existence of a planetary system orbiting PSR B1257+12. Nature, 355, 325–326 {107}CrossRefGoogle Scholar
Rasio, FA, Tout, CA, Lubow, SH, et al., 1996, Tidal decay of close planetary orbits. ApJ, 470, 1187–1191 {512, 532, 535, 539, 622}CrossRefGoogle Scholar
Raskin, G, van Winckel, H, Hensberge, H, et al., 2011, HERMES: a high-resolution fibre-fed spectrograph for the Mercator telescope. A&A, 526, A69 {45, 46}Google Scholar
Rasool, SI, de Bergh, C, 1970, The runaway greenhouse and the accumulation of CO2 in the Venus atmosphere. Nature, 226, 1037–1039 {620}CrossRefGoogle ScholarPubMed
Rattenbury, NJ, Bennett, DP, Sumi, T, et al., 2015, MOA–2010–BLG–353L b: a possible Saturn revealed. MNRAS, 454, 946–951 {141, 759}CrossRefGoogle Scholar
Rattenbury, NJ, Bennett, DP, Sumi, T, 2017, Faint-source-star planetary microlensing: the discovery of the cold gas-giant planet OGLE–2014–BLG–0676L b. MNRAS, 466, 2710–2717 {141, 760}CrossRefGoogle Scholar
Rattenbury, NJ, Bond, IA, Skuljan, J, et al., 2002, Planetary microlensing at high magnification. MNRAS, 335, 159–169 {123, 129}CrossRefGoogle Scholar
Rau, A, Kulkarni, SR, Law, NM, et al., 2009, Exploring the optical transient sky with the Palomar Transient Factory. PASP, 121, 1334–1351 {171}CrossRefGoogle Scholar
Rauch, KP, Hamilton, DP, 2002, The HNBody package for symplectic integration of nearly-Keplerian systems. AAS Bulletin, volume 34, 938 {513}Google Scholar
Rauch, KP, Hamilton, DP, 2012, HNBody: hierarchical N-body symplectic integration package. Astrophysics Source Code Library {513}
Rauer, H, Aerts, C, Cabrera, J, et al., 2016, The PLATO mission. Astron. Nach., 337, 961 {180}CrossRefGoogle Scholar
Rauer, H, Bockelée-Morvan, D, Coustenis, A, et al., 2000, Search for an exosphere around 51 Peg b with ISO. A&A, 355, 573–580 {715}Google Scholar
Rauer, H, Catala, C, Aerts, C, et al., 2014, The PLATO 2.0 mission. Exp. Astron., 38, 249–330 {180, 604}CrossRefGoogle Scholar
Rauer, H, Erikson, A, Kabath, P, et al., 2010, Pre-discovery observations of CoRoT–1 b and CoRoT–2 b with the BEST survey. AJ, 139, 53–58 {172, 733}CrossRefGoogle Scholar
Rauer, H, Fruth, T, Erikson, A, 2008, Prospects of long-time-series observations from Dome C for transit search. PASP, 120, 852–859 {171}CrossRefGoogle Scholar
Rauer, H, Gebauer, S, Paris, PV, et al., 2011, Potential biosignatures in super-Earth atmospheres. I. Spectral appearance of super-Earths around M dwarfs. A&A, 529, A8 {641}Google Scholar
Rauer, H, Queloz, D, Csizmadia, S, et al., 2009, Transiting exoplanets from the CoRoT space mission. VII. The hot-Jupiter planet CoRoT–5 b. A&A, 506, 281–286 {733}Google Scholar
Raup, D, Sepkoski, JA, 1982, Mass extinctions in the marine fossil record. Science, 215(1501-1503) {674}CrossRefGoogle ScholarPubMed
Raup, DM, 1985, Magnetic reversals and mass extinctions. Nature, 314, 341–343 {663}CrossRefGoogle ScholarPubMed
Raup, DM, Sepkoski, JJ, 1984, Periodicity of extinctions in the geologic past. Proc. Nat. Acad. Sci., 81, 801–805 {687}CrossRefGoogle ScholarPubMed
Rauscher, BJ, Boehm, N, Cagiano, S, et al., 2014, New and better detectors for the JWST near-infrared spectrograph. PASP, 126, 739–749 {187}Google Scholar
Rauscher, E, 2017, Models of warm Jupiter atmospheres: observable signatures of obliquity. ApJ, 846, 69 {591, 616}CrossRefGoogle Scholar
Rauscher, E, Kempton, EMR, 2014, The atmospheric circulation and observable properties of non-synchronously rotating hot Jupiters. ApJ, 790, 79 {591, 616, 731, 732}CrossRefGoogle Scholar
Rauscher, E, Menou, K, 2010, Three-dimensional modeling of hot Jupiter atmospheric flows. ApJ, 714, 1334–1342 {593, 596}CrossRefGoogle Scholar
Rauscher, E, Menou, K, 2012a, A general circulation model for gaseous exoplanets with double-grey radiative transfer. ApJ, 750, 96 {593, 596}CrossRefGoogle Scholar
Rauscher, E, Menou, K, 2012b, The role of drag in the energetics of strongly forced exoplanet atmospheres. ApJ, 745, 78 {591}CrossRefGoogle Scholar
Rauscher, E, Menou, K, 2013, Three-dimensional atmospheric circulation models of HD 189733 b and HD209458 bwith consistent magnetic drag and Ohmic dissipation. ApJ, 764, 103 {303, 730, 732}CrossRefGoogle Scholar
Rauscher, E, Menou, K, Cho, JYK, et al., 2007a, Hot Jupiter variability in eclipse depth. ApJ, 662, L115–L118 {221}CrossRefGoogle Scholar
Rauscher, E, Menou, K, Seager, S, et al., 2007b, Toward eclipse mapping of hot Jupiters. ApJ, 664, 1199–1209 {595}CrossRefGoogle Scholar
Rauscher, E, Showman, AP, 2014, The influence of differential irradiation and circulation on the thermal evolution of gas giant planets. I. Upper limits from radiative equilibrium. ApJ, 784, 160 {591}CrossRefGoogle Scholar
Raven, J, 2007, Astrobiology: photosynthesis in watercolours. Nature, 448, 418 {629}CrossRefGoogle ScholarPubMed
Raven, JA, Cockell, C, 2006, Influence on photosynthesis of starlight, moonlight, plan-etlight, and light pollution: reflections on photosynthetically active radiation in the universe. Astrobiology, 6, 668–675 {641}CrossRefGoogle ScholarPubMed
Rawiraswattana, K, Hubber, DA, Goodwin, SP, 2016, Disks in misaligned binary systems. MNRAS, 460, 3505–3518 {495}CrossRefGoogle Scholar
Ray, A, Loeb, A, 2017, Inferring the composition of super-Jupiter mass companions of pulsars with radio line spectroscopy. ApJ, 836, 135 {110}CrossRefGoogle Scholar
Ray, T, 2012, Losing spin: the angular momentum problem. Astronomy and Geophysics, 53(5), 5.19–5.22 {386}CrossRefGoogle Scholar
Ray, T, Dougados, C, Bacciotti, F, et al., 2007, Toward resolving the outflow engine: an observational perspective. Protostars and Planets V, 231–244 {444}
Raymond, J, Segrè, D, 2006, The effect of oxygen on biochemical networks and the evolution of complex life. Science, 311, 1764–1767 {674}CrossRefGoogle ScholarPubMed
Raymond, SN, 2006, The search for other Earths: limits on the giant planet orbits that allow habitable terrestrial planets to form. ApJ, 643, L131–L134 {523, 668}CrossRefGoogle Scholar
Raymond, SN, 2010, Formation of terrestrial planets. Formation and Evolution of Exoplanets, 123–144, Wiley {467}
Raymond, SN, Armitage, PJ, 2013, Mini-Oort clouds: compact isotropic planetesimal clouds from planet–planet scattering. MNRAS, 429, L99–L103 {477}CrossRefGoogle Scholar
Raymond, SN, Armitage, PJ, Gorelick, N, 2009a, Planet–planet scattering in planetesimal disks. ApJ, 699, L88–L92 {525, 526}CrossRefGoogle Scholar
Raymond, SN, Armitage, PJ, Gorelick, N, 2010, Planet–planet scattering in planetesimal disks. II. Predictions for outer ex-trasolar planetary systems. ApJ, 711, 772–795 {524, 525, 526}CrossRefGoogle Scholar
Raymond, SN, Armitage, PJ, Moro-Martín, A, et al., 2011, Debris disks as signposts of terrestrial planet formation. A&A, 530, A62 {492}Google Scholar
Raymond, SN, Armitage, PJ, Moro-Martín, A, 2012, Debris disks as signposts of terrestrial planet formation. II. Dependence of exoplanet architectures on giant planet and disk properties. A&A, 541, A11 {492}Google Scholar
Raymond, SN, Armitage, PJ, Veras, D, et al., 2018, Implications of the interstellar object Oumuamua for planetary dynamics and planetesimal formation. MNRAS, 476, 3031–3038 {693}CrossRefGoogle Scholar
Raymond, SN, Barnes, R, 2005, Predicting planets in known extrasolar planetary systems. II. Testing for Saturn mass planets. ApJ, 619, 549–557 {70, 317, 514}CrossRefGoogle Scholar
Raymond, SN, Barnes, R, Armitage, PJ, et al., 2008a, Mean motion resonances from planet–planet scattering. ApJ, 687, L107–L110 {319, 508, 525, 526}CrossRefGoogle Scholar
Raymond, SN, Barnes, R, Gorelick, N, 2008b, A dynamical perspective on additional planets in 55 Cnc. ApJ, 689, 478–491 {71, 728}CrossRefGoogle Scholar
Raymond, SN, Barnes, R, Kaib, NA, 2006a, Predicting planets in known extrasolar planetary systems. III. Forming terrestrial planets. ApJ, 644, 1223–1231 {317, 514}CrossRefGoogle Scholar
Raymond, SN, Barnes, R, Mandell, AM, 2008c, Observable consequences of planet formation models in systemswith close-in terrestrial planets. MNRAS, 384, 663–674 {315, 500, 501}CrossRefGoogle Scholar
Raymond, SN, Barnes, R, Veras, D, et al., 2009b, Planet–planet scattering leads to tightly packed planetary systems. ApJ, 696, L98–L101 {525}CrossRefGoogle Scholar
Raymond, SN, Bonsor, A, 2014, Vega's hot dust from icy planetesimals scattered inwards by an outward-migrating planetary system. MNRAS, 442, L18–L22 {492, 497}CrossRefGoogle Scholar
Raymond, SN, Cossou, C, 2014, No universal minimum-mass extrasolar nebula: evidence against in situ accretion of systems of hot super-Earths. MNRAS, 440, L11–L15 {501}CrossRefGoogle Scholar
Raymond, SN, Izidoro, A, Bitsch, B, et al., 2016, Did Jupiter's core formin the innermost parts of the Sun's protoplanetary disk? MNRAS, 458, 2962–2972 {501, 658, 697, 699}CrossRefGoogle Scholar
Raymond, SN, Kokubo, E, Morbidelli, A, et al., 2014, Terrestrial planet formation at home and abroad. Protostars and Planets VI, 595–618 {467}
Raymond, SN, Mandell, AM, Sigurdsson, S, 2006b, Exotic earths: forming habitable worlds with giant planet migration. Science, 313, 1413–1416 {632}CrossRefGoogle Scholar
Raymond, SN, Morbidelli, A, 2014, The Grand Tack model: a critical review. Complex Planetary Systems, Proceedings of the International Astronomical Union, volume 310 of IAU Symposium, 194–203 {698}Google Scholar
Raymond, SN, O'Brien, DP, Morbidelli, A, et al., 2009c, Building the terrestrial planets: constrained accretion in the inner solar system. Icarus, 203, 644–662 {657, 667, 668, 694, 695, 697}CrossRefGoogle Scholar
Raymond, SN, Quinn, T, Lunine, JI, 2004, Making other Earths: dynamical simulations of terrestrial planet formation and water delivery. Icarus, 168, 1–17 {667, 668}CrossRefGoogle Scholar
Raymond, SN, Quinn, T, Lunine, JI, 2005a, The formation and habitability of terrestrial planets in the presence of close-in giant planets. Icarus, 177, 256–263 {523, 632, 668}CrossRefGoogle Scholar
Raymond, SN, Quinn, T, Lunine, JI, 2005b, Terrestrial planet formation in disks with varying surface density profiles. ApJ, 632, 670–676 {476, 477}CrossRefGoogle Scholar
Raymond, SN, Quinn, T, Lunine, JI, 2006c, High-resolution simulations of the final assembly of Earth-like planets. I. Terrestrial accretion and dynamics. Icarus, 183, 265–282 {513, 667, 668, 687}CrossRefGoogle Scholar
Raymond, SN, Quinn, T, Lunine, JI, 2007a, High-resolution simulations of the final assembly of Earth-like planets. II. Water delivery and planetary habitability. Astrobiology, 7, 66–84 {575, 632, 667, 668}CrossRefGoogle Scholar
Raymond, SN, Scalo, J, Meadows, VS, 2007b, A decreased probability of habitable planet formation around low-mass stars. ApJ, 669, 606–614 {309, 626}CrossRefGoogle Scholar
Rayner, J, Tokunaga, A, Jaffe, D, et al., 2016, iSHELL: a construction, assembly and testing. Ground-based and Airborne Instrumentation for Astronomy VI, volume 9908 of Proc. SPIE, 990884 {46}Google Scholar
Reach, WT, Franz, BA, Weiland, JL, et al., 1995, Observational confirmation of a cir-cumsolar dust ring by the COBE satellite. Nature, 374, 521–523 {218, 691}CrossRefGoogle Scholar
Reach, WT, Kuchner, MJ, von Hippel, T, et al., 2005, The dust cloud around the white dwarf G29–38. ApJ, 635, L161–L164 {415}CrossRefGoogle Scholar
Reach, WT, Lisse, C, von Hippel, T, et al., 2009, The dust cloud around the white dwarf G29–38. II. Spectrum from 5–40μm and mid-infrared photometric variability. ApJ, 693, 697–712 {415, 417}CrossRefGoogle Scholar
Read, MJ, Wyatt, MC, 2016, Dynamical constraints on outer planets in super-Earth systems. MNRAS, 457, 465–478 {511, 716}CrossRefGoogle Scholar
Read, MJ, Wyatt, MC, Marino, S, et al., 2018, Shaping HR 8799's outer dust belt with an unseen planet. MNRAS, 475, 4953–4966 {763}CrossRefGoogle Scholar
Read, MJ, Wyatt, MC, Triaud, AHMJ, 2017, Transit probabilities in secularly evolving planetary systems. MNRAS, 469, 171–192 {322, 741, 748}CrossRefGoogle Scholar
Reay, NK, Ring, J, 1968, Radial velocity measurements on the zodiacal light spectrum. Nature, 219, 710 {691}CrossRefGoogle Scholar
Rebolo, R, Martin, EL, Basri, G, et al., 1996, Brown dwarfs in the Pleiades cluster confirmed by the lithium test. ApJ, 469, L53–56 {400}CrossRefGoogle Scholar
Rebolo, R, Martin, EL, Magazzu, A, 1992, Spectroscopy of a brown dwarf candidate in the Alpha Persei open cluster. ApJ, 389, L83–L86 {400}CrossRefGoogle Scholar
Rebolo, R, Zapatero Osorio, MR, Martín, EL, 1995, Discovery of a brown dwarf in the Pleiades star cluster. Nature, 377, 129–131 {431}CrossRefGoogle Scholar
Rebull, LM, 2001, Rotation of young low-mass stars in the Orion Nebula cluster flanking fields. AJ, 121, 1676–1709 {402}CrossRefGoogle Scholar
Rebull, LM, Wolff, SC, Strom, SE, et al., 2002, The early angular momentum history of low-mass stars: evidence for a regulation mechanism. AJ, 124, 546–559 {402}CrossRefGoogle Scholar
Reche, R, Beust, H, Augereau, JC, 2009, Investigating the fly-by scenario for the HD 141569 system. A&A, 493, 661–669 {495}Google Scholar
Reche, R, Beust, H, Augereau, JC, et al., 2008, On the observability of resonant structures in planetesimal disks due to planetary migration. A&A, 480, 551–561 {492}Google Scholar
Reddy, BE, Lambert, DL, Allende Prieto, C, 2006, Elemental abundance survey of the Galactic thick disk. MNRAS, 367, 1329–1366 {391, 399}CrossRefGoogle Scholar
Reddy, BE, Lambert, DL, Laws, C, et al., 2002, A search for 6Li in stars with planets. MNRAS, 335, 1005–1016 {403, 721}CrossRefGoogle Scholar
Reddy, BE, Tomkin, J, Lambert, DL, et al., 2003, The chemical compositions of Galactic disk F and G dwarfs. MNRAS, 340, 304–340 {391, 398, 419}CrossRefGoogle Scholar
Redfield, S, Endl, M, Cochran, WD, et al., 2008, Sodium absorption from the exo-planetary atmosphere of HD 189733 b detected in the optical transmission spectrum. ApJ, 673, L87–L90 {609, 612, 730}CrossRefGoogle Scholar
Redfield, S, Kessler-Silacci, JE, Cieza, LA, 2007, Spitzer limits on dust emission and optical gas absorption variability around nearby stars with edge-on circumstellar disk signatures. ApJ, 661, 944–971 {282}CrossRefGoogle Scholar
Redman, SL, Lawler, JE, Nave, G, et al., 2011, The infrared spectrumof uraniumhollow cathode lamps from 850–4000 nm: wavenumbers and line identifications from Fourier transformspectra. ApJS, 195, 24 {32}CrossRefGoogle Scholar
Redman, SL, Ycas, GG, Terrien, R, et al., 2012, A high-resolution atlas of uranium–neon in the H band. ApJS, 199, 2 {32}CrossRefGoogle Scholar
Redmer, R, Mattsson, TR, Nettelmann, N, et al., 2011, The phase diagram of water and the magnetic fields of Uranus and Neptune. Icarus, 211, 798–803 {660}CrossRefGoogle Scholar
Reed, MD, Terndrup, DM, Østensen R, et al., 2010, An EC 14026 pulsator in a reflection binary. Ap&SS, 329, 83–86 {234}Google Scholar
Rees, M, 2000, Just Six Numbers: the Deep Forces that Shape the Universe. Weidenfeld & Nicolson {515, 630}Google Scholar
Reffert, S, Bergmann, C, Quirrenbach, A, et al., 2013, Giant planet occurrence rate as a function of stellar mass. Protostars and Planets VI, 28 {391}Google Scholar
Reffert, S, Bergmann, C, Quirrenbach, A, 2015, Precise radial velocities of giant stars. VII. Occurrence rate of giant extrasolar planets as a function of mass and metallicity. A&A, 574, A116 {56, 57, 60, 62}Google Scholar
Reffert, S, Launhardt, R, Hekker, S, et al., 2005, Choosing suitable target, reference and calibration stars for the PRIMA astrometric planet search. ASP Conf. Ser., volume 338, 81–85 {85}Google Scholar
Reffert, S, Quirrenbach, A, 2006, Hipparcos astrometric orbits for two brown dwarf companions: HD 38529 and HD 168443. A&A, 449, 699–702 {95, 719, 723}Google Scholar
Reffert, S, Quirrenbach, A, 2011, Mass constraints on substellar companion candidates from the re-reduced Hipparcos intermediate astrometric data. A&A, 527, A140 {11, 70, 92, 95, 713, 716, 718, 719, 722, 725}Google Scholar
Reffert, S, Quirrenbach, A, Mitchell, DS, et al., 2006, Precise radial velocities of giant stars. II. Pollux and its planetary companion. ApJ, 652, 661–665 {720}CrossRefGoogle Scholar
Refsdal, S, 1964, The gravitational lens effect. MNRAS, 128, 295–306 {120}CrossRefGoogle Scholar
Refsdal, S, 1966, On the possibility of determining the distances and masses of stars from the gravitational lens effect. MNRAS, 134, 315–319 {134}CrossRefGoogle Scholar
Regály, Z, Juhász, A, Sándor, Z, et al., 2012, Possible planet-forming regions on sub-mm images. MNRAS, 419, 1701–1712 {467}CrossRefGoogle Scholar
Regály, Z, Sándor, Z, Dullemond, CP, et al., 2010, Detectability of giant planets in proto-planetary disks by CO emission lines. A&A, 523, A69 {467}Google Scholar
Regenauer-Lieb, K, Yuen, DA, Branlund, J, 2001, The initiation of subduction: criticality by addition of water? Science, 294, 578–581 {626}CrossRefGoogle Scholar
Reggiani, M, Meyer, MR, 2014, From the companion mass ratio distribution to the planetary mass function: using multiple systems to constrain models of star and planet formation. Astrophysics and Space Science Proceedings, 36, 25 {547}CrossRefGoogle Scholar
Reggiani, M, Meyer, MR, Chauvin, G, et al., 2016, The VLT–NACO large programme to probe the occurrence of exoplanets and brown dwarfs at wide orbits. III. The frequency of brown dwarfs and giant planets as companions to solar-type stars. A&A, 586, A147 {358}Google Scholar
Reggiani, M, Quanz, SP, Meyer, MR, et al., 2014, Discovery of a companion candidate in the HD 169142 transition disk and the possibility of multiple planet formation. ApJ, 792, L23 {367, 467}CrossRefGoogle Scholar
Reggiani, MM, Meyer, MR, 2011, Binary formation mechanisms: constraints from the companion mass ratio distribution. ApJ, 738, 60 {547}CrossRefGoogle Scholar
Regibo, S, Vandenbussche, B, Waelkens, C, et al., 2012, A background galaxy in the field of the β Pic disk. A&A, 541, A3 {762}Google Scholar
Régulo, C, Almenara, JM, Alonso, R, et al., 2007, TRUFAS, a wavelet-based algorithm for the rapid detection of planetary transits. A&A, 467, 1345–1352 {157, 190}Google Scholar
Rehnberg, ME, Esposito, LW, Brown, ZL, et al., 2016, A traveling feature in Saturn's rings. Icarus, 279, 100–108 {74}CrossRefGoogle Scholar
Reichert, J, Holzwarth, R, Udem, T, et al., 1999, Measuring the frequency of light with mode-locked lasers. Optics Communications, 172, 59–68 {32}CrossRefGoogle Scholar
Reid, IN, 1998, HIipparcos subdwarf parallaxes: metal-rich clusters and the thick disk. AJ, 115, 204–228 {395}CrossRefGoogle Scholar
Reid, IN, 2002, On the nature of stars with planets. PASP, 114, 306–329 {381, 388}CrossRefGoogle Scholar
Reid, IN, Cruz, KL, Burgasser, AJ, et al., 2008, L-dwarf binaries in the 20-pc sample. AJ, 135, 580–587 {435}CrossRefGoogle Scholar
Reid, IN, Gizis, JE, Hawley, SL, 2002, The Palomar/MSU nearby star spectroscopic survey. IV. The luminosity function in the solar neighbourhood and M dwarf kinematics. AJ, 124, 2721–2738 {381}CrossRefGoogle Scholar
Reid, IN, Kirkpatrick, JD, Liebert, J, et al., 1999, L dwarfs and the substellar mass function. ApJ, 521, 613–629 {441}CrossRefGoogle Scholar
Reid, IN, Metchev, SA, 2008, The brown dwarf–exoplanet connection. Exoplanets: Detection, Formation, Properties, Habitability, 115–152, Springer {431, 436, 437}
Reid, IN, Turner, EL, Turnbull, MC, et al., 2007, Searching for Earth analogues around the nearest stars: the disk age-metallicity relation and the age distribution in the solar neighbourhood. ApJ, 665, 767–784 {381, 391}CrossRefGoogle Scholar
Reid, MJ, 2008, Micro-arcsecond astrometry with the VLBA. IAU Symp., volume 248, 141–147 {101}Google Scholar
Reid, MJ, Honma, M, 2014, Microarcsecond radio astrometry. ARA&A, 52, 339–372 {101}Google Scholar
Reidemeister, M, Krivov, AV, Schmidt, TOB, et al., 2009, A possible architecture of the planetary system HR 8799. A&A, 503, 247–258 {365, 526, 763}Google Scholar
Reidemeister, M, Krivov, AV, Stark, CC, et al., 2011, The cold origin of the warm dust around yatt MC, et al., 2005, Structure in the Eri. A&A, 527, A57 {715}Google Scholar
Reiger, SH, 1963, Starlight scintillation and atmospheric turbulence. AJ, 68, 395–406 {188}CrossRefGoogle Scholar
Rein, H, 2012, Period ratios in multi-planetary systems discovered by Kepler are consistent with planet migration. MNRAS, 427, L21–L24 {318, 502}Google Scholar
Rein, H, 2015, Reanalysis of radial velocity data from the resonant planetary system HD 128311. MNRAS, 448, L58–L61 {722}CrossRefGoogle Scholar
Rein, H, Fujii, Y, Spiegel, DS, 2014, Some inconvenient truths about biosignatures involving two chemical species on Earth-like exoplanets. Proc. Nat. Acad. Sci., 111, 6871–6875 {640}CrossRefGoogle ScholarPubMed
Rein, H, Liu, SF, 2012, REBOUND: an open-source multi-purpose N-body code for collisional dynamics. A&A, 537, A128 {496, 513}Google Scholar
Rein, H, Papaloizou, JCB, 2010, Stochastic orbital migration of small bodies in Saturn's rings. A&A, 524, A22 {691}Google Scholar
Rein, H, Papaloizou, JCB, Kley, W, 2010, The dynamical origin of the multi-planetary system HD 45364. A&A, 510, A4 {70, 75, 508, 720}Google Scholar
Rein, H, Payne, MJ, Veras, D, et al., 2012, Traditional formation scenarios fail to explain 4:3 mean motion resonances. MNRAS, 426, 187–202 {508, 724, 743, 744}CrossRefGoogle Scholar
Rein, H, Spiegel, DS, 2015, IAS15: a fast, adaptive, high-order integrator for gravitational dynamics, accurate to machine precision over a billion orbits. MNRAS, 446, 1424–1437 {513}CrossRefGoogle Scholar
Rein, H, Tamayo, D, 2015, WHFAST: a fast and unbiased implementation of a symplec-tic Wisdom–Holman integrator for long-termgravitational simulations. MNRAS, 452, 376–388 {513, 516}CrossRefGoogle Scholar
Rein, H, Tamayo, D, 2016, Second-order variational equations for N-body simulations. MNRAS, 459, 2275–2285 {513, 516}CrossRefGoogle Scholar
Rein, H, Tamayo, D, 2017, A new paradigmfor reproducing and analyzing N-body simulations of planetary systems. MNRAS, 467, 2377–2383 {513}Google Scholar
Rein, H, Tamayo, D, 2018, JANUS: a bit-wise reversible integrator for N-body dynamics. MNRAS, 473, 3351–3357 {513}CrossRefGoogle Scholar
Rein, H, Tremaine, S, 2011, Symplectic integrators in the shearing sheet. MNRAS, 415, 3168–3176 {513}CrossRefGoogle Scholar
Reiners, A, 2009, Activity-induced radial velocity jitter in a flaring Mdwarf. A&A, 498, 853–861 {37}Google Scholar
Reiners, A, Banyal, RK, Ulbrich, RG, 2014, A laser-lock concept to reach cm s-1-precision in Doppler experimentswith Fabry–Pérotwavelength calibrators. A&A, 569, A77 {33}Google Scholar
Reiners, A, Bean, JL, Huber, KF, et al., 2010, Detecting planets around very low mass stars with the radial velocity method. ApJ, 710, 432–443 {47, 48, 57}CrossRefGoogle Scholar
Reiners, A, Christensen, UR, 2010, A magnetic field evolution scenario for brown dwarfs and giant planets. A&A, 522, A13 {425, 426, 439, 714}Google Scholar
Reiners, A, Ribas, I, Zechmeister, M, et al., 2018, The CARMENES search for exoplanets around M dwarfs: HD 147379 b: a nearby Neptune in the temperate zone of an early Mdwarf. A&A, 609, L5 {46, 48, 717}Google Scholar
Reiners, A, Shulyak, D, Anglada-Escudé, G, et al., 2013, Radial velocity signatures of Zeeman broadening. A&A, 552, A103 {40}Google Scholar
Reiners, A, Zechmeister, M, Caballero, JA, et al., 2017, The CARMENES search for exo-planets around M dwarfs: high-resolution optical and near-infrared spectroscopy of 324 survey stars. ArXiv e-prints {48}
Reines, AE, Marcy, GW, 2002, Optical search for extraterrestrial intelligence: a spectroscopic search for laser emission from nearby stars. PASP, 114, 416–426 {646}CrossRefGoogle Scholar
Reinhard, CT, Olson, SL, Schwieterman, EW, et al., 2017, False negatives for remote life detection on ocean-bearing planets: lessons from the early Earth. Astrobiology, 17, 287–297 {640}CrossRefGoogle ScholarPubMed
Reinhardt, C, Stadel, J, 2017, Numerical aspects of giant impact simulations. MNRAS, 467, 4252–4263 {476}CrossRefGoogle Scholar
Reinhold, T, Cameron, RH, Gizon, L, 2017, Evidence for photometric activity cycles in 3203 Kepler stars. A&A, 603, A52 {383}Google Scholar
Reinhold, T, Gizon, L, 2015, Rotation, differential rotation, and gyrochronology of active Kepler stars. A&A, 583, A65 {309, 383, 386}Google Scholar
Reinhold, T, Reiners, A, 2013, Fast and reliable method for measuring stellar differential rotation from photometric data. A&A, 557, A11 {309, 386}Google Scholar
Reinhold, T, Reiners, A, Basri, G, 2013, Rotation and differential rotation of active Kepler stars. A&A, 560, A4 {309, 383, 385, 386, 739, 742, 744}Google Scholar
Reipurth, B, 1990, FU Ori eruptions and early stellar evolution. Flare Stars in Star Clusters, Associations and the Solar Vicinity (eds. Mirzoian LV, Pettersen, BR, Tsvetkov MK), volume 137 of IAU Symposium, 229–251 {459}
Reipurth, B, Clarke, C, 2001, The formation of brown dwarfs as ejected stellar embryos. AJ, 122, 432–439 {442}CrossRefGoogle Scholar
Remo, JL, 2007, Classifying solid planetary bodies. New Trends in Astrodynamics and Applications III, volume 886 of Amer. Inst. Phys. Conf. Ser., 284–302 {681}Google Scholar
Rempel, M, 2012, Numerical sun spot models: robustness of photospheric velocity and magnetic field structure. ApJ, 750, 62 {650}CrossRefGoogle Scholar
Rempel, M, Schlichenmaier, R, 2011, Sun spot modeling: from simplified models to radiative MHD simulations. Living Reviews in Solar Physics, 8, 3 {649}CrossRefGoogle Scholar
Remus, F, Mathis, S, Zahn, JP, 2012a, The equilibrium tide in stars and giant planets. I. The coplanar case. A&A, 544, A132 {541}Google Scholar
Remus, F, Mathis, S, Zahn, JP, et al., 2012b, Anelastic tidal dissipation in multi-layer planets. A&A, 541, A165 {626}Google Scholar
Remus, F, Mathis, S, Zahn, JP, 2015, The surface signature of the tidal dissipation of the core in a two-layer planet. A&A, 573, A23 {542}Google Scholar
Ren, A, Fu, J, De Cat, P, et al., 2016, LAMOST observations in the Kepler field. Analysis of the stellar parameters measured with LASP based on low-resolution spectra. ApJS, 225, 28 {390}CrossRefGoogle Scholar
Ren, D, Dou, J, Zhang, X, et al., 2012, Speckle noise subtraction and suppression with adaptive optics coronagraphic imaging. ApJ, 753, 99 {339}CrossRefGoogle Scholar
Ren, D, Wang, H, 2006, Spectral subtraction: a new approach to remove low- and high-order speckle noise. ApJ, 640, 530–537 {339}CrossRefGoogle Scholar
Ren, D, Zhu, Y, 2011, A coronagraph using a liquid crystal array and a deformable mirror for active apodising and phase corrections. PASP, 123, 341–347 {335}CrossRefGoogle Scholar
Renard, S, Absil, O, Berger, JP, et al., 2008, Prospects for near-infrared characterisation of hot Jupiters with the VLTI Spectro–Imager (VSI). SPIE Conf. Ser., volume 7013, 91 {348}Google Scholar
Renner, S, Rauer, H, Erikson, A, et al., 2008, The BAST algorithm for transit detection. A&A, 492, 617–620 {191}Google Scholar
Retter, A, Marom, A, 2003, A model of an expanding giant that swallowed planets for the eruption of V838Mon. MNRAS, 345, L25–L28 {370}CrossRefGoogle Scholar
Retter, A, Zhang, B, Siess, L, et al., 2006, The planets capture model of V83 Mon: conclusions for the penetration depth of the planet(s). MNRAS, 370, 1573–1580 {369, 370}CrossRefGoogle Scholar
Reufer, A, Meier, MMM, Benz, W, et al., 2012, A hit-and-run giant impact scenario. Icarus, 221, 296–299 {664}CrossRefGoogle Scholar
Reuyl, D, Holmberg, E, 1943, On the existence of a third component in the system 70 Oph. ApJ, 97, 41–45 {83}CrossRefGoogle Scholar
Rey, J, Hébrard, G, Bouchy, F, et al., 2017, The SOPHIE search for northern extraso-lar planets. XII. Three giant planets suitable for astrometric mass determination with Gaia. A&A, 601, A9 {718, 719}Google Scholar
Reyes-Ruiz, M, Aceves, H, Chavez, CE, 2015, Stability of the outer planets in multireso-nant configurations with a self-gravitating planetesimal disk. ApJ, 804, 91 {508}CrossRefGoogle Scholar
Reynaud, F, Delage, L, 2007, Proposal for a temporal version of a hypertelescope. A&A, 465, 1093–1097 {355}Google Scholar
Reynolds, AP, de Bruijne, JHJ, Perryman, MAC, et al., 2003, Temperature determination via STJ optical spectroscopy. A&A, 400, 1209–1217 {183}Google Scholar
Reynolds, RT, McKay, CP, Kasting, JF, 1987, Europa, tidally heated oceans, and habitable zones around giant planets. Adv. Space Res., 7, 125–132 {627}CrossRefGoogle ScholarPubMed
Reynolds, RT, Squyres, SW, Colburn, DS, et al., 1983, On the habitability of Europa. Icarus, 56, 246–254 {626}CrossRefGoogle Scholar
Rhie, SH, Becker, AC, Bennett, DP, et al., 1999, Observations of the binary microlens event MACHO–1998–SMC–1 by the microlensing planet search collaboration. ApJ, 522, 1037–1045 {140}CrossRefGoogle Scholar
Rhie, SH, Bennett, DP, Becker, AC, et al., 2000, On planetary companions to the MACHO–1998–BLG–35 microlens star. ApJ, 533, 378–391 {140}CrossRefGoogle Scholar
Rhodes, MD, Budding, E, 2014, Analysis of selected Kepler mission planetary light curves. Ap&SS, 351, 451–471 {195}Google Scholar
Riaud, P, 2012a, New high-density deformable mirrors for high-contrast imaging. A&A, 545, A25 {357}Google Scholar
Riaud, P, 2012b, The quantum stellar interferometer. European Physical Journal D, 66, 8 {349}CrossRefGoogle Scholar
Riaud, P, Boccaletti, A, Baudrand, J, et al., 2003, The four-quadrant phase mask coron-agraph. III. Laboratory performance. PASP, 115, 712–719 {336}CrossRefGoogle Scholar
Riaud, P, Boccaletti, A, Gillet, S, et al., 2002, Coronagraphic search for exoplanets with a hypertelescope. I. In the thermal infrared. A&A, 396, 345–352 {351, 355}Google Scholar
Riaud, P, Boccaletti, A, Rouan, D, et al., 2001, The four-quadrant phase-mask corona-graph. II. Simulations. PASP, 113, 1145–1154 {334, 336}CrossRefGoogle Scholar
Riaud, P, Mawet, D, Absil, O, 2005, Limitation of the pupil replication technique in the presence of instrumental defects. ApJ, 628, L81–L84 {338}CrossRefGoogle Scholar
Riaud, P, Mawet, D, Absil, O, et al., 2006, Coronagraphic imaging of three weak-line T Tauri stars: evidence of planetary formation around PDS 70. A&A, 458, 317–325 {336}Google Scholar
Riaud, P, Mawet, D, Magette, A, 2012a, Instantaneous phase retrieval with the vector vortex coronagraph: theoretical and optical implementation. A&A, 545, A151 {337}Google Scholar
Riaud, P, Mawet, D, Magette, A, 2012b, Nijboer–Zernike phase retrieval for high-contrast imaging: principle, demonstration with VLT–NACO, and perspectives in vector vortex coronagraphy. A&A, 545, A150 {337}Google Scholar
Riaud, P, Schneider, J, 2007, Improving Earth-like planet detection with an ELT: the differential radial velocity experiment. A&A, 469, 355–361 {43}Google Scholar
Riaz, B, Gizis, JE, 2007, Characterising the disk around the TWHya association brown dwarf 2MJ1207. ApJ, 661, 354–360 {763}CrossRefGoogle Scholar
Riaz, B, Gizis, JE, 2012, Herschel–PACS and SPIRE observations of TWHya association brown dwarf disks. A&A, 548, A54 {434}Google Scholar
Riaz, B, Lodato, G, Stamatellos, D, et al., 2012a, Herschel–SPIRE observations of the TWA brown dwarf disk 2M J1207. MNRAS, 422, L6 {763}CrossRefGoogle Scholar
Riaz, B, Lodieu, N, Goodwin, S, et al., 2012b, Disk frequencies for brown dwarfs in Upper Scorpius: implications for brown dwarf formation theories. MNRAS, 420, 2497–2517 {434, 443}CrossRefGoogle Scholar
Riaz, B, Thompson, M, Whelan, ET, et al., 2015, Very low-luminosity Class I/flat outflow sources in ¾ Ori. MNRAS, 446, 2550–2559 {445}CrossRefGoogle Scholar
Ribas, Á, Bouy, H, Merín, B, 2015, Protoplanetary disk lifetimes versus stellar mass and possible implications for giant planet populations. A&A, 576, A52 {484}Google Scholar
Ribas, Á, Merín, B, Ardila, DR, et al., 2012, Warm debris disks candidates in transiting planets systems. A&A, 541, A38 {218}Google Scholar
Ribas, I, Bolmont, E, Selsis, F, et al., 2016, The habitability of Proxima Cen b. I. Irradiation, rotation and volatile inventory from formation to the present. A&A, 596, A111 {714}Google Scholar
Ribas, I, Font-Ribera, A, Beaulieu, JP, 2008, A 5 Earth-mass super-Earth orbiting GJ 436? The power of near-grazing transits. ApJ, 677, L59–L62 {224, 728}CrossRefGoogle Scholar
Ribas, I, Gregg, MD, Boyajian, TS, et al., 2017, The full spectral radiative properties of Proxima Cen. A&A, 603, A58 {714}Google Scholar
Ribas, I, Miralda-Escudé, J, 2007, The eccentricity-mass distribution of exoplanets: signatures of different formation mechanisms? A&A, 464, 779–785 {79}Google Scholar
Ribas, I, Solano, E, Masana, E, et al., 2003, Effective temperatures and radii of planet-hosting stars from infrared photometry. A&A, 411, L501–L504 {377, 378}Google Scholar
Rica, FM, Barrena, R, Henríquez, JA, et al., 2017, Dynamical study of the exoplanet host binary system HD 106515. Publ. Astron. Soc. Australia, 34, e004 {721}CrossRefGoogle Scholar
Ricci, D, Le Coroller, H, Labeyrie, A, 2009, Extreme coronagraphy with an adaptive hologram. Simulations of exoplanet imaging. A&A, 503, 301–308 {340}Google Scholar
Ricci, D, Ramón-Fox, FG, Ayala-Loera, C, et al., 2015, Multifilter transit observations of WASP–39 b and WASP–43 b with three San Pedro Mártir telescopes. PASP, 127, 143–151 {755}CrossRefGoogle Scholar
Ricci, D, Sada, PV, Navarro-Meza, S, et al., 2017a, Multi-filter transit observations of HAT–P–3 b and TrES–3 b with multiple northern hemisphere telescopes. PASP, 129(6), 064401 {735, 751}CrossRefGoogle Scholar
Ricci, L, Cazzoletti, P, Czekala, I, et al., 2017b, ALMA observations of the young sub-stellar binary system 2MJ1207. AJ, 154, 24 {764}CrossRefGoogle Scholar
Ricci, L, Isella, A, Carpenter, JM, et al., 2013, CARMA interferometric observations of 2MASS J044427+2512: the first spatially resolved observations of thermal emission of a brown dwarf disk. ApJ, 764, L27 {444}CrossRefGoogle Scholar
Ricci, L, Rome, H, Pinilla, P, et al., 2017c, VLA observations of the disk around the young brown dwarf 2MASS J044427+2512. ApJ, 846, 19 {444}CrossRefGoogle Scholar
Ricci, L, Testi, L, Maddison, ST, et al., 2012a, Fomalhaut debris disk emission at 7mm: constraints on the collisional models of planetesimals. A&A, 539, L6 {761}Google Scholar
Ricci, L, Testi, L, Natta, A, et al., 2012b, ALMA observations of ρ Oph 102: grain growth and molecular gas in the disk around a young brown dwarf. ApJ, 761, L20 {444}CrossRefGoogle Scholar
Ricci, L, Testi, L, Natta, A, 2014, Brown dwarf disks with ALMA. ApJ, 791, 20 {444}CrossRefGoogle Scholar
Rice, JB, Wehlau, WH, Khokhlova, VL, 1989, Mapping stellar surfaces by Doppler imaging: technique and application. A&A, 208, 179–188 {440}Google Scholar
Rice, K, 2015, Can Lidov–Kozai cycles explain Kepler–78 b? MNRAS, 448, 1729–1737 {742}CrossRefGoogle Scholar
Rice, K, 2016, The evolution of self-gravitating accretion disks. Publ. Astron. Soc. Australia, 33, e012 {488}CrossRefGoogle Scholar
Rice, K, Lopez, E, Forgan, D, et al., 2015, Disk fragmentation rarely forms planetary-mass objects. MNRAS, 454, 1940–1947 {488}CrossRefGoogle Scholar
Rice, K, Penny, MT, Horne, K, 2013, How fast do Jupiters grow? Signatures of the snow line and growth rate in the distribution of gas giant planets. MNRAS, 428, 756–762 {564}CrossRefGoogle Scholar
Rice, WKM, Armitage, PJ, 2003, On the formation time scale and core masses of gas giant planets. ApJ, 598, L55–L58 {483}CrossRefGoogle Scholar
Rice, WKM, Armitage, PJ, 2005, Quantifying orbital migration from exoplanet statistics and host metallici-ties. ApJ, 630, 1107–1113 {393}CrossRefGoogle Scholar
Rice, WKM, Armitage, PJ, 2009, Time-dependent models of the structure and stability of self-gravitating protoplanetary disks. MNRAS, 396, 2228–2236 {488}CrossRefGoogle Scholar
Rice, WKM, Armitage, PJ, Bate, MR, et al., 2003a, Astrometric signatures of self-gravitating protoplanetary disks. MNRAS, 338, 227–232 {85}CrossRefGoogle Scholar
Rice, WKM, Armitage, PJ, Bate, MR, 2003b, The effect of cooling on the global stability of self-gravitating protoplanet-ary disks. MNRAS, 339, 1025–1030 {488}CrossRefGoogle Scholar
Rice, WKM, Armitage, PJ, Hogg, DF, 2008, Why are there so few hot Jupiters? MNRAS, 384, 1242–1248 {521}CrossRefGoogle Scholar
Rice, WKM, Lodato, G, Armitage, PJ, 2005, Investigating fragmentation conditions in self-gravitating accretion disks. MNRAS, 364, L56–L60 {488}CrossRefGoogle Scholar
Rice, WKM, Lodato, G, Pringle, JE, et al., 2004, Accelerated planetesimal growth in self-gravitating protoplanetary disks. MNRAS, 355, 543–552 {458, 467}CrossRefGoogle Scholar
Rice, WKM, Lodato, G, Pringle, JE, 2006, Planetesimal formation via fragmentation in self-gravitating protoplanet-ary disks. MNRAS, 372, L9–L13 {471}CrossRefGoogle Scholar
Rice, WKM, Mayo, JH, Armitage, PJ, 2010, The role of disk self-gravity in the formation of protostars and protostellar disks. MNRAS, 402, 1740–1749 {488}CrossRefGoogle Scholar
Rice, WKM, Veljanoski, J, Collier Cameron, A, 2012, Tidal evolution of close-in giant planets: evidence of type II migration? MNRAS, 425, 2567–2575 {498}CrossRefGoogle Scholar
Rice, WKM, Wood, K, Armitage, PJ, et al., 2003c, Constraints on a planetary origin for the gap in the protoplanetary disk of GM Aur. MNRAS, 342, 79–85 {465}CrossRefGoogle Scholar
Rich, EA, Currie, T, Wisniewski, JP, et al., 2016, Thermal infrared imaging and atmospheric modeling of VHS J125601.92–125723.9 b: evidence for moderately thick clouds and equilibrium carbon chemistry in a hierarchical triple system. ApJ, 830, 114 {764}Google Scholar
Richard, D, Zahn, J, 1999, Turbulence in differentially rotating flows: what can be learned from the Couette–Taylor experiment. A&A, 347, 734–738 {457}Google Scholar
Richardson, LJ, Deming, D, Horning, K, et al., 2007, A spectrumof an extrasolar planet. Nature, 445, 892–895 {610}CrossRefGoogle ScholarPubMed
Richardson, LJ, Deming, D, Seager, S, 2003a, Infrared observations during the secondary eclipse of HD 209458 b. II. Strong limits on the infrared spectrum near 2.2 μm. ApJ, 597, 581–589 {609, 610, 731}CrossRefGoogle Scholar
Richardson, LJ, Deming, D, Wiedemann, G, et al., 2003b, Infrared observations during the secondary eclipse of HD 209458 b. I. 3.6μm occultation spectroscopy using the VLT. ApJ, 584, 1053–1062 {609, 610, 731}CrossRefGoogle Scholar
Richardson, LJ, Harrington, J, Seager, S, et al., 2006, A Spitzer infrared radius for the transiting extrasolar planet HD 209458 b. ApJ, 649, 1043–1047 {203, 610, 731}CrossRefGoogle Scholar
Richardson, ND, Russell, CMP, St-Jean, L, et al., 2017, The variability of the BRITE-est Wolf–Rayet binary, γ2 Vel.-I. Photometric and spectroscopic evidence for colliding winds. MNRAS, 471, 2715–2729 {187}CrossRefGoogle Scholar
Richert, AJW, Lyra, W, Boley, A, et al., 2015, On shocks driven by high-mass planets in radiatively inefficient disks. I. Two-dimensional global disk simulations. ApJ, 804, 95 {462, 467}CrossRefGoogle Scholar
Richichi, A, 2003, Lunar occultations of stars with exoplanet candidates. A&A, 397, 1123–1127 {339}Google Scholar
Richling, S, Hollenbach, D, Yorke, HW, 2006, Destruction of protoplanetary disks by photoevaporation. Planet Formation, 31–41, Cambridge University Press {462}
Ricker, GR, 2014, The Transiting Exoplanet Survey Satellite Mission (TESS). J. Am. Assoc. Var. Star Obs., 42, 234 {180}Google Scholar
Ricker, GR, Winn, JN, Vanderspek, R, et al., 2015, Transiting Exoplanet Survey Satellite (TESS). Journal of Astronomical Telescopes, Instruments, and Systems, 1(1), 014003 {180}Google Scholar
Ricker, PM, Taam, RE, 2012, An AMR study of the common-envelope phase of binary evolution. ApJ, 746, 74 {113}CrossRefGoogle Scholar
Rickman, H, Fouchard, M, Froeschlé, C, et al., 2012, Gaia and the new comets from the Oort cloud. Planet. Space Sci., 73, 124–129 {655}CrossRefGoogle Scholar
Rickman, H, Wiśniowski, T, Gabryszewski, R, et al., 2017, Cometary impact rates on the Moon and planets during the late heavy bombardment. A&A, 598, A67 {669, 671}Google Scholar
Rickman, H, Wiśniowski, T, Wajer, P, et al., 2014, Monte Carlo methods to calculate impact probabilities. A&A, 569, A47 {671}Google Scholar
Ridden-Harper, AR, Snellen, IAG, Keller, CU, et al., 2016, Search for an exosphere in sodium and calcium in the transmission spectrum of exoplanet 55 Cnc e. A&A, 593, A129 {728}Google Scholar
Riechers, DA, Bradford, CM, Clements, DL, et al., 2013, A dust-obscured massive maximum-starburst galaxy at a redshift of 6.34. Nature, 496, 329–333 {495}CrossRefGoogle Scholar
Riedel, AR, Murphy, SJ, Henry, TJ, et al., 2011, The solar neighbourhood. 26. AP Col: the closest (8.4 pc) pre-main-sequence star. AJ, 142, 104 {374}CrossRefGoogle Scholar
Rieder, S, Kenworthy, MA, 2016, Constraints on the size and dynamics of the J1407 b ring system. A&A, 596, A9 {219, 751}Google Scholar
Rieke, GH, Gáspár, A, Ballering, NP, 2016, Magnetic grain trapping and the hot excesses around early-type stars. ApJ, 816, 50 {461}CrossRefGoogle Scholar
Rieke, GH, Su, KYL, Stansberry, JA, et al., 2005, Decay of planetary debris disks. ApJ, 620, 1010–1026 {282}CrossRefGoogle Scholar
Rieke, GH, Wright, GS, Böker, T, et al., 2015, The mid-infrared instrument for JWST. I. Introduction. PASP, 127, 584–594 {181}CrossRefGoogle Scholar
Riess, AG, Casertano, S, Anderson, J, et al., 2014, Parallax beyond a kiloparsec from spatially scanning the HST–WFC3. ApJ, 785, 161 {93, 185}CrossRefGoogle Scholar
Rigaut, FJ, Ellerbroek, BL, Flicker, R, 2000, Principles, limitations, and performance of multiconjugate adaptive optics. SPIE Conf. Ser., volume 4007, 1022–1031 {332}Google Scholar
Rigliaco, E, Natta, A, Randich, S, et al., 2011, X-shooter observations of the accreting brown dwarf J053825.4–024241. A&A, 526, L6 {444}Google Scholar
Riley, JMW, Waldram, EM, Riley, JM, 1999, The 7C survey of radio sources at 151MHz: 33 regions in the range 7h < RA < 17h, 30 deg < Dec < 58 deg. MNRAS, 306, 31–34 {426}CrossRefGoogle Scholar
Rimmer, PB, Helling, C, 2013, Ionisation in atmospheres of brown dwarfs and extra-solar planets. IV. The effect of cosmic rays. ApJ, 774, 108 {591, 631}CrossRefGoogle Scholar
Rimmer, PB, Helling, C, 2016, A chemical kinetics network for lightning and life in planetary atmospheres. ApJS, 224, 9 {592}CrossRefGoogle Scholar
Rimmer, PB, Helling, C, Bilger, C, 2014, The influence of Galactic cosmic rays on ion-neutral hydrocarbon chemistry in the upper atmospheres of free-floating exo-planets. Int. J. Astrobiol., 13, 173–181 {631}CrossRefGoogle Scholar
Ringwood, AE, 1989, Flaws in the giant impact hypothesis of lunar origin. Earth Planet. Sci. Lett., 95, 208–214 {664}CrossRefGoogle Scholar
Rinnert, K, Lanzerotti, LJ, Uman, MA, et al., 1998, Measurements of radio frequency signals from lightning in Jupiter's atmosphere. J. Geophys. Res., 103, 22979–22992 {591}CrossRefGoogle Scholar
Riols, A, Latter, H, 2016, Gravitoturbulence in magnetised protostellar disks. MNRAS, 460, 2223–2237 {488}CrossRefGoogle Scholar
Risquez, D, van Leeuwen, F, Brown, AGA, 2013, Attitude reconstruction for the Gaia spacecraft. A&A, 551, A19 {97}Google Scholar
Ritter, H, Kolb, U, 2003, Catalogue of cataclysmic binaries, low-mass X-ray binaries and related objects (seventh edition). A&A, 404, 301–303 {113}Google Scholar
Ritter, H, Kolb, U, 2010, Vizie R Online Data Catalogue: Cataclysmic Binaries, LMXBs, and related objects. Vizie R Online Data Catalogue, 1 {113}Google Scholar
Rivera, EJ, Butler, RP, Vogt, SS, et al., 2010a, A super-Earth orbiting the nearby Sun-like star HD 1461. ApJ, 708, 1492–1499 {718}CrossRefGoogle Scholar
Rivera, EJ, Haghighipour, N, 2007, On the stability of test particles in extrasolar multiple planet systems. MNRAS, 374, 599–613 {69, 70, 514, 713, 716, 717, 728}CrossRefGoogle Scholar
Rivera, EJ, Laughlin, G, Butler, RP, et al., 2010b, The Lick–Carnegie exoplanet survey: a Uranus-mass fourth planet for GJ 876 in an extrasolar Laplace configuration. ApJ, 719, 890–899 {11, 58, 59, 72, 73, 717}CrossRefGoogle Scholar
Rivera, EJ, Lissauer, JJ, 2000, Stability analysis of the planetary system orbiting ν And. ApJ, 530, 454–463 {69, 713}CrossRefGoogle Scholar
Rivera, EJ, Lissauer, JJ, 2001, Dynamical models of the resonant pair of planets orbiting the star GJ 876. ApJ, 558, 392–402 {23, 70, 71, 72, 262, 717}CrossRefGoogle Scholar
Rivera, EJ, Lissauer, JJ, Butler, RP, et al., 2005, A 7.5 Earth-mass planet orbiting the nearby star, GJ 876. ApJ, 634, 625–640 {10, 13, 44, 58, 66, 71, 717}CrossRefGoogle Scholar
Rivera-Valentin, EG, Barr, AC, 2014, Estimating the size of late veneer impactors from impact-induced mixing on Mercury. ApJ, 782, L8 {669}CrossRefGoogle Scholar
Rivera-Valentin, EG, Barr, AC, Lopez Garcia, EJ, et al., 2014, Constraints on planetesimal disk mass from the cratering record and equatorial ridge on Iapetus. ApJ, 792, 127 {689}CrossRefGoogle Scholar
Rivet, JP, Koechlin, L, Raksasataya, T, et al., 2011, Fresnel imager testbeds: setting up, evolution, and first images. Exp. Astron., 30, 149–164 {354}CrossRefGoogle Scholar
Rivier, G, Crida, A, Morbidelli, A, et al., 2012, Circumplanetary disks as bottlenecks for gas accretion onto giant planets. A&A, 548, A116 {463, 550}Google Scholar
Rivkin, AS, Howell, ES, Vilas, F, et al., 2002, Hydrated minerals on asteroids: the astronomical record. Asteroids III, 235–253 {144}
Rizzuto, AC, Ireland, MJ, Zucker, DB, 2012, WISE circumstellar disks in the young Sco–Cen association. MNRAS, 421, L97–L101 {465}CrossRefGoogle Scholar
Rizzuto, AC, Mann, AW, Vanderburg, A, et al., 2017, Zodiacal Exoplanets in Time (ZEIT). V. A uniform search for transiting planets in young clusters observed by K2. AJ, 154, 224 {159}CrossRefGoogle Scholar
Robbins, SJ, Hynek, BM, 2012, A new global database of Mars impact craters ‚1 km. 1. Database creation, properties, and parameters. J. Geophys. Res. (Planets), 117, E05004 {671}Google Scholar
Roberge, A, Chen, CH, Millan-Gabet, R, et al., 2012, The exozodiacal dust problem for direct observations of exo-Earths. PASP, 124, 799–808 {342, 343}CrossRefGoogle Scholar
Roberge, A, Feldman, PD, Weinberger, AJ, et al., 2006a, Stabilisation of the disk around β Pic by extremely carbon-rich gas. Nature, 441, 724–726 {493}CrossRefGoogle Scholar
Roberge, A, Kamp, I, 2010, Protoplanetary and debris disks. Exoplanets, 269–295, Princeton University Press {342}
Roberge, A, Lecavelier des Etangs A, Vidal-Madjar, A, et al., 2006b, Evidence for comet-like bodies around the 12 Myr old star β Pic. Astrophysics in the Far Ultraviolet: Five Years of Discovery with FUSE, volume 348 of ASP Conf. Ser., 294–296 {493, 762}Google Scholar
Roberts, JE, Barnes, JW, Rowe, JF, et al., 2013a, MOST photometry of the 2010 January transit of HD 80606 b. ApJ, 762, 55 {186, 729}CrossRefGoogle Scholar
Roberts, JE, Dekany, RG, Burruss, RS, et al., 2012, Results from the PALM-3000 high-order adaptive optics system. SPIE Conf. Ser., volume 8447 {343}Google Scholar
Roberts, LC, Mason, BD, Neyman, CR, et al., 2015a, Know the star, know the planet. IV. A stellar companion to the host star of the eccentric exoplanet HD 8673 b. AJ, 149, 144 {718}CrossRefGoogle Scholar
Roberts, LC, Oppenheimer, R, Crepp, JR, et al., 2015b, Know the star, know the planet. V. Characterisation of the stellar companion to the exoplanet host star HD 177830. AJ, 150, 103 {723}CrossRefGoogle Scholar
Roberts, LC, Tokovinin, A, Mason, BD, et al., 2015c, Know the star, know the planet. III. Discovery of late-type companions to two exoplanet host stars. AJ, 149, 118 {718, 728}CrossRefGoogle Scholar
Roberts, LC, Turner, NH, ten Brummelaar, TA, et al., 2011, Know the star, know the planet. I. Adaptive optics of exoplanet host stars. AJ, 142, 175 {360}CrossRefGoogle Scholar
Roberts, S, McQuillan, A, Reece, S, et al., 2013b, Astrophysically robust systematics removal using variational inference: application to the first month of Kepler data. MNRAS, 435, 3639–3653 {190}CrossRefGoogle Scholar
Robertson, P, Bender, C, Mahadevan, S, et al., 2016, Proxima Cen as a benchmark for stellar activity indicators in the near-infrared. ApJ, 832, 112 {37}CrossRefGoogle Scholar
Robertson, P, Endl, M, Cochran, WD, et al., 2012a, The McDonald Observatory planet search: new long-period giant planets and two interacting Jupiters in the HD 155358 system. ApJ, 749, 39 {720, 722, 724}CrossRefGoogle Scholar
Robertson, P, Endl, M, Cochran, WD, 2013, Secretly eccentric: the giant planet and activity cycle of GJ 328. ApJ, 774, 147 {38, 716}CrossRefGoogle Scholar
Robertson, P, Endl, M, Henry, GW, et al., 2015a, Stellar activity and its implications for exoplanet detection on GJ 176. ApJ, 801, 79 {37, 38, 724}CrossRefGoogle Scholar
Robertson, P, Horner, J, Wittenmyer, RA, et al., 2012b, A second giant planet in 3:2 mean-motion resonance in the HD 204313 system. ApJ, 754, 50 {724}CrossRefGoogle Scholar
Robertson, P, Mahadevan, S, 2014, Disentangling planets and stellar activity for GJ 667C. ApJ, 793, L24 {717}CrossRefGoogle Scholar
Robertson, P, Mahadevan, S, Endl, M, et al., 2014, Stellar activity masquerading as planets in the habitable zone of the Mdwarf GJ 581. Science, 345, 440–444 {37, 717}CrossRefGoogle ScholarPubMed
Robertson, P, Mahadevan, S, Endl, M, 2015b, Response to Comment: Stellar activity masquerading as planets in the habitable zone of the Mdwarf GJ 581. Science, 347, 1080–1080 {717}CrossRefGoogle Scholar
Robertson, P, Roy, A, Mahadevan, S, 2015c, Stellar activity mimics a habitable-zone planet around Kapteyn's Star. ApJ, 805, L22 {59, 716}CrossRefGoogle Scholar
Robichon, N, 2002, Detection of transits of extrasolar planets with Gaia. EAS Pub. Ser., volume 2, 215–221 {186}CrossRefGoogle Scholar
Robichon, N, Arenou, F, 2000, HD 209458 planetary transits from Hipparcos photometry. A&A, 355, 295–298 {170, 185, 186, 608, 731}Google Scholar
Robigou, V, Delaney, JR, Stakes, DS, 1993, Large massive sulphide deposits in a newly-discovered active hydrothermal system, The High-Rise Field, Endeavour Segment, Juan De Fuca Ridge. Geophysical Research Letters, 20(17), 1887–1890, ISSN 1944-8007 {637}CrossRefGoogle Scholar
Robin, AC, Reylé, C, Marshall, DJ, et al., 2012, The Besançon model of stellar population synthesis of the Galaxy. Red Giants as Probes of the Structure and Evolution of the Milky Way, 171, Springer {380}CrossRefGoogle Scholar
Robinson, EL, Cochran, AL, Cochran, WD, et al., 1990, A search for eclipses of HD 114762 by a low-mass companion. AJ, 99, 672–674 {157, 722}CrossRefGoogle Scholar
Robinson, SE, Ammons, SM, Kretke, KA, et al., 2007a, The N2K consortium. VII. Atmospheric parameters of 1907 metal-rich stars: finding planet-search targets. ApJS, 169, 430–438 {379, 388}CrossRefGoogle Scholar
Robinson, SE, Laughlin, G, Bodenheimer, P, et al., 2006a, Silicon and nickel enrichment in planet host stars: observations and implications for the core accretion theory of planet formation. ApJ, 643, 484–500 {397, 485, 554}CrossRefGoogle Scholar
Robinson, SE, Laughlin, G, Vogt, SS, et al., 2007b, Two Jovian-mass planets in Earth-like orbits. ApJ, 670, 1391–1400 {718, 720}CrossRefGoogle Scholar
Robinson, SE, Strader, J, Ammons, SM, et al., 2006b, The N2K consortium. V. Identifying very metal-rich stars with low-resolution spectra: finding planet-search targets. ApJ, 637, 1102–1112 {54}CrossRefGoogle Scholar
Robinson, TD, 2011, Modeling the infrared spectrum of the Earth–Moon system: implications for the detection and characterisation of Earth-like extrasolar planets and their moon-like companions. ApJ, 741, 51 {276}CrossRefGoogle Scholar
Robinson, TD, 2017, A theory of exoplanet transits with light scattering. ApJ, 836, 236 {223, 591}CrossRefGoogle Scholar
Robinson, TD, Catling, DC, 2012, An analytic radiative-convective model for planetary atmospheres. ApJ, 757, 104 {591}CrossRefGoogle Scholar
Robinson, TD, Ennico, K, Meadows, VS, et al., 2014a, Detection of ocean glint and ozone absorption using LCROSS Earth observations. ApJ, 787, 171 {237, 238}CrossRefGoogle Scholar
Robinson, TD, Fortney, JJ, Hubbard, WB, 2017, Analytic scattering and refractionmod-els for exoplanet transit spectra. ApJ, 850, 128 {222}CrossRefGoogle Scholar
Robinson, TD, Maltagliati, L, Marley, MS, et al., 2014b, Titan solar occultation observations reveal transit spectra of a hazy world. Proc. Nat. Acad. Sci., 111, 9042–9047 {590}CrossRefGoogle Scholar
Robinson, TD, Meadows, VS, Crisp, D, 2010, Detecting oceans on extrasolar planets using the glint effect. ApJ, 721, L67–L71 {237, 238}CrossRefGoogle Scholar
Robinson, TD, Meadows, VS, Crisp, D, et al., 2011, Earth as an extrasolar planet: Earth model validation using EPOXI Earth observations. Astrobiology, 11, 393–408 {184}CrossRefGoogle ScholarPubMed
Robinson, TD, Stapelfeldt, KR, Marley, MS, 2016, Characterising rocky and gaseous exoplanetswith 2-mclass space-based coronagraphs. PASP, 128(2), 025003 {181}CrossRefGoogle Scholar
Robutel, P, Bodossian, J, 2009, The resonant structure of Jupiter's Trojan asteroids. II. What happens for different configurations of the planetary system. MNRAS, 399, 69–87 {697}CrossRefGoogle Scholar
Robutel, P, Pousse, A, 2013, On the co-orbital motion of two planets in quasi-circular orbits. Cel. Mech. Dyn. Astron., 117, 17–40 {273}CrossRefGoogle Scholar
Rocchetto, M, Farihi, J, Gänsicke, BT, et al., 2015, The frequency and infrared brightness of circumstellar disks at white dwarfs. MNRAS, 449, 574–587 {415}CrossRefGoogle Scholar
Roddier, F, 1988, Curvature sensing and compensation: a new concept in adaptive optics. Appl. Opt., 27, 1223–1225 {332}CrossRefGoogle ScholarPubMed
Roddier, F, Northcott, M, Graves, JE, 1991, A simple low-order adaptive optics system for near-infrared applications. PASP, 103, 131–149 {331, 332}CrossRefGoogle Scholar
Roddier, F, Roddier, C, 1997, Stellar coronographwith phase mask. PASP, 109, 815–820 {334, 336}CrossRefGoogle Scholar
Rodet, L, Beust, H, Bonnefoy, M, et al., 2017, Origin of the wide-orbit circumbinary giant planet HD 106906: a dynamical scenario and its impact on the disk. A&A, 602, A12 {763}Google Scholar
Rodgers-Lee, D, Ray, TP, Downes, TP, 2016, Global multifluid simulations of the mag-netorotational instability in radially stratified protoplanetary disks. MNRAS, 463, 134–145 {461}CrossRefGoogle Scholar
Rodgers-Lee, D, Taylor, AM, Ray, TP, et al., 2017, The ionising effect of low-energy cosmic rays from a class II object on its protoplanetary disk. MNRAS, 472, 26–38 {459}CrossRefGoogle Scholar
Rodigas, TJ, Arriagada, P, Faherty, J, et al., 2016, Mag AO Imaging of Long-period Objects (MILO). I. A benchmark M dwarf companion exciting a massive planet around the sun-like star HD 7449. ApJ, 818, 106 {718}CrossRefGoogle Scholar
Rodigas, TJ, Debes, JH, Hinz, PM, et al., 2014a, Does the debris disk around HD 32297 contain cometary grains? ApJ, 783, 21 {493}CrossRefGoogle Scholar
Rodigas, TJ, Follette, KB, Weinberger, A, et al., 2014b, Polarised light imaging of the HD 142527 transition disk with the Gemini Planet Imager (GPI): dust around the close-in companion. ApJ, 791, L37 {360, 466}CrossRefGoogle Scholar
Rodigas, TJ, Hinz, PM, 2009, Which radial velocity exoplanets have undetected outer companions? ApJ, 702, 716–723 {23, 26, 63}CrossRefGoogle Scholar
Rodigas, TJ, Males, JR, Hinz, PM, et al., 2011, Direct imaging constraints on the putative exoplanet 14 Her c. ApJ, 732, 10 {715}CrossRefGoogle Scholar
Rodigas, TJ, Weinberger, A, Mamajek, EE, et al., 2015, Direct exoplanet detection with binary differential imaging. ApJ, 811, 157 {340}CrossRefGoogle Scholar
Rodler, F, Del Burgo, C, Witte, S, et al., 2011, Detecting planets around very cool dwarfs at near infrared wavelengths with the radial velocity technique. A&A, 532, A31 {47, 57}Google Scholar
Rodler, F, Kürster, M, Barnes, JR, 2013a, Detection of CO absorption in the atmosphere of the hot Jupiter HD 189733 b. MNRAS, 432, 1980–1988 {609, 730}CrossRefGoogle Scholar
Rodler, F, Kürster, M, Henning, T, 2008, HD 75289A b revisited: searching for starlight reflected from a hot Jupiter. A&A, 485, 859–864 {236, 720}Google Scholar
Rodler, F, Kürster, M, Henning, T, 2010, τ Boo b: hunting for reflected starlight. A&A, 514, A23 {234, 235, 236}Google Scholar
Rodler, F, Kürster, M, López-Morales, M, et al., 2013b, The return of the mummy: evidence for starlight reflected from the massive hot Jupiter τ Boo b? Astron. Nach., 334, 188 {236, 714}CrossRefGoogle Scholar
Rodler, F, López-Morales, M, 2014, Feasibility studies for the detection of O2 in an Earth-like exoplanet. ApJ, 781, 54 {618}CrossRefGoogle Scholar
Rodler, F, Lopez-Morales, M, Ribas, I, 2012, Weighing the non-transiting hot Jupiter τ Boo b. ApJ, 753, L25 {42, 43, 714}CrossRefGoogle Scholar
Rodmann, J, Henning, T, Chandler, CJ, et al., 2006, Large dust particles in disks around T Tauri stars. A&A, 446, 211–221 {471}Google Scholar
Rodrigues, TS, Girardi, L, Miglio, A, et al., 2014, Bayesian distances and extinctions for giants observed by Kepler and APOGEE. MNRAS, 445, 2758–2776 {390}CrossRefGoogle Scholar
Rodríguez, A, Callegari, N, Correia, ACM, 2016, Coupled orbital and spin evolution of the CoRoT–7 two-planet system using a Maxwell viscoelastic rheology. MNRAS, 463, 3249–3259 {734}CrossRefGoogle Scholar
Rodríguez, A, Callegari, N, Michtchenko, TA, et al., 2012, Spin–orbit coupling for tidally evolving super-Earths. MNRAS, 427, 2239–2250 {541, 717, 728, 739}CrossRefGoogle Scholar
Rodríguez, A, Ferraz-Mello, S, Hussmann, H, 2008, Tidal friction in close-in planets. IAU Symp., volume 249, 179–186 {541}Google Scholar
Rodríguez, A, Ferraz-Mello, S, Michtchenko, TA, et al., 2011a, Tidal decay and orbital circularisation in close-in two-planet systems. MNRAS, 415, 2349–2358 {544, 733}CrossRefGoogle Scholar
Rodríguez, A, Gallardo, T, 2005, The dynamics of the HD 12661 extrasolar planetary system. ApJ, 628, 1006–1013 {75, 718}CrossRefGoogle Scholar
Rodríguez, A, Giuppone, CA, Michtchenko, TA, 2013, Tidal evolution of close-in exo-planets in co-orbital configurations. Cel. Mech. Dyn. Astron., 117, 59–74 {545}CrossRefGoogle Scholar
Rodríguez, A, Michtchenko, TA, Miloni, O, 2011b, Angular momentum exchange during secular migration of two-planet systems. Cel. Mech. Dyn. Astron., 111, 161–178 {522}CrossRefGoogle Scholar
Rodriguez, DR, Duchêne, G, Tom, H, et al., 2015, Stellar multiplicity and debris disks: an unbiased sample. MNRAS, 449, 3160–3170 {495}CrossRefGoogle Scholar
Rodriguez, DR, Zuckerman, B, Melis, C, et al., 2011, The ultracool brown dwarf companion of WD0806–661B: age, mass, and formation. ApJ, 732, L29 {363, 414, 433, 764}CrossRefGoogle Scholar
Rodriguez, JE, Ansdell, M, Oelkers, RJ, et al., 2017a, Identification of young stellar variables with KELT for K2. I. Taurus dippers and rotators. ApJ, 848, 97 {466}CrossRefGoogle Scholar
Rodriguez, JE, Colón, KD, Stassun, KG, et al., 2016, KELT–14 b and KELT–15 b: an independent discovery of WASP–122 b and a new hot Jupiter. AJ, 151, 138 {738}CrossRefGoogle Scholar
Rodriguez, JE, Vanderburg, A, Eastman, JD, et al., 2018, A system of three super Earths transiting the late K dwarf GJ 9827 at 30 pc. AJ, 155, 72 {749}CrossRefGoogle Scholar
Rodriguez, JE, Zhou, G, Vanderburg, A, et al., 2017b, A multi-planet system transiting the V = 9 rapidly rotating F-star HD 106315. AJ, 153, 256 {748}CrossRefGoogle Scholar
Rodríguez, LF, D'Alessio, P, Wilner, DJ, et al., 1998, Compact protoplanetary disks around the stars of a young binary system. Nature, 395, 355–357 {548}CrossRefGoogle Scholar
Rodríguez-Mozos, JM, Moya, A, 2017, Statistical-likelihood exoplanetary habitability index (SEPHI). MNRAS, 471, 4628–4636 {634}CrossRefGoogle Scholar
Roelfsema, R, Gisler, D, Pragt, J, et al., 2011, The ZIMPOL high-contrast imaging polarimeter for VLT–SPHERE: sub-system test results. SPIE Conf. Ser., volume 8151, 21 {344}Google Scholar
Roell, T, Neuhäuser, R, Seifahrt, A, et al., 2012, Extrasolar planets in stellar multiple systems. A&A, 542, A92 {79, 551}Google Scholar
Roettenbacher, RM, Kane, SR, 2017, The stellar activity of TRAPPIST–1 and consequences for the planetary atmospheres. ApJ, 851, 77 {750}CrossRefGoogle Scholar
Roettenbacher, RM, Monnier, JD, Harmon, RO, et al., 2013, Imaging star spot evolution on Kepler target KIC–5110407 using light-curve inversion. ApJ, 767, 60 {386}CrossRefGoogle Scholar
Rogers, FJ, Iglesias, CA, 1992, Radiative atomic Rosseland mean opacity tables. ApJS, 79, 507–568 {570}CrossRefGoogle Scholar
Rogers, FJ, Swenson, FJ, Iglesias, CA, 1996, OPAL equation-of-state tables for astrophysical applications. ApJ, 456, 902–908 {407}CrossRefGoogle Scholar
Rogers, J, López-Morales, M, Apai, D, et al., 2013, Benchmark tests for Markov Chain Monte Carlo fitting of exoplanet eclipse observations. ApJ, 767, 64 {300}CrossRefGoogle Scholar
Rogers, JC, Apai, D, López-Morales, M, et al., 2009, Ks-band detection of thermal emission and colour constraints to CoRoT–1 b: a low-albedo planet with inefficient atmospheric energy redistribution and a temperature inversion. ApJ, 707, 1707–1716 {173, 733}CrossRefGoogle Scholar
Rogers, LA, 2015, Most 1.6 Earth-radius planets are not rocky. ApJ, 801, 41 {295, 500, 602}CrossRefGoogle Scholar
Rogers, LA, Bodenheimer, P, Lissauer, JJ, et al., 2011, Formation and structure of low-density exo-Neptunes. ApJ, 738, 59 {296, 501, 502, 603}CrossRefGoogle Scholar
Rogers, LA, Seager, S, 2010a, A framework for quantifying the degeneracies of exo-planet interior compositions. ApJ, 712, 974–991 {573, 728, 733, 736}CrossRefGoogle Scholar
Rogers, LA, Seager, S, 2010b, Three possible origins for the gas layer on GJ 1214 b. ApJ, 716, 1208–1216 {613, 734}Google Scholar
Rogers, PD, Wadsley, J, 2011, The importance of photosphere cooling in simulations of gravitational instability in the inner regions of protostellar disks. MNRAS, 414, 913–929 {488}CrossRefGoogle Scholar
Rogers, TM, 2017, Constraints on the magnetic field strength of HAT–P–7 b and other hot giant exoplanets. Nature Astronomy, 1, 0131 {591, 616, 736}CrossRefGoogle Scholar
Rogers, TM, Komacek, TD, 2014, Magnetic effects in hot Jupiter atmospheres. ApJ, 794, 132 {591, 616}CrossRefGoogle Scholar
Rogers, TM, Lin, DNC, 2013, On the tidal dissipation of obliquity. ApJ, 769, L10 {255}CrossRefGoogle Scholar
Rogers, TM, Lin, DNC, Lau, HHB, 2012, Internal gravity waves modulate the apparent misalignment of exoplanets around hot stars. ApJ, 758, L6 {255, 531, 735}CrossRefGoogle Scholar
Rogers, TM, McElwaine, JN, 2017, The hottest hot Jupiters may host atmospheric dynamos. ApJ, 841, L26 {591}CrossRefGoogle Scholar
Rogers, TM, Showman, AP, 2014, Magnetohydrodynamic simulations of the atmosphere of HD 209458 b. ApJ, 782, L4 {732}CrossRefGoogle Scholar
Rohatschek, H, 1995, Semi-empirical model of photophoretic forces for the entire range of pressures. Journal of Aerosol Science, 26, 717–734 {458}CrossRefGoogle Scholar
Rohde, RA, Muller, RA, 2005, Cycles in fossil diversity. Nature, 434, 208–210 {674, 675}CrossRefGoogle ScholarPubMed
Roig, F, NesvornýD, 2015, The evolution of asteroids in the jumping-Jupitermigration model. AJ, 150, 186 {697}CrossRefGoogle Scholar
Roig, F, Nesvorný, D, DeSouza, SR, 2016, Jumping jupiter can explain Mercury's orbit. ApJ, 820, L30 {697}CrossRefGoogle Scholar
Rojas-Ayala, B, Covey, KR, Muirhead, PS, et al., 2010, Metal-rich M-dwarf planet hosts: metallicities with K-band spectra. ApJ, 720, L113–L118 {405}CrossRefGoogle Scholar
Rojo, PM, 2006, Transit spectroscopy of the extrasolar planet HD 209458 b: the search for water. Ph. D. thesis, Cornell University {606}Google Scholar
Röll, T, Seifahrt, A, Neuhäuser, R, 2008, Micro-arcsecond relative astrometry by ground-based and single-aperture observations. IAU Symp., volume 248, 48–51 {83}Google Scholar
Roman, M, Rauscher, E, 2017, Modeling the effects of inhomogeneous aerosols on the hot Jupiter Kepler–7 b atmospheric circulation. ApJ, 850, 17 {616, 738}CrossRefGoogle Scholar
Romanova, MM, Lovelace RVE, 2006, The magnetospheric gap and the accumulation of giant planets close to a star. ApJ, 645, L73–L76 {521}CrossRefGoogle Scholar
Romon, J, de Bergh, C, Barucci, MA, et al., 2001, Photometric and spectroscopic observations of Sycorax, satellite of Uranus. A&A, 376, 310–315 {688}Google Scholar
Ronco, MP, de Elía GC, 2014, Diversity of planetary systems in low-mass disks: terrestrial-type planet formation and water delivery. A&A, 567, A54 {668}Google Scholar
Ronco, MP, de Elía GC, Guilera, OM, 2015, Terrestrial-type planet formation: comparing different types of initial conditions. A&A, 584, A47 {476}Google Scholar
Ronco, MP, Guilera, OM, de Elía GC, 2017, Formation of solar system analogues. I. Looking for initial conditions through a population synthesis analysis. MNRAS, 471, 2753–2770 {558}CrossRefGoogle Scholar
Ronnet, T, Mousis, O, Vernazza, P, 2017, Pebble accretion at the origin of water in Europa. ApJ, 845, 92 {473}CrossRefGoogle Scholar
Ronnet, T, Vernazza, P, Mousis, O, et al., 2016, Reconciling the orbital and physical properties of the Martianmoons. ApJ, 828, 109 {689}CrossRefGoogle Scholar
Ros, K, Johansen, A, 2013, Ice condensation as a planet formation mechanism. A&A, 552, A137 {458}Google Scholar
Rose, BEJ, Cronin, TW, Bitz, CM, 2017, Ice caps and ice belts: the effects of obliquity on ice-albedo feedback. ApJ, 846, 28 {621}CrossRefGoogle Scholar
Rose, I, Buffett, B, 2017, Scaling rates of true polar wander in convecting planets and moons. Physics of the Earth and Planetary Interiors, 273, 1–10 {669}CrossRefGoogle Scholar
Rosen, PA, Tyler, GL, Marouf, EA, 1991a, Resonance structures in Saturn's rings probed by radio occultation. I. Methods and examples. Icarus, 93, 3–24 {411}CrossRefGoogle Scholar
Rosen, PA, Tyler, GL, Marouf, EA, et al., 1991b, Resonance structures in Saturn's rings probed by radio occultation. II. Results and interpretation. Icarus, 93, 25–44 {411}CrossRefGoogle Scholar
Rosenblatt, F, 1971, A two-colour photometric method for detection of extrasolar planetary systems. Icarus, 14, 71–93 {157, 198, 211}CrossRefGoogle Scholar
Rosenblatt, P, 2011, The origin of the Martian moons revisited. A&A Rev., 19, 44 {689}Google Scholar
Rosengren, AJ, Scheeres, DJ, 2014, On the Milankovitch orbital elements for perturbed Keplerian motion. Cel. Mech. Dyn. Astron., 118, 197–220 {621}CrossRefGoogle Scholar
Röser, S, 1999, DIVA: beyond Hipparcos and towards Gaia. Rev. Mod. Astron., volume 12, 97–106 {100}Google Scholar
Roskosz, M, Gillot, J, Capet, F, et al., 2011, A sharp change in the mineralogy of annealed protoplanetary dust at the glass transition temperature. A&A, 529, A111 {464}Google Scholar
Rosotti, GP, Booth, RA, Clarke, CJ, et al., 2017, The origin of the eccentricity of the hot Jupiter in CI Tau. MNRAS, 464, L114–L118 {61, 715}CrossRefGoogle Scholar
Rosotti, GP, Ercolano, B, Owen, JE, et al., 2013, The interplay between X-ray photo-evaporation and planet formation. MNRAS, 430, 1392–1401 {462}CrossRefGoogle Scholar
Rosotti, GP, Juhasz, A, Booth, RA, et al., 2016, The minimum mass of detectable planets in protoplanetary disks and the derivation of planetary masses from high-resolution observations. MNRAS, 459, 2790–2805 {467}CrossRefGoogle Scholar
Ross, M, 1981, The ice layer in Uranus and Neptune: diamonds in the sky. Nature, 292, 435 {604}CrossRefGoogle Scholar
Rossi, L, Stam, DM, 2017, Using polarimetry to retrieve the cloud coverage of Earth-like exoplanets. A&A, 607, A57 {246}Google Scholar
Rossiter, RA, 1924, On the detection of an effect of rotation during eclipse in the velocity of the brighter component of β Lyr, and on the constancy of velocity of this system. ApJ, 60, 15–21 {248}CrossRefGoogle Scholar
Rossmo, DK, 2017, Bernoulli, Darwin, and Sagan: the probability of life on other planets. Int. J. Astrobiol., 16, 185–189 {644}CrossRefGoogle Scholar
Rostron, JW, Wheatley, PJ, Anderson, DR, et al., 2014, The thermal emission of the exo-planet WASP–3 b. MNRAS, 441, 3666–3678 {752}CrossRefGoogle Scholar
Rosvick, JM, Robb, R, 2006, A photometric search for planets in the open cluster NGC 7086. AJ, 132, 2309–2317 {159}CrossRefGoogle Scholar
Roth, LE, Saunders, RS, Downs, GS, et al., 1989, Radar altimetry of large Martian craters. Icarus, 79, 289–310 {356}CrossRefGoogle Scholar
Rothman, LS, Gordon, IE, Barbe, A, et al., 2009, The HITRAN 2008 molecular spectroscopic database. J. Quant. Spec. Radiat. Transf., 110, 533–572 {570}CrossRefGoogle Scholar
Rothman, LS, Gordon, IE, Barber, RJ, et al., 2010, HITEMP, the high-temperature molecular spectroscopic database. J. Quant. Spec. Radiat. Transf., 111, 2139–2150 {570}Google Scholar
Rothman, LS, Wattson, RB, Gamache, R, et al., 1995, HITRAN HAWKS and HITEMP: high-temperature molecular database. Atmospheric Propagation and Remote Sensing IV, volume 2471 of Proc. SPIE, 105–111 {570}Google Scholar
Rothman, LS, et al., 2008, The HITRAN 2008Molecular Spectroscopic Database. Journal of Quantitative Spectroscopy & Radiative Transfer, 110(533-572) {585}Google Scholar
Rouan, D, Deeg, HJ, Demangeon, O, et al., 2011, The orbital phases and secondary transits of Kepler–10 b: a physical interpretation based on the lava-ocean planet model. ApJ, 741, L30 {300, 575, 739}CrossRefGoogle Scholar
Rouan, D, Parviainen, H, Moutou, C, et al., 2012, Transiting exoplanets from the CoRoT space mission. XIX. CoRoT–23 b: a dense hot Jupiter on an eccentric orbit. A&A, 537, A54 {734}Google Scholar
Rouan, D, Pelat, D, 2008, The achromatic chessboard, a new concept of a phase shifter for nulling interferometry. II. Theory. A&A, 484, 581–589 {334}Google Scholar
Rouan, D, Riaud, P, Boccaletti, A, et al., 2000, The four-quadrant phase-mask corona-graph. I. Principle. PASP, 112, 1479–1486 {334, 336}CrossRefGoogle Scholar
Rousset, G, Lacombe, F, Puget, P, et al., 2003, NAOS, the first adaptive optics system of the VLT: on-sky performance. SPIE Conf. Ser., volume 4839, 140–149 {332}Google Scholar
Routh, EJ, 1875, On Laplace's three particles with a supplement on the stability of theirmotion. Proc. London Math. Soc., 6(86-97) {74}Google Scholar
Roux, W, Koechlin, L, 2016, An optimised Fresnel array for a test space mission in UV. SPIE Conf. Ser., volume 9905 of Proc. SPIE, 99053E {354}Google Scholar
Roux, W, Koechlin, L, 2018, Improvements on Fresnel arrays for high contrast imaging. Experimental Astronomy, 45, 21–40 {339}Google Scholar
Rowan, D, Meschiari, S, Laughlin, G, et al., 2016, The Lick–Carnegie Exoplanet Survey: HD 32963, a new Jupiter analogue orbiting a Sun-like star. ApJ, 817, 104 {60, 719}CrossRefGoogle Scholar
Rowan-Robinson, M, Jones, M, Leech, K, et al., 1991, IRAS maps of Galactic emission and the zodiacal bands. MNRAS, 249, 729–741 {691}CrossRefGoogle Scholar
Rowan-Robinson, M, May, B, 2013, An improvedmodel for the infrared emission from the zodiacal dust cloud: cometary, asteroidal and interstellar dust. MNRAS, 429, 2894–2902 {691, 692}CrossRefGoogle Scholar
Rowe, JF, Borucki, WJ, Koch, D, et al., 2010, Kepler observations of transiting hot compact objects. ApJ, 713, L150-L154 {233}CrossRefGoogle Scholar
Rowe, JF, Bryson, ST, Marcy, GW, et al., 2014, Validation of Kepler's multiple planet candidates. III. Light curve analysis and announcement of hundreds of new multi-planet systems. ApJ, 784, 45 {197, 198, 317, 635, 740, 741, 742, 743, 744, 745}CrossRefGoogle Scholar
Rowe, JF, Coughlin, JL, Antoci, V, et al., 2015, Planetary candidates observed by Kepler. V. Planet sample from Q1–Q12 (36 months). ApJS, 217, 16 {196}CrossRefGoogle Scholar
Rowe, JF, Matthews, JM, Seager, S, et al., 2006, An upper limit on the albedo of HD209458 b: direct imaging photometry with the MOST satellite. ApJ, 646, 1241–1251 {186, 301, 610, 731}CrossRefGoogle Scholar
Rowe, JF, Matthews, JM, Seager, S, 2008, The very lowalbedo of an extrasolar planet: MOST space-based photometry of HD 209458. ApJ, 689, 1345–1353 {186, 234, 286, 610, 732}CrossRefGoogle Scholar
Roxburgh, IW, 2017, Anomalies in the Kepler asteroseismic legacy project data: a reanalysis of 16 Cyg A and B, KIC–8379927 and 6 solar-like stars. A&A, 604, A42 {312, 715}Google Scholar
Roy, AE, 1978, Orbital Motion. Adam Hilger {17}Google Scholar
Roy, AE, Walker, IW, Mac Donald, AJ, et al., 1988, Project LONGSTOP. Vistas in Astronomy, 32, 95–116 {677}CrossRefGoogle Scholar
Royer, DL, 2016, Climate sensitivity in the geologic past. Ann. Rev. Earth Plan. Sci., 44, 277–293 {675}CrossRefGoogle Scholar
Royer, DL, Berner, RA, Montañez, IP, et al., 2004, CO2 as a primary driver of Phanerozoic climate. GSA today, 14(3), 4–10 {655}Google Scholar
Rozas, D, Law, CT, Swartzlander GA Jr, 1997, Propagation dynamics of optical vortices. J. Opt. Soc. Amer. B, 14, 3054–3065 {337}CrossRefGoogle Scholar
Rozelot, JP, Lefebvre, S, Desnoux, V, 2003, Observations of the solar limb shape distortions. Sol. Phys., 217, 39–52 {216}CrossRefGoogle Scholar
Ruane, G, Mawet, D, Kastner, J, et al., 2017, Deep imaging search for planets forming in the TWHya protoplanetary disk with the Keck–NIRC2 vortex coronagraph. AJ, 154, 73 {338, 343}CrossRefGoogle Scholar
Ruban, EV, Arkharov, AA, 2012, Effect of hot Jupiters on the variability of stellar radiation. Astrophysics, 55, 515–527 {306, 714, 715}CrossRefGoogle Scholar
Rubenstein, EP, Schaefer, BE, 2000, Are super-flares on solar analogues caused by ex-trasolar planets? ApJ, 529, 1031–1033 {428}CrossRefGoogle Scholar
Rubie, DC, Jacobson, SA, Morbidelli, A, et al., 2015, Accretion and differentiation of the terrestrial planets with implications for the compositions of early-formed solar system bodies and accretion of water. Icarus, 248, 89–108 {598, 668, 669, 697}CrossRefGoogle Scholar
Rubin, AE, 1995, Petrologic evidence for collisional heating of chondritic asteroids. Icarus, 113, 156–167 {653}CrossRefGoogle Scholar
Rubin, AE, 2000, Petrologic, geochemical and experimental constraints on models of chon-drule formation. Earth Science Reviews, 50, 3–27 {653}CrossRefGoogle Scholar
Rubin, AE, Grossman, JN, 2010, Meteorite and meteoroid: new comprehensive defi-nitions. Meteor. Plan. Sci., 45, 114–122 {682, 683}Google Scholar
Rubincam, DP, 1990, Mars: change in axial tilt due to climate? Science, 248, 720 {622, 681}CrossRefGoogle ScholarPubMed
Rubincam, DP, 1993, The obliquity of Mars and ‘climate friction’. J. Geophys. Res., 98, 10 {622, 681}CrossRefGoogle Scholar
Rubincam, DP, 2003, Polar wander on Triton and Pluto due to volatile migration. Icarus, 163, 469–478 {622, 681}CrossRefGoogle Scholar
Ruden, SP, 1993, The evolution of protoplanetary disks. Planets Around Pulsars, volume 36 of ASP Conf. Ser., 197–215 {108}Google Scholar
Ruden, SP, Lin, DNC, 1986, The global evolution of the primordial solar nebula. ApJ, 308, 883–901 {457, 657}CrossRefGoogle Scholar
Rudnick, RL, Gao, S, 2003, Composition of the continental crust. Treatise on Geochemistry, 3, 659 {670}Google Scholar
Ruffio, JB, Macintosh, B, Wang, JJ, et al., 2017, Improving and assessing planet sensitivity of the GPI exoplanet survey with a forward model matched filter. ApJ, 842, 14 {340}CrossRefGoogle Scholar
Rufu, R, Aharonson, O, Perets, HB, 2017, A multiple-impact origin for the Moon. Nature Geoscience, 10, 89–94 {664}CrossRefGoogle Scholar
Ruge, JP, Flock, M, Wolf, S, et al., 2016, Gaps, rings, and non-axisymmetric structures in protoplanetary disks: emission from large grains. A&A, 590, A17 {467}Google Scholar
Ruge, JP, Wolf, S, Uribe, AL, et al., 2014, Planet-induced disk structures: a comparison between (sub)mm and infrared radiation. A&A, 572, L2 {492}Google Scholar
Rugheimer, S, Kaltenegger, L, Segura, A, et al., 2015a, Effect of ultraviolet radiation on the spectral fingerprints of Earth-like planets orbiting Mstars. ApJ, 809, 57 {628}CrossRefGoogle Scholar
Rugheimer, S, Kaltenegger, L, Zsom, A, et al., 2013, Spectral fingerprints of Earth-like planets around FGK stars. Astrobiology, 13, 251–269 {641}CrossRefGoogle ScholarPubMed
Rugheimer, S, Segura, A, Kaltenegger, L, et al., 2015b, Ultraviolet surface environment of Earth-like planets orbiting FGKMstars through geological evolution. ApJ, 806, 137 {628, 717}CrossRefGoogle Scholar
Ruiz, J, 2011, Giant impacts and the initiation of plate tectonics on terrestrial planets. Planet. Space Sci., 59, 749–753 {628}CrossRefGoogle Scholar
Rupprecht, G, Pepe, F, Mayor, M, et al., 2004, The exoplanet hunter HARPS: performance and first results. SPIE Conf. Ser., volume 5492, 148–159 {45}Google Scholar
Rushby, AJ, Claire, MW, Osborn, H, et al., 2013, Habitable zone lifetimes of exoplanets around main sequence stars. Astrobiology, 13, 833–849 {627}CrossRefGoogle ScholarPubMed
Russell, CT, 1993, Planetary magnetospheres. Rep. Prog. Phys., 56, 687–732 {426}CrossRefGoogle Scholar
Russell, CT, Zhang, TL, Wei, HY, 2008, Whistler mode waves from lightning on Venus: magnetic control of ionospheric access. J. Geophys. Res. (Space Physics), 113, E00B05 {591}CrossRefGoogle Scholar
Russell, HN, 1934, Molecules in the Sun and stars. ApJ, 79, 317–342 {562}CrossRefGoogle Scholar
Russell, HN, 1939, Notes on ellipticity in eclipsing binaries. ApJ, 90, 641 {215}CrossRefGoogle Scholar
Russell, MJ, Nitschke, W, 2017, Methane: fuel or exhaust at the emergence of life? As-trobiology, 17, 1053–1066 {637}Google ScholarPubMed
Rutledge, RE, Basri, G, Martín, EL, et al., 2000, Chandra detection of an X-Ray flare from the brown dwarf LP 944–20. ApJ, 538, L141–L144 {441}CrossRefGoogle Scholar
Ruzicka, A, Grossman, J, Bouvier, A, et al., 2015, The Meteoritical Bulletin: No. 102. Meteor. Plan. Sci., 50, 1662–1662 {683}Google Scholar
Ryabov, VB, Zarka, P, Ryabov, BP, 2003, Search for exoplanetary radio-bursts in de-cameter wave band: statistical enhancement of sensitivity under severe interference conditions. AGU Fall Abstracts, 1131 {427}Google Scholar
Ryan, EV, 2000a, Asteroid fragmentation and evolution of asteroids. Ann. Rev. Earth Plan. Sci., 28, 367–389 {684}CrossRefGoogle Scholar
Ryan, EV, Melosh, HJ, 1998, Impact fragmentation: from the laboratory to asteroids. Icarus, 133, 1–24 {474}CrossRefGoogle Scholar
Ryan, SG, 2000b, The host stars of extrasolar planets have normal lithium abundances. MNRAS, 316, L35–L39 {401}CrossRefGoogle Scholar
Rybicki, GB, Lightman, AP, 1986, Radiative Processes in Astrophysics. Wiley-VCH {238}Google Scholar
Rybicki, KR, 2006, On the energy flux reaching planets during the parent star's evolutionary track: the Earth-Sun system. PASP, 118, 1124–1135 {587}CrossRefGoogle Scholar
Rybicki, KR, Denis, C, 2001, On the final destiny of the Earth and the solar system. Icarus, 151, 130–137 {414}CrossRefGoogle Scholar
Rybicki, KR, Wyrzykowski Ł, 2014, Transiting planets orbiting source stars in micro-lensing events. Acta Astronomica, 64, 65–75 {136}Google Scholar
Rye, R, Kuo, PH, Holland, HD, 1995, Atmospheric CO2 concentrations before 2.2Gyr ago. Nature, 378, 603–605 {673}CrossRefGoogle ScholarPubMed
Ryu, D, Goodman, J, 1992, Convective instability in differentially rotating disks. ApJ, 388, 438–450 {457}CrossRefGoogle Scholar
Ryu, T, Sato, B, Kuzuhara, M, et al., 2016a, High-contrast imaging of intermediate-mass giants with long-term radial velocity trends. ApJ, 825, 127 {359, 715, 718}CrossRefGoogle Scholar
Ryu, YH, Chang, HY, Park, MG, 2011, Detection probability of a low-mass planet for triple lens events: implication of properties of binary-lens superposition. MNRAS, 412, 503–510 {129}CrossRefGoogle Scholar
Ryu, YH, Chung, SJ, Lee, KW, et al., 2016b, Properties and detection limits of planetary caustic perturbation induced by a wide-separation planet. ApJ, 819, 9 {126}CrossRefGoogle Scholar
Ryu, YH, Han, C, Hwang, KH, et al., 2010, OGLE–2009–BLG–92: a dramatic repeating event with the second perturbation predicted by real-time analysis. ApJ, 723, 81–88 {144}CrossRefGoogle Scholar
Ryu, YH, Kim, HS, Chung, SJ, et al., 2016c, Planetary caustic perturbations of a close-separation planet on microlensing. ApJ, 829, 43 {126}CrossRefGoogle Scholar
Ryu, YH, Park, MG, Chang, HY, et al., 2013, Microlensing by a wide-separation planet: detectability and boundness. MNRAS, 433, 3411–3416 {130}CrossRefGoogle Scholar
Ryu, YH, Yee, JC, Udalski, A, et al., 2018, OGLE–2016–BLG–1190L b: the first Spitzer bulge planet lies near the planet/brown-dwarf boundary. AJ, 155, 40 {141, 760}CrossRefGoogle Scholar
Rzhiga, ON, 1985, Radar studies of other planetary systems. Soviet Ast., 29, 290–293 {356, 714}Google Scholar
Saad-Olivera, X, Nesvorný, D, Kipping, DM, et al., 2017, Masses of Kepler–46 b, c from transit timing variations. AJ, 153, 198 {741}CrossRefGoogle Scholar
Saal, AE, Hauri, EH, Van Orman, JA, et al., 2013, Hydrogen isotopes in lunar volcanic glasses and melt inclusions reveal a carbonaceous chondrite heritage. Science, 340, 1317–1320 {666}CrossRefGoogle ScholarPubMed
Saar, SH, 2009, The radial velocity effects of stellar surface phenomena. American Inst. of Phys. Conf. Ser., volume 1094, 152–161 {36}Google Scholar
Saar, SH, Butler, RP, Marcy, GW, 1998, Magnetic activity-related radial velocity variations in cool stars: first results from the Lick extrasolar planet survey. ApJ, 498, L153–L157 {36, 37, 56}CrossRefGoogle Scholar
Saar, SH, Cuntz, M, 2001, A search for Ca II emission enhancement in stars resulting from nearby giant planets. MNRAS, 325, 55–59 {36, 305}CrossRefGoogle Scholar
Saar, SH, Cuntz, M, Kashyap, VL, et al., 2008, First observation of planet-induced X-ray emission: the system HD 179949. IAU Symp., volume 249, 79–81 {425, 638, 723}Google Scholar
Saar, SH, Cuntz, M, Shkolnik, E, 2004, Stellar activity enhancement by planets: theory and observations. Stars as Suns: Activity, Evolution and Planets, volume 219 of IAU Symp., 355–366 {421}Google Scholar
Saar, SH, Donahue, RA, 1997, Activity-related radial velocity variation in cool stars. ApJ, 485, 319–327 {30, 36, 38, 85}CrossRefGoogle Scholar
Saar, SH, Fischer, D, 2000, Correcting radial velocities for long-term magnetic activity variations. ApJ, 534, L105–L108 {37}CrossRefGoogle ScholarPubMed
Saar, SH, Hatzes, A, Cochran, W, et al., 2003, Stellar intrinsic radial velocity noise: causes and possible cures. The Future of Cool-Star Astrophysics: 12th Cambridge Workshop on Cool Stars, volume 12, 694–698 {85}Google Scholar
Saar, SH, Seager, S, 2003, Uses of linear polarisation as a probe of extrasolar planet atmospheres. Scientific Frontiers in Research on Extrasolar Planets, volume 294 of ASP Conf. Ser., 529–534 {246}Google Scholar
Sabach, E, Soker, N, 2018, Accounting for planet-shaped planetary nebulae. MNRAS, 473, 286–294 {414}CrossRefGoogle Scholar
Sackett, PD, 1999, Searching for unseen planets via occultation and microlensing. NATO ASIC Proc. 532, 189–227 {120}
Sackett, PD, 2004, Results from microlensing searches for extrasolar planets. Planetary Systems in the Universe, volume 202 of IAU Symp., 44–54 {120}Google Scholar
Sackett, PD, Albrow, MD, Beaulieu, JP, et al., 2004, PLANET II: a microlensing and transit search for extrasolar planets. IAU Symp. 213, 35–40 {140}
Sackmann, I, Boothroyd, AI, Kraemer, KE, 1993, Our Sun. III. Present and future. ApJ, 418, 457–468 {110, 414}CrossRefGoogle Scholar
Sada, PV, Deming, D, Jackson, B, et al., 2010, Recent transits of the super-Earth exo-planet GJ 1214 b. ApJ, 720, L215–L218 {734}CrossRefGoogle Scholar
Sada, PV, Deming, D, Jennings, DE, et al., 2012, Extrasolar planet transits observed at KPNO. PASP, 124, 212–229 {213, 224, 736, 737, 752}CrossRefGoogle Scholar
Sada, PV, Ramón-Fox, FG, 2016, Exoplanet transits registered at the Universidad de Monterrey Observatory. I. HAT–P–12 b, HAT–P–13 b, HAT–P–16 b, HAT–P–23 b, and WASP–10 b. PASP, 128(2), 024402 {736, 752}CrossRefGoogle Scholar
Sadakane, K, Ohkubo, M, Takeda, Y, et al., 2002, Abundance analyses of 12 parent stars of extrasolar planets observed with the Subaru–HDS. PASJ, 54, 911–931 {388, 396, 397, 399}CrossRefGoogle Scholar
Sadourny, R, 1975, The dynamics of finite-difference models of the shallow-water equations. Journal of Atmospheric Sciences, 32, 680–689 {593}2.0.CO;2>CrossRefGoogle Scholar
Saffe, C, Flores, M, Jaque Arancibia, M, et al., 2016, Temperature condensation trend in the debris-disk binary system ζ2 Ret. A&A, 588, A81 {495}Google Scholar
Saffe, C, Gómez, M, 2004, A search for disks around exoplanet host stars. A&A, 423, 221–233 {493}Google Scholar
Saffe, C, Gómez, M, Chavero, C, 2005, On the ages of exoplanet host stars. A&A, 443, 609–626 {381}Google Scholar
Saffe, C, Jofré, E, Martioli, E, et al., 2017, Signatures of rocky planet engulfment in HAT–P–4: implications for chemical tagging studies. A&A, 604, L4 {735}Google Scholar
Safizadeh, N, Dalal, N, Griest, K, 1999, Astrometric microlensing as a method of discovering and characterising extrasolar planets. ApJ, 522, 512–517 {138, 139}CrossRefGoogle Scholar
Safronov, VS, 1969, Evolution of the protoplanetary cloud and formation of the Earth and planets. Nauka Press, Moscow; English translation: NASA-677, 1972 {467, 469, 481, 657, 695}
Safronov, VS, 1972, Evolution of the Protoplanetary Cloud and Formation of the Earth and Planets. Israel Program for Scientific Translation {307, 460, 467, 469, 470, 474}Google Scholar
Sagan, C, 1963, Direct contact among galactic civilisations by relativistic interstellar spaceflight. Planet. Space Sci., 11, 485 {647}CrossRefGoogle Scholar
Sagan, C, 1973a, Communication with Extraterrestrial Intelligence. MIT {644}Google Scholar
Sagan, C, 1973b, Ultraviolet selection pressure on the earliest organisms. J. Theor. Biol., 39(195-200) {628}CrossRefGoogle Scholar
Sagan, C, Fox, P, 1975, The canals of Mars: an assessment after Mariner 9. Icarus, 25, 602–612 {639}CrossRefGoogle Scholar
Sagan, C, Khare, BN, 1979, Tholins: organic chemistry of interstellar grains and gas. Nature, 277, 102–107 {589}CrossRefGoogle Scholar
Sagan, C, Mullen, G, 1972, Earth and Mars: evolution of atmospheres and surface temperatures. Science, 177, 52–56 {673}CrossRefGoogle ScholarPubMed
Sagan, C, Salzman Sagan, L, Drake, F, 1972, A Message from Earth. Science, 175, 881–884 {648}CrossRefGoogle ScholarPubMed
Sagan, C, Thompson, WR, Carlson, R, et al., 1993, A search for life on Earth from the Galileo spacecraft. Nature, 365, 715–721 {641}CrossRefGoogle ScholarPubMed
Sagan, C, Walker, RG, 1966, The infrared detectability of Dyson civilisations. ApJ, 144, 1216–1218 {647}CrossRefGoogle Scholar
Sagnotti, L, Scardia, G, Giaccio, B, et al., 2014, Extremely rapid directional change during Matuyama–Brunhes geomagnetic polarity reversal. Geophysical Journal International, 199, 1110–1124 {663}CrossRefGoogle Scholar
Saha, P, Tremaine, S, 1992, Symplectic integrators for solar system dynamics. AJ, 104, 1633–1640 {513}CrossRefGoogle Scholar
Saha, P, Tremaine, S, 1994, Long-term planetary integration with individual time steps. AJ, 108, 1962–1969 {513}CrossRefGoogle Scholar
Sahlmann, J, Henning, T, Queloz, D, et al., 2013a, The ESPRI project: astrometric exo-planet search with PRIMA. I. Instrument description and performance of first light observations. A&A, 551, A52 {91}Google Scholar
Sahlmann, J, Lazorenko, PF, Mérand, A, et al., 2013b, Astrometric detection of exo-planets from the ground. SPIE Conf. Ser., volume 8864 {90, 91}Google Scholar
Sahlmann, J, Lazorenko, PF, Ségransan, D, et al., 2013c, Astrometric orbit of a low-mass companion to an ultracool dwarf. A&A, 556, A133 {91}Google Scholar
Sahlmann, J, Lazorenko, PF, Ségransan, D, 2014, Astrometric planet search around southern ultracool dwarfs. I. First results, including parallaxes of 20 M8–L2 dwarfs. A&A, 565, A20 {90}Google Scholar
Sahlmann, J, Lazorenko, PF, Ségransan, D, 2016, The mass of planet GJ 676A b from ground-based astrometry: a planetary system with twomature gas giants suitable for direct imaging. A&A, 595, A77 {83, 717}Google Scholar
Sahlmann, J, Lovis, C, Queloz, D, et al., 2011a, HD 5388 b is a 69MJ companion instead of a planet. A&A, 528, L8 {95}Google Scholar
Sahlmann, J, Ségransan, D, Mérand, A, et al., 2012, Narrow-angle astrometry with PRIMA. SPIE Conf. Ser., volume 8445 {91}Google Scholar
Sahlmann, J, Ségransan, D, Queloz, D, et al., 2011b, Search for brown dwarf companions of stars. A&A, 525, A95 {64}Google Scholar
Sahlmann, J, Triaud, AHMJ, Martin, DV, 2015, Gaia's potential for the discovery of circumbinary planets. MNRAS, 447, 287–297 {99}CrossRefGoogle Scholar
Sahu, KC, Anderson, J, Casertano, S, et al., 2017, Relativistic deflection of background starlight measures the mass of a nearbywhite dwarf star. Science, 356, 1046–1050 {138}CrossRefGoogle ScholarPubMed
Sahu, KC, Anderson, J, King, IR, 2002, A reexamination of the planetary lensing events in M22. ApJ, 565, L21–L24 {151}CrossRefGoogle Scholar
Sahu, KC, Bond, HE, Anderson, J, et al., 2014, Microlensing events by Proxima Cen in 2014 and 2016: mass determination and possible planet detection. ApJ, 782, 89 {139}CrossRefGoogle Scholar
Sahu, KC, Casertano, S, Bond, HE, et al., 2006, Transiting extrasolar planetary candidates in the Galactic bulge. Nature, 443, 534–540 {13, 178, 184, 750}CrossRefGoogle ScholarPubMed
Sahu, KC, Casertano, S, Livio, M, et al., 2001, Gravitational microlensing by low-mass objects in the globular cluster M22. Nature, 411, 1022–1024 {151}CrossRefGoogle ScholarPubMed
Sahu, KC, Gilliland, RL, 2003, Near-field microlensing and its effects on transit observations by Kepler. ApJ, 584, 1042–1052 {137, 223}CrossRefGoogle Scholar
Saito, E, Sirono Si, 2011, Planetesimal formation by sublimation. ApJ, 728, 20 {464}CrossRefGoogle Scholar
Saito, MM, Tanikawa, K, Orlov, VV, 2012a, Disintegration process of hierarchical triple systems. I. Small-mass planet orbiting equal-mass binary. Cel. Mech. Dyn. As-tron., 112, 235–251 {550}Google Scholar
Saito, RK, Hempel, M, Minniti, D, et al., 2012b, VVV DR1: the first data release of the Milky Way bulge and southern plane from the near-infrared ESO public survey VISTA variables in the Vía Láctea. A&A, 537, A107 {433}Google Scholar
Sajadian, S, 2014, Orbital motion effects in astrometric microlensing. MNRAS, 439, 3007–3015 {138}CrossRefGoogle Scholar
Sajadian, S, 2015, Detecting stellar spots through polarimetric observations of microlensing events in caustic-crossing. MNRAS, 452, 2587–2596 {136}CrossRefGoogle Scholar
Sajadian, S, Hundertmark, M, 2017, Polarimetry microlensing of close-in planetary systems. ApJ, 838, 157 {136}CrossRefGoogle Scholar
Sajadian, S, Rahvar, S, 2010, Illuminating hot Jupiters in caustic crossing. MNRAS, 407, 373–380 {136}CrossRefGoogle Scholar
Sajadian, S, Rahvar, S, 2015a, Photometric, astrometric and polarimetric observations of gravitational microlensing events. MNRAS, 452, 2579–2586 {136}CrossRefGoogle Scholar
Sajadian, S, Rahvar, S, 2015b, Polarimetric microlensing of circumstellar disks. MNRAS, 454, 4429–4439 {136}CrossRefGoogle Scholar
Sajadian, S, Rahvar, S, Dominik, M, et al., 2016, The advantages of using a Lucky Imaging camera for observations of microlensing events. MNRAS, 458, 3248–3259 {135}CrossRefGoogle Scholar
Sako, T, Sekiguchi, T, Sasaki, M, et al., 2008, MOA-Cam3: awide-field mosaic CCDcam-era for a gravitational microlensing survey in New Zealand. Exp. Astron., 22, 51–66 {142}CrossRefGoogle Scholar
Salaris, M, Althaus, LG, García-Berro, E, 2013, Comparison of theoretical white dwarf cooling time scales. A&A, 555, A96 {414}Google Scholar
Sallum, S, Follette, KB, Eisner, JA, et al., 2015, Accreting protoplanets in the LkCa 15 transition disk. Nature, 527, 342–344 {362, 467, 520, 764}CrossRefGoogle ScholarPubMed
Salmeron, R, Wardle, M, 2005, Magnetorotational instability in protoplanetary disks. MNRAS, 361, 45–69 {459}CrossRefGoogle Scholar
Salmon, J, Canup, RM, 2017, Accretion of Saturn's innermid-sized moons from a massive primordial ice ring. ApJ, 836, 109 {689}CrossRefGoogle Scholar
Salvador, A, Massol, H, Davaille, A, et al., 2017, The relative influence of H2O and CO2 on the primitive surface conditions and evolution of rocky planets. J. Geo-phys. Res. (Planets), 122, 1458–1486 {576}Google Scholar
Salz, M, Czesla, S, Schneider, PC, et al., 2016, Simulating the escaping atmospheres of hot gas planets in the solar neighbourhood. A&A, 586, A75 {601, 729, 731, 732, 735, 756}Google Scholar
Salz, M, Schneider, PC, Czesla, S, et al., 2015, High-energy irradiation and mass loss rates of hot Jupiters in the solar neighbourhood. A&A, 576, A42 {601, 732, 755, 756}Google Scholar
Salzmann, CG, Radaelli, PG, Mayer, E, et al., 2009, Ice XV: a new thermodynamically stable phase of ice. Phys. Rev. Lett., 103(10), 105701 {568}CrossRefGoogle ScholarPubMed
Samland, M, Mollière, P, Bonnefoy, M, et al., 2017, Spectral and atmospheric characterization of 51 Eri b using VLT–SPHERE. A&A, 603, A57 {761}Google Scholar
Samuel, B, Leconte, J, Rouan, D, et al., 2014, Constraining physics of very hot super-Earths with the James Webb Telescope: the case of CoRoT–7 b. A&A, 563, A103 {734}Google Scholar
Sánchez-Lavega, A, 2004, The magnetic field in giant extrasolar planets. ApJ, 609, L87–L90 {425, 427}CrossRefGoogle Scholar
Sanchez-Lavega, A, Orton, GS, Morales, R, et al., 2001, The merger of two giant anticyclones in the atmosphere of Jupiter. Icarus, 149, 491–495 {462}CrossRefGoogle Scholar
Sanchis-Ojeda, R, Fabrycky, DC, Winn, JN, et al., 2012, Alignment of the stellar spin with the orbits of a three-planet system. Nature, 487, 449–453 {254, 272, 296, 311, 322, 523, 740}CrossRefGoogle ScholarPubMed
Sanchis-Ojeda, R, Rappaport, S, Pallé, E, et al., 2015a, The K2–ESPRINT Project. I. Discovery of the disintegrating rocky planet K2–22 b with a cometary head and leading tail. ApJ, 812, 112 {231, 232, 748}CrossRefGoogle Scholar
Sanchis-Ojeda, R, Rappaport, S, Winn, JN, et al., 2013a, Transits and occultations of an Earth-sized planet in an 8.5-h orbit. ApJ, 774, 54 {179, 300, 536, 575, 742}CrossRefGoogle Scholar
Sanchis-Ojeda, R, Rappaport, S, Winn, JN, 2014, A study of the shortest-period planets found with Kepler. ApJ, 787, 47 {191, 192, 193, 295, 298}CrossRefGoogle Scholar
Sanchis-Ojeda, R, Winn, JN, 2011, Star spots, spin–orbit misalignment, and active latitudes in the HAT–P–11 exoplanetary system. ApJ, 743, 61 {11, 163, 213, 214, 736}CrossRefGoogle Scholar
Sanchis-Ojeda, R, Winn, JN, Dai, F, et al., 2015b, A low stellar obliquity for WASP–47, a compactmulti-planet system with a hot Jupiter and an ultra-short period planet. ApJ, 812, L11 {253, 254, 755}CrossRefGoogle Scholar
Sanchis-Ojeda, R, Winn, JN, Fabrycky, DC, 2013b, Star spots and spin–orbit alignment for Kepler cool host stars. Astron. Nach., 334, 180–183 {213, 214, 740}CrossRefGoogle Scholar
Sanchis-Ojeda, R, Winn, JN, Holman, MJ, et al., 2011, Star spots and spin–orbit alignment in the WASP–4 exoplanetary system. ApJ, 733, 127 {213, 214, 253, 752}CrossRefGoogle Scholar
Sanchis-Ojeda, R, Winn, JN, Marcy, GW, et al., 2013c, Kepler–63 b: a giant planet in a polar orbit around a young Sun-like star. ApJ, 775, 54 {12, 742}CrossRefGoogle Scholar
Sanders, IS, Scott, ERD, 2012, The origin of chondrules and chondrites: debris from low-velocity impacts betweenmolten planetesimals? Meteor. Plan. Sci., 47, 2170–2192 {653}Google Scholar
Sanders, IS, Taylor, GJ, 2005, Implications of 26Al in nebular dust: formation of chon-drules by disruption of molten planetesimals. Chondrites and the Protoplanetary Disk, volume 341 of ASP Conf. Ser., 915 {653}Google Scholar
Sandford, E, Kipping, D, 2017, Know the planet, know the star: precise stellar densities from Kepler transit light curves. AJ, 154, 228 {210}CrossRefGoogle Scholar
Sandhaus, PH, Debes, JH, Ely, J, et al., 2016, A search for short-period rocky planets around white dwarfs with HST–COS. ApJ, 823, 49 {160, 233}CrossRefGoogle Scholar
Sándor, Z, Érdi B, Efthymiopoulos, C, 2000, The phase space structure around L4 in the restricted three-body problem. Cel. Mech. Dyn. Astron., 78, 113–123 {516}CrossRefGoogle Scholar
Sándor, Z, Érdi B, Széll, A, et al., 2004, The relative Lyapunov indicator: an efficient method of chaos detection. Cel. Mech. Dyn. Astron., 90, 127–138 {516}CrossRefGoogle Scholar
Sándor, Z, Kley, W, 2006, On the evolution of the resonant planetary system HD 128311. A&A, 451, L31–L34 {70, 73, 74, 722}Google Scholar
Sándor, Z, Kley, W, 2010, Formation of the resonant system HD 60532. A&A, 517, A31 {74, 75, 720}Google Scholar
Sándor, Z, Kley, W, Klagyivik, P, 2007a, Stability and formation of the resonant system HD 73526. A&A, 472, 981–992 {70, 74, 77, 720}Google Scholar
Sándor, Z, Lyra, W, Dullemond, CP, 2011, Formation of planetary cores at type Imigra-tion traps. ApJ, 728, L9 {462}CrossRefGoogle Scholar
Sándor, Z, Süli Á, Érdi B, et al., 2007b, A stability catalogue of the habitable zones in extrasolar planetary systems. MNRAS, 375, 1495–1502 {78, 79, 516, 623, 624}CrossRefGoogle Scholar
Sandquist, EL, Dokter, JJ, Lin, DNC, et al., 2002, A critical examination of Li pollution and giant-planet consumption by a host star. ApJ, 572, 1012–1023 {393, 402}CrossRefGoogle Scholar
Sandquist, EL, Taam, RE, Lin, DNC, et al., 1998, Planet consumption and stellar metal-licity enhancements. ApJ, 506, L65–L68 {393}CrossRefGoogle Scholar
Sangaralingam, V, Stevens, IR, 2011, STEREO TRansiting Exoplanet and Stellar Survey (STRESS). I. Introduction and data pipeline. MNRAS, 418, 1325–1334 {187}CrossRefGoogle Scholar
Sano, T, Miyama, SM, Umebayashi, T, et al., 2000, Magnetorotational instability in protoplanetary disks. II. Ionisation state and unstable regions. ApJ, 543, 486–501 {460}CrossRefGoogle Scholar
Sanromá, E, Pallé, E, GarcíaMunõz, A, 2013, On the effects of the evolution of microbial mats and land plants on the Earth as a planet: photometric and spectroscopic light curves of paleo-Earths. ApJ, 766, 133 {641}CrossRefGoogle Scholar
Sanromá, E, Pallé, E, Parenteau, MN, et al., 2014, Characterising the purple Earth: modeling the globally integrated spectral variability of the Archean Earth. ApJ, 780, 52 {641}CrossRefGoogle Scholar
Santerne, A, Bonomo, AS, Hébrard, G, et al., 2011a, SOPHIE velocimetry of Kepler transit candidates. IV. KOI–196 b: a non-inflated hot Jupiter with a high albedo. A&A, 536, A70 {61, 741}Google Scholar
Santerne, A, Díaz, RF, Almenara, JM, et al., 2015, PASTIS: Bayesian extrasolar planet validation. II. Constraining exoplanet blend scenarios using spectroscopic diagnoses. MNRAS, 451, 2337–2351 {191}CrossRefGoogle Scholar
Santerne, A, Díaz, RF, Bouchy, F, et al., 2011b, SOPHIE velocimetry of Kepler transit candidates. II. KOI–428 b (Kepler–40): a hot Jupiter transiting a subgiant F-star. A&A, 528, A63 {61, 741}Google Scholar
Santerne, A, Díaz, RF, Moutou, C, et al., 2012a, SOPHIE velocimetry of Kepler transit candidates. VII. A false-positive rate of 35 per cent for Kepler close-in giant candidates. A&A, 545, A76 {62, 196}Google Scholar
Santerne, A, Endl, M, Hatzes, A, et al., 2011c, Radial velocity follow-up of CoRoT transiting exoplanets. Detection and Dynamics of Transiting Exoplanets, 11, 02001 {172}Google Scholar
Santerne, A, Fressin, F, Díaz, RF, et al., 2013, The contribution of secondary eclipses as astrophysical false positives to exoplanet transit surveys. A&A, 557, A139 {196}Google Scholar
Santerne, A, Hébrard, G, Deleuil, M, et al., 2014, SOPHIE velocimetry of Kepler transit candidates. XII. KOI–1257 b: a highly eccentric three-month period transiting exoplanet. A&A, 571, A37 {62, 197, 745}Google Scholar
Santerne, A, Hébrard, G, Lillo-Box, J, et al., 2016a, K2–29b/ WASP–152 b: an aligned and inflated hot Jupiter in a young visual binary. ApJ, 824, 55 {253, 748}CrossRefGoogle Scholar
Santerne, A, Moutou, C, Barros, SCC, et al., 2012b, SOPHIE velocimetry of Kepler transit candidates. VI. An additional companion in the KOI–13 system. A&A, 544, L12 {61, 739}Google Scholar
Santerne, A, Moutou, C, Tsantaki, M, et al., 2016b, SOPHIE velocimetry of Kepler transit candidates. XVII. The physical properties of giant exoplanets within 400 days of period. A&A, 587, A64 {58, 64}Google Scholar
Santos, NC, 2008, Extrasolar planets: detection methods and results. New Astron. Rev., 52, 154–166 {53}CrossRefGoogle Scholar
Santos, NC, Adibekyan, V, Dorn, C, et al., 2017a, Constraining planet structure and composition from stellar chemistry: trends in different stellar populations. A&A, 608, A94 {397}Google Scholar
Santos, NC, Adibekyan, V, Figueira, P, et al., 2017b, Observational evidence for two distinct giant planet populations. A&A, 603, A30 {389}Google Scholar
Santos, NC, Adibekyan, V, Mordasini, C, et al., 2015a, Constraining planet structure from stellar chemistry: the cases of CoRoT–7, Kepler–10, and Kepler–93. A&A, 580, L13 {734, 739, 742}Google Scholar
Santos, NC, Bouchy, F, Mayor, M, et al., 2004a, The HARPS search for southern extra-solar planets. II. A 14 Earth-masses exoplanet around μ Ara. A&A, 426, L19–L23 {71, 713}Google Scholar
Santos, NC, Ecuvillon, A, Israelian, G, et al., 2006a, Chemical abundances for the transiting planet host stars OGLE–TR–10, OGLE–TR–56, OGLE–TR–111, OGLE–TR–113, OGLE–TR–132, and TrES–1. Abundances in different galactic populations. A&A, 458, 997–1005 {749, 750}Google Scholar
Santos, NC, García López RJ, Israelian, G, et al., 2002a, Beryllium abundances in stars hosting giant planets. A&A, 386, 1028–1038 {403}Google Scholar
Santos, NC, Gomes da Silva J, Lovis, C, et al., 2010a, Do stellar magnetic cycles influence the measurement of precise radial velocities? A&A, 511, A54 {37, 38}Google Scholar
Santos, NC, Israelian, G, García López RJ, et al., 2004b, Are beryllium abundances anomalous in stars with giant planets? A&A, 427, 1085–1096 {403}Google Scholar
Santos, NC, Israelian, G, Mayor, M, 2000a, Chemical analysis of 8 recently discovered extrasolar planet host stars. A&A, 363, 228–238 {388, 397, 720, 721, 723, 724}Google Scholar
Santos, NC, Israelian, G, Mayor, M, 2001a, The metal-rich nature of stars with planets. A&A, 373, 1019–1031 {308, 388, 398}Google Scholar
Santos, NC, Israelian, G, Mayor, M, 2004c, Spectroscopic [Fe/H] for 98 extrasolar planet-host stars: exploring the probability of planet formation. A&A, 415, 1153–1166 {308, 377, 388, 484}Google Scholar
Santos, NC, Israelian, G, Mayor, M, et al., 2003a, Statistical properties of exoplanets. II. Metallicity, orbital parameters, and space velocities. A&A, 398, 363–376 {388}Google Scholar
Santos, NC, Israelian, G, Mayor, M, 2005, Spectroscopic metallicities for planet-host stars: extending the samples. A&A, 437, 1127–1133 {388, 389, 392}Google Scholar
Santos, NC, Israelian, G, Randich, S, et al., 2004d, Beryllium anomalies in solar-type field stars. A&A, 425, 1013–1027 {403}Google Scholar
Santos, NC, Lovis, C, Pace, G, et al., 2009, Metallicities for 13 nearby open clusters from high-resolution spectroscopy of dwarf and giant stars. Stellar metallicity, stellar mass, and giant planets. A&A, 493, 309–316 {391}Google Scholar
Santos, NC, Martins, JHC, Boué, G, et al., 2015b, Detecting ring systems around exo-planets using high resolution spectroscopy: the case of 51 Peg b. A&A, 583, A50 {715}Google Scholar
Santos, NC, Mayor, M, Benz, W, et al., 2010b, The HARPS search for southern extraso-lar planets. XXI. Three new giant planets orbiting the metal-poor stars HD 5388, HD 181720, and HD 190984. A&A, 512, A47 {718, 723}Google Scholar
Santos, NC, Mayor, M, Bonfils, X, et al., 2011, The HARPS search for southern extrasolar planets. XXV. Results from the metal-poor sample. A&A, 526, A112 {11, 55, 60, 723}Google Scholar
Santos, NC, Mayor, M, Bouchy, F, et al., 2007, The HARPS search for southern extrasolar planets. XII. A giant planet orbiting the metal-poor star HD 171028. A&A, 474, 647–651 {55, 60, 723}Google Scholar
Santos, NC, Mayor, M, Naef, D, et al., 2000b, The CORALIE survey for southern extra-solar planets. III. A giant planet in orbit around HD 192263. A&A, 356, 599–602 {723}Google Scholar
Santos, NC, Mayor, M, Naef, D, 2000c, The CORALIE survey for southern extrasolar planets. IV. Intrinsic stellar limitations to planet searches with radial-velocity techniques. A&A, 361, 265–272 {37}Google Scholar
Santos, NC, Mayor, M, Naef, D, 2001b, The CORALIE survey for southern extrasolar planets. VI. New long period giant planets around HD 28185 and HD 213240. A&A, 379, 999–1004 {719, 724}Google Scholar
Santos, NC, Mayor, M, Naef, D, 2002b, The CORALIE survey for southern extrasolar planets. IX. A 1.3-day period brown dwarf disguised as a planet. A&A, 392, 215–229 {39, 40, 719}Google Scholar
Santos, NC, Mortier, A, Faria, JP, et al., 2014, The HARPS search for southern extrasolar planets. XXXV. The interesting case of HD41248: stellar activity, no planets? A&A, 566, A35 {37, 39, 55, 719}Google Scholar
Santos, NC, Pont, F, Melo, C, et al., 2006b, High-resolution spectroscopy of stars with transiting planets. The cases of OGLE–TR–10, OGLE–TR–56, OGLE–TR–111, OGLE–TR–113, and TrES–1. A&A, 450, 825–831 {749, 750}Google Scholar
Santos, NC, Santerne, A, Faria, JP, et al., 2016, An extreme planetary system around HD 219828: one long-period super Jupiter to a hot-Neptune host star. A&A, 592, A13 {724}Google Scholar
Santos, NC, Sousa, SG, Mortier, A, et al., 2013, SWEET-Cat: a catalogue of parameters for stars with exoplanets. I. New atmospheric parameters and masses for 48 stars with planets. A&A, 556, A150 {376, 377}Google Scholar
Santos, NC, Udry, S, Bouchy, F, et al., 2008, ELODIE metallicity-biased search for transiting hot Jupiters. V. An intermediate-period Jovian planet orbiting HD 45652. A&A, 487, 369–372 {54, 720}Google Scholar
Santos, NC, Udry, S, Mayor, M, et al., 2003b, The CORALIE survey for southern extra-solar planets. XI. The return of the giant planet orbiting HD 192263. A&A, 406, 373–381 {723}Google Scholar
Sanz-Forcada, J, Desidera, S, Micela, G, 2014, Effects of X-ray and extreme UV radiation on circumbinary planets. A&A, 570, A50 {553, 741}Google Scholar
Sanz-Forcada, J, Micela, G, Ribas, I, et al., 2011, Estimation of the extreme ultraviolet radiation onto close planets and their evaporation. A&A, 532, A6 {601}Google Scholar
Sanz-Forcada, J, Ribas, I, Micela, G, et al., 2010, A scenario of planet erosion by coronal radiation. A&A, 511, L8 {423}Google Scholar
Sargent, WLW, Schechter, PL, Boksenberg, A, et al., 1977, Velocity dispersions for 13 galaxies. ApJ, 212, 326–334 {29}CrossRefGoogle Scholar
Sari, R, Goldreich, P, 2004, Planet-disk symbiosis. ApJ, 606, L77–L80 {402, 523}CrossRefGoogle Scholar
Sartoretti, P, Schneider, J, 1999, On the detection of satellites of extrasolar planets with the method of transits. A&AS, 134, 553–560 {157, 276, 277, 278}Google Scholar
Sasaki, T, Barnes, JW, 2014, Longevity of moons around habitable planets. Int. J. Astro-biol., 13, 324–336 {627, 741}Google Scholar
Sasaki, T, Barnes, JW, O'Brien, DP, 2012, Outcomes and duration of tidal evolution in a star–planet–moon system. ApJ, 754, 51 {504}CrossRefGoogle Scholar
Sasaki, T, Stewart, GR, Ida, S, 2010, Origin of the different architectures of the Jovian and Saturnian satellite systems. ApJ, 714, 1052–1064 {627, 687, 688}CrossRefGoogle Scholar
Sasselov, DD, 2003, The new transiting planet OGLE–TR–56 b: orbit and atmosphere. ApJ, 596, 1327–1331 {168, 260, 542, 749}CrossRefGoogle Scholar
Sasselov, DD, Lecar, M, 2000, On the snow line in dusty protoplanetary disks. ApJ, 528, 995–998 {564}CrossRefGoogle Scholar
Sato, B, Ando, H, Kambe, E, et al., 2003, A planetary companion to the G-type giant star HD 104985. ApJ, 597, L157–L160 {56, 721}CrossRefGoogle Scholar
Sato, B, Fischer, DA, Henry, GW, et al., 2005a, The N2K consortium. II. A transiting hot Saturn around HD149026 with a large dense core. ApJ, 633, 465–473 {9, 158, 170, 303, 485, 573, 729}CrossRefGoogle Scholar
Sato, B, Hartman, JD, Bakos GÁ, et al., 2012a, HAT–P–38 b: a Saturn-mass planet transiting a late G star. PASJ, 64, 97 {737}CrossRefGoogle Scholar
Sato, B, Hirano, T, Omiya, M, et al., 2015, Precise radial velocity measurements for Kepler giants hosting planetary candidates: Kepler–91 and KOI–1894. ApJ, 802, 57 {742, 746}CrossRefGoogle Scholar
Sato, B, Izumiura, H, Toyota, E, et al., 2007, A planetary companion to the Hyades giant yatt MC, et al., 2005, Structure in the Tau. ApJ, 661, 527–531 {10, 56, 61, 715}Google Scholar
Sato, B, Izumiura, H, Toyota, E, 2008a, Planetary companions around three intermediate-mass G and K giants: 18 Del, ~ Aql, and HD 81688. PASJ, 60, 539–550 {46, 55, 56, 57, 713, 715, 720}CrossRefGoogle Scholar
Sato, B, Kambe, E, Takeda, Y, et al., 2005b, Radial velocity variability of G-type giants: first three years of the Okayama planet search programme. PASJ, 57, 97–107 {46, 56}CrossRefGoogle Scholar
Sato, B, Omiya, M, Harakawa, H, et al., 2012b, Substellar companions to seven evolved intermediate-mass stars. PASJ, 64, 135 {714, 715, 716, 718}CrossRefGoogle Scholar
Sato, B, Omiya, M, Harakawa, H, 2013a, Planetary companions to three evolved intermediate-mass stars: HD2952, HD 120084, and ω Ser. PASJ, 65, 85 {715, 718, 722}CrossRefGoogle Scholar
Sato, B, Omiya, M, Liu, Y, et al., 2010, Substellar companions to evolved intermediate-mass stars: HD 145457 and HD 180314. PASJ, 62, 1063–1069 {55, 56, 722, 723}CrossRefGoogle Scholar
Sato, B, Omiya, M, Wittenmyer, RA, et al., 2013b, A double planetary system around the evolved intermediate-mass star HD 4732. ApJ, 762, 9 {718}CrossRefGoogle Scholar
Sato, B, Toyota, E, Omiya, M, et al., 2008b, Planetary companions to evolved intermediate-mass stars: 14 And, 81 Cet, 6 Lyn, and HD 167042. PASJ, 60, 1317–1326 {55, 56, 713, 714, 715, 723}CrossRefGoogle Scholar
Sato, B, Wang, L, Liu, YJ, et al., 2016a, A pair of giant planets around the evolved intermediate-mass star HD 47366: multiple circular orbits or a mutually retrograde configuration. ApJ, 819, 59 {720}CrossRefGoogle Scholar
Sato, M, Asada, H, 2009, Effects of mutual transits by extrasolar planet-companion systems on light curves. PASJ, 61, L29–L34 {225, 276, 277}CrossRefGoogle Scholar
Sato, M, Asada, H, 2010, Transiting extrasolar planetwith a companion: effects of orbital eccentricity and inclination. PASJ, 62, 1203–1213 {225, 276}CrossRefGoogle Scholar
Sato, S, Cuntz, M, Guerra Olvera, CM, et al., 2014, Habitability around F-type stars. Int. J. Astrobiol., 13, 244–258 {628}CrossRefGoogle Scholar
Sato, S, Wang, Z, Cuntz, M, 2017, Climatological and ultraviolet-based habitability of possible exomoons in F-star systems. Astron. Nach., 338, 413–427 {627}CrossRefGoogle Scholar
Sato, T, Okuzumi, S, Ida, S, 2016b, On the water delivery to terrestrial embryos by ice pebble accretion. A&A, 589, A15 {471}Google Scholar
Satyal, S, Griffith, J, Musielak, ZE, 2017, Dynamics of a probable Earth-mass planet in the GJ 832 system. ApJ, 845, 106 {717}CrossRefGoogle Scholar
Satyal, S, Hinse, TC, Quarles, B, et al., 2014, Chaotic dynamics of the planet in HD 196885AB. MNRAS, 443, 1310–1318 {724}CrossRefGoogle Scholar
Satyal, S, Musielak, ZE, 2016, Stability of a planet in the HD 41004 binary system. Astron. Nach., 337, 300 {719}CrossRefGoogle Scholar
Satyal, S, Quarles, B, Hinse, TC, 2013, Application of chaos indicators in the study of dynamics of S-type extrasolar planets in stellar binaries. MNRAS, 433, 2215–2225 {714, 724}CrossRefGoogle Scholar
Saumon, D, Chabrier, G, van Horn, HM, 1995, An equation of state for low-mass stars and giant planets. ApJS, 99, 713–741 {566, 567, 660}CrossRefGoogle Scholar
Saumon, D, Chabrier, G, Wagner, DJ, et al., 2000, Modeling pressure-ionisation of hydrogen in the context of astrophysics. High Pressure Research, 16, 331–343 {567, 659}CrossRefGoogle Scholar
Saumon, D, Guillot, T, 2004, Shock compression of deuterium and the interiors of Jupiter and Saturn. ApJ, 609, 1170–1180 {660}CrossRefGoogle Scholar
Saumon, D, Hubbard, WB, Burrows, A, et al., 1996, A theory of extrasolar giant planets. ApJ, 460, 993–1018 {430, 452, 565}CrossRefGoogle Scholar
Saumon, D, Marley, MS, 2008, The evolution of L and T dwarfs in colour–magnitude diagrams. ApJ, 689, 1327–1344 {366, 436, 579}CrossRefGoogle Scholar
Saumon, D, Marley, MS, Cushing, MC, et al., 2006, Ammonia as a tracer of chemical equilibrium in the T7.5 dwarf GJ 570D. ApJ, 647, 552–557 {436, 579}CrossRefGoogle Scholar
Saumon, D, Marley, MS, Leggett, SK, et al., 2007, Physical parameters of two very cool T dwarfs. ApJ, 656, 1136–1149 {579, 582}CrossRefGoogle Scholar
Saur, J, Grambusch, T, Duling, S, et al., 2013, Magnetic energy fluxes in sub-Alfvén planet–star and moon–planet interactions. A&A, 552, A119 {425, 723}Google Scholar
Sauvage, JF, Fusco, T, Petit, C, et al., 2016, SAXO: the extreme adaptive optics system of SPHERE. I. System overview and global laboratory performance. Journal of Astronomical Telescopes, Instruments, and Systems, 2(2), 025003 {343}CrossRefGoogle Scholar
Savanov, IS, 2011a, Stellar activity as observed by the Kepler space telescope: the K dwarf KIC–8429280. Astronomy Reports, 55, 801–809 {386}Google Scholar
Savanov, IS, 2011b, Stellar activity observed by the Kepler space telescope: the systems with two planets and two active longitudes KOI–877 and KOI–896. Astronomy Reports, 55, 341–346 {386, 742, 744}Google Scholar
Savanov, IS, 2015, A study of cold spots on the surfaces of stars with planetary systems from the Kepler space telescope data. Astrophysical Bulletin, 70, 83–88 {212}CrossRefGoogle Scholar
Savanov, IS, Dmitrienko, ES, 2011, Stellar activity from observations with the Kepler space telescope: the Mdwarf GJ 1243. Astronomy Reports, 55, 890–895 {386}CrossRefGoogle Scholar
Savanov, IS, Dmitrienko, ES, 2012, Activity observed by the Kepler space telescope: the M dwarf LHS 6351 (KIC–2164791). Astronomy Reports, 56, 116–123 {386}CrossRefGoogle Scholar
Savanov, IS, Dmitrienko, ES, 2013, Stellar activity observed by the Kepler Space Telescope: the M dwarf of the Kepler–32 system with five orbiting planets. Astronomy Reports, 57, 757–765 {740}CrossRefGoogle Scholar
Savanov, IS, Dmitrienko, ES, 2015a, Activity and cool spots on the surfaces of G-type stars with super-flares from observations with Kepler. Astronomy Reports, 59, 879–887 {428}CrossRefGoogle Scholar
Savanov, IS, Dmitrienko, ES, 2015b, Activity of KOI–877 and KOI–896 observed by Kepler. Astronomy Reports, 59, 397–403 {740, 742, 744}CrossRefGoogle Scholar
Savanov, IS, Dmitrienko, ES, 2017, Spots and activity of solar-type stars from Kepler observations. Astronomy Reports, 61, 461–467 {383}Google Scholar
Savonije, GJ, Papaloizou, JCB, 1983, On the tidal spin up and orbital circularisation rate for themassive X-ray binary systems. MNRAS, 203, 581–593 {542}CrossRefGoogle Scholar
Savonije, GJ, Papaloizou, JCB, 1984, On the tidal evolution of massive X-ray binaries: the spin-up and circularisation rates for systems with evolved stars and the effects of resonances. MNRAS, 207, 685–704 {542}CrossRefGoogle Scholar
Savransky, D, 2015, Sequential covariance calculation for exoplanet image processing. ApJ, 800, 100 {340}CrossRefGoogle Scholar
Savransky, D, Cady, E, Kasdin, NJ, 2011, Parameter distributions of Keplerian orbits. ApJ, 728, 66 {63}CrossRefGoogle Scholar
Savransky, D, Kasdin, NJ, 2010, Simulation and analysis of sub-μas precision astrometric data for planet finding. ApJ, 721, 1559–1569 {84}CrossRefGoogle Scholar
Savransky, D, Kasdin, NJ, Cady, E, 2010a, Analysing the designs of planet-finding missions. PASP, 122, 401–419 {353}CrossRefGoogle Scholar
Savransky, D, Spergel, DN, Kasdin, NJ, et al., 2010b, Occulting Ozone Observatory: science overview. Space Telescopes and Instrumentation 2010, volume 7731 of Proc. SPIE, 77312H {182}Google Scholar
Saxena, P, Elkins-Tanton, L, Petro, N, et al., 2017, A model of the primordial lunar atmosphere. Earth Planet. Sci. Lett., 474, 198–205 {665}CrossRefGoogle Scholar
Saxena, P, Panka, P, Summers, M, 2015, The observational effects and signatures of tidally distorted solid exoplanets. MNRAS, 446, 4271–4277 {227}CrossRefGoogle Scholar
Saxena, SK, Eriksson, G, 1983, Low- to medium-temperature phase equilibria in a gas of solar composition. Earth Planet. Sci. Lett., 65, 7–16 {562}CrossRefGoogle Scholar
Sazhin, MV, 1996, A fundamental limit to the accuracy of astrometric measurements. Astronomy Letters, 22, 573–577 {85, 138}Google Scholar
Scafetta, N, 2010, Empirical evidence for a celestial origin of the climate oscillations and its implications. J. Atmos. Sol. Terr. Phys., 72, 951–970 {656}CrossRefGoogle Scholar
Scafetta, N, 2012, Does the Sun work as a nuclear fusion amplifier of planetary tidal forcing? A proposal for a physical mechanism based on the mass-luminosity relation. J. Atmos. Sol. Terr. Phys., 81, 27–40 {656}Google Scholar
Scafetta, N, Willson, RC, 2013, Empirical evidences for a planetarymodulation of total solar irradiance and the TSI signature of the 1.09-year Earth–Jupiter conjunction cycle. Ap&SS, 348, 25–39 {656}Google Scholar
Scalo, J, Kaltenegger, L, Segura, AG, et al., 2007, M stars as targets for terrestrial exo-planet searches and biosignature detection. Astrobiology, 7, 85–166 {627, 628}CrossRefGoogle Scholar
Scandariato, G, Maggio, A, Lanza, AF, et al., 2013, A coordinated optical and X-ray spectroscopic campaign on HD 179949: searching for planet-induced chromo-spheric and coronal activity. A&A, 552, A7 {421, 723}Google Scholar
Scandariato, G, Maldonado, J, Affer, L, et al., 2017, HADES radial velocity programme with HARPS–N at TNG. IV. Time-resolved analysis of the Ca II HK and Hα chromospheric emission of low-activity early-type Mdwarfs. A&A, 598, A28 {36}Google Scholar
Scargle, JD, 1982, Studies in astronomical time series analysis. II. Statistical aspects of spectral analysis of unevenly spaced data. ApJ, 263, 835–853 {21}CrossRefGoogle Scholar
Scaringi, S, Manara, CF, Barenfeld, SA, et al., 2016, The peculiar dipping events in the disk-bearing young-stellar object EPIC–204278916. MNRAS, 463, 2265–2272 {466}CrossRefGoogle Scholar
Schaefer, BE, 1989, Flashes from normal stars. ApJ, 337, 927–933 {427}CrossRefGoogle Scholar
Schaefer, BE, 2016, KIC–8462852 faded at an average rate of 0.164§0.013 magnitudes per century from 1890 to 1989. ApJ, 822, L34 {232, 747}CrossRefGoogle Scholar
Schaefer, BE, King, JR, Deliyannis, CP, 2000, Super-flares on ordinary solar-type stars. ApJ, 529, 1026–1030 {428}CrossRefGoogle Scholar
Schaefer, L, Fegley, B, 2004, A thermodynamic model of high temperature lava vaporisation on Io. Icarus, 169, 216–241 {281}CrossRefGoogle Scholar
Schaefer, L, Fegley, B, 2009, Chemistry of silicate atmospheres of evaporating super-Earths. ApJ, 703, L113–L117 {573, 574, 591}CrossRefGoogle Scholar
Schaefer, L, Fegley, B, 2010, Chemistry of atmospheres formed during accretion of the Earth and other terrestrial planets. Icarus, 208, 438–448 {597}CrossRefGoogle Scholar
Schaefer, L, Fegley, B, 2011, Atmospheric chemistry of Venus-like exoplanets. ApJ, 729, 6 {598}CrossRefGoogle Scholar
Schaefer, L, Lodders, K, Fegley, B, 2012, Vaporisation of the Earth: application to exo-planet atmospheres. ApJ, 755, 41 {591}CrossRefGoogle Scholar
Schaefer, L, Sasselov, D, 2015, The persistence of oceans on Earth-like planets: insights from the deep-water cycle. ApJ, 801, 40 {576}CrossRefGoogle Scholar
Schaefer, L, Wordsworth, RD, Berta-Thompson, Z, et al., 2016, Predictions of the atmospheric composition of GJ 1132 b. ApJ, 829, 63 {734}CrossRefGoogle Scholar
Schäfer, S, Reiners, A, 2012, Two Fabry–Pérot interferometers for high precision wavelength calibration in the near-infrared. Ground-based and Airborne Instrumentation for Astronomy IV, volume 8446 of Proc. SPIE, 844694 {33}Google Scholar
Scharf, C, Cronin, L, 2016, Quantifying the origins of life on a planetary scale. Proc. Nat. Acad. Sci., 113, 8127–8132 {637}CrossRefGoogle ScholarPubMed
Scharf, CA, 2006, The potential for tidally heated icy and temperate moons around exoplanets. ApJ, 648, 1196–1205 {627}CrossRefGoogle Scholar
Scharf, CA, 2007, Exoplanet transit parallax. ApJ, 661, 1218–1221 {256}CrossRefGoogle Scholar
Scharf, CA, 2008, Moons of exoplanets: habitats for life? Exoplanets: Detection, Formation, Properties, Habitability, 285–303, Springer {627, 687}
Scharf, CA, 2009, Extrasolar Planets and Astrobiology. University Science Books {619}Google Scholar
Scharf, CA, 2010, Constraints on exoplanet magnetic field strengths from planet–star interaction. ApJ, 722, 1547–1555 {424}CrossRefGoogle Scholar
Scharf, CA, Menou, K, 2009, Long-period exoplanets from dynamical relaxation. ApJ, 693, L113–L117 {525}CrossRefGoogle Scholar
Schatzman, E, 1945, Théorie du débit d’énergie des naines blanches. Annales d'Astrophysique, 8, 143 {416}Google Scholar
Scheffer, LK, 2014, Investigating nearby exoplanets via interstellar radar. Int. J. Astro-biol., 13, 62–68 {356, 714}Google Scholar
Scherer, K, Fichtner, H, Anderson, JD, et al., 1997, A pulsar, the heliosphere, and Pioneer 10: probable mimicking of a planet of PSR B1257+12 by solar rotation. Science, 278, 1919–1923 {107, 109}CrossRefGoogle ScholarPubMed
Schettino, G, Baffa, C, Giani, E, et al., 2010, The astro-comb project. Infrared Remote Sensing and Instrumentation XVIII, volume 7808 of Proc. SPIE, 78081Q {33}Google Scholar
Schettino, G, Oliva, E, Inguscio, M, et al., 2011, Optical frequency comb as a general-purpose and wide-band calibration source for astronomical high resolution infrared spectrographs. Exp. Astron., 31, 69–81 {33}CrossRefGoogle Scholar
Schilbach, E, Röser, S, 2012, New white dwarfs in the Hyades: results from kinematic and photometric studies. A&A, 537, A129 {418}Google Scholar
Schild, RE, 1996, Microlensing variability of the gravitationally lensed quasar Q0957+561. ApJ, 464, 125 {151}CrossRefGoogle Scholar
Schild, RE, Nieuwenhuizen, TM, Gibson, CH, 2012, The mass function of primordial rogue planet MACHOs in quasar nano-lensing. Physica Scripta Volume T, 151(1), 014082 {151, 446, 447}Google Scholar
Schindewolf, OH, 1954, The fossil record. Neues Jb. Geol. Palaontol, 10, 457 {651}Google Scholar
Schindler, TL, Kasting, JF, 2000, Synthetic spectra of simulated terrestrial atmospheres containing possible biomarker gases. Icarus, 145, 262–271 {641}CrossRefGoogle ScholarPubMed
Schlaufman, KC, 2010, Evidence of possible spin–orbit misalignment along the line of sight in transiting exoplanet systems. ApJ, 719, 602–611 {255, 385}CrossRefGoogle Scholar
Schlaufman, KC, 2014, Tests of in situ formation scenarios for compact multi-planet systems. ApJ, 790, 91 {484, 485, 501, 502}CrossRefGoogle Scholar
Schlaufman, KC, 2015, A continuum of planet formation between 1–4 Earth radii. ApJ, 799, L26 {463}CrossRefGoogle Scholar
Schlaufman, KC, Laughlin, G, 2011, Kepler exoplanet candidate host stars are preferentially metal rich. ApJ, 738, 177 {58, 308, 463}CrossRefGoogle Scholar
Schlaufman, KC, Lin, DNC, Ida, S, 2010, A population of very hot super-Earths in multiple-planet systems should be uncovered by Kepler. ApJ, 724, L53–L58 {174, 536}CrossRefGoogle Scholar
Schlaufman, KC, Winn, JN, 2013, Evidence for the tidal destruction of hot Jupiters by subgiant stars. ApJ, 772, 143 {525, 537}CrossRefGoogle Scholar
Schlaufman, KC, Winn, JN, 2016, The occurrence of additional giant planets inside the water-ice line in systems with hot Jupiters: evidence against high-eccentricity migration. ApJ, 825, 62 {530}CrossRefGoogle Scholar
Schlawin, E, Agol, E, Walkowicz, LM, et al., 2010, Exoplanetary transits of limb-brightened lines: tentative Si IV absorption by HD 209458 b. ApJ, 722, L75–L79 {732}CrossRefGoogle Scholar
Schlawin, E, Zhao, M, Teske, JK, et al., 2014, A 0.8–2.4μmtransmission spectrumof the hot Jupiter CoRoT–1 b. ApJ, 783, 5 {182, 588, 733}CrossRefGoogle Scholar
Schleicher, DRG, Dreizler, S, 2014, Planet formation from the ejecta of common envelopes. A&A, 563, A61 {113}Google Scholar
Schleicher, DRG, Dreizler, S, Völschow, M, et al., 2015, Planet formation in post-common-envelope binaries. Astron. Nach., 336, 458 {115}CrossRefGoogle Scholar
Schlesinger, F, 1910, The Algol-variable δ Lib. Publications of the Allegheny Observatory of the University of Pittsburgh, 1, 123–134 {248}Google Scholar
Schlesinger, F, 1916, The orbit of λ Tau. Publications of the Allegheny Observatory of the University of Pittsburgh, 3, 23–30 {248}Google Scholar
Schlichting, HE, 2014, Formation of close in super-Earths and mini-Neptunes: required diskmasses and their implications. ApJ, 795, L15 {501}CrossRefGoogle Scholar
Schlichting, HE, Chang, P, 2011, Warm Saturns: on the nature of rings around extraso-lar planets that reside inside the ice line. ApJ, 734, 117 {217}CrossRefGoogle Scholar
Schlichting, HE, Fuentes, CI, Trilling, DE, 2013, Initial planetesimal sizes and the size distribution of small Kuiper belt objects. AJ, 146, 36 {685}CrossRefGoogle Scholar
Schlichting, HE, Sari, R, 2007, The effect of semicollisional accretion on planetary spins. ApJ, 658, 593–597 {680}CrossRefGoogle Scholar
Schlichting, HE, Sari, R, 2008, The ratio of retrograde to prograde orbits: a test for Kuiper belt binary formation theories. ApJ, 686, 741-747 {685}CrossRefGoogle Scholar
Schlichting, HE, Sari, R, 2011, Runaway growth during planet formation: explaining the size distribution of large Kuiper belt objects. ApJ, 728, 68 {473, 474, 685}CrossRefGoogle Scholar
Schlichting, HE, Sari, R, Yalinewich, A, 2015, Atmosphericmass loss during planet formation: the importance of planetesimal impacts. Icarus, 247, 81–94 {600}CrossRefGoogle Scholar
Schlichting, HE, Warren, PH, Yin, QZ, 2012, The last stages of terrestrial planet formation: dynamical friction and the late veneer. ApJ, 752, 8 {669}CrossRefGoogle Scholar
Schlieder, JE, Crossfield, IJM, Petigura, EA, et al., 2016a, Two small temperate planets transiting nearby Mdwarfs in K2 Campaigns 0 and 1. ApJ, 818, 87 {747, 748}CrossRefGoogle Scholar
Schlieder, JE, Skemer, AJ, Maire, AL, et al., 2016b, The LEECH Exoplanet Imaging Survey: orbit and component masses of the intermediate-age, late-type binary NO UMa. ApJ, 818, 1 {359}CrossRefGoogle Scholar
Schloerb, FP, Berger, J, Carleton, NP, et al., 2006, IOTA: recent science and technology. SPIE Conf. Ser., volume 6268, 18 {348}Google Scholar
Schmid, C, Abuter, R, Merand, A, et al., 2012, Status of PRIMA for the VLTI: heading to astrometry. SPIE Conf. Ser., volume 8445 {91}Google Scholar
Schmid, HM, Beuzit, J, Feldt, M, et al., 2006, Search and investigation of extrasolar planets with polarimetry. IAU Colloq. 200: Direct Imaging of Exoplanets: Science and Techniques, 165–170 {641}
Schmidt, OY, 1944, Dok. Akad. Nauk. USSR, 45(6) {450}Google Scholar
Schmidt, RM, Housen, KR, 1987, Some recent advances in the scaling of impact and explosion cratering. International Journal of Impact Engineering, 5, 543–560 {600}CrossRefGoogle Scholar
Schmidt, TOB, Neuhäuser, R, Briceño, C, et al., 2016, Direct imaging discovery of a second planet candidate around the possibly transiting planet host CVSO 30 (PTFO 8–8695). A&A, 593, A75 {167, 364, 525, 750}Google Scholar
Schmidt, TOB, Neuhäuser, R, Mugrauer, M, et al., 2009, New astrometry and photometry for the companion candidates of CT Cha. Amer. Inst. Phys. Conf. Ser., volume 1094, 852–855 {761}Google Scholar
Schmidt, TOB, Neuhäuser, R, Seifahrt, A, et al., 2008, Direct evidence of a sub-stellar companion around CT Cha. A&A, 491, 311–320 {362, 761}Google Scholar
Schmitt, J, 1997, Étude et réalisation en laboratoire d'un accéléromètre astronomique absolu. Ph. D. thesis, Paris {50}Google Scholar
Schmitt, JHMM, Mittag, M, 2017, Further evidence for a sub-year magnetic chromo-spheric activity cycle and activity phase jumps in the planet host τ Boo. A&A, 600, A120 {714}Google Scholar
Schmitt, JR, Agol, E, Deck, KM, et al., 2014a, Planet Hunters. VII. Discovery of a new low-mass, low-density planet (PH3 C) orbiting Kepler–289 with mass measurements of two additional planets (PH3 B and D). ApJ, 795, 167 {744}CrossRefGoogle Scholar
Schmitt, JR, Jenkins, JM, Fischer, DA, 2017, A search for lost planets in the Kepler multi-planet systems and the discovery of the long-period, Neptune-sized exoplanet Kepler–150 f. AJ, 153, 180 {743, 744}CrossRefGoogle ScholarPubMed
Schmitt, JR, Tokovinin, A, Wang, J, et al., 2016, Planet Hunters. X. Searching for nearby neighbours of 75 planet and eclipsing binary candidates from the K2 Kepler extended mission. AJ, 151, 159 {197}CrossRefGoogle Scholar
Schmitt, JR, Wang, J, Fischer, DA, et al., 2014b, Planet Hunters. VI. An independent characterisation of KOI–351 and several long period planet candidates from the Kepler archival data. AJ, 148, 28 {179, 314, 321, 742}CrossRefGoogle Scholar
Schmitz, B, 2013, Extraterrestrial spinels and the astronomical perspective on Earth's geological record and evolution of life. Chemie der Erde/Geochemistry, 73, 117–145 {671, 672, 676}Google Scholar
Schmitz, B, Boschi, S, Cronholm, A, et al., 2015, Fragments of late Eocene Earth-impacting asteroids linked to disturbance of asteroid belt. Earth Planet. Sci. Lett., 425, 77–83 {672}CrossRefGoogle Scholar
Schmitz, B, Heck, PR, Alvarez, W, et al., 2017, Meteorite flux to Earth in the Early Cretaceous as reconstructed from sediment-dispersed extraterrestrial spinels. Geology, 45, 807–810 {672}CrossRefGoogle Scholar
Schmitz, B, Yin, QZ, Sanborn, ME, et al., 2016, A new type of solar-system material recovered from Ordovician marine limestone. Nature Communications, 7, 11851 {672}CrossRefGoogle ScholarPubMed
Schneider, G, Becklin, EE, Smith, BA, et al., 2001, NICMOS coronagraphic observations of 55 Cnc. AJ, 121, 525–537 {361, 728}CrossRefGoogle Scholar
Schneider, G, Debes, JH, Grady, CA, et al., 2018, The HR4796A debris system: discovery of extensive exo-ring dust material. AJ, 155, 77 {493, 762}CrossRefGoogle Scholar
Schneider, G, Grady, CA, Hines, DC, et al., 2014, Probing for exoplanets hiding in dusty debris disks: disk imaging, characterisation, and exploration with HST–STIS multi-roll coronagraphy. AJ, 148, 59 {493}CrossRefGoogle Scholar
Schneider, G, Smith, BA, Becklin, EE, et al., 1999, HST–NICMOS imaging of the HR 4796A circumstellar disk. ApJ, 513, L127–L130 {493}CrossRefGoogle Scholar
Schneider, G, Weinberger, AJ, Becklin, EE, et al., 2009a, STIS imaging of the HR 4796A circumstellar debris ring. AJ, 137, 53–61 {342, 494}CrossRefGoogle Scholar
Schneider, G, Wood, K, Silverstone, MD, et al., 2003, NICMOS coronagraphic observations of the GM Aur circumstellar disk. AJ, 125, 1467–1479 {465}CrossRefGoogle Scholar
Schneider, J, 1994a, On the occultations of a binary star by a circum-orbiting dark companion. Planet. Space Sci., 42, 539–544 {261}CrossRefGoogle Scholar
Schneider, J, 1994b, On the search for O2 in extrasolar planets. Ap&SS, 212, 321–325 {157, 618, 639}Google Scholar
Schneider, J, 1996, Photometric search for extrasolar planets. Ap&SS, 241, 35–42 {157, 180}Google Scholar
Schneider, J, 1999, The study of extrasolar planets: methods of detection, first discoveries and future perspectives. Academie des Science Paris Comptes Rendus Serie B Sciences Physiques, 327, 621–634 {217, 640}Google Scholar
Schneider, J, 2000, Extrasolar planets transits: detection and follow-up. From Extrasolar Planets to Cosmology: The VLT Opening Symposium, 499–501 {248}
Schneider, J, 2002a, Biosignatures and exoplanet characterisation: visible versus thermal infrared imaging. Exo-Astrobiology, volume 518 of ESA SP, 409–412 {351}Google Scholar
Schneider, J, 2002b, Characterising extrasolar planets in reflected light and thermal emission. SF2A-2002: Semaine de l'Astrophysique Francaise, 597–602 {351}
Schneider, J, 2003, Biosignatures and extrasolar planet characterisation: visible versus infrared. Earths: Darwin/TPF and the Search for Extrasolar Terrestrial Planets, volume 539 of ESA SP, 205–213 {351}Google Scholar
Schneider, J, 2005, Light-time effect and exoplanets. The Light-Time Effect in Astrophysics: Causes and Cures of the O-C diagram, volume 335 of ASP Conf. Ser., 191–198 {277}Google Scholar
Schneider, J, 2008a, Characterising super-Earths in reflected light. EAS Pub. Ser., volume 33, 71–74 {638}CrossRefGoogle Scholar
Schneider, J, 2008b, Exoplanets: which wavelengths? SPIE Conf. Ser., volume 6986 {638}Google Scholar
Schneider, J, 2017, Measuring the radius and mass of Planet Nine. PASP, 129(10), 104401 {138, 687}CrossRefGoogle Scholar
Schneider, J, Auvergne, M, Baglin, A, et al., 1998, The COROT mission: from structure of stars to origin of planetary systems. Origins, volume 148 of ASP Conf. Ser., 298–303 {217}Google Scholar
Schneider, J, Boccaletti, A, Mawet, D, et al., 2009b, Super Earth explorer: a corona-graphic off-axis space telescope. Exp. Astron., 23, 357–377 {182, 353}CrossRefGoogle Scholar
Schneider, J, Cabrera, J, 2006, Can stellar wobble in triple systems mimic a planet? A&A, 445, 1159–1163 {39, 109}Google Scholar
Schneider, J, Chevreton, M, 1990, The photometric search for Earth-sized extrasolar planets by occultation in binary systems. A&A, 232, 251–257 {157, 159, 193}Google Scholar
Schneider, J, Dedieu, C, Le Sidaner, P, et al., 2011, Defining and cataloguing exoplanets: the exoplanet.eu database. A&A, 532, A79 {8, 14}Google Scholar
Schneider, J, Doyle, LR, 1995, Ground-based detection of terrestrial extrasolar planets by photometry: the case for CM Dra. Earth Moon and Planets, 71, 153–173 {159}CrossRefGoogle Scholar
Schneider, J, Lainey, V, Cabrera, J, 2015, A next step in exoplanetology: exomoons. Int. J. Astrobiol., 14, 191–199 {276}CrossRefGoogle Scholar
Schneider, J, Léger, A, Fridlund, M, et al., 2010, The far future of exoplanet direct char-acterisation. Astrobiology, 10, 121–126 {618}CrossRefGoogle Scholar
Schneider, J, Riaud, P, Tinetti, G, et al., 2006a, SEE-COAST: the super-Earth explorer. SF2A-2006: Semaine de l'Astrophysique Francaise, 429–432 {353}
Schneider, P, 1985, A new formulation of gravitational lens theory, time-delay, and Fermat's principle. A&A, 143, 413–420 {137}Google Scholar
Schneider, P, Ehlers, J, Falco, EE, 1992, Gravitational Lenses. Springer–Verlag {137}Google Scholar
Schneider, P, Kochanek, CS, Wambsganss, J, 2006b, Gravitational Lensing: Strong, Weak and Micro. Springer {120}Google Scholar
Schneider, P, Weiss, A, 1986, The two point-mass lens: detailed investigation of a special asymmetric gravitational lens. A&A, 164, 237–259 {125}Google Scholar
Schneider, P, Weiss, A, 1987, A gravitational lens origin for AGN-variability? Consequences of micro-lensing. A&A, 171, 49–65 {130}Google Scholar
Schneider, PC, Schmitt, JHMM, 2010, X-raying the AU Mic debris disk. A&A, 516, A8 {494}Google Scholar
Schneider, S, 1979, Ice ages and orbital variations: some simple theory and modeling. Quaternary Research, 12, 188–203 {681}CrossRefGoogle Scholar
Schneider, T, 2006, The general circulation of the atmosphere. Ann. Rev. Earth Plan. Sci., 34, 655–688 {594}CrossRefGoogle Scholar
Schneiter, EM, Esquivel, A, D'Angelo, CSV, et al., 2016, Photoionisation of planetary winds: case study HD 209458 b. MNRAS, 457, 1666–1674 {732}CrossRefGoogle Scholar
Schneiter, EM, Velázquez, PF, Esquivel, A, et al., 2007, Three-dimensional hydrodynamical simulation of the exoplanet HD 209458 b. ApJ, 671, L57–L60 {732}CrossRefGoogle Scholar
Scholl, H, Marzari, F, Thébault, P, 2007, Relative velocities among accreting planetesi-mals in binary systems: the circumbinary case. MNRAS, 380, 1119–1126 {551}CrossRefGoogle Scholar
Scholz, A, Geers, V, Clark, P, et al., 2013, Substellar Objects in Nearby Young Clusters (SONYC). VII. The substellar mass function revisited. ApJ, 775, 138 {434}CrossRefGoogle Scholar
Scholz, A, Geers, V, Jayawardhana, R, et al., 2009, Substellar Objects in Nearby Young Clusters (SONYC). I. The bottom of the initial mass function in NGC 1333. ApJ, 702, 805–822 {434}CrossRefGoogle Scholar
Scholz, A, Jayawardhana, R, Brandeker, A, 2005, Whims of an accreting young brown dwarf: exploring the emission-line variability of 2M J1207. ApJ, 629, L41–L44 {763}CrossRefGoogle Scholar
Scholz, A, Jayawardhana, R, Muzic, K, et al., 2012a, Substellar Objects in Nearby Young Clusters (SONYC). VI. The planetary-mass domain of NGC 1333. ApJ, 756, 24 {434, 446, 447}CrossRefGoogle Scholar
Scholz, A, Jayawardhana, R, Wood, K, 2006, Exploring brown dwarf disks: a 1.3mm survey in Taurus. ApJ, 645, 1498–1508 {444}CrossRefGoogle Scholar
Scholz, A, Muzic, K, Geers, V, et al., 2012b, Substellar Objects in Nearby Young Clusters (SONYC). IV. A census of very low mass objects in NGC 1333. ApJ, 744, 6 {434}CrossRefGoogle Scholar
Scholz, R, 2010, ULAS J141623.94+134836.3: a faint common proper motion companion of a nearby L dwarf. Serendipitous discovery of a cool brown dwarf in UKIDSS DR6. A&A, 510, L8–4 {432}Google Scholar
Scholz, RD, Bihain, G, Schnurr, O, et al., 2011, Two very nearby (d ~ 5 pc) ultracool brown dwarfs detected by their large proper motions from WISE, 2MASS, and SDSS data. A&A, 532, L5 {432}Google Scholar
Schoonenberg, D, Ormel, CW, 2017, Planetesimal formation near the snow line: in or out? A&A, 602, A21 {565}Google Scholar
Schopf, JW, 1993, Microfossils of the early Archean apex chert: new evidence of the antiquity of life. Science, 260, 640–646 {636, 674}CrossRefGoogle ScholarPubMed
Schrag, DP, Berner, RA, Hoffman, PF, et al., 2002, On the initiation of snowball Earth. Geochemistry, Geophysics, Geosystems, 1 {674}Google Scholar
Schräpler, R, Blum, J, 2011, The physics of protoplanetesimal dust agglomerates. VI. Erosion of large aggregates as a source of μm-sized particles. ApJ, 734, 108 {458}CrossRefGoogle Scholar
Schräpler, R, Blum, J, Seizinger, A, et al., 2012, The physics of protoplanetesimal dust agglomerates. VII. The low-velocity collision behaviour of large dust agglomerates. ApJ, 758, 35 {468}CrossRefGoogle Scholar
Schrijver, CJ, Pols, OR, 1993, Rotation, magnetic braking, and dynamos in cool giants and subgiants. A&A, 278, 51–67 {56}Google Scholar
Schrijver, CJ, Zwaan, C, 2000, Solar and Stellar Magnetic Activity. Cambridge University Press {38}CrossRefGoogle Scholar
Schröder, KP, Connon Smith, R, 2008, Distant future of the Sun and Earth revisited. MNRAS, 386, 155–163 {414}Google Scholar
Schroeder, DJ, Golimowski, DA, Brukardt, RA, et al., 2000, A search for faint companions to nearby stars using the HST–WFPC2. AJ, 119, 906–922 {357}CrossRefGoogle Scholar
Schröter, S, Czesla, S, Wolter, U, et al., 2011, The corona and companion of CoRoT–2: insights from X-rays and optical spectroscopy. A&A, 532, A3 {733}Google Scholar
Schröter, S, Schmitt, JHMM, Müller, HM, 2012, A consistent analysis of three years of ground- and space-based photometry of TrES–2. A&A, 539, A97 {167, 751}Google Scholar
Schuetz, M, Vakoch, DA, Shostak, S, et al., 2016, Optical SETI observations of the anomalous star KIC–8462852. ApJ, 825, L5 {232, 646, 747}CrossRefGoogle Scholar
Schuh, S, Silvotti, R, Lutz, R, et al., 2010, EXOTIME: searching for planets around pulsating subdwarf B stars. Ap&SS, 329, 231 {112}Google Scholar
Schuh, S, Silvotti, R, Lutz, R, 2014, The EXOTIME monitoring programme discovers substellar companion candidates around the rapidly pulsating sdB stars V1636 Ori and DW Lyn. 6th Meeting on Hot Subdwarf Stars and Related Objects, volume 481 of ASP Conf. Ser., 3 {112}Google Scholar
Schuler, SC, Cunha, K, Smith, VV, et al., 2011a, Detailed abundances of the solar twins 16 Cyg A and B: constraining planet formation models. ApJ, 737, L32 {405, 715}CrossRefGoogle Scholar
Schuler, SC, Flateau, D, Cunha, K, et al., 2011b, Abundances of stars with planets: trends with condensation temperature. ApJ, 732, 55 {405}CrossRefGoogle Scholar
Schuler, SC, Kim, JH, Tinker, MC, et al., 2005, High-resolution spectroscopy of the planetary host HD 13189: highly evolved and metal-poor. ApJ, 632, L131–L134 {718}CrossRefGoogle Scholar
Schuler, SC, Vaz, ZA, Katime Santrich, OJ, et al., 2015, Detailed abundances of stars with small planets discovered by Kepler. I. The first sample. ApJ, 815, 5 {390}CrossRefGoogle Scholar
Schultz, AB, Jordan, IJ, Kochte, M, et al., 2003, UMBRAS: a matched occulter and telescope for imaging extrasolar planets. SPIE Conf. Ser., volume 4860, 54–61 {339, 353}Google Scholar
Schulz, M, Mudelsee, M, 2002, REDFIT: estimating red-noise spectra directly from unevenly spaced paleoclimatic time series. Computers and Geosciences, 28, 421–426 {21}CrossRefGoogle Scholar
Schulz, R, 2002, Trans-Neptunian objects. A&A Rev., 11, 1–31 {684}Google Scholar
Schulze-Makuch, D, Méndez, A, Fairén, AG, et al., 2011, A two-tiered approach to assessing the habitability of exoplanets. Astrobiology, 11, 1041–1052 {633}CrossRefGoogle ScholarPubMed
Schüppler, C, Krivov, AV, Löhne, T, et al., 2016, Origin and evolution of two-component debris disks and an application to the q1 Eri system. MNRAS, 461, 2146–2154 {497}CrossRefGoogle Scholar
Schüppler, C, Löhne, T, Krivov, AV, et al., 2014, Collisional modelling of the debris disk around HIP 17439. A&A, 567, A127 {496}Google Scholar
Schüppler, C, Löhne, T, Krivov, AV, 2015, Collisional modelling of the AUMic debris disk. A&A, 581, A97 {494}Google Scholar
Schuster, A, 1911, The influence of planets on the formation of sun spots. Phil. Trans. Soc. London A, 85, 309–323 {656}Google Scholar
Schütz, O, Böhnhardt, H, Pantin, E, et al., 2004a, A search for circumstellar dust disks with ADONIS. A&A, 424, 613–618 {493}Google Scholar
Schütz, O, Nielbock, M, Wolf, S, et al., 2004b, SIMBA's view of the yatt MC, et al., 2005, Structure in the Eri disk. A&A, 414, L9–L12 {715}Google Scholar
Schwab, C, Leon-Saval, SG, Betters, CH, et al., 2014, Single mode, extreme precision Doppler spectrographs. Formation, Detection, and Characterisation of Extrasolar Habitable Planets, volume 293 of IAU Symp., 403–406 {34}Google Scholar
Schwab, C, Spronck, JFP, Tokovinin, A, et al., 2010, Design of the CHIRON high-resolution spectrometer at CTIO. Ground-based and Airborne Instrumentation for Astronomy III, volume 7735 of Proc. SPIE, 77354G {46}Google Scholar
Schwab, C, Stürmer, J, Gurevich, YV, et al., 2015, Stabilising a Fabry–Pérot Etalon Peak to 0.03ms-1 for spectrograph calibration. PASP, 127, 880–889 {33}CrossRefGoogle Scholar
Schwamb, ME, Lintott, CJ, Fischer, DA, et al., 2012, Planet Hunters: assessing the Kepler inventory of short-period planets. ApJ, 754, 129 {192}CrossRefGoogle Scholar
Schwamb, ME, Orosz, JA, Carter, JA, et al., 2013, Planet Hunters: a transiting circum-binary planet in a quadruple star system. ApJ, 768, 127 {12, 192, 327, 553, 742}CrossRefGoogle Scholar
Schwartz, E, Lipson, SG, Ribak, EN, 2012, Enhanced interferometric identification of spectra in habitable extrasolar planets. AJ, 144, 71 {641}CrossRefGoogle Scholar
Schwartz, JC, Cowan, NB, 2015, Balancing the energy budget of short-period giant planets: evidence for reflective clouds and optical absorbers. MNRAS, 449, 4192–4203 {729, 731, 732, 753, 755}CrossRefGoogle Scholar
Schwartz, JC, Kashner, Z, Jovmir, D, et al., 2017, Phase offsets and the energy budgets of hot Jupiters. ApJ, 850, 154 {753}CrossRefGoogle Scholar
Schwartz, JC, Sekowski, C, Haggard, HM, et al., 2016, Inferring planetary obliquity using rotational and orbital photometry. MNRAS, 457, 926–938 {591, 615, 616}CrossRefGoogle Scholar
Schwartz, RN, Townes, CH, 1961, Interstellar and interplanetary communication by optical masers. Nature, 190, 205–208 {645}CrossRefGoogle Scholar
Schwartzman, DW, Volk, T, 1989, Biotic enhancement of weathering and the habitability of Earth. Nature, 340, 457–460 {630}CrossRefGoogle Scholar
Schwarz, H, Brogi, M, de Kok, R, et al., 2015a, Evidence against a strong thermal inversion in HD 209458 b from high-dispersion spectroscopy. A&A, 576, A111 {610, 732}Google Scholar
Schwarz, H, Ginski, C, de Kok, RJ, et al., 2016a, The slow spin of the young substellar companion GQ Lup b and its orbital configuration. A&A, 593, A74 {43, 447, 680, 762}Google Scholar
Schwarz, R, Bazsó Á, Érdi B, et al., 2012, Stability of the Lagrangian point L4 in the spatial restricted three-body problem: application to exoplanet systems. MNRAS, 427, 397–402 {273}CrossRefGoogle Scholar
Schwarz, R, Dvorak, R, 2012, Trojan capture by terrestrial planets. Cel. Mech. Dyn. Astron., 113, 23–34 {689}CrossRefGoogle Scholar
Schwarz, R, Dvorak, R, Pilat Lohinger, E, et al., 2007a, Trojan planets in HD 108874? A&A, 462, 1165–1170 {76, 721}Google Scholar
Schwarz, R, Dvorak, R, Süli, Á, et al., 2007b, Stability of fictitious Trojan planets in ex-trasolar systems. Astron. Nach., 328, 785–789 {76}CrossRefGoogle Scholar
Schwarz, R, Dvorak, R, Süli, Á, 2007c, Survey of the stability region of hypothetical habitable Trojan planets. A&A, 474, 1023–1029 {76}Google Scholar
Schwarz, R, Funk, B, Bazsó Á, 2015b, On the possibility of habitable Trojan planets in binary star systems. Origins of Life and Evolution of the Biosphere, 45, 469–477 {624}CrossRefGoogle Scholar
Schwarz, R, Funk, B, Bazsó Á, et al., 2017, On the dynamical habitability of Trojan planets in exoplanetary systems. Proceedings of the First Greek-Austrian Workshop on Extrasolar Planetary Systems, 155–179 {624}
Schwarz, R, Funk, B, Zechner, R, et al., 2016b, New prospects for observing and cata-loguing exoplanets in well-detached binaries. MNRAS, 460, 3598–3609 {547}CrossRefGoogle Scholar
Schwarz, R, Haghighipour, N, Eggl, S, et al., 2011, Prospects of the detection of circum-binary planets with Kepler and CoRoT using eclipse timing variations. MNRAS, 414, 2763–2770 {112, 193, 547}CrossRefGoogle Scholar
Schwarz, R, Pilat-Lohinger, E, Dvorak, R, et al., 2005, Trojans in habitable zones. Astro-biology, 5, 579–586 {274}Google ScholarPubMed
Schwarz, R, Schwope, AD, Vogel, J, et al., 2009, Hunting high and low: XMMmonitoring of the eclipsing polar HU Aqr. A&A, 496, 833–840 {114, 115}Google Scholar
Schwarzenberg-Czerny, A, Beaulieu, JP, 2006, Efficient analysis in planet transit surveys. MNRAS, 365, 165–170 {157, 190}CrossRefGoogle Scholar
Schwarzenberg-Czerny, A, Weiss, W, Moffat, A, et al., 2010, The BRITE nanosatellite constellation mission. COSPAR Scientific Assembly, volume 38, 2904 {187}Google Scholar
Schwarzschild, M, 1958, Structure and Evolution of the Stars. Princeton University Press {570}CrossRefGoogle Scholar
Schwieterman, EW, Meadows, VS, Domagal-Goldman, SD, et al., 2016, Identifying planetary biosignature impostors: spectral features of CO and O4 resulting from abiotic O2/O3 production. ApJ, 819, L13 {639}CrossRefGoogle Scholar
Schwope, AD, Thinius, BD, 2014, On the ephemeris of HU Aqr. Astron. Nach., 335, 357 {115}CrossRefGoogle Scholar
Schworer, G, Tuthill, PG, 2015, Predicting exoplanet observability in time, contrast, separation, and polarisation, in scattered light. A&A, 578, A59 {246}Google Scholar
Scott, AC, 2000, The Pre-Quaternary history of fire. Palaeogeogr Palaeoclimatol Palaeoecol, 164, 281–329 {674}CrossRefGoogle Scholar
Scott, ERD, 2007, Chondrites and the protoplanetary disk. Ann. Rev. Earth Plan. Sci., 35, 577–620 {652, 653}CrossRefGoogle Scholar
Scott, HP, Hemley, RJ, Mao, H, et al., 2004, Generation of methane in the Earth'smantle: in situ high pressure–temperature measurements of carbonate reduction. society of photo, 101, 14023–14026 {598}Google ScholarPubMed
Scuderi, LJ, Dittmann, JA, Males, JR, et al., 2010, On the apparent orbital inclination change of the extrasolar transiting planet TrES–2 b. ApJ, 714, 462–468 {167, 751}CrossRefGoogle Scholar
Seader, S, Jenkins, JM, Tenenbaum, P, et al., 2015, Detection of potential transit signals in 17 quarters of Kepler mission data. ApJS, 217, 18 {196}CrossRefGoogle Scholar
Seader, S, Tenenbaum, P, Jenkins, JM, et al., 2013, χ2 discriminators for transiting planet detection in Kepler data. ApJS, 206, 25 {191, 197}CrossRefGoogle Scholar
Seager, S, 2003, The search for extrasolar Earth-like planets. Earth Planet. Sci. Lett., 208, 113–124 {641}CrossRefGoogle Scholar
Seager, S, 2010, Exoplanet Atmospheres: Physical Processes. Princeton University Press {578, 592, 594}Google Scholar
Seager, S, 2013, Exoplanet habitability. Science, 340, 577–581 {620}CrossRefGoogle ScholarPubMed
Seager, S, Bains, W, Hu, R, 2013a, A biomass-based model to estimate the plausibility of exoplanet biosignature gases. ApJ, 775, 104 {624, 642}CrossRefGoogle Scholar
Seager, S, Bains, W, Hu, R, 2013b, Biosignature gases in H2-dominated atmospheres on rocky exoplanets. ApJ, 777, 95 {624}CrossRefGoogle Scholar
Seager, S, Bains, W, Petkowski, JJ, 2016, Toward a list of molecules as potential biosig-nature gases for the search for life on exoplanets and applications to terrestrial biochemistry. Astrobiology, 16, 465–485 {642}CrossRefGoogle Scholar
Seager, S, Deming, D, 2009, On themethod to infer an atmosphere on a tidally-locked super Earth exoplanet and upper limits to GJ 876 d. ApJ, 703, 1884–1889 {717}CrossRefGoogle Scholar
Seager, S, Deming, D, 2010, Exoplanet atmospheres. ARA&A, 48, 631–672 {578}Google Scholar
Seager, S, Deming, D, Valenti, JA, 2009, Transiting exoplanets with JWST. Astrophysics in the Next Decade, Astrophysics and Space Science Proceedings, 123–130 {181, 284, 617}
Seager, S, Hui, L, 2002, Constraining the rotation rate of transiting extrasolar planets by oblateness measurements. ApJ, 574, 1004–1010 {216, 219, 220, 228}CrossRefGoogle Scholar
Seager, S, Kuchner, M, Hier-Majumder, CA, et al., 2007, Mass–radius relationships for solid exoplanets. ApJ, 669, 1279–1297 {566, 574, 603}CrossRefGoogle Scholar
Seager, S, Mallén-Ornelas, G, 2003, A unique solution of planet and star parameters from an extrasolar planet transit light curve. ApJ, 585, 1038–1055 {199, 200, 201, 202, 203, 207, 289}CrossRefGoogle Scholar
Seager, S, Richardson, LJ, Hansen, BMS, et al., 2005a, On the day-side thermal emission of hot Jupiters. ApJ, 632, 1122–1131 {285, 591}CrossRefGoogle Scholar
Seager, S, Sasselov, DD, 1998, Extrasolar giant planets under strong stellar irradiation. ApJ, 502, L157–L161 {234}CrossRefGoogle Scholar
Seager, S, Sasselov, DD, 2000, Theoretical transmission spectra during extrasolar giant planet transits. ApJ, 537, 916–921 {250, 284, 591}CrossRefGoogle Scholar
Seager, S, Turner, EL, Schafer, J, et al., 2005b, Vegetation's red edge: a possible spectroscopic biosignature of extraterrestrial plants. Astrobiology, 5, 372–390 {641, 642}CrossRefGoogle Scholar
Seager, S, Whitney, BA, Sasselov, DD, 2000, Photometric light curves and polarisation of close-in extrasolar giant planets. ApJ, 540, 504–520 {234, 235, 246, 591}CrossRefGoogle Scholar
Seagroves, S, Harker, J, Laughlin, G, et al., 2003, Detection of intermediate-period transiting planets with a network of small telescopes: transitsearch.org. PASP, 115, 1355–1362 {158, 205}CrossRefGoogle Scholar
Sears, DW, 1978, Condensation and the composition of ironmeteorites. Earth Planet. Sci. Lett., 41, 128–138 {562}CrossRefGoogle Scholar
Seaton, MJ, Yan, Y, Mihalas, D, et al., 1994, Opacities for stellar envelopes. MNRAS, 266, 805–828 {570}CrossRefGoogle Scholar
Secord, R, Bloch, JI, Chester, SGB, et al., 2012, Evolution of the earliest horses driven by climate change in the Paleocene–Eocene Thermal Maximum. Science, 335(6071), 959–962, ISSN 0036-8075 {675}CrossRefGoogle ScholarPubMed
Sedaghati, E, Boffin, HMJ, Csizmadia, S, et al., 2015, Regaining the FORS: optical ground-based transmission spectroscopy of the exoplanet WASP–19 b with VLT–FORS2. A&A, 576, L11 {754}Google Scholar
Sedaghati, E, Boffin, HMJ, Delrez, L, et al., 2017, Probing the atmosphere of a sub-Jovian planet orbiting a cool dwarf. MNRAS, 468, 3123–3134 {756}CrossRefGoogle Scholar
Sedaghati, E, Boffin, HMJ, Jerabková, T, et al., 2016, Potassium detection in the clear atmosphere of a hot-Jupiter: FORS2 transmission spectroscopy of WASP–17 b. A&A, 596, A47 {753}Google Scholar
See, TJJ, 1895, Perturbations in the motion of the double star 70 Oph. AJ, 15, 180–180 {83}Google Scholar
See, TJJ, 1896a, Micrometrical measures of the stellar system 70 Oph. AJ, 16, 211–211 {83}Google Scholar
See, TJJ, 1896b, Researches on the orbit of 70 Oph, and on a periodic perturbation in the motion of the system arising from the action of an unseen body. AJ, 16, 17–23 {83}Google Scholar
See, TJJ, 1897, Micrometricalmeasures of 70 Oph, with remarks on the perturbation of the system. AJ, 17, 180–181 {83}CrossRefGoogle Scholar
See, V, Jardine, M, Fares, R, et al., 2015, Time-scales of close-in exoplanet radio emission variability. MNRAS, 450, 4323–4332 {714, 723, 731}CrossRefGoogle Scholar
See, V, Jardine, M, Vidotto, AA, et al., 2014, The effects of stellar winds on the magneto-spheres and potential habitability of exoplanets. A&A, 570, A99 {631}Google Scholar
Seeliger, M, Dimitrov, D, Kjurkchieva, D, et al., 2014, Transit timing analysis in the HAT–P–32 system. MNRAS, 441, 304–315 {737}CrossRefGoogle Scholar
Seeliger, M, Kitze, M, Errmann, R, et al., 2015, Ground-based transit observations of the HAT–P–18, HAT–P–19, HAT–P–27/ WASP–40 and WASP–21 systems. MNRAS, 451, 4060–4072 {736, 737, 754}CrossRefGoogle Scholar
Ségransan, D, Mayor, M, Udry, S, et al., 2011, The HARPS search for southern extrasolar planets. XXIX. Four new planets in orbit around the moderately active dwarfs HD 63765, HD 104067, HD 125595, and HIP 70849. A&A, 535, A54 {720, 721, 722, 725}Google Scholar
Ségransan, D, Udry, S, Mayor, M, et al., 2010, The CORALIE survey for southern extra-solar planets. XVI. Discovery of a planetary system around HD147018 and of two long-period and massive planets orbiting HD 171238 and HD 204313. A&A, 511, A45 {722, 723, 724}Google Scholar
Segura, A, Kasting, JF, Meadows, V, et al., 2005, Biosignatures from Earth-like planets around Mdwarfs. Astrobiology, 5, 706–725 {642}CrossRefGoogle Scholar
Segura, A, Krelove, K, Kasting, JF, et al., 2003, Ozone concentrations and ultraviolet fluxes on Earth-like planets around other stars. Astrobiology, 3, 689–708 {640}CrossRefGoogle ScholarPubMed
Segura, A, Meadows, VS, Kasting, JF, et al., 2007, Abiotic formation of O2 and O3 in high-CO2 terrestrial atmospheres. A&A, 472, 665–679 {640}Google Scholar
Segura, A, Walkowicz, LM, Meadows, V, et al., 2010, Effect of a strong stellar flare on the atmospheric chemistry of an Earth-like planet orbiting an Mdwarf. Astrobiology, 10, 751 {405, 427, 623}CrossRefGoogle Scholar
Seidelmann, PK, 1992, Explanatory Supplement to the Astronomical Almanac, Second Edition. University Science Books, New York {88, 104, 235, 677, 702}Google Scholar
Seidelmann, PK, Harrington, RS, 1988, Planet X: the current status. Celestial Mechanics, 43, 55–68 {686}Google Scholar
Seidelmann, PK, Urban, SE, 2010, Explanatory Supplement to the Astronomical Almanac, Third Edition. AAS Abstracts, volume 42, 475.03 {104}Google Scholar
Seifahrt, A, Bean, JL, Stürmer, J, et al., 2016, Development and construction of MAROON–X. SPIE Conf. Ser., volume 9908 of Proc. SPIE, 990818 {46}Google Scholar
Seifahrt, A, Käufl, HU, 2008, High precision radial velocity measurements in the infrared. A first assessment of the radial velocity stability of CRIRES. A&A, 491, 929–939 {32}Google Scholar
Seifahrt, A, Neuhäuser, R, Hauschildt, PH, 2007, Near-infrared integral-field spectroscopy of the companion to GQ Lup. A&A, 463, 309–313 {762}Google Scholar
Seiler, M, Sremcevic, M, Seiß, M, et al., 2017, A librational model for the propeller Blériot in the Saturnian ring system. ApJ, 840, L16 {691}CrossRefGoogle Scholar
Seiß, M, Albers, N, Sremcevic, M, et al., 2017, Hydrodynamic simulations of moonlet induced propellers in Saturn's rings: application to Blériot. ArXiv e-prints {690, 691}
Seiß, M, Spahn, F, Sremcevic, M, et al., 2005, Structures induced by small moonlets in Saturn's rings: implications for the Cassini Mission. Geophys. Res. Lett., 32, L11205 {691}CrossRefGoogle Scholar
Seizinger, A, Kley, W, 2013, Bouncing behaviour of microscopic dust aggregates. A&A, 551, A65 {469}Google Scholar
Seizinger, A, Krijt, S, Kley, W, 2013, Erosion of dust aggregates. A&A, 560, A45 {458}Google Scholar
Seizinger, A, Speith, R, Kley, W, 2012, Compression behaviour of porous dust agglomerates. A&A, 541, A59 {469}Google Scholar
Seker, I, 2013, Are planetary tides on the Sun and the birthplace of sun spots related? Sol. Phys., 286, 303–314 {656}CrossRefGoogle Scholar
Sekiya, M, 1998, Quasi-equilibrium density distributions of small dust aggregations in the solar nebula. Icarus, 133, 298–309 {460, 469}CrossRefGoogle Scholar
Selhorst, CL, Barbosa, CL, Válio, A, 2013, Planetary transits with the ALMA radio interferometer. ApJ, 777, L34 {244}CrossRefGoogle Scholar
Sellwood, JA, Binney, JJ, 2002, Radial mixing in galactic disks. MNRAS, 336, 785–796 {395}CrossRefGoogle Scholar
Selsis, F, Despois, D, Parisot, JP, 2002, Signature of life on exoplanets: can Darwin produce false positive detections? A&A, 388, 985–1003 {351, 638}Google Scholar
Selsis, F, Kaltenegger, L, Paillet, J, 2008a, Terrestrial exoplanets: diversity, habitability and characterisation. Physica Scripta Volume T, 130(1), 014032 {640, 641}Google Scholar
Selsis, F, Kasting, JF, Levrard, B, et al., 2007, Habitable planets around the star GJ 581? A&A, 476, 1373–1387 {78, 620, 626, 716}Google Scholar
Selsis, F, Maurin, AS, Hersant, F, et al., 2013, The effect of rotation and tidal heating on the thermal light curves of super Mercuries. A&A, 555, A51 {544}Google Scholar
Selsis, F, Paillet, J, Allard, F, 2008b, Biomarkers of extrasolar planets and their observability. Extrasolar Planets, 245–262 {640}
Selsis, F, Wordsworth, RD, Forget, F, 2011, Thermal phase curves of non-transiting terrestrial exoplanets. I. Characterising atmospheres. A&A, 532, A1 {591, 593, 615}Google Scholar
Semenov, D, Chakraborty, S, Thiemens, M, 2010, Chemical and isotopic evolution of the solar nebula and protoplanetary disks. Protoplanetary Dust: Astrophysical and Cosmochemical Perspectives, 97–127, Cambridge University Press {451, 454}
Sengupta, S, 2008, Cloudy atmosphere of the extrasolar planet HD 189733 b: a possible explanation of the detected B-band polarisation. ApJ, 683, L195–L198 {248, 730}CrossRefGoogle Scholar
Sengupta, S, 2013, Spectro-polarimetry of self-luminous extrasolar planets. J. Astrophys. As-tron., 34, 151–155 {247}Google Scholar
Sengupta, S, 2016a, An upper limit on the ratio between the extreme ultraviolet and the bolo-metric luminosities of stars hosting habitable planets. Journal of Astrophysics and Astronomy, 37, 11 {628}CrossRefGoogle Scholar
Sengupta, S, 2016b, Polarimetric detection of exoplanets transiting T and L brown dwarfs. AJ, 152, 98 {246}CrossRefGoogle Scholar
Sengupta, S, Maiti, M, 2006, Polarisation of starlight by an unresolved and oblate ex-trasolar planet in an elliptical orbit. ApJ, 639, 1147–1152 {236, 247}CrossRefGoogle Scholar
Sengupta, S, Marley, MS, 2016, Detecting exomoons around self-luminous giant exo-planets through polarisation. ApJ, 824, 76 {248, 276}CrossRefGoogle Scholar
Sephton, MA, Court, RW, 2010, Meteorite gases and planetary atmospheres. Astronomy and Geophysics, 51(5), 050000–5 {597}CrossRefGoogle Scholar
Sepinsky, JF, Willems, B, Kalogera, V, 2007, Equipotential surfaces and Lagrangian points in nonsynchronous, eccentric binary and planetary systems. ApJ, 660, 1624–1635 {549}CrossRefGoogle Scholar
Sepkoski, JA, 2002, A Compendium of Fossil Marine Animal Genera, volume 363. Pa-leontological Research Institute, Ithaca {674, 675}
Serabyn, E, 2009, High-contrast, narrow-field exoplanet imaging with a multi-aperture telescope phased-array coronagraph. ApJ, 697, 1334–1340 {335}CrossRefGoogle Scholar
Serabyn, E, Huby, E, Matthews, K, et al., 2017, The W. M. Keck Observatory infrared vortex coronagraph and a first image of HIP 79124B. AJ, 153, 43 {338, 343}CrossRefGoogle Scholar
Serabyn, E, Mawet, D, Burruss, R, 2010, An image of an exoplanet separated by two diffraction beamwidths from a star. Nature, 464, 1018–1020 {337, 340, 365}CrossRefGoogle ScholarPubMed
Serabyn, E, Wallace, K, Troy, M, et al., 2007, Extreme adaptive optics imaging with a clear and well-corrected off-axis telescope subaperture. ApJ, 658, 1386–1391 {343}CrossRefGoogle Scholar
Serafin, RA, Grothues, HG, 2002, On stellar encounters and their effect on cometary orbits in the Oort cloud. Astron. Nach., 323, 37–48 {655}3.0.CO;2-3>CrossRefGoogle Scholar
Serenelli, A, Johnson, J, Huber, D, et al., 2017, The first APOKASC catalogue of Kepler dwarf and subgiant stars. ApJS, 233, 23 {176}CrossRefGoogle Scholar
Sestito, P, Randich, S, 2005, Time scales of Li evolution: a homogeneous analysis of open clusters from zero-age main sequence to late-main sequence. A&A, 442, 615–627 {381}Google Scholar
Setiawan, J, Hatzes, AP, von der Lühe O, et al., 2003a, Evidence of a sub-stellar companion around HD 47536. A&A, 398, L19–L23 {55, 56, 720}Google Scholar
Setiawan, J, Henning, T, Launhardt, R, et al., 2008a, A young massive planet in a star-disk system. Nature, 451, 38–41 {56, 61}CrossRefGoogle Scholar
Setiawan, J, Klement, RJ, Henning, T, et al., 2010, A giant planet around a metal-poor star of extragalactic origin. Science, 330, 1642–1644 {55, 60, 724}CrossRefGoogle ScholarPubMed
Setiawan, J, Pasquini, L, da Silva, L, et al., 2003b, Precise radial velocity measurements of G and K giants: first results. A&A, 397, 1151–1159 {55, 56}Google Scholar
Setiawan, J, Pasquini, L, da Silva, L, 2004, Precise radial velocity measurements of G and K giants: multiple systems and variability trend along the red giant branch. A&A, 421, 241–254 {56}Google Scholar
Setiawan, J, Roccatagliata, V, Fedele, D, et al., 2012, Planetary companions around the metal-poor star HIP 11952. A&A, 540, A141 {39, 60, 724}Google Scholar
Setiawan, J, Rodmann, J, da Silva, L, et al., 2005, A substellar companion around the intermediate-mass giant star HD 11977. A&A, 437, L31–L34 {95, 718}Google Scholar
Setiawan, J, Weise, P, Henning, T, et al., 2007, Evidence for a planetary companion around a nearby young star. ApJ, 660, L145–L148 {61, 720}CrossRefGoogle Scholar
Setiawan, J, Weise, P, Henning, T, 2008b, Planets around active stars. Precision Spectroscopy in Astrophysics, 201–204 {46, 56}
Setiawan, J, Weldrake, D, Afonso, C, et al., 2008c, MAESTRO–1 b: a transiting planet in a close binary? ASP Conf. Ser., volume 398, 113 {166}Google Scholar
Seto, N, 2008, Detecting planets around compact binaries with gravitational wave detectors in space. ApJ, 677, L55–L58 {356}CrossRefGoogle Scholar
Shabanova, TV, 1995, Evidence for a planet around the pulsar PSR B0329+54. ApJ, 453, 779–782 {109}CrossRefGoogle Scholar
Shabanova, TV, Pugachev, VD, Lapaev, KA, 2013, Timing observations of 27 pulsars at the Pushchino Observatory from 1978 to 2012. ApJ, 775, 2 {109}CrossRefGoogle Scholar
Shabram, M, Boley, AC, 2013, The evolution of circumplanetary disks around planets in wide orbits: implications for formation theory, observations, and moon systems. ApJ, 767, 63 {463}CrossRefGoogle Scholar
Shabram, M, Demory, BO, Cisewski, J, et al., 2016, The eccentricity distribution of short-period planet candidates detected by Kepler in occultation. ApJ, 820, 93 {192}CrossRefGoogle Scholar
Shabram, M, Fortney, JJ, Greene, TP, et al., 2011, Transmission spectra of transiting planet atmospheres: model validation and simulations of the hot Neptune GJ 436 b for the JWST. ApJ, 727, 65 {617, 728}CrossRefGoogle Scholar
Shadmehri, M, 2016, Analysis of the instability due to gas-dust friction in protoplanet-ary disks. ApJ, 817, 140 {461}CrossRefGoogle Scholar
Shaikhislamov, IF, Khodachenko, ML, Lammer, H, et al., 2016, Two regimes of interaction of a hot Jupiter's escaping atmosphere with the stellar wind and generation of energized atomic hydrogen corona. ApJ, 832, 173 {422}CrossRefGoogle Scholar
Shaikhislamov, IF, Khodachenko, ML, Sasunov, YL, et al., 2014, Atmosphere expansion and mass loss of close-orbit giant exoplanets heated by stellar extreme ultraviolet. I. Modeling of hydrodynamic escape of upper atmospheric material. ApJ, 795, 132 {601}CrossRefGoogle Scholar
Shaklan, SB, Green, JJ, 2005, Low-order aberration sensitivity of eighth-order corona-graph masks. ApJ, 628, 474–477 {334}CrossRefGoogle Scholar
Shakura, NI, Postnov, KA, 1987, Doppler-effect modulation of the observed radiation flux from ultracompact binary stars. A&A, 183, L21 {238}Google Scholar
Shakura, NI, Sunyaev, RA, 1973, Black holes in binary systems: observational appearance. A&A, 24, 337–355 {456, 457, 520}Google Scholar
Shallue, CJ, Vanderburg, A, 2018, Identifying exoplanets with deep learning: a five planet resonant chain around Kepler–80 and an eighth planet around Kepler–90. AJ, 155, 94 {12, 179, 194, 195, 314, 321, 742}CrossRefGoogle Scholar
Shankland, PD, Blank, DL, Boboltz, DA, et al., 2008, Further constraints on the presence of a debris disk in the multi-planet system GJ 876. AJ, 135, 2194–2198 {493, 717}CrossRefGoogle Scholar
Shankland, PD, Rivera, EJ, Laughlin, G, et al., 2006, On the search for transits of the planets orbiting GJ 876. ApJ, 653, 700–707 {158, 717}CrossRefGoogle Scholar
Shankman, C, Kavelaars, JJ, Lawler, SM, et al., 2017, Consequences of a distant massive planet on the large semimajor axis trans-Neptunian objects. AJ, 153, 63 {687}CrossRefGoogle Scholar
Shannon, A, Bonsor, A, Kral, Q, et al., 2016a, The unseen planets of double belt debris disk systems. MNRAS, 462, L116–L120 {494}CrossRefGoogle Scholar
Shannon, A, Jackson, AP, Veras, D, et al., 2015a, Eight billion asteroids in the Oort cloud. MNRAS, 446, 2059–2064 {686}CrossRefGoogle Scholar
Shannon, A, Wu, Y, 2011, Planetesimals in debris disks of Sun-like stars. ApJ, 739, 36 {496}CrossRefGoogle Scholar
Shannon, A, Wu, Y, Lithwick, Y, 2015b, Conglomeration of km-sized planetesimals. ApJ, 801, 15 {474}CrossRefGoogle Scholar
Shannon, A, Wu, Y, Lithwick, Y, 2016b, Forming the cold classical Kuiper belt in a light disk. ApJ, 818, 175 {685}CrossRefGoogle Scholar
Shao, M, 1993, Orbiting stellar interferometer. SPIE Conf. Ser., volume 1947, 89–90 {100}Google Scholar
Shao, M, Catanzarite, J, Pan, X, 2010, The synergy of direct imaging and astrometry for orbit determination of exo-Earths. ApJ, 720, 357–367 {342}CrossRefGoogle Scholar
Shao, M, Colavita, MM, 1992, Potential of long-baseline infrared interferometry for narrow-angle astrometry. A&A, 262, 353–358 {84}Google Scholar
Shao, M, Colavita, MM, Hines, BE, et al., 1988, The Mark III stellar interferometer. A&A, 193, 357–371 {348}Google Scholar
Shao, M, Nemati, B, Zhai, C, et al., 2011, NEAT: a microarcsec astrometric telescope. SPIE Conf. Ser., volume 8151, 27 {100}Google Scholar
Shapiro, II, 1966, Testing general relativity with radar. Physical Review, 141, 1219–1222 {356}CrossRefGoogle Scholar
Shappee, BJ, Prieto, JL, Grupe, D, et al., 2014, The man behind the curtain: X-rays drive the UV through NIR variability in the 2013 active galactic nucleus outburst in NGC 2617. ApJ, 788, 48 {99}CrossRefGoogle Scholar
Shappee, BJ, Thompson, TA, 2013, The mass-loss-induced eccentric Kozai mechanism: a new channel for the production of close compact object–stellar binaries. ApJ, 766, 64 {529}CrossRefGoogle Scholar
Shara, MM, Hurley, JR, Mardling, RA, 2016, Dynamical interactions make hot Jupiters in open star clusters. ApJ, 816, 59 {499, 717, 729, 735, 737}CrossRefGoogle Scholar
Shariff, K, Cuzzi, JN, 2011, Gravitational instability of solids assisted by gas drag: slowing by turbulentmass diffusivity. ApJ, 738, 73 {460}CrossRefGoogle Scholar
Sharma, S, Stello, D, Bland-Hawthorn, J, et al., 2016, Stellar population synthesis based modeling of the Milky Way using asteroseismology of 13 000 Kepler red giants. ApJ, 822, 15 {409}CrossRefGoogle Scholar
Sharma, S, Stello, D, Buder, S, et al., 2018, The TESS-HERMES survey data release. I. High-resolution spectroscopy of the TESS southern continuous viewing zone. MNRAS, 473, 2004–2019 {180}CrossRefGoogle Scholar
Sharp, CM, Burrows, A, 2007, Atomic and molecular opacities for brown dwarf and giant planet atmospheres. ApJS, 168, 140–166 {42, 570, 579, 585}CrossRefGoogle Scholar
Shaviv, NJ, 2002, Cosmic ray diffusion from the Galactic spiral arms, iron meteorites, and a possible climatic connection. Phys. Rev. Lett., 89(5), 051102 {655}Google Scholar
Shaviv, NJ, 2003, The spiral structure of the Milky Way, cosmic rays, and ice age epochs on Earth. New Astron., 8, 39–77 {655}CrossRefGoogle Scholar
Shaviv, NJ, Shaviv, G, Wehrse, R, 2011, The maximal runaway temperature of Earth-like planets. Icarus, 216, 403–414 {620}CrossRefGoogle Scholar
Shchekinov, YA, Safonova, M, Murthy, J, 2013, Planets in the early Universe. Ap&SS, 346, 31–40 {406}Google Scholar
Sheehan, CKW, Greaves, JS, Bryden, G, et al., 2010, Forming the first planetary systems: debris around Galactic thick disk stars. MNRAS, 408, L90–L94 {495}CrossRefGoogle Scholar
Sheets, HA, Deming, D, 2014, Statistical eclipses of close-in Kepler sub-Saturns. ApJ, 794, 133 {300, 739}CrossRefGoogle Scholar
Sheets, HA, Deming, D, 2017, Average albedos of close-in super-Earths and super-Neptunes from statistical analysis of long-cadence Kepler secondary eclipse data. AJ, 154, 160 {301, 302, 738}CrossRefGoogle Scholar
Shematovich, VI, 2010, Suprathermal hydrogen produced by the dissociation of molecular hydrogen in the extended atmosphere of exoplanet HD 209458 b. Sol. Syst. Res., 44, 96–103 {732}CrossRefGoogle Scholar
Shen, Y, Stone, JM, Gardiner, TA, 2006, Three-dimensional compressible hydrodynamic simulations of vortices in disks. ApJ, 653, 513–524 {457}CrossRefGoogle Scholar
Shen, Y, Turner, EL, 2008, On the eccentricity distribution of exoplanets from radial velocity surveys. ApJ, 685, 553–559 {26}CrossRefGoogle Scholar
Sheppard, KB, Mandell, AM, Tamburo, P, et al., 2017, Evidence for a day-side thermal inversion and high metallicity for the hot Jupiter WASP–18 b. ApJ, 850, L32 {754}CrossRefGoogle Scholar
Sheppard, SS, 2012, The colour differences of Kuiper Belt Objects in resonance with Neptune. AJ, 144, 169 {685}CrossRefGoogle Scholar
Sheppard, SS, Jewitt, D, Kleyna, J, 2006, A survey for ‘normal’ irregular satellites around Neptune: limits to completeness. AJ, 132, 171–176 {688}CrossRefGoogle Scholar
Sheppard, SS, Jewitt, DC, 2003, An abundant population of small irregular satellites around Jupiter. Nature, 423, 261–263 {688}CrossRefGoogle ScholarPubMed
Sheppard, SS, Trujillo, C, 2016, New extreme trans-Neptunian objects: toward a super-Earth in the outer solar system(Planet Nine). AJ, 152, 221 {684, 687}CrossRefGoogle Scholar
Sheppard, SS, Trujillo, CA, 2006, A thick cloud of Neptune Trojans and their colours. Science, 313, 511–514 {690}CrossRefGoogle Scholar
Sherrill, TJ, 1999, A career of controversy: the anomaly of T. J. J. See. Journal for the History of Astronomy, 30, 25–34 {83}CrossRefGoogle Scholar
Shevchenko, II, 2017a, Habitability properties of circumbinary planets. AJ, 153, 273 {623}CrossRefGoogle Scholar
Shevchenko, II, 2017b, The Lidov–Kozai Effect: applications in exoplanet research and dynamical astronomy, volume 441. Springer {527}CrossRefGoogle Scholar
Shi, JM, Chiang, E, 2013, From dust to planetesimals: criteria for gravitational instability of small particles in gas. ApJ, 764, 20 {460}CrossRefGoogle Scholar
Shi, JM, Zhu, Z, Stone, JM, et al., 2016, Dust dynamics in 2d gravito-turbulent disks. MNRAS, 459, 982–998 {488}CrossRefGoogle Scholar
Shibaike, Y, Okuzumi, S, Sasaki, T, et al., 2017, Satellitesimal formation via collisional dust growth in steady circumplanetary disks. ApJ, 846, 81 {687}CrossRefGoogle Scholar
Shibata, K, Isobe, H, Hillier, A, et al., 2013, Can super-flares occur on our Sun? PASJ, 65, 49 {428}CrossRefGoogle Scholar
Shibata, K, Yokoyama, T, 2002, A Hertzsprung–Russell-like diagram for solar/stellar flares and corona: emissionmeasure versus temperature diagram. ApJ, 577, 422–432 {428}CrossRefGoogle Scholar
Shibayama, T, Maehara, H, Notsu, S, et al., 2013, Super-flares on solar-type stars observed with Kepler. I. Statistical properties of super-flares. ApJS, 209, 5 {428}CrossRefGoogle Scholar
Shields, AL, Barnes, R, Agol, E, et al., 2016, The effect of orbital configuration on the possible climates and habitability of Kepler–62 f. Astrobiology, 16, 443–464 {621, 741}CrossRefGoogle Scholar
Shields, AL, Bitz, CM, Meadows, VS, et al., 2014, Spectrum-driven planetary deglacia-tion due to increases in stellar luminosity. ApJ, 785, L9 {620}CrossRefGoogle Scholar
Shields, AL, Meadows, VS, Bitz, CM, et al., 2013, The effect of host star spectral energy distribution and ice-albedo feedback on the climate of extrasolar planets. Astro-biology, 13, 715–739 {620}Google ScholarPubMed
Shikita, B, Koyama, H, Yamada, S, 2010, The dynamics of three-planet systems: an approach from a dynamical system. ApJ, 712, 819–832 {515}CrossRefGoogle Scholar
Shin, IG, Han, C, Choi, JY, et al., 2015, Constraint on additional planets in planetary systems discovered through the channel of high-magnification gravitational micro-lensing events. ApJ, 802, 108 {131}CrossRefGoogle Scholar
Shin, IG, Han, C, Gould, A, et al., 2012, Microlensing binaries with candidate brown dwarf companions. ApJ, 760, 116 {144}CrossRefGoogle Scholar
Shin, IG, Ryu, YH, Udalski, A, et al., 2016, A super-Jupiter microlens planet characterised by high-cadence KMTNeT microlensing survey observations of OGLE–2015–BLG–954. Journal of Korean Astronomical Society, 49, 73–81 {141, 145, 760}CrossRefGoogle Scholar
Shin, IG, Udalski, A, Yee, JC, et al., 2017, OGLE–2016–BLG–0168 binary microlensing event: prediction and confirmation of the microlens parallax effect from space-based observations. AJ, 154, 176 {134, 136}CrossRefGoogle Scholar
Shirley, JH, 2006, Axial rotation, orbital revolution and solar spin–orbit coupling. MNRAS, 368, 280–282 {656}CrossRefGoogle Scholar
Shirley, JH, 2015, Solar system dynamics and global-scale dust storms on Mars. Icarus, 251, 128–144 {656}CrossRefGoogle Scholar
Shirley, YL, Claussen, MJ, Bourke, TL, et al., 2007, The detection and characterisation of centimeter radio continuum emission from the low-mass protostar L1014–IRS. ApJ, 667, 329–339 {445}CrossRefGoogle Scholar
Shizgal, BD, Arkos, GG, 1996, Nonthermal escape of the atmospheres of Venus, Earth, and Mars. Reviews of Geophysics, 34, 483–505 {601}CrossRefGoogle Scholar
Shklovskii, IS, 1970, Possible causes of the secular increase in pulsar periods. Soviet Astronomy, 13, 562–565 {256}Google Scholar
Shklovskii, IS, Sagan, C, 1966, Intelligent Life in the Universe. Holden-Day {399, 639}Google Scholar
Shkolnik, E, 2013, An ultraviolet investigation of activity on exoplanet host stars. ApJ, 766, 9 {422}CrossRefGoogle Scholar
Shkolnik, E, Bohlender, DA, Walker, GAH, et al., 2008, The on/off nature of star-planet interactions. ApJ, 676, 628–638 {305, 387, 421}CrossRefGoogle Scholar
Shkolnik, E, Walker, GAH, Bohlender, DA, 2003, Evidence for planet-induced chromo-spheric activity on HD 179949. ApJ, 597, 1092–1096 {387, 421, 425, 723}CrossRefGoogle Scholar
Shkolnik, E, Walker, GAH, Bohlender, DA, et al., 2005, Hot Jupiters and hot spots: the short- and long-term chromospheric activity on stars with giant planets. ApJ, 622, 1075–1090 {36, 387, 421, 425, 542, 713, 720, 723}CrossRefGoogle Scholar
Shliakhetska, Y, Kuznyetsova, Y, Vidmachenko, A, et al., 2014, Variability of spectral lines of extrasolar system HD 189733 during a transit. Astronomical School's Report, 10, 147–151 {731}Google Scholar
Shlosman, I, Begelman, MC, Frank, J, 1990, The fuelling of active galactic nuclei. Nature, 345, 679–686 {487}CrossRefGoogle Scholar
Shmidt, OI, 1958, A Theory of Earth's Origin: Four Lectures. Foreign Languages Pub. House Moscow {664}Google Scholar
Shoemaker, EM, 1983, Asteroid and comet bombardment of the earth. Ann. Rev. Earth Plan. Sci., 11, 461–494 {661}CrossRefGoogle Scholar
Shoemaker, EM, 1998, Impact cratering through geologic time. JRASC, 92, 297 {671}Google Scholar
Shoemaker, EM, Shoemaker, CS, Wolfe, RF, 1989, Trojan asteroids: populations, dynamical structure and origin of the L4 and L5 swarms. Asteroids II, 487–523, University of Arizona Press {74}
Shoji, D, Kurita, K, 2014, Thermal-orbital coupled tidal heating and habitability of Martian-sized extrasolar planets around Mstars. ApJ, 789, 3 {622}CrossRefGoogle Scholar
Short, D, Windmiller, G, Orosz, JA, 2008, New solutions for the planetary dynamics in HD 160691 using a Newtonian model and latest data. MNRAS, 386, L43–L46 {71, 713}CrossRefGoogle Scholar
Shostak, S, 2011a, Efficiency in SETI. Acta Astron., 68, 347–350 {644}CrossRefGoogle Scholar
Shostak, S, 2011b, Short-pulse SETI. Acta Astron., 68, 362–365 {644}CrossRefGoogle Scholar
Shostak, S, 2013, Are transmissions to space dangerous? Int. J. Astrobiol., 12, 17–20 {648}CrossRefGoogle Scholar
Showalter, MR, Burns, JA, Cuzzi, JN, et al., 1987, Jupiter's ring system: new results on structure and particle properties. Icarus, 69, 458–498 {691}CrossRefGoogle Scholar
Showalter, MR, Lissauer, JJ, 2006, The second ring-moon systemof Uranus: discovery and dynamics. Science, 311, 973–977 {690}CrossRefGoogle Scholar
Showalter, MR, Weaver, HA, Stern, A, et al., 2012, Pluto's P4 and P5: latest results for Pluto's tiniest moons. AAS Abstracts, volume 44, 304.07 {682}Google Scholar
Showman, AP, Cooper, CS, Fortney, JJ, et al., 2008a, Atmospheric circulation of hot Jupiters: 3d circulation models of HD 209458 b and HD 189733 b with simplified forcing. ApJ, 682, 559–576 {591, 593, 596, 730, 732}CrossRefGoogle Scholar
Showman, AP, Dowling, TE, 2000, Nonlinear simulations of Jupiter's 5-micron hot spots. Science, 289, 1737–1740 {595}Google ScholarPubMed
Showman, AP, Fortney, JJ, Lewis, NK, et al., 2013a, Doppler signatures of atmospheric circulation on hot Jupiters. ApJ, 762, 24 {44, 250, 596, 729, 730, 732}CrossRefGoogle Scholar
Showman, AP, Fortney, JJ, Lian, Y, et al., 2009, Atmospheric circulation of hot Jupiters: coupled radiative-dynamical general circulation model simulations of HD 189733 b and HD 209458 b. ApJ, 699, 564–584 {300, 591, 593, 596, 615, 730, 732}CrossRefGoogle Scholar
Showman, AP, Gierasch, PJ, Lian, Y, 2006, Deep zonal winds can result from shallow driving in a giant-planet atmosphere. Icarus, 182, 513–526 {591}CrossRefGoogle Scholar
Showman, AP, Guillot, T, 2002, Atmospheric circulation and tides of 51 Peg b-like planets. A&A, 385, 166–180 {235, 300, 303, 535, 592, 593, 594, 595, 596, 715}Google Scholar
Showman, AP, Kaspi, Y, 2013, Atmospheric dynamics of brown dwarfs and directly imaged giant planets. ApJ, 776, 85 {591}CrossRefGoogle Scholar
Showman, AP, Lewis, NK, Fortney, JJ, 2015, 3d atmospheric circulation of warm and hot Jupiters. ApJ, 801, 95 {591}CrossRefGoogle Scholar
Showman, AP, Menou, K, Cho, JYK, 2008b, Atmospheric circulation of hot Jupiters: a review of current understanding. ASP Conf. Ser., volume 398, 419–442 {591, 595}Google Scholar
Showman, AP, Polvani, LM, 2011, Equatorial superrotation on tidally-locked exo-planets. ApJ, 738, 71 {596, 730}CrossRefGoogle Scholar
Showman, AP, Wordsworth, RD, Merlis, TM, et al., 2013b, Atmospheric circulation of terrestrial exoplanets. Comparative Climatology of Terrestrial Planets, 277–326 {598}
Shporer, A, 2017, The astrophysics of visible-light orbital phase curves in the space age. PASP, 129(7), 072001 {238}CrossRefGoogle Scholar
Shporer, A, Bakos GÁ, Bouchy, F, et al., 2009, HAT–P–9 b: a low-density planet transiting a moderately faint F star. ApJ, 690, 1393–1400 {736}CrossRefGoogle Scholar
Shporer, A, Brown, T, 2011, The impact of convective blueshift on spectroscopic planetary transits. ApJ, 733, 30 {250}CrossRefGoogle Scholar
Shporer, A, Brown, T, Mazeh, T, et al., 2012, On using the beaming effect to measure spin–orbit alignment in stellar binaries with Sun-like components. New Astron., 17, 309–315 {384}CrossRefGoogle Scholar
Shporer, A, Fuller, J, Isaacson, H, et al., 2016, Radial velocity monitoring of Kepler heartbeat stars. ApJ, 829, 34 {230}CrossRefGoogle Scholar
Shporer, A, Hu, R, 2015, Studying atmosphere-dominated hot Jupiter Kepler phase curves: evidence that inhomogeneous atmospheric reflection is common. AJ, 150, 112 {238, 590, 615, 738, 739, 741}CrossRefGoogle Scholar
Shporer, A, Jenkins, JM, Rowe, JF, et al., 2011, Detection of KOI–13.01 using the photometric orbit. AJ, 142, 195 {198, 238, 241, 739}CrossRefGoogle Scholar
Shporer, A, Kaplan, DL, Steinfadt, JDR, et al., 2010a, A ground-based measurement of the relativistic beaming effect in a detached double white dwarf binary. ApJ, 725, L200–L204 {239}CrossRefGoogle Scholar
Shporer, A, O'Rourke, JG, Knutson, HA, et al., 2014, Atmospheric characterisation of the hot Jupiter Kepler–13A b. ApJ, 788, 92 {238, 241, 242, 739}CrossRefGoogle Scholar
Shporer, A, Tamuz, O, Zucker, S, et al., 2007, Photometric follow-up of the transiting planet WASP–1 b. MNRAS, 376, 1296–1300 {751}CrossRefGoogle Scholar
Shporer, A, Winn, JN, Dreizler, S, et al., 2010b, Ground-based multi-site observations of two transits of HD 80606 b. ApJ, 722, 880–887 {729}CrossRefGoogle Scholar
Shporer, A, Zhou, G, Fulton, BJ, et al., 2017a, K2–114 b and K2–115 b: two transiting warm Jupiters. AJ, 154, 188 {749}CrossRefGoogle Scholar
Shporer, A, Zhou, G, Vanderburg, A, et al., 2017b, Three statistically validated K2 transiting warm Jupiter exoplanets confirmed as low-mass stars. ApJ, 847, L18 {748}CrossRefGoogle Scholar
Shtemler, YM, Liverts, E, Mond, M, 2012, Thermomagnetic andmagnetorotational instabilities of thin Keplerian disks in poloidal magnetic fields. Astron. Nach., 333, 266 {461}CrossRefGoogle Scholar
Shu, FH, 1984, Waves in planetary rings. IAU Colloq. 75: Planetary Rings, 513–561 {411}
Shu, FH, 2001, The X-wind theory for the origin of chondriticmeteorites. Eleventh Annual V. M. Goldschmidt Conference, 3700 {653}Google Scholar
Shu, FH, Adams, FC, Lizano, S, 1987, Star formation in molecular clouds: observation and theory. ARA&A, 25, 23–81 {451}Google Scholar
Shu, FH, Johnstone, D, Hollenbach, D, 1993, Photoevaporation of the solar nebula and the formation of the giant planets. Icarus, 106, 92–101 {462, 463}CrossRefGoogle Scholar
Shu, FH, Najita, JR, Shang, H, et al., 2000, X-winds theory and observations. Protostars and Planets IV, 789–795 {521, 653}
Shu, FH, Shang, H, Glassgold, AE, et al., 1997, X-rays and fluctuating X-winds from protostars. Science, 277, 1475–1479 {653}CrossRefGoogle Scholar
Shu, FH, Shang, H, Lee, T, 1996, Toward an astrophysical theory of chondrites. Science, 271, 1545–1552 {653}CrossRefGoogle Scholar
Shuch, HP, 2001, Optical SETI comes of age. SPIE Conf. Ser., volume 4273, 128–135 {645}Google Scholar
Shukla, A, Pandey, AK, Pathak, A, 2017, Benford's distribution in extrasolar world: do the exoplanets follow Benford's distribution? Journal of Astrophysics and Astronomy, 38, 7 {510}CrossRefGoogle Scholar
Shvartzvald, Y, Bryden, G, Gould, A, et al., 2017a, UKIRT microlensing surveys as a pathfinder for WFIRST: the detection of five highly extinguished low-b events. AJ, 153, 61 {142}CrossRefGoogle Scholar
Shvartzvald, Y, Calchi Novati, S, Gaudi, BS, et al., 2018, UKIRT–2017–BLG–001L b: a giant planet detected through the dust. ApJ, 857, L8 {142, 760}CrossRefGoogle Scholar
Shvartzvald, Y, Maoz, D, 2012, Second-generation microlensing planet surveys: a realistic simulation. MNRAS, 419, 3631–3640 {142}CrossRefGoogle Scholar
Shvartzvald, Y, Maoz, D, Kaspi, S, et al., 2014, MOA–2011–BLG–322L b: a second generation survey microlensing planet. MNRAS, 439, 604–610 {141, 142, 759}CrossRefGoogle Scholar
Shvartzvald, Y, Maoz, D, Udalski, A, et al., 2016, The frequency of snow line-region planets from four years of OGLE–MOA–Wise second-generation microlensing. MNRAS, 457, 4089–4113 {144}CrossRefGoogle Scholar
Shvartzvald, Y, Yee, JC, Calchi Novati, S, et al., 2017b, An Earth-mass planet in a 1 au orbit around an ultracool dwarf. ApJ, 840, L3 {760}CrossRefGoogle Scholar
Sicardy, B, Talbot, J, Meza, E, et al., 2016, Pluto's atmosphere from the 2015 June 29 ground-based stellar occultation at the time of the New Horizons fly-by. ApJ, 819, L38 {682}CrossRefGoogle Scholar
Sicilia-Aguilar, A, Banzatti, A, Carmona, A, et al., 2016, A ‘Rosetta Stone’ for proto-planetary disks: the synergy of multi-wavelength observations. Publ. Astron. Soc. Australia, 33, e059 {463}CrossRefGoogle Scholar
Sicilia-Aguilar, A, Hartmann, LW, Briceño, C, et al., 2004, Low-mass stars and accretion at the ages of planet formation in the Cepheus OB2 region. AJ, 128, 805–821 {456}CrossRefGoogle Scholar
Sicilia-Aguilar, A, Hartmann, LW, Fürész, G, et al., 2006, High-resolution spectroscopy in Tr 37: gas accretion evolution in evolved dusty disks. AJ, 132, 2135–2155 {444}CrossRefGoogle Scholar
Sicilia-Aguilar, A, Henning, T, Hartmann, LW, 2010, Accretion in evolved and transition disks in CEP OB2: looking for the origin of the inner holes. ApJ, 710, 597–612 {444, 465}CrossRefGoogle Scholar
Sidis, O, Sari, R, 2010, Transits of transparent planets: atmospheric lensing effects. ApJ, 720, 904–911 {222}CrossRefGoogle Scholar
Sidorenkov, NS, Wilson, I, 2017, Influence of solar retrograde motion on terrestrial processes. Odessa Astronomical Publications, 30, 246 {656}CrossRefGoogle Scholar
Siegler, N, Muzerolle, J, Young, ET, et al., 2007, Spitzer 24μm observations of open cluster IC 2391 and debris disk evolution of FGK stars. ApJ, 654, 580–594 {493}CrossRefGoogle Scholar
Siemion, A, Benford, J, Cheng-Jin, J, et al., 2015, Searching for extraterrestrial intelligence with the Square Kilometer Array (SKA). Advancing Astrophysics with the Square Kilometer Array (AASKA14), 116 {645}CrossRefGoogle Scholar
Siemion, A, Von Korff, J, McMahon, P, et al., 2010, New SETI sky surveys for radio pulses. Acta Astron., 67, 1342–1349 {644}CrossRefGoogle Scholar
Siemion, APV, Demorest, P, Korpela, E, et al., 2013, A 1.1–1.9GHz SETI survey of the Kepler field. I. A search for narrow-band emission from select targets. ApJ, 767, 94 {644}CrossRefGoogle Scholar
Sierchio, JM, Rieke, GH, Su, KYL, et al., 2014, The decay of debris disks around solar-type stars. ApJ, 785, 33 {493}CrossRefGoogle Scholar
Sierks, H, Lamy, P, Barbieri, C, et al., 2011, Images of asteroid (21) Lutetia: a remnant planetesimal from the early solar system. Science, 334, 487–490 {681}CrossRefGoogle ScholarPubMed
Sierra, A, Lizano, S, Barge, P, 2017, Dust concentration and emission in protoplanetary disk vortices. ApJ, 850, 115 {461}CrossRefGoogle Scholar
Siess, L, Livio, M, 1999a, The accretion of brown dwarfs and planets by giant stars. I. Asymptotic giant branch stars. MNRAS, 304, 925–937 {368, 370}CrossRefGoogle Scholar
Siess, L, Livio, M, 1999b, The accretion of brown dwarfs and planets by giant stars. II. Solar-mass stars on the red giant branch. MNRAS, 308, 1133–1149 {57, 368, 370, 393, 401, 402}CrossRefGoogle Scholar
Sigismondi, C, 2013a, Measuring the solar diameter with 2012 Venus transits. Int. J. Mod. Phys. Conf. Ser., 23, 451–453 {657}CrossRefGoogle Scholar
Sigismondi, C, 2013b, Solar astrometry: the state-of-the-art in 2011. Int. J. Mod. Phys. Conf. Ser., 23, 443–450 {657}CrossRefGoogle Scholar
Sigurdsson, S, 1992, Planets in globular clusters? ApJ, 399, L95–L97 {108}CrossRefGoogle Scholar
Sigurdsson, S, 1993, Genesis of a planet in Messier 4. ApJ, 415, L43–L46 {108}CrossRefGoogle Scholar
Sigurdsson, S, 1995, Assessing the environmental impact on PSR B1620–26 in M4. ApJ, 452, 323–331 {108}CrossRefGoogle Scholar
Sigurdsson, S, Richer, HB, Hansen, BM, et al., 2003, A young white dwarf companion to pulsar PSR B1620–26: evidence for early planet formation. Science, 301, 193–196 {108}CrossRefGoogle Scholar
Sigurdsson, S, Stairs, IH, Moody, K, et al., 2008, Planets around pulsars in globular clusters. ASP Conf. Ser., volume 398, 119–132 {108}Google Scholar
Silburt, A, Gaidos, E, Wu, Y, 2015, A statistical reconstruction of the planet population around Kepler solar-type stars. ApJ, 799, 180 {308}CrossRefGoogle Scholar
Silburt, A, Rein, H, 2015, Tides alone cannot explain Kepler planets close to 2:1 mean motion resonance. MNRAS, 453, 4089–4096 {320}CrossRefGoogle Scholar
Silburt, A, Rein, H, 2017, Resonant structure, formation and stability of the planetary system HD 155358. MNRAS, 469, 4613–4619 {722}CrossRefGoogle Scholar
Silsbee, K, Rafikov, RR, 2015a, Birth locations of the Kepler circumbinary planets. ApJ, 808, 58 {551}CrossRefGoogle Scholar
Silsbee, K, Rafikov, RR, 2015b, Planet formation in binaries: dynamics of planetesimals perturbed by the eccentric protoplanetary disk and the secondary. ApJ, 798, 71 {550}CrossRefGoogle Scholar
Silva, AVR, 2003, Method for spot detection on solar-like stars. ApJ, 585, L147–L150 {213}CrossRefGoogle Scholar
Silva, AVR, 2008, Estimating stellar rotation from star spot detection during planetary transits. ApJ, 683, L179–L182 {212, 213}CrossRefGoogle Scholar
Silva, AVR, Cruz, PC, 2006, Search for planetary candidates within the OGLE stars. ApJ, 642, 488–494 {168}CrossRefGoogle Scholar
Silva, JRP, Soares, BB, de Freitas, DB, 2014, Chandrasekhar's relation and stellar rotation in the Kepler field. ApJ, 796, 69 {384}CrossRefGoogle Scholar
Silva, L, Vladilo, G, Murante, G, et al., 2017, Quantitative estimates of the surface habitability of Kepler-452b. MNRAS, 470, 2270–2282 {746}CrossRefGoogle Scholar
SilvaAguirre, V, Casagrande, L, Basu, S, et al., 2012, Verifying asteroseismically determined parameters of Kepler stars using Hipparcos parallaxes: self-consistent stellar properties and distances. ApJ, 757, 99 {408}CrossRefGoogle Scholar
SilvaAguirre, V, Davies, GR, Basu, S, et al., 2015, Ages and fundamental properties of Kepler exoplanet host stars from asteroseismology. MNRAS, 452, 2127–2148 {381, 408, 410}Google Scholar
SilvaAguirre, V, Lund, MN, Antia, HM, et al., 2017, Standing on the shoulders of dwarfs: the Kepler asteroseismic legacy sample. II. Radii, masses, and ages. ApJ, 835, 173 {312}Google Scholar
Silva-Valio, A, Lanza, AF, 2011, Time evolution and rotation of star spots on CoRoT–2 from the modelling of transit photometry. A&A, 529, A36 {733}Google Scholar
Silva-Valio, A, Lanza, AF, Alonso, R, et al., 2010, Properties of star spots on CoRoT–2. A&A, 510, A25 {213, 733}Google Scholar
Silverstone, MD, Meyer, MR, Mamajek, EE, et al., 2006, Formation and evolution of planetary systems: primordial warm dust evolution from 3–30 Myr around Sun-like stars. ApJ, 639, 1138–1146 {462}CrossRefGoogle Scholar
Silvotti, R, Charpinet, S, Green, E, et al., 2014, Kepler detection of a new extreme planetary system orbiting the subdwarf-B pulsator Kepler–429 (KIC–10001893). A&A, 570, A130 {105, 112, 161, 745}Google Scholar
Silvotti, R, Schuh, S, Janulis, R, et al., 2007, A giant planet orbiting the extreme horizontal branch star V391 Peg. Nature, 449, 189–191 {10, 105, 112}CrossRefGoogle Scholar
Silvotti, R, Schuh, S, Kim, SL, et al., 2018, The sdB pulsating star V391 Peg and its putative giant planet revisited after 13 years of time-series photometric data. A&A, 611, A85 {112}Google Scholar
Simbulan, C, Tamayo, D, Petrovich, C, et al., 2017, Connecting HL Tau to the observed exoplanet sample. MNRAS, 469, 3337–3346 {466}CrossRefGoogle Scholar
Simioni, E, Pajola, M, Massironi, M, et al., 2015, Phobos grooves and impact craters: a stereographic analysis. Icarus, 256, 90–100 {689}CrossRefGoogle Scholar
Simkin, SM, 1974, Measurements of velocity dispersions and Doppler shifts from digi-tised optical spectra. A&A, 31, 129–136 {29}Google Scholar
Simon, A, Szatmáry, K, Szabó, GM, 2007, Determination of the size, mass, and density of exomoons from photometric transit timing variations. A&A, 470, 727–731 {277}Google Scholar
Simon, AE, Szabó, GM, Kiss, LL, et al., 2012a, Signals of exomoons in averaged light curves of exoplanets. MNRAS, 419, 164–171 {277}CrossRefGoogle Scholar
Simon, AE, Szabó, GM, Kiss, LL, 2015a, CHEOPS performance for exomoons: the detectability of exomoons by using optimal decision algorithm. PASP, 127, 1084–1095 {281}CrossRefGoogle Scholar
Simon, AE, Szabó, GM, Szatmáry, K, et al., 2010, Methods for exomoon charac-terisation: combining transit photometry and the Rossiter–McLaughlin effect. MNRAS, 406, 2038–2046 {277, 278}Google Scholar
Simon, JB, 2016, The influence of magnetic field geometry on the formation of close-in exoplanets. ApJ, 827, L37 {461}CrossRefGoogle Scholar
Simon, JB, Armitage, PJ, Li, R, et al., 2016, The mass and size distribution of planetes-imals formed by the streaming instability. I. The role of self-gravity. ApJ, 822, 55 {458}CrossRefGoogle Scholar
Simon, JB, Armitage, PJ, Youdin, AN, et al., 2017, Evidence for universality in the initial planetesimal mass function. ApJ, 847, L12 {458}CrossRefGoogle Scholar
Simon, JB, Bai, XN, Armitage, PJ, et al., 2013a, Turbulence in the outer regions of proto-planetary disks. II. Strong accretion driven by a vertical magnetic field. ApJ, 775, 73 {461}CrossRefGoogle Scholar
Simon, JB, Bai, XN, Stone, JM, et al., 2013b, Turbulence in the outer regions of proto-planetary disks. I. Weak accretion with no vertical magnetic flux. ApJ, 764, 66 {461}CrossRefGoogle Scholar
Simon, JB, Beckwith, K, Armitage, PJ, 2012b, Emergentmesoscale phenomena in mag-netised accretion disk turbulence. MNRAS, 422, 2685–2700 {460}CrossRefGoogle Scholar
Simon, JB, Lesur, G, Kunz, MW, et al., 2015b, Magnetically driven accretion in proto-planetary disks. MNRAS, 454, 1117–1131 {461}CrossRefGoogle Scholar
Simon, JD, Shappee, BJ, Pojmanski, G, et al., 2018, Where is the flux going? The long-termphotometric variability of Boyajian's star. ApJ, 853, 77 {747}CrossRefGoogle Scholar
Simon, M, Prato, L, 1995, Disk dissipation in single and binary young star systems in Taurus. ApJ, 450, 824–829 {462}CrossRefGoogle Scholar
Simon, NR, 1982, A plea for reexamining heavy element opacities in stars. ApJ, 260, L87–L90 {570}CrossRefGoogle Scholar
Simonelli, DP, Pollack, JB, McKay, CP, et al., 1989, The carbon budget in the outer solar nebula. Icarus, 82, 1–35 {480}CrossRefGoogle ScholarPubMed
Simonelli, DP, Reynolds, RT, 1989, The interiors of Pluto and Charon: structure, composition, and implications. Geophys. Res. Lett., 16, 1209–1212 {661}CrossRefGoogle Scholar
Simpson, EK, Baliunas, SL, Henry, GW, et al., 2010a, Rotation periods of exoplanet host stars. MNRAS, 408, 1666–1679 {382, 383}CrossRefGoogle Scholar
Simpson, EK, Barros, SCC, Brown, DJA, et al., 2011a, Independent discovery of the transiting exoplanet HAT–P–14 b. AJ, 141, 161–167 {736}CrossRefGoogle Scholar
Simpson, EK, Faedi, F, Barros, SCC, et al., 2011b, WASP–37 b: a 1.8 Jupiter-mass exo-planet transiting a metal-poor star. AJ, 141, 8–12 {754}CrossRefGoogle Scholar
Simpson, EK, Pollacco, D, Collier Cameron, A, et al., 2011c, The spin–orbit angles of the transiting exoplanets WASP–1 b, WASP–24 b, WASP–38 b and HAT–P–8 b from Rossiter–McLaughlin observations. MNRAS, 414, 3023–3035 {253, 736, 751, 754, 755}CrossRefGoogle Scholar
Simpson, EK, Pollacco, DL, Hébrard, G, et al., 2010b, The spin–orbit alignment of the transiting exoplanet WASP–3 b from Rossiter–McLaughlin observations. MNRAS, 405, 1867–1872 {249, 251, 253, 751}Google Scholar
Simpson, F, 2016, The size distribution of inhabited planets. MNRAS, 456, L59–L63 {628}CrossRefGoogle Scholar
Simpson, F, 2017a, Bayesian evidence for the prevalence of waterworlds. MNRAS, 468, 2803–2815 {668}CrossRefGoogle Scholar
Simpson, F, 2017b, The longevity of habitable planets and the development of intelligent life. Int. J. Astrobiol., 16, 266–270 {644}CrossRefGoogle Scholar
Sinclair, JA, Helling, C, Greaves, JS, 2010, The impact of stellar model spectra in disk detection. MNRAS, 409, L49–L53 {496}CrossRefGoogle Scholar
Sing, DK, Désert, J, Lecavelier Des Etangs A, et al., 2009, Transit spectrophotometry of the exoplanet HD 189733 b. I. Searching for water but finding haze with HST NICMOS. A&A, 505, 891–899 {609, 730}Google Scholar
Sing, DK, Désert, JM, Fortney, JJ, et al., 2011a, GTC–OSIRIS transiting exoplanet atmospheric survey: detection of K in XO–2 b from narrow-band spectrophotometry. A&A, 527, A73 {612, 757}Google Scholar
Sing, DK, Fortney, JJ, Nikolov, N, et al., 2016, A continuum from clear to cloudy hot-Jupiter exoplanets without primordial water depletion. Nature, 529, 59–62 {588, 591, 612, 613, 731, 732, 735, 736, 752, 753, 754, 755}CrossRefGoogle ScholarPubMed
Sing, DK, Huitson, CM, Lopez-Morales, M, et al., 2012, GTC–OSIRIS transiting exo-planet atmospheric survey: detection of sodiumin XO–2 b from differential long-slit spectroscopy. MNRAS, 426, 1663–1670 {757}CrossRefGoogle Scholar
Sing, DK, Lecavelier des Etangs A, Fortney, JJ, et al., 2013, HST hot-Jupiter transmission spectral survey: evidence for aerosols and lack of TiO in the atmosphere of WASP–12 b. MNRAS, 436, 2956–2973 {588, 591, 612, 753}CrossRefGoogle Scholar
Sing, DK, López-Morales, M, 2009, Ground-based secondary eclipse detection of the very-hot Jupiter OGLE–TR–56 b. A&A, 493, L31–L34 {168, 749}Google Scholar
Sing, DK, Pont, F, Aigrain, S, et al., 2011b, Transmission spectroscopy of HD 189733 b: high-altitude atmospheric haze in the optical/near-UV with HST–STIS. MNRAS, 416, 1443–1455 {608, 609, 612, 730}CrossRefGoogle Scholar
Sing, DK, Vidal-Madjar, A, Désert, JM, et al., 2008a, HST–STIS optical transit transmission spectra of the hot Jupiter HD 209458 b. ApJ, 686, 658–666 {610, 732}CrossRefGoogle Scholar
Sing, DK, Vidal-Madjar, A, Lecavelier des Etangs A, et al., 2008b, Determining atmospheric conditions at the terminator of the hot Jupiter HD 209458 b. ApJ, 686, 667–673 {591, 732}CrossRefGoogle Scholar
Sing, DK, Wakeford, HR, Showman, AP, et al., 2015, HST hot-Jupiter transmission spectral survey: detection of potassium in WASP–31 b along with a cloud deck and Rayleigh scattering. MNRAS, 446, 2428–2443 {591, 754}CrossRefGoogle Scholar
Sinukoff, E, Howard, AW, Petigura, EA, et al., 2016, Eleven multi-planet systems from K2 campaigns 1 and 2, and themasses of two hot super-Earths. ApJ, 827, 78 {747, 748}CrossRefGoogle Scholar
Sinukoff, E, Howard, AW, Petigura, EA, 2017a, K2–66 b and K2–106 b: two extremely hot sub-Neptune-size planets with high densities. AJ, 153, 271 {748}CrossRefGoogle Scholar
Sinukoff, E, Howard, AW, Petigura, EA, 2017b, Mass constraints of the WASP–47 planetary system from radial velocities. AJ, 153, 70 {755}CrossRefGoogle Scholar
Sion, EM, Holberg, JB, Oswalt, TD, et al., 2009, The white dwarfs within 20 pc of the Sun: kinematics and statistics. AJ, 138, 1681–1689 {413}CrossRefGoogle Scholar
Sirono, Si, Katayama, M, 2016, The formation of cores of giant planets at convergence zones of planetary migration. ApJ, 830, 65 {481}CrossRefGoogle Scholar
Sirothia, SK, Lecavelier des Etangs A, Gopal-Krishna, et al., 2014, Search for 150 MHz radio emission from exoplanets in the TIFR GMRT Sky Survey. A&A, 562, A108 {426, 427, 716, 719, 721, 723, 756, 764}Google Scholar
Sitko, ML, Day, AN, Kimes, RL, et al., 2012, Variability of disk emission in pre-main sequence and related stars. II. Variability in the gas and dust emission of the Herbig Fe star HD 135344B (SAO 206462). ApJ, 745, 29 {466}CrossRefGoogle Scholar
Sivaram, C, Kenath, A, Kiren, OV, 2016, Planet Nine, dark matter and MOND. Ap&SS, 361, 230 {687}Google Scholar
Sivaramakrishnan, A, Koresko, CD, Makidon, RB, et al., 2001, Ground-based coronagraphy with high-order adaptive optics. ApJ, 552, 397–408 {334}CrossRefGoogle Scholar
Sivaramakrishnan, A, Lloyd, JP, Hodge, PE, et al., 2002, Speckle decorrelation and dynamic range in speckle noise-limited imaging. ApJ, 581, L59–L62 {340}CrossRefGoogle Scholar
Sivaramakrishnan, A, Soummer, R, Pueyo, L, et al., 2008, Sensing phase aberrations behind Lyot coronagraphs. ApJ, 688, 701–708 {339}CrossRefGoogle Scholar
Sivaramakrishnan, A, Yaitskova, N, 2005, Lyot coronagraphy on giant segmented-mirror telescopes. ApJ, 626, L65–L68 {334}CrossRefGoogle Scholar
Siverd, RJ, Beatty, TG, Pepper, J, et al., 2012, KELT–1 b: a strongly irradiated, highly-inflated, short period, 27MJ companion transiting a mid-F star. ApJ, 761, 123 {540, 738}CrossRefGoogle Scholar
Siverd, RJ, Collins, KA, Zhou, G, et al., 2018, KELT–19A b: a 4.6-d hot Jupiter transiting a likely Amstar with a distant stellar companion. AJ, 155, 35 {738}CrossRefGoogle Scholar
Skemer, AJ, Close, LM, 2011, Sirius B imaged in the mid-infrared: no evidence for a remnant planetary system. ApJ, 730, 53 {416}CrossRefGoogle Scholar
Skemer, AJ, Close, LM, Sz˝ucs, L, et al., 2011, Evidence against an edge-on disk around 2M J1207 b and a new thick-cloud explanation for its underluminosity. ApJ, 732, 107 {363, 438, 763}CrossRefGoogle Scholar
Skemer, AJ, Hinz, P, Esposito, S, et al., 2014a, High contrast imaging at the LBT: the LEECH exoplanet imaging survey. Adaptive Optics Systems IV, volume 9148 of Proc. SPIE, 91480L {359}Google Scholar
Skemer, AJ, Hinz, PM, Esposito, S, et al., 2012, First light LBT AO images of HR 8799 bcde at 1.6 and 3.3μm: discrepancies between young planets and old brown dwarfs. ApJ, 753, 14 {365, 436, 438, 763}CrossRefGoogle Scholar
Skemer, AJ, Marley, MS, Hinz, PM, et al., 2014b, Directly imaged L–T transition exo-planets in themid-infrared. ApJ, 792, 17 {366, 588, 763}CrossRefGoogle Scholar
Skemer, AJ, Morley, CV, Zimmerman, NT, et al., 2016, The LEECH Exoplanet Imaging Survey: characterisation of the coldest directly imaged exoplanet, GJ 504 b, and evidence for superstellar metallicity. ApJ, 817, 166 {359, 762}CrossRefGoogle Scholar
Skillen, I, Pollacco, D, Collier Cameron, A, et al., 2009, The 0.5MJ transiting exoplanet WASP–13 b. A&A, 502, 391–394 {753}Google Scholar
Skilling, J, 2004, Nested Sampling. AIP Conf. Ser., volume 735, 395–405 {23}Google Scholar
Skinner, SL, Güdel, M, 2017, XMM–Newton X-ray observations of LkCa 15: a T Tauri star with a formative planetary system. ApJ, 839, 45 {764}CrossRefGoogle Scholar
Skowron, J, Shin, IG, Udalski, A, et al., 2015, OGLE–2011–BLG–265L b: a Jovian micro-lensing planet orbiting an Mdwarf. ApJ, 804, 33 {141, 142, 760}CrossRefGoogle Scholar
Skowron, J, Udalski, A, Poleski, R, et al., 2016, MOA–2011–BLG–28L b: a Neptune-mass microlensing planet in the Galactic bulge. ApJ, 820, 4 {141, 759}CrossRefGoogle Scholar
Skowron, J, Udalski, A, Szymanski, MK, et al., 2014, New method to measure proper motions of microlensed sources: application to candidate free-floating planet event MOA–2011–BLG–262. ApJ, 785, 156 {759}CrossRefGoogle Scholar
Skrutskie, MF, Cutri, RM, Stiening, R, et al., 2006, The Two Micron All Sky Survey (2MASS). AJ, 131, 1163–1183 {432}CrossRefGoogle Scholar
Skrzypek, N, Warren, SJ, Faherty, JK, 2016, Photometric brown-dwarf classification. II. A homogeneous sample of 1361 L and T dwarfs brighter than J = 17.5 with accurate spectral types. A&A, 589, A49 {435}Google Scholar
Skrzypek, N, Warren, SJ, Faherty, JK, et al., 2015, Photometric brown-dwarf classification. I. A method to identify and accurately classify large samples of brown dwarfs without spectroscopy. A&A, 574, A78 {436}Google Scholar
Skumanich, A, 1972, Time scales for Ca II emission decay, rotational braking, and lithium depletion. ApJ, 171, 565 {380, 423}CrossRefGoogle Scholar
Slawson, RW, Prša, A, Welsh, WF, et al., 2011, Kepler eclipsing binary stars. II. 2165 eclipsing binaries in the second data release. AJ, 142, 160 {178, 193, 411}CrossRefGoogle Scholar
Sleep, NH, 2010, The Hadean–Achaean environment. Cold Spring Harbor Perspectives in Biology, 2, a002527 {673}CrossRefGoogle ScholarPubMed
Sleep, NH, Zahnle, K, 2001, Carbon dioxide cycling and implications for climate on ancient Earth. J. Geophys. Res., 106, 1373–1400 {672}CrossRefGoogle Scholar
Sleep, NH, Zahnle, K, Neuhoff, PS, 2001, Initiation of clement surface conditions on the earliest Earth. Proc. Nat. Acad. Sci., 98, 3666–3672 {636}CrossRefGoogle ScholarPubMed
Sliski, DH, Kipping, DM, 2014, A high false positive rate for Kepler planetary candidates of giant stars using asterodensity profiling. ApJ, 788, 148 {210}CrossRefGoogle Scholar
Sloan, T, Wolfendale, AW, 2013, Cosmic rays and climate change over the past 1000 million years. New Astron., 25, 45–49 {655}CrossRefGoogle Scholar
Słowikowska, A, Kanbach, G, Stefanescu, A, et al., 2011, Optical photo-polarimetry of the Crab pulsar and the transiting planet TrES–3. ASP Conf. Ser., volume 449, 376 {167, 246}Google Scholar
Slysh, VI, 1985, A search in the infrared to microwave for astroengineering activity. The Search for Extraterrestrial Life: Recent Developments, volume 112 of IAU Symp., 315–319 {647}Google Scholar
Smalley, B, Anderson, DR, Collier Cameron, A, et al., 2010, WASP–26 b: a 1-Jupiter-mass planet around an early G-type star. A&A, 520, A56 {754}Google Scholar
Smalley, B, Anderson, DR, Collier Cameron, A, 2011a, WASP–34 b: a near-grazing transiting sub-Jupiter-mass exoplanet in a hierarchical triple system. A&A, 526, A130 {11, 223, 754}Google Scholar
Smalley, B, Anderson, DR, Collier Cameron, A, 2012, WASP–78 b and WASP–79 b: two highly-bloated hot Jupiter-mass exoplanets orbiting F-type stars in Eridanus. A&A, 547, A61 {756}Google Scholar
Smalley, B, Kurtz, DW, Smith, AMS, et al., 2011b, Super WASP observations of pulsating Am stars. A&A, 535, A3 {411}Google Scholar
Smalley, B, Southworth, J, Pintado, OI, et al., 2014, Eclipsing Am binary systems in the Super WASP survey. A&A, 564, A69 {164}Google Scholar
Smallwood, JL, Martin, RG, Lepp, S, et al., 2018, Asteroid impacts on terrestrial planets: the effects of super-Earths and the role of the V6 resonance. MNRAS, 473, 295–305 {671}CrossRefGoogle Scholar
Smart, RL, Tinney, CG, Bucciarelli, B, et al., 2013, NPARSEC: NTT parallaxes of southern extremely cool objects: goals, targets, procedures and first results. MNRAS, 433, 2054–2063 {434}CrossRefGoogle Scholar
Smirnov, VA, 2015, The physical meaning of the Titius–Bode formula. Odessa Astronomical Publications, 28, 62 {510}CrossRefGoogle Scholar
Smith, AG, Pickering, KT, 2003, Oceanic gateways as a critical factor to initiate ice-house Earth. Journal of the Geological Society, 160(3), 337–340 {676}CrossRefGoogle Scholar
Smith, AMS, 2015, The properties of XO–5 b and WASP–82 b redetermined using new high-precision transit photometry and global data analyses. Acta Astronomica, 65 {756, 757}Google Scholar
Smith, AMS, Anderson, DR, Armstrong, DJ, et al., 2014a, WASP–104 b and WASP–106 b: two transiting hot Jupiters in 1.75-day and 9.3-day orbits. A&A, 570, A64 {756}Google Scholar
Smith, AMS, Anderson, DR, Bouchy, F, et al., 2013, WASP–71 b: a bloated hot Jupiter in an 2.9-d, prograde orbit around an evolved F8 star. A&A, 552, A120 {252, 253, 255, 756}Google Scholar
Smith, AMS, Anderson, DR, Collier Cameron, A, et al., 2012a, WASP–36 b: a new transiting planet around a metal-poor G-dwarf, and an investigation into analyses based on a single transit light curve. AJ, 143, 81 {754}CrossRefGoogle Scholar
Smith, AMS, Anderson, DR, Madhusudhan, N, et al., 2012b, Thermal emission from WASP–24 b at 3.6 and 4.5μm. A&A, 545, A93 {253, 754}Google Scholar
Smith, AMS, Anderson, DR, Skillen, I, et al., 2011, Thermal emission from WASP–33 b, the hottest known planet. MNRAS, 416, 2096–2101 {754}CrossRefGoogle Scholar
Smith, AMS, Cabrera, J, Csizmadia, S, et al., 2018, K2–137 b: an Earth-sized planet in a 4.3-h orbit around an M-dwarf. MNRAS, 474, 5523–5533 {749}CrossRefGoogle Scholar
Smith, AMS, Collier Cameron, A, Christian, DJ, et al., 2006, The impact of correlated noise on Super WASP detection rates for transiting extrasolar planets. MNRAS, 373, 1151–1158 {156}CrossRefGoogle Scholar
Smith, AMS, Collier Cameron, A, Greaves, J, et al., 2009a, Radio cyclotron emission from extrasolar planets. IAU Symp., volume 253, 456–458 {427}Google Scholar
Smith, AMS, Collier Cameron, A, Greaves, J, 2009b, Secondary radio eclipse of the transiting planet HD 189733 b: an upper limit at 307–347 MHz. MNRAS, 395, 335–341 {427, 730}CrossRefGoogle Scholar
Smith, AMS, Gandolfi, D, Barragán, O, et al., 2017, K2–99: a subgiant hosting a transiting warm Jupiter in an eccentric orbit and a long-period companion. MNRAS, 464, 2708–2716 {748}CrossRefGoogle Scholar
Smith, AMS, et al., 2014b, The Super WASP exoplanet transit survey. Contributions of the Astronomical Observatory Skalnate Pleso, 43, 500–512 {164}Google Scholar
Smith, AW, Lissauer, JJ, 2009, Orbital stability of systems of closely-spaced planets. Icarus, 201, 381–394 {77, 316, 322, 514, 623}CrossRefGoogle Scholar
Smith, AW, Lissauer, JJ, 2010, Orbital stability of systems of closely-spaced planets. II. Configurations with co-orbital planets. Cel. Mech. Dyn. Astron., 107, 487–500 {316}CrossRefGoogle Scholar
Smith, BA, Soderblom, LA, Banfield, D, et al., 1989, Voyager 2 at Neptune: imaging science results. Science, 246, 1422–1449 {691}CrossRefGoogle ScholarPubMed
Smith, BA, Soderblom, LA, Beebe, R, et al., 1986, Voyager 2 in the Uranian system: imaging science results. Science, 233, 43–64 {689, 690}CrossRefGoogle ScholarPubMed
Smith, BA, Soderblom, LA, Johnson, TV, et al., 1979, The Jupiter system through the eyes of Voyager 1. Science, 204, 951–957 {591, 691}CrossRefGoogle ScholarPubMed
Smith, BA, Terrile, RJ, 1984, A circumstellar disk around β Pic. Science, 226, 1421–1424 {493, 762}CrossRefGoogle Scholar
Smith, E, Morowitz, HJ, 2016, The Origin and Nature of Life on Earth. Cambridge University Press {636}CrossRefGoogle Scholar
Smith, JC, Morris, RL, Jenkins, JM, et al., 2016, Finding optimal apertures in Kepler data. PASP, 128(12), 124501 {176}CrossRefGoogle Scholar
Smith, JC, Stumpe, MC, Van Cleve, JE, et al., 2012c, Kepler presearch data conditioning. II. A Bayesian approach to systematic error correction. PASP, 124, 1000–1014 {177, 190}CrossRefGoogle Scholar
Smith, KL, Boyd, PT, Mushotzky, RF, et al., 2015, KSwAGS: A Swift X-ray and ultraviolet survey of the Kepler field. I. AJ, 150, 126 {176}CrossRefGoogle Scholar
Smith, KW, Bonnell, IA, 2001, Free-floating planets in stellar clusters? MNRAS, 322, L1–L4 {442, 526}CrossRefGoogle Scholar
Smith, MC, Mao, S, Paczynski, B, 2003, Acceleration and parallax effects in gravitational microlensing. MNRAS, 339, 925–936 {134}CrossRefGoogle Scholar
Smith, MC, Mao, S, Woźniak, P, 2002, Parallax microlensing events in the OGLE II data base toward the Galactic bulge. MNRAS, 332, 962–970 {134}CrossRefGoogle Scholar
Smith, MR, Laul, JC, Ma, MS, et al., 1984, Petrogenesis of the SNC meteorites. Lunar and Planetary Science Conference Proceedings, volume 14, B612–B630 {683}Google Scholar
Smith, R, Wyatt, MC, Haniff, CA, 2009c, Resolving the hot dust around HD 69830 and η Crv with MIDI and VISIR. A&A, 503, 265–279 {720}Google Scholar
Smith, RM, Zavodny, M, Rahmer, G, et al., 2008, Calibration of image persistence in HgCdTe photodiodes. High Energy, Optical, and Infrared Detectors for Astronomy III, volume 7021 of Proc. SPIE, 70210K {187}Google Scholar
Smith, VV, Cunha, K, Lazzaro, D, 2001, The abundance distribution in the exolanet host star HD 19994. AJ, 121, 3207–3218 {388, 396, 718}CrossRefGoogle Scholar
Smoluchowski, MV, 1916, Drei Vortrage uber Diffusion, Brownsche Bewegung und Koagulation von Kolloidteilchen. Zeitschrift fur Physik, 17, 557–585 {469}Google Scholar
Smoluchowski, R, Torbett, M, 1984, The boundary of the solar system. Nature, 311, 38 {686}CrossRefGoogle Scholar
Smullen, RA, Kratter, KM, Shannon, A, 2016, Planet scattering around binaries: ejections, not collisions. MNRAS, 461, 1288–1301 {553, 741}CrossRefGoogle Scholar
Snellen, IAG, 2004, A new method for probing the atmospheres of transiting exo-planets. MNRAS, 353, L1–L6 {249}CrossRefGoogle Scholar
Snellen, IAG, 2005, High-precision K-band photometry of the secondary eclipse of HD 209458. MNRAS, 363, 211–215 {160, 610, 731}CrossRefGoogle Scholar
Snellen, IAG, Albrecht, S, de Mooij, EJW, et al., 2008, Ground-based detection of sodium in the transmission spectrum of exoplanet HD 209458 b. A&A, 487, 357–362 {610, 612, 732}Google Scholar
Snellen, IAG, Brandl, BR, de Kok, RJ, et al., 2014, Fast spin of the young extrasolar planet β Pic b. Nature, 509, 63–65 {12, 43, 680, 762}CrossRefGoogle Scholar
Snellen, IAG, Covino, E, 2007, K-band transit and secondary eclipse photometry of exoplanet OGLE–TR–113 b. MNRAS, 375, 307–312 {749}CrossRefGoogle Scholar
Snellen, IAG, de Kok, R, Birkby, JL, et al., 2015, Combining high-dispersion spectroscopy with high contrast imaging: probing rocky planets around our nearest neighbours. A&A, 576, A59 {341}Google Scholar
Snellen, IAG, de Kok, RJ, de Mooij, EJW, et al., 2010a, The orbitalmotion, absolute mass and high-altitude winds of exoplanet HD 209458 b. Nature, 465, 1049–1051 {11, 42, 44, 596, 613, 732}CrossRefGoogle Scholar
Snellen, IAG, de Kok, RJ, le Poole, R, et al., 2013a, Finding extraterrestrial life using ground-based high-dispersion spectroscopy. ApJ, 764, 182 {639}CrossRefGoogle Scholar
Snellen, IAG, de Mooij, EJW, Albrecht, S, 2009a, The changing phases of extrasolar planet CoRoT–1 b. Nature, 459, 543–545 {10, 173, 236, 285, 286, 615, 733}CrossRefGoogle Scholar
Snellen, IAG, de Mooij, EJW, Burrows, A, 2010b, Bright optical day-side emission from extrasolar planet CoRoT–2 b. A&A, 513, A76 {733}Google Scholar
Snellen, IAG, Désert, JM, Waters, LBFM, et al., 2017, Detecting the Proxima Cen b atmosphere with JWST targeting CO2 at 15μm using a high-pass spectral filtering technique. AJ, 154, 77 {714}CrossRefGoogle Scholar
Snellen, IAG, Koppenhoefer, J, van der Burg RFJ, et al., 2009b, OGLE2–TR–L9 b: an exoplanet transiting a rapidly rotating F3 star. A&A, 497, 545–550 {168, 543, 749}Google Scholar
Snellen, IAG, Stuik, R, Navarro, R, et al., 2012, Ground-based search for the brightest transiting planets with the Multi-site All-Sky CAme RA:MASCARA. SPIE Conf. Ser., volume 8444 {166}Google Scholar
Snellen, IAG, Stuik, R, Otten, G, et al., 2013b, MASCARA: The Multi-site All-Sky CAm-eRA. EPJWeb Conf., volume 47, 3008 {166}CrossRefGoogle Scholar
Snellen, IAG, van der Burg RFJ, de Hoon, MDJ, et al., 2007, A search for transiting extra-solar planet candidates in the OGLE–II microlens database of the galactic plane. A&A, 476, 1357–1363 {168}Google Scholar
Snellgrove, MD, Papaloizou, JCB, Nelson, RP, 2001, On disk driven inward migration of resonantly coupled planets with application to the system around GJ 876. A&A, 374, 1092–1099 {72, 507, 522, 717}Google Scholar
Snodgrass, C, Horne, K, Tsapras, Y, 2004, The abundance of Galactic planets from OGLE–III 2002 microlensing data. MNRAS, 351, 967–975 {140}CrossRefGoogle Scholar
Sobolev, VV, 1975, Light Scattering in Planetary Atmospheres. Pergamon Press {235}Google Scholar
Socrates, A, Katz, B, Dong, S, et al., 2012, Super-eccentric migrating Jupiters. ApJ, 750, 106 {210, 369, 531}CrossRefGoogle Scholar
Soderblom, DR, 2010, The ages of stars. ARA&A, 48, 581–629 {380}Google Scholar
Söderhjelm, S, 1982, Studies of the stellar three-body problem. A&A, 107, 54–60 {528}Google Scholar
Söderhjelm, S, Robichon, N, Arenou, F, 1999, HD 209458. IAU Circ., 7323, 3–4 {170, 185, 731}Google Scholar
Sohl, F, Sears, WD, Lorenz, RD, 1995, Tidal dissipation on Titan. Icarus, 115, 278–294 {627}CrossRefGoogle Scholar
Sohl, F, Spohn, T, Breuer, D, et al., 2002, Implications from Galileo observations on the interior structure and chemistry of the Galilean satellites. Icarus, 157, 104–119 {605}CrossRefGoogle Scholar
Sojo, V, Herschy, B, Whicher, A, et al., 2016, The origin of life in alkaline hydrothermal vents. Astrobiology, 16, 181–197 {637}CrossRefGoogle ScholarPubMed
Soker, N, 1994, The expected morphology of the solar system planetary nebula. PASP, 106, 59–62 {110, 414}CrossRefGoogle Scholar
Soker, N, 1996, What planetary nebulae can tell us about planetary systems. ApJ, 460, L53–L56 {110, 413}CrossRefGoogle Scholar
Soker, N, 1997, Properties that cannot be explained by the progenitors of planetary nebulae. ApJS, 112, 487–505 {414}CrossRefGoogle Scholar
Soker, N, 1998, Can planets influence the horizontal branch morphology? AJ, 116, 1308–1313 {111, 112, 370}CrossRefGoogle Scholar
Soker, N, 1999, Detecting planets in planetary nebulae. MNRAS, 306, 806–808 {110}CrossRefGoogle Scholar
Soker, N, Hershenhorn, A, 2007, Expected planets in globular clusters. MNRAS, 381, 334–340 {159}CrossRefGoogle Scholar
Soker, N, Rappaport, S, Fregeau, J, 2001, Collisions of free-floating planetswith evolved stars in globular clusters. ApJ, 563, L87–L90 {525}CrossRefGoogle Scholar
Sokov, EN, Vereshchagina, IA, Gnedin, YN, et al., 2012, Observations of extrasolar planet transits with the automated telescopes of the Pulkovo Astronomical Observatory. Astronomy Letters, 38, 180–190 {736, 753}CrossRefGoogle Scholar
Solanki, SK, 2003, Sun spots: an overview. A&A Rev., 11, 153–286 {213}Google Scholar
Solano, E, von Braun, K, Velasco, A, et al., 2009, The LAEX and NASA portals for CoRoT public data. A&A, 506, 455–463 {172}Google Scholar
Solf, J, 1984, High-resolution observations of bipolar mass flow from the symbiotic star HM Sagittae. A&A, 139, 296–304 {444}Google Scholar
Solf, J, Boehm, KH, 1993, High-resolution long-slit spectral imaging of the mass outflows in the immediate vicinity of DG Tauri. ApJ, 410, L31–L34 {444}CrossRefGoogle Scholar
Solomon, S, Qin, D, Manning, M, et al., 2007, Climate Change 2007: The Physical Science Basis. Cambridge University Press {674}Google Scholar
Sonett, CP, Giampapa, MS, Matthews, MS, 1991, The Sun in Time. Univ. Arizona Press {651}Google Scholar
Sonett, CP, Kvale, EP, Zakharian, A, et al., 1996, Late Proterozoic and Paleozoic tides, retreat of the Moon, and rotation of the Earth. Science, 273, 100–104 {665}CrossRefGoogle Scholar
Song, I, Schneider, G, Zuckerman, B, et al., 2006, HST–NICMOS imaging of the planetary-mass companion to the young brown dwarf 2M J1207. ApJ, 652, 724–729 {349, 363, 364, 763}CrossRefGoogle Scholar
Song, I, Zuckerman, B, Weinberger, AJ, et al., 2005, Extreme collisions between plan-etesimals as the origin of warmdust around a Sun-like star. Nature, 436, 363–365 {493, 495, 497, 498}CrossRefGoogle ScholarPubMed
Song, W, Qu, ZQ, 2016, Study of polarimetries of the Earth-like exoplanet. Acta Astro-nomica Sinica, 57, 165–180 {246}Google Scholar
Song, W, Qu Zq, 2017, Polarimetric study of an Earth-like planet. Chin. Astron. Astro-phys., 41, 235–253 {246}Google Scholar
Song, YY, Mao, S, An, JH, 2014, Degeneracies in triple gravitational microlensing. MNRAS, 437, 4006–4018 {125}CrossRefGoogle Scholar
Soon, KL, Hanawa, T, Muto, T, et al., 2017, Detailed modeling of dust distribution in the disk of HD 142527. PASJ, 69, 34 {466}CrossRefGoogle Scholar
Soper, P, Franklin, F, Lecar, M, 1990, On the original distribution of the asteroids. III. Orbits between Jupiter and Saturn. Icarus, 87, 265–284 {515}CrossRefGoogle Scholar
Sorahana, S, Suzuki, TK, Yamamura, I, 2014, A signature of chromospheric activity in brown dwarfs revealed by 2.5-5.0 μm AKARI spectra. MNRAS, 440, 3675–3684 {434}CrossRefGoogle Scholar
Sorahana, S, Yamamura, I, 2012, AKARI observations of brown dwarfs. III. CO, CO2, and CH4 fundamental bands and physical parameters. ApJ, 760, 151 {434}CrossRefGoogle Scholar
Sorahana, S, Yamamura, I, 2014, AKARI observations of brown dwarfs. IV. Effect of elemental abundances on near-infrared spectra between 1–5 μm. ApJ, 793, 47 {434}CrossRefGoogle Scholar
Sorahana, S, Yamamura, I, Murakami, H, 2013, On the radii of brown dwarfs measured with AKARI near-infrared spectroscopy. ApJ, 767, 77 {434}CrossRefGoogle Scholar
Soriano, M, Vauclair, S, 2008, The exoplanet-host star μ Ara: a new seismic analysis. Journal of Physics Conference Series, 118(1), 012072–75 {713}CrossRefGoogle Scholar
Soriano, M, Vauclair, S, 2010, New seismic analysis of the exoplanet-host star μ Ara. A&A, 513, A49, 1–8 {409, 713}Google Scholar
Soriano, M, Vauclair, S, Vauclair, G, et al., 2007, The CoRoT primary target HD 52265: models and seismic tests. A&A, 471, 885–892 {411, 720}Google Scholar
Soter, S, 2006, What is a planet? AJ, 132, 2513–2519 {8}CrossRefGoogle Scholar
Sotin, C, Grasset, O, Mocquet, A, 2007, Mass–radius curve for extrasolar Earth-like planets and ocean planets. Icarus, 191, 337–351 {566, 574, 577, 603, 626}CrossRefGoogle Scholar
Sotiriadis, S, Libert, AS, Bitsch, B, et al., 2017, Highly inclined and eccentric massive planets. II. Planet–planet interactions during the disk phase. A&A, 598, A70 {525}Google Scholar
Souami, D, Souchay, J, 2012, The solar system's invariable plane. A&A, 543, A133 {677}Google Scholar
Soubiran, C, Bienaymé, O, Siebert, A, 2003, Vertical distribution of Galactic disk stars. I. Kinematics and metallicity. A&A, 398, 141–151 {395}Google Scholar
Soubiran, F, Militzer, B, 2016, The properties of heavy elements in giant planet envelopes. ApJ, 829, 14 {482, 660}CrossRefGoogle Scholar
Soubiran, F, Militzer, B, Driver, KP, et al., 2017, Properties of hydrogen, helium, and silicon dioxide mixtures in giant planet interiors. Physics of Plasmas, 24(4), 041401 {567}CrossRefGoogle Scholar
Soucail, G, Fort, B, Mellier, Y, et al., 1987, A blue ring-like structure, in the centre of the A370 cluster of galaxies. A&A, 172, L14–L16 {120}Google Scholar
Souchay, J, Mathis, S, Tokieda T (eds.), 2013, Tides in astronomy and astrophysics, volume 861 of Lecture Notes in Physics, Berlin Springer Verlag {531}
Soummer, R, Aime, C, Falloon, PE, 2003a, Stellar coronagraphy with prolate apodised circular apertures. A&A, 397, 1161–1172 {334}Google Scholar
Soummer, R, Aime, C, Ferrari, A, et al., 2006, Apodised pupil Lyot coronagraphs: concepts and application to the Gemini Planet Imager. IAU Colloq. 200: Direct Imaging of Exoplanets: Science and Techniques, 367–372 {344}
Soummer, R, Brendan Hagan, J, Pueyo, L, et al., 2011a, Orbital motion of HR 8799 b, c, d using HST data from 1998: constraints on inclination, eccentricity, stability. ApJ, 741, 55 {365, 763}CrossRefGoogle Scholar
Soummer, R, Dohlen, K, Aime, C, 2003b, Achromatic dual-zone phase mask stellar coronagraph. A&A, 403, 369–381 {334}Google Scholar
Soummer, R, Ferrari, A, Aime, C, et al., 2007, Speckle noise and dynamic range in coro-nagraphic images. ApJ, 669, 642–656 {339}CrossRefGoogle Scholar
Soummer, R, Sivaramakrishnan, A, Pueyo, L, et al., 2011b, Apodised pupil Lyot coro-nagraphs for arbitrary apertures. III. Quasi-achromatic solutions. ApJ, 729, 144 {344}CrossRefGoogle Scholar
Sousa, SG, Fernandes, J, Israelian, G, et al., 2010, Higher depletion of lithium in planet host stars: no age and mass effect. A&A, 512, L5 {402}Google Scholar
Sousa, SG, Santos, NC, Israelian, G, et al., 2006, Spectroscopic parameters for a sample of metal-rich solar-type stars. A&A, 458, 873–880 {388}Google Scholar
Sousa, SG, Santos, NC, Israelian, G, 2011a, Spectroscopic characterisation of a sample of metal-poor solar-type stars from the HARPS planet search programme: precise spectroscopic parameters and mass estimation. A&A, 526, A99 {59, 377, 388}Google Scholar
Sousa, SG, Santos, NC, Israelian, G, 2011b, Spectroscopic stellar parameters for 582 FGK stars in the HARPS volume-limited sample. Revising the metallicity-planet correlation. A&A, 533, A141 {55, 59, 60, 308}Google Scholar
Sousa, SG, Santos, NC, Mayor, M, et al., 2008, Spectroscopic parameters for 451 stars in the HARPS GTO planet search programme. Stellar [Fe/H] and the frequency of exo-Neptunes. A&A, 487, 373–381 {47, 308, 377, 388, 391, 395, 485}Google Scholar
Sousa, SG, Santos, NC, Mortier, A, et al., 2015, Homogeneous spectroscopic parameters for bright planet host stars from the northern hemisphere: the impact on stellar and planetary mass. A&A, 576, A94 {376}Google Scholar
Southworth, J, 2008, Homogeneous studies of transiting extrasolar planets. I. Light-curve analyses. MNRAS, 386, 1644–1666 {206, 293, 294, 728, 729, 730, 732, 735, 749, 750, 751, 757}CrossRefGoogle Scholar
Southworth, J, 2009, Homogeneous studies of transiting extrasolar planets. II. Physical properties. MNRAS, 394, 272–294 {293, 294, 307, 728, 729, 730, 732, 735, 749, 750, 751, 757}CrossRefGoogle Scholar
Southworth, J, 2010, Homogeneous studies of transiting extrasolar planets. III. Additional planets and stellar models. MNRAS, 408, 1689–1713 {728, 729, 730, 732, 735, 749, 750, 751, 752, 753, 757}CrossRefGoogle Scholar
Southworth, J, 2011, Homogeneous studies of transiting extrasolar planets. IV. Thirty systems with space-based light curves. MNRAS, 417, 2166–2196 {213, 729, 733, 734, 735, 736, 738, 741, 751, 752, 757}CrossRefGoogle Scholar
Southworth, J, 2012, Homogeneous studies of transiting extrasolar planets. V. New results for 38 planets. MNRAS, 426, 1291–1323 {293, 733, 734, 735, 736, 738, 739, 740, 741, 749, 751, 752, 753, 754, 757}CrossRefGoogle Scholar
Southworth, J, 2013, The solar-type eclipsing binary system LL Aqr. A&A, 557, A119 {195}Google Scholar
Southworth, J, Bruni, I, Mancini, L, et al., 2012a, Refined physical properties of the HAT–P–13 planetary system. MNRAS, 420, 2580–2587 {269, 736}CrossRefGoogle Scholar
Southworth, J, Dominik, M, Jørgensen, UG, et al., 2011, A much lower density for the transiting exoplanet WASP–7. A&A, 527, A8 {752}Google Scholar
Southworth, J, Evans, DF, 2016, Contamination from a nearby star cannot explain the anomalous transmission spectrum of the ultrashort period giant planet WASP–103 b. MNRAS, 463, 37–44 {756}CrossRefGoogle Scholar
Southworth, J, Hinse, TC, Burgdorf, M, et al., 2014, High-precision photometry by telescope defocusing. VI. WASP–24, WASP–25 and WASP–26. MNRAS, 444, 776–789 {189, 754}CrossRefGoogle Scholar
Southworth, J, Hinse, TC, Burgdorf, MJ, et al., 2009a, High-precision photometry by telescope defocusing. II. The transiting planetary system WASP–4. MNRAS, 399, 287–294 {189, 752}CrossRefGoogle Scholar
Southworth, J, Hinse, TC, Dominik, M, et al., 2009b, Physical properties of the 0.94-d period transiting planetary system WASP–18. ApJ, 707, 167–172 {753}CrossRefGoogle Scholar
Southworth, J, Hinse, TC, Dominik, M, 2012b, High-precision photometry by telescope defocusing. IV. Confirmation of the huge radius of WASP–17 b. MNRAS, 426, 1338–1348 {189, 753}CrossRefGoogle Scholar
Southworth, J, Hinse, TC, Jørgensen, UG, et al., 2009c, High-precision photometry by telescope defocusing. I. The transiting planetary system WASP–5. MNRAS, 396, 1023–1031 {189, 752}CrossRefGoogle Scholar
Southworth, J, Mancini, L, Browne, P, et al., 2013, High-precision photometry by telescope defocusing. V. WASP–15 and WASP–16. MNRAS, 434, 1300–1308 {189, 753}CrossRefGoogle Scholar
Southworth, J, Mancini, L, Ciceri, S, et al., 2015a, High-precision photometry by telescope defocusing. VII. The ultrashort period planet WASP–103. MNRAS, 447, 711–721 {189, 591, 756}CrossRefGoogle Scholar
Southworth, J, Mancini, L, Madhusudhan, N, et al., 2017, Detection of the atmosphere of the 1.6M⊕ exoplanet GJ 1132 b. AJ, 153, 191 {734}CrossRefGoogle Scholar
Southworth, J, Mancini, L, Maxted, PFL, et al., 2012c, Physical properties and radius variations in the HAT–P–5 planetary system from simultaneous four-colour photometry. MNRAS, 422, 3099–3106 {591, 735}CrossRefGoogle Scholar
Southworth, J, Mancini, L, Novati, SC, et al., 2010, High-precision photometry by telescope defocusing. III. The transiting planetary system WASP–2. MNRAS, 408, 1680–1688 {189, 751}CrossRefGoogle Scholar
Southworth, J, Mancini, L, Tregloan-Reed, J, et al., 2015b, Larger and faster: revised properties and a shorter orbital period for the WASP–57 planetary system from a pro-am collaboration. MNRAS, 454, 3094–3107 {755}CrossRefGoogle Scholar
Southworth, J, Maxted, PFL, Smalley, B, 2004, Eclipsing binaries in open clusters. II. V453 Cyg in NGC 6871. MNRAS, 351, 1277–1289 {201}CrossRefGoogle Scholar
Southworth, J, Tregloan-Reed, J, Andersen, MI, et al., 2016, High-precision photometry by telescope defocussing. VIII. WASP–22, WASP–41, WASP–42 and WASP–55. MNRAS, 457, 4205–4217 {189, 253, 754, 755}CrossRefGoogle Scholar
Southworth, J, Wheatley, PJ, Sams, G, 2007, A method for the direct determination of the surface gravities of transiting extrasolar planets. MNRAS, 379, L11–L15 {201, 206, 293, 294, 306, 423, 610}CrossRefGoogle Scholar
Souto, D, Cunha, K, García-Hernández, DA, et al., 2017, Chemical abundances of M dwarfs from the APOGEE survey. I. The exoplanet hosting stars Kepler–138 and Kepler–186. ApJ, 835, 239 {743, 744}CrossRefGoogle Scholar
Sowicka, P, Handler, G, Debski, B, et al., 2017, Search for exoplanets around pulsating stars of A-F type in Kepler short-cadence data and the case of KIC 8197761. MNRAS, 467, 4663–4673 {746}CrossRefGoogle Scholar
Sozzetti, A, 2004, On the possible correlation between the orbital periods of extrasolar planets and the metallicity of the host stars. MNRAS, 354, 1194–1200 {392}CrossRefGoogle Scholar
Sozzetti, A, 2005, Astrometric methods and instrumentation to identify and characterise ex-trasolar planets: a review. PASP, 117, 1021–1048 {84, 87}CrossRefGoogle Scholar
Sozzetti, A, Bonomo, AS, Biazzo, K, et al., 2015, The GAPS programme with HARPS–N at TNG. VI. The curious case of TrES–4 b. A&A, 575, L15 {751}Google Scholar
Sozzetti, A, Casertano, S, Brown, RA, et al., 2002, Narrow-angle astrometry with the Space Interferometry Mission: the search for extrasolar planets. I. Detection and characterisation of single planets. PASP, 114, 1173–1196 {100}CrossRefGoogle Scholar
Sozzetti, A, Casertano, S, Brown, RA, 2003, Narrow-angle astrometry with the Space Interferometry Mission: the search for extrasolar planets. II. Detection and characterisation of planetary systems. PASP, 115, 1072–1104 {100}CrossRefGoogle Scholar
Sozzetti, A, Casertano, S, Lattanzi, MG, et al., 2001, Detection and measurement of planetary systems with Gaia. A&A, 373, L21–L24 {96}Google Scholar
Sozzetti, A, Desidera, S, 2010, Hipparcos preliminary astrometric masses for the two close-in companions to HD 131664 and HD 43848. A brown dwarf and a low-mass star. A&A, 509, A103–114 {64, 95, 722}Google Scholar
Sozzetti, A, Giacobbe, P, Lattanzi, MG, et al., 2014, Astrometric detection of giant planets around nearby M dwarfs: the Gaia potential. MNRAS, 437, 497–509 {98, 99, 160, 342}CrossRefGoogle Scholar
Sozzetti, A, Torres, G, Charbonneau, D, et al., 2007, Improving stellar and planetary parameters of transiting planet systems: TrES–2. ApJ, 664, 1190–1198 {206, 208, 750}CrossRefGoogle Scholar
Sozzetti, A, Torres, G, Charbonneau, D, 2009a, A new spectroscopic and photometric analysis of the transiting planet systems TrES–3 and TrES–4. ApJ, 691, 1145–1158 {751}CrossRefGoogle Scholar
Sozzetti, A, Torres, G, Latham, DW, et al., 2006a, A Keck HIRES Doppler search for planets orbiting metal-poor dwarfs. II. Testing giant planet formation and migration scenarios. ApJ, 649, 428–435 {55, 60, 293}CrossRefGoogle Scholar
Sozzetti, A, Torres, G, Latham, DW, 2009b, A Keck HIRES Doppler search for planets orbiting metal-poor dwarfs. II. On the frequency of giant planets in the metal-poor regime. ApJ, 697, 544–556 {55, 60}CrossRefGoogle Scholar
Sozzetti, A, Udry, S, Zucker, S, et al., 2006b, A massive planet to the young disk star HD 81040. A&A, 449, 417–424 {720}Google Scholar
Sozzetti, A, Yong, D, Carney, BW, et al., 2006c, Chemical composition of the planet-harbouring star TrES–1. AJ, 131, 2274–2289 {750}CrossRefGoogle Scholar
Sozzetti, A, Yong, D, Torres, G, et al., 2004, High-resolution spectroscopy of the transiting planet host star TrES–1. ApJ, 616, L167–L170 {750}CrossRefGoogle Scholar
Spaan, FHP, Greenaway, AH, 2007, Analysis of pupil replication. ApJ, 658, 1380–1385 {338}CrossRefGoogle Scholar
Spahn, F, Schmidt, J, Albers, N, et al., 2006, Cassini dust measurements at Enceladus and implications for the origin of the E ring. Science, 311, 1416–1418 {690}CrossRefGoogle ScholarPubMed
Spahn, F, Sremcevic, M, 2000, Density patterns induced by small moonlets in Saturn's rings? A&A, 358, 368–372 {691}Google Scholar
Spake, JJ, Brown, DJA, Doyle, AP, et al., 2016, WASP–135 b: a highly irradiated, inflated hot Jupiter orbiting a G5V star. PASP, 128(2), 024401 {757}CrossRefGoogle Scholar
Spalding, C, Batygin, K, 2014, Early excitation of spin–orbit misalignments in close-in planetary systems. ApJ, 790, 42 {531}CrossRefGoogle Scholar
Spalding, C, Batygin, K, 2016, Spin–orbit misalignment as a driver of the Kepler dichotomy. ApJ, 830, 5 {325}CrossRefGoogle Scholar
Spalding, C, Batygin, K, 2017, A secular resonant origin for the loneliness of hot Jupiters. AJ, 154, 93 {530}CrossRefGoogle Scholar
Spalding, C, Batygin, K, Adams, FC, 2016, Resonant removal of exomoons during planetary migration. ApJ, 817, 18 {688}CrossRefGoogle Scholar
Sparks, WB, Ford, HC, 2002, Imaging spectroscopy for extrasolar planet detection. ApJ, 578, 543–564 {341}CrossRefGoogle Scholar
Sparks, WB, Hough, J, Germer, TA, et al., 2009, Detection of circular polarisation in light scattered from photosynthetic microbes. society of photo, 106, 7816–7821 {248}Google Scholar
Spencer, JR, Nimmo, F, 2013, Enceladus: an active iceworld in the Saturn system. Ann. Rev. Earth Plan. Sci., 41, 693–717 {689}CrossRefGoogle Scholar
SpencerJones, H, 1940, Life on Other Worlds. English Universities Press London {639}Google Scholar
Sperber, KR, Fairbridge, RW, Shirley, JH, 1990, Sun's inertial motion and luminosity. Sol. Phys., 127, 379–392 {656}Google Scholar
Spergel, D, Gehrels, N, Breckinridge, J, et al., 2013a, WFIRST–AFTA final report [unpublished]. ArXiv e-prints {143}
Spergel, D, Gehrels, N, Breckinridge, J, 2013b, WFIRST-2.4: what every astronomer should know [unpublished]. ArXiv e-prints {143}
Spezzi, L, Alves de Oliveira C, Moraux, E, et al., 2012, Searching for planetary-mass T-dwarfs in the core of Serpens. A&A, 545, A105 {434}Google Scholar
Spicer, RA, Corfield, RM, 1992, A review of terrestrial and marine climates in the Cretaceous with implications for modelling the ‘Greenhouse Earth’. Geological Magazine, 129, 169–180, ISSN 1469-5081 {676}CrossRefGoogle Scholar
Spiegel, DS, Burrows, A, 2010, Atmosphere and spectral models of the Kepler-field planets HAT–P–7 b and TrES–2. ApJ, 722, 871–879 {735, 751}CrossRefGoogle Scholar
Spiegel, DS, Burrows, A, 2012, Spectral and photometric diagnostics of giant planet formation scenarios. ApJ, 745, 174 {483}CrossRefGoogle Scholar
Spiegel, DS, Burrows, A, 2013, Thermal processes governing hot-Jupiter radii. ApJ, 772, 76 {302}CrossRefGoogle Scholar
Spiegel, DS, Burrows, A, Ibgui, L, et al., 2010a, Models of Neptune-mass exoplanets: emergent fluxes and albedos. ApJ, 709, 149–158 {591}CrossRefGoogle Scholar
Spiegel, DS, Burrows, A, Milsom, JA, 2011, The deuterium-burning mass limit for brown dwarfs and giant planets. ApJ, 727, 57 {430}CrossRefGoogle Scholar
Spiegel, DS, Fortney, JJ, Sotin, C, 2014, Structure of exoplanets. Proc. Nat. Acad. Sci., 111, 12622–12627 {572}CrossRefGoogle ScholarPubMed
Spiegel, DS, Haiman, Z, Gaudi, BS, 2007, On constraining a transiting exoplanet's rotation rate with its transit spectrum. ApJ, 669, 1324–1335 {250}CrossRefGoogle Scholar
Spiegel, DS, Madhusudhan, N, 2012, Jupiter will become a hot Jupiter: consequences of post-main-sequence stellar evolution on gas giant planets. ApJ, 756, 132 {414, 517}CrossRefGoogle Scholar
Spiegel, DS, Menou, K, Scharf, CA, 2008, Habitable climates. ApJ, 681 1609–1623 {620}CrossRefGoogle Scholar
Spiegel, DS, Menou, K, Scharf, CA, 2009a, Habitable climates: the influence of obliquity. ApJ, 691, 596–610 {621, 631}CrossRefGoogle Scholar
Spiegel, DS, Raymond, SN, Dressing, CD, et al., 2010b, Generalised Milankovitch cycles and long-termclimatic habitability. ApJ, 721, 1308–1318 {621}CrossRefGoogle Scholar
Spiegel, DS, Silverio, K, Burrows, A, 2009b, Can TiO explain thermal inversions in the upper atmospheres of irradiated giant planets? ApJ, 699, 1487–1500 {580}CrossRefGoogle Scholar
Spiegel, DS, Turner, EL, 2012, Bayesian analysis of the astrobiological implications of life's early emergence on Earth. society of photo, 109, 395–400 {636, 647}Google ScholarPubMed
Spiegel, DS, Zamojski, M, Gersch, A, et al., 2005, Can we probe the atmospheric composition of an extrasolar planet from its reflection spectrum in a high-magnificationmicrolensing event? ApJ, 628, 478–486 {136}CrossRefGoogle Scholar
Spiewak, R, Bailes, M, Barr, ED, et al., 2018, PSR J2322–2650: a low-luminositymillisec-ond pulsar with a planetary-mass companion. MNRAS, 475, 469–477 {105, 109}Google Scholar
Spiewak, R, Kaplan, DL, Archibald, A, et al., 2016, Ordinary X-rays from three extraordinary millisecond pulsars: XMM–Newton observations of PSRs J0337+1715, J0636+5129, and J0645+5158. ApJ, 822, 37 {105, 108}CrossRefGoogle Scholar
Spina, L, Meléndez, J, Ramírez, I, 2016, Planet signatures and effect of the chemical evolution of the Galactic thin-disk stars. A&A, 585, A152 {405}Google Scholar
Spite, F, Spite, M, 1982a, Abundance of lithium in unevolved halo stars and old disk stars: interpretation and consequences. A&A, 115, 357–366 {400}Google Scholar
Spite, M, Spite, F, 1982b, Lithium abundance at the formation of the Galaxy. Nature, 297, 483–485 {400}CrossRefGoogle Scholar
Spitoni, E, Gioannini, L, Matteucci, F, 2017, Galactic habitable zone around Mand FGK stars with chemical evolutionmodels that include dust. A&A, 605, A38 {625}Google Scholar
Spohn, T, Schubert, G, 2003, Oceans in the icy Galilean satellites of Jupiter? Icarus, 161, 456–467 {605}CrossRefGoogle Scholar
Spörer, GFW, 1874, Beobachtungen der sonnenflecken zu Anclam. W. Engelmann Leipzig {213}Google Scholar
Springel, V, 2010, Galilean-invariant cosmological hydrodynamical simulations on a moving mesh. MNRAS, 401, 791–851 {462}CrossRefGoogle Scholar
Spronck, JFP, Lesage, AL, Stuik, R, et al., 2014a, Finding planets transiting the brightest stars with MASCARA. Search for Life Beyond the Solar System. Exoplanets, Biosig-natures and Instruments, 3P {166}Google Scholar
Spronck, JFP, Lesage, AL, Stuik, R, 2014b, MASCARA: opto-mechanical design and integration. SPIE Conf. Ser., volume 9147, 56 {166}Google Scholar
Spronck, JFP, Pereira, SF, 2009, The effect of longitudinal polarisation in multi-axial nulling interferometry for exoplanet detection. A&A, 498, 931–947 {334}Google Scholar
Spurzem, R, Giersz, M, Heggie, DC, et al., 2009, Dynamics of planetary systems in star clusters. ApJ, 697, 458–482 {159, 526, 650}CrossRefGoogle Scholar
Squires, KD, Eaton, JK, 1991, Preferential concentration of particles by turbulence. Physics of Fluids, 3, 1169–1178 {460}Google Scholar
Sremcevic, M, Schmidt, J, Salo, H, et al., 2007, A belt of moonlets in Saturn's A Ring. Nature, 449, 1019–1021 {691}CrossRefGoogle ScholarPubMed
Sremcevic, M, Spahn, F, Duschl, WJ, 2002, Density structures in perturbed thin cold disks. MNRAS, 337, 1139–1152 {691}CrossRefGoogle Scholar
Sridhar, S, Tremaine, S, 1992, Tidal disruption of viscous bodies. Icarus, 95, 86–99 {541}CrossRefGoogle Scholar
Sridharan, R, Ahmed, SM, Pratim Das, T, et al., 2010, Direct evidence for water in the sunlit lunar ambience from CHACE on MIP of Chandrayaan I. Planet. Space Sci., 58, 947–950 {666}CrossRefGoogle Scholar
Sriram, K, Malu, S, Choi, CS, et al., 2017, A study of the Kepler K2 variable EPIC–211957146 exhibiting a variable O'Connell effect. AJ, 153, 231 {240}CrossRefGoogle Scholar
Staab, D, Haswell, CA, Smith, GD, et al., 2017, SALT observations of the chromo-spheric activity of transiting planet hosts: mass-loss and star-planet interactions. MNRAS, 466, 738–748 {737, 755, 756}CrossRefGoogle Scholar
Stacey, FD, Davis, PM, 2008, Physics of the Earth. Cambridge University Press Fourth Edition {575, 599}CrossRefGoogle Scholar
Staff, JE, De Marco, O, Wood, P, et al., 2016, Hydrodynamic simulations of the interaction between giant stars and planets. MNRAS, 458, 832–844 {422}CrossRefGoogle Scholar
Stahl, O, Kaufer, A, Tubbesing, S, 1999, The FEROS spectrograph. Optical and Infrared Spectroscopy of Circumstellar Matter, volume 188 of ASP Conf. Ser., 331 {45}Google Scholar
Stahl, SM, Sandler, DG, 1995, Optimisation and performance of adaptive optics for imaging extrasolar planets. ApJ, 454, L153–L156 {331}CrossRefGoogle Scholar
Stahler, SW, Shu, FH, Taam, RE, 1980, The evolution of protostars. I. Global formulation and results. ApJ, 241, 637–654 {482}CrossRefGoogle Scholar
Stairs, IH, Lyne, AG, Shemar, SL, 2000, Evidence for free precession in a pulsar. Nature, 406, 484–486 {109}CrossRefGoogle Scholar
Stam, DM, 2004, Polarisation spectra of extrasolar giant planets. Extrasolar Planets: Today and Tomorrow, volume 321 of ASP Conf. Ser., 195–196 {247}Google Scholar
Stam, DM, 2008, Spectropolarimetric signatures of Earth-like extrasolar planets. A&A, 482, 989–1007 {246}Google Scholar
Stam, DM, de Rooij, WA, Cornet, G, et al., 2006, Integrating polarised light over a planetary disk applied to starlight reflected by extrasolar planets. A&A, 452, 669–683 {246, 641}Google Scholar
Stam, DM, Hovenier, JW, 2005, Errors in calculated planetary phase functions and albedos due to neglecting polarisation. A&A, 444, 275–286 {236, 247}Google Scholar
Stam, DM, Hovenier, JW, Waters, LBFM, 2004, Using polarimetry to detect and characterise Jupiter-like extrasolar planets. A&A, 428, 663–672 {246}Google Scholar
Stamatellos, D, Herczeg, GJ, 2015, The properties of disks around planets and brown dwarfs as evidence for disk fragmentation. MNRAS, 449, 3432–3440 {445}CrossRefGoogle Scholar
Stamatellos, D, Hubber, DA, Whitworth, AP, 2007, Brown dwarf formation by gravitational fragmentation of massive, extended protostellar disks. MNRAS, 382, L30–L34 {442}CrossRefGoogle Scholar
Stamatellos, D, Whitworth, AP, 2008, Can giant planets formby gravitational fragmentation of disks? A&A, 480, 879–887 {488, 489, 490}Google Scholar
Stamatellos, D, Whitworth, AP, 2009, The properties of brown dwarfs and low-mass hydrogen-burning stars formed by disk fragmentation. MNRAS, 392, 413–427 {489}CrossRefGoogle Scholar
Stamenkovic, V, Breuer, D, Spohn, T, 2011, Thermal and transport properties of mantle rock at high pressure: applications to super-Earths. Icarus, 216, 572–596 {574, 628, 629}CrossRefGoogle Scholar
Stamenkovic, V, Noack, L, Breuer, D, et al., 2012, The influence of pressure-dependent viscosity on the thermal evolution of super-Earths. ApJ, 748, 41 {574, 628}CrossRefGoogle Scholar
Stamenkovic, V, Seager, S, 2016, Emerging possibilities and insuperable limitations of exogeophysics: the example of plate tectonics. ApJ, 825, 78 {628}CrossRefGoogle Scholar
Stammler, SM, Birnstiel, T, Panic, O, et al., 2017, Redistribution of CO at the location of the CO ice line in evolving gas and dust disks. A&A, 600, A140 {565}Google Scholar
Standish, EM, 1993, Planet X: no dynamical evidence in the optical observations. AJ, 105, 2000–2006 {686}CrossRefGoogle Scholar
Stankov, A, Martin, D, Schulz, R, et al., 2007, High temporal resolution transit observations with ESA's cryogenic camera. Transiting Extrapolar Planets Workshop, volume 366 of ASP Conf. Ser., 268–270 {183}Google Scholar
Stanley, S, Bloxham, J, 2004, Convective-region geometry as the cause of Uranus’ and Neptune's unusual magnetic fields. Nature, 428, 151–153 {572}CrossRefGoogle ScholarPubMed
Stanley, S, Bloxham, J, 2006, Numerical dynamo models of Uranus’ and Neptune's magnetic fields. Icarus, 184, 556–572 {572, 660}CrossRefGoogle Scholar
Stapelfeldt, KR, Holmes, EK, Chen, C, et al., 2004, First look at the Fomalhaut debris disk with the Spitzer space telescope. ApJS, 154, 458–462 {365, 761}CrossRefGoogle Scholar
Stappers, BW, Bailes, M, Lyne, AG, et al., 2001a, The nature of the PSR J2051–0827 eclipses. MNRAS, 321, 576–584 {108}CrossRefGoogle Scholar
Stappers, BW, Bailes, M, Manchester, RN, et al., 1998, The orbital evolution and proper motion of PSR J2051–0827. ApJ, 499, L183–L186 {108}CrossRefGoogle Scholar
Stappers, BW, Bessell, MS, Bailes, M, 1996, Detection of an irradiated pulsar companion. ApJ, 473, L119 {105, 108}CrossRefGoogle Scholar
Stappers, BW, van Kerkwijk, M, Bell, JF, 2000, HST observations of PSR J2051–0827: asymmetry, variability and modelling. IAU Colloq. 177: Pulsar Astronomy - 2000 and Beyond, volume 202 of ASP Conf. Ser., 627 {108}Google Scholar
Stappers, BW, van Kerkwijk, MH, Bell, JF, et al., 2001b, Intrinsic and reprocessed optical emission from the companion to PSR J2051–0827. ApJ, 548, L183–L186 {108}CrossRefGoogle Scholar
Stappers, BW, van Kerkwijk, MH, Lane, B, et al., 1999, The light curve of the companion to PSR J2051–0827. ApJ, 510, L45–L48 {108}CrossRefGoogle Scholar
Stark, CC, 2011, The transit light curve of an exozodiacal dust cloud. AJ, 142, 123 {218, 219}CrossRefGoogle Scholar
Stark, CC, Boss, AP, Weinberger, AJ, et al., 2013a, A search for exozodiacal clouds with Kepler. ApJ, 764, 195 {306}CrossRefGoogle Scholar
Stark, CC, Kuchner, MJ, 2008, The detectability of exo-Earths and super-Earths via resonant signatures in exozodiacal clouds. ApJ, 686, 637–648 {218, 492}CrossRefGoogle Scholar
Stark, CC, Kuchner, MJ, 2009, A new algorithmfor self-consistent 3d modeling of collisions in dusty debris disks. ApJ, 707, 543–553 {496, 761}CrossRefGoogle Scholar
Stark, CC, Kuchner, MJ, Lincowski, A, 2015, The pseudo-zodi problem for edge-on planetary systems. ApJ, 801, 128 {218, 342}CrossRefGoogle Scholar
Stark, CC, Kuchner, MJ, Traub, WA, et al., 2009, 51 Oph: a possible β Pic analogue measured with the Keck interferometer nuller. ApJ, 703, 1188–1197 {491, 495}CrossRefGoogle Scholar
Stark, CC, Roberge, A, Mandell, A, et al., 2014a, Maximising the exo Earth candidate yield from a future direct imaging mission. ApJ, 795, 122 {338}CrossRefGoogle Scholar
Stark, CC, Schneider, G, Weinberger, AJ, et al., 2014b, Revealing asymmetries in the HD 181327 debris disk: a recent massive collision or interstellar medium warping. ApJ, 789, 58 {495}CrossRefGoogle Scholar
Stark, CR, Helling, C, Diver, DA, et al., 2013b, Ionisation in atmospheres of brown dwarfs and extrasolar planets. V. Alfvén ionisation. ApJ, 776, 11 {591}CrossRefGoogle Scholar
Starling, J, Forgan, DH, 2014, Virulence as a model for interplanetary and interstellar colonisation: parasitism or mutualism? Int. J. Astrobiol., 13, 45–52 {647}CrossRefGoogle Scholar
Starovoit, ED, Rodin, AE, 2017, On the existence of planets around the pulsar PSR B0329+54. Astronomy Reports, 61, 948–953 {105, 109}CrossRefGoogle Scholar
Stassun, KG, Collins, KA, Gaudi, BS, 2017, Accurate empirical radii and masses of planets and their host stars with Gaia parallaxes. AJ, 153, 136 {374}CrossRefGoogle Scholar
Stassun, KG, Corsaro, E, Pepper, JA, et al., 2018, Empirical accuratemasses and radii of single stars with TESS and Gaia. AJ, 155, 22 {374}CrossRefGoogle Scholar
Stassun, KG, Mathieu, RD, Mazeh, T, et al., 1999, The rotation period distribution of pre-main-sequence stars in and around the Orion Nebula. AJ, 117, 2941–2979 {402}CrossRefGoogle Scholar
Stassun, KG, Mathieu, RD, Valenti, JA, 2006, Discovery of two young brown dwarfs in an eclipsing binary system. Nature, 440, 311–314 {441}CrossRefGoogle Scholar
Steel, DI, Asher, DJ, Clube, SVM, 1991, The structure and evolution of the Taurid complex. MNRAS, 251, 632–648 {662}CrossRefGoogle Scholar
Steele, A, Hughes, AM, Carpenter, J, et al., 2016, Resolved millimeter-wavelength observations of debris disks around solar-type stars. ApJ, 816, 27 {492}CrossRefGoogle Scholar
Steele, IA, Bates, SD, Gibson, N, et al., 2008, RISE: a fast-readout imager for exoplanet transit timing. SPIE Conf. Ser., volume 7014, 217 {183}Google Scholar
Stefansson, G, Hearty, F, Robertson, P, et al., 2016, A versatile technique to enable sub-milli-Kelvin instrument stability for precise radial velocity measurements: tests with the Habitable-zone Planet Finder. ApJ, 833, 175 {48}CrossRefGoogle Scholar
Stefansson, G, Mahadevan, S, Hebb, L, et al., 2017, Toward space-like photometric precision from the ground with beam-shaping diffusers. ApJ, 848, 9 {188, 189, 728, 751, 756}CrossRefGoogle Scholar
Steffen, JH, 2016, Sensitivity bias in the mass–radius distribution from transit timing variations and radial velocitymeasurements. MNRAS, 457, 4384–4392 {202, 266, 271}CrossRefGoogle Scholar
Steffen, JH, Agol, E, 2005, An analysis of the transit times of TrES–1 b. MNRAS, 364, L96–L100 {269, 750}CrossRefGoogle Scholar
Steffen, JH, Batalha, NM, Borucki, WJ, et al., 2010, Five Kepler target stars that show multiple transiting exoplanet candidates. ApJ, 725, 1226–1241 {63, 197, 199, 323, 739, 742, 744, 746}CrossRefGoogle Scholar
Steffen, JH, Coughlin, JL, 2016, A population of planetary systems characterised by short-period, Earth-sized planets. Proc. Nat. Acad. Sci., 113, 12023–12028 {325, 499}CrossRefGoogle Scholar
Steffen, JH, Fabrycky, DC, Agol, E, et al., 2013, Transit timing observations from Kepler. VII. Confirmation of 27 planets in 13multi-planet systems via transit timing variations and orbital stability. MNRAS, 428, 1077–1087 {12, 197, 207, 270, 741}CrossRefGoogle Scholar
Steffen, JH, Fabrycky, DC, Ford, EB, et al., 2012a, Transit timing observations from Kepler. III. Confirmation of four multiple planet systems by a Fourier-domain study of anticorrelated transit timing variations. MNRAS, 421, 2342–2354 {11, 269, 270, 305, 740}CrossRefGoogle Scholar
Steffen, JH, Farr, WM, 2013, A lack of short-period multi-planet systems with close-proximity pairs and the curious case of Kepler–42. ApJ, 774, L12 {179, 320, 741}CrossRefGoogle Scholar
Steffen, JH, Ford, EB, Rowe, JF, et al., 2012b, Transit timing observations from Kepler. VI. Potentially interesting candidate systems from Fourier-based statistical tests. ApJ, 756, 186 {269, 270, 305}CrossRefGoogle Scholar
Steffen, JH, Hwang, JA, 2015, The period ratio distribution of Kepler's candidate multi-planet systems. MNRAS, 448, 1956–1972 {320}CrossRefGoogle Scholar
Steffen, JH, Li, G, 2016, Dynamical considerations for life in multi-habitable planetary systems. ApJ, 816, 97 {638, 740}CrossRefGoogle Scholar
Steffen, JH, Ragozzine, D, Fabrycky, DC, et al., 2012c, Kepler constraints on planets near hot Jupiters. society of photo, 109, 7982–7987 {305}Google Scholar
Steffl, AJ, Stern, SA, 2007, First constraints on rings in the Pluto system. AJ, 133, 1485–1489 {691}CrossRefGoogle Scholar
Stein, C, Lowman, JP, Hansen, U, 2013, The influence of mantle internal heating on lithospheric mobility: implications for super-Earths. Earth Planet. Sci. Lett., 361, 448–459 {628}CrossRefGoogle Scholar
Steinacker, J, Andersen, M, Thi, WF, et al., 2015, Grain size limits derived from 3.6μm and 4.5μmcoreshine. A&A, 582, A70 {495}Google Scholar
Steinacker, J, Baes, M, Gordon, KD, 2013, Three-dimensional dust radiative transfer. ARA&A, 51, 63–104 {495}Google Scholar
Steinacker, J, Pagani, L, Bacmann, A, et al., 2010, Direct evidence of dust growth in L183 from mid-infrared light scattering. A&A, 511, A9 {495}Google Scholar
Steinbring, E, Leckie, B, Hardy, T, et al., 2012a, Ukpik: testbed for a miniaturised robotic astronomical observatory on a high Arctic mountain. SPIE Conf. Ser., volume 8444 {169}Google Scholar
Steinbring, E, Ward, W, Drummond, JR, 2012b, Astronomical sky quality near Eureka, in the Canadian High Arctic. PASP, 124, 185–194 {169}CrossRefGoogle Scholar
Steinmetz, T, Wilken, T, Araujo-Hauck, C, et al., 2008, Laser frequency combs for astronomical observations. Science, 321, 1335–1337 {33}CrossRefGoogle ScholarPubMed
Stellmacher, I, 1999, Periodic solutions for resonance 4:3: application to the construction of an intermediary orbit for Hyperion's motion. Cel. Mech. Dyn. Astron., 75, 185–200 {509}CrossRefGoogle Scholar
Stello, D, Compton, DL, Bedding, TR, et al., 2014, Non-radial oscillations in M-giant semi-regular variables: stellar models and Kepler observations. ApJ, 788, L10 {409}CrossRefGoogle Scholar
Stello, D, Zinn, J, Elsworth, Y, et al., 2017, The K2 Galactic archaeology program data release. I. Asteroseismic results from Campaign 1. ApJ, 835, 83 {312}CrossRefGoogle Scholar
Stelzer, B, Scholz, A, Jayawardhana, R, 2007, Emission line variability of the accreting young brown dwarf 2MJ1207: from hours to years. ApJ, 671, 842–852 {763}CrossRefGoogle Scholar
Stempels, HC, Collier Cameron, A, Hebb, L, et al., 2007, WASP–1: a lithium- and metal-rich star with an oversized planet. MNRAS, 379, 773–778 {751}CrossRefGoogle Scholar
Stenflo, JO, Keller, CU, Gandorfer, A, 2000, Anomalous polarisation effects due to coherent scattering on the Sun. A&A, 355, 789–803 {247}Google Scholar
Stephan, AP, Naoz, S, Zuckerman, B, 2017, Throwing icebergs at white dwarfs. ApJ, 844, L16 {417}CrossRefGoogle Scholar
Stephens, A, Boesgaard, AM, King, JR, et al., 1997, Berylliumin lithium-deficient F and G stars. ApJ, 491, 339–358 {400}CrossRefGoogle Scholar
Stephens, DC, Leggett, SK, Cushing, MC, et al., 2009, The 0.8–14.5μmspectra of mid-L to mid-T dwarfs: diagnostics of effective temperature, grain sedimentation, gas transport, and surface gravity. ApJ, 702, 154–170 {436}CrossRefGoogle Scholar
Stephens, IW, Yang, H, Li, ZY, et al., 2017, ALMA reveals transition of polarisation pattern with wavelength in the HL Tau disk. ApJ, 851, 55 {466}CrossRefGoogle Scholar
Stephenson, FR, 2015, Astronomical evidence relating to the observed 14C increases in AD 774–5 and 993–4 as determined from tree rings. Adv. Space Res., 55, 1537–1545 {628}CrossRefGoogle Scholar
Stepien, K, Kiraga, M, 2013, The ultimate fate of low-mass contact binary evolution: planetary system? Central European Astrophysical Bulletin, 37, 381–390 {498}Google Scholar
Stepinski, TF, Black, DC, 2000, Statistics of low-mass companions to stars: implications for their origin. A&A, 356, 903–912 {63}Google Scholar
Stepinski, TF, Malhotra, R, Black, DC, 2000, The À And system: models and stability. ApJ, 545, 1044–1057 {25, 69, 713}CrossRefGoogle Scholar
Sterken, C, 2005, The light-time effect in astrophysics: causes and cures of the O–C diagram. ASP Conf. Ser., 335, 1 {113}Google Scholar
Sterken, VJ, Strub, P, Krüger, H, et al., 2015, Sixteen years of Ulysses interstellar dust measurements in the solar system. III. Simulations and data unveil new insights into local interstellar dust. ApJ, 812, 141 {692}CrossRefGoogle Scholar
Stern, SA, 1991, On the number of planets in the outer solar system: evidence of a substantial population of 1000-km bodies. Icarus, 90, 271–281 {682}CrossRefGoogle Scholar
Stern, SA, 1994, The detectability of extrasolar terrestrial and giant planets during their luminous final accretion. AJ, 108, 2312–2317 {368}CrossRefGoogle Scholar
Stern, SA, 2008, The New Horizons Pluto Kuiper Belt mission: an overview with historical context. Space Sci. Rev., 140, 3–21 {682}CrossRefGoogle Scholar
Stern, SA, Bagenal, F, Ennico, K, et al., 2015, The Pluto system: initial results from its exploration by New Horizons. Science, 350, aad1815 {682}CrossRefGoogle ScholarPubMed
Stern, SA, Colwell, JE, 1997a, Accretion in the Edgeworth–Kuiper belt: forming 100–1000km radius bodies at 30 au and beyond. AJ, 114, 841–848 {474}CrossRefGoogle Scholar
Stern, SA, Colwell, JE, 1997b, Collisional erosion in the primordial Edgeworth–Kuiper belt and the generation of the 30-50 au Kuiper gap. ApJ, 490, 879–882 {474}CrossRefGoogle Scholar
Stern, SA, Tholen, DJ, 1997, Pluto and Charon. University of Arizona Press {651}Google Scholar
Stern, SA, Weaver, HA, Steffl, AJ, et al., 2006, A giant impact origin for Pluto's small moons and satellitemultiplicity in the Kuiper belt. Nature, 439, 946–948 {682}CrossRefGoogle ScholarPubMed
Sterzik, MF, Bagnulo, S, Pallé, E, 2012, Biosignatures as revealed by spectropolarimetry of Earthshine. Nature, 483, 64–66 {641}CrossRefGoogle ScholarPubMed
Sterzik, MF, Pascucci, I, Apai, D, et al., 2004, Evolution of young brown dwarf disks in the mid-infrared. A&A, 427, 245–250 {443}Google Scholar
Sterzik, MF, Tokovinin, AA, 2002, Relative orientation of orbits in triple stars. A&A, 384, 1030–1037 {254}Google Scholar
Stevens, DJ, Collins, KA, Gaudi, BS, et al., 2017, KELT–12 b: a 5-day, highly inflated hot Jupiter transiting a mildly evolved hot star. AJ, 153, 178 {738}CrossRefGoogle Scholar
Stevens, DJ, Gaudi, BS, 2013, A posteriori transit probabilities. PASP, 125, 933–950 {9, 205, 558}CrossRefGoogle Scholar
Stevens, IR, 2005, Magnetospheric radio emission from extrasolar giant planets: the role of the host stars. MNRAS, 356, 1053–1063 {425, 426}CrossRefGoogle Scholar
Stevenson, DJ, 1975, Thermodynamics and phase separation of dense fully ionised hydrogen-helium fluid mixtures. Phys. Rev. B, 12, 3999–4007 {567, 660}CrossRefGoogle Scholar
Stevenson, DJ, 1982a, Formation of the giant planets. Planet. Space Sci., 30, 755–764 {480, 487, 565, 567, 599}CrossRefGoogle Scholar
Stevenson, DJ, 1982b, Interiors of the giant planets. Ann. Rev. Earth Plan. Sci., 10, 257–295 {296, 567}CrossRefGoogle Scholar
Stevenson, DJ, 1985, Cosmochemistry and structure of the giant planets and their satellites. Icarus, 62, 4–15 {567, 578}CrossRefGoogle Scholar
Stevenson, DJ, 1986, The Uranus–Neptune dichotomy: the role of giant impacts. LPI Science Conf Abstracts, volume 17, 1011–1012 {661}Google Scholar
Stevenson, DJ, 1991, The search for brown dwarfs. ARA&A, 29, 163–193 {431}Google Scholar
Stevenson, DJ, 1999, Life-sustaining planets in interstellar space? Nature, 400, 32–33 {599, 624}CrossRefGoogle ScholarPubMed
Stevenson, DJ, 2003, Planetary magnetic fields. Earth Planet. Sci. Lett., 208, 1–11 {426}CrossRefGoogle Scholar
Stevenson, DJ, Harris, AW, Lunine, JI, 1986, Origins of satellites. IAU Colloq. 77: Some Background about Satellites, 39–88 {687}
Stevenson, DJ, Lunine, JI, 1988, Rapid formation of Jupiter by diffuse redistribution of water vapour in the solar nebula. Icarus, 75, 146–155 {458}CrossRefGoogle Scholar
Stevenson, DJ, Salpeter, EE, 1977a, The dynamics and helium distribution in hydrogen–helium fluid planets. ApJS, 35, 239–261 {302, 578}CrossRefGoogle Scholar
Stevenson, DJ, Salpeter, EE, 1977b, The phase diagram and transport properties for hydrogen–helium fluid planets. ApJS, 35, 221–237 {567}CrossRefGoogle Scholar
Stevenson, KB, 2016, Quantifying and predicting the presence of clouds in exoplanet atmospheres. ApJ, 817, L16 {181}CrossRefGoogle Scholar
Stevenson, KB, Bean, JL, Fabrycky, D, et al., 2014a, An HST search for a sub-Earth-sized exoplanet in the GJ 436 system. ApJ, 796, 32 {729}CrossRefGoogle Scholar
Stevenson, KB, Bean, JL, Madhusudhan, N, et al., 2014b, Deciphering the atmospheric composition of WASP–12 b: a comprehensive analysis of its day-side emission. ApJ, 791, 36 {606, 612, 753}CrossRefGoogle Scholar
Stevenson, KB, Bean, JL, Seifahrt, A, et al., 2014c, Transmission spectroscopy of the hot-Jupiter WASP–12 b from 0.7-5μm. AJ, 147, 161 {612, 753}CrossRefGoogle Scholar
Stevenson, KB, Bean, JL, Seifahrt, A, 2016a, A search for water in the atmosphere of HAT–P–26 b using LDSS–3C. ApJ, 817, 141 {182, 737}CrossRefGoogle Scholar
Stevenson, KB, Désert, JM, Line, MR, et al., 2014d, Thermal structure of an exoplanet atmosphere from phase-resolved emission spectroscopy. Science, 346, 838–841 {590, 596, 616, 752, 755}CrossRefGoogle Scholar
Stevenson, KB, Harrington, J, Fortney, JJ, et al., 2012a, Transit and eclipse analyses of the exoplanet HD 149026 b using BLISS mapping. ApJ, 754, 136 {729}CrossRefGoogle Scholar
Stevenson, KB, Harrington, J, Lust, NB, et al., 2012b, Two nearby sub-Earth-sized exo-planet candidates in the GJ 436 system. ApJ, 755, 9 {170, 178, 729}CrossRefGoogle Scholar
Stevenson, KB, Harrington, J, Nymeyer, S, et al., 2010, Possible thermochemical disequilibrium in the atmosphere of the exoplanet GJ 436 b. Nature, 464, 1161–1164 {584, 728}CrossRefGoogle Scholar
Stevenson, KB, Lewis, NK, Bean, JL, et al., 2016b, Transiting exoplanet studies and community targets for JWST's early release science programme. PASP, 128(9), 094401 {181, 756}CrossRefGoogle Scholar
Stevenson, KB, Line, MR, Bean, JL, et al., 2017, Spitzer phase curve constraints for WASP–43 b at 3.6 and 4.5μm. AJ, 153, 68 {590, 615, 755}CrossRefGoogle Scholar
Stewart, GR, Wetherill, GW, 1988, Evolution of planetesimal velocities. Icarus, 74, 542–553 {474}CrossRefGoogle Scholar
Stewart, RT, Innis, JL, Slee, OB, et al., 1988, A relation between radio luminosity and rotation for late-type stars. AJ, 96, 371–377 {101}CrossRefGoogle Scholar
Stewart, ST, Leinhardt, ZM, 2012, Collisions between gravity-dominated bodies. II. The diversity of impact outcomes during the end stage of planet formation. ApJ, 751, 32 {470}CrossRefGoogle Scholar
Stimpfl, M, Lauretta, DS, Drake, MJ, 2004, Adsorption as a mechanism to deliver water to the Earth. Meteor. Plan. Sci. Sup., 39 {667}Google Scholar
Stokes, GG, 1851, On the effect of the internal friction of fluids on themotion of pendulums. Transactions of the Cambridge Philosophical Society, 9, 8–106 {457}Google Scholar
Stökl, A, Dorfi, E, Lammer, H, 2015, Hydrodynamic simulations of captured protoat-mospheres around Earth-like planets. A&A, 576, A87 {597}Google Scholar
Stökl, A, Dorfi, EA, Johnstone, CP, et al., 2016, Dynamical accretion of primordial atmospheres around planets with masses between 0.1-5M ⊕ in the habitable zone. ApJ, 825, 86 {597}CrossRefGoogle Scholar
Stolker, T, Dominik, C, Min, M, et al., 2016, Scattered light mapping of protoplanetary disks. A&A, 596, A70 {763}Google Scholar
Stolker, T, Min, M, Stam, DM, et al., 2017, Polarised scattered light from self-luminous exoplanets: 3d scattering radiative transfer with ARTES. A&A, 607, A42 {246}Google Scholar
Stomp, M, Huisman, J, Stal, L, et al., 2007, Colourful niches of phototrophic microorganisms shaped by vibrations of the water molecule. ISME, 1, 271–282 {629}CrossRefGoogle Scholar
Stone, JM, Balbus, SA, 1996, Angular momentum transport in accretion disks via convection. ApJ, 464, 364–372 {457}CrossRefGoogle Scholar
Stone, JM, Hawley, JF, Gammie, CF, et al., 1996, Three-dimensional magnetohydrodynamical simulations of vertically stratified accretion disks. ApJ, 463, 656–673 {460}CrossRefGoogle Scholar
Stone, JM, Skemer, AJ, Kratter, KM, et al., 2016, Adaptive optics imaging of VHS 1256–1257: a low-mass companion to a brown dwarf binary system. ApJ, 818, L12 {764}CrossRefGoogle Scholar
Stone, RPS, Wright, SA, Drake, F, et al., 2005, Lick Observatory optical SETI: targeted search and new directions. Astrobiology, 5, 604–611 {646}CrossRefGoogle ScholarPubMed
Storch, NI, Anderson, KR, Lai, D, 2014, Chaotic dynamics of stellar spin in binaries and the production of misaligned hot Jupiters. Science, 345, 1317–1321 {529}CrossRefGoogle ScholarPubMed
Storch, NI, Lai, D, 2014, Viscoelastic tidal dissipation in giant planets and formation of hot Jupiters through high-eccentricity migration. MNRAS, 438, 1526–1534 {525}CrossRefGoogle Scholar
Storch, NI, Lai, D, 2015a, Analytical model of tidal distortion and dissipation for a giant planet with a viscoelastic core. MNRAS, 450, 3952–3957 {542}CrossRefGoogle Scholar
Storch, NI, Lai, D, 2015b, Chaotic dynamics of stellar spin driven by planets undergoing Lidov–Kozai oscillations: resonances and origin of chaos. MNRAS, 448, 1821–1834 {529}CrossRefGoogle Scholar
Storch, NI, Lai, D, Anderson, KR, 2017, Dynamics of stellar spin driven by planets undergoing Lidov–Kozai migration: paths to spin–orbit misalignment. MNRAS, 465, 3927–3942 {528, 654}CrossRefGoogle Scholar
Storey, JWV, 2009, Astronomy and astrophysics from Antarctica. Assoc Asia Pacific Phys Soc Bull, volume 19, 4–10 {347}Google Scholar
Storey, JWV, Ashley, MCB, Lawrence, JS, et al., 2003, Dome C—the best astronomical site in the world? Mem. Soc. Astron. Ital., 2, 13–18 {347}Google Scholar
Stothers, RB, 1998, Galactic disk dark matter, terrestrial impact cratering and the law of large numbers. MNRAS, 300, 1098–1104 {477, 654}CrossRefGoogle Scholar
Stovall, K, Lynch, RS, Ransom, SM, et al., 2014, The Green Bank Northern Celestial Cap pulsar survey. I. Survey description, data analysis, and initial results. ApJ, 791, 67 {108}CrossRefGoogle Scholar
Strachan, JBP, Anglada-Escudé, G, 2017, A differential least-squares deconvolution method for high precision spectroscopy of stars and exoplanets. I. Application to obliquity measurements of HARPS observations of HD 189733 b. MNRAS, 472, 3467–3473 {250, 731}CrossRefGoogle Scholar
Strand, KA, 1943, 61 Cyg as a triple system. PASP, 55, 29–32 {83}CrossRefGoogle Scholar
Strassmeier, KG, Andersen, MI, Granzer, T, et al., 2007, The International Concordia Explorer Telescope (ICE-T): an ultimate transit-search experiment for Dome C. Transiting Extrasolar Planets Workshop, volume 366 of ASP Conf. Ser., 332–336 {170}Google Scholar
Strassmeier, KG, Ilyin, I, Järvinen, A, et al., 2015, PEPSI: the high-resolution échelle spectrograph and polarimeter for the Large Binocular Telescope (LBT). Astron. Nach., 336, 324 {46}CrossRefGoogle Scholar
Street, RA, Choi, JY, Tsapras, Y, et al., 2013, MOA–2010–BLG–73L: an M dwarf with a substellar companion at the planet/brown dwarf boundary. ApJ, 763, 67 {133, 141, 145, 759}CrossRefGoogle Scholar
Street, RA, Christian, DJ, Clarkson, WI, et al., 2007, Super WASP-north extrasolar planet candidates between 18h < RA < 21h. MNRAS, 379, 816–832 {164}CrossRefGoogle Scholar
Street, RA, Horne, K, Lister, TA, et al., 2003, Searching for planetary transits in the field of open cluster NGC 6819. I. MNRAS, 340, 1287–1297 {159}CrossRefGoogle Scholar
Street, RA, Simpson, E, Barros, SCC, et al., 2010, WASP–24 b: a new transiting close-in hot Jupiter orbiting a late F-star. ApJ, 720, 337–343 {754}CrossRefGoogle Scholar
Street, RA, Udalski, A, Calchi Novati, S, et al., 2016, Spitzer parallax of OGLE–2015–BLG–966: a cold Neptune in the Galactic disk. ApJ, 819, 93 {134, 141, 760}CrossRefGoogle Scholar
Strekalov, DV, Erkmen, BI, Yu, N, 2013a, Ghost imaging of space objects. Journal of Physics Conference Series, 414(1), 012037 {357}CrossRefGoogle Scholar
Strekalov, DV, Erkmen, BI, Yu, N, 2013b, Intensity interferometry for observation of dark objects. Phys. Rev. A, 88(5), 053837 {354}CrossRefGoogle Scholar
Strekalov, DV, Kulikov, I, Yu, N, 2014, Imaging dark objects with intensity interferometry. Optics Express, 22, 12339 {354}CrossRefGoogle ScholarPubMed
Strigari, LE, BarnabèM, Marshall, PJ, et al., 2012, Nomads of the Galaxy. MNRAS, 423, 1856–1865 {447}CrossRefGoogle Scholar
Strobel, DF, 2002, Aeronomic systems on planets, moons, and comets. Atmospheres in the Solar System: Comparative Aeronomy, 7–22, American Geophysical Union {601}
Strobel, DF, 2005, Photochemistry in outer solar system atmospheres. Space Sci. Rev., 116, 155–170 {587}CrossRefGoogle Scholar
Stroe, A, Snellen, IAG, Röttgering, HJA, 2012, A stringent upper limit to 1cmradio emission from the extrasolar planet system τ Boo. A&A, 546, A116 {427, 714}Google Scholar
Strom, KM, Strom, SE, Edwards, S, et al., 1989, Circumstellar material associated with solar-type pre-main-sequence stars: a possible constraint on the time scale for planet building. AJ, 97, 1451–1470 {465}CrossRefGoogle Scholar
Strom, RG, Malhotra, R, Ito, T, et al., 2005, The origin of planetary impactors in the inner solar system. Science, 309, 1847–1850 {669}CrossRefGoogle ScholarPubMed
Strom, RG, Marchi, S, Malhotra, R, 2018, Ceres and the terrestrial planets impact cratering record. Icarus, 302, 104–108 {671}CrossRefGoogle Scholar
Struck, C, 2007, The feasibility of shading the greenhouse with dust clouds at the stable lunar Lagrange points. Journal of the British Interplanetary Society, 60, 82–89 {233}Google Scholar
Strugarek, A, 2016, Assessing magnetic torques and energy fluxes in close-in star-planet systems. ApJ, 833, 140 {422, 521}CrossRefGoogle Scholar
Strugarek, A, Bolmont, E, Mathis, S, et al., 2017, The fate of close-in planets: tidal or magnetic migration? ApJ, 847, L16 {521}CrossRefGoogle Scholar
Strugarek, A, Brun, AS, Matt, SP, et al., 2014, On the diversity of magnetic interactions in close-in star–planet systems. ApJ, 795, 86 {425}CrossRefGoogle Scholar
Struve, O, 1952, Proposal for a project of high-precision stellar radial velocity work. The Observatory, 72, 199–200 {62, 83, 157}Google Scholar
Stuik, R, Bailey, JI, Dorval, P, et al., 2017, bRing: an observatory dedicated to monitoring the fl Pic b Hill sphere transit. A&A, 607, A45 {224, 762}Google Scholar
Stuik, R, Lesage, AL, Jakobs, A, et al., 2014, MASCARA: data handling, processing, and calibration. SPIE Conf. Ser., volume 9152, 0 {166}Google Scholar
Stumpe, MC, Smith, JC, Van Cleve, JE, et al., 2012, Kepler presearch data conditioning. I. Architecture and algorithms for error correction in Kepler light curves. PASP, 124, 985–999 {177, 190}CrossRefGoogle Scholar
Stumpff, P, 1980, Two self-consistent FORTRAN subroutines for the computation of the Earth's motion. A&AS, 41, 1–8 {30}Google Scholar
Stürmer, J, Schwab, C, Grimm, S, et al., 2016, Optimal non-circular fibre geometries for image scrambling in high-resolution spectrographs. SPIE Conf. Ser., volume 9912 of Proc. SPIE, 99121T {34}Google Scholar
Su, KYL, Chu, YH, Rieke, GH, et al., 2007, A debris disk around the central star of the Helix Nebula? ApJ, 657, L41–L45 {415}CrossRefGoogle Scholar
Su, KYL, De Buizer, JM, Rieke, GH, et al., 2017a, The inner 25 au debris distribution in the yatt MC, et al., 2005, Structure in the Eri system. AJ, 153, 226 {715}CrossRefGoogle Scholar
Su, KYL, Mac Gregor, MA, Booth, M, et al., 2017b, ALMA 1.3-mm map of the HD 95086 system. AJ, 154, 225 {762}CrossRefGoogle Scholar
Su, KYL, Morrison, S, Malhotra, R, et al., 2015, Debris distribution in HD95086: a young analogue of HR 8799. ApJ, 799, 146 {762}CrossRefGoogle Scholar
Su, KYL, Rieke, GH, Defrére, D, et al., 2016, The inner debris structure in the Fomalhaut planetary system. ApJ, 818, 45 {761}CrossRefGoogle Scholar
Su, KYL, Rieke, GH, Malhotra, R, et al., 2013, Asteroid belts in debris disk twins: Vega and Fomalhaut. ApJ, 763, 118 {282, 761}CrossRefGoogle Scholar
Su, KYL, Rieke, GH, Misselt, KA, et al., 2005, The Vega debris disk: a surprise from Spitzer. ApJ, 628, 487–500 {492}CrossRefGoogle Scholar
Su, KYL, Rieke, GH, Stansberry, JA, et al., 2006, Debris disk evolution around A stars. ApJ, 653, 675–689 {282, 418, 493}CrossRefGoogle Scholar
Su, KYL, Rieke, GH, Stapelfeldt, KR, et al., 2009, The debris disk around HR 8799. ApJ, 705, 314–327 {763}CrossRefGoogle Scholar
Suarez, MJ, Takacs LL (eds.), 1995, Technical report series on global modeling and data assimilation. Volume 5: Documentation of the AIRES/GEOS dynamical core, version 2, volume 5 {593}
Suárez Mascareño, A, González Hernández, JI, Rebolo, R, et al., 2017a, A super-Earth orbiting the nearby Mdwarf GJ 536. A&A, 597, A108 {716}Google Scholar
Suárez Mascareño, A, González Hernández, JI, Rebolo, R, 2017b, HADES radial velocity programme with HARPS–N at TNG. V. A super-Earth on the inner edge of the habitable zone of the nearby M dwarf GJ 625. A&A, 605, A92 {717}Google Scholar
Suárez Mascareño, A, González Hernández, JI, Rebolo, R, 2018, The RoPES project with HARPS and HARPS–N. I. A system of super-Earths orbiting the moderately active K-dwarf HD 176986. A&A, 612, A41 {723}Google Scholar
Suárez Mascareño, A, Rebolo, R, González Hernández JI, et al., 2017c, Characterisation of the radial velocity signal induced by rotation in late-type dwarfs. MNRAS, 468, 4772–4781 {37}CrossRefGoogle Scholar
Subasavage, JP, Henry, TJ, Bergeron, P, et al., 2007, The solar neighbourhood. 19. Discovery and characterisation of 33 new nearby white dwarf systems. AJ, 134, 252–261 {375, 415}CrossRefGoogle Scholar
Subasavage, JP, Henry, TJ, Bergeron, P, 2008, The solar neighbourhood. 20. Discovery and characterisation of 21 new nearby white dwarf systems. AJ, 136, 899–908 {375, 415}CrossRefGoogle Scholar
Subasavage, JP, Jao, WC, Henry, TJ, et al., 2009, The solar neighbourhood. 21. Parallax results from the CTIOPI 0.9-m programme: 20 new members of the 25 pc white dwarf sample. AJ, 137, 4547–4560 {375, 415}CrossRefGoogle Scholar
Subasavage, JP, Jao, WC, Henry, TJ, 2017, The solar neighbourhood. 39. Parallax results from the CTIOPI and NOFS programmes: 50 new members of the 25 pc white dwarf sample. AJ, 154, 32 {375, 413, 415}CrossRefGoogle Scholar
Sucerquia, M, Alvarado-Montes, JA, Ramírez, V, et al., 2017, Anomalous light curves of young tilted exorings. MNRAS, 472, L120–L124 {217, 747}CrossRefGoogle Scholar
Sudarsky, D, Burrows, A, Hubeny, I, 2003, Theoretical spectra and atmospheres of ex-trasolar giant planets. ApJ, 588, 1121–1148 {286, 579, 585, 591}CrossRefGoogle Scholar
Sudarsky, D, Burrows, A, Hubeny, I, et al., 2005, Phase functions and light curves of wide-separation extrasolar giant planets. ApJ, 627, 520–533 {234, 235, 286, 579, 589, 591, 615}CrossRefGoogle Scholar
Sudarsky, D, Burrows, A, Pinto, P, 2000, Albedo and reflection spectra of extrasolar giant planets. ApJ, 538, 885–903 {234, 302, 569, 579, 585, 588, 589, 590, 591}CrossRefGoogle Scholar
Sudol, JJ, Haghighipour, N, 2012, High-mass, four-planet configurations for HR 8799: constraining the orbital inclination and age of the system. ApJ, 755, 38 {763}CrossRefGoogle Scholar
Suetsugu, R, Ohtsuki, K, 2013, Temporary capture of planetesimals by a giant planet and implication for the origin of irregular satellites. MNRAS, 431, 1709–1718 {504}CrossRefGoogle Scholar
Suetsugu, R, Ohtsuki, K, 2016, Capture of planetesimals by waning circumplanetary gas disks. ApJ, 820, 128 {463}CrossRefGoogle Scholar
Suetsugu, R, Ohtsuki, K, 2017, Distribution of captured planetesimals in circumplanetary gas disks and implications for accretion of regular satellites. ApJ, 839, 66 {687}CrossRefGoogle Scholar
Suetsugu, R, Ohtsuki, K, Fujita, T, 2016, Orbital characteristics of planetesimals captured by circumplanetary gas disks. AJ, 151, 140 {463}CrossRefGoogle Scholar
Suetsugu, R, Ohtsuki, K, Tanigawa, T, 2011, Temporary capture of planetesimals by a planet from their heliocentric orbits. AJ, 142, 200 {504}CrossRefGoogle Scholar
Suleymanova, SA, Pugachev, VD, 2017, The character of pulse delays during radio bursts in the pulsar PSR B0943+10. Astronomy Reports, 61, 428–439 {108}CrossRefGoogle Scholar
Suleymanova, SA, Rodin, AE, 2014, Detection of regular variations in the intensity and pulse time of arrival of the anomalous pulsar PSR B0943+10. Astronomy Reports, 58, 796–807 {105, 108}CrossRefGoogle Scholar
Süli, Á, 2013, SOLARIS: software for planet formation and orbital integrations. Astron. Nach., 334, 1000 {476}CrossRefGoogle Scholar
Sullivan, PW, Winn, JN, Berta-Thompson, ZK, et al., 2015, The Transiting Exoplanet Survey Satellite (TESS): simulations of planet detections and astrophysical false positives. ApJ, 809, 77 {180}CrossRefGoogle Scholar
Sumi, T, Bennett, DP, Bond, IA, et al., 2010, A cold Neptune-mass planet OGLE–2007–BLG–368L b: cold Neptunes are common. ApJ, 710, 1641–1653 {141, 144, 148, 760}CrossRefGoogle Scholar
Sumi, T, Kamiya, K, Bennett, DP, et al., 2011, Unbound or distant planetary mass population detected by gravitational microlensing. Nature, 473, 349–352 {144, 149, 150, 447}Google Scholar
Sumi, T, Udalski, A, Bennett, DP, et al., 2016, The first Neptune analogue or super-Earth with a Neptune-like orbit: MOA–2013–BLG–605L b. ApJ, 825, 112 {141, 145, 759}CrossRefGoogle Scholar
Sumi, T, Woźniak, PR, Udalski, A, et al., 2006, Microlensing optical depth toward the Galactic bulge using bright sources from OGLE–II. ApJ, 636, 240–260 {123}CrossRefGoogle Scholar
Summeren, J, Gaidos, E, Conrad, CP, 2013, Magnetodynamo lifetimes for rocky, Earth-mass exoplanets with contrasting mantle convection regimes. J. Geophys. Res. (Planets), 118, 938–951 {572}Google Scholar
Sun, J, Qu Zq, Yan Xl, 2013, The polarisation characteristics of Mercury-like exo-planets. Chin. Astron. Astrophys., 37, 302–314 {247}Google Scholar
Sun, L, Gu, S, Wang, X, et al., 2017a, Refined systemparameters and TTV study of transiting exoplanetary system HAT–P–20. AJ, 153, 28 {736}CrossRefGoogle Scholar
Sun, LL, Gu, SH, Wang, XB, et al., 2015, Long-term transit timing monitoring and ho-mogenous study of WASP–32. Res. Astron. Astrophys., 15, 117-126 {754}CrossRefGoogle Scholar
Sun, Z, Ji, J, Wang, S, et al., 2017b, Terrestrial planet formation under migration: systems near the 4:2:1mean motion resonance. MNRAS, 467, 619–632 {321, 744}CrossRefGoogle Scholar
Supulver, KD, Bridges, FG, Tiscareno, S, et al., 1997, The sticking properties of water frost produced under various ambient conditions. Icarus, 129, 539–554 {468}CrossRefGoogle Scholar
Surville, C, Mayer, L, Lin, DNC, 2016, Dust capture and long-lived density enhancements triggered by vortices in 2d protoplanetary disks. ApJ, 831, 82 {461, 462}CrossRefGoogle Scholar
Susskind, L, 2003, The anthropic landscape of string theory. The Davis Meeting On Cosmic Inflation {630}
Sussman, GJ, Wisdom, J, 1988, Numerical evidence that themotion of Pluto is chaotic. Science, 241, 433–437 {514, 515, 677, 682}CrossRefGoogle ScholarPubMed
Sussman, GJ, Wisdom, J, 1992, Chaotic evolution of the solar system. Science, 257, 56–62 {514, 515, 677}CrossRefGoogle ScholarPubMed
Suthar, F, McKay, CP, 2012, The Galactic habitable zone in elliptical galaxies. Int. J. Astrobiol., 11, 157–161 {625}CrossRefGoogle Scholar
Sutherland, AP, Fabrycky, DC, 2016, On the fate of unstable circumbinary planets: Tatooine's close encounters with a death star. ApJ, 818, 6 {553}CrossRefGoogle Scholar
Sutherland, AP, Stuermer, J, Miller, KR, et al., 2016, Characterising octagonal and rectangular fibers for MAROON–X. SPIE Conf. Ser., volume 9912 of Proc. SPIE, 99125C {34}Google Scholar
Sutherland, W, Emerson, J, Dalton, G, et al., 2015, The Visible and Infrared Survey Telescope for Astronomy (VISTA): design, technical overview, and performance. A&A, 575, A25 {171, 433}Google Scholar
Suttle, MD, Genge, MJ, 2017, Diagenetically altered fossil micrometeorites suggest cosmic dust is common in the geological record. Earth Planet. Sci. Lett., 476, 132–142 {672}CrossRefGoogle Scholar
Suyama, T, Wada, K, Tanaka, H, 2008, Numerical simulation of density evolution of dust aggregates in protoplanetary disks. I. Head-on collisions. ApJ, 684, 13101322 {469}CrossRefGoogle Scholar
Suyama, T, Wada, K, Tanaka, H, et al., 2012, Geometric cross sections of dust aggregates and a compressionmodel for aggregate collisions. ApJ, 753, 115 {469}CrossRefGoogle Scholar
Suzuki, D, Bennett, DP, Sumi, T, et al., 2016, The exoplanet mass-ratio function from the MOA–II survey: discovery of a break and likely peak at a Neptune mass. ApJ, 833, 145 {144}CrossRefGoogle Scholar
Suzuki, D, Udalski, A, Sumi, T, et al., 2014, MOA–2008–BLG–379L b: a massive planet from a high-magnification event with a faint source. ApJ, 780, 123 {141, 759}CrossRefGoogle Scholar
Suzuki, TK, Inutsuka Si, 2009, Disk winds driven bymagnetorotational instability and dispersal of protoplanetary disks. ApJ, 691, L49–L54 {519}CrossRefGoogle Scholar
Suzuki, TK, Muto, T, Inutsuka, SI, 2010, Protoplanetary disk winds via magnetorot-ational instability: formation of an inner hole and a crucial assist for planet formation. ApJ, 718, 1289–1304 {461, 519}CrossRefGoogle Scholar
Svensmark, H, 2006a, Cosmic rays and the biosphere over 4Gyr. Astron. Nach., 327, 871–875 {655}CrossRefGoogle Scholar
Svensmark, H, 2006b, Imprint of Galactic dynamics on Earth's climate. Astron. Nach., 327, 866–870 {654, 655}CrossRefGoogle Scholar
Svensmark, H, 2007, Cosmoclimatology: a new theory emerges. Astronomy and Geophysics, 48(1), 010000–1 {655}CrossRefGoogle Scholar
Svensson, F, Ludwig, H, 2005, Hydrodynamical simulations of convection-related stellar micro-variability. 13th Workshop on Cool Stars, volume 560, 979–984 {85, 188}Google Scholar
Swain, MR, 2012a, FINESSE: the Fast INfrared Exoplanet Spectroscopy Survey Explorer. EGU General Assembly Conference Abstracts, volume 14, 13409 {182}Google Scholar
Swain, MR, 2012b, The FINESSE mission. AAS Abstracts, volume 220, 505.05 {182}Google Scholar
Swain, MR, Bouwman, J, Akeson, RL, et al., 2008a, The mid-infrared spectrum of the transiting exoplanet HD 209458 b. ApJ, 674, 482–497 {610, 732}CrossRefGoogle Scholar
Swain, MR, Coude du Foresto V, Fossat, E, et al., 2003, The Antarctic planet interferometer and the potential for interferometric observations of extrasolar planets from Dome C. Mem. Soc. Astron. Ital., 2, 207–211 {347}Google Scholar
Swain, MR, Deming, D, Vasisht, G, et al., 2009a, THESIS: the Terrestrial and Habitable-zone Exoplanet Spectroscopy Infrared Spacecraft. Astro2010: The Astronomy and Astrophysics Decadal Survey, volume 2010 of Astronomy, 61–79 {182}Google Scholar
Swain, MR, Deroo, P, Griffith, CA, et al., 2010a, A ground-based near-infrared emission spectrumof the exoplanet HD 189733 b. Nature, 463, 637–639 {608, 609, 730}CrossRefGoogle Scholar
Swain, MR, Deroo, P, Tinetti, G, et al., 2013, Probing the extreme planetary atmosphere of WASP–12 b. Icarus, 225, 432–445 {612, 753}CrossRefGoogle Scholar
Swain, MR, Line, MR, Deroo, P, 2014, On the detection of molecules in the atmosphere of HD 189733 b using HST–NICMOS transmission spectroscopy. ApJ, 784, 133 {609, 613, 731}CrossRefGoogle Scholar
Swain, MR, Tinetti, G, Vasisht, G, et al., 2009b, Water, methane, and carbon dioxide present in the day-side spectrum of the exoplanet HD 209458 b. ApJ, 704, 1616–1621 {185, 610, 611, 613, 732}CrossRefGoogle Scholar
Swain, MR, Vasisht, G, Henning, T, et al., 2010b, THESIS: the terrestrial habitable-zone exoplanet spectroscopy infrared spacecraft. SPIE Conf. Ser., volume 7731 {182}Google Scholar
Swain, MR, Vasisht, G, Tinetti, G, 2008b, The presence of methane in the atmosphere of an extrasolar planet. Nature, 452, 329–331 {185, 570, 608, 609, 611, 613, 642, 730}CrossRefGoogle Scholar
Swain, MR, Vasisht, G, Tinetti, G, et al., 2009c, Molecular signatures in the near-infrared day-side spectrum of HD 189733 b. ApJ, 690, L114–L117 {10, 187, 609, 730}CrossRefGoogle Scholar
Swartzlander, GA, 2001, Peering into darkness with a vortex spatial filter. Optics Letters, 26, 497–499 {337}CrossRefGoogle ScholarPubMed
Swartzlander, GA, 2006, Achromatic optical vortex lens. Optics Letters, 31, 2042–2044 {337}CrossRefGoogle ScholarPubMed
Swartzlander, GA, Ford, EL, Abdul-Malik, RS, et al., 2008, Astronomical demonstration of an optical vortex coronagraph. Optics Express, 16, 10200–10207 {337}CrossRefGoogle ScholarPubMed
Swift, DC, Eggert, JH, Hicks, DG, et al., 2012, Mass–radius relationships for exoplanets. ApJ, 744, 59 {574, 603, 604}CrossRefGoogle Scholar
Swift, JJ, Bottom, M, Johnson, JA, et al., 2015a, Miniature Exoplanet Radial Velocity Array (MINERVA). I. Design, commissioning, and first science results. Journal of Astronomical Telescopes, Instruments, and Systems, 1(2), 027002 {46, 755}CrossRefGoogle Scholar
Swift, JJ, Johnson, JA, Morton, TD, et al., 2013, Characterising the cool KOIs. IV. Kepler–32 as a prototype for the formation of compact planetary systems throughout the Galaxy. ApJ, 764, 105 {740}CrossRefGoogle Scholar
Swift, JJ, Montet, BT, Vanderburg, A, et al., 2015b, Characterising the cool KOIs. VIII. Parameters of the planets orbiting Kepler's coolest dwarfs. ApJS, 218, 26 {290}CrossRefGoogle Scholar
Swindle, TD, Kring, DA, 2001, Implications of noble gas budgets for the origin of water on Earth and Mars. Eleventh Annual V. M. Goldschmidt Conference {668}
Sybilski, P, Konacki, M, Kozłowski, S, 2010, Detecting circumbinary planets using eclipse timing of binary stars: numerical simulations. MNRAS, 405, 657–665 {112}Google Scholar
Syer, D, Clarke, CJ, 1995, Satellites in disks: regulating the accretion luminosity. MNRAS, 277, 758–766 {520}CrossRefGoogle Scholar
Sykes, MV, 1990, Zodiacal dust bands: their relation to asteroid families. Icarus, 85, 267–289 {691}CrossRefGoogle Scholar
Sykes, MV, Greenberg, R, 1986, The formation and origin of the IRAS zodiacal dust bands as a consequence of single collisions between asteroids. Icarus, 65, 51–69 {691}CrossRefGoogle Scholar
Sykes, MV, Lebofsky, LA, Hunten, DM, et al., 1986, The discovery of dust trails in the orbits of periodic comets. Science, 232, 1115–1117 {691}CrossRefGoogle ScholarPubMed
Szabó, GM, Kiss, LL, 2008, The shape distribution of asteroid families: evidence for evolution driven by small impacts. Icarus, 196, 135–143 {684}CrossRefGoogle Scholar
Szabó, GM, Kiss, LL, 2011, A short-period censor of sub-Jupitermass exoplanets with low density. ApJ, 727, L44 {294, 499}CrossRefGoogle Scholar
Szabó, GM, Kiss, LL, Benk˝o, JM, et al., 2010, A multi-site campaign to detect the transit of the second planet in HAT–P–13. A&A, 523, A84 {269, 304, 736}Google Scholar
Szabó, GM, Pál, A, Derekas, A, et al., 2012, Spin–orbit resonance, transit duration variation and possible secular perturbations in KOI–13. MNRAS, 421, L122–L126 {259, 739}CrossRefGoogle Scholar
Szabó, GM, Pál, A, Kiss, C, et al., 2017, The heart of the swarm: K2 photometry and rotational characteristics of 56 Jovian Trojan asteroids. A&A, 599, A44 {689}Google Scholar
Szabó, GM, Simon, A, Kiss, LL, 2014, Mapping a star with transits: orbit precession effects in the Kepler–13 system. MNRAS, 437, 1045–1050 {12, 216, 218, 739}CrossRefGoogle Scholar
Szabó, GM, Szabó, R, Benk˝o, JM, et al., 2011, Asymmetric transit curves as indication of orbital obliquity: clues from the late-type dwarf companion in KOI–13. ApJ, 736, L4 {216, 218, 739}CrossRefGoogle Scholar
Szabó, GM, Szatmáry, K, Divéki, Z, et al., 2006, Possibility of a photometric detection of exomoons. A&A, 450, 395–398 {277}Google Scholar
Szabó, R, Szabó, GM, Dálya, G, et al., 2013, Multiple planets or exomoons in Kepler hot Jupiter systems with transit timing variations? A&A, 553, A17 {12, 263, 278, 281, 282, 301, 305, 746}Google Scholar
Szebehely, V, 1980, Stability of planetary orbits in binary systems. Celestial Mechanics, 22, 7–12 {548}CrossRefGoogle Scholar
Szebehely, V, 1984, Review of concepts of stability. Celestial Mechanics, 34, 49–64 {548}CrossRefGoogle Scholar
Szebehely, V, McKenzie, R, 1981, Stability of outer planetary systems. Celestial Mechanics, 23, 3–7 {549}CrossRefGoogle Scholar
Szebehely, V, Zare, K, 1977, Stability of classical triplets and of their hierarchy. A&A, 58, 145–152 {276, 512}Google Scholar
Szenkovits, F, Makó, Z, 2008, About the Hill stability of extrasolar planets in stellar binary systems. Cel. Mech. Dyn. Astron., 101, 273–287 {549}CrossRefGoogle Scholar
Szentgyorgyi, A, Frebel, A, Furesz, G, et al., 2012, The GMT-Cf A, Carnegie, Catolica, Chicago Large Earth Finder (G–CLEF): a general purpose optical echelle spectrograph for the GMT. Ground-based and Airborne Instrumentation for Astronomy IV, volume 8446 of Proc. SPIE, 84461H {28}Google Scholar
Szulágyi, J, Masset, F, Lega, E, et al., 2016, Circumplanetary disk or circumplanetary envelope? MNRAS, 460, 2853–2861 {463}CrossRefGoogle Scholar
Szulágyi, J, Morbidelli, A, Crida, A, et al., 2014, Accretion of Jupiter-mass planets in the limit of vanishing viscosity. ApJ, 782, 65 {485}CrossRefGoogle Scholar
Szuszkiewicz, E, Podlewska-Gaca, E, 2012, Migration-induced architectures of planetary systems. Origins of Life and Evolution of the Biosphere, 42, 113–142 {522}CrossRefGoogle ScholarPubMed
Tabachnik, S, Tremaine, S, 2002, Maximum-likelihood method for estimating the mass and period distributions of extrasolar planets. MNRAS, 335, 151–158 {289}CrossRefGoogle Scholar
Tabataba-Vakili, F, Grenfell, JL, Grießmeier, JM, et al., 2016, Atmospheric effects of stellar cosmic rays on Earth-like exoplanets orbiting M-dwarfs. A&A, 585, A96 {631}Google Scholar
Tabeshian, M, Wiegert, PA, 2016, Detection and characterisation of extrasolar planets through mean-motion resonances. I. Simulations of hypothetical debris disks. ApJ, 818, 159 {494}CrossRefGoogle Scholar
Tabeshian, M, Wiegert, PA, 2017, Detection and characterisation of extrasolar planets through mean-motion resonances. II. The effect of the planet's orbital eccentricity on debris disk structures. ApJ, 847, 24 {494}CrossRefGoogle Scholar
Tachinami, C, Senshu, H, Ida, S, 2011, Thermal evolution and lifetime of intrinsic magnetic fields of super-Earths in habitable zones. ApJ, 726, 70 {425}CrossRefGoogle Scholar
Tadeu dos Santos, M, Correa-Otto, JA, Michtchenko, TA, et al., 2015, Formation and evolution of the two 4:3 resonant giants planets in HD 200964. A&A, 573, A94 {70, 508, 724}Google Scholar
Tadeu dos Santos, M, Silva, GG, Ferraz-Mello, S, et al., 2012, A newanalysis of the GJ 581 extrasolar planetary system. Cel. Mech. Dyn. Astron., 113, 49–62 {717}CrossRefGoogle Scholar
Tajeddine, R, Nicholson, PD, Longaretti, PY, et al., 2017, What confines the rings of Saturn? ApJS, 232, 28 {690}CrossRefGoogle Scholar
Tajika, E, 2008, Snowball planets as a possible type of water-rich terrestrial planet in extrasolar planetary systems. ApJ, 680, L53–L56 {620}CrossRefGoogle Scholar
Takahashi, J, Matsuo, T, Itoh, Y, 2017, Feasibility of spectro-polarimetric characterisa-tion of exoplanetary atmospheres with direct observing instruments. A&A, 599, A56 {246}Google Scholar
Takahashi, R, 2003, Astrometric microlensing by finite-size lenses. ApJ, 595, 418–428 {135, 138}CrossRefGoogle Scholar
Takahashi, SZ, Inutsuka Si, 2016, An origin of multiple ring structure and hidden planets in HL Tau: a unified picture by secular gravitational instability. AJ, 152, 184 {466}CrossRefGoogle Scholar
Takahashi, SZ, Inutsuka Si, Machida, MN, 2013, A semi-analytical description for the formation and gravitational evolution of protoplanetary disks. ApJ, 770, 71 {487}CrossRefGoogle Scholar
Takahashi, SZ, Tsukamoto, Y, Inutsuka, S, 2016, A revised condition for self-gravitational fragmentation of protoplanetary disks. MNRAS, 458, 3597–3612 {488}CrossRefGoogle Scholar
Takami, M, Bailey, J, Chrysostomou, A, 2003, A spectro-astrometric study of southern pre-main sequence stars: binaries, outflows, and disk structure down to au scales. A&A, 397, 675–691 {444}Google Scholar
Takami, M, Bailey, J, Gledhill, TM, et al., 2001, Circumstellar structure of RULupi down to au scales. MNRAS, 323, 177–187 {444}CrossRefGoogle Scholar
Takeda, G, Ford, EB, Sills, A, et al., 2007a, Structure and evolution of nearby stars with planets. II. Physical properties of 1000 cool stars from the SPOCS catalog. ApJS, 168, 297–318 {512}CrossRefGoogle Scholar
Takeda, G, Kita, R, Rasio, FA, 2008a, Planetary systems in binaries. I. Dynamical classification. ApJ, 683, 1063–1075 {549}CrossRefGoogle Scholar
Takeda, G, Rasio, FA, 2005, High orbital eccentricities of extrasolar planets induced by the Kozai mechanism. ApJ, 627, 1001–1010 {79, 529, 550}CrossRefGoogle Scholar
Takeda, G, Rasio, FA, 2006, Eccentricities of planets in binary systems. Ap&SS, 304, 239–242 {80, 549}Google Scholar
Takeda, Y, Honda, S, 2005, Photospheric CNO abundances of solar-type stars. PASJ, 57, 65–82 {388, 397}CrossRefGoogle Scholar
Takeda, Y, Kawanomoto, S, 2005, Lithium abundances of F-, G-, and K-type stars: profile-fitting analysis of the Li I 670.8 nmdoublet. PASJ, 57, 45–63 {401}CrossRefGoogle Scholar
Takeda, Y, Kawanomoto, S, Honda, S, et al., 2007b, Behaviour of Li abundances in solar analogue stars: evidence for line-width dependence. A&A, 468, 663–677 {400, 401}Google Scholar
Takeda, Y, Sato, B, Kambe, E, et al., 2001, Photospheric abundances of volatile and refractory elements in planet-harbouring stars. PASJ, 53, 1211–1221 {396, 397}CrossRefGoogle Scholar
Takeda, Y, Sato, B, Kambe, E, 2005, High-dispersion spectra collection of nearby F–K stars at Okayama Astrophysical Observatory: a basis for spectroscopic abundance standards. PASJ, 57, 13–25 {388}Google Scholar
Takeda, Y, Sato, B, Murata, D, 2008b, Stellar parameters and elemental abundances of late-G giants. PASJ, 60, 781–802 {391, 395}CrossRefGoogle Scholar
Takeuchi, T, Artymowicz, P, 2001, Dust migration and morphology in optically thin circumstellar gas disks. ApJ, 557, 990–1006 {495}CrossRefGoogle Scholar
Takeuchi, T, Clarke, CJ, Lin, DNC, 2005a, The differential lifetimes of protostellar gas and dust disks. ApJ, 627, 286–292 {457}CrossRefGoogle Scholar
Takeuchi, T, Ida, S, 2012, Minimum dust abundances for planetesimal formation via secular gravitational instabilities. ApJ, 749, 89 {460}CrossRefGoogle Scholar
Takeuchi, T, Lin, DNC, 2002, Radial flow of dust particles in accretion disks. ApJ, 581, 1344–1355 {457}CrossRefGoogle Scholar
Takeuchi, T, Miyama, SM, 1998, Wave excitation in isothermal disks by external gravity. PASJ, 50, 141–148 {518}CrossRefGoogle Scholar
Takeuchi, T, Miyama, SM, Lin, DNC, 1996, Gap formation in protoplanetary disks. ApJ, 460, 832–847 {520}CrossRefGoogle Scholar
Takeuchi, T, Velusamy, T, Lin, DNC, 2005b, Apparent stellar wobble by a planet in a circumstellar disk: limitations on planet detection by astrometry. ApJ, 618, 987–1000 {85}CrossRefGoogle Scholar
Taki, T, Fujimoto, M, Ida, S, 2016, Dust and gas density evolution at a radial pressure bump in protoplanetary disks. A&A, 591, A86 {460}Google Scholar
Tal-Or, L, Faigler, S, Mazeh, T, 2015, BEER analysis of Kepler and CoRoT light curves. III. Spectroscopic confirmation of seventy new beaming binaries discovered in CoRoT light curves. A&A, 580, A21 {238}Google Scholar
Talens, GJJ, Albrecht, S, Spronck, JFP, et al., 2017a, MASCARA–1 b: a hot Jupiter transiting a bright V = 8.3 A-star in a misaligned orbit. A&A, 606, A73 {166, 749}Google Scholar
Talens, GJJ, Justesen, AB, Albrecht, S, et al., 2017b, MASCARA–2 b: a hot Jupiter transiting a V=7.6 A-star. ArXiv e-prints {166, 738}
Talens, GJJ, Spronck, JFP, Lesage, AL, et al., 2017c, The Multi-site All-Sky CAmeRA (MASCARA): finding transiting exoplanets around bright (V 8) stars. A&A, 601, A11 {166}Google Scholar
Talon, S, 2008, Transport processes in stars: diffusion, rotation, magnetic fields and internal waves. EAS Pub. Ser., volume 32, 81–130 {652}CrossRefGoogle Scholar
Tamayo, D, 2014, Consequences of an eccentric orbit for Fomalhaut b. MNRAS, 438, 3577–3586 {365, 761}CrossRefGoogle Scholar
Tamayo, D, Burns, JA, Hamilton, DP, et al., 2013, Dynamical instabilities in high-obliquity systems. AJ, 145, 54 {529}CrossRefGoogle Scholar
Tamayo, D, Markham, SR, Hedman, MM, et al., 2016a, Radial profiles of the Phoebe ring: a vast debris disk around Saturn. Icarus, 275, 117–131 {690}CrossRefGoogle Scholar
Tamayo, D, Rein, H, Petrovich, C, et al., 2017, Convergent migration renders TRAPPIST–1 long-lived. ApJ, 840, L19 {167, 750}CrossRefGoogle Scholar
Tamayo, D, Silburt, A, Valencia, D, et al., 2016b, Amachine learns to predict the stability of tightly packed planetary systems. ApJ, 832, L22 {318}CrossRefGoogle Scholar
Tamburini, F, Licata, I, 2017, Can the periodic spectral modulations observed in 236 Sloan Sky Survey stars be due to dark matter effects? Phys. Scr, 92(9), 095001 {646}CrossRefGoogle Scholar
Tamburini, F, Ortolani, S, Bianchini, A, 2002, Polarisation statistics of extrasolar systems. A&A, 394, 675–678 {246}Google Scholar
Tamburini, F, Umbriaco, G, Anzolin, G, et al., 2006, Frog Eye, the quantum corona-graphic mask: the photon orbital angular momentum and its applications to astronomy. Mem. Soc. Astron. Ital., 9, 484 {337}Google Scholar
Tamura, M, 2009, Subaru Strategic Exploration of Exoplanets and Disks with Hi-CIAO/AO188. Amer. Inst. Phys. Conf. Ser., volume 1158, 11–16 {344}Google Scholar
Tamura, M, 2016, SEEDS: Strategic Explorations of Exoplanets and Diskswith the Subaru telescope. Proc. Japan Academy, Series B, 92, 45–55 {359}CrossRefGoogle ScholarPubMed
Tamura, M, Hodapp, K, Takami, H, et al., 2006, Concept and science of HiCIAO: high contrast instrument for the Subaru next generation adaptive optics. SPIE Conf. Ser., volume 6269, 28 {340, 344}Google Scholar
Tamura, M, Itoh, Y, Oasa, Y, et al., 1998, Isolated and companion young brown dwarfs in the Taurus and Chamaeleon molecular clouds. Science, 282, 1095–1097 {446}CrossRefGoogle ScholarPubMed
Tamura, M, Suto, H, Itoh, Y, et al., 2000, Coronagraph imager with adaptive optics (CIAO): description and first results. SPIE Conf. Ser., volume 4008, 1153–1161 {334}Google Scholar
Tamura, M, Suto, H, Nishikawa, J, et al., 2012, Infrared Doppler instrument for the Subaru Telescope (IRD). Ground-based and Airborne Instrumentation for Astronomy IV, volume 8446 of Proc. SPIE, 84461T {46, 48}Google Scholar
Tamuz, O, Mazeh, T, Zucker, S, 2005, Correcting systematic effects in a large set of photometric light curves. MNRAS, 356, 1466–1470 {156, 190}CrossRefGoogle Scholar
Tamuz, O, Ségransan, D, Udry, S, et al., 2008, The CORALIE survey for southern ex-trasolar planets. XV. Discovery of two eccentric planets orbiting HD 4113 and HD 156846. A&A, 480, L33–L36 {21, 46, 51, 52, 54, 55, 79, 373, 718, 723}Google Scholar
Tan, B, Cheng, Z, 2013, The mid-term and long-term solar quasi-periodic cycles and the possible relationship with planetary motions. Ap&SS, 343, 511–521 {656}Google Scholar
Tan, HB, Wang, XB, Gu, SH, et al., 2014, Photometric observation and study of the transiting exoplanetary system HAT–P–8. Chin. Astron. Astrophys., 38, 307–316 {736}Google Scholar
Tan, JC, Chatterjee, S, Hu, X, et al., 2016, An overview of inside-out planet formation. IAU Focus Meeting, 29(27), 6–13 {473, 502}Google Scholar
Tan, PK, Kurtsiefer, C, 2017, Temporal intensity interferometry for characterisation of very narrow spectral lines. MNRAS, 469, 1617–1621 {354}CrossRefGoogle Scholar
Tan, X, Payne, MJ, Lee, MH, et al., 2013, Characterising the orbital and dynamical state of the HD 82943 planetary system with Keck radial velocity data. ApJ, 777, 101 {262, 721}CrossRefGoogle Scholar
Tanaka, H, Himeno, Y, Ida, S, 2005, Dust growth and settling in protoplanetary disks and disk spectral energy distributions. I. Laminar disks. ApJ, 625, 414–426 {465}CrossRefGoogle Scholar
Tanaka, H, Ida, S, 1999, Growth of a migrating protoplanet. Icarus, 139, 350–366 {483}CrossRefGoogle Scholar
Tanaka, H, Takeuchi, T, Ward, WR, 2002, Three-dimensional interaction between a planet and an isothermal gaseous disk. I. Corotation and Lindblad torques and planet migration. ApJ, 565, 1257–1274 {518}CrossRefGoogle Scholar
Tanaka, H, Ward, WR, 2004, Three-dimensional interaction between a planet and an isothermal gaseous disk. II. Eccentricitywaves and bendingwaves. ApJ, 602, 388–395 {522}CrossRefGoogle Scholar
Tanaka, KK, Yamamoto, T, Tanaka, H, et al., 2013, Evaporation of icy planetesimals due to bow shocks. ApJ, 764, 120 {475}CrossRefGoogle Scholar
Tanaka, YA, Suzuki, TK, Inutsuka Si, 2014, Atmospheric escape by magnetically driven wind from gaseous planets. ApJ, 792, 18 {306}CrossRefGoogle Scholar
Tang, S, Sasselov, D, Grindlay, J, et al., 2013, 100-year DASCH light curves of Kepler planet-candidate host stars. PASP, 125, 793–797 {176}CrossRefGoogle Scholar
Tanga, P, Babiano, A, Dubrulle, B, et al., 1996, Forming planetesimals in vortices. Icarus, 121, 158–170 {461}CrossRefGoogle Scholar
Tangherlini, FR, 1963, Schwarzschild field in N dimensions and the dimensionality of space problem. Il Nuovo Cimento, 27(3), 636–651 {515}CrossRefGoogle Scholar
Tanigawa, T, Ikoma, M, 2007, A systematic study of the final masses of gas giant planets. ApJ, 667, 557–570 {480}CrossRefGoogle Scholar
Tanigawa, T, Maruta, A, Machida, MN, 2014, Accretion of solid materials onto circum-planetary disks from protoplanetary disks. ApJ, 784, 109 {463, 687, 688}CrossRefGoogle Scholar
Tanigawa, T, Ohtsuki, K, 2010, Accretion rates of planetesimals by protoplanets embedded in nebular gas. Icarus, 205, 658–673 {471}CrossRefGoogle Scholar
Tanigawa, T, Ohtsuki, K, Machida, MN, 2012, Distribution of accreting gas and angular momentum onto circumplanetary disks. ApJ, 747, 47 {463, 465}CrossRefGoogle Scholar
Tanigawa, T, Tanaka, H, 2016, Final masses of giant planets. II. Jupiter formation in a gas-depleted disk. ApJ, 823, 48 {481}CrossRefGoogle Scholar
Tanner, A, Boyajian, TS, von Braun, K, et al., 2015a, Stellar parameters for HD 69830, a nearby star with three Neptune mass planets and an asteroid belt. ApJ, 800, 115 {493, 720}CrossRefGoogle Scholar
Tanner, A, Gelino, C, Elfeki, M, 2015b, The Starchive: an open access, open source archive of nearby and young stars and their planets. AAS/Division for Extreme Solar Systems Abstracts, volume 3 of AAS/Division for Extreme Solar Systems Abstracts, 118.02 {375}Google Scholar
Tanner, AM, Gelino, CR, Law, NM, 2010, A high-contrast imaging survey of SIM-Lite planet targets. PASP, 122, 1195–1206 {357}CrossRefGoogle Scholar
Tarakanov, PA, Artamonov, AS, 2015, Evolution of angular momentumdistribution in exoplanet systems. Astrophysics, 58, 550–566 {386}CrossRefGoogle Scholar
Tarnopolski, M, 2017, Influence of a second satellite on the rotational dynamics of an oblate moon. Cel. Mech. Dyn. Astron., 127, 121–138 {276}CrossRefGoogle Scholar
Tarter, JC, 1976, Brown dwarfs, Lilliputian stars, giant planets and missing mass problems. AAS Bulletin, volume 8, 517 {429}Google Scholar
Tarter, JC, 2001a, The Search for Extraterrestrial Intelligence (SETI). araa, 39, 511–548 {643, 644, 647}CrossRefGoogle Scholar
Tarter, JC, 2001b, SETI 2020: a roadmap for future SETI observing projects. SPIE Conf. Ser., volume 4273, 93–103 {644}Google Scholar
Tarter, JC, 2004, Astrobiology and SETI. New Astron. Rev., 48, 1543–1549 {427, 645}CrossRefGoogle Scholar
Tarter, JC, 2006, The history of SETI at the Hat Creek Radio Observatory. Revealing the Molec-ular Universe: One Antenna is Never Enough, volume 356 of ASP Conf. Ser., 117–125 {644}Google Scholar
Tarter, JC, Backus, PR, Mancinelli, RL, et al., 2007, A reappraisal of the habitability of planets around Mdwarf stars. Astrobiology, 7, 30–65 {160, 621, 626}CrossRefGoogle ScholarPubMed
Tattersall, R, 2013, The Hum: log-normal distribution and planetary-solar resonance. Pattern Recognition in Physics, 1, 185–198 {656}CrossRefGoogle Scholar
Tatulli, E, Benisty, M, Ménard, F, et al., 2011, Constraining the structure of the planet-forming region in the disk of the Herbig Be star HD 100546. A&A, 531, A1 {762}Google Scholar
Tavrov, AV, Kobayashi, Y, Tanaka, Y, et al., 2005, Common-path achromatic interferometer-coronagraph: nulling of polychromatic light. Optics Letters, 30, 2224–2226 {334}CrossRefGoogle ScholarPubMed
Taylor, DB, 1984, A comparison of the theory of the motion of Hyperion with observations made during 1967–1982. A&A, 141, 151–158 {508}Google Scholar
Taylor, DJ, McKeegan, KD, Harrison, TM, et al., 2009, Early differentiation of the lu-narmagma ocean: new Lu–Hf isotope results from Apollo 17. Geoch. Cosm. Acta Sup., 73, A1317 {665}Google Scholar
Taylor, SR, 2001, Solar System Evolution: A New Perspective. Cambridge University Press {396, 563}CrossRefGoogle Scholar
Taylor, SR, McLennan, S, 2009, Planetary Crusts: Their Composition, Origin and Evolution. Cambridge University Press {670}Google Scholar
Taylor, SR, McLennan, SM, 1995, The geochemical evolution of the continental crust. Reviews of Geophysics, 33, 241–265 {670}CrossRefGoogle Scholar
Tazzari, M, Testi, L, Ercolano, B, et al., 2016, Multiwavelength analysis for interferometric (sub-)mm observations of protoplanetary disks: radial constraints on the dust properties and the disk structure. A&A, 588, A53 {463}Google Scholar
Teachey, A, Kipping, DM, Schmitt, AR, 2018, The Hunt for Exomoons with Kepler (HEK). VI. On the dearth of Galilean analogues in Kepler, and the exomoon candidate Kepler–1625 b I. AJ, 155, 36 {7, 277, 279, 281, 282, 747}CrossRefGoogle Scholar
Teiser, J, Dodson-Robinson, SE, 2013, Photophoresis boosts giant planet formation. A&A, 555, A98 {458}Google Scholar
Teiser, J, Engelhardt, I, Wurm, G, 2011a, Porosities of protoplanetary dust agglomerates from collision experiments. ApJ, 742, 5 {468}CrossRefGoogle Scholar
Teiser, J, Küpper, M, Wurm, G, 2011b, Impact angle influence in high-velocity dust collisions during planetesimal formation. Icarus, 215, 596–598 {468}CrossRefGoogle Scholar
Teiser, J, Wurm, G, 2009, High-velocity dust collisions: forming planetesimals in a fragmentation cascade with final accretion. MNRAS, 393, 1584–1594 {446}CrossRefGoogle Scholar
Teitler, S, Königl, A, 2014, Why is there a dearth of close-in planets around fast-rotating stars? ApJ, 786, 139 {310}CrossRefGoogle Scholar
Telesco, CM, Fisher, RS, Wyatt, MC, et al., 2005, Mid-infrared images of fl Pic and the role of planetesimal collisions in the central disk. Nature, 433, 133–136 {493}CrossRefGoogle Scholar
Tellis, NK, Marcy, GW, 2015, A search for optical laser emission using Keck–HIRES. PASP, 127, 540 {646}CrossRefGoogle Scholar
Tellis, NK, Marcy, GW, 2017, A search for laser emission with megawatt thresholds from 5600 FGKM stars. AJ, 153, 251 {646}CrossRefGoogle Scholar
Temple, LY, Hellier, C, Albrow, MD, et al., 2017, WASP–167 b/KELT–13 b: joint discovery of a hot Jupiter transiting a rapidly rotating F1V star. MNRAS, 471, 2743–2752 {252, 253, 254, 757}CrossRefGoogle Scholar
tenBrummelaar, TA, McAlister, HA, Ridgway, ST, et al., 2003, An update of the CHARA array. SPIE Conf. Ser., volume 4838, 69–78 {348}Google Scholar
Tenenbaum, P, Christiansen, JL, Jenkins, JM, et al., 2012, Detection of potential transit signals in the first three quarters of Kepler mission data. ApJS, 199, 24 {191, 196, 289}CrossRefGoogle Scholar
Tenenbaum, P, Jenkins, JM, Seader, S, et al., 2013, Detection of potential transit signals in the first 12 quarters of Keplermission data. ApJS, 206, 5 {196}CrossRefGoogle Scholar
Tenenbaum, P, Jenkins, JM, Seader, S, 2014, Detection of potential transit signals in 16 quarters of Kepler mission data. ApJS, 211, 6 {196}CrossRefGoogle Scholar
Tennyson, J, Yurchenko, SN, 2012, Exo Mol: molecular line lists for exoplanet and other atmospheres. MNRAS, 425, 21–33 {570}CrossRefGoogle Scholar
Tennyson, J, Yurchenko, SN, 2015, The status of spectroscopic data for the exoplanet characterisation missions. Exp. Astron., 40, 563–575 {570}CrossRefGoogle Scholar
Tennyson, J, Yurchenko, SN, 2017, Laboratory spectra of hot molecules: data needs for hot super-Earth exo-planets. Molecular Astrophysics, 8, 1–18 {570}CrossRefGoogle Scholar
Tennyson, J, Yurchenko, SN, Al-Refaie, AF, et al., 2016, The Exo Mol database: molecular line lists for exoplanet and other hot atmospheres. Journal of Molecular Spectroscopy, 327, 73–94 {570}CrossRefGoogle Scholar
Tera, F, Papanastassiou, DA, Wasserburg, GJ, 1974, Isotopic evidence for a terminal lunar cataclysm. Earth Planet. Sci. Lett., 22, 1–21 {669}CrossRefGoogle Scholar
Terndrup, DM, Krishnamurthi, A, Pinsonneault, MH, et al., 1999, A search for photometric rotation periods in low-mass stars and brown dwarfs in the Pleiades. AJ, 118, 1814–1818 {440}CrossRefGoogle Scholar
Terquem, C, 2003, Stopping inward planetary migration by a toroidal magnetic field. MNRAS, 341, 1157–1173 {519, 521}CrossRefGoogle Scholar
Terquem, C, 2013, The effects of disk warping on the inclination of planetary orbits. MNRAS, 435, 798–808 {531}CrossRefGoogle Scholar
Terquem, C, 2014, On the formation of the Kepler–10 planetary system. MNRAS, 444, 1738–1746 {502, 503, 739}CrossRefGoogle Scholar
Terquem, C, 2017, On the formation of planetary systems in photoevaporating transition disks. MNRAS, 464, 924–932 {462}CrossRefGoogle Scholar
Terquem, C, Ajmia, A, 2010, Eccentricity pumping of a planet on an inclined orbit by a disk. MNRAS, 404, 409–414 {529}Google Scholar
Terquem, C, Eislöffel, J, Papaloizou, JCB, et al., 1999, Precession of collimated outflows from young stellar objects. ApJ, 512, L131–L134 {554}CrossRefGoogle Scholar
Terquem, C, Heinemann, T, 2011, Protoplanets with core masses below the critical mass fill in their Roche lobe. MNRAS, 418, 1928–1934 {476}CrossRefGoogle Scholar
Terquem, C, Papaloizou, JCB, 2002, Dynamical relaxation and the orbits of low-mass extrasolar planets. MNRAS, 332, L39–L43 {525}CrossRefGoogle Scholar
Terquem, C, Papaloizou, JCB, 2007, Migration and the formation of systems of hot super-Earths and Neptunes. ApJ, 654, 1110–1120 {501, 518}CrossRefGoogle Scholar
Terquem, C, Papaloizou, JCB, 2008, Forming hot super–Earths. ASP Conf. Ser., volume 398, 265–273 {573}Google Scholar
Terquem, C, Papaloizou, JCB, Nelson, RP, 2000, Disks, extrasolar planets and migration. Space Science Reviews, 92, 323–340 {517}CrossRefGoogle Scholar
Terquem, C, Papaloizou, JCB, Nelson, RP, et al., 1998, On the tidal interaction of a solar-type star with an orbiting companion: excitation of g-mode oscillation and orbital evolution. ApJ, 502, 788–801 {411, 525, 535, 542}CrossRefGoogle Scholar
Terrile, RJ, Ftaclas, C, 1997, Direct detection of extrasolar planetary systems from balloon borne telescopes. IAU Colloq. 161, 359–366 {351}
Teske, JK, Cunha, K, Schuler, SC, et al., 2013a, Carbon and oxygen abundances in cool metal-rich exoplanet hosts: a case study of the C/O ratio of 55 Cnc. ApJ, 778, 132 {728}CrossRefGoogle Scholar
Teske, JK, Cunha, K, Smith, VV, et al., 2014, C/Oratios of stars with transiting hot Jupiter exoplanets. ApJ, 788, 39 {388}CrossRefGoogle Scholar
Teske, JK, Everett, ME, Hirsch, L, et al., 2015a, A comparison of spectroscopic versus imaging techniques for detecting close companions to Kepler Objects of Interest. AJ, 150, 144 {197}CrossRefGoogle Scholar
Teske, JK, Ghezzi, L, Cunha, K, et al., 2015b, Abundance differences between exoplanet binary host stars XO–2N and XO–2S: dependence on stellar parameters. ApJ, 801, L10 {757}CrossRefGoogle Scholar
Teske, JK, Khanal, S, Ramírez, I, 2016a, The curious case of elemental abundance differences in the dual hot Jupiter hosts WASP–94A and B. ApJ, 819, 19 {756}CrossRefGoogle Scholar
Teske, JK, Schuler, SC, Cunha, K, et al., 2013b, Carbon and oxygen abundances in the hot Jupiter exoplanet host star XO–2B and its binary companion. ApJ, 768, L12 {757}CrossRefGoogle Scholar
Teske, JK, Shectman, SA, Vogt, SS, et al., 2016b, The Magellan PFS Planet Search Program: radial velocity and stellar abundance analyses of the 360 au, metal-poor binary twins HD 133131A/B. AJ, 152, 167 {722}CrossRefGoogle Scholar
Teske, JK, Turner, JD, Mueller, M, et al., 2013c, Optical observations of the transiting exoplanet GJ 1214 b. MNRAS, 431, 1669–1677 {735}Google Scholar
Tessenyi, M, Ollivier, M, Tinetti, G, et al., 2012, Characterising the atmospheres of transiting planets with a dedicated space telescope. ApJ, 746, 45 {160, 182}CrossRefGoogle Scholar
Tessenyi, M, Tinetti, G, Savini, G, et al., 2013, Molecular detectability in exoplanetary emission spectra. Icarus, 226, 1654–1672 {607, 614}CrossRefGoogle Scholar
Testi, L, Birnstiel, T, Ricci, L, et al., 2014, Dust evolution in protoplanetary disks. Proto-stars and Planets VI, 339–361 {468}
Testi, L, Natta, A, Scholz, A, et al., 2016, Brown dwarf disks with ALMA: evidence for truncated dust disks in Ophiuchus. A&A, 593, A111 {444}Google Scholar
Testi, L, Natta, A, Shepherd, DS, et al., 2003, Large grains in the disk of CQ Tau. A&A, 403, 323–328 {471}Google Scholar
Testi, L, Skemer, A, Henning, T, et al., 2015, Hunting for planets in the HL Tau disk. ApJ, 812, L38 {466}CrossRefGoogle Scholar
Teyssandier, J, Naoz, S, Lizarraga, I, et al., 2013a, Extreme orbital evolution from hierarchical secular coupling of two giant planets. ApJ, 779, 166 {528}CrossRefGoogle Scholar
Teyssandier, J, Ogilvie, GI, 2016, Growth of eccentric modes in disk–planet interactions. MNRAS, 458, 3221–3247 {529}CrossRefGoogle Scholar
Teyssandier, J, Owen, JE, Adams, FC, et al., 2015, Torque on an exoplanet from an anisotropic evaporative wind. MNRAS, 452, 1743–1753 {424, 740}CrossRefGoogle Scholar
Teyssandier, J, Terquem, C, 2014, Evolution of eccentricity and orbital inclination of migrating planets in 2:1 mean motion resonance. MNRAS, 443, 568–583 {509}CrossRefGoogle Scholar
Teyssandier, J, Terquem, C, Papaloizou, JCB, 2013b, Orbital evolution of a planet on an inclined orbit interacting with a disk. MNRAS, 428, 658–669 {529}CrossRefGoogle Scholar
Thalmann, C, Carson, J, Janson, M, et al., 2009, Discovery of the coldest imaged companion of a Sun-like star. ApJ, 707, L123–L127 {359, 362}CrossRefGoogle Scholar
Thalmann, C, Desidera, S, Bonavita, M, et al., 2014a, SPOTS: the Search for Planets Orbiting Two Stars. I. Survey description and first observations. A&A, 572, A91 {338, 358, 361}Google Scholar
Thalmann, C, Grady, CA, Goto, M, et al., 2010, Imaging of a transition disk gap in reflected light: indications of planet formation around the young solar analogue LkCa 15. ApJ, 718, L87–L91 {467, 764}CrossRefGoogle Scholar
Thalmann, C, Janson, M, Buenzli, E, et al., 2013, Imaging discovery of the debris disk around HIP 79977. ApJ, 763, L29 {359}CrossRefGoogle Scholar
Thalmann, C, Janson, M, Garufi, A, et al., 2016, Resolving the planet-hosting inner regions of the LkCa 15 disk. ApJ, 828, L17 {764}CrossRefGoogle Scholar
Thalmann, C, Mulders, GD, Hodapp, K, et al., 2014b, The architecture of the LkCa 15 transition disk revealed by high-contrast imaging. A&A, 566, A51 {467, 764}Google Scholar
Thalmann, C, Mulders, GD, Janson, M, et al., 2015, Optical imaging polarimetry of the LkCa 15 protoplanetary disk with VLT–SPHERE ZIMPOL. ApJ, 808, L41 {340, 764}CrossRefGoogle Scholar
Thalmann, C, Schmid, HM, Boccaletti, A, et al., 2008a, VLT–SPHERE ZIMPOL: overview and performance simulation. SPIE Conf. Ser., volume 7014, 112 {247}Google Scholar
Thalmann, C, Schmid, HM, Boccaletti, A, 2008b, VLT–SPHERE ZIMPOL: overview and performance simulation. Ground-based and Airborne Instrumentation for Astronomy II, volume 7014 of Proc. SPIE, 70143F {344}Google Scholar
Thalmann, C, Usuda, T, Kenworthy, M, et al., 2011, Piercing the glare: a direct imaging search for planets in the Sirius system. ApJ, 732, L34 {91}CrossRefGoogle Scholar
Thamm, E, Steinacker, J, Henning, T, 1994, Ambiguities of parametrised dust diskmod-els for young stellar objects. A&A, 287, 493–502 {465}Google Scholar
Théado, S, Vauclair, S, 2012, Metal-rich accretion and thermohaline instabilities in exoplanet-host stars: consequences on the light elements abundances. ApJ, 744, 123 {394}CrossRefGoogle Scholar
Thébault, P, 2011, Against all odds? Forming the planet of the HD 196885 binary. Cel. Mech. Dyn. Astron., 111, 29–49 {724}CrossRefGoogle Scholar
Thébault, P, 2012, A new code to study structures in collisionally active, perturbed debris disks: application to binaries. A&A, 537, A65 {495, 496}Google Scholar
Thebault, P, 2016, Dust production in debris disks: constraints on the smallest grains. A&A, 587, A88 {496}Google Scholar
Thébault, P, Augereau, JC, 2007, Collisional processes and size distribution in spatially extended debris disks. A&A, 472, 169–185 {496}Google Scholar
Thébault, P, Augereau, JC, Beust, H, 2003, Dust production from collisions in extrasolar planetary systems: the inner fl Pic disk. A&A, 408, 775–788 {493, 496}Google Scholar
Thébault, P, Beust, H, 2001, Falling evaporating bodies in the fl Pic system: resonance refilling and long-termduration of the phenomenon. A&A, 376, 621–640 {493}Google Scholar
Thébault, P, Kral, Q, Ertel, S, 2012, Planet signatures in collisionally active debris disks: scattered light images. A&A, 547, A92 {496}Google Scholar
Thébault, P, Marzari, F, Augereau, JC, 2010, Debris disks in binaries: a numerical study. A&A, 524, A13 {495}Google Scholar
Thébault, P, Marzari, F, Scholl, H, 2006, Relative velocities among accreting planetesi-mals in binary systems: The circumprimary case. Icarus, 183, 193–206 {79, 550}CrossRefGoogle Scholar
Thébault, P, Marzari, F, Scholl, H, 2008, Planet formation in α Cen a revisited: not so accretion friendly after all. MNRAS, 388, 1528–1536 {714}CrossRefGoogle Scholar
Thébault, P, Marzari, F, Scholl, H, 2009, Planet formation in the habitable zone of α Cen B. MNRAS, 393, L21–L25 {714}CrossRefGoogle Scholar
Thébault, P, Marzari, F, Scholl, H, et al., 2004, Planetary formation in the γ Cep system. A&A, 427, 1097–1104 {79, 550, 714}Google Scholar
Theissen, CA, West, AA, 2017, Collisions of terrestrial worlds: the occurrence of extreme mid-infrared excesses around low-mass field stars. AJ, 153, 165 {498}CrossRefGoogle Scholar
Thévenin, F, Provost, J, Morel, P, et al., 2002, Asteroseismology and calibration of the α Cen binary system. A&A, 392, L9–L12 {714}Google Scholar
Thiabaud, A, Marboeuf, U, Alibert, Y, et al., 2014, From stellar nebula to planets: the refractory components. A&A, 562, A27 {463}Google Scholar
Thiabaud, A, Marboeuf, U, Alibert, Y, 2015a, Elemental ratios in stars versus planets. A&A, 580, A30 {378}Google Scholar
Thiabaud, A, Marboeuf, U, Alibert, Y, 2015b, Gas composition of the main volatile elements in protoplanetary disks and its implication for planet formation. A&A, 574, A138 {464}Google Scholar
Thiele, TN, 1883, Neue Methode zur Berechung von Doppelsternbahnen. Astron. Nach., 104, 245–253 {88}CrossRefGoogle Scholar
Thielemann, F, 2002, Nucleosynthesis. Encyclopedia of Astronomy and Astrophysics {398}
Thies, I, Kroupa, P, Goodwin, SP, et al., 2011, A natural formation scenario for misaligned and short-period eccentric extrasolar planets. MNRAS, 417, 1817–1822 {255, 526, 531}CrossRefGoogle Scholar
Thilliez, E, Maddison, ST, 2016, Numerical predictions for planets in the debris disks of HD 202628 and HD 207129. MNRAS, 457, 1690–1701 {493}CrossRefGoogle Scholar
Tholen, DJ, Buie, MW, Binzel, RP, et al., 1987, Improved orbital and physical parameters for the Pluto–Charon system. Science, 237, 512–514 {538}CrossRefGoogle ScholarPubMed
Thomas, BC, Engler, EE, KachelrießM, et al., 2016, Terrestrial effects of nearby supernovae in the early Pleistocene. ApJ, 826, L3 {651}CrossRefGoogle ScholarPubMed
Thomas, PC, Armstrong, JW, Asmar, SW, et al., 2007, Hyperion's sponge-like appearance. Nature, 448, 50–56 {508}CrossRefGoogle ScholarPubMed
Thomas, PC, Parker, JW, McFadden, LA, et al., 2005, Differentiation of the asteroid Ceres as revealed by its shape. Nature, 437, 224–226 {478}CrossRefGoogle ScholarPubMed
Thomas, SJ, Soummer, R, Dillon, D, et al., 2011, Testing the apodised pupil Lyot coron-agraph on the laboratory for adaptive optics extreme adaptive optics testbed. AJ, 142, 119 {344}CrossRefGoogle Scholar
Thomas, SW, Madhusudhan, N, 2016, In hot water: effects of temperature-dependent interiors on the radii of water-rich super-Earths. MNRAS, 458, 1330–1344 {603, 604}CrossRefGoogle Scholar
Thommes, EW, 2007, Terrestrial planet formation. Planetary Systems and the Origins of Life, 41–61, Cambridge University Press {467}
Thommes, EW, Bryden, G, Wu, Y, et al., 2008a, From mean motion resonances to scattered planets: producing the solar system, eccentric exoplanets, and late heavy bombardments. ApJ, 675, 1538–1548 {524, 669}CrossRefGoogle Scholar
Thommes, EW, Duncan, MJ, 2006, The accretion of giant-planet cores. Planet Formation, 129–146, Cambridge University Press {479}
Thommes, EW, Duncan, MJ, Levison, HF, 1999, The formation of Uranus and Neptune in the Jupiter–Saturn region of the solar system. Nature, 402, 635–638 {695}CrossRefGoogle ScholarPubMed
Thommes, EW, Duncan, MJ, Levison, HF, 2003, Oligarchic growth of giant planets. Icarus, 161, 431–455 {475}CrossRefGoogle Scholar
Thommes, EW, Lissauer, JJ, 2003, Resonant inclination excitation of migrating giant planets. ApJ, 597, 566–580 {67, 75, 319, 321, 507, 523}CrossRefGoogle Scholar
Thommes, EW, Lissauer, JJ, 2005, Planet migration. Astrophysics of Life, 41–53 {467}
Thommes, EW, Matsumura, S, Rasio, FA, 2008b, Gas disks to gas giants: simulating the birth of planetary systems. Science, 321, 814–817 {503, 525, 554}CrossRefGoogle Scholar
Thommes, EW, Murray, N, 2006, Giant planet accretion and migration: surviving the type I regime. ApJ, 644, 1214–1222 {483}CrossRefGoogle Scholar
Thommes, EW, Nagasawa, M, Lin, DNC, 2008c, Dynamical shake-up of planetary systems. II. N-body simulations of solar systemterrestrial planet formation induced by secular resonance sweeping. ApJ, 676, 728–739 {668, 694}CrossRefGoogle Scholar
Thommes, EW, Nilsson, L, Murray, N, 2007, Overcomingmigration during giant planet formation. ApJ, 656, L25–L28 {483}CrossRefGoogle Scholar
Thompson, MA, Scicluna, P, Kemper, F, et al., 2016, Constraints on the circumstellar dust around KIC–8462852. MNRAS, 458, L39–L43 {232, 747}CrossRefGoogle Scholar
Thompson, SE, Coughlin, JL, Hoffman, K, et al., 2018, Planetary candidates observed by Kepler. VIII. A fully automated catalogue with measured completeness and reliability based on Data Release 25. ApJS, 235, 38 {194}CrossRefGoogle Scholar
Thompson, SE, Everett, M, Mullally, F, et al., 2012, A class of eccentric binaries with dynamic tidal distortions discovered with Kepler. ApJ, 753, 86 {230}CrossRefGoogle Scholar
Thompson, SE, Mullally, F, Coughlin, J, et al., 2015, A machine learning technique to identify transit shaped signals. ApJ, 812, 46 {194}CrossRefGoogle Scholar
Thompson, SL, 1990, ANEOS: analytic equations of state for shock physics codes. Sandia National Laboratory Doc. SAND89–2951, www.fas.org/sgp/othergov/doe/lanl/lib-www/sand/892951.pdf {566}
Thompson, TA, 2011, Accelerating compact object mergers in triple systems with the Kozai resonance: a mechanism for ‘prompt’ type Ia supernovae, gamma-ray bursts, and other exotica. ApJ, 741, 82 {529}CrossRefGoogle Scholar
Thompson, TW, 1970, Map of lunar radar reflectivity at 7. 5-m wavelength. Icarus, 13, 363–370 {356}CrossRefGoogle Scholar
Thomson, W, 1863, On the rigidity of the Earth. Phil. Trans. R. Soc., 153, 583–616 {541}CrossRefGoogle Scholar
Thorngren, DP, Fortney, JJ, Murray-Clay, RA, et al., 2016, The mass–metallicity relation for giant planets. ApJ, 831, 64 {485}CrossRefGoogle Scholar
Thorsett, SE, Arzoumanian, Z, Camilo, F, et al., 1999, The triple pulsar system PSR B1620–26 in M4. ApJ, 523, 763–770 {108}CrossRefGoogle Scholar
Thorsett, SE, Arzoumanian, Z, Taylor, JH, 1993, PSR B1620–26: a binary radio pulsar with a planetary companion? ApJ, 412, L33–L36 {105, 108}CrossRefGoogle Scholar
Thorslund, P, Wickman, FE, 1981, Middle Ordovician chondrite in fossiliferous limestone from Brunflo, central Sweden. Nature, 289, 285 {672}CrossRefGoogle Scholar
Thoul, A, Scuflaire, R, Noels, A, et al., 2003, A new seismic analysis of α Cen. A&A, 402, 293–297 {714}Google Scholar
Thrastarson, HT, Cho, JY, 2010, Effects of initial flow on close-in planet atmospheric circulation. ApJ, 716, 144–153 {593, 596}CrossRefGoogle Scholar
Thronson, HA, 1997, Our cosmic origins: NASA's Origins theme and the search for Earth-like planets. Planets Beyond the Solar System and the Next Generation of Space Missions, volume 119 of ASP Conf. Ser., 3–7 {352}Google Scholar
Throop, HB, Bally, J, 2005, Can photoevaporation trigger planetesimal formation? ApJ, 623, L149–L152 {462}CrossRefGoogle Scholar
Thun, D, Kley, W, Picogna, G, 2017, Circumbinary disks: numerical and physical be-haviour. A&A, 604, A102 {551}Google Scholar
Thureau, ND, Greaves, JS, Matthews, BC, et al., 2014, An unbiased study of debris disks around A-type stars with Herschel. MNRAS, 445, 2558–2573 {493}CrossRefGoogle Scholar
Tian, F, 2009, Thermal escape from super Earth atmospheres in the habitable zones of Mstars. ApJ, 703, 905–909 {601}CrossRefGoogle Scholar
Tian, F, 2015a, Atmospheric escape from solar system terrestrial planets and exoplanets. Ann. Rev. Earth Plan. Sci., 43, 459–476 {599}CrossRefGoogle Scholar
Tian, F, 2015b, History of water loss and atmospheric O2 buildup on rocky exoplanets near Mdwarfs. Earth Planet. Sci. Lett., 432, 126–132 {599}CrossRefGoogle Scholar
Tian, F, 2015c, Observations of exoplanets in time-evolving habitable zones of pre-main-sequence Mdwarfs. Icarus, 258, 50–53 {622}CrossRefGoogle Scholar
Tian, F, Hu, X, Wu, J, 2017a, Progress and prospect of exoplanetary atmosphere and habitable exoplanet researches. Chin. Astron. Astrophys., 41, 530–548 {618}Google Scholar
Tian, F, Toon, OB, 2005, Hydrodynamic escape of nitrogen from Pluto. Geo-phys. Res. Lett., 32, 18201–204 {601}CrossRefGoogle Scholar
Tian, F, Toon, OB, Pavlov, AA, et al., 2005, Transonic hydrodynamic escape of hydrogen from extrasolar planetary atmospheres. ApJ, 621, 1049–1060 {602, 731}CrossRefGoogle Scholar
Tian, Y, Stanley, S, 2013, Interior structure of water planets: implications for their dynamo source regions. ApJ, 768, 156 {572}CrossRefGoogle Scholar
Tian, Z, Wisdom, J, Elkins-Tanton, L, 2017b, Coupled orbital-thermal evolution of the early Earth–Moon system with a fast-spinning Earth. Icarus, 281, 90–102 {664}CrossRefGoogle Scholar
Tilley, MA, Harnett, EM, Winglee, RM, 2016, Extrasolar giant magnetospheric response to steady-state stellar wind pressure at 10, 5, 1, and 0.2 au. ApJ, 827, 77 {422}CrossRefGoogle Scholar
Timofeev, MY, Kardashev, NS, Promyslov, VG, 2000, A search of the IRAS database for evidence of Dyson spheres. Acta Astron., 46, 655–659 {647}CrossRefGoogle Scholar
Timpe, M, Barnes, R, Kopparapu, R, et al., 2013, Secular behaviour of exoplanets: self-consistency and comparisons with the planet–planet scattering hypothesis. AJ, 146, 63 {525}CrossRefGoogle Scholar
Tinetti, G, Deroo, P, Swain, MR, et al., 2010, Probing the terminator region atmosphere of the hot Jupiter XO–1 b with transmission spectroscopy. ApJ, 712, L139–L142 {612, 757}CrossRefGoogle Scholar
Tinetti, G, Drossart, P, 2015, Topical issue on EChO: foreword. Exp. Astron., 40, 327–328 {182}CrossRefGoogle Scholar
Tinetti, G, Drossart, P, Eccleston, P, et al., 2015, The EChO science case. Exp. Astron., 40, 329–391 {182}CrossRefGoogle Scholar
Tinetti, G, Encrenaz, T, Coustenis, A, 2013, Spectroscopy of planetary atmospheres in our Galaxy. A&A Rev., 21, 63 {606, 607, 614}Google Scholar
Tinetti, G, Liang, MC, Vidal-Madjar, A, et al., 2007a, Infrared transmission spectra for extrasolar giant planets. ApJ, 654, L99–L102 {579}CrossRefGoogle Scholar
Tinetti, G, Meadows, VS, Crisp, D, et al., 2006a, Detectability of planetary characteristics in disk-averaged spectra. I. The Earthmodel. Astrobiology, 6, 34–47 {641}Google Scholar
Tinetti, G, Meadows, VS, Crisp, D, 2006b, Detectability of planetary characteristics in disk-averaged spectra. II. Synthetic spectra and light-curves of Earth. Astrobiology, 6, 881–900 {641}Google Scholar
Tinetti, G, Rashby, S, Yung, YL, 2006c, Detectability of red-edge-shifted vegetation on terrestrial planets orbiting Mstars. ApJ, 644, L129–L132 {641}CrossRefGoogle Scholar
Tinetti, G, Vidal-Madjar, A, Liang, MC, et al., 2007b, Water vapour in the atmosphere of a transiting extrasolar planet. Nature, 448, 169–171 {10, 609, 613, 642, 730}CrossRefGoogle Scholar
Tingay, SJ, Tremblay, C, Walsh, A, et al., 2016, An opportunistic Search for Extraterrestrial Intelligence (SETI) with the Murchison Widefield Array. ApJ, 827, L22 {645}CrossRefGoogle Scholar
Tingley, B, 2003, A rigorous comparison of different planet detection algorithms. A&A, 403, 329–337 {156}Google Scholar
Tingley, B, 2004, Using colour photometry to separate transiting exoplanets from false positives. A&A, 425, 1125–1131 {156, 198}Google Scholar
Tingley, B, 2011, Searching for transits in data with long time baselines and poor sampling. A&A, 529, A6 {180}Google Scholar
Tingley, B, Bonomo, AS, Deeg, HJ, 2011a, Using stellar densities to evaluate transiting exoplanetary candidates. ApJ, 726, 112 {289}CrossRefGoogle Scholar
Tingley, B, Endl, M, Gazzano, JC, et al., 2011b, Transiting exoplanets from the CoRoT space mission. XVI. CoRoT–14 b: an unusually dense very hot Jupiter. A&A, 528, A97 {734}Google Scholar
Tingley, B, Pallé, E, Parviainen, H, et al., 2011c, Detection of transit timing variations in excess of 1 h in the multi-planet candidate system KOI–806 with the GTC. A&A, 536, L9 {270}Google Scholar
Tingley, B, Parviainen, H, Gandolfi, D, et al., 2014, Confirmation of an exoplanet using the transit colour signature: Kepler–418 b, a blended giant planet in a multi-planet system. A&A, 567, A14 {198, 745}Google Scholar
Tingley, B, Sackett, PD, 2005, A photometric diagnostic to aid in the identification of transiting extrasolar planets. ApJ, 627, 1011–1018 {155, 203}CrossRefGoogle Scholar
Tingley, B, Thurl, C, Sackett, P, 2006, The colour signature of the transit of HD 209458: discrepancies between stellar atmospheric models and observations. A&A, 445, L27–L30 {731}Google Scholar
Tinney, CG, 1993, The faintest stars: the luminosity andmass functions at the bottom of the main sequence. ApJ, 414, 279–301 {431}CrossRefGoogle Scholar
Tinney, CG, 1999, Brown dwarfs: the stars that failed. Nature, 397, 37–40 {430, 431}CrossRefGoogle Scholar
Tinney, CG, Burgasser, AJ, Kirkpatrick, JD, 2003a, Infrared parallaxes for methane T dwarfs. AJ, 126, 975–992 {434, 437}CrossRefGoogle Scholar
Tinney, CG, Butler, RP, Jones, HRA, et al., 2011a, The Anglo–Australian planet search. XX. A solitary ice-giant planet orbiting HD 102365. ApJ, 727, 103 {721}CrossRefGoogle Scholar
Tinney, CG, Butler, RP, Marcy, GW, et al., 2001, First results from the Anglo–Australian planet search: a brown dwarf candidate and a 51 Peg-like planet. ApJ, 551, 507–511 {46, 54, 59, 95, 723}CrossRefGoogle Scholar
Tinney, CG, Butler, RP, Marcy, GW, 2002a, Two extrasolar planets from the Anglo–Australian planet search. ApJ, 571, 528–531 {718, 719}CrossRefGoogle Scholar
Tinney, CG, Butler, RP, Marcy, GW, 2003b, Four new planets orbiting metal-enriched stars. ApJ, 587, 423–428 {55, 74, 718, 719, 720}CrossRefGoogle Scholar
Tinney, CG, Butler, RP, Marcy, GW, 2005, Three low-mass planets from the Anglo–Australian planet search. ApJ, 623, 1171–1179 {721, 722, 724}CrossRefGoogle Scholar
Tinney, CG, Butler, RP, Marcy, GW, 2006, The 2:1 resonant exoplanetary system orbiting HD73526. ApJ, 647, 594–599 {70, 74, 77, 720}CrossRefGoogle Scholar
Tinney, CG, Faherty, JK, Kirkpatrick, JD, et al., 2014, The luminosities of the coldest brown dwarfs. ApJ, 796, 39 {434}CrossRefGoogle Scholar
Tinney, CG, McCarthy, C, Jones, HRA, et al., 2002b, Echelle spectroscopy of Ca II HK activity in Southern Hemisphere planet search targets. MNRAS, 332, 759–763 {36}CrossRefGoogle Scholar
Tinney, CG, Tolley, AJ, 1999, Searching forweather in brown dwarfs. MNRAS, 304, 119–126 {439, 440}CrossRefGoogle Scholar
Tinney, CG, Wittenmyer, RA, Butler, RP, et al., 2011b, The Anglo–Australian planet search. XXI. A gas-giant planet in a one year orbit and the habitability of gas-giant satellites. ApJ, 732, 31 {719}CrossRefGoogle Scholar
Tipler, FJ, 1980, Extraterrestrial intelligent beings do not exist. QJRAS, 21, 267–281 {647}Google Scholar
Tipler, FJ, 1981, Additional remarks on extraterrestrial intelligence. QJRAS, 22, 279 {647}Google Scholar
Tiscareno, MS, 2013a, Modified type I migration for propeller moons in Saturn's rings. Planet. Space Sci., 77, 136–142 {691}CrossRefGoogle Scholar
Tiscareno, MS, 2013b, Planetary Rings. Planets, Stars and Stellar Systems. Volume 3: Solar and Stellar Planetary Systems, 309, Springer {690}CrossRefGoogle Scholar
Tiscareno, MS, Burns, JA, Cuzzi, JN, et al., 2010a, Cassini imaging search rules out rings around Rhea. Geophys. Res. Lett., 37, L14205 {691}CrossRefGoogle Scholar
Tiscareno, MS, Burns, JA, Hedman, MM, et al., 2006, 100-mmoonlets in Saturn's A ring from observations of ‘propeller’ structures. Nature, 440, 648–650 {691}CrossRefGoogle ScholarPubMed
Tiscareno, MS, Burns, JA, Hedman, MM, 2008, The population of propellers in Saturn's A Ring. AJ, 135, 1083–1091 {691}CrossRefGoogle Scholar
Tiscareno, MS, Burns, JA, Sremcevic, M, et al., 2010b, Characteristics and non-Keplerian motion of ‘propeller’ moons in Saturn's rings. ApJ, 718, L92–L96 {691}CrossRefGoogle Scholar
Tiscareno, MS, Mitchell, CJ, Murray, CD, et al., 2013, Observations of ejecta clouds produced by impacts onto Saturn's rings. Science, 340, 460–464 {690}CrossRefGoogle ScholarPubMed
Tiscareno, MS, Showalter, MR, French, RG, et al., 2016, Observing planetary rings and small satellites with JWST. PASP, 128(1), 018008 {690}CrossRefGoogle Scholar
Tiscareno, MS, Thomas, PC, Burns, JA, 2009, The rotation of Janus and Epimetheus. Icarus, 204, 254–261 {74}CrossRefGoogle Scholar
Tisserand, P, Le Guillou, L, Afonso, C, et al., 2007, Limits on the MACHO content of the Galactic halo from the EROS–II Survey of the Magellanic Clouds. A&A, 469, 387–404 {122}Google Scholar
Tittemore, WC, Wisdom, J, 1988, Tidal evolution of the Uranian satellites. I. Passage of Ariel and Umbriel through the 5:3 mean-motion commensurability. Icarus, 74, 172–230 {689}Google Scholar
Tittemore, WC, Wisdom, J, 1989, Tidal evolution of the Uranian satellites. II. An explanation of the anomalously high orbital inclination of Miranda. Icarus, 78, 63–89 {689}Google Scholar
Tittemore, WC, Wisdom, J, 1990, Tidal evolution of the Uranian satellites. III. Evolution through the Miranda–Umbriel 3:1, Miranda–Ariel 5:3, and Ariel–Umbriel 2:1 mean-motion commen-surabilities. Icarus, 85, 394–443 {689}Google Scholar
Todd, M, Tanga, P, Coward, DM, et al., 2012, An optimal Mars Trojan asteroid search strategy. MNRAS, 424, 372–376 {690}CrossRefGoogle Scholar
Todorov, KO, Deming, D, Burrows, A, et al., 2014, Updated Spitzer emission spectroscopy of bright transiting hot Jupiter HD 189733 b. ApJ, 796, 100 {731}CrossRefGoogle Scholar
Todorov, KO, Deming, D, Harrington, J, et al., 2010a, Spitzer–IRAC secondary eclipse photometry of the transiting extrasolar planet HAT–P–1 b. ApJ, 708, 498–504 {163, 735}CrossRefGoogle Scholar
Todorov, KO, Deming, D, Knutson, HA, et al., 2012, Warm Spitzer observations of three hot exoplanets: XO–4 b, HAT–P–6 b, and HAT–P–8 b. ApJ, 746, 111 {205, 735, 736, 757}CrossRefGoogle Scholar
Todorov, KO, Deming, D, Knutson, HA, 2013, Warm Spitzer photometry of three hot Jupiters: HAT–P–3 b, HAT–P–4 b and HAT–P–12 b. ApJ, 770, 102 {735, 736}CrossRefGoogle Scholar
Todorov, KO, Line, MR, Pineda, JE, et al., 2016, The water abundance of the directly imaged substellar companion k And b retrieved from a near infrared spectrum. ApJ, 823, 14 {761}CrossRefGoogle Scholar
Todorov, KO, Luhman, KL, McLeod, KK, 2010b, Discovery of a planetary-mass companion to a brown dwarf in Taurus. ApJ, 714, L84–L88 {362, 445, 763}CrossRefGoogle Scholar
Tofflemire, BM, Wisniewski, JP, Kowalski, AF, et al., 2012, The implications of M dwarf flares on the detection and characterisation of exoplanets at infrared wavelengths. AJ, 143, 12 {427}CrossRefGoogle Scholar
Tognelli, E, Prada Moroni, PG, Degl'Innocenti, S, 2016, Effect of planet ingestion on low-mass stars evolution: the case of 2MASS J08095427–4721419 star in the Gamma Velorumcluster. MNRAS, 460, 3888–3899 {311}CrossRefGoogle Scholar
Tohline, JE, 2002, The origin of binary stars. ARA&A, 40, 349–385 {547, 553}Google Scholar
Tokano, T, 2015, Precipitation climatology on Titan-like exomoons. Origins of Life and Evolution of the Biosphere, 45, 231–239 {627}CrossRefGoogle ScholarPubMed
Tokieda, T, 2013, Tides: a tutorial. Lecture Notes in Physics, Berlin Springer Verlag, volume 861 of Lecture Notes in Physics, Berlin Springer Verlag, 1 {531}Google Scholar
Tokovinin, A, 1992, The frequency of low-mass companions to K and M stars in the solar neighbourhood. A&A, 256, 121–132 {50}Google Scholar
Tokovinin, A, 2008, Comparative statistics and origin of triple and quadruple stars. MNRAS, 389, 925–938 {527}CrossRefGoogle Scholar
Tokovinin, A, Fischer, DA, Bonati, M, et al., 2013, CHIRON: a fiber fed spectrometer for precise radial velocities. PASP, 125, 1336–1347 {47}CrossRefGoogle Scholar
Tokovinin, A, Thomas, S, Sterzik, M, et al., 2006, Tertiary companions to close spectroscopic binaries. A&A, 450, 681–693 {528, 547}Google Scholar
Toliou, A, Morbidelli, A, Tsiganis, K, 2016, Magnitude and timing of the giant planet instability: a reassessment from the perspective of the asteroid belt. A&A, 592, A72 {697}Google Scholar
Toner, CG, Gray, DF, 1988, The starpatch on the G8 dwarf ~ Boo A. ApJ, 334, 1008–1020 {39}CrossRefGoogle Scholar
Tonks, WB, Melosh, HJ, 1992, Core formation by giant impacts. Icarus, 100, 326–346 {476, 575, 664}Google Scholar
Tonry, J, Davis, M, 1979, A survey of galaxy redshifts. I Data reduction techniques. AJ, 84, 1511–1525 {29}CrossRefGoogle Scholar
Tonry, JL, Howell, SB, Everett, ME, et al., 2005, A search for variable stars and planetary occultations in NGC 2301. I. Techniques. PASP, 117, 281–289 {159}CrossRefGoogle Scholar
Toomre, A, 1964, On the gravitational stability of a disk of stars. ApJ, 139, 1217–1238 {453}CrossRefGoogle Scholar
Toon, OB, McKay, CP, Ackerman, TP, et al., 1989, Rapid calculation of radiative heating rates and photodissociation rates in inhomogeneous multiple scattering atmospheres. J. Geophys. Res., 94, 16287–16301 {579}CrossRefGoogle Scholar
Toon, OB, Pollack, JB, Turco, RP, 1982, The ultraviolet absorber on Venus: amorphous sulphur. Icarus, 51, 358–373 {589}CrossRefGoogle Scholar
Torbett, MV, 1989, Chaotic motion in a comet disk beyond Neptune: the delivery of short-period comets. AJ, 98, 1477–1481 {694}CrossRefGoogle Scholar
Torbett, MV, Smoluchowski, R, 1990, Chaotic motion in a primordial comet disk beyond Neptune and comet influx to the solar system. Nature, 345, 49–51 {694}CrossRefGoogle Scholar
Tornabene, LL, Osinski, GR, McEwen, AS, et al., 2013, An impact origin for hydrated silicates on Mars: a synthesis. J. Geophys. Res. (Planets), 118, 994–1012 {658}Google Scholar
Torres, G, 2007a, The planet host star γ Cep: physical properties, the binary orbit, and the mass of the substellar companion. ApJ, 654, 1095–1109 {95, 714}CrossRefGoogle Scholar
Torres, G, 2007b, The transiting exoplanet host star GJ 436: a test of stellar evolution models in the lower main sequence, and revised planetary parameters. ApJ, 671, L65–L68 {728}CrossRefGoogle Scholar
Torres, G, Andersen, J, Giménez, A, 2010a, Accurate masses and radii of normal stars: modern results and applications. A&A Rev., 18, 67–126 {81}Google Scholar
Torres, G, Bakos GÁ, Hartman, J, et al., 2010b, HAT–P–14 b: a 2.2 Jupiter-mass exo-planet transiting a bright F star. ApJ, 715, 458–467 {163, 224, 736}CrossRefGoogle Scholar
Torres, G, Bakos GÁ, Kovács, G, et al., 2007, HAT–P–3 b: a heavy-element-rich planet transiting a K dwarf star. ApJ, 666, L121–L124 {304, 735}CrossRefGoogle Scholar
Torres, G, Fischer, DA, Sozzetti, A, et al., 2012, Improved spectroscopic parameters for transiting planet hosts. ApJ, 757, 161 {377}CrossRefGoogle Scholar
Torres, G, Fressin, F, Batalha, NM, et al., 2011, Modeling Kepler transit light curves as false positives: rejection of blend scenarios for Kepler–9, and validation of Kepler–9 d, a super-Earth-size planet in a multiple system. ApJ, 727, 24 {197, 208, 738}CrossRefGoogle Scholar
Torres, G, Kane, SR, Rowe, JF, et al., 2017, Validation of small Kepler transiting planet candidates in or near the habitable zone. AJ, 154, 264 {747}CrossRefGoogle Scholar
Torres, G, Kipping, DM, Fressin, F, et al., 2015, Validation of 12 small Kepler transiting planets in the habitable zone. ApJ, 800, 99 {634, 635, 744, 745}CrossRefGoogle Scholar
Torres, G, Konacki, M, Sasselov, DD, et al., 2004a, New data and improved parameters for the extrasolar transiting planet OGLE–TR–56 b. ApJ, 609, 1071–1075 {749}CrossRefGoogle Scholar
Torres, G, Konacki, M, Sasselov, DD, 2004b, Testing blend scenarios for extrasolar transiting planet candidates. I. OGLE–TR–33: a false positive. ApJ, 614, 979–989 {197}CrossRefGoogle Scholar
Torres, G, Konacki, M, Sasselov, DD, 2005, Testing blend scenarios for extrasolar transiting planet candidates. II. OGLE–TR–56. ApJ, 619, 558–569 {749}CrossRefGoogle Scholar
Torres, G, Winn, JN, Holman, MJ, 2008, Improved parameters for extrasolar transiting planets. ApJ, 677, 1324–1342 {20, 172, 202, 206, 293, 294, 307}CrossRefGoogle Scholar
Tosi, N, Godolt, M, Stracke, B, et al., 2017, The habitability of a stagnant-lid Earth. A&A, 605, A71 {629}Google Scholar
Toth, I, 2016, Some physical properties predicted for the putative Planet Nine of the solar system. A&A, 592, A86 {687}Google Scholar
Tóth, Z, Nagy, I, 2014, Dynamical stability of the GJ 581 exoplanetary system. MNRAS, 442, 454–461 {717}CrossRefGoogle Scholar
Touboul, M, Kleine, T, Bourdon, B, et al., 2007, Late formation and prolonged differentiation of the Moon inferred from Wisotopes in lunar metals. Nature, 450, 1206–1209 {652, 665}CrossRefGoogle ScholarPubMed
Touboul, M, Kleine, T, Bourdon, B, 2009, Tungsten isotopes in ferroan anorthosites: implications for the age of the Moon and lifetime of its magma ocean. Icarus, 199, 245–249 {652}CrossRefGoogle Scholar
Touma, J, Wisdom, J, 1998, Resonances in the early evolution of the Earth–Moon system. AJ, 115, 1653–1663 {665}CrossRefGoogle Scholar
Tovmassian, GH, Zharikov, SV, Neustroev, VV, 2007, Evidence of precession of the white dwarf in cataclysmic variables. ApJ, 655, 466–472 {114}CrossRefGoogle Scholar
Townes, CH, 1997, Optical and infrared SETI. IAU Colloq. 161, 585–594 {643}
Townes, CH, Wishnow, EH, 2008, Interferometry at mid-infrared wavelengths: the ISI system. SPIE Conf. Ser., volume 7013, 12 {348}Google Scholar
Toyota, E, Itoh, Y, Ishiguma, S, et al., 2009, Radial velocity search for extrasolar planets in visual binary systems. PASJ, 61, 19–28 {56, 78}CrossRefGoogle Scholar
Tracy, AJ, Hankla, AK, Lopez, CA, et al., 2004, High-power solid-state sodium beacon laser guide star for the Gemini North Observatory. SPIE Conf. Ser., volume 5490, 998–1009 {332}Google Scholar
Trafton, LM, Hunten, DM, Zahnle, KJ, et al., 1997, Escape processes at Pluto and Charon. Pluto and Charon, 475–522, University of Arizona Press {601}
Trammell, GB, Arras, P, Li, ZY, 2011, Hot Jupiter magnetospheres. ApJ, 728, 152 {387}CrossRefGoogle Scholar
Trammell, GB, Li, ZY, Arras, P, 2014, Magnetohydrodynamic simulations of hot Jupiter upper atmospheres. ApJ, 788, 161 {731}CrossRefGoogle Scholar
Traub, WA, 2012, Terrestrial, habitable-zone exoplanet frequency from Kepler. ApJ, 745, 20 {290, 308}CrossRefGoogle Scholar
Traub, WA, 2015, Steps towards eta-Earth, from Kepler data. Int. J. Astrobiol., 14, 359–363 {633}CrossRefGoogle Scholar
Traub, WA, Beichman, C, Boden, AF, et al., 2010, Detectability of Earth-like planets in multi-planet systems: preliminary report. EAS Pub. Ser., volume 42, 191–199 {87, 100}CrossRefGoogle Scholar
Traub, WA, Chen, P, Kern, B, et al., 2008, Planetscope: an exoplanet coronagraph on a balloon platform. SPIE Conf. Ser., volume 7010, 110 {339, 349}Google Scholar
Traub, WA, Shaklan, S, Lawson, P, 2007, Prospects for Terrestrial Planet Finder: TPF-C, TPF-I, and TPF-O. In the Spirit of Bernard Lyot: The Direct Detection of Planets and Circumstellar Disks in the 21st Century, 36 {352}Google Scholar
Traub, WA, Vanderbei, RJ, 2003, Two-mirror apodisation for high-contrast imaging. ApJ, 599, 695–701 {335}CrossRefGoogle Scholar
Trauger, J, 2007, Eclipse: a case study for direct coronagraphic imaging of planetary systems from space. In the Spirit of Bernard Lyot: The Direct Detection of Planets and Circumstellar Disks in the 21st Century {353}
Trauger, J, Stapelfeldt, K, Traub, W, et al., 2008, ACCESS: a NASA mission concept study of an Actively Corrected Coronagraph for Exoplanet System Studies. SPIE Conf. Ser., volume 7010, 69 {352, 353}Google Scholar
Trauger, J, Traub, WA, 2007, A laboratory demonstration of the capability to image an Earth-like extrasolar planet. Nature, 446, 771–773 {339}CrossRefGoogle ScholarPubMed
Travis, BJ, Schubert, G, 2015, Keeping Enceladus warm. Icarus, 250, 32–42 {689}CrossRefGoogle Scholar
Travouillon, T, Jolissaint, L, Ashley, MCB, et al., 2009, Overcoming the boundary layer turbulence at Dome C: ground-layer adaptive optics versus tower. PASP, 121, 668–679 {347}CrossRefGoogle Scholar
Traxler, A, Garaud, P, Stellmach, S, 2011, Numerically determined transport laws for fingering (thermohaline) convection in astrophysics. ApJ, 728, L29 {394}CrossRefGoogle Scholar
Tregloan-Reed, J, Southworth, J, 2013, An extremely high photometric precision in ground-based observations of two transits in the WASP–50 planetary system. MNRAS, 431, 966–971 {187, 189, 755}CrossRefGoogle Scholar
Tregloan-Reed, J, Southworth, J, Burgdorf, M, et al., 2015, Transits and star spots in the WASP–6 planetary system. MNRAS, 450, 1760–1769 {253, 752}CrossRefGoogle Scholar
Tregloan-Reed, J, Southworth, J, Mancini, L, et al., 2018, Possible detection of a bimodal cloud distribution in the atmosphere of HAT–P–32 A b from multiband photometry. MNRAS, 474, 5485–5499 {25, 189, 212, 737}CrossRefGoogle Scholar
Tregloan-Reed, J, Southworth, J, Tappert, C, 2013, Transits and star spots in the WASP–19 planetary system. MNRAS, 428, 3671–3679 {166, 212, 213, 253, 754}CrossRefGoogle Scholar
Treiman, AH, Gleason, JD, Bogard, DD, 2000, The SNC meteorites are from Mars. Planet. Space Sci., 48, 1213–1230 {683}CrossRefGoogle Scholar
Tremaine, S, 1991, On the origin of the obliquities of the outer planets. Icarus, 89, 85–92 {311, 654, 680}CrossRefGoogle Scholar
Tremaine, S, 2015, The statistical mechanics of planet orbits. ApJ, 807, 157 {476}CrossRefGoogle Scholar
Tremaine, S, Dones, L, 1993, On the statistical distribution of massive impactors. Icarus, 106, 335–341 {600}CrossRefGoogle Scholar
Tremaine, S, Dong, S, 2012, The statistics of multi-planet systems. AJ, 143, 94 {298, 316, 323, 324, 501}CrossRefGoogle Scholar
Tremaine, S, Yavetz, TD, 2014, Why do Earth satellites stay up? American Journal of Physics, 82, 769–777 {529}CrossRefGoogle Scholar
Tremaine, S, Zakamska, NL, 2004, Extrasolar planet orbits and eccentricities. The Search for Other Worlds, volume 713 of Amer. Inst. Phys. Conf. Ser., 243–252 {529}Google Scholar
Tremblay, PE, Schilbach, E, Röser, S, et al., 2012, Spectroscopic and photometric studies of white dwarfs in the Hyades. A&A, 547, A99 {418}Google Scholar
Tremblin, P, Audit, E, Minier, V, et al., 2012, Three-dimensional simulations of globule and pillar formation around H II regions: turbulence and shock curvature. A&A, 546, A33 {462}Google Scholar
Tremblin, P, Chabrier, G, Mayne, NJ, et al., 2017, Advection of potential temperature in the atmosphere of irradiated exoplanets: a robust mechanism to explain radius inflation. ApJ, 841, 30 {303, 733}CrossRefGoogle Scholar
Tremblin, P, Chiang, E, 2013, Colliding planetary and stellar winds: charge exchange and transit spectroscopy in neutral hydrogen. MNRAS, 428, 2565–2576 {428}CrossRefGoogle Scholar
Triaud, AHMJ, 2011, The time dependence of orbital inclinations of hot Jupiters. A&A, 534, L6 {499}Google Scholar
Triaud, AHMJ, 2014, Colour-magnitude diagrams of transiting exoplanets. I. Systems with parallaxes. MNRAS, 439, L61–L64 {607, 729, 731, 732}CrossRefGoogle Scholar
Triaud, AHMJ, Anderson, DR, Collier Cameron, A, et al., 2013a, WASP–80 b: a gas giant transiting a cool dwarf. A&A, 551, A80 {12, 13, 24, 164, 166, 195, 253, 255, 756}Google Scholar
Triaud, AHMJ, Collier Cameron, A, Queloz, D, et al., 2010, Spin–orbit angle measurements for six southern transiting planets: new insights into the dynamical origins of hot Jupiters. A&A, 524, A25 {41, 165, 195, 253, 254, 751, 752, 753}Google Scholar
Triaud, AHMJ, Gillon, M, Ehrenreich, D, et al., 2015, WASP–80 b has a day-side within the T-dwarf range. MNRAS, 450, 2279–2290 {253, 756}CrossRefGoogle Scholar
Triaud, AHMJ, Hebb, L, Anderson, DR, et al., 2013b, The EBLMproject. I. Physical and orbital parameters, including spin–orbit angles, of two low-mass eclipsing binaries on opposite sides of the brown dwarf limit. A&A, 549, A18 {253, 754}Google Scholar
Triaud, AHMJ, Lanotte, AA, Smalley, B, et al., 2014, Colour-magnitude diagrams of transiting Exoplanets. II. A larger sample from photometric distances. MNRAS, 444, 711–728 {607}CrossRefGoogle Scholar
Triaud, AHMJ, Martin, DV, Ségransan, D, et al., 2017a, The EBLM Project. IV. Spectroscopic orbits of over 100 eclipsing M dwarfs masquerading as transiting hot Jupiters. A&A, 608, A129 {178}Google Scholar
Triaud, AHMJ, Neveu-Van Malle M, Lendl, M, et al., 2017b, Peculiar architectures for the WASP–53 and WASP–81 planet-hosting systems. MNRAS, 467, 1714–1733 {253, 755, 756}Google Scholar
Triaud, AHMJ, Queloz, D, Bouchy, F, et al., 2009, The Rossiter–McLaughlin effect of CoRoT–3 b and HD 189733 b. A&A, 506, 377–384 {43, 195, 251, 253, 730, 733}Google Scholar
Triaud, AHMJ, Queloz, D, Hellier, C, et al., 2011, WASP–23 b: a transiting hot Jupiter around a K dwarf and its Rossiter–McLaughlin effect. A&A, 531, A24 {25, 190, 195, 253, 754}Google Scholar
Trifonov, T, Kürster, M, Zechmeister, M, et al., 2017, Three planets around HD 27894: a close-in pair with a 2:1 period ratio and an eccentric Jovian planet at 5.4 au. A&A, 602, L8 {77, 719}Google Scholar
Trifonov, T, Kürster, M, Zechmeister, M, 2018, The CARMENES search for exoplanets around M dwarfs: first visual-channel radial-velocity measurements and orbital parameter updates of seven M-dwarf planetary systems. A&A, 609, A117 {24, 48, 716, 717, 724, 729}Google Scholar
Trifonov, T, Reffert, S, Zechmeister, M, et al., 2015, Precise radial velocities of giant stars. VIII. Testing for the presence of planets with CRIRES infrared radial velocities. A&A, 582, A54 {56}Google Scholar
Trilling, DE, 2000, Tidal constraints on the masses of extrasolar planets. ApJ, 537, L61–L64 {545, 713, 715, 720, 723, 724}CrossRefGoogle Scholar
Trilling, DE, Benz, W, Guillot, T, et al., 1998, Orbital evolution and migration of giant planets: modeling extrasolar planets. ApJ, 500, 428–439 {521, 602}CrossRefGoogle Scholar
Trilling, DE, Brown, RH, 1998, A circumstellar dust disk around a star with a known planetary companion. Nature, 395, 775–777 {361, 728}CrossRefGoogle Scholar
Trilling, DE, Brown, RH, Rivkin, AS, 2000, Circumstellar dust disks around stars with known planetary companions. ApJ, 529, 499–505 {715, 717, 724, 728}CrossRefGoogle Scholar
Trilling, DE, Bryden, G, Beichman, CA, et al., 2008, Debris disks around Sun-like stars. ApJ, 674, 1086-1105 {493}CrossRefGoogle Scholar
Trilling, DE, Koerner, DW, Barnes, JW, et al., 2001, Near-infrared coronagraphic imaging of the circumstellar disk around TWHya. ApJ, 552, L151–L154 {466}CrossRefGoogle Scholar
Trilling, DE, Lunine, JI, Benz, W, 2002, Orbital migration and the frequency of giant planet formation. A&A, 394, 241–251 {521, 602}Google Scholar
Trilling, DE, Robinson, T, Roegge, A, et al., 2017, Implications for planetary system formation from interstellar object Oumuamua. ApJ, 850, L38 {692, 693}CrossRefGoogle Scholar
Trilling, DE, Stansberry, JA, Stapelfeldt, KR, et al., 2007, Debris disks in main-sequence binary systems. ApJ, 658, 1289–1311 {495, 548, 549}CrossRefGoogle Scholar
Tripathi, A, Kratter, KM, Murray-Clay, RA, et al., 2015, Simulated photoevaporative mass loss from hot Jupiters in 3d. ApJ, 808, 173 {601}CrossRefGoogle Scholar
Tripathi, A, Winn, JN, Johnson, JA, et al., 2010, A prograde, low-inclination orbit for the very hot Jupiter WASP–3 b. ApJ, 715, 421–428 {253, 751}CrossRefGoogle Scholar
Tritton, DJ, Davies, PA, 1985, Instabilities in geophysical fluid dynamics. Hydrodynamic Instabilities and the Transition to Turbulence, 229 {462}CrossRefGoogle Scholar
Tromp, J, 2001, Inner-core anisotropy and rotation. Ann. Rev. Earth Plan. Sci., 29, 47–69 {596}CrossRefGoogle Scholar
Troup, NW, Nidever, DL, De Lee, N, et al., 2016, Companions to APOGEE Stars. I. A Milky Way-spanning catalogue of stellar and substellar companion candidates and their diverse hosts. AJ, 151, 85 {64, 65, 66}CrossRefGoogle Scholar
Troutman, MR, Hinkle, KH, Najita, JR, et al., 2011, Ro-vibrational CO detected in the β Pic circumstellar disk. ApJ, 738, 12 {762}CrossRefGoogle Scholar
Troyer, J, Moses, JI, Fegley, B, et al., 2007, Disequilibrium chemistry on GJ 229B. AAS Bulletin, volume 38, 450 {587}Google Scholar
Trujillo, CA, Sheppard, SS, 2014, A Sedna-like body with a perihelion of 80 au. Nature, 507, 471–474 {686}CrossRefGoogle Scholar
TrujilloBueno, J, Shchukina, N, 2009, Three-dimensional radiative transfer modeling of the polarisation of the Sun's continuous spectrum. ApJ, 694, 1364–1378 {245}Google Scholar
Tsai, SM, Dobbs-Dixon, I, Gu, PG, 2014, Three-dimensional structures of equatorial waves and the resulting superrotation in the atmosphere of a tidally-locked hot Jupiter. ApJ, 793, 141 {596, 731}CrossRefGoogle Scholar
Tsai, SM, Lyons, JR, Grosheintz, L, et al., 2017, VULCAN: an open-source, validated chemical kinetics Python code for exoplanetary atmospheres. ApJS, 228, 20 {606, 731, 733}CrossRefGoogle Scholar
Tsang, D, 2011, Protoplanetary disk resonances and type I migration. ApJ, 741, 109 {519}CrossRefGoogle Scholar
Tsapras, Y, Choi, JY, Street, RA, et al., 2014, A super-Jupiter orbiting a late-type star: a refined analysis of microlensing event OGLE–2012–BLG–406. ApJ, 782, 48 {760}CrossRefGoogle Scholar
Tsapras, Y, Horne, K, Kane, S, et al., 2003, Microlensing limits on numbers and orbits of extrasolar planets from the 1998–2000 OGLE events. MNRAS, 343, 1131–1144 {140}CrossRefGoogle Scholar
Tsapras, Y, Hundertmark, M, Wyrzykowski Ł, et al., 2016, The OGLE–III planet detection efficiency from six years of microlensing observations (2003–2008). MNRAS, 457, 1320–1331 {144}CrossRefGoogle Scholar
Tsapras, Y, Street, R, Horne, K, et al., 2009, Robo Net–II: follow-up observations of microlensing events with a robotic network of telescopes. Astron. Nach., 330, 4–11 {140}CrossRefGoogle Scholar
Tsiaras, A, Rocchetto, M, Waldmann, IP, et al., 2016a, Detection of an atmosphere around the super-Earth 55 Cnc e. ApJ, 820, 99 {570, 728}CrossRefGoogle Scholar
Tsiaras, A, Waldmann, IP, Rocchetto, M, et al., 2016b, A new approach to analysing HST spatial scans: the transmission spectrum of HD 209458 b. ApJ, 832, 202 {732}CrossRefGoogle Scholar
Tsiganis, K, Dvorak, R, Pilat-Lohinger, E, 2000, Thersites: a ‘jumping’ Trojan? A&A, 354, 1091–1100 {690}Google Scholar
Tsiganis, K, Gomes, R, Morbidelli, A, et al., 2005, Origin of the orbital architecture of the giant planets of the solar system. Nature, 435, 459–461 {524, 695, 696}CrossRefGoogle ScholarPubMed
Tsokolov, SA, 2009, Why is the definition of life so elusive? Epistemological considerations. Astrobiology, 9, 401–412 {635}CrossRefGoogle ScholarPubMed
Tsuji, T, Ohnaka, K, Aoki, W, 1996, Dust formation in stellar photospheres: a case of very low mass stars and a possible resolution on the effective temperature scale of Mdwarfs. A&A, 305, L1 {436}Google Scholar
Tsuji, T, Yamamura, I, Sorahana, S, 2011, AKARI observations of brown dwarfs. II. CO2 as probe of carbon and oxygen abundances in brown dwarfs. ApJ, 734, 73 {434}CrossRefGoogle Scholar
Tsujimoto, T, Nomoto, K, Yoshii, Y, et al., 1995a, Relative frequencies of Type Ia and Type II supernovae in the chemical evolution of the Galaxy, LMC and SMC. MNRAS, 277, 945–958 {399}CrossRefGoogle Scholar
Tsujimoto, T, Yoshii, Y, Nomoto, K, et al., 1995b, Abundance gradients in the star-forming viscous disk and chemical properties of the bulge. A&A, 302, 704–712 {400}Google Scholar
Tsukamoto, Y, Makino, J, 2007, Formation of protoplanets from massive planetesimals in binary systems. ApJ, 669, 1316–1323 {550}CrossRefGoogle Scholar
TucciMaia, M, Meléndez, J, Ramírez, I, 2014, High precision abundances in the 16 Cyg binary system: a signature of the rocky core in the giant planet. ApJ, 790, L25 {715}Google Scholar
TucciMaia, M, Ramírez, I, Meléndez, J, et al., 2016, The solar twin planet search. III. The [Y/Mg] clock: estimating stellar ages of solar-type stars. A&A, 590, A32 {405}Google Scholar
Tucker, CJ, Fung, IY, Keeling, CD, et al., 1986, Relationship between atmospheric CO2 variations and a satellite-derived vegetation index. Nature, 319, 195–199 {641}CrossRefGoogle Scholar
Tull, RG, 1998, High-resolution fiber-coupled spectrograph of the Hobby–Eberly Telescope. SPIE Conf. Ser., volume 3355, 387–398 {46}Google Scholar
Tuomi, M, 2011, Bayesian re-analysis of the radial velocities of GJ 581: evidence in favour of only four planetary companions. A&A, 528, L5 {23, 24, 716}Google Scholar
Tuomi, M, 2012, Evidence for nine planets in the HD 10180 system. A&A, 543, A52 {11, 23, 24, 70, 718}Google Scholar
Tuomi, M, 2014, A new cold sub-Saturnian candidate planet orbiting GJ 221. MNRAS, 440, L1–L5 {716}CrossRefGoogle Scholar
Tuomi, M, Anglada-Escudé, G, 2013, Up to four planets around the M dwarf GJ 163: sensitivity of Bayesian planet detection criteria to prior choice. A&A, 556, A111 {23, 24, 716}Google Scholar
Tuomi, M, Anglada-Escudé, G, Gerlach, E, et al., 2013a, Habitable-zone super-Earth candidate in a six-planet system around the K2.5V star HD 40307. A&A, 549, A48 {12, 23, 24, 37, 635, 719}Google Scholar
Tuomi, M, Jones, HRA, 2012, Probabilities of exoplanet signals from posterior samplings. A&A, 544, A116 {718}Google Scholar
Tuomi, M, Jones, HRA, Barnes, JR, et al., 2014, Bayesian search for low-mass planets around nearby M dwarfs: estimates for occurrence rate based on global detectability statistics. MNRAS, 441, 1545–1569 {24, 716}CrossRefGoogle Scholar
Tuomi, M, Jones, HRA, Jenkins, JS, et al., 2013b, Signals embedded in the radial velocity noise: periodic variations in the τ Cet velocities. A&A, 551, A79 {23, 24, 714}Google Scholar
Tuomi, M, Kotiranta, S, 2009, Bayesian analysis of the radial velocities of HD 11506 reveals another planetary companion. A&A, 496, L13–L16 {718}Google Scholar
Tuomi, M, Pinfield, D, Jones, HRA, 2011, Application of Bayesian model inadequacy criterion for multiple data sets to radial velocity models of exoplanet systems. A&A, 532, A116 {713, 716, 724}Google Scholar
Turbet, M, Forget, F, Leconte, J, et al., 2017, CO2 condensation is a serious limit to the deglaciation of Earth-like planets. Earth Planet. Sci. Lett., 476, 11–21 {631}CrossRefGoogle Scholar
Turbet, M, Leconte, J, Selsis, F, et al., 2016, The habitability of Proxima Cen b. II. Possible climates and observability. A&A, 596, A112 {714}Google Scholar
Turco, RP, Whitten, RC, Toon, OB, 1982, Stratospheric aerosols: observation and theory. Reviews of Geophysics and Space Physics, 20, 233 {589}CrossRefGoogle Scholar
Turcotte, DL, Schubert, G, 2002, Geodynamics. Cambridge University Press Second Edition {478, 599}CrossRefGoogle Scholar
Turekian, KK, Clark, SP, 1969, Inhomogeneous accumulation of the earth from the primitive solar nebula. Earth Planet. Sci. Lett., 6, 346–348 {669}CrossRefGoogle Scholar
Turnbull, MC, Glassman, T, Roberge, A, et al., 2012, The search for habitable worlds. I. The viability of a starshademission. PASP, 124, 418–447 {338, 339}CrossRefGoogle Scholar
Turnbull, MC, Tarter, JC, 2003a, Target selection for SETI. I. A catalogue of nearby habitable stellar systems. ApJS, 145, 181–198 {646}CrossRefGoogle Scholar
Turnbull, MC, Tarter, JC, 2003b, Target selection for SETI. II. Tycho-2 dwarfs, old open clusters, and the nearest 100 stars. ApJS, 149, 423–436 {646}CrossRefGoogle Scholar
Turnbull, MC, Traub, WA, Jucks, KW, et al., 2006, Spectrum of a habitable world: Earth-shine in the near-infrared. ApJ, 644, 551–559 {641}CrossRefGoogle Scholar
Turner, EL, 1985, Galactic colonisation and competition in a young galactic disk. IAU Symp., volume 112, 477–482 {647}Google Scholar
Turner, JD, Christie, D, Arras, P, et al., 2016a, Investigation of the environment around close-in transiting exoplanets using CLOUDY. MNRAS, 458, 3880–3891 {222, 731, 753}CrossRefGoogle Scholar
Turner, JD, Leiter, RM, Biddle, LI, et al., 2017, Investigating the physical properties of transiting hot Jupiters with the 1.5-m Kuiper Telescope. MNRAS, 472, 3871–3886 {734, 735, 736, 737, 751, 754, 755, 756, 757}CrossRefGoogle Scholar
Turner, JD, Pearson, KA, Biddle, LI, et al., 2016b, Ground-based near-UV observations of 15 transiting exoplanets: constraints on their atmospheres and no evidence for asymmetrical transits. MNRAS, 459, 789–819 {222, 729, 733, 735, 736, 751, 754, 755, 756}CrossRefGoogle Scholar
Turner, JD, Smart, BM, Hardegree-Ullman, KK, et al., 2013, Near-ultraviolet and optical observations of the transiting exoplanet TrES–3 b. MNRAS, 428, 678–690 {222, 751}CrossRefGoogle Scholar
Turner, NJ, Sano, T, Dziourkevitch, N, 2007, Turbulent mixing and the dead zone in protostellar disks. ApJ, 659, 729–737 {459, 468}CrossRefGoogle Scholar
Turner, NJ, Willacy, K, Bryden, G, et al., 2006, Turbulent mixing in the outer solar nebula. ApJ, 639, 1218–1226 {468}CrossRefGoogle Scholar
Turner, OD, Anderson, DR, Collier Cameron, A, et al., 2016c, WASP–120, WASP–122 b, and WASP–123 b: three newly-discovered planets from the WASP-South survey. PASP, 128(6), 064401 {738, 757}CrossRefGoogle Scholar
Turrini, D, Coradini, A, Magni, G, 2012, Jovian early bombardment: planetesimal erosion in the inner asteroid belt. ApJ, 750, 8 {684}CrossRefGoogle Scholar
Turrini, D, Magni, G, Coradini, A, 2011, Probing the history of solar system through the cratering records on Vesta and Ceres. MNRAS, 413, 2439–2466 {681}CrossRefGoogle Scholar
Tusnski, LRM, Valio, A, 2011, Transit model of planets with moon and ring systems. ApJ, 743, 97 {276}CrossRefGoogle Scholar
Tutukov, AV, Bogomazov, AI, 2012, The search for planets around eclipsing binary stars. Astronomy Reports, 56, 775–783 {194}CrossRefGoogle Scholar
Tutukov, AV, Fedorova, AV, 2013, The planet around the horizontal-branch star HIP 13044. Astronomy Reports, 57, 65–69 {724}CrossRefGoogle Scholar
Twicken, JD, Jenkins, JM, Seader, SE, et al., 2016, Detection of potential transit signals in 17 quarters of Kepler data: results of the final Kepler mission transiting planet search (DR25). AJ, 152, 158 {196}CrossRefGoogle Scholar
Tyler, GL, Sweetnam, DN, Anderson, JD, et al., 1989, Voyager radio science observations of Neptune and Triton. Science, 246, 1466–1473 {658, 689}CrossRefGoogle ScholarPubMed
Tyler, R, 2011, Tidal dynamical considerations constrain the state of an ocean on Enceladus. Icarus, 211, 770–779 {627}CrossRefGoogle Scholar
Tyler, RH, Henning, WG, Hamilton, CW, 2015, Tidal heating in a magma ocean within Jupiter's moon Io. ApJS, 218, 22 {544}CrossRefGoogle Scholar
Tyson, JA, 2010, Optical synoptic telescopes: new science frontiers. Ground-based and Airborne Telescopes III, volume 7733 of Proc. SPIE, 773303 {171}Google Scholar
Tziperman, E, Farrell, B, 2009, Pliocene equatorial temperature: lessons from atmospheric superrotation. Paleoceanography, 24, PA1101 {596}CrossRefGoogle Scholar
Ubide, T, Guyett, PC, Kenny, GG, et al., 2017, Protracted volcanism after large impacts: evidence from the Sudbury impact basin. J. Geophys. Res. (Planets), 122, 701–728 {670}Google Scholar
Udalski, A, 2003, The Optical Gravitational Lensing Experiment: real time data analysis systems in the OGLE–III survey. Acta Astronomica, 53, 291–305 {140}Google Scholar
Udalski, A, 2007, Transit campaigns of the OGLE–III survey. Transiting Extrasolar Planets Workshop, volume 366 of ASP Conf. Ser., 51–57 {168}Google Scholar
Udalski, A, 2009, The Optical Gravitational Lensing Experiment (OGLE): Bohdan's and Our Great Adventure. The Variable Universe: A Celebration of Bohdan Paczyński, volume 403 of ASP Conf. Ser., 110 {142}Google Scholar
Udalski, A, Jaroszyński, M, Paczyński, B, et al., 2005, A Jovian-mass planet in micro-lensing event OGLE–2005–BLG–71. ApJ, 628, L109–L112 {10, 139, 141, 145, 146, 759}CrossRefGoogle Scholar
Udalski, A, Jung, YK, Han, C, et al., 2015a, A Venus-mass planet orbiting a brown dwarf: a missing link between planets and moons. ApJ, 812, 47 {760}CrossRefGoogle Scholar
Udalski, A, Paczyński, B, Zebrun, K, et al., 2002a, The Optical Gravitational Lensing Experiment: search for planetary and low-luminosity object transits in the Galactic disk: results of 2001 campaign. Acta Astronomica, 52, 1–37 {168}Google Scholar
Udalski, A, Pont, F, Naef, D, et al., 2008, OGLE–TR–211: a new transiting inflated hot Jupiter from the OGLE survey and ESO LP666 spectroscopic follow-up pro-gramme. A&A, 482, 299–304 {168, 749}Google Scholar
Udalski, A, Szewczyk, O, Zebrun, K, et al., 2002b, The Optical Gravitational Lensing Experiment: planetary and low-luminosity object transits in the Carina fields of the Galactic disk. Acta Astronomica, 52, 317–359 {168}Google Scholar
Udalski, A, Szymanski, M, Kaluzny, J, et al., 1993, The Optical Gravitational Lensing Experiment: discovery of the first candidate microlensing event in the direction of the Galactic bulge. Acta Astronomica, 43, 289–294 {122}Google Scholar
Udalski, A, Szymanski, MK, Kubiak, M, et al., 2004, The Optical Gravitational Lensing Experiment: planetary and low-luminosity object transits in the fields of Galactic disk; results of the 2003 OGLE observing campaigns. Acta Astronomica, 54, 313–345 {168}Google Scholar
Udalski, A, Yee, JC, Gould, A, et al., 2015b, Spitzer as a microlens parallax satellite: mass measurement for the OGLE–2014–BLG–124L planet and its host star. ApJ, 799, 237 {12, 134, 135, 141, 143, 145, 760}CrossRefGoogle Scholar
Udem, T, Holzwarth, R, Hänsch, TW, 2002, Optical frequency metrology. Nature, 416, 233–237 {32}CrossRefGoogle ScholarPubMed
Udry, S, Bonfils, X, Delfosse, X, et al., 2007, The HARPS search for southern extrasolar planets. XI. Super-Earths (5 and 8 M⊕) in a 3-planet system. A&A, 469, L43–L47 {10, 77, 716}Google Scholar
Udry, S, Mayor, M, 2008, Exoplanets: the golden age of radial velocities. ASP Conf. Ser., volume 398, 13–26 {36, 66}Google Scholar
Udry, S, Mayor, M, Benz, W, et al., 2006, The HARPS search for southern extrasolar planets. V. A 14 Earth-mass planet orbiting HD 4308. A&A, 447, 361–367 {60, 308, 391, 718}Google Scholar
Udry, S, Mayor, M, Clausen, JV, et al., 2003a, The CORALIE survey for southern extra-solar planets. X. A Hot Jupiter orbiting HD 73256. A&A, 407, 679–684 {21, 720}Google Scholar
Udry, S, Mayor, M, Maurice, E, et al., 1999a, 20 years of CORAVEL monitoring of radial-velocity standard stars. IAU Colloq. 170: Precise Stellar Radial Velocities, volume 185 of ASP Conf. Ser., 383–389 {30}
Udry, S, Mayor, M, Naef, D, et al., 2000, The CORALIE survey for southern extrasolar planets. II. The short-period planetary companions to HD75289 and HD130322. A&A, 356, 590–598 {55, 65, 78, 720, 722}Google Scholar
Udry, S, Mayor, M, Naef, D, 2002, The CORALIE survey for southern extrasolar planets. VIII. The very low-mass companions of HD 141937, HD 162020, HD 168443 and HD 202206: brown dwarfs or superplanets? A&A, 390, 267–279 {8, 62, 75, 722, 723, 724}Google Scholar
Udry, S, Mayor, M, Queloz, D, 1999b, Towards a new set of high-precision radial-velocity standard stars. IAU Colloq. 170: Precise Stellar Radial Velocities, volume 185 of ASP Conf. Ser., 367–377 {30}Google Scholar
Udry, S, Mayor, M, Queloz, D, 2003b, Extrasolar planets: from individual detections to statistical properties. Scientific Frontiers in Research on Extrasolar Planets, volume 294 of ASP Conf. Ser., 17–26 {719, 722, 723, 724}Google Scholar
Udry, S, Mayor, M, Santos, NC, 2003c, Statistical properties of exoplanets. I. The period distribution: Constraints for the migration scenario. A&A, 407, 369–376 {63, 65}Google Scholar
Udry, S, Santos, NC, 2007, Statistical properties of exoplanets. ARA&A, 45, 397–439 {53, 394}Google Scholar
Uehara, S, Kawahara, H, Masuda, K, et al., 2016, Transiting planet candidates beyond the snow line detected by visual inspection of 7557 Kepler Objects of Interest. ApJ, 822, 2 {193}CrossRefGoogle Scholar
Ueno, Y, Yamada, K, Yoshida, N, et al., 2006, Evidence from fluid inclusions for microbial methanogenesis in the early Archaean era. Nature, 440, 516–519 {673}CrossRefGoogle ScholarPubMed
Ueta, S, Sasaki, T, 2013, The structure of surface H2O layers of ice-covered planets with high-pressure ice. ApJ, 775, 96 {577}CrossRefGoogle Scholar
Ulrich, RK, 1972, Thermohaline convection in stellar interiors. ApJ, 172, 165 {394}CrossRefGoogle Scholar
Ulrich, RK, 1986, Determination of stellar ages from asteroseismology. ApJ, 306, L37–L40 {208, 312}CrossRefGoogle Scholar
Umbreit, S, Spurzem, R, Henning, T, et al., 2011, Disks around brown dwarfs in the ejection scenario. I. Disk collisions in triple systems. ApJ, 743, 106 {444}CrossRefGoogle Scholar
Umebayashi, T, 1983, The densities of charged particles in very dense interstellar clouds. Progress of Theoretical Physics, 69, 480–502 {459}CrossRefGoogle Scholar
Umebayashi, T, Katsuma, N, Nomura, H, 2013, Effects of dust growth and settling on the ionisation by radionuclides. I. Formulation and results in a quiescent state of protoplanetary disks. ApJ, 764, 104 {459}CrossRefGoogle Scholar
Umebayashi, T, Nakano, T, 1981, Fluxes of energetic particles and the ionisation rate in very dense interstellar clouds. PASJ, 33, 617–635 {459}Google Scholar
Umemoto, K, Wentzcovitch, RM, Allen, PB, 2006, Dissociation of MgSiO3 in the cores of gas giants and terrestrial exoplanets. Science, 311, 983–986 {567}CrossRefGoogle ScholarPubMed
Underwood, DR, Jones, BW, Sleep, PN, 2003, The evolution of habitable zones during stellar lifetimes and its implications on the search for extraterrestrial life. Int. J. Astrobiol., 2, 289–299 {624}CrossRefGoogle Scholar
Unterborn, CT, Dismukes, EE, Panero, WR, 2016, Scaling the Earth: a sensitivity analysis of terrestrial exoplanetary interior models. ApJ, 819, 32 {740}CrossRefGoogle Scholar
Unterborn, CT, Johnson, JA, Panero, WR, 2015, Thorium abundances in solar twins and analogues: implications for the habitability of extrasolar planetary systems. ApJ, 806, 139 {406}CrossRefGoogle Scholar
Unterborn, CT, Kabbes, JE, Pigott, JS, et al., 2014, The role of carbon in extrasolar planetary geodynamics and habitability. ApJ, 793, 124 {573}CrossRefGoogle Scholar
Unterborn, CT, Panero, WR, 2017, The effects of Mg/Si on the exoplanetary refractory oxygen budget. ApJ, 845, 61 {397}CrossRefGoogle Scholar
Unwin, SC, Shao, M, Tanner, AM, et al., 2008, Taking themeasure of the Universe: precision astrometry with SIM Planet Quest. PASP, 120, 38–88 {100, 138}CrossRefGoogle Scholar
Urakawa, S, Yamada, T, Suto, Y, et al., 2006, An extrasolar planet transit search with Subaru Suprime-cam. PASJ, 58, 869–881 {171}CrossRefGoogle Scholar
Urban, LE, Rieke, G, Su, K, et al., 2012, The incidence of debris disks at 24μm and 670Myr. ApJ, 750, 98 {493, 494}CrossRefGoogle Scholar
Urey, HC, 1952, On the early chemical history of the Earth and the origin of life. society of photo, 38, 351–363 {672}Google ScholarPubMed
Urey, HC, 1955, The cosmic abundances of potassium, uranium, and thorium and the heat balances of the Earth, the Moon, and Mars. society of photo, 41, 127–144 {398, 399}Google ScholarPubMed
Uribe, AL, Klahr, H, Flock, M, et al., 2011, Three-dimensional magnetohydrodynamic simulations of planet migration in turbulent stratified disks. ApJ, 736, 85 {519}CrossRefGoogle Scholar
Uribe, AL, Klahr, H, Henning, T, 2013, Accretion of gas onto gap-opening planets and circumplanetary flow structure in magnetised turbulent disks. ApJ, 769, 97 {481}CrossRefGoogle Scholar
Ushikubo, T, Kita, NT, Cavosie, AJ, et al., 2008, Lithium in Jack Hills zircons: evidence for extensiveweathering of Earth's earliest crust. Earth Planet. Sci. Lett., 272, 666–676 {667}CrossRefGoogle Scholar
Usoskin, IG, 2017, A history of solar activity over millennia. Living Reviews in Solar Physics, 14, 3 {628, 649}CrossRefGoogle Scholar
Usoskin, IG, Kromer, B, Ludlow, F, et al., 2013, The AD 775 cosmic event revisited: the Sun is to blame. A&A, 552, L3 {628}Google Scholar
Uyama, T, Hashimoto, J, Kuzuhara, M, et al., 2017a, The SEEDS high-contrast imaging survey of exoplanets around young stellar objects. AJ, 153, 106 {359, 762, 763, 764}CrossRefGoogle Scholar
Uyama, T, Tanigawa, T, Hashimoto, J, et al., 2017b, Constraining accretion signatures of exoplanets in the TWHya transitional disk. AJ, 154, 90 {466, 467}CrossRefGoogle Scholar
Uytterhoeven, K, Moya, A, Grigahcène, A, et al., 2011, The Kepler characterisation of the variability among A- and F-type stars. I. General overview. A&A, 534, A125 {411}Google Scholar
Šrámek, O, Milelli, L, Ricard, Y, et al., 2012, Thermal evolution and differentiation of planetesimals and planetary embryos. Icarus, 217, 339–354 {470}CrossRefGoogle Scholar
Vaccaro, T, Van Hamme, W, 2005, The OGLE–TR–56 star–planet system. Ap&SS, 296, 231–234 {749}Google Scholar
Vago, JL, Westall, F, Pasteur Instrument Team, et al., 2017, Habitability on early Mars and the search for biosignatures with the Exo Mars Rover. Astrobiology, 17, 471–510 {636}CrossRefGoogle Scholar
Vahidinia, S, Cuzzi, JN, Marley, M, et al., 2014, Cloud base signature in transmission spectra of exoplanet atmospheres. ApJ, 789, L11 {731}CrossRefGoogle Scholar
Vakili, F, Aristidi, E, Schmider, FX, et al., 2005, KEOPS: towards exo-Earths from Dome C of Antarctica. EAS Pub. Ser., volume 14, 211–217 {347}CrossRefGoogle Scholar
Vakoch, DA, 2016, In defence of METI. Nature Physics, 12, 890 {648}CrossRefGoogle Scholar
Vakoch, DA, Dowd, MF, 2015, The Drake Equation: Estimating the Prevalence of Extraterrestrial Life through the Ages. Cambridge University Press {644}CrossRefGoogle Scholar
Vakoch, DA, Lower, TA, Niles, BA, et al., 2013, What should we say to extraterrestrial intelligence? Acta Astron., 86, 136–148 {648}CrossRefGoogle Scholar
Valat, B, Schmider, FX, Lopez, B, et al., 2006, Scientific potential of a three 0.4-m telescope interferometer at Dome C. SPIE Conf. Ser., volume 6268, 138 {347}Google Scholar
Valdes, F, Freitas, RA, 1986, A search for the tritium hyperfine line from nearby stars. Icarus, 65, 152–157 {647}CrossRefGoogle Scholar
Valdivielso, L, Esparza, P, Martín, EL, et al., 2010, A new gas cell for high-precision Doppler measurements in the near-infrared. ApJ, 715, 1366–1369 {32}CrossRefGoogle Scholar
Valencia, D, Guillot, T, Parmentier, V, et al., 2013, Bulk composition of GJ 1214 b and other sub-Neptune exoplanets. ApJ, 775, 10 {613, 735}CrossRefGoogle Scholar
Valencia, D, Ikoma, M, Guillot, T, et al., 2010, Composition and fate of short-period super-Earths: the case of CoRoT–7 b. A&A, 516, A20 {733}Google Scholar
Valencia, D, O'Connell, RJ, 2009, Convection scaling and subduction on Earth and super-Earths. Earth Planet. Sci. Lett., 286, 492–502 {628}CrossRefGoogle Scholar
Valencia, D, O'Connell, RJ, Sasselov, D, 2006, Internal structure of massive terrestrial planets. Icarus, 181, 545–554 {569, 574, 602, 603, 604}CrossRefGoogle Scholar
Valencia, D, O'Connell, RJ, Sasselov, DD, 2007a, Inevitability of plate tectonics on super-Earths. ApJ, 670, L45–L48 {544, 626, 628, 629}CrossRefGoogle Scholar
Valencia, D, Sasselov, DD, O'Connell, RJ, 2007b, Detailed models of super-Earths: how well can we infer bulk properties? ApJ, 665, 1413–1420 {9, 568, 574, 575, 603}CrossRefGoogle Scholar
Valencia, D, Sasselov, DD, O'Connell, RJ, 2007c, Radius and structure models of the first super-Earth planet. ApJ, 656, 545–551 {544, 574}CrossRefGoogle Scholar
Valenti, JA, Butler, RP, Marcy, GW, 1995, Determining spectrometer instrumental profiles using FTS reference spectra. PASP, 107, 966–976 {31}CrossRefGoogle Scholar
Valenti, JA, Fischer, D, Marcy, GW, et al., 2009, Two exoplanets discovered at Keck observatory. ApJ, 702, 989–997 {26, 720, 723}CrossRefGoogle Scholar
Valenti, JA, Fischer, DA, 2005, Spectroscopic properties of cool stars. I. 1040 F, G, and K dwarfs from Keck, Lick, and AAT planet search programmes. ApJS, 159, 141–166 {24, 54, 55, 59, 250, 377, 379, 381, 383, 388, 393, 397}CrossRefGoogle Scholar
Valenti, JA, Piskunov, N, 1996, Spectroscopy Made Easy: a new tool for fitting observations with synthetic spectra. A&AS, 118, 595–603 {25}Google Scholar
Valio, A, Estrela, R, Netto, Y, et al., 2017, Activity and rotation of Kepler–17. ApJ, 835, 294 {739}CrossRefGoogle Scholar
Valle, G, Dell'Omodarme, M, Prada Moroni, PG, et al., 2014, Evolution of the habitable zone of low-mass stars: detailed stellar models and analytical relationships for different masses and chemical compositions. A&A, 567, A133 {625}Google Scholar
Vallée, JP, 2014a, On a persistent large discrepancy in some parameters of the spiral arms in the Milky Way: a statistical and modelling analysis. MNRAS, 442, 2993–2998 {655}CrossRefGoogle Scholar
Vallée, JP, 2014b, The spiral arms of the Milky Way. AJ, 148, 5 {655}CrossRefGoogle Scholar
Valley, JW, Cavosie, AJ, Ushikubo, T, et al., 2014, Hadean age for a post-magma-ocean zircon confirmed by atom-probe tomography. Nature Geoscience, 7, 219–223 {652}CrossRefGoogle Scholar
Valliappan, SP, Karoff, C, 2012, Is one month of observations enough? A case study on Kepler–21. Astron. Nach., 333, 987–990 {740}CrossRefGoogle Scholar
Valsecchi, F, Rappaport, S, Rasio, FA, et al., 2015, Tidally-driven Roche-lobe overflow of hot Jupiters with MESA. ApJ, 813, 101 {231}CrossRefGoogle Scholar
Valsecchi, F, Rasio, FA, 2014a, Planets on the edge. ApJ, 787, L9 {227, 230, 752, 754}CrossRefGoogle Scholar
Valsecchi, F, Rasio, FA, 2014b, Tidal dissipation and obliquity evolution in hot Jupiter systems. ApJ, 786, 102 {231, 255, 525}CrossRefGoogle Scholar
Valsecchi, F, Rasio, FA, Steffen, JH, 2014, From hot Jupiters to super-Earths via Roche lobe overflow. ApJ, 793, L3 {231, 500}CrossRefGoogle Scholar
Valtonen, M, Bajkova, AT, Bobylev, VV, et al., 2015, Probabilities for solar siblings. Cel. Mech. Dyn. Astron., 121, 107–119 {406}CrossRefGoogle Scholar
Valtonen, M, Nurmi, P, Zheng, JQ, et al., 2009, Natural transfer of viable microbes in space from planets in extrasolar systems to a planet in our solar system and vice versa. ApJ, 690, 210–215 {637}CrossRefGoogle Scholar
Valyavin, GG, Grauzhanina, AO, Galazutdinov, GA, et al., 2015a, Search for signatures of reflected light from the exoplanet HD 189733 b by the method of residual dynamical spectra. Astrophysical Bulletin, 70, 466–473 {731}CrossRefGoogle Scholar
Valyavin, GG, Valeev, AF, Gadelshin, DR, et al., 2015b, First detection of exoplanet transits with the SAO RAS 1-m telescope. Astrophysical Bulletin, 70, 315–317 {755, 756}CrossRefGoogle Scholar
vanBelle, GT, 2008, Closure phase signatures of planet transit events. PASP, 120, 617–624 {183, 184}Google Scholar
vanBelle, GT, 2012, Interferometric observations of rapidly rotating stars. A&A Rev., 20, 51 {215}Google Scholar
vanBelle, GT, von Braun, K, 2009, Directly determined linear radii and effective temperatures of exoplanet host stars. ApJ, 694, 1085–1098 {378}Google Scholar
vanBoekel, R, Henning, T, Menu, J, et al., 2017, Three radial gaps in the disk of TWHya imaged with VLT–SPHERE. ApJ, 837, 132 {360}Google Scholar
vanBoekel, R, Min, M, Leinert, C, et al., 2004, The building blocks of planets within the terrestrial region of protoplanetary disks. Nature, 432, 479–482 {460}Google Scholar
van de Kamp, P, 1963, Astrometric study of Barnard's star from plates taken with the 24-inch Sproul refractor. AJ, 68, 515–521 {83}CrossRefGoogle Scholar
van de Kamp, P, 1967, Principles of Astrometry. W. H. Freeman {83}Google Scholar
van de Kamp, P, 1981, Stellar Paths. D. Reidel, Dordrecht {88}CrossRefGoogle Scholar
van de Kamp, P, 1982, The planetary system of Barnard's star. Vistas in Astronomy, 26, 141–157 {83}CrossRefGoogle Scholar
van der Marel, N, Cazzoletti, P, Pinilla, P, et al., 2016a, Vortices and spirals in the HD 135344B (SAO 206462) transition disk. ApJ, 832, 178 {466}CrossRefGoogle Scholar
van der Marel, N, van Dishoeck, EF, Bruderer, S, et al., 2013, A major asymmetric dust trap in a transition disk. Science, 340, 1199–1202 {462}CrossRefGoogle Scholar
van der Marel, N, Verhaar, BW, van Terwisga, S, et al., 2016b, The (w)hole survey: an unbiased sample study of transition disk candidates based on Spitzer catalogues. A&A, 592, A126 {465}Google Scholar
van der Plas, G, Wright, CM, Ménard, F, et al., 2017, Cavity and other radial substructures in the disk around HD 97048. A&A, 597, A32 {466}Google Scholar
VanDoorsselaere, T, Shariati, H, Debosscher, J, 2017, Stellar flares observed in long-cadence data from the Kepler mission. ApJS, 232, 26 {427}CrossRefGoogle Scholar
vanEyken, JC, Ciardi, DR, von Braun, K, et al., 2012, The PTF Orion project: a possible planet transiting a T Tauri star (PTFO 8–8695). ApJ, 755, 42 {11, 167, 171, 260, 525, 750}CrossRefGoogle Scholar
vanEyken, JC, Ge, J, Mahadevan, S, 2010, Theory of dispersed fixed-delay interferometry for radial velocity exoplanet searches. ApJS, 189, 156–180 {49}Google Scholar
vanEyken, JC, Ge, J, Mahadevan, S, et al., 2004, First planet confirmation with a dispersed fixed-delay interferometer. ApJ, 600, L79–L82 {49}CrossRefGoogle Scholar
vanEyken, JC, Ge, J, Wan, X, et al., 2007, New results from the multi-object Keck exo-planet tracker. Revista Mexicana de Astronomia y Astrofisica Conference Series, volume 29, 151–151 {46, 49}Google Scholar
VanEylen, V, Albrecht, S, 2015, Eccentricity from transit photometry: small planets in Kepler multi-planet systems have low eccentricities. ApJ, 808, 126 {289, 739, 740, 741, 742, 743, 744, 745, 746}CrossRefGoogle Scholar
VanEylen, V, Albrecht, S, Gandolfi, D, et al., 2016a, The K2–ESPRINT Project. V. A short-period giant planet orbiting a subgiant star. AJ, 152, 143 {748}CrossRefGoogle Scholar
VanEylen, V, Kjeldsen, H, Christensen-Dalsgaard, J, et al., 2012, Properties of extrasolar planets and their host stars: a case study of HAT–P–7. Astron. Nach., 333, 1088 {735}CrossRefGoogle Scholar
VanEylen, V, Lindholm Nielsen, M, Hinrup, B, et al., 2013, Investigation of systematic effects in Kepler data: seasonal variations in the light curve of HAT–P–7 b. ApJ, 774, L19 {163, 735}CrossRefGoogle Scholar
VanEylen, V, Lund, MN, Silva Aguirre, V, et al., 2014, What asteroseismology can do for exoplanets: Kepler–410A b is a small Neptune around a bright star, in an eccentric orbit consistent with low obliquity. ApJ, 782, 14 {312, 313, 410, 745}CrossRefGoogle Scholar
VanEylen, V, Nowak, G, Albrecht, S, et al., 2016b, The K2–ESPRINT Project. II. Spectroscopic follow-up of three exoplanet systems from Campaign 1 of K2. ApJ, 820, 56 {747, 748}Google Scholar
VanEylen, V, Winn, JN, Albrecht, S, 2016c, Orbital circularisation of hot and cool Kepler eclipsing binaries. ApJ, 824, 15 {538}Google Scholar
VanGrootel, V, Gillon, M, Valencia, D, et al., 2014, Transit confirmation and improved stellar and planet parameters for the super-Earth HD 97658 b and its host star. ApJ, 786, 2 {170, 729}CrossRefGoogle Scholar
vanHaaften, LM, Nelemans, G, Voss, R, et al., 2012, Formation of the planet around the ms-pulsar PSR J1719–1438. A&A, 541, A22 {108}Google Scholar
vanHaarlem, MP, Wise, MW, Gunst, AW, et al., 2013, LOFAR: the LOw-Frequency ARray. A&A, 556, A2 {426}Google Scholar
vanHeck, HJ, Tackley, PJ, 2011, Plate tectonics on super-Earths: equally or more likely than on Earth. Earth Planet. Sci. Lett., 310, 252–261 {628}Google Scholar
vanKerkwijk, MH, Rappaport, SA, Breton, RP, et al., 2010, Observations of Doppler boosting in Kepler light curves. ApJ, 715, 51–58 {233, 239, 242}Google Scholar
VanLaerhoven, CL, Barnes, R, Greenberg, R, 2014, Tides, planetary companions, and habitability: habitability in the habitable zone of low-mass stars. MNRAS, 441, 1888–1898 {626}Google Scholar
VanLaerhoven, CL, Greenberg, R, 2012, Characterising multi-planet systems with classical secular theory. Cel. Mech. Dyn. Astron., 113, 215–234 {511, 728}Google Scholar
VanLaerhoven, CL, Greenberg, R, 2013, Small inner companions of warm Jupiters: lifetimes and legacies. ApJ, 778, 182 {304}CrossRefGoogle Scholar
vanLeeuwen, F, 2007, Hipparcos, the new reduction of the raw data, volume 350. As-trophys. Space Sci. Lib. {93, 95, 373}
vanLeeuwen, F, Evans, DW, Grenon, M, et al., 1997, The Hipparcos mission: photometric data. A&A, 323, L61–L64 {377}Google Scholar
vanLieshout, R, Min, M, Dominik, C, 2014, Dusty tails of evaporating exoplanets. I. Constraints on the dust composition. A&A, 572, A76 {232, 747}Google Scholar
vanLieshout, R, Min, M, Dominik, C, et al., 2016, Dusty tails of evaporating exoplanets. II. Physical modelling of the KIC–12557548 b light curve. A&A, 596, A32 {232, 747}Google Scholar
vanMaanen, A, 1917, Two faint stars with large proper motion. PASP, 29, 258 {416}CrossRefGoogle Scholar
vanMaanen, A, 1919, Stellar parallaxes derived from photographs madewith the 60-inch reflector of the Mount Wilson Observatory. AJ, 32, 86–88 {416}Google Scholar
vanSaders, JL, Gaudi, BS, 2011, Ensemble analysis of open cluster transit surveys: upper limits on the frequency of short-period planets consistent with the field. ApJ, 729, 63 {158}CrossRefGoogle Scholar
vanSluijs, L, Van Eylen, V, 2018, The occurrence of planets and other substellar bodies around white dwarfs using K2. MNRAS, 474, 4603–4611 {233}Google Scholar
vanStraten, W, Bailes, M, Britton, M, et al., 2001, A test of general relativity from the three-dimensional orbital geometry of a binary pulsar. Nature, 412, 158–160 {105}Google Scholar
vanSummeren, J, Conrad, CP, Gaidos, E, 2011, Mantle convection, plate tectonics, and volcanismon hot exo-Earths. ApJ, 736, L15 {628, 670}CrossRefGoogle Scholar
vanWerkhoven, TIM, Brogi, M, Snellen, IAG, et al., 2014a, Analysis and interpretation of 15 quarters of Kepler data of the disintegrating planet KIC–12557548 b. A&A, 561, A3 {232, 747}Google Scholar
vanWerkhoven, TIM, Kenworthy, MA, Mamajek, EE, 2014b, Analysis of 1S WASP J1407 eclipse fine-structure: hints of exomoons. MNRAS, 441, 2845–2854 {219, 282, 751}Google Scholar
Vance, S, Harnmeijer, J, Kimura, J, et al., 2007, Hydrothermal systems in small ocean planets. Astrobiology, 7, 987–1005 {626}CrossRefGoogle ScholarPubMed
Vanderbei, RJ, Cady, E, Kasdin, NJ, 2007, Optimal occulter design for finding extrasolar planets. ApJ, 665, 794–798 {339}CrossRefGoogle Scholar
Vanderbei, RJ, Kasdin, NJ, Spergel, DN, 2004, Checkerboard-mask coronagraphs for high-contrast imaging. ApJ, 615, 555–561 {334}CrossRefGoogle Scholar
Vanderbei, RJ, Spergel, DN, Kasdin, NJ, 2003a, Circularly symmetric apodisation via star-shaped masks. ApJ, 599, 686–694 {334}CrossRefGoogle Scholar
Vanderbei, RJ, Spergel, DN, Kasdin, NJ, 2003b, Spiderweb masks for high-contrast imaging. ApJ, 590, 593–603 {334}CrossRefGoogle Scholar
Vanderbei, RJ, Traub, WA, 2005, Pupil mapping in two dimensions for high-contrast imaging. ApJ, 626, 1079–1090 {335}CrossRefGoogle Scholar
Vanderburg, A, Becker, JC, Buchhave, LA, et al., 2017, Precise masses in the WASP–47 system. AJ, 154, 237 {755}CrossRefGoogle Scholar
Vanderburg, A, Becker, JC, Kristiansen, MH, et al., 2016a, Five planets transiting a ninth magnitude star. ApJ, 827, L10 {748}CrossRefGoogle Scholar
Vanderburg, A, Bieryla, A, Duev, DA, et al., 2016b, Two small planets transiting HD 3167. ApJ, 829, L9 {748}CrossRefGoogle Scholar
Vanderburg, A, Johnson, JA, 2014, A technique for extracting highly precise photometry for the two-wheeled Keplermission. PASP, 126, 948–958 {176}CrossRefGoogle Scholar
Vanderburg, A, Johnson, JA, Rappaport, S, et al., 2015a, A disintegrating minor planet transiting a white dwarf. Nature, 526, 546–549 {12, 232, 418}CrossRefGoogle Scholar
Vanderburg, A, Latham, DW, Buchhave, LA, et al., 2016c, Planetary candidates from the first year of the K2 mission. ApJS, 222, 14 {176, 177}CrossRefGoogle Scholar
Vanderburg, A, Montet, BT, Johnson, JA, et al., 2015b, Characterising K2 planet discoveries: a super-Earth transiting the bright K dwarf HIP 116454. ApJ, 800, 59 {12, 192, 747}CrossRefGoogle Scholar
Vanderburg, A, Plavchan, P, Johnson, JA, et al., 2016d, Radial velocity planet detection biases at the stellar rotational period. MNRAS, 459, 3565–3573 {38}CrossRefGoogle Scholar
Vanderriest, C, 1980, A fiber-optics dissector for spectroscopy of nebulosities around quasars and similar objects. PASP, 92, 858–862 {341}CrossRefGoogle Scholar
Vannier, M, Petrov, RG, Lopez, B, et al., 2006, Colour-differential interferometry for the observation of extrasolar planets. MNRAS, 367, 825–837 {348}CrossRefGoogle Scholar
van't Hoff, MLR, Walsh, C, Kama, M, et al., 2017, Robustness of N2H+ as tracer of the CO snowline. A&A, 599, A101 {565}Google Scholar
Varadi, F, Ghil, M, Kaula, WM, 1999, Jupiter, Saturn, and the edge of chaos. Icarus, 139, 286–294 {75}CrossRefGoogle Scholar
Varadi, F, Runnegar, B, Ghil, M, 2003, Successive refinements in long-termintegrations of planetary orbits. ApJ, 592, 620–630 {678}CrossRefGoogle Scholar
Vargas Catalán, E, Huby, E, Forsberg, P, et al., 2016, Optimising the subwavelength grating of L-band annular groove phase masks for high coronagraphic performance. A&A, 595, A127 {337}Google Scholar
Vargas dos Santos, M, Mota, DF, 2017, Extrasolar planets as a probe of modified gravity. Physics Letters B, 769, 485–490 {257}CrossRefGoogle Scholar
Varnière, P, Tagger, M, 2006, Reviving dead zones in accretion disks by Rossby vortices at their boundaries. A&A, 446, L13–L16 {459}Google Scholar
Varón, C, Alzate, C, Suykens, JAK, et al., 2011, Kernel spectral clustering of time series in the CoRoT exoplanet database. A&A, 531, A156 {190}Google Scholar
Vartanyan, D, Garmilla, JA, Rafikov, RR, 2016, Tatooine nurseries: structure and evolution of circumbinary protoplanetary disks. ApJ, 816, 94 {551}CrossRefGoogle Scholar
Varvoglis, H, Sgardeli, V, Tsiganis, K, 2012, Interaction of free-floating planets with a star–planet pair. Cel. Mech. Dyn. Astron., 113, 387–402 {321, 448}CrossRefGoogle Scholar
Vasisht, G, Crossfield, IJ, Dumont, PJ, et al., 2006, Post-coronagraph wavefront sensing for the TMT Planet Formation Imager (PFI). SPIE Conf. Ser., volume 6272, 161 {339, 346}Google Scholar
Vasquez, M, Schreier, F, Gimeno García, S, et al., 2013a, Infrared radiative transfer in atmospheres of Earth-like planets around F, G, K A&A, 549, A26 {591}Google Scholar
Vasquez, M, Schreier, F, Gimeno García, S, 2013b, Infrared radiative transfer in atmospheres of Earth-like planets around F, G, K A&A, 557, A46 {591}Google Scholar
Vauclair, S, 2004, Metallic fingers and metallicity excess in exoplanet host stars: the accretion hypothesis revisited. ApJ, 605, 874–879 {394}CrossRefGoogle Scholar
Vauclair, S, 2008, Thermohaline convection in main sequence stars. The Art of Modeling Stars in the 21st Century, volume 252 of IAU Symposium, 97–101 {394}Google Scholar
Vauclair, S, 2010, What do stars tell us about planets? Asteroseismology of exoplanet-host stars. EAS Pub. Ser., volume 41, 77–84 {407}CrossRefGoogle Scholar
Vauclair, S, Laymand, M, Bouchy, F, et al., 2008, The exoplanet-host star ιHor: an evaporated member of the primordial Hyades cluster. A&A, 482, L5–L8 {409, 725}Google Scholar
Vanko, M, Evans, P, G Tan, T, 2015, The refined physical properties of the transiting exoplanetary system WASP–41. Astron. Nach., 336, 145 {755}CrossRefGoogle Scholar
Vanko, M, Maciejewski, G, Jakubík, M, et al., 2013, Photometric follow-up of the transiting planetary system TrES–3: transit timing variation and long-term stability of the system. MNRAS, 432, 944–953 {751}CrossRefGoogle Scholar
Vazan, A, Helled, R, 2012, On the evolution and survival of protoplanets embedded in a protoplanetary disk. ApJ, 756, 90 {488}CrossRefGoogle Scholar
Vazan, A, Helled, R, Kovetz, A, et al., 2015, Convection and mixing in giant planet evolution. ApJ, 803, 32 {482}CrossRefGoogle Scholar
Vazan, A, Helled, R, Podolak, M, et al., 2016, The evolution and internal structure of Jupiter and Saturn with compositional gradients. ApJ, 829, 118 {658}CrossRefGoogle Scholar
Vazan, A, Kovetz, A, Podolak, M, et al., 2013, The effect of composition on the evolution of giant and intermediate-mass planets. MNRAS, 434, 3283–3292 {485}CrossRefGoogle Scholar
Vaziri, A, Weihs, G, Zeilinger, A, 2002, Experimental two-photon, three-dimensional entanglement for quantum communication. Phys. Rev. Lett., 89(24), 401–405 {336, 645}CrossRefGoogle ScholarPubMed
Vázquez, M, Pallé, E, Montañés Rodríguez, P, 2010, The Earth as a Distant Planet. Springer {641}CrossRefGoogle Scholar
Veeder, GJ, Matson, DL, Johnson, TV, et al., 1994, Io's heat flow from infrared radiometry: 1983–1993. J. Geophys. Res., 99, 17095–17162 {599}CrossRefGoogle Scholar
Veizer, J, Godderis, Y, François, LM, 2000, Evidence for decoupling of atmospheric CO2 and global climate during the Phanerozoic eon. Nature, 408, 698–701 {676}CrossRefGoogle ScholarPubMed
Venot, O, Agúndez, M, Selsis, F, et al., 2014, The atmospheric chemistry of the warm Neptune GJ 3470 b: influence of metallicity and temperature on the CH4/CO ratio. A&A, 562, A51 {729}Google Scholar
Venot, O, Fray, N, Bénilan, Y, et al., 2013, High-temperature measurements of VUV-absorption cross sections of CO2 and their application to exoplanets. A&A, 551, A131 {570}Google Scholar
Venot, O, Hébrard, E, Agúndez, M, et al., 2012, A chemical model for the atmosphere of hot Jupiters. A&A, 546, A43 {587, 730, 732}Google Scholar
Venot, O, Hébrard, E, Agúndez, M, 2015, New chemical scheme for studying C-rich exoplanet atmospheres. A&A, 577, A33 {582}Google Scholar
Venot, O, Rocchetto, M, Carl, S, et al., 2016, Influence of stellar flares on the chemical composition of exoplanets and spectra. ApJ, 830, 77 {428}CrossRefGoogle Scholar
Venturini, J, Alibert, Y, Benz, W, 2016, Planet formation with envelope enrichment: new insights on planetary diversity. A&A, 596, A90 {731, 732, 753, 755}Google Scholar
Venturini, J, Alibert, Y, Benz, W, et al., 2015, Critical core mass for enriched envelopes: the role of H2O condensation. A&A, 576, A114 {482}Google Scholar
Venturini, J, Helled, R, 2017, The formation of mini-Neptunes. ApJ, 848, 95 {500}CrossRefGoogle Scholar
Venumadhav, T, Zimmerman, A, Hirata, CM, 2014, The stability of tidally-deformed neutron stars to three- and four-mode coupling. ApJ, 781, 23 {542}CrossRefGoogle Scholar
Veras, D, 2007, A resonant-term-based model including a nascent disk, precession, and oblateness: application to GJ 876. Cel. Mech. Dyn. Astron., 99, 197–243 {717}CrossRefGoogle Scholar
Veras, D, 2016a, Relating binary star planetary systems to central configurations. MNRAS, 462, 3368–3375 {549}CrossRefGoogle Scholar
Veras, D, 2016b, The fates of solar system analogues with one additional distant planet. MNRAS, 463, 2958–2971 {414, 517, 687}CrossRefGoogle Scholar
Veras, D, Armitage, PJ, 2004a, The dynamics of twomassive planets on inclined orbits. Icarus, 172, 349–371 {512}CrossRefGoogle Scholar
Veras, D, Armitage, PJ, 2004b, Outwardmigration of extrasolar planets to large orbital radii. MNRAS, 347, 613–624 {522}CrossRefGoogle Scholar
Veras, D, Armitage, PJ, 2005, The influence of massive planet scattering on nascent terrestrial planets. ApJ, 620, L111–L114 {525}CrossRefGoogle Scholar
Veras, D, Armitage, PJ, 2006, Predictions for the correlation between giant and terrestrial extrasolar planets in dynamically evolved systems. ApJ, 645, 1509–1515 {523}CrossRefGoogle Scholar
Veras, D, Breedt, E, 2017, Eclipse, transit and occultation geometry of planetary systems at exo-syzygy. MNRAS, 468, 2672–2683 {225, 742, 746, 750}CrossRefGoogle Scholar
Veras, D, Brown, DJA, Mustill, AJ, et al., 2015, Prospects for detecting decreasing exo-planet frequency with main-sequence age using PLATO. MNRAS, 453, 67–72 {180}CrossRefGoogle Scholar
Veras, D, Carter, PJ, Leinhardt, ZM, et al., 2017a, Explaining the variability of WD 1145+017 with simulations of asteroid tidal disruption. MNRAS, 465, 1008–1022 {418, 419}CrossRefGoogle Scholar
Veras, D, Crepp, JR, Ford, EB, 2009, Formation, survival, and detectability of planets beyond 100 au. ApJ, 696, 1600–1611 {447, 522, 525}CrossRefGoogle Scholar
Veras, D, Evans, NW, 2013a, Exoplanets beyond the solar neighbourhood: Galactic tidal perturbations. MNRAS, 430, 403–415 {526}CrossRefGoogle Scholar
Veras, D, Evans, NW, 2013b, Planetary orbital equations in externally-perturbed systems: position and velocity-dependent forces. Cel. Mech. Dyn. Astron., 115, 123–141 {511}CrossRefGoogle Scholar
Veras, D, Evans, NW, Wyatt, MC, et al., 2014, The great escape. III. Placing post-main-sequence evolution of planetary and binary systems in a Galactic context. MNRAS, 437, 1127–1140 {516, 526}CrossRefGoogle Scholar
Veras, D, Ford, EB, 2009, Secular evolution of HD12661: a system caught at an unlikely time. ApJ, 690, L1–L4 {75, 718}CrossRefGoogle Scholar
Veras, D, Ford, EB, 2010, Secular orbital dynamics of hierarchical two-planet systems. ApJ, 715, 803–822 {318, 511, 718, 719, 721, 723}CrossRefGoogle Scholar
Veras, D, Ford, EB, 2012, Identifying non-resonant Kepler planetary systems. MNRAS, 420, L23–L27 {318, 319}CrossRefGoogle Scholar
Veras, D, Ford, EB, Payne, MJ, 2011a, Quantifying the challenges of detecting unseen planetary companions with transit timing variations. ApJ, 727, 74 {265, 266, 319}CrossRefGoogle Scholar
Veras, D, Hadjidemetriou, JD, Tout, CA, 2013a, An exoplanet's response to anisotropic stellar mass loss during birth and death. MNRAS, 435, 2416–2430 {517, 531, 681}CrossRefGoogle Scholar
Veras, D, Marsh, TR, Gänsicke, BT, 2016a, Dynamical mass and multiplicity constraints on co-orbital bodies around stars. MNRAS, 461, 1413–1420 {418}CrossRefGoogle Scholar
Veras, D, Moeckel, N, 2012, Disrupting primordial planet signatures: the close encounter of two single-planet exosystems in the Galactic disk. MNRAS, 425, 680–700 {526}CrossRefGoogle Scholar
Veras, D, Mustill, AJ, 2013, A simple scaling for the minimum instability time-scale of two widely spaced planets. MNRAS, 434, L11–L15 {512}CrossRefGoogle Scholar
Veras, D, Mustill, AJ, Bonsor, A, et al., 2013b, Simulations of two-planet systems through all phases of stellar evolution: implications for the instability boundary and white dwarf pollution. MNRAS, 431, 1686–1708 {412, 416}CrossRefGoogle Scholar
Veras, D, Mustill, AJ, Gänsicke, BT, 2017b, The unstable fate of the planet orbiting the A star in the HD 131399 triple stellar system. MNRAS, 465, 1499–1504 {553, 763}CrossRefGoogle Scholar
Veras, D, Mustill, AJ, Gänsicke, BT, et al., 2016b, Full-lifetime simulations of multiple unequal-mass planets across all phases of stellar evolution. MNRAS, 458, 3942–3967 {412, 413}CrossRefGoogle Scholar
Veras, D, Raymond, SN, 2012, Planet–planet scattering alone cannot explain the free-floating planet population. MNRAS, 421, L117–L121 {447, 525}CrossRefGoogle Scholar
Veras, D, Tout, CA, 2012, The great escape. II. Exoplanet ejection from dying multiple-star systems. MNRAS, 422, 1648–1664 {517}CrossRefGoogle Scholar
Veras, D, Wyatt, MC, 2012, The solar system's post-main-sequence escape boundary. MNRAS, 421, 2969–2981 {414, 517}CrossRefGoogle Scholar
Veras, D, Wyatt, MC, Mustill, AJ, et al., 2011b, The great escape. I. How exoplanets and smaller bodies desert dying stars. MNRAS, 417, 2104–2123 {516, 517}CrossRefGoogle Scholar
Veras, D, Xu, S, Rebassa-Mansergas, A, 2018, The critical binary star separation for a planetary systemorigin of white dwarf pollution. MNRAS, 473, 2871–2880 {417}CrossRefGoogle Scholar
Verbiest, JPW, Lentati, L, Hobbs, G, et al., 2016, The International Pulsar Timing Array: first data release. MNRAS, 458, 1267–1288 {110}CrossRefGoogle Scholar
Verbiscer, AJ, Skrutskie, MF, Hamilton, DP, 2009, Saturn's largest ring. Nature, 461, 1098–1100 {690}CrossRefGoogle ScholarPubMed
Verbunt, F, Phinney, ES, 1995, Tidal circularisation and the eccentricity of binaries containing giant stars. A&A, 296, 709 {537}Google Scholar
Verheylewegen, E, Lemaitre, A, 2014, The 3:1 mean motion resonance between Miranda and the inner Uranian satellites, Cressida and Desdemona. Cel. Mech. Dyn. Astron., 119, 283–299 {689}CrossRefGoogle Scholar
Verheylewegen, E, Noyelles, B, Lemaitre, A, 2013, A numerical exploration of Miranda's dynamical history. MNRAS, 435, 1776–1787 {689}CrossRefGoogle Scholar
Vérinaud, C, Hubin, N, Kasper, M, et al., 2006, The EPICS project: exoplanets detection with OWL. IAU Colloq. 200: Direct Imaging of Exoplanets: Science and Techniques, 507–512 {345, 346}
Vérinaud, C, Le Louarn, M, Korkiakoski, V, et al., 2005, Adaptive optics for high-contrast imaging: pyramid sensor versus spatially filtered Shack–Hartmann sensor. MNRAS, 357, L26–L30 {332}CrossRefGoogle Scholar
Vernet-Viard, E, Arcidiacono, C, Bagnara, P, et al., 2005, Layer-oriented wavefront sensor for a multiconjugate adaptive optics demonstrator. Optical Engineering, 44(9), 096601 {332}Google Scholar
Véronique, D, Doris, B, Philippe, C, et al., 2012, From meteorites to evolution and habitability of planets. Planet. Space Sci., 72, 3–17 {675}CrossRefGoogle Scholar
Verrier, PE, Evans, NW, 2006, Planets and asteroids in the γ Cep system. MNRAS, 368, 1599–1608 {80, 549, 714}CrossRefGoogle Scholar
Verrier, PE, Evans, NW, 2007, Planetary stability zones in hierarchical triple star systems. MNRAS, 382, 1432–1446 {550}CrossRefGoogle Scholar
Verrier, PE, Evans, NW, 2009, High-inclination planets and asteroids inmultistellar systems. MNRAS, 394, 1721–1726 {549}CrossRefGoogle Scholar
Veselago, VG, 1968, The electrodynamics of substances with simultaneously negative values of yatt MC, et al., 2005, Structure in the and μ. Soviet Physics Uspekhi, 10, 509–514 {357}Google Scholar
Veverka, J, Duxbury, TC, 1977, Viking observations of Phobos and Deimos: preliminary results. J. Geophys. Res., 82, 4213–4223 {689}CrossRefGoogle Scholar
Vican, L, Schneider, A, Bryden, G, et al., 2016, Herschel observations of dusty debris disks. ApJ, 833, 263 {493}CrossRefGoogle Scholar
Vida, K, K˝ovári, Z, Pál, A, et al., 2017, Frequent flaring in the TRAPPIST–1 system: unsuited for life? ApJ, 841, 124 {750}CrossRefGoogle Scholar
Vidal-Madjar, A, Arnold, L, Ehrenreich, D, et al., 2010, The Earth as an extrasolar transiting planet. I. Earth's atmospheric composition and thickness revealed by lunar eclipse observations. A&A, 523, A57 {161, 641}Google Scholar
Vidal-Madjar, A, Désert, JM, Lecavelier des Etangs, A, et al., 2004, Detection of oxygen and carbon in the hydrodynamically escaping atmosphere of the extrasolar planet HD 209458 b. ApJ, 604, L69–L72 {10, 602, 609, 610, 611, 731}CrossRefGoogle Scholar
Vidal-Madjar, A, Huitson, CM, Bourrier, V, et al., 2013, Magnesium in the atmosphere of the planet HD 209458 b: observations of the thermosphere-exosphere transition region. A&A, 560, A54 {185, 610, 732}Google Scholar
Vidal-Madjar, A, Kiefer, F, Lecavelier des Etangs, A, et al., 2017, Fe I in the β Pic circum-stellar gas disk. I. Physical properties of the neutral iron gas. A&A, 607, A25 {762}Google Scholar
Vidal-Madjar, A, Lagrange-Henri, AM, Feldman, PD, et al., 1994, HST–GHRS observations of β Pic: additional evidence for infalling comets. A&A, 290, 245–258 {282}Google Scholar
Vidal-Madjar, A, Lecavelier des Etangs, A, Désert, JM, et al., 2003, An extended upper atmosphere around the extrasolar planet HD 209458 b. Nature, 422, 143–146 {185, 423, 602, 609, 610, 611, 731}CrossRefGoogle Scholar
Vidal-Madjar, A, Lecavelier des Etangs, A, Désert, JM, 2008, Exoplanet HD 209458 b (Osiris): evaporation strengthened. ApJ, 676, L57–L60 {6, 732}CrossRefGoogle Scholar
Vidal-Madjar, A, Sing, DK, Lecavelier Des Etangs, A, et al., 2011, The upper atmosphere of the exoplanet HD209458 b revealed by the sodium Dlines. A&A, 527, A110 {11, 610, 732}Google Scholar
Vidotto, AA, Bourrier, V, 2017, Exoplanets as probes of the winds of host stars: the case of the Mdwarf GJ 436. MNRAS, 470, 4026–4033 {729}CrossRefGoogle Scholar
Vidotto, AA, Donati, JF, 2017, Predicting radio emission from the newborn hot Jupiter V830 Tau b and its host star. A&A, 602, A39 {715}Google Scholar
Vidotto, AA, Fares, R, Jardine, M, et al., 2012, The stellar wind cycles and planetary radio emission of the τ Boo system. MNRAS, 423, 3285–3298 {222, 387, 714}CrossRefGoogle Scholar
Vidotto, AA, Fares, R, Jardine, M, 2015, On the environment surrounding close-in exoplanets. MNRAS, 449, 4117–4130 {720, 721, 722, 723}CrossRefGoogle Scholar
Vidotto, AA, Jardine, M, Helling, C, 2010, Early ultraviolet ingress in WASP–12 b: measuring planetary magnetic fields. ApJ, 722, L168–L172 {221, 222, 425, 752}CrossRefGoogle Scholar
Vidotto, AA, Jardine, M, Helling, C, 2011a, Prospects for detection of exoplanet magnetic fields through bow-shock observations during transits. MNRAS, 411, L46–L50 {222, 733, 735, 751, 752, 753, 754}CrossRefGoogle Scholar
Vidotto, AA, Jardine, M, Helling, C, 2011b, Transit variability in bow shock-hosting planets. MNRAS, 414, 1573–1582 {221}CrossRefGoogle Scholar
Vidotto, AA, Jardine, M, Morin, J, et al., 2013, Effects of M dwarf magnetic fields on potentially habitable planets. A&A, 557, A67 {622}Google Scholar
Vidotto, AA, Jardine, M, Morin, J, 2014, M-dwarf stellar winds: the effects of realistic magnetic geometry on rotational evolution and planets. MNRAS, 438, 1162–1175 {623, 764}CrossRefGoogle Scholar
Vidotto, AA, Llama, J, Jardine, M, et al., 2011c, Shock formation around planets orbiting Mdwarf stars. Astron. Nach., 332, 1055 {221}CrossRefGoogle Scholar
Vieira, LEA, Solanki, SK, Krivova, NA, et al., 2011, Evolution of the solar irradiance during the Holocene. A&A, 531, A6 {656}Google Scholar
Vierinen, J, Tveito, T, Gustavsson, B, et al., 2017, Radar images of the Moon at 6-meter wavelength. Icarus, 297, 179–188 {356}CrossRefGoogle Scholar
Viewing, D, 1975, Directly interacting extraterrestrial technological communities. J. Br. Interplanet. Soc., 28, 735–744 {647}Google Scholar
Vigan, A, Bonavita, M, Biller, B, et al., 2017, The VLT–NACO large programme to probe the occurrence of exoplanets and brown dwarfs at wide orbits. IV. Gravitational instability rarely forms wide, giant planets. A&A, 603, A3 {358}Google Scholar
Vigan, A, Bonnefoy, M, Ginski, C, et al., 2016a, First light of the VLT planet finder SPHERE. I. Detection and characterisation of the substellar companion GJ 758 B. A&A, 587, A55 {360}Google Scholar
Vigan, A, Langlois, M, Martinez, P, et al., 2012a, First laboratory results of VLT–SPHERE/IRDIS dual-band imaging and long slit spectroscopy modes. SPIE Conf. Ser., volume 8446 {344}Google Scholar
Vigan, A, Langlois, M, Moutou, C, et al., 2007, Characterising extrasolar planets with long slit spectroscopy. In the Spirit of Bernard Lyot: The Direct Detection of Planets and Circumstellar Disks in the 21st Century {341}
Vigan, A, Langlois, M, Moutou, C, 2008, Exoplanet characterisation with long-slit spectroscopy. A&A, 489, 1345–1354 {341, 344}Google Scholar
Vigan, A, Moutou, C, Langlois, M, et al., 2010, Photometric characterisation of exo-planets using angular and spectral differential imaging. MNRAS, 407, 71–82 {340, 344}CrossRefGoogle Scholar
Vigan, A, N'Diaye, M, Dohlen, K, 2013, Apodisation in high-contrast long-slit spectroscopy: closer, deeper, fainter, cooler. A&A, 555, A49 {338, 344}Google Scholar
Vigan, A, N'Diaye, M, Dohlen, K, et al., 2016b, Apodisation in high-contrast long-slit spectroscopy. II. Concept validation and first on-sky results with VLT–SPHERE. A&A, 586, A144 {344}Google Scholar
Vigan, A, Patience, J, Marois, C, et al., 2012b, The International Deep Planet Survey (IDPS). I. The frequency of wide-orbit massive planets around A-stars. A&A, 544, A9 {358}Google Scholar
Vilas, F, Chapman, CR, Matthews, MS, 1988, Mercury. University of Arizona Press {651}Google Scholar
Vilenius, E, Kiss, C, Mommert, M, et al., 2012, TNOs are cool: a survey of the trans-Neptunian region. VI. Herschel–PACS observations and thermal modeling of 19 classical Kuiper belt objects. A&A, 541, A94 {685}Google Scholar
Vilenius, E, Kiss, C, Müller, T, et al., 2014, TNOs are Cool: a survey of the trans-Neptunian region. X. Analysis of classical Kuiper belt objects from Herschel and Spitzer observations. A&A, 564, A35 {685}Google Scholar
Vilim, R, Stanley, S, Elkins-Tanton, L, 2013, The effect of lower mantle metallisation on magnetic field generation in rocky exoplanets. ApJ, 768, L30 {425}CrossRefGoogle Scholar
Vilim, R, Stanley, S, Hauck, SA, 2010, Iron snow zones as a mechanism for generating Mercury's weak observed magnetic field. J. Geophys. Res. (Planets), 115, E11003 {572}CrossRefGoogle Scholar
Villanueva, S Jr, Eastman, JD, Gaudi, BS, 2016, The dedicated monitor of exotransits (DEMONEX): seven transits of XO–4 b. ApJ, 820, 87 {757}CrossRefGoogle Scholar
Villarreal D'Angelo, C, Schneiter, M, Costa, A, et al., 2014, On the sensitivity of extra-solar mass-loss rate ranges: HD 209458 b a case study. MNRAS, 438, 1654–1662 {732}CrossRefGoogle Scholar
Villaver, E, Livio, M, 2007, Can planets survive stellar evolution? ApJ, 661, 1192–1201 {110, 517}CrossRefGoogle Scholar
Villaver, E, Livio, M, 2009, The orbital evolution of gas giant planets around giant stars. ApJ, 705, L81–L85 {57, 517}CrossRefGoogle Scholar
Villaver, E, Livio, M, Mustill, AJ, et al., 2014, Hot Jupiters and cool stars. ApJ, 794, 3 {412}CrossRefGoogle Scholar
Villaver, E, Niedzielski, A, Wolszczan, A, et al., 2017, Tracking Advanced Planetary Systems (TAPAS) with HARPS-N. V. A massive Jupiter orbiting the very-low-metallicity giant star BD+03 2562 and a possible planet around HD 103485. A&A, 606, A38 {716}Google Scholar
Vincke, K, Breslau, A, Pfalzner, S, 2015, Strong effect of the cluster environment on the size of protoplanetary disks? A&A, 577, A115 {526}Google Scholar
Vincke, K, Pfalzner, S, 2016, Cluster dynamics largely shapes protoplanetary disk sizes. ApJ, 828, 48 {526}CrossRefGoogle Scholar
Vinet, P, Rose, JH, Ferrante, J, et al., 1989, Universal features of the equation of state of solids. Journal of Physics Condensed Matter, 1, 1941–1963 {574}CrossRefGoogle Scholar
Vinković, D, Ivezić Ž, Miroshnichenko, AS, et al., 2003, Disks and haloes in pre-main-sequence stars. MNRAS, 346, 1151–1161 {465}CrossRefGoogle Scholar
Vinson, AM, Hansen, BMS, 2017, On the spin states of habitable zone exoplanets around M dwarfs: the effect of a near-resonant companion. MNRAS, 472, 3217–3229 {621}CrossRefGoogle Scholar
Vinson, BR, Chiang, E, 2018, Secular dynamics of an exterior test particle: the inverse Kozai and other eccentricity-inclination resonances. MNRAS, 474, 4855–4869 {528}CrossRefGoogle Scholar
Vinti, JP, 1974, Classical solution of the two-body problemif the gravitational constant diminishes inversely with the age of the Universe. MNRAS, 169, 417–427 {517}CrossRefGoogle Scholar
Vio, R, Diaz-Trigo, M, Andreani, P, 2013, Irregular time series in astronomy and the use of the Lomb–Scargle periodogram. Astronomy and Computing, 1, 5–16 {21}CrossRefGoogle Scholar
Viotti, RF, Badiali, M, Boattini, A, et al., 2003, Wide-field observations at Dome Concor-dia. Mem. Soc. Astron. Ital., 2, 177–180 {171}Google Scholar
Visscher, C, 2012, Chemical time scales in the atmospheres of highly eccentric exo-planets. ApJ, 757, 5 {584, 734, 735}CrossRefGoogle Scholar
Visscher, C, Fegley, B, 2005, Chemical constraints on the water and total oxygen abundances in the deep atmosphere of Saturn. ApJ, 623, 1221–1227 {578}CrossRefGoogle Scholar
Visscher, C, Fegley, B, 2013, Chemistry of impact-generated silicate melt-vapour debris disks. ApJ, 767, L12 {498}CrossRefGoogle Scholar
Visscher, C, Lodders, K, Fegley, B, 2006, Atmospheric chemistry in giant planets, brown dwarfs, and low-mass dwarf stars. II. Sulphur and phosphorus. ApJ, 648, 1181–1195 {564}CrossRefGoogle Scholar
Visscher, C, Lodders, K, Fegley, B, 2010, Atmospheric chemistry in giant planets, brown dwarfs, and low-mass dwarf stars. III. Iron, magnesium, and silicon. ApJ, 716, 1060–1075 {564}CrossRefGoogle Scholar
Visscher, C, Moses, JI, 2011, Quenching of CO and CH4 in the atmospheres of cool brown dwarfs and hot Jupiters. ApJ, 738, 72 {582, 587, 730}CrossRefGoogle Scholar
Visser, PM, van de Bult, FJ, 2015, Fourier spectra from exoplanets with polar caps and ocean glint. A&A, 579, A21 {237}Google Scholar
Visser, RG, Ormel, CW, 2016, On the growth of pebble-accreting planetesimals. A&A, 586, A66 {471}Google Scholar
Vitense, C, Krivov, AV, Kobayashi, H, et al., 2012, An improved model of the Edgeworth–Kuiper debris disk. A&A, 540, A30 {343, 685}Google Scholar
Vitense, C, Krivov, AV, Löhne, T, 2014, Will New Horizons see dust clumps in the Edgeworth–Kuiper belt? AJ, 147, 154 {685}CrossRefGoogle Scholar
Vladilo, G, Murante, G, Silva, L, et al., 2013, The habitable zone of Earth-like planets with different levels of atmospheric pressure. ApJ, 767, 65 {620}CrossRefGoogle Scholar
Vladilo, G, Silva, L, Murante, G, et al., 2015, Modeling the surface temperature of Earth-like planets. ApJ, 804, 50 {599}CrossRefGoogle Scholar
Vlahakis, C, Testi, L, Andreani, P, 2015, ALMA extends to 15-km baselines: sub-mm science down to 20mas resolution. The Messenger, 160, 2–7 {371}Google Scholar
Voelk, HJ, Jones, FC, Morfill, GE, et al., 1980, Collisions between grains in a turbulent gas. A&A, 85, 316–325 {469}Google Scholar
Vogt, N, 2006, FH Leo, the first dwarf nova member of a multiple star system? A&A, 452, 985–986 {370}Google Scholar
Vogt, SS, 1987, The Lick Observatory Hamilton echelle spectrometer. PASP, 99, 1214–1228 {28, 46}CrossRefGoogle Scholar
Vogt, SS, Allen, SL, Bigelow, BC, et al., 1994, HIRES: the high-resolution échelle spectrometer on the Keck 10-m telescope. SPIE Conf. Ser., volume 2198, 362–375 {28, 46, 47}Google Scholar
Vogt, SS, Burt, J, Meschiari, S, et al., 2015, Six planets orbiting HD 219134. ApJ, 814, 12 {733}CrossRefGoogle Scholar
Vogt, SS, Butler, RP, Burt, J, et al., 2017, A six-planet system around the star HD 34445. AJ, 154, 181 {719}CrossRefGoogle Scholar
Vogt, SS, Butler, RP, Haghighipour, N, 2012, GJ 581 update: additional evidence for a super-Earth in the habitable zone. Astron. Nach., 333, 561 {717}CrossRefGoogle Scholar
Vogt, SS, Butler, RP, Marcy, GW, et al., 2002, Ten low-mass companions from the Keck precision velocity survey. ApJ, 568, 352–362 {95, 373, 718, 720, 722}CrossRefGoogle Scholar
Vogt, SS, Butler, RP, Marcy, GW, 2005, Five new multicomponent planetary systems. ApJ, 632, 638–658 {70, 72, 73, 74, 77, 719, 720, 721, 722, 723, 724}CrossRefGoogle Scholar
Vogt, SS, Butler, RP, Rivera, EJ, et al., 2010a, The Lick–Carnegie exoplanet survey: a 3.1 Earth-mass planet in the habitable zone of the nearby M3V star GJ 581. ApJ, 723, 954–965 {6, 77, 78, 716}CrossRefGoogle Scholar
Vogt, SS, Butler, RP, Rivera, EJ, 2014a, A four-planet system orbiting the K0V star HD 141399. ApJ, 787, 97 {47, 722}CrossRefGoogle Scholar
Vogt, SS, Marcy, GW, Butler, RP, et al., 2000, Six new planets from the Keck precision velocity survey. ApJ, 536, 902–914 {10, 46, 47, 55, 59, 70, 718, 719, 722, 723, 724}CrossRefGoogle Scholar
Vogt, SS, Penrod, GD, Hatzes, AP, 1987, Doppler images of rotating stars using maximum entropy image reconstruction. ApJ, 321, 496–515 {440}CrossRefGoogle Scholar
Vogt, SS, Radovan, M, Kibrick, R, et al., 2014b, APF: the Lick Observatory Automated Planet Finder. PASP, 126, 359–379 {25, 33, 46, 47}CrossRefGoogle Scholar
Vogt, SS, Wittenmyer, RA, Butler, RP, et al., 2010b, A super-Earth and two Neptunes orbiting the nearby Sun-like star 61 Vir. ApJ, 708, 1366–1375 {51, 52, 716}CrossRefGoogle Scholar
Voigt, A, Abbot, DS, Pierrehumbert, RT, et al., 2011, Initiation of a Marinoan Snowball Earth in a state-of-the-art atmosphere-ocean general circulation model. Climate of the Past, 7, 249–263 {676}CrossRefGoogle Scholar
Voigt, H, 1956, Drei-Strom-Modell der Sonnenphotosphäre und Asymmetrie der Lin-ien des infraroten Sauerstoff-Tripletts. Zeitschrift fur Astrophysik, 40, 157–190 {39}Google Scholar
Voitko, AS, Troianskyi, VV, 2017, Resonances in Saturn's system. Odessa Astronomical Publications, 30, 250 {690}CrossRefGoogle Scholar
Vokrouhlický, D, Bottke, WF, Nesvorný, D, 2016, Capture of trans-Neptunian planetes-imals in the main asteroid belt. AJ, 152, 39 {697}CrossRefGoogle Scholar
Vokrouhlický, D, Nesvorný, D, 2014, Transit timing variations for planets co-orbiting in the horseshoe regime. ApJ, 791, 6 {274}CrossRefGoogle Scholar
Vokrouhlický, D, Nesvorný, D, 2015, Tilting Jupiter (a bit) and Saturn (a lot) during planetary migration. ApJ, 806, 143 {681, 697}CrossRefGoogle Scholar
Volk, K, Gladman, B, 2015, Consolidating and crushing exoplanets: did it happen here? ApJ, 806, L26 {501}CrossRefGoogle Scholar
Volk, K, Malhotra, R, 2013, Do Centaurs preserve their source inclinations? Icarus, 224, 66–73 {684, 687}CrossRefGoogle Scholar
Volkov, AN, 2016, On the hydrodynamic model of thermal escape from planetary atmospheres and its comparison with kinetic simulations. MNRAS, 459, 2030–2053 {601}CrossRefGoogle Scholar
Volkov, AN, 2017, Exobase properties of hydrodynamic and kinetic models of thermal escape from planetary atmospheres and notion of slow hydrodynamic escape. MNRAS, 472, 1825–1841 {601}CrossRefGoogle Scholar
Volkov, AN, Johnson, RE, Tucker, OJ, et al., 2011, Thermally driven atmospheric escape: transition from hydrodynamic to Jeans escape. ApJ, 729, L24 {601}CrossRefGoogle Scholar
Völschow, M, Banerjee, R, Hessman, FV, 2014, Second generation planet formation in NN Ser? A&A, 562, A19 {115}Google Scholar
vonBloh, W, Bounama, C, Cuntz, M, et al., 2007a, The habitability of super-Earths in GJ 581. A&A, 476, 1365–1371 {78, 716}Google Scholar
vonBloh, W, Bounama, C, Franck, S, 2003a, Cambrian explosion triggered by geosphere-biosphere feedbacks. Geophys. Res. Lett., 30(18), 180000–1 {674}Google Scholar
vonBloh, W, Bounama, C, Franck, S, 2007b, Dynamic habitability for Earth-like planets in 86 extrasolar planetary systems. Planet. Space Sci., 55, 651–660 {623}Google Scholar
vonBloh, W, Cuntz, M, Franck, S, et al., 2003b, On the possibility of Earth-type habitable planets in the 55 Cnc system. Astrobiology, 3, 681–688 {728}Google Scholar
vonBloh, W, Cuntz, M, Franck, S, 2011, Habitability of the Goldilocks planet GJ 581 g: results from geodynamic models. A&A, 528, A133 {716}Google Scholar
vonBloh, W, Kossacki, KJ, Franck, S, et al., 2010, Diurnal habitability of frozen worlds. Earth Moon and Planets, 106, 15–26 {621}Google Scholar
vonBorstel, I, Blum, J, 2012, Photophoresis of dust aggregates in protoplanetary disks. A&A, 548, A96 {458}Google Scholar
vonBraun, K, Boyajian, TS, Kane, SR, et al., 2011a, Astrophysical parameters and habitable zone of the exoplanet hosting star GJ 581. ApJ, 729, L26 {378, 717}CrossRefGoogle Scholar
vonBraun, K, Boyajian, TS, Kane, SR, 2012, The GJ 436 system: directly determined astrophysical parameters of an M dwarf and implications for the transiting hot Neptune. ApJ, 753, 171 {378, 729}CrossRefGoogle Scholar
vonBraun, K, Boyajian, TS, ten Brummelaar, TA, et al., 2011b, 55 Cnc: stellar astrophysical parameters, a planet in the habitable zone, and implications for the radius of a transiting super-Earth. ApJ, 740, 49 {378, 728}CrossRefGoogle Scholar
vonBraun, K, Boyajian, TS, van Belle, GT, et al., 2014, Stellar diameters and temperatures. V. 11 newly characterised exoplanet host stars. MNRAS, 438, 2413–2425 {378, 715, 716, 717, 718, 719, 724}Google Scholar
vonBraun, K, Kane, SR, Ciardi, DR, 2009, Observational window functions in planet transit surveys. ApJ, 702, 779–790 {155}Google Scholar
vonBraun, K, Lee, BL, Seager, S, et al., 2005, Searching for planetary transits in Galactic open clusters: EXPLORE/OC. PASP, 117, 141–159 {158, 159}Google Scholar
vonEssen, C, Cellone, S, Mallonn, M, et al., 2017, Testing connections between exo-atmospheres and their host stars. GEMINI-N/GMOSground-based transmission spectrumof Qatar-1b. A&A, 603, A20 {750}Google Scholar
vonEssen, C, Czesla, S, Wolter, U, et al., 2014, Pulsation analysis and its impact on primary transit modeling in WASP–33. A&A, 561, A48 {754}Google Scholar
vonEssen, C, Mallonn, M, Albrecht, S, et al., 2015, A temperature inversion in WASP–33 b? Large Binocular Telescope occultation data confirm significant thermal flux at short wavelengths. A&A, 584, A75 {754}Google Scholar
vonEssen, C, Schröter, S, Agol, E, et al., 2013, Qatar–1: indications for possible transit timing variations. A&A, 555, A92 {750}Google Scholar
vonHoerner, S, 1961, The search for signals from other civilisations. Science, 134, 1839–1843 {643}Google Scholar
vonHoerner, S, 1973, Astronomical aspects of interstellar communication. Acta Astron., 18, 421–430 {643}Google Scholar
vonParis, P, Cabrera, J, Godolt, M, et al., 2011a, Spectroscopic characterisation of the atmospheres of potentially habitable planets: GJ 581 d as a model case study. A&A, 534, A26 {717}Google Scholar
vonParis, P, Gebauer, S, Godolt, M, et al., 2010, The extrasolar planet GJ 581 d: a potentially habitable planet?. A&A, 522, A23 {716}Google Scholar
vonParis, P, Gebauer, S, Godolt, M, 2011b, Atmospheric studies of habitability in the GJ 581 system. A&A, 532, A58 {717}Google Scholar
vonParis, P, Gratier, P, Bordé, P, et al., 2016a, Inferring asymmetric limb cloudiness on exoplanets from transit light curves. A&A, 589, A52 {221, 590, 616, 732, 736, 738}Google Scholar
vonParis, P, Gratier, P, Bordé, P, 2016b, Inferring heat recirculation and albedo for exoplanetary atmospheres: comparing optical phase curves and secondary eclipse data. A&A, 587, A149 {733, 736, 751}Google Scholar
vonParis, P, Grenfell, JL, Hedelt, P, et al., 2013a, Atmospheric constraints for the CO2 partial pressure on terrestrial planets near the outer edge of the habitable zone. A&A, 549, A94 {620}Google Scholar
vonParis, P, Hedelt, P, Selsis, F, et al., 2013b, Characterisation of potentially habitable planets: retrieval of atmospheric and planetary properties from emission spectra. A&A, 551, A120 {640}Google Scholar
vonParis, P, Selsis, F, Kitzmann, D, et al., 2013c, The dependence of the ice-albedo feedback on atmospheric properties. Astrobiology, 13, 899–909 {620}Google Scholar
vonZeipel, H, 1924, The radiative equilibriumof a rotating system of gaseous masses. MNRAS, 84, 665–683 {215}Google Scholar
Vorobyov, EI, 2013, Formation of giant planets and brown dwarfs on wide orbits. A&A, 552, A129 {488}Google Scholar
Vorobyov, EI, Basu, S, 2005, The origin of episodic accretion bursts in the early stages of star formation. ApJ, 633, L137–L140 {402, 489}CrossRefGoogle Scholar
Vorobyov, EI, Basu, S, 2006, The burst mode of protostellar accretion. ApJ, 650, 956–969 {489}CrossRefGoogle Scholar
Vorobyov, EI, Basu, S, 2010a, Formation and survivability of giant planets onwide orbits. ApJ, 714, L133–L137 {488, 489}CrossRefGoogle Scholar
Vorobyov, EI, Basu, S, 2010b, The burst mode of accretion and disk fragmentation in the early embedded stages of star formation. ApJ, 719, 1896–1911 {489}CrossRefGoogle Scholar
Vorobyov, EI, Steinrueck, ME, Elbakyan, V, et al., 2017, Formation of freely floating sub-stellar objects via close encounters. A&A, 608, A107 {526}Google Scholar
Vorontsov, SV, 1981, Natural oscillations of the giant planets: the influence of differential rotation. AZh, 58, 1275–1285 {411}Google Scholar
Vorontsov, SV, Zharkov, VN, 1981, The natural oscillations of giant planets: effects of rotation and ellipticity. AZh, 58, 1101–1114 {411}Google Scholar
Voyatzis, G, 2008, Chaos, order, and periodic orbits in 3:1 resonant planetary dynamics. ApJ, 675, 802–816 {507, 728}CrossRefGoogle Scholar
Voyatzis, G, 2017, Periodic orbits of planets in binary systems. Proceedings of the First Greek-Austrian Workshop on Extrasolar Planetary Systems, 197–224 {549}
Voyatzis, G, Antoniadou, KI, Tsiganis, K, 2014, Vertical instability and inclination excitation during planetary migration. Cel. Mech. Dyn. Astron., 119, 221–235 {523}CrossRefGoogle Scholar
Voyatzis, G, Hadjidemetriou, JD, 2005, Symmetric and asymmetric librations in planetary and satellite systems at the 2:1 resonance. Cel. Mech. Dyn. Astron., 93, 263–294 {506}CrossRefGoogle Scholar
Voyatzis, G, Hadjidemetriou, JD, 2006, Symmetric and asymmetric 3:1 resonant periodic orbits with an application to the 55 Cnc extrasolar system. Cel. Mech. Dyn. Astron., 95, 259–271 {71, 728}CrossRefGoogle Scholar
Voyatzis, G, Hadjidemetriou, JD, Veras, D, et al., 2013, Multi-planet destabilisation and escape in post-main-sequence systems. MNRAS, 430, 3383–3396 {517}CrossRefGoogle Scholar
Vrba, FJ, Henden, AA, Luginbuhl, CB, et al., 2004, Preliminary parallaxes of 40 L and T dwarfs from the US Naval Observatory infrared astrometry program. AJ, 127, 2948–2968 {434, 437}CrossRefGoogle Scholar
Vukotić, B, 2010, The set of habitable planets and astrobiological regulation mechanisms. Int. J. Astrobiol., 9, 81–87 {625}CrossRefGoogle Scholar
Vukotić, B, Cirković MM, 2007, On the time scale forcing in astrobiology. Serbian Astronomical Journal, 175, 45–50 {647}Google Scholar
Vuong, QH, 1989, Likelihood ratio tests for model selection and non-nested hypotheses. Econometrica, 57(2), 307–333 {39}CrossRefGoogle Scholar
Wacey, D, Kilburn, MR, Saunders, M, et al., 2011, Microfossils of sulphur-metabolising cells in 3.4-billion-year-old rocks of Western Australia. Nature Geoscience, 4, 698–702 {636}CrossRefGoogle Scholar
Wada, K, Kokubo, E, Makino, J, 2006, High-resolution simulations of a moon-forming impact and postimpact evolution. ApJ, 638, 1180–1186 {689}CrossRefGoogle Scholar
Wada, K, Tanaka, H, Okuzumi, S, et al., 2013, Growth efficiency of dust aggregates through collisions with high mass ratios. A&A, 559, A62 {469}Google Scholar
Wada, K, Tanaka, H, Suyama, T, et al., 2007, Numerical simulation of dust aggregate collisions. I. Compression and disruption of 2d aggregates. ApJ, 661, 320–333 {469}CrossRefGoogle Scholar
Wada, K, Tanaka, H, Suyama, T, 2008, Numerical simulation of dust aggregate collisions. II. Compression and disruption of three-dimensional aggregates in head-on collisions. ApJ, 677, 12961308 {458, 469}CrossRefGoogle Scholar
Wada, K, Tanaka, H, Suyama, T, 2009, Collisional growth conditions for dust aggregates. ApJ, 702, 1490–1501 {458, 468, 469}CrossRefGoogle Scholar
Wada, K, Tanaka, H, Suyama, T, 2011, The rebound condition of dust aggregates revealed by numerical simulation of their collisions. ApJ, 737, 36 {469}CrossRefGoogle Scholar
Wadhwa, M, Amelin, Y, Davis, AM, et al., 2007, From dust to planetesimals: implications for the solar protoplanetary disk from short-lived radionuclides. Protostars and Planets V, 835–848 {652}
Wagner, FW, Sohl, F, Hussmann, H, et al., 2011, Interior structure models of solid exo-planets using material laws in the infinite pressure limit. Icarus, 214, 366–376 {574, 603}CrossRefGoogle Scholar
Wagner, FW, Tosi, N, Sohl, F, et al., 2012, Rocky super-Earth interiors: structure and internal dynamics of CoRoT–7 b and Kepler–10 b. A&A, 541, A103 {734, 739}Google Scholar
Wagner, K, Dong, R, Sheehan, P, et al., 2018, The orbit of the companion to HD 100453A: binary-driven spiral arms in a protoplanetary disk. ApJ, 854, 130 {367}CrossRefGoogle Scholar
Wagner, KR, Apai, D, Kasper, M, et al., 2015a, Discovery of a two-armed spiral structure in the gapped disk around Herbig Ae star HD 100453. ApJ, 813, L2 {367, 368, 466}CrossRefGoogle Scholar
Wagner, KR, Apai, D, Kasper, M, 2016, Direct imaging discovery of a Jovian exoplanet within a triple-star system. Science, 353, 673–678 {363, 763}CrossRefGoogle ScholarPubMed
Wagner, KR, Sitko, ML, Grady, CA, et al., 2015b, Variability of disk emission in pre-main sequence and related stars. III. Exploring structural changes in the pre-transition disk in HD 169142. ApJ, 798, 94 {467}CrossRefGoogle Scholar
Wagner, W, Pruß, A, 2002, The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. Journal of Physical and Chemical Reference Data, 31, 387–535 {567}CrossRefGoogle Scholar
Wahhaj, Z, Cieza, L, Koerner, DW, et al., 2010, The Spitzer c2d survey of weak-line T Tauri stars. III. The transition from primordial disks to debris disks. ApJ, 724, 835 {492}CrossRefGoogle Scholar
Wahhaj, Z, Cieza, LA, Mawet, D, et al., 2015, Improving signal-to-noise in the direct imaging of exoplanets and circumstellar disks with MLOCI. A&A, 581, A24 {340, 341}Google Scholar
Wahhaj, Z, Koerner, DW, Ressler, ME, et al., 2003, The inner rings of β Pic. ApJ, 584, L27–L31 {762}CrossRefGoogle Scholar
Wahhaj, Z, Liu, MC, Biller, BA, et al., 2011a, The Gemini–NICI planet-finding campaign: combining coronagraphy with angular and spectral differencing imaging. AAS Abstracts, volume 2, 2203 {358}Google Scholar
Wahhaj, Z, Liu, MC, Biller, BA, 2011b, The Gemini–NICI planet-finding campaign: discovery of a substellar L dwarf companion to the young Mdwarf CD–35 2722. ApJ, 729, 139 {358}CrossRefGoogle Scholar
Wahhaj, Z, Liu, MC, Biller, BA, 2013a, The Gemini–NICI planet-finding campaign: the companion detection pipeline. ApJ, 779, 80 {358}CrossRefGoogle Scholar
Wahhaj, Z, Liu, MC, Biller, BA, 2014, The Gemini NICI planet-finding campaign: the offset ring of HR 4796 A. A&A, 567, A34 {358}Google Scholar
Wahhaj, Z, Liu, MC, Nielsen, EL, et al., 2013b, The Gemini planet-finding campaign: the frequency of giant planets around debris disk stars. ApJ, 773, 179 {358}CrossRefGoogle Scholar
Wahl, SM, Hubbard, WB, Militzer, B, 2016, Tidal response of preliminary Jupiter model. ApJ, 831, 14 {659}CrossRefGoogle Scholar
Wahl, SM, Militzer, B, 2015, High-temperature miscibility of iron and rock during terrestrial planet formation. Earth Planet. Sci. Lett., 410, 25–33 {572}CrossRefGoogle Scholar
Wahl, SM, Wilson, HF, Militzer, B, 2013, Solubility of iron in metallic hydrogen and stability of dense cores in giant planets. ApJ, 773, 95 {567}CrossRefGoogle Scholar
WahlbergJansson, K, Johansen, A, 2014, Formation of pebble-pile planetesimals. A&A, 570, A47 {471, 473}Google Scholar
WahlbergJansson, K, Johansen, A, 2017, Radially resolved simulations of collapsing pebble clouds in protoplanetary disks. MNRAS, 469, S149–S157 {471}CrossRefGoogle Scholar
WahlbergJansson, K, Johansen, A, Bukhari Syed, M, et al., 2017, The role of pebble fragmentation in planetesimal formation. II. Numerical simulations. ApJ, 835, 109 {471}Google Scholar
Wai, CM, Wasson, JT, 1977, Nebular condensation of moderately volatile elements and their abundances in ordinary chondrites. Earth Planet. Sci. Lett., 36, 1–13 {562}CrossRefGoogle Scholar
Wai, CM, Wasson, JT, 1979, Nebular condensation of Ga, Ge and Sb and the chemical classification of ironmeteorites. Nature, 282, 790–793 {562}CrossRefGoogle Scholar
Wakeford, HR, Sing, DK, 2015, Transmission spectral properties of clouds for hot Jupiter exoplanets. A&A, 573, A122 {590, 591}Google Scholar
Wakeford, HR, Sing, DK, Deming, D, et al., 2013, HST hot Jupiter transmission spectral survey: detection of water in HAT–P–1 b from WFC3 near-IR spatial scan observations. MNRAS, 435, 3481–3493 {163, 735}CrossRefGoogle Scholar
Wakeford, HR, Sing, DK, Deming, D, 2018, The complete transmission spectrum of WASP–39 b with a precise water constraint. AJ, 155, 29 {642, 755}CrossRefGoogle Scholar
Wakeford, HR, Sing, DK, Evans, T, et al., 2016, Marginalising instrument systematics in HST–WFC3 transit light curves. ApJ, 819, 10 {612}CrossRefGoogle Scholar
Wakeford, HR, Sing, DK, Kataria, T, et al., 2017a, HAT–P–26 b: a Neptune-mass exo-planet with a well-constrained heavy element abundance. Science, 356, 628–631 {737}CrossRefGoogle Scholar
Wakeford, HR, Stevenson, KB, Lewis, NK, et al., 2017b, HST Pan CET programme: a cloudy atmosphere for the promising JWST target WASP–101 b. ApJ, 835, L12 {181, 185, 756}CrossRefGoogle Scholar
Wakeford, HR, Visscher, C, Lewis, NK, et al., 2017c, High-temperature condensate clouds in super-hot Jupiter atmospheres. MNRAS, 464, 4247–4254 {753}CrossRefGoogle Scholar
Waldmann, IP, 2012, Of ‘cocktail parties’ and exoplanets. ApJ, 747, 12 {606}CrossRefGoogle Scholar
Waldmann, IP, 2014, On signals faint and sparse: the ACICA algorithm for blind de-trending of exoplanetary transits with low signal-to-noise. ApJ, 780, 23 {190}CrossRefGoogle Scholar
Waldmann, IP, Rocchetto, M, Tinetti, G, et al., 2015a, Tau-REx II: retrieval of emission spectra. ApJ, 813, 13 {606}CrossRefGoogle Scholar
Waldmann, IP, Tinetti, G, Deroo, P, et al., 2013, Blind extraction of an exoplanetary spectrumthrough independent component analysis. ApJ, 766, 7 {606, 730}CrossRefGoogle Scholar
Waldmann, IP, Tinetti, G, Drossart, P, et al., 2012, Ground-based near-infrared emission spectroscopy of HD 189733 b. ApJ, 744, 35 {606, 609, 613, 730}CrossRefGoogle Scholar
Waldmann, IP, Tinetti, G, Rocchetto, M, et al., 2015b, Tau-REx I: a next generation retrieval code for exoplanetary atmospheres. ApJ, 802, 107 {606}CrossRefGoogle Scholar
Walker, GAH, 2012, The first high-precision radial velocity search for extrasolar planets. New Astron. Rev., 56, 9–15 {50}CrossRefGoogle Scholar
Walker, GAH, Bohlender, DA, Walker, AR, et al., 1992, γ Cep: rotation or planetary companion? ApJ, 396, L91–L94 {50, 714}CrossRefGoogle Scholar
Walker, GAH, Buchholz, V, Fahlman, GG, et al., 1973, Hα observations of Algol on 2 September 1972. AJ, 78, 681–683 {31}CrossRefGoogle Scholar
Walker, GAH, Croll, B, Matthews, JM, et al., 2008, MOST detects variability on τ Boo a possibly induced by its planetary companion. A&A, 482, 691–697 {173, 186, 387, 421, 714}Google Scholar
Walker, GAH, Matthews, J, Kuschnig, R, et al., 2003a, The MOST asteroseismology mission: ultraprecise photometry from space. PASP, 115, 1023–1035 {186}CrossRefGoogle Scholar
Walker, GAH, Shkolnik, E, Bohlender, DA, et al., 2003b, The radial velocity precision of fiber-fed spectrographs. PASP, 115, 700–705 {34}CrossRefGoogle Scholar
Walker, GAH, Walker, AR, Irwin, AW, et al., 1995, A search for Jupiter-mass companions to nearby stars. Icarus, 116, 359–375 {46}CrossRefGoogle Scholar
Walker, IW, Emslie, AG, Roy, AE, 1980, Stability criteria in many-body systems. I. An empirical stability criterion for co-rotational three-body systems. Celestial Mechanics, 22, 371–402 {276}Google Scholar
Walker, JCG, Hays, PB, Kasting, JF, 1981, A negative feedback mechanism for the longterm stabilisation of the Earth's surface temperature. J. Geophys. Res., 86, 9776–9782 {626, 669}CrossRefGoogle Scholar
Walker, MA, 1995, Microlensed image motions. ApJ, 453, 37–39 {138}CrossRefGoogle Scholar
Walker, RJ, 2009, Highly siderophile elements in the Earth, Moon and Mars: update and implications for planetary accretion and differentiation. Chemie der Erde/Geochemistry, 69, 101–125 {669}Google Scholar
Walkowicz, LM, Basri, G, Valenti, JA, 2013, The information content in analytic spot models of broad-band precision light curves. ApJS, 205, 17 {211, 212}CrossRefGoogle Scholar
Walkowicz, LM, Basri, GS, 2013, Rotation periods, variability properties and ages for Kepler exoplanet candidate host stars. MNRAS, 436, 1883–1895 {309, 310, 383, 531, 540}CrossRefGoogle Scholar
Wallace, AR, 1904, Man's Place in the Universe. George Bell London {630}Google Scholar
Wallace, J, Tremaine, S, Chambers, J, 2017, Collisional fragmentation is not a barrier to close-in planet formation. AJ, 154, 175 {476}CrossRefGoogle Scholar
Wallace, K, Hardy, G, Serabyn, E, 2000, Deep and stable interferometric nulling of broad-band light with implications for observing planets around nearby stars. Nature, 406, 700–702 {349}CrossRefGoogle Scholar
Wallner, A, Feige, J, Kinoshita, N, et al., 2016, Recent near-Earth supernovae probed by global deposition of interstellar radioactive 60Fe. Nature, 532, 69–72 {651}CrossRefGoogle Scholar
Walsh, C, Daley, C, Facchini, S, et al., 2017, CO emission tracing a warp or radial flow within 100 au in the HD 100546 protoplanetary disk. A&A, 607, A114 {763}Google Scholar
Walsh, C, Juhász, A, Pinilla, P, et al., 2014, ALMA hints at the presence of two companions in the disk around HD 100546. ApJ, 791, L6 {466, 762}CrossRefGoogle Scholar
Walsh, C, Loomis, RA, Öberg KI, et al., 2016, First detection of gas-phase methanol in a protoplanetary disk. ApJ, 823, L10 {463}CrossRefGoogle Scholar
Walsh, C, Millar, TJ, Nomura, H, 2010, Chemical processes in protoplanetary disks. ApJ, 722, 1607–1623 {463}CrossRefGoogle Scholar
Walsh, D, Carswell, RF, Weymann, RJ, 1979, 0957+561 AB: twin quasars or gravitational lens? Nature, 279, 381–384 {120}CrossRefGoogle ScholarPubMed
Walsh, KJ, Levison, HF, 2015, Formation and evolution of Pluto's small satellites. AJ, 150, 11 {682}CrossRefGoogle Scholar
Walsh, KJ, Levison, HF, 2016, Terrestrial planet formation from an annulus. AJ, 152, 68 {657}CrossRefGoogle Scholar
Walsh, KJ, Morbidelli, A, 2011, The effect of an early planetesimal-driven migration of the giant planets on terrestrial planet formation. A&A, 526, A126 {697}Google Scholar
Walsh, KJ, Morbidelli, A, Raymond, SN, et al., 2011, A low mass for Mars from Jupiter's early gas-driven migration. Nature, 475, 206–209 {11, 325, 575, 657, 668, 685, 698, 699}CrossRefGoogle ScholarPubMed
Walters, SJ, Forbes, LK, 2011, A note on a linearised approach to gravitational lensing. MNRAS, 416, 3067–3074 {131}CrossRefGoogle Scholar
Walters, SJ, Forbes, LK, 2017, A simple and practical algorithm for accurate gravitational magnification maps. Publ. Astron. Soc. Australia, 34, e006 {128}CrossRefGoogle Scholar
Waltham, D, 2011, Anthropic selection and the habitability of planets orbiting Mand K dwarfs. Icarus, 215, 518–521 {628}CrossRefGoogle Scholar
Wambsganss, J, 1997, Discovering Galactic planets by gravitational microlensing: magnification patterns and light curves. MNRAS, 284, 172–188 {123, 127, 130}CrossRefGoogle Scholar
Wambsganss, J, 2004, Microlensing surveys in search of extrasolar planets. Extrasolar Planets: Today and Tomorrow, volume 321 of ASP Conf. Ser., 47–65 {120}Google Scholar
Wambsganss, J, 2006, Gravitational microlensing. Gravitational Lensing: Strong, Weak and Micro, Saas-Fee Advanced Courses, Volume 33, p. 453, Springer {120}CrossRefGoogle Scholar
Wambsganss, J, 2011, Astronomy: bound and unbound planets abound. Nature, 473, 289–291 {150}CrossRefGoogle ScholarPubMed
Wan, X, Ge, J, Chen, Z, 2011, Development of stable monolithic wide-field Michelson interferometers. Appl. Opt., 50, 4105–4114 {49}CrossRefGoogle ScholarPubMed
Wan, X, Ge, J, Guo, P, et al., 2006, A fiber feed system for a multiple object Doppler instrument at Sloan Telescope. SPIE Conf. Ser., volume 6269, 88–97 {49}Google Scholar
Wandel, A, 2015, On the abundance of extraterrestrial life after the Kepler mission. Int. J. Astrobiol., 14, 511–516 {644}CrossRefGoogle Scholar
Wang, D, Hogg, DW, Foreman-Mackey, D, et al., 2016a, A causal, data-driven approach tomodeling the Kepler data. PASP, 128(9), 094503 {176}CrossRefGoogle Scholar
Wang, D, Miguel, Y, Lunine, J, 2017a, Modeling synthetic spectra for transiting extraso-lar giant planets: detectability of H2S and PH3 with JWST. ApJ, 850, 199 {181}CrossRefGoogle Scholar
Wang, H, Henning, T, 2006, A search for optical outflows from brown dwarfs in the Chamaeleon I molecular cloud. ApJ, 643, 985–994 {445}CrossRefGoogle Scholar
Wang, H, Weiss, BP, Bai, XN, et al., 2017b, Lifetime of the solar nebula constrained by meteorite paleomagnetism. Science, 355, 623–627 {694}CrossRefGoogle Scholar
Wang, J, Fischer, DA, 2015, Revealing a universal planet-metallicity correlation for planets of different sizes around solar-type stars. AJ, 149, 14 {308}CrossRefGoogle Scholar
Wang, J, Fischer, DA, Barclay, T, et al., 2013a, Planet Hunters. V. A confirmed Jupiter-size planet in the habitable zone and 42 planet candidates from the Kepler archive. ApJ, 776, 10 {192, 742}CrossRefGoogle Scholar
Wang, J, Fischer, DA, Barclay, T, 2015a, Planet Hunters. VIII. Characterisation of 41 long-period exoplanet candidates from Kepler archival data. ApJ, 815, 127 {192, 746}CrossRefGoogle Scholar
Wang, J, Fischer, DA, Horch, EP, et al., 2015b, Influence of stellar multiplicity on planet formation. III. Adaptive optics imaging of Kepler stars with gas giant planets. ApJ, 806, 248 {305}CrossRefGoogle Scholar
Wang, J, Fischer, DA, Horch, EP, 2015c, On the occurrence rate of hot Jupiters in different stellar environments. ApJ, 799, 229 {13, 299}CrossRefGoogle Scholar
Wang, J, Fischer, DA, Xie, JW, et al., 2014a, Influence of stellar multiplicity on planet formation. II. Planets are less common in multiple-star systems with separations smaller than 1500 au. ApJ, 791, 111 {552}CrossRefGoogle Scholar
Wang, J, Fischer, DA, Xie, JW, 2015d, Influence of stellar multiplicity on planet formation. IV. Adaptive optics imaging of Kepler stars withmultiple transiting planet candidates. ApJ, 813, 130 {551}CrossRefGoogle Scholar
Wang, J, Ford, EB, 2011, On the eccentricity distribution of short-period single-planet systems. MNRAS, 418, 1822–1833 {63}CrossRefGoogle Scholar
Wang, J, Ge, J, Jiang, P, et al., 2011, Fundamental performance of a dispersed fixed delay interferometer in searching for planets around Mdwarfs. ApJ, 738, 132 {49}CrossRefGoogle Scholar
Wang, J, Ge, J, Wan, X, et al., 2012a, Accurate group-delay measurement for radial velocity instruments using the dispersed fixed-delay interferometer. PASP, 124, 598–605 {49}Google Scholar
Wang, J, Mawet, D, Ruane, G, et al., 2017c, Observing exoplanets with high dispersion coronagraphy. I. The scientific potential of current and next-generation large ground and space telescopes. AJ, 153, 183 {341}CrossRefGoogle Scholar
Wang, J, Xie, JW, Barclay, T, et al., 2014b, Influence of stellar multiplicity on planet formation. I. Evidence of suppressed planet formation due to stellar companions within 20 au and validation of four planets from the Kepler multiple planet candidates. ApJ, 783, 4 {552, 743, 745}CrossRefGoogle Scholar
Wang, JJ, Graham, JR, Pueyo, L, et al., 2015e, Gemini Planet Imager observations of the AUMic debris disk: asymmetries within one arcsecond. ApJ, 811, L19 {494}CrossRefGoogle Scholar
Wang, JJ, Graham, JR, Pueyo, L, 2016b, The orbit and transit prospects for β Pic b constrained with one milliarc-second astrometry. AJ, 152, 97 {224, 367, 762}CrossRefGoogle Scholar
Wang, JY, Markey, JK, 1978, Modal compensation of atmospheric turbulence phase distortion. J. Opt. Soc. Amer., 68, 78–87 {331}CrossRefGoogle Scholar
Wang, L, Kouwenhoven, MBN, Zheng, X, et al., 2015f, Close encounters involving free-floating planets in star clusters. MNRAS, 449, 3543–3558 {526}CrossRefGoogle Scholar
Wang, L, Macri, LM, Wang, L, et al., 2013b, Photometry of variable stars from Dome A, Antarctica: results from the 2010 observing season. AJ, 146, 139 {347}CrossRefGoogle Scholar
Wang, L, Sato, B, Omiya, M, et al., 2014c, A long-period eccentric substellar companion to the evolved intermediate-mass star HD 14067. PASJ, 66, 118 {718}CrossRefGoogle Scholar
Wang, S, 2011, Configuration formation and dynamics of exoplanet systems. Acta As-tronomica Sinica, 52, 355–356 {719, 759}Google Scholar
Wang, S, Addison, B, Fischer, DA, et al., 2018a, Stellar spin–orbit alignment for Kepler–9, amulti-transiting planetary system with two outer planets near 2:1 resonance. AJ, 155, 70 {738}CrossRefGoogle Scholar
Wang, S, Ji, J, 2014, Near 3:2 and 2:1 mean motion resonance formation in the systems observed by Kepler. ApJ, 795, 85 {318}CrossRefGoogle Scholar
Wang, S, Ji, J, 2017, Near mean-motion resonances in the system observed by Kepler: affected bymass accretion and type I migration. AJ, 154, 236 {320, 321, 741, 743, 744, 745, 746}CrossRefGoogle Scholar
Wang, S, Ji, J, Zhou, JL, 2012b, Predicting the configuration of a planetary system: KOI–152 observed by Kepler. ApJ, 753, 170 {320, 742}CrossRefGoogle Scholar
Wang, S, Wright, JT, Cochran, W, et al., 2012c, The discovery of HD 37605 c and a dis-positive null detection of transits of HD 37605 b. ApJ, 761, 46 {184, 719}CrossRefGoogle Scholar
Wang, S, Wu, DH, Addison, BC, et al., 2018b, Transiting Exoplanet Monitoring Project (TEMP). III. On the relocation of the Kepler–9 b transit. AJ, 155, 73 {738}CrossRefGoogle Scholar
Wang, S, Zhang, H, Zhou, JL, et al., 2014d, Planetary transit candidates in the CSTAR field: analysis of the 2008 data. ApJS, 211, 26 {170}CrossRefGoogle Scholar
Wang, S, Zhao, G, Zhou, J, 2009, Dynamics and eccentricity formation of planets in OGLE–2006–BLG–109L system. ApJ, 706, 772–784 {759}CrossRefGoogle Scholar
Wang, S, Zhou, JL, 2011, Forming habitable planets around dwarf stars: application to OGLE–2006–BLG–109L. ApJ, 727, 108 {759}CrossRefGoogle Scholar
Wang, SX, Wright, JT, 2012, BOOTTRAN: error bars for Keplerian orbital parameters. Astrophysics Source Code Library {25}
Wang, T, Song, X, Xia, HH, 2015g, Equatorial anisotropy in Earth's inner core from autocorrelation of earthquake coda. Nature Geoscience, 8, 224–227 {663}CrossRefGoogle Scholar
Wang, W, van Boekel, R, Madhusudhan, N, et al., 2013c, Ground-based detections of thermal emission from the dense hot Jupiter WASP–43 b in the H and Ks bands. ApJ, 770, 70 {755}CrossRefGoogle Scholar
Wang, X, Malhotra, R, 2017, Mean motion resonances at high eccentricities: the 2:1 and the 3:2 interior resonances. AJ, 154, 20 {509}CrossRefGoogle Scholar
Wang, XB, Gu, SH, Collier Cameron, A, et al., 2013d, The refined physical parameters of transiting exoplanet system HAT–P–24. Res. Astron. Astrophys., 13, 593 {737}CrossRefGoogle Scholar
Wang, XB, Gu, SH, Collier Cameron, A, 2014e, The refined physical properties of transiting exoplanetary system WASP–11/HAT–P–10. AJ, 147, 92 {752}CrossRefGoogle Scholar
Wang, XM, 2015, Planetesimal formation in an evolving protoplanetary disk: effects of evaporation cooling from water ice inside the snow line. MNRAS, 449, 1084–1097 {458}CrossRefGoogle Scholar
Wang, Y, Jones, HRA, Smart, RL, et al., 2014f, Parallaxes of five L dwarfs with a robotic telescope. PASP, 126, 15–26 {434}CrossRefGoogle Scholar
Wang, Y, Liu, Y, Tian, F, et al., 2016c, Effects of obliquity on the habitability of exoplanets around Mdwarfs. ApJ, 823, L20 {621}CrossRefGoogle Scholar
Wang, Y, Tian, F, Hu, Y, 2014g, Climate patterns of habitable exoplanets in eccentric orbits around Mdwarfs. ApJ, 791, L12 {621, 622}CrossRefGoogle Scholar
Wang, Y, Tian, F, Li, T, et al., 2016d, On the detection of CO as an anti-biosignature in exoplanetary atmospheres. Icarus, 266, 15–23 {642}CrossRefGoogle Scholar
Wang, Y, Zhou Jl, Hui-gen, L, et al., 2017d, Forming different planetary architectures. I. The formation efficiency of hot Jupiters from high-eccentricity mechanisms. ApJ, 848, 20 {713, 725, 755}CrossRefGoogle Scholar
Wang, YH, Wang, S, Liu, HG, et al., 2017e, Transiting Exoplanet Monitoring Project (TEMP). II. Refined system parameters and transit timing analysis of HAT–P–33 b. AJ, 154, 49 {737}CrossRefGoogle Scholar
Wang, Z, Chakrabarty, D, Kaplan, DL, 2006, A debris disk around an isolated young neutron star. Nature, 440, 772–775 {107, 495}CrossRefGoogle ScholarPubMed
Wang, Z, Cuntz, M, 2017, Fitting formulae and constraints for the existence of S-type and P-type habitable zones in binary systems. AJ, 154, 157 {623, 740, 745, 747, 751}CrossRefGoogle Scholar
Wang, Z, Gurnett, DA, Fischer, G, et al., 2010, Cassini observations of narrowband radio emissions in Saturn's magnetosphere. J. Geophys. Res., 115, 6213–6218 {426}Google Scholar
Ward, P, Brownlee, D, 2000, Rare Earth: Why Complex Life is Uncommon in the Universe. Copernicus New York {632, 647, 661}Google Scholar
Ward, WR, 1973, Large-scale variations in the obliquity of Mars. Science, 181, 260–262 {679, 681}CrossRefGoogle ScholarPubMed
Ward, WR, 1974, Climatic variations on Mars. I. Astronomical theory of insolation. J. Geo-phys. Res., 79, 3375–3386 {678}CrossRefGoogle Scholar
Ward, WR, 1975, Tidal friction and generalised Cassini's laws in the solar system. AJ, 80, 64–70 {678}CrossRefGoogle Scholar
Ward, WR, 1976, The formation of the solar system. Frontiers of Astrophysics, 1–40 {460}
Ward, WR, 1981, Solar nebula dispersal and the stability of the planetary system. I. Scanning secular resonance theory. Icarus, 47, 234–264 {693}CrossRefGoogle Scholar
Ward, WR, 1986, Density waves in the solar nebula: differential Lindblad torque. Icarus, 67, 164–180 {518}CrossRefGoogle Scholar
Ward, WR, 1989, On the rapid formation of giant planet cores. ApJ, 345, L99–L102 {483}CrossRefGoogle Scholar
Ward, WR, 1997a, Protoplanet migration by nebula tides. Icarus, 126, 261–281 {501, 518, 520, 521, 687}CrossRefGoogle Scholar
Ward, WR, 1997b, Survival of planetary systems. ApJ, 482, L211–L214 {484, 521}CrossRefGoogle Scholar
Ward, WR, 2000, On planetesimal formation: the role of collective particle behaviour. Origin of the Earth and Moon, 75–84 {460}
Ward, WR, 2012, On the vertical structure of the protolunar disk. ApJ, 744, 140 {664}CrossRefGoogle Scholar
Ward, WR, Canup, RM, 2000, Origin of the Moon's orbital inclination from resonant disk interactions. Nature, 403, 741–743 {665}CrossRefGoogle ScholarPubMed
Ward, WR, Canup, RM, 2010, Circumplanetary disk formation. AJ, 140, 1168–1193 {486}CrossRefGoogle Scholar
Ward, WR, Canup, RM, 2013, The evection resonance and the angular momentum of the Earth–Moon system. Lunar and Planetary Science Conference, volume 44, 3029 {509, 664}Google Scholar
Ward, WR, Hamilton, DP, 2004, Tilting Saturn. I. Analytic model. AJ, 128, 2501–2509 {678, 681, 688}CrossRefGoogle Scholar
Ward, WR, Hourigan, K, 1989, Orbital migration of protoplanets: the inertial limit. ApJ, 347, 490–495 {520}CrossRefGoogle Scholar
Ward, WR, Reid, MJ, 1973, Solar tidal friction and satellite loss. MNRAS, 164, 21–32 {305}CrossRefGoogle Scholar
Ward, WR, Rudy, DJ, 1991, Resonant obliquity of Mars? Icarus, 94, 160–164 {621}CrossRefGoogle Scholar
Wardle, M, Salmeron, R, 2012, Hall diffusion and the magnetorotational instability in protoplanetary disks. MNRAS, 422, 2737–2755 {461}CrossRefGoogle Scholar
Warren, SJ, Mortlock, DJ, Leggett, SK, et al., 2007, A very cool brown dwarf in UKIDSS DR1. MNRAS, 381, 1400–1412 {432}CrossRefGoogle Scholar
Warwick, JW, Evans, DR, Peltzer, GR, et al., 1989, Voyager planetary radio astronomy at Neptune. Science, 246, 1498–1501 {658}CrossRefGoogle ScholarPubMed
Warwick, JW, Evans, DR, Romig, JH, et al., 1986, Voyager 2 radio observations of Uranus. Science, 233, 102–106 {658}CrossRefGoogle ScholarPubMed
Wasson, JT, Kallemeyn, GW, 1988, Compositions of chondrites. Phil. Trans. Soc. London A, 325, 535–544 {670}Google Scholar
Waszek, L, Irving, J, Deuss, A, 2011, Reconciling the hemispherical structure of Earth's inner core with its superrotation. Nature Geoscience, 4, 264–267 {663}CrossRefGoogle Scholar
Watanabe, M, Takami, H, Takato, N, et al., 2004, Design of the Subaru laser guide star adaptive optics module. SPIE Conf. Ser., volume 5490, 1096–1104 {332}Google Scholar
Watson, AJ, Donahue, TM, Walker, JCG, 1981, The dynamics of a rapidly escaping atmosphere: applications to the evolution of Earth and Venus. Icarus, 48, 150–166 {601}CrossRefGoogle Scholar
Watson, CA, Dhillon, VS, 2004, The effect of star spots on eclipse timings of binary stars. MNRAS, 351, 110–116 {114}CrossRefGoogle Scholar
Watson, CA, Littlefair, SP, Collier Cameron, A, et al., 2010, Estimating the masses of extrasolar planets. MNRAS, 408, 1606–1622 {382}Google Scholar
Watson, CA, Littlefair, SP, Diamond, C, et al., 2011, On the alignment of debris disks and their host star rotation axis: implications for spin–orbit misalignment in exo-planetary systems. MNRAS, 413, L71–L75 {554}CrossRefGoogle Scholar
Watson, CA, Marsh, TR, 2010, Orbital period variations of hot Jupiters caused by the Applegate effect. MNRAS, 405, 2037 {166, 261, 537, 753}Google Scholar
Watson, D, Christensen, L, Knudsen, KK, et al., 2015, A dusty, normal galaxy in the epoch of reionization. Nature, 519, 327–330 {495}CrossRefGoogle ScholarPubMed
Watson, K, Murray, BC, Brown, H, 1961, The behaviour of volatiles on the lunar surface. J. Geophys. Res., 66, 3033–3045 {666}CrossRefGoogle Scholar
Watters, WA, Zuber, MT, Hager, BH, 2009, Thermal perturbations caused by large impacts and consequences for mantle convection. J. Geophys. Res. (Planets), 114, E02001 {662}CrossRefGoogle Scholar
Way, MJ, Aleinov, I, Amundsen, DS, et al., 2017, Resolving Orbital and Climate Keys of Earth and Extraterrestrial Environmentswith Dynamics (ROCKE–3D) 1.0: a General Circulation Model for simulating the climates of rocky planets. ApJS, 231, 12 {593}CrossRefGoogle Scholar
Way, MJ, Georgakarakos, N, 2017, Effects of variable eccentricity on the climate of an Earth-like world. ApJ, 835, L1 {621}CrossRefGoogle Scholar
Weaver, HA, Stern, SA, Mutchler, MJ, et al., 2006, Discovery of two new satellites of Pluto. Nature, 439, 943–945 {682}CrossRefGoogle ScholarPubMed
Webb, DF, Howard, TA, 2012, Coronal mass ejections: observations. Living Reviews in Solar Physics, 9, 3 {428}CrossRefGoogle Scholar
Webb, S, 2002, If the Universe is Teeming with Aliens… Where is Everybody? Fifty Solutions to the Fermi Paradox. Praxis–Copernicus {647}Google Scholar
Webb, S, 2011, Pondering the Fermi Paradox. Searching for Extraterrestrial Intelligence, 305, Springer–Verlag {647}CrossRefGoogle Scholar
Webber, MW, Lewis, NK, Marley, M, et al., 2015, Effect of longitude-dependent cloud coverage on exoplanet visible wavelength reflected-light phase curves. ApJ, 804, 94 {615}CrossRefGoogle Scholar
Webbink, RF, 1984, Double white dwarfs as progenitors of R CrB stars and Type I supernovae. ApJ, 277, 355–360 {113}CrossRefGoogle Scholar
Weber, C, Lammer, H, Shaikhislamov, IF, et al., 2017, How expanded ionospheres of Hot Jupiters can prevent escape of radio emission generated by the cyclotron maser instability. MNRAS, 469, 3505–3517 {281, 731, 733}CrossRefGoogle Scholar
Weber, EJ, Davis, L, 1967, The angular momentumof the solarwind. ApJ, 148, 217–227 {543}CrossRefGoogle Scholar
Weber, P, Greenberg, JM, 1985, Can spores survive in interstellar space? Nature, 316, 403–407 {637}CrossRefGoogle Scholar
Weertman, J, 1976, Milankovitch solar radiation variations and ice age ice sheet sizes. Nature, 261, 17–20 {681}CrossRefGoogle Scholar
Weidemann, V, Jordan, S, Iben I Jr, et al., 1992, White dwarfs in the halo of the Hyades cluster: the case of the missing white dwarfs. AJ, 104, 1876–1891 {418}CrossRefGoogle Scholar
Weidenschilling, SJ, 1975, Mass loss from the region of Mars and the asteroid belt. Icarus, 26, 361–366 {657}CrossRefGoogle Scholar
Weidenschilling, SJ, 1977a, Aerodynamics of solid bodies in the solar nebula. MNRAS, 180, 57–70 {457}CrossRefGoogle Scholar
Weidenschilling, SJ, 1977b, The distribution of mass in the planetary system and solar nebula. Ap&SS, 51, 153–158 {455, 657}Google Scholar
Weidenschilling, SJ, 1980, Dust to planetesimals: settling and coagulation in the solar nebula. Icarus, 44, 172–189 {460, 468}CrossRefGoogle Scholar
Weidenschilling, SJ, 1984, Evolution of grains in a turbulent solar nebula. Icarus, 60, 553–567 {460}CrossRefGoogle Scholar
Weidenschilling, SJ, 2000, Formation of planetesimals and accretion of the terrestrial planets. Space Sci. Rev., 92, 295–310 {460}CrossRefGoogle Scholar
Weidenschilling, SJ, 2005, Formation of the cores of the outer planets. Space Science Reviews, 116, 53–66 {479}CrossRefGoogle Scholar
Weidenschilling, SJ, 2008, Accretion of planetary embryos in the inner and outer solar system. Physica Scripta Volume T, 130(1), 014021 {481}Google Scholar
Weidenschilling, SJ, 2011, Initial sizes of planetesimals and accretion of the asteroids. Icarus, 214, 671–684 {473, 474, 481, 683}CrossRefGoogle Scholar
Weidenschilling, SJ, Donn, BD, Meakin, P, 1989, The physics of planetesimal formation. The Formation and Evolution of Planetary Systems, 131–146, Cambridge University Press {468}
Weidenschilling, SJ, Jackson, AA, 1993, Orbital resonances and Poynting–Robertson drag. Icarus, 104, 244–254 {692}CrossRefGoogle Scholar
Weidenschilling, SJ, Marzari, F, 1996, Gravitational scattering as a possible origin for giant planets at small stellar distances. Nature, 384, 619–621 {525}CrossRefGoogle ScholarPubMed
Weidenschilling, SJ, Spaute, D, Davis, DR, et al., 1997, Accretional evolution of a planetesimal swarm. Icarus, 128, 429–455 {473, 474}CrossRefGoogle Scholar
Weidling, R, Güttler, C, Blum, J, 2012, Free collisions in a microgravity many-particle experiment. I. Dust aggregate sticking at low velocities. Icarus, 218, 688–700 {469}CrossRefGoogle Scholar
Weidling, R, Güttler, C, Blum, J, et al., 2009, The physics of protoplanetesimal dust agglomerates. III. Compaction inmultiple collisions. ApJ, 696, 2036–2043 {469}CrossRefGoogle Scholar
Weidner, C, Horne, K, 2010, Limits on the orbits and masses of moons around currently-known transiting exoplanets. A&A, 521, A76 {277, 281, 733, 734}Google Scholar
Weigelt, G, Kraus, S, Driebe, T, et al., 2007, Near-infrared interferometry of · Car with spectral resolutions of 1500 and 12 000 using VLTI–AMBER. A&A, 464, 87–106 {183}Google Scholar
Weights, DJ, Lucas, PW, Roche, PF, et al., 2009, Infrared spectroscopy and analysis of brown dwarf and planetary mass objects in the Orion nebula cluster. MNRAS, 392, 817–846 {446}CrossRefGoogle Scholar
Weinberg, NN, Arras, P, Burkart, J, 2013, An instability due to the nonlinear coupling of p-modes to g-modes: implications for coalescing neutron star binaries. ApJ, 769, 121 {542}CrossRefGoogle Scholar
Weinberg, NN, Arras, P, Quataert, E, et al., 2012, Nonlinear tides in close binary systems. ApJ, 751, 136 {542}CrossRefGoogle Scholar
Weinberg, NN, Sun, M, Arras, P, et al., 2017, Tidal dissipation in WASP–12. ApJ, 849, L11 {260, 753}CrossRefGoogle Scholar
Weinberg, S, 1987, Anthropic bound on the cosmological constant. Phys. Rev. Lett., 59, 2607–2610 {630}CrossRefGoogle ScholarPubMed
Weinberger, AJ, Becklin, EE, Schneider, G, et al., 1999, The circumstellar disk of HD 141569 imaged with NICMOS. ApJ, 525, L53–L56 {493, 494}CrossRefGoogle ScholarPubMed
Weinberger, AJ, Boss, AP, Keiser, SA, et al., 2016, Trigonometric parallaxes and proper motions of 134 southern late M, L, and T dwarfs from the Carnegie Astrometric Planet Search Programme. AJ, 152, 24 {434}CrossRefGoogle Scholar
Weingrill, J, 2015, CoRoT data reduction by example. Astron. Nach., 336, 125 {191}CrossRefGoogle Scholar
Weir, ST, Mitchell, AC, Nellis, WJ, 1996, Metallisation of fluid molecular hydrogen at 140GPa. Phys. Rev. Lett., 76, 1860–1863 {567, 659}CrossRefGoogle Scholar
Weisberg, MK, McCoy, TJ, Krot, AN, 2006, Systematics and evaluation of meteorite clas-sification. Meteorites and the Early Solar System II, 19–52 {683}
Weiss, LM, Deck, KM, Sinukoff, E, et al., 2017, New insights on planet formation in WASP–47 from a simultaneous analysis of radial velocities and transit timing variations. AJ, 153, 265 {755}CrossRefGoogle Scholar
Weiss, LM, Marcy, GW, 2014, The mass–radius relation for 65 exoplanets smaller than 4 Earth radii. ApJ, 783, L6 {296, 500, 602, 603}CrossRefGoogle Scholar
Weiss, LM, Marcy, GW, Petigura, EA, et al., 2018, The California–Kepler survey. V. Peas in a pod: planets in a Keplermulti-planet system are similar in size and regularly spaced. AJ, 155, 48 {176, 315}CrossRefGoogle Scholar
Weiss, LM, Marcy, GW, Rowe, JF, et al., 2013, The mass of KOI–94 d and a relation for planet radius, mass, and incident flux. ApJ, 768, 14 {179, 225, 272, 499, 742}CrossRefGoogle Scholar
Weiss, LM, Rogers, LA, Isaacson, HT, et al., 2016, Revised masses and densities of the planets around Kepler–10. ApJ, 819, 83 {739}CrossRefGoogle Scholar
Weiss, NO, Thompson, MJ, 2009, The solar dynamo. Space Science Reviews, 144, 53–66 {656}CrossRefGoogle Scholar
Weiss, WW, Moffat, AFJ, Schwarzenberg-Czerny, A, et al., 2014, BRITE-Constellation: nanosatellites for precision photometry of bright stars. IAU Symposium, volume 301 of IAU Symp., 67–68 {187}Google Scholar
Weldrake, DTF, 2008, Searching for planetary transits in star clusters. ASP Conf. Ser., volume 398, 133–136 {158}Google Scholar
Weldrake, DTF, Bayliss, DDR, Sackett, PD, et al., 2008a, Lupus–TR–3 b: a low-mass transiting hot Jupiter in the Galactic plane? ApJ, 675, L37–L40 {165, 749}CrossRefGoogle Scholar
Weldrake, DTF, Sackett, PD, 2005, A method for the detection of planetary transits in large time series data sets. ApJ, 620, 1033–1042 {157}CrossRefGoogle Scholar
Weldrake, DTF, Sackett, PD, Bridges, TJ, 2008b, The frequency of large-radius hot and very hot Jupiters in ! Cen. ApJ, 674, 1117–1129 {159}CrossRefGoogle Scholar
Weldrake, DTF, Sackett, PD, Bridges, TJ, et al., 2005, An absence of hot Jupiter planets in 47 Tuc: results of a wide-field transit search. ApJ, 620, 1043–1051 {159}CrossRefGoogle Scholar
Weller, MB, Lenardic, A, 2016, The energetics and convective vigour of mixed-mode heating: velocity scalings and implications for the tectonics of exoplanets. Geo-phys. Res. Lett., 43, 9469–9474 {628}CrossRefGoogle Scholar
Weller, MB, Lenardic, A, O'Neill, C, 2015, The effects of internal heating and large scale climate variations on tectonic bi-stability in terrestrial planets. Earth Planet. Sci. Lett., 420, 85–94 {628}CrossRefGoogle Scholar
Wells, M, Pel, JW, Glasse, A, et al., 2015, The mid-infrared instrument for JWST. VI. The mediumresolution spectrometer. PASP, 127, 646–664 {181}CrossRefGoogle Scholar
Wells, R, Poppenhaeger, K, Watson, CA, 2018a, Three small transiting planets around the M-dwarf host star LP 358–499. MNRAS, 473, L131–L135 {749}CrossRefGoogle Scholar
Wells, R, Poppenhaeger, K, Watson, CA, et al., 2018b, Transit visibility zones of the solar system planets. MNRAS, 473, 345–354 {648}CrossRefGoogle Scholar
Wells, RA, 1979, Geophysics of Mars. Elsevier Amsterdam {639}Google Scholar
Welsh, BY, Craig, N, Crawford, IA, et al., 1998, β Pic-like circumstellar disk gas surrounding HR 10 and HD 85905. A&A, 338, 674–682 {282}Google Scholar
Welsh, BY, Montgomery, S, 2013, Circumstellar gas disk variability around A-type stars: the detection of exocomets? PASP, 125, 759–774 {282}CrossRefGoogle Scholar
Welsh, BY, Montgomery, S, 2016, Exocomet circumstellar Fe I absorption in the β Pic gas disk. PASP, 128(6), 064201 {762}CrossRefGoogle Scholar
Welsh, BY, Montgomery, SL, 2018, Further detections of exocomet absorbing gas around southern hemisphere A-type stars with known debris disks. MNRAS, 474, 1515–1525 {282}CrossRefGoogle Scholar
Welsh, WF, Orosz, JA, Aerts, C, et al., 2011, KOI–54: the Kepler discovery of tidally-excited pulsations and brightenings in a highly eccentric binary. ApJS, 197, 4 {230}CrossRefGoogle Scholar
Welsh, WF, Orosz, JA, Carter, JA, et al., 2012, Transiting circumbinary planets Kepler–34 b and Kepler–35 b. Nature, 481, 475–479 {11, 261, 327, 551, 553, 740}CrossRefGoogle ScholarPubMed
Welsh, WF, Orosz, JA, Carter, JA, 2014, Recent Kepler results on circumbinary planets. IAU Symposium, volume 293 of IAU Symp., 125–132 {194}Google Scholar
Welsh, WF, Orosz, JA, Seager, S, et al., 2010, The discovery of ellipsoidal variations in the Kepler light curve of HAT–P–7. ApJ, 713, L145–L149 {11, 163, 187, 201, 234, 236, 239, 240, 735}CrossRefGoogle Scholar
Welsh, WF, Orosz, JA, Short, DR, et al., 2015, Kepler–453 b: the 10th Kepler transiting circumbinary planet. ApJ, 809, 26 {201, 327, 553, 746}CrossRefGoogle Scholar
Werthimer, D, Anderson, D, Bowyer, CS, et al., 2001, Berkeley radio and optical SETI programmes. SPIE Conf. Ser., volume 4273, 104–109 {645}Google Scholar
Werthimer, D, Bowyer, S, Cobb, J, et al., 2000, The Serendip IV Arecibo Sky Survey. Bioastronomy 99, volume 213 of ASP Conf. Ser., 479 {644}Google Scholar
Wertz, O, Absil, O, Gómez González CA, et al., 2017, VLT–SPHERE robust astrometry of the HR 8799 planets at milliarcsecond-level accuracy: orbital architecture analysis with PyAstrOFit. A&A, 598, A83 {83, 763}Google Scholar
Wesson, PS, 1984, Protostars and the origin of the angular momentum of the solar system. Earth Moon and Planets, 30, 275–280 {681}CrossRefGoogle Scholar
Wesson, PS, 2010, Panspermia, past and present: astrophysical and biophysical conditions for the dissemination of life in space. Space Sci. Rev., 156, 239–252 {638}Google Scholar
West, AA, Hawley, SL, Bochanski, JJ, et al., 2008, Constraining the age–activity relation for cool stars: the Sloan Digital Sky Survey data release 5 low-mass star spectroscopic sample. AJ, 135, 785–795 {601}CrossRefGoogle Scholar
West, RG, Anderson, DR, Gillon, M, et al., 2009a, The low density transiting exoplanet WASP–15 b. AJ, 137, 4834–4836 {753}CrossRefGoogle Scholar
West, RG, Collier Cameron, A, Hebb, L, et al., 2009b, The sub-Jupiter mass transiting exoplanet WASP–11 b. A&A, 502, 395–400 {752}Google Scholar
West, RG, Hellier, C, Almenara, JM, et al., 2016a, Three irradiated and bloated hot Jupiters: WASP–76 b, WASP–82 b, and WASP–90, b. A&A, 585, A126 {756}Google Scholar
West, RG, Pollacco, D, Wheatley, P, et al., 2016b, The Next Generation Transit Survey becomes operational at Paranal. The Messenger, 165, 10–12 {167}Google Scholar
Westall, MF, Anbar, PA, Fischer, W, et al., 2012, The great oxidation event: an expert discussion on the causes, the processes, and the still unknowns. Astrobiology, 12, 1157–1162 {673}CrossRefGoogle Scholar
Wetherill, GW, 1980, Formation of the terrestrial planets. ARA&A, 18, 77–113 {600}Google Scholar
Wetherill, GW, 1990, Formation of the Earth. Ann. Rev. Earth Plan. Sci., 18, 205–256 {467}CrossRefGoogle Scholar
Wetherill, GW, 1992, An alternative model for the formation of the asteroids. Icarus, 100, 307–325 {657}CrossRefGoogle Scholar
Wetherill, GW, 1994, Possible consequences of absence of Jupiters in planetary systems. Ap&SS, 212, 23–32 {628, 661}Google ScholarPubMed
Wetherill, GW, 1996, The formation and habitability of extrasolar planets. Icarus, 119, 219–238 {467}CrossRefGoogle Scholar
Wetherill, GW, Stewart, GR, 1989, Accumulation of a swarm of small planetesimals. Icarus, 77, 330–357 {473, 474}CrossRefGoogle Scholar
Wetherill, GW, Stewart, GR, 1993, Formation of planetary embryos: effects of fragmentation, low relative velocity, and independent variation of eccentricity and inclination. Icarus, 106, 190–209 {469}CrossRefGoogle ScholarPubMed
Wheatley, PJ, 2015, The WASP and NGTS ground-based transit surveys. European Planetary Science Congress 2015, 10, EPSC2015-908 {164, 167}Google Scholar
Wheatley, PJ, Louden, T, Bourrier, V, et al., 2017, Strong XUV irradiation of the Earth-sized exoplanets orbiting the ultracool dwarf TRAPPIST–1. MNRAS, 465, L74–L78 {750}CrossRefGoogle Scholar
Wheatley, PJ, Pollacco, DL, Queloz, D, et al., 2013, The Next Generation Transit Survey (NGTS). EPJWeb Conf., volume 47, 13002 {167}CrossRefGoogle Scholar
Wheatley, PJ, Pollacco, DL, Queloz, D, 2014, Next Generation Transit Survey (NGTS). IAU Symp., volume 299, 311–312 {167}Google Scholar
Wheatley, PJ, West, RG, Goad, MR, et al., 2018, The Next Generation Transit Survey (NGTS). MNRAS, 475, 4476–4493 {167}CrossRefGoogle Scholar
Whelan, ET, Ray, TP, Bacciotti, F, 2009a, Uncovering the outflow driven by the brown dwarf LS-RCrA 1: Hα as a tracer of outflow activity in brown dwarfs. ApJ, 691, L106–L110 {445}CrossRefGoogle Scholar
Whelan, ET, Ray, TP, Bacciotti, F, et al., 2005, A resolved outflow of matter from a brown dwarf. Nature, 435, 652–654 {445}CrossRefGoogle ScholarPubMed
Whelan, ET, Ray, TP, Comeron, F, et al., 2012, Spatially resolved observations of the bipolar optical outflow from the brown dwarf 2MASS J12073347–3932540. ApJ, 761, 120 {445}CrossRefGoogle Scholar
Whelan, ET, Ray, TP, Podio, L, et al., 2009b, Classical T Tauri-like outflow activity in the brown dwarf mass regime. ApJ, 706, 1054-1068 {445}CrossRefGoogle Scholar
Whelan, ET, Ray, TP, Randich, S, et al., 2007, Discovery of a bipolar outflow from 2M J1207–3932, a 24MJ brown dwarf. ApJ, 659, L45–L48 {445}CrossRefGoogle Scholar
Whewell, W, 1858, The Plurality of Worlds. Sheldon & Blakeman New York {619}Google Scholar
Whipple, FL, 1966, Chondrules: suggestion concerning the origin. Science, 153, 54–56 {653}CrossRefGoogle ScholarPubMed
Whipple, FL, 1972, On certain aerodynamic processes for asteroids and comets. From Plasma to Planet, 211 {461}Google Scholar
White, JA, Boley, AC, Dent, WRF, et al., 2017, 1.3-mm ALMA observations of the Fomalhaut debris system. MNRAS, 466, 4201–4210 {761}Google Scholar
White, RJ, Basri, G, 2003, Very low mass stars and brown dwarfs in Taurus–Auriga. ApJ, 582, 1109–1122 {443}CrossRefGoogle Scholar
White, RJ, Ghez, AM, 2001, Observational constraints on the formation and evolution of binary stars. ApJ, 556, 265–295 {548}CrossRefGoogle Scholar
Whitehouse, SC, Bate, MR, 2006, The thermodynamics of collapsing molecular cloud cores using smoothed particle hydrodynamics with radiative transfer. MNRAS, 367, 32–38 {442}CrossRefGoogle Scholar
Whitmire, DP, 2016, Periodic mass extinctions and the Planet X model reconsidered. MNRAS, 455, L114–L117 {687}CrossRefGoogle Scholar
Whitmire, DP, Matese, JJ, Criswell, L, et al., 1998, Habitable planet formation in binary star systems. Icarus, 132, 196–203 {550}CrossRefGoogle Scholar
Whitmire, DP, Wright, DP, 1980, Nuclear waste spectrum as evidence of technological extraterrestrial civilisations. Icarus, 42, 149–156 {646}CrossRefGoogle Scholar
Whitrow, GJ, 1955, Why physical space has three dimensions. British Jnl. for the Philosophy of Sci., 6(21), 13–31 {515}Google Scholar
Whittaker, GN, Stevens, IR, Sangaralingam, V, 2013, STEREO trend removal pipeline and planet detection possibilities. MNRAS, 431, 3456–3469 {187}CrossRefGoogle Scholar
Whittet, DCB (ed.), 2003, Dust in the galactic environment {495}
Whitworth, A, Lomax, O, 2016, A theoretical perspective on the formation and fragmentation of protostellar disks. Publ. Astron. Soc. Australia, 33, e003 {451}CrossRefGoogle Scholar
Whitworth, AP, Bate, MR, Nordlund Å, et al., 2007, The formation of brown dwarfs: theory. Protostars and Planets V, 459–476 {442}
Whitworth, AP, Lomax, O, 2015, Are the majority of Sun-like stars single? MNRAS, 448, 1761–1766 {547}CrossRefGoogle Scholar
Whitworth, AP, Stamatellos, D, 2006, The minimum mass for star formation, and the origin of binary brown dwarfs. A&A, 458, 817–829 {442}Google Scholar
Whitworth, AP, Zinnecker, H, 2004, The formation of free-floating brown dwarfs and planetary-mass objects by photo-erosion of prestellar cores. A&A, 427, 299–306 {442}Google Scholar
Wichmann, R, Fuhrmeister, B, Wolter, U, et al., 2014, Kepler super-flare stars: what are they? A&A, 567, A36 {428}Google Scholar
Wickramasinghe, C, 2003, Panspermia according to Hoyle. Ap&SS, 285,), 535–538 {638}Google Scholar
Wickramasinghe, C, 2011, Viva panspermia! The Observatory, 131, 130–134 {638}Google Scholar
Wickramasinghe, DT, Farihi, J, Tout, CA, et al., 2010, Does GD 356 have a terrestrial planet companion? MNRAS, 404, 1984–1991 {413}Google Scholar
Wickramasinghe, NC, Wallis, J, Wallis, DH, et al., 2012, Life-bearing primordial planets in the solar vicinity. Ap&SS, 341, 295–299 {638}Google Scholar
Wiechert, E, 1898, Über die Massenverteilung im Inneren der Erde. Nachr. K. Ges Wiss. Goettingen, Math-Kl. (221-243) {663}Google Scholar
Wieczorek, MA, Correia, ACM, Le Feuvre, M, et al., 2012, Mercury's spin–orbit resonance explained by initial retrograde and subsequent synchronous rotation. Nature Geoscience, 5, 18–21 {541}CrossRefGoogle Scholar
Wieczorek, MA, Neumann, GA, Nimmo, F, et al., 2013, The crust of the Moon as seen by GRAIL. Science, 339, 671–675 {665}CrossRefGoogle Scholar
Wiedemann, G, Deming, D, Bjoraker, G, 2001, A sensitive search for methane in the infrared spectrumof τ Boo. ApJ, 546, 1068–1074 {236, 714}CrossRefGoogle Scholar
Wiegert, PA, 2014, Hyperbolic meteors: interstellar or generated locally via the gravitational slingshot effect? Icarus, 242, 112–121 {692}CrossRefGoogle Scholar
Wiegert, PA, Holman, MJ, 1997, The stability of planets in the α Cen system. AJ, 113, 1445–1450 {549, 714}CrossRefGoogle Scholar
Wiegert, PA, Innanen, KA, Mikkola, S, 1997, An asteroidal companion to the Earth. Nature, 387, 685–686 {74, 690}CrossRefGoogle Scholar
Wielen, R, 1996, Searching for VIMs: an astrometric method to detect the binary nature of double stars with a variable component. A&A, 314, 679 {223}Google Scholar
Wielen, R, Fuchs, B, Dettbarn, C, 1996, On the birth-place of the Sun and the places of formation of other nearby stars. A&A, 314, 438–447 {395}Google Scholar
Wigley, TML, Brimblecombe, P, 1981, Carbon dioxide, ammonia and the origin of life. Nature, 291, 213–215 {673}CrossRefGoogle Scholar
Wigner, E, Huntington, HB, 1935, On the possibility of a metallic modification of hydrogen. J. Chem. Phys., 3, 764–770 {567, 659}CrossRefGoogle Scholar
Wijnen, TPG, Pelupessy, FI, Pols, OR, et al., 2017a, Changes in orientation and shape of protoplanetary disks moving through an ambient medium. A&A, 604, A88 {531, 654}Google Scholar
Wijnen, TPG, Pols, OR, Pelupessy, FI, et al., 2017b, Disk truncation in embedded star clusters: dynamical encounters versus face-on accretion. A&A, 604, A91 {526}Google Scholar
Wiktorowicz, SJ, 2009, Non-detection of polarised, scattered light from the HD 189733 b hot Jupiter. ApJ, 696, 1116–1124 {246, 247, 248, 730}CrossRefGoogle Scholar
Wiktorowicz, SJ, Ingersoll, AP, 2007, Liquid water oceans in ice giants. Icarus, 186, 436–447 {577}CrossRefGoogle Scholar
Wiktorowicz, SJ, Laughlin, GP, 2014, Toward the detection of exoplanet transits with polarimetry. ApJ, 795, 12 {245, 246, 247, 729, 731, 732, 735, 736, 737, 754, 756}CrossRefGoogle Scholar
Wiktorowicz, SJ, Nofi, LA, Jontof-Hutter, D, et al., 2015, A ground-based albedo upper limit for HD 189733 b from polarimetry. ApJ, 813, 48 {246}CrossRefGoogle Scholar
Wilde, SA, Valley, JW, Peck, WH, et al., 2001, Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4Gyr ago. Nature, 409, 175–178 {652, 667}CrossRefGoogle ScholarPubMed
Wildi, F, Pepe, F, Chazelas, B, et al., 2011, The performance of the new Fabry–Pérot calibration system of the radial velocity spectrograph HARPS. Techniques and Instrumentation for Detection of Exoplanets V, volume 8151 of Proc. SPIE, 81511F {33}Google Scholar
Wildi, FP, Chazelas, B, Deline, A, et al., 2015, The CHEOPS instrument on-ground calibration system. Techniques and Instrumentation for Detection of Exoplanets VII, volume 9605 of Proc. SPIE, 96051B {181}Google Scholar
Wildman, RA, Hickey, LJ, Dickinson, MB, et al., 2004, Burning of forestmaterials under late Paleozoic high atmospheric oxygen levels. Geology, 32, 457–460 {674}CrossRefGoogle Scholar
Wildt, R, 1933, Kondensation in Sternatmosphären. ZAp, 6, 345–354 {562}Google Scholar
Wilken, T, Curto, GL, Probst, RA, et al., 2012, A spectrograph for exoplanet observations calibrated at the cms-1 level. Nature, 485, 611–614 {11, 33, 720}CrossRefGoogle Scholar
Wilkins, AN, Delrez, L, Barker, AJ, et al., 2017, Searching for rapid orbital decay of WASP–18 b. ApJ, 836, L24 {260, 754}CrossRefGoogle Scholar
Wilkins, AN, Deming, D, Madhusudhan, N, et al., 2014, The emergent 1.1–1.7μmspec-trum of the exoplanet CoRoT–2 b as measured using HST. ApJ, 783, 113 {588, 616, 733}CrossRefGoogle Scholar
Wilkins, GA, 1990, The past present and future of reference systems for astronomy and geodesy. Inertial Coordinate System on the Sky, volume 141 of IAU Symp., 39 {86}Google Scholar
Wilkinson, MI, Vallenari, A, Turon, C, et al., 2005, Spectroscopic survey of the Galaxy with Gaia. II. The expected science yield from the Radial Velocity Spectrometer. MNRAS, 359, 1306–1335 {96}CrossRefGoogle Scholar
Will, CM, 1993, Theory and Experiment in Gravitational Physics. Cambridge University Press, Second Edition {84, 120, 259}CrossRefGoogle Scholar
Will, CM, 2003, Propagation speed of gravity and the relativistic time delay. ApJ, 590, 683–690 {701}CrossRefGoogle Scholar
Will, CM, 2006, The confrontation between general relativity and experiment. Living Reviews in Relativity, 9, 3 {702}CrossRefGoogle ScholarPubMed
Willbold, M, Elliott, T, Moorbath, S, 2011, The tungsten isotopic composition of the Earth's mantle before the terminal bombardment. Nature, 477, 195–198 {669}CrossRefGoogle ScholarPubMed
Willems, B, 2003, Excitation of oscillation modes by tides in close binaries: constraints on stellar and orbital parameters. MNRAS, 346, 968–976 {230}CrossRefGoogle Scholar
Willems, B, Kolb, U, Justham, S, 2006, Eclipsing binaries in extrasolar planet transit surveys: the case of Super WASP. MNRAS, 367, 1103–1112 {157}CrossRefGoogle Scholar
Willems, B, Van Hoolst, T, Smeyers, P, et al., 1997, On the possibility of a tidally-excited low-frequency g-mode in 51 Peg. A&A, 326, L37–L40 {51, 715}Google Scholar
Willes, AJ, Wu, K, 2004, Electron-cyclotronmaser emission from white dwarf pairs and white dwarf planetary systems. MNRAS, 348, 285–296 {427}CrossRefGoogle Scholar
Willes, AJ, Wu, K, 2005, Radio emissions from terrestrial planets around white dwarfs. A&A, 432, 1091–1100 {427}Google Scholar
Williams, DM, 2013, Capture of terrestrial-sized moons by gas giant planets. Astrobi-ology, 13, 315–323 {504}Google ScholarPubMed
Williams, DM, Gaidos, E, 2008, Detecting the glint of starlight on the oceans of distant planets. Icarus, 195, 927–937 {221, 237, 641}CrossRefGoogle Scholar
Williams, DM, Kasting, JF, 1997, Habitable planets with high obliquities. Icarus, 129, 254–267 {631}CrossRefGoogle ScholarPubMed
Williams, DM, Kasting, JF, Wade, RA, 1997, Habitable moons around extrasolar giant planets. Nature, 385, 234–236 {619, 626, 627, 631}CrossRefGoogle ScholarPubMed
Williams, DM, Knacke, RF, 2004, Looking for planetary moons in the spectra of distant Jupiters. Astrobiology, 4, 400–403 {276}CrossRefGoogle ScholarPubMed
Williams, DM, Pollard, D, 2002, Earth-like worlds on eccentric orbits: excursions beyond the habitable zone. Int. J. Astrobiol., 1, 61–69 {620, 621, 622}CrossRefGoogle Scholar
Williams, FC, 1985, A radar for the exploration of extrasolar planets. Proc. IEEE, 73(2), 355–361, ISSN 0018-9219 {356}CrossRefGoogle Scholar
Williams, GE, 1993, History of Earth's obliquity. Earth Science Reviews, 34, 1–45 {681}CrossRefGoogle Scholar
Williams, GE, 2000, Geological constraints on the Precambrian history of Earth's rotation and the Moon's orbit. Reviews of Geophysics, 38, 37–60 {665}CrossRefGoogle Scholar
Williams, IP, 1997, The trans-Neptunian region. Rep. Prog. Phys., 60, 1–22 {684}CrossRefGoogle Scholar
Williams, JG, Boggs, DH, 2016, Secular tidal changes in lunar orbit and Earth rotation. Cel. Mech. Dyn. Astron., 126, 89–129 {665}CrossRefGoogle Scholar
Williams, JG, Efroimsky, M, 2012, Bodily tides near the 1:1 spin-orbit resonance: correction to Goldreich's dynamical model. Cel. Mech. Dyn. Astron., 114, 387–414 {534}CrossRefGoogle Scholar
Williams, JP, Andrews, SM, Wilner, DJ, 2005, The masses of the Orion proplyds from submillimeter dust emission. ApJ, 634, 495–500 {456}CrossRefGoogle Scholar
Williams, JP, Cieza, LA, 2011, Protoplanetary disks and their evolution. ARA&A, 49, 67–117 {466, 467}Google Scholar
Williams, PKG, Charbonneau, D, Cooper, CS, et al., 2006, Resolving the surfaces of ex-trasolar planets with secondary eclipse light curves. ApJ, 649, 1020–1027 {300, 595}CrossRefGoogle Scholar
Williams, S, Woolfson, MM, 1983, Planetary spin and satellite formation. MNRAS, 204, 853–863 {450}CrossRefGoogle Scholar
Willott, CJ, Carilli, CL, Wagg, J, et al., 2015, Star formation and the interstellar medium in z>6 ultraviolet-luminous Lyman-break galaxies. ApJ, 807, 180 {495}CrossRefGoogle Scholar
Willson, M, Kraus, S, Kluska, J, et al., 2016, Sparse aperture masking interferometry survey of transition disks: search for substellar-mass companions and asymmetries in their parent disks. A&A, 595, A9 {465}Google Scholar
Wilner, DJ, 2004, Imaging protoplanetary disks with a square kilometer array. New Astron. Rev., 48, 1363–1375 {427}CrossRefGoogle Scholar
Wilner, DJ, Andrews, SM, Hughes, AM, 2011, Millimeter imaging of the β Pic debris disk: evidence for a planetesimal belt. ApJ, 727, L42 {762}CrossRefGoogle Scholar
Wilner, DJ, Andrews, SM, Mac Gregor, MA, et al., 2012, A resolved mm-emission belt in the AUMic debris disk. ApJ, 749, L27 {494}CrossRefGoogle Scholar
Wilner, DJ, Bourke, TL, Wright, CM, et al., 2003, Disks around the young stars TW Hya and HD 100546 imaged at 3.4mm with the Australia Telescope Compact Array. ApJ, 596, 597–602 {466, 762}CrossRefGoogle Scholar
Wilner, DJ, D'Alessio, P, Calvet, N, et al., 2005, Toward planetesimals in the disk around TWHya: 3.5 cm dust emission. ApJ, 626, L109–L112 {471}CrossRefGoogle Scholar
Wilner, DJ, Holman, MJ, Kuchner, MJ, et al., 2002, Structure in the dusty debris around Vega. ApJ, 569, L115–L119 {492}CrossRefGoogle Scholar
Wilsey, NJ, Beaky, MM, 2009, Revisiting the O'Connell effect in eclipsing binary systems. Society for Astronomical Sciences Annual Symposium, 28, 107 {240}Google Scholar
Wilson, DJ, Gänsicke, BT, Koester, D, et al., 2015a, The composition of a disrupted ex-trasolar planetesimal at SDSS J0845+2257 (Ton 345). MNRAS, 451, 3237–3248 {419}CrossRefGoogle Scholar
Wilson, DM, Enoch, B, Christian, DJ, et al., 2006, Super WASP observations of the transiting extrasolar planet XO–1 b. PASP, 118, 1245–1251 {757}CrossRefGoogle Scholar
Wilson, DM, Gillon, M, Hellier, C, et al., 2008a, WASP–4 b: a 12 mag transiting hot Jupiter in the southern hemisphere. ApJ, 675, L113–L116 {195, 752}CrossRefGoogle Scholar
Wilson, HF, Militzer, B, 2010, Sequestration of noble gases in giant planet interiors. Phys. Rev. Lett., 104(12), 121101 {660}CrossRefGoogle ScholarPubMed
Wilson, HF, Militzer, B, 2012a, Rocky core solubility in Jupiter and giant exoplanets. Phys. Rev. Lett., 108(11), 111101 {567}CrossRefGoogle Scholar
Wilson, HF, Militzer, B, 2012b, Solubility of water ice in metallic hydrogen: consequences for core erosion in gas giant planets. ApJ, 745, 54 {567}CrossRefGoogle Scholar
Wilson, HF, Militzer, B, 2014, Interior phase transformations and mass–radius relationships of silicon–carbon planets. ApJ, 793, 34 {573, 604}CrossRefGoogle Scholar
Wilson, IRG, Carter, BD, Waite, IA, 2008b, Does a spin–orbit coupling between the Sun and the Jovian planets govern the solar cycle? Publ. Astron. Soc. Australia, 25, 85–93 {656}CrossRefGoogle Scholar
Wilson, L, Head, JW, 2015, Groove formation on Phobos: testing the Stickney ejecta emplacement model for a subset of the groove population. Planet. Space Sci., 105, 26–42 {689}CrossRefGoogle Scholar
Wilson, OC, 1968, Flux measurements at the centres of stellar Ca H and K lines. ApJ, 153, 221 {37}CrossRefGoogle Scholar
Wilson, PA, Colón, KD, Sing, DK, et al., 2014a, A search for methane in the atmosphere of GJ 1214 b via GTC narrow-band transmission spectrophotometry. MNRAS, 438, 2395–2405 {613, 735}CrossRefGoogle Scholar
Wilson, PA, Hébrard, G, Santos, NC, et al., 2016a, The SOPHIE search for northern ex-trasolar planets. IX. Populating the brown dwarf desert. A&A, 588, A144 {64}Google Scholar
Wilson, PA, Lecavelier des Etangs, A, Vidal-Madjar, A, et al., 2017, First detection of hydrogen in the β Pic gas disk. A&A, 599, A75 {762}Google Scholar
Wilson, PA, Rajan, A, Patience, J, 2014b, The brown dwarf atmosphere monitoring (BAM) project. I. The largest near-infrared monitoring survey of L and T dwarfs. A&A, 566, A111 {440}Google Scholar
Wilson, PA, Sing, DK, Nikolov, N, et al., 2015b, GTC–OSIRIS transiting exoplanet atmospheric survey: detection of potassium in HAT–P–1 b from narrow-band spectrophotometry. MNRAS, 450, 192–200 {735}CrossRefGoogle Scholar
Wilson, RE, 1990, Accuracy and efficiency in the binary star reflection effect. ApJ, 356, 613–622 {234, 239}CrossRefGoogle Scholar
Wilson, RE, 1994, Binary-star light curve models. PASP, 106, 921–941 {229}CrossRefGoogle Scholar
Wilson, RF, Teske, J, Majewski, SR, et al., 2018, Elemental abundances of Kepler objects of Interest in APOGEE. I. Two distinct orbital period regimes inferred from host star iron abundances. AJ, 155, 68 {176}CrossRefGoogle Scholar
Wilson, RN, 1991, Active optics and the New Technology Telescope (NTT): the key to improved optical quality at lower cost in large astronomical telescopes. Contemporary Physics, 32, 157–172 {331}CrossRefGoogle Scholar
Wilson, TL, Nilsson, R, Chen, CH, et al., 2016b, Constraints on the presence of SiO gas in the debris disk of HD 172555. ApJ, 826, 165 {498}CrossRefGoogle Scholar
Windmark, F, Birnstiel, T, Güttler, C, et al., 2012a, Planetesimal formation by sweep-up: how the bouncing barrier can be beneficial to growth. A&A, 540, A73 {469}Google Scholar
Windmark, F, Birnstiel, T, Ormel, CW, et al., 2012b, Breaking through: the effects of a velocity distribution on barriers to dust growth. A&A, 544, L16 {469}Google Scholar
Winglee, RM, Dulk, GA, Bastian, TS, 1986, A search for cyclotron maser radiation from substellar and planet-like companions of nearby stars. ApJ, 309, L59–L62 {426}CrossRefGoogle Scholar
Winn, JN, 2009, Measuring accurate transit parameters. IAU Symp., volume 253, 99–109 {200}Google Scholar
Winn, JN, 2010, Exoplanet transits and occultations. ArXiv e-prints {209, 249, 300}
Winn, JN, Albrecht, S, Johnson, JA, et al., 2011a, Spin–orbit alignment for the circum-binary planet Kepler–16A. ApJ, 741, L1 {179, 254, 739}CrossRefGoogle Scholar
Winn, JN, Fabrycky, D, Albrecht, S, et al., 2010a, Hot stars with hot Jupiters have high obliquities. ApJ, 718, L145–L149 {214, 215, 255}CrossRefGoogle Scholar
Winn, JN, Fabrycky, DC, 2015, The occurrence and architecture of exoplanetary systems. ARA&A, 53, 409–447 {288}Google Scholar
Winn, JN, Hamilton, CM, Herbst, WJ, et al., 2006a, The orbit and occultations of KH 15D. ApJ, 644, 510–524 {553}CrossRefGoogle Scholar
Winn, JN, Henry, GW, Torres, G, et al., 2008a, Five new transits of the super-Neptune HD 149026 b. ApJ, 675, 1531–1537 {729}CrossRefGoogle Scholar
Winn, JN, Holman, MJ, 2005, Obliquity tides on hot Jupiters. ApJ, 628, L159–L162 {303, 321, 541, 731}CrossRefGoogle Scholar
Winn, JN, Holman, MJ, Bakos, , et al., 2007a, The Transit Light Curve Project. VII. The not-so-bloated exoplanet HAT–P–1 b. AJ, 134, 1707–1712 {184, 735}CrossRefGoogle Scholar
Winn, JN, Holman, MJ, Bakos, , 2008b, The Transit Light Curve Project. VII. The not-so-bloated exoplanet HAT–P–1 b (Erratumto: 2007AJ….134.1707W). AJ, 136, 1753 {735}CrossRefGoogle Scholar
Winn, JN, Holman, MJ, Carter, JA, et al., 2009a, The Transit Light Curve Project. XI. Sub-millimag photometry of two transits of the bloated planet WASP–4 b. AJ, 137, 3826–3833 {184, 752}CrossRefGoogle Scholar
Winn, JN, Holman, MJ, Fuentes, CI, 2007b, The Transit Light Curve Project. II. Two transits of the exoplanet OGLE–TR–111 b. AJ, 133, 11–16 {184, 749}CrossRefGoogle Scholar
Winn, JN, Holman, MJ, Henry, GW, et al., 2007c, The Transit Light Curve Project. V. Sys-temparameters and stellar rotation period of HD189733. AJ, 133, 1828–1835 {10, 184, 202, 385, 609, 730}CrossRefGoogle Scholar
Winn, JN, Holman, MJ, Henry, GW, 2009b, The Transit Light Curve Project. X. A Christmas transit of HD 17156 b. ApJ, 693, 794–803 {184, 729}CrossRefGoogle Scholar
Winn, JN, Holman, MJ, Johnson, JA, et al., 2004a, KH 15D: gradual occultation of a pre-main-sequence binary. ApJ, 603, L45–L48 {553}CrossRefGoogle Scholar
Winn, JN, Holman, MJ, Roussanova, A, 2007d, The Transit Light Curve Project. III. TrES transits of TrES–1. ApJ, 657, 1098–1106 {184, 750}CrossRefGoogle Scholar
Winn, JN, Holman, MJ, Shporer, A, et al., 2008c, The Transit Light Curve Project. VIII. Six occultations of the exoplanet TrES–3. AJ, 136, 267–271 {184, 751}CrossRefGoogle Scholar
Winn, JN, Holman, MJ, Torres, G, et al., 2008d, The Transit Light Curve Project. IX. Evidence for a smaller radius of the exoplanet XO–3 b. ApJ, 683, 1076–1084 {184, 757}CrossRefGoogle Scholar
Winn, JN, Howard, AW, Johnson, JA, et al., 2009c, The transit ingress and the tilted orbit of the extraordinarily eccentric exoplanet HD 80606 b. ApJ, 703, 2091–2100 {729}CrossRefGoogle Scholar
Winn, JN, Howard, AW, Johnson, JA, 2011b, Orbital orientations of exoplanets: HAT–P–4 b is prograde and HAT–P–14 b is retrograde. AJ, 141, 63–67 {163, 255, 735, 736}CrossRefGoogle Scholar
Winn, JN, Johnson, JA, Albrecht, S, et al., 2009d, HAT–P–7 b: a retrograde or polar orbit, and a third body. ApJ, 703, L99–L103 {10, 163, 253, 254, 735}CrossRefGoogle Scholar
Winn, JN, Johnson, JA, Fabrycky, D, et al., 2009e, On the spin–orbit misalignment of the XO–3 exoplanetary system. ApJ, 700, 302–308 {757}CrossRefGoogle Scholar
Winn, JN, Johnson, JA, Howard, AW, et al., 2010b, The HAT–P–13 exoplanetary system: evidence for spin–orbit alignment and a third companion. ApJ, 718, 575–582 {305, 736}CrossRefGoogle Scholar
Winn, JN, Johnson, JA, Howard, AW, 2010c, The oblique orbit of the super-Neptune HAT–P–11 b. ApJ, 723, L223–L227 {213, 214, 254, 736}CrossRefGoogle Scholar
Winn, JN, Johnson, JA, Marcy, GW, et al., 2006b, Measurement of the spin–orbit alignment in the exoplanetary system HD 189733. ApJ, 653, L69–L72 {251, 252, 253, 729}CrossRefGoogle Scholar
Winn, JN, Johnson, JA, Narita, N, et al., 2008e, The prograde orbit of exoplanet TrES–2 b. ApJ, 682, 1283–1288 {750}CrossRefGoogle Scholar
Winn, JN, Johnson, JA, Peek, KMG, et al., 2007e, Spin–orbit alignment for the eccentric exoplanet HD 147506 b (HAT–P–2). ApJ, 665, L167–L170 {251, 735}CrossRefGoogle Scholar
Winn, JN, Matthews, JM, Dawson, RI, et al., 2011c, A super-Earth transiting a naked-eye star. ApJ, 737, L18 {11, 170, 186, 728}CrossRefGoogle Scholar
Winn, JN, Noyes, RW, Holman, MJ, et al., 2005, Measurement of spin–orbit alignment in an extrasolar planetary system. ApJ, 631, 1215–1226 {203, 249, 251, 253}CrossRefGoogle Scholar
Winn, JN, Petigura, EA, Morton, TD, et al., 2017a, Constraints on the obliquities of Kepler planet-hosting stars. AJ, 154, 270 {385}CrossRefGoogle Scholar
Winn, JN, Sanchis-Ojeda, R, Rogers, L, et al., 2017b, Absence of a metallicity effect for ultra-short-period planets. AJ, 154, 60 {299}CrossRefGoogle Scholar
Winn, JN, Suto, Y, Turner, EL, et al., 2004b, A search for Hα absorption in the exosphere of the transiting extrasolar planet HD 209458 b. PASJ, 56, 655–662 {610, 731}CrossRefGoogle Scholar
Winnick, RA, Demarque, P, Basu, S, et al., 2002, Seismic test of solarmodels, solar neutrinos, and implications for metal-rich accretion. ApJ, 576, 1075–1084 {394}CrossRefGoogle Scholar
Winter, AJ, Clarke, CJ, Rosotti, G, et al., 2018a, Protoplanetary disk response to distant tidal encounters in stellar clusters. MNRAS, 475, 2314–2325 {531}CrossRefGoogle Scholar
Winter, OC, Souza, APS, Sfair, R, et al., 2018b, Particles co-orbital to Janus and to Epimetheus: a firefly planetary ring. ApJ, 852, 14 {691}CrossRefGoogle Scholar
Winterhalter, D, Majid, WA, Kuiper, TB, et al., 2005, Search for radio emissions from extrasolar planets at 150 MHz. AGU Fall Abstracts, B1181+ {723, 731}
Winters, JG, Henry, TJ, Lurie, JC, et al., 2015, The solar neighbourhood. 35. Distances to 1404Mdwarf systems within 25 pc in the southern sky. AJ, 149, 5 {375}CrossRefGoogle Scholar
Winters, JG, Sevrinsky, RA, Jao, WC, et al., 2017, The solar neighbourhood. 38. Results from the CTIO–SMARTS 0.9m: trigonometric parallaxes for 151 nearby M dwarf systems. AJ, 153, 14 {375}CrossRefGoogle Scholar
Wisdom, J, 1980, The resonance overlap criterion and the onset of stochastic be-haviour in the restricted three-body problem. AJ, 85, 1122–1133 {317, 694}CrossRefGoogle Scholar
Wisdom, J, 1982, The origin of the Kirkwood gaps: mapping for asteroidal motion near the 3:1 commensurability. AJ, 87, 577–593 {694}CrossRefGoogle Scholar
Wisdom, J, 1983, Chaotic behaviour and the origin of the 3:1 Kirkwood gap. Icarus, 56, 51–74 {514, 694}CrossRefGoogle Scholar
Wisdom, J, 1985, A perturbative treatment of motion near the 3:1 commensurability. Icarus, 63, 272–289 {694}CrossRefGoogle Scholar
Wisdom, J, 1987a, Chaotic behaviour in the solar system. Phil. Trans. Soc. London A, 413, 109–129 {514}Google Scholar
Wisdom, J, 1987b, Chaotic dynamics in the solar system. Icarus, 72, 241–275 {514}CrossRefGoogle Scholar
Wisdom, J, 2004, Spin–orbit secondary resonance dynamics of Enceladus. AJ, 128, 484–491 {627}CrossRefGoogle Scholar
Wisdom, J, 2008, Tidal dissipation at arbitrary eccentricity and obliquity. Icarus, 193, 637–640 {535}CrossRefGoogle Scholar
Wisdom, J, Holman, M, 1991, Symplectic maps for the N-body problem. AJ, 102, 1528–1538 {513, 677}CrossRefGoogle Scholar
Wisdom, J, Peale, SJ, Mignard, F, 1984, The chaotic rotation of Hyperion. Icarus, 58, 137–152 {514}CrossRefGoogle Scholar
Wisdom, J, Tian, Z, 2015, Early evolution of the Earth–Moon system with a fast-spinning Earth. Icarus, 256, 138–146 {664}CrossRefGoogle Scholar
Witt, HJ, 1990, Investigation of high amplification events in light curves of gravitationally lensed quasars. A&A, 236, 311–322 {125, 130}Google Scholar
Wittenmyer, RA, Butler, RP, Tinney, CG, et al., 2016a, The Anglo–Australian Planet Search. XXIV. The frequency of Jupiter analogues. ApJ, 819, 28 {55, 60}CrossRefGoogle Scholar
Wittenmyer, RA, Butler, RP, Wang, L, et al., 2016b, The Pan-Pacific Planet Search. III. Five companions orbiting giant stars. MNRAS, 455, 1398–1405 {722}CrossRefGoogle Scholar
Wittenmyer, RA, Endl, M, Cochran, WD, 2007, Long-period objects in the extrasolar planetary systems 47 UMa and 14 Her. ApJ, 654, 625–632 {62, 75, 715, 716}CrossRefGoogle Scholar
Wittenmyer, RA, Endl, M, Cochran, WD, et al., 2006, Detection limits from the McDon-ald Observatory planet search programme. AJ, 132, 177–188 {60, 62}CrossRefGoogle Scholar
Wittenmyer, RA, Endl, M, Cochran, WD, 2009, A search for multi-planet systems using the Hobby–Eberly telescope. ApJS, 182, 97–119 {72}CrossRefGoogle Scholar
Wittenmyer, RA, Endl, M, Wang, L, et al., 2011a, The Pan-Pacific planet search. I. A giant planet orbiting 7 CMa. ApJ, 743, 184 {55, 715}CrossRefGoogle Scholar
Wittenmyer, RA, Horner, J, Marshall, JP, 2013a, On the dynamical stability of the proposed planetary system orbiting NSVS 14256825. MNRAS, 431, 2150–2154 {117}CrossRefGoogle Scholar
Wittenmyer, RA, Horner, J, Marshall, JP, et al., 2012a, Revisiting the proposed planetary system orbiting the eclipsing polar HU Aqr. MNRAS, 419, 3258–3267 {114, 115}CrossRefGoogle Scholar
Wittenmyer, RA, Horner, J, Mengel, MW, et al., 2017a, The Anglo–Australian Planet Search. XXV. A candidate massive Saturn analogue orbiting HD 30177. AJ, 153, 167 {719}CrossRefGoogle Scholar
Wittenmyer, RA, Horner, J, Tinney, CG, 2012b, Resonances required: dynamical analysis of the 24 Sex and HD 200964 planetary systems. ApJ, 761, 165 {70, 508, 715, 724}CrossRefGoogle Scholar
Wittenmyer, RA, Horner, J, Tinney, CG, et al., 2014a, The Anglo–Australian Planet Search. XXIII. Two new Jupiter analogues. ApJ, 783, 103 {55, 60, 722}CrossRefGoogle Scholar
Wittenmyer, RA, Horner, J, Tuomi, M, et al., 2012c, The Anglo–Australian Planet Search. XXII. Two new multi-planet systems. ApJ, 753, 169 {23, 718, 723}CrossRefGoogle Scholar
Wittenmyer, RA, Johnson, JA, Butler, RP, et al., 2016c, The Pan-Pacific Planet Search. IV. Two super-Jupiters in a 3:5 resonance orbiting the giant star HD 33844. ApJ, 818, 35 {55, 719}CrossRefGoogle Scholar
Wittenmyer, RA, Jones, MI, Horner, J, et al., 2017b, The Pan-Pacific Planet Search. VII. The most eccentric planet orbiting a giant star. AJ, 154, 274 {720}CrossRefGoogle Scholar
Wittenmyer, RA, Jones, MI, Zhao, J, et al., 2017c, The Pan-Pacific Planet Search. VI. Giant planets orbiting HD 86950 and HD 222076. AJ, 153, 51 {721, 724}CrossRefGoogle Scholar
Wittenmyer, RA, Liu, F, Wang, L, et al., 2016d, The Pan-Pacific Planet Search. V. Fundamental parameters for 164 evolved stars. AJ, 152, 19 {55}CrossRefGoogle Scholar
Wittenmyer, RA, Marshall, JP, 2015, Pursuing the planet–debris disk connection: analysis of upper limits from the Anglo–Australian planet search. AJ, 149, 86 {493}CrossRefGoogle Scholar
Wittenmyer, RA, O'Toole, SJ, Jones, HRA, et al., 2010, The frequency of low-mass exo-planets. II. The period valley. ApJ, 722, 1854–1863 {65}CrossRefGoogle Scholar
Wittenmyer, RA, Tan, X, Lee, MH, et al., 2014b, A detailed analysis of the HD 73526 2:1 resonant planetary system. ApJ, 780, 140 {70, 720}CrossRefGoogle Scholar
Wittenmyer, RA, Tinney, CG, Butler, RP, et al., 2011b, The frequency of low-mass exo-planets. III. Toward · Earth at short periods. ApJ, 738, 81 {66, 632}CrossRefGoogle Scholar
Wittenmyer, RA, Tinney, CG, Horner, J, et al., 2013b, Observing strategies for the detection of Jupiter analogues. PASP, 125, 351–356 {55, 60}CrossRefGoogle Scholar
Wittenmyer, RA, Tinney, CG, O'Toole, SJ, et al., 2011c, On the frequency of Jupiter analogues. ApJ, 727, 102 {55, 60}CrossRefGoogle Scholar
Wittenmyer, RA, Tuomi, M, Butler, RP, et al., 2014c, GJ 832 c: a super-Earth in the habitable zone. ApJ, 791, 114 {635, 717}CrossRefGoogle Scholar
Wittenmyer, RA, Wang, L, Liu, F, et al., 2015, The Pan-Pacific Planet Search. II. Confirmation of a two-planet system around HD 121056. ApJ, 800, 74 {722}CrossRefGoogle Scholar
Wittenmyer, RA, Wang, S, Horner, J, et al., 2013c, Forever alone? Testing single eccentric planetary systems for multiple companions. ApJS, 208, 2 {23, 63, 717, 718, 720, 721, 722}CrossRefGoogle Scholar
Wittenmyer, RA, Welsh, WF, Orosz, JA, et al., 2005, System parameters of the transiting extrasolar planet HD 209458 b. ApJ, 632, 1157–1167 {239, 610, 731}CrossRefGoogle Scholar
Wittrock, JM, Kane, SR, Horch, EP, et al., 2016, Stellar companions to the exoplanet host stars HD 2638 and HD 164509. AJ, 152, 149 {718, 723}CrossRefGoogle Scholar
Wittrock, JM, Kane, SR, Horch, EP, 2017, Exclusion of stellar companions to exoplanet host stars. AJ, 154, 184 {360}CrossRefGoogle Scholar
Wizinowich, P, Acton, DS, Shelton, C, et al., 2000, First light adaptive optics images from the Keck II telescope: a new era of high angular resolution imagery. PASP, 112, 315–319 {331}CrossRefGoogle Scholar
Wizinowich, P, Akeson, R, Colavita, M, et al., 2006a, Recent progress at the Keck Interferometer. SPIE Conf. Ser., volume 6268, 21 {348}Google Scholar
Wizinowich, P, Le Mignant, D, Bouchez, AH, et al., 2006b, The W. M. Keck Observatory laser guide star adaptive optics system: overview. PASP, 118, 297–309 {332}CrossRefGoogle Scholar
Wohlers, A, Wood, BJ, 2015, A Mercury-like component of early Earth yields uranium in the core and high mantle 142Nd. Nature, 520, 337–340 {664}CrossRefGoogle Scholar
Woillez, J, Akeson, R, Colavita, M, et al., 2010, ASTRA: astrometry and phase- referencing astronomy on the Keck interferometer. SPIE Conf. Ser., volume 7734 {91}Google Scholar
Woitke, P, Min, M, Pinte, C, et al., 2016, Consistent dust and gas models for protoplanet-ary disks. I. Disk shape, dust settling, opacities, and PAHs. A&A, 586, A103 {570}Google Scholar
Wolf, AS, Laughlin, G, Henry, GW, et al., 2007, A determination of the spin–orbit alignment of the anomalously dense planet orbiting HD 149026. ApJ, 667, 549–556 {729}CrossRefGoogle Scholar
Wolf, ET, 2017, Assessing the habitability of the TRAPPIST–1 system using a 3d climate model. ApJ, 839, L1 {750}CrossRefGoogle Scholar
Wolf, ET, Shields, AL, Kopparapu, RK, et al., 2017, Constraints on climate and habitability for Earth-like exoplanets determined from a General Circulation Model. ApJ, 837, 107 {629}CrossRefGoogle Scholar
Wolf, ET, Toon, OB, 2013a, Hospitable Archean climates simulated by a general circu-lationmodel. Astrobiology, 13, 656–673 {620, 673}CrossRefGoogle Scholar
Wolf, ET, Toon, OB, 2013b, Is the faint young Sun paradox solved? AGU Fall Meeting Abstracts, G1 {673}
Wolf, ET, Toon, OB, 2014, Delayed onset of runaway and moist greenhouse climates for Earth. Geo-phys. Res. Lett., 41, 167–172 {620, 624}CrossRefGoogle Scholar
Wolf, R, 1859, Extract of a letter to Mr. Carrington. MNRAS, 19, 85–86 {656}Google Scholar
Wolf, S, 2008, Detecting protoplanets with ALMA. Ap&SS, 313, 109–112 {370}Google Scholar
Wolf, S, D'Angelo, G, 2005, On the observability of giant protoplanets in circumstellar disks. ApJ, 619, 1114–1122 {370, 520}CrossRefGoogle Scholar
Wolf, S, Gueth, F, Henning, T, et al., 2002, Detecting planets in protoplanetary disks: a prospective study. ApJ, 566, L97–L99 {520}CrossRefGoogle Scholar
Wolf, S, Malbet, F, Alexander, R, et al., 2012, Circumstellar disks and planets: science cases for next-generation optical/infrared long-baseline interferometers. A&A Rev., 20, 52 {348, 465}Google Scholar
Wolf, S, Padgett, DL, Stapelfeldt, KR, 2003, The circumstellar disk of the Butterfly Star in Taurus. ApJ, 588, 373–386 {465}CrossRefGoogle Scholar
Wolff, EW, Barbante, C, Becagli, S, et al., 2010, Changes in environment over the last 800 000 years from chemical analysis of the EPICA Dome C ice core. Quaternary Science Reviews, 29, 285–295 {674}CrossRefGoogle Scholar
Wolff, S, Dawson, RI, Murray-Clay, RA, 2012, Neptune on tiptoes: dynamical histories that preserve the cold classical Kuiper belt. ApJ, 746, 171 {697}CrossRefGoogle Scholar
Wolff, SC, Strom, SE, Hillenbrand, LA, 2004, The angular momentum evolution of 0.1- 10Mfl⊙ stars from the birth line to the main sequence. ApJ, 601, 979–999 {402}CrossRefGoogle Scholar
Wolff, SC, Strom, SE, Rebull, LM, 2011, The evolution of circumstellar disks surrounding intermediate-mass stars: IC 1805. ApJ, 726, 19 {453, 496}CrossRefGoogle Scholar
Wolff, SG, Ménard, F, Caceres, C, et al., 2017, An upper limit on the mass of the circum-planetary disk for DH Tau b. AJ, 154, 26 {762}CrossRefGoogle Scholar
Wolfgang, A, Laughlin, G, 2012, The effect of population-widemass-to-radius relationships on the interpretation of Kepler and HARPS super-Earth occurrence rates. ApJ, 750, 148 {66, 602}CrossRefGoogle Scholar
Wolfgang, A, Lopez, E, 2015, How rocky are they? The composition distribution of Kepler's sub-Neptune planet candidates within 0.15 au. ApJ, 806, 183 {500}CrossRefGoogle Scholar
Wolfgang, A, Rogers, LA, Ford, EB, 2016, Probabilistic mass–radius relationship for sub-Neptune-sized planets. ApJ, 825, 19 {602, 603, 604}CrossRefGoogle Scholar
Wolfram, S, 2010, The Wolfram demonstrations project. demonstra-tions.wolfram.com/SolarSystemMandalas {87}
Wolk, SJ, Walter, FM, 1996, A search for protoplanetary disks around naked T Tauri stars. AJ, 111, 2066–2076 {462}CrossRefGoogle Scholar
Wöllert, M, Brandner, W, 2015, A lucky imaging search for stellar sources near 74 transit hosts. A&A, 579, A129 {333, 737, 755, 756}Google Scholar
Wöllert, M, Brandner, W, Bergfors, C, et al., 2015, A lucky imaging search for stellar companions to transiting planet host stars. A&A, 575, A23 {333, 733, 734, 736, 737, 747, 751, 753, 755}Google Scholar
Wolstencroft, RD, Raven, JA, 2002, Photosynthesis: likelihood of occurrence and possibility of detection on Earth-like planets. Icarus, 157, 535–548 {641}CrossRefGoogle Scholar
Wolszczan, A, 1994a, Confirmation of Earth-mass planets orbiting the millisecond pulsar PSR B1257+12. Science, 264, 538–542 {105, 107}CrossRefGoogle Scholar
Wolszczan, A, 1994b, Toward planets around neutron stars. Ap&SS, 212, 67–75 {107}Google Scholar
Wolszczan, A, 1997, The pulsar planets update. Planets Beyond the Solar System and the Next Generation of Space Missions, volume 119 of ASP Conf. Ser., 135–138 {105, 107}Google Scholar
Wolszczan, A, 2008, Planets around the pulsar PSR B1257+12. ASP Conf. Ser., volume 398, 3–12 {107}Google Scholar
Wolszczan, A, 2012, Discovery of pulsar planets. New Astron. Rev., 56, 2–8 {106}CrossRefGoogle Scholar
Wolszczan, A, Frail, DA, 1992, A planetary system around the millisecond pulsar PSR B1257+12. Nature, 355, 145–147 {1, 10, 105, 106}CrossRefGoogle Scholar
Wolter, U, Schmitt, JHMM, Huber, KF, et al., 2009, Transit mapping of a star spot on CoRoT–2. Probing a stellar surface with planetary transits. A&A, 504, 561–564 {733}Google Scholar
Wong, A, Yurchenko, SN, Bernath, P, et al., 2017, ExoMol molecular line lists. XXI. Nitric oxide (NO). MNRAS, 470, 882–897 {570}CrossRefGoogle Scholar
Wong, I, Brown, ME, 2016, A hypothesis for the colour bimodality of Jupiter Trojans. AJ, 152, 90 {689}CrossRefGoogle Scholar
Wong, I, Knutson, HA, Cowan, NB, et al., 2014, Constraints on the atmospheric circulation and variability of the eccentric hot Jupiter XO–3 b. ApJ, 794, 134 {757}CrossRefGoogle Scholar
Wong, I, Knutson, HA, Kataria, T, et al., 2016, 3.6 and 4.5 μm Spitzer phase curves of the highly irradiated hot Jupiters WASP–19 b and HAT–P–7 b. ApJ, 823, 122 {190, 615, 736, 754}CrossRefGoogle Scholar
Wong, I, Knutson, HA, Lewis, NK, et al., 2015, 3.6 and 4.5μmphase curves of the highly irradiated eccentric hot Jupiter WASP–14 b. ApJ, 811, 122 {615, 753}CrossRefGoogle Scholar
Wong, MH, Mahaffy, PR, Atreya, SK, et al., 2004, Updated Galileo probe mass spectrometer measurements of carbon, oxygen, nitrogen, and sulphur on Jupiter. Icarus, 171, 153–170 {482}CrossRefGoogle Scholar
Wood, A, Mao, S, 2005, Optical depths and time-scale distributions in Galactic micro-lensing. MNRAS, 362, 945–951 {123}CrossRefGoogle Scholar
Wood, BE, Müller, H, Zank, GP, et al., 2002, Measured mass-loss rates of solar-like stars as a function of age and activity. ApJ, 574, 412–425 {425, 428}CrossRefGoogle Scholar
Wood, J, Horner, J, Hinse, TC, et al., 2017, The dynamical history of Chariklo and its rings. AJ, 153, 245 {691}CrossRefGoogle Scholar
Wood, J, Horner, J, Hinse, TC, 2018, The dynamical history of 2060 Chiron and its proposed ring system. AJ, 155, 2 {691}CrossRefGoogle Scholar
Wood, PL, Maxted, PFL, Smalley, B, et al., 2011, Transmission spectroscopy of the sodium D doublet in WASP–17 b with the VLT. MNRAS, 412, 2376–2382 {612, 753}CrossRefGoogle Scholar
Wood, RM, Wood, KD, 1965, Solar motion and sun spot comparison. Nature, 208, 129–131 {656}CrossRefGoogle Scholar
Wooden, D, Desch, S, Harker, D, et al., 2007, Comet grains and implications for heating and mixing in the protoplanetary disk. Protostars and Planets V, 815–833 {653}
Woodward, CE, Shull, JM, Thronson HA (eds.), 1998, Origins, volume 148 of ASP Conf. Ser. {618}
Woolf, NJ, 2001, Very large optics for the study of extrasolar terrestrial planets: Life Finder. NASA Institute for Advanced Concepts {354, 355}Google Scholar
Woolf, NJ, Angel, JRP, 1997, Planet Finder options. I. New linear nulling array configurations. Planets Beyond the Solar System and the Next Generation of Space Missions, volume 119 of ASP Conf. Ser., 285–293 {351, 640}Google Scholar
Woolf, NJ, Smith, PS, Traub, WA, et al., 2002, The spectrum of Earthshine: a pale blue dot observed from the ground. ApJ, 574, 430–433 {641}CrossRefGoogle Scholar
Woolfson, MM, 1964, A capture theory of the origin of the solar system. Phil. Trans. Soc. London A, 282, 485–507 {450}Google Scholar
Woolfson, MM, 1993, The solar system: its origin and evolution. QJRAS, 34, 1–20 {450}Google Scholar
Woolfson, MM, 2000a, The origin and evolution of the solar system. Astronomy and Geophysics, 41(1), 12–19 {450}CrossRefGoogle Scholar
Woolfson, MM, 2000b, The Origin and Evolution of the Solar System. Institute of Physics Publishing {450}CrossRefGoogle Scholar
Woolfson, MM, 2003, Commentary on an ailing theory. Space Sci. Rev., 107, 651–663 {450}CrossRefGoogle Scholar
Woolfson, MM, 2004, The stability of evolving planetary orbits in an embedded cluster. MNRAS, 348, 1150–1156 {108}CrossRefGoogle Scholar
Woolfson, MM, 2007, The Formation of the Solar System: Theories Old and New. Imperial College Press {450}CrossRefGoogle Scholar
Woolfson, MM, 2013, The capture theory and the inclinations of exoplanet orbits. MNRAS, 436, 1492–1496 {450}CrossRefGoogle Scholar
Woolfson, MM, 2016, The proportion of stars with planets. Earth Moon and Planets, 117, 77–91 {450}CrossRefGoogle Scholar
WoolleyRvd, R, 1970, Catalogue of stars within twenty-five parsecs of the Sun. Royal Observatory Annals, 5 {374}Google Scholar
Wordsworth, R, 2015, Atmospheric heat redistribution and collapse on tidally-locked rocky planets. ApJ, 806, 180 {599}CrossRefGoogle Scholar
Wordsworth, R, Pierrehumbert, R, 2014, Abiotic oxygen-dominated atmospheres on terrestrial habitable zone planets. ApJ, 785, L20 {639}CrossRefGoogle Scholar
Wordsworth, RD, 2012, Transient conditions for biogenesis on low-mass exoplanets with escaping hydrogen atmospheres. Icarus, 219, 267–273 {569, 624}CrossRefGoogle Scholar
Wordsworth, RD, Forget, F, Selsis, F, et al., 2010, Is GJ 581 d habitable? Some constraints from radiative-convective climate modeling. A&A, 522, A22 {716}Google Scholar
Wordsworth, RD, Forget, F, Selsis, F, 2011, GJ 581 d is the first discovered terrestrial-mass exoplanet in the habitable zone. ApJ, 733, L48 {11, 593, 621, 717}CrossRefGoogle Scholar
Wordsworth, RD, Pierrehumbert, RT, 2013, Water loss from terrestrial planets with CO2-rich atmospheres. ApJ, 778, 154 {620}CrossRefGoogle Scholar
Worth, R, Sigurdsson, S, 2016, Effects of Proxima Cen on planet formation in α Cen. ApJ, 831, 170 {714}CrossRefGoogle Scholar
Worth, RJ, Sigurdsson, S, House, CH, 2013, Seeding life on themoons of the outer planets via lithopanspermia. Astrobiology, 13, 1155–1165 {638}CrossRefGoogle ScholarPubMed
Wozniak, P, Paczyński, B, 1997, Microlensing of blended stellar images. ApJ, 487, 55–60 {131}CrossRefGoogle Scholar
Wraight, KT, White, GJ, Bewsher, D, et al., 2011, STEREO observations of stars and the search for exoplanets. MNRAS, 416, 2477–2493 {187}CrossRefGoogle Scholar
Wright, DJ, Chené, AN, De Cat, P, et al., 2011a, Determination of the inclination of the multi-planet hosting star HR 8799 using asteroseismology. ApJ, 728, L20 {365, 763}CrossRefGoogle Scholar
Wright, DJ, Wittenmyer, RA, Tinney, CG, et al., 2016a, Three planets orbiting Wolf 1061. ApJ, 817, L20 {716}CrossRefGoogle Scholar
Wright, EL, Eisenhardt, PRM, Mainzer, AK, et al., 2010, The Wide-field Infrared Survey Explorer (WISE): mission description and initial on-orbit performance. AJ, 140, 1868-1881 {433}CrossRefGoogle Scholar
Wright, J, Howard, A, 2012, RVLIN: Fitting Keplerian curves to radial velocity data. Astrophysics Source Code Library, 10031 {25}Google Scholar
Wright, JT, 2005, Radial velocity jitter in stars from the California and Carnegie planet search at Keck Observatory. PASP, 117, 657–664 {36, 37, 56}CrossRefGoogle Scholar
Wright, JT, 2010, A survey of multiple planet systems. EAS Pub. Ser., volume 42, 3–17 {68, 511}CrossRefGoogle Scholar
Wright, JT, 2017, On distinguishing interstellar objects like Oumuamua from products of solar system scattering. RNAAS, 1, 38 {693}Google Scholar
Wright, JT, 2018, A reassessment of families of solutions to the puzzle of Boyajian's star. RNAAS, 2, 16 {233, 747}Google Scholar
Wright, JT, Cartier, KMS, Zhao, M, et al., 2016b, The Ĝinfrared search for extraterrestrial civilisations with large energy supplies. IV. The signatures and information content of transiting megastructures. ApJ, 816, 17 {232, 233, 646, 734, 747}CrossRefGoogle Scholar
Wright, JT, Eastman, JD, 2014, Barycentric corrections at 0.01ms-1 for precise Doppler velocities. PASP, 126, 838–852 {24, 30}CrossRefGoogle Scholar
Wright, JT, Fakhouri, O, Marcy, GW, et al., 2011b, The exoplanet orbit database. PASP, 123, 412–422 {14, 208, 529}CrossRefGoogle Scholar
Wright, JT, Fischer, DA, Ford, EB, et al., 2009a, A third giant planet orbiting HIP 14810. ApJ, 699, L97–L101 {67, 725}CrossRefGoogle Scholar
Wright, JT, Griffith, RL, Sigurdsson, S, et al., 2014a, The Ĝinfrared search for extraterrestrial civilisations with large energy supplies. II. Framework, strategy, and first result. ApJ, 792, 27 {646}CrossRefGoogle Scholar
Wright, JT, Howard, AW, 2009, Efficient fitting of multi-planet Keplerian models to radial velocity and astrometry data. ApJS, 182, 205–215 {22, 24, 25, 87, 88}CrossRefGoogle Scholar
Wright, JT, Marcy, GW, Butler, RP, et al., 2004a, Chromospheric Ca II emission in nearby F, G, K ApJS, 152, 261–295 {66, 381}CrossRefGoogle Scholar
Wright, JT, Marcy, GW, Butler, RP, 2008, The Jupiter twin HD 154345 b. ApJ, 683, L63–L66 {722}CrossRefGoogle Scholar
Wright, JT, Marcy, GW, Fischer, DA, et al., 2007, Four new exoplanets and hints of additional substellar companions to exoplanet host stars. ApJ, 657, 533–545 {27, 59, 77, 719, 720, 722, 723, 725}CrossRefGoogle Scholar
Wright, JT, Marcy, GW, Howard, AW, et al., 2012, The frequency of hot Jupiters orbiting nearby solar-type stars. ApJ, 753, 160 {67, 289}CrossRefGoogle Scholar
Wright, JT, Mullan, B, Sigurdsson, S, et al., 2014b, The Ĝinfrared search for extraterrestrial civilisations with large energy supplies. I. Background and justification. ApJ, 792, 26 {646}CrossRefGoogle Scholar
Wright, JT, Roy, A, Mahadevan, S, et al., 2013, MARVELS–1: a face-on double-lined binary star masquerading as a resonant planetary system and consideration of rare false positives in radial velocity planet searches. ApJ, 770, 119 {39, 50, 725}CrossRefGoogle Scholar
Wright, JT, Sigurdsson, S, 2016, Families of plausible solutions to the puzzle of Boya-jian's star. ApJ, 829, L3 {233, 747}CrossRefGoogle Scholar
Wright, JT, Upadhyay, S, Marcy, GW, et al., 2009b, Ten new and updated multi-planet systems and a survey of exoplanetary systems. ApJ, 693, 1084–1099 {67, 68, 77, 512, 514, 718, 723}CrossRefGoogle Scholar
Wright, JT, Veras, D, Ford, EB, et al., 2011c, The California Planet Survey. III. A possible 2:1 resonance in the exoplanetary triple system HD 37124. ApJ, 730, 93 {70, 719}CrossRefGoogle Scholar
Wright, SA, Drake, F, Stone, RP, et al., 2001, Improved optical SETI detector. The Search for Extraterrestrial Intelligence (SETI) in the Optical Spectrum III, volume 4273 of Proc. SPIE, 173–177 {645}Google Scholar
Wright, SA, Stone, RPS, Drake, F, et al., 2004b, Optical SETI at Lick Observatory: a status report. Bioastronomy 2002: Life Among the Stars, volume 213 of IAU Symp., 415 {646}Google Scholar
Wright, SA, Werthimer, D, Treffers, RR, et al., 2014c, A near-infrared SETI experiment: instrument overview. Ground-based and Airborne Instrumentation for Astronomy V, volume 9147 of Proc. SPIE, 91470J {646}Google Scholar
Wu, DH, Liu, HG, Yu, ZY, et al., 2016a, Detecting planet pairs in mean motion resonances via the astrometrymethod. ApJ, 825, 76 {87, 318, 507}CrossRefGoogle Scholar
Wu, JHK, Kong, AKH, Huang, RHH, et al., 2012, Discovery of γ-ray pulsation and X-ray emission from the black widow pulsar PSR J2051–0827. ApJ, 748, 141 {108}CrossRefGoogle Scholar
Wu, Y, 2005, Origin of tidal dissipation in Jupiter. I. Properties of inertial modes. ApJ, 635, 674–687 {535}Google Scholar
Wu, Y, Goldreich, P, 2002, Tidal evolution of the planetary system around HD 83443. ApJ, 564, 1024–1027 {721}CrossRefGoogle Scholar
Wu, Y, Lithwick, Y, 2011, Secular chaos and the production of hot Jupiters. ApJ, 735, 109 {525}CrossRefGoogle Scholar
Wu, Y, Lithwick, Y, 2013a, Density and eccentricity of Kepler planets. ApJ, 772, 74 {289, 296}CrossRefGoogle Scholar
Wu, Y, Lithwick, Y, 2013b, Ohmic heating suspends, not reverses, the cooling contraction of hot Jupiters. ApJ, 763, 13 {303}CrossRefGoogle Scholar
Wu, Y, Murray, N, 2003, Planet migration and binary companions: the case of HD 80606 b. ApJ, 589, 605–614 {79, 254, 529, 729}CrossRefGoogle Scholar
Wu, Y, Murray, NW, Ramsahai, JM, 2007, Hot Jupiters in binary star systems. ApJ, 670, 820–825 {255, 521, 528, 529}CrossRefGoogle Scholar
Wu, YL, Close, LM, Bailey, VP, et al., 2016b, Magellan AO System z0, YS, and L0 observations of the very wide 650 au HD 106906 planetary system. ApJ, 823, 24 {763}CrossRefGoogle Scholar
Wu, YL, Sheehan, PD, Males, JR, et al., 2017, An ALMA and MagAO study of the sub-stellar companion GQ Lup b. ApJ, 836, 223 {762}CrossRefGoogle Scholar
Wuchterl, G, 1990, Hydrodynamics of giant planet formation. I. Overviewing the kappa-mechanism. A&A, 238, 83–94 {480}Google Scholar
Wuchterl, G, 1991a, Hydrodynamics of giant planet formation. II. Model equations and critical mass. Icarus, 91, 39–64 {480}CrossRefGoogle Scholar
Wuchterl, G, 1991b, Hydrodynamics of giant planet formation. III. Jupiter's nucleated instability. Icarus, 91, 53–64 {480}Google Scholar
Wuchterl, G, Tscharnuter, WM, 2003, From clouds to stars: protostellar collapse and the evolution to the pre-main sequence I. Equations and evolution in the Hertzsprung–Russell diagram. A&A, 398, 1081–1090 {452}Google Scholar
Wurm, G, 2007, Light-induced disassembly of dusty bodies in inner protoplanetary disks: implications for the formation of planets. MNRAS, 380, 683–690 {470}CrossRefGoogle Scholar
Wurm, G, Blum, J, 2006, Experiments on planetesimal formation. Planet Formation, 90–111, Cambridge University Press {468}
Wurm, G, Paraskov, G, Krauss, O, 2005, Growth of planetesimals by impacts at ~25 m/s. Icarus, 178, 253–263 {446, 469}CrossRefGoogle Scholar
Wurm, G, Trieloff, M, Rauer, H, 2013, Photophoretic separation of metals and silicates: the formation of Mercury-like planets and metal depletion in chondrites. ApJ, 769, 78 {458, 734, 739}CrossRefGoogle Scholar
Wyatt, MC, 2003, Resonant trapping of planetesimals by planet migration: debris disk clumps and Vega's similarity to the solar system. ApJ, 598, 1321–1340 {522}CrossRefGoogle Scholar
Wyatt, MC, 2008, Evolution of debris disks. ARA&A, 46, 339–383 {492, 496}Google Scholar
Wyatt, MC, Bonsor, A, Jackson, AP, et al., 2017, How to design a planetary system for different scattering outcomes: giant impact sweet spot, maximising exocomets, scattered disks. MNRAS, 464, 3385–3407 {283}CrossRefGoogle Scholar
Wyatt, MC, Clarke, CJ, Booth, M, 2011, Debris disk size distributions: steady state collisional evolution with Poynting–Robertson drag and other loss processes. Cel. Mech. Dyn. Astron., 111, 1–28 {496}CrossRefGoogle Scholar
Wyatt, MC, Clarke, CJ, Greaves, JS, 2007a, Origin of the metallicity dependence of exoplanet host stars in the protoplanetary disk mass distribution. MNRAS, 380, 1737–1743 {392}CrossRefGoogle Scholar
Wyatt, MC, Dent, WRF, 2002, Collisional processes in extrasolar planetesimal disks: dust clumps in Fomalhaut's debris disk. MNRAS, 334, 589–607 {492, 761}CrossRefGoogle Scholar
Wyatt, MC, Dermott, SF, Telesco, CM, et al., 1999, How observations of circumstellar disk asymmetries can reveal hidden planets: pericentre glow and its application to the HR 4796 disk. ApJ, 527, 918–944 {495}CrossRefGoogle Scholar
Wyatt, MC, Jackson, AP, 2016, Insights into planet formation from debris disks. II. Giant impacts in extrasolar planetary systems. Space Sci. Rev., 205, 231–265 {497}CrossRefGoogle Scholar
Wyatt, MC, Kennedy, G, Sibthorpe, B, et al., 2012, Herschel imaging of 61 Vir: implications for the prevalence of debris in low-mass planetary systems. MNRAS, 424, 1206–1223 {494}CrossRefGoogle Scholar
Wyatt, MC, Panić, O, Kennedy, GM, et al., 2015, Five steps in the evolution from proto-planetary to debris disk. Ap&SS, 357, 103 {466}Google Scholar
Wyatt, MC, Smith, R, Greaves, JS, et al., 2007b, Transience of hot dust around Sun-like stars. ApJ, 658, 569–583 {497}CrossRefGoogle Scholar
Wyatt, MC, Smith, R, Su, KYL, et al., 2007c, Steady state evolution of debris disks around A stars. ApJ, 663, 365–382 {497}CrossRefGoogle Scholar
Wyatt, MC, van Lieshout, R, Kennedy, GM, et al., 2018, Modeling the KIC–8462852 light curves: compatibility of the dips and secular dimming with an exocomet interpretation. MNRAS, 473, 5286–5307 {232, 747}CrossRefGoogle Scholar
Wyatt, SP, Whipple, FL, 1950, The Poynting–Robertson effect on meteor orbits. ApJ, 111, 134–141 {692}CrossRefGoogle Scholar
Wyttenbach, A, Ehrenreich, D, Lovis, C, et al., 2015, Spectrally resolved detection of sodium in the atmosphere of HD 189733 b with the HARPS spectrograph. A&A, 577, A62 {596, 609, 731}Google Scholar
Wyttenbach, A, Lovis, C, Ehrenreich, D, et al., 2017, Hot exoplanet atmospheres resolved with transit spectroscopy (HEARTS). I. Detection of hot neutral sodiumat high altitudes on WASP–49 b. A&A, 602, A36 {755}Google Scholar
Xiang-Gruess, M, 2016, Generation of highly inclined protoplanetary disks through single stellar fly-bys. MNRAS, 455, 3086–3100 {255}CrossRefGoogle Scholar
Xiang-Gruess, M, Papaloizou, JCB, 2013, Interaction between massive planets on inclined orbits and circumstellar disks. MNRAS, 431, 1320–1336 {531}CrossRefGoogle Scholar
Xiang-Gruess, M, Papaloizou, JCB, 2014, Evolution of a disk-planet system with a binary companion on an inclined orbit. MNRAS, 440, 1179–1192 {550}CrossRefGoogle Scholar
Xiang-Gruess, M, Papaloizou, JCB, 2015, Evolutionary outcomes for pairs of planets undergoing orbital migration and circularisation: second-order resonances and observed period ratios in Kepler's planetary systems. MNRAS, 449, 3043–3056 {522}CrossRefGoogle Scholar
Xiao, L, Jin, L, 2015, Diversity of extrasolar planets and diversity of molecular cloud cores. II. Masses of gas giant planets. ApJ, 802, 79 {483}CrossRefGoogle Scholar
Xiao, L, Jin, L, Liu, C, et al., 2016, Gas giant planet formation in the photoevaporating disk. I. Gap formation. ApJ, 826, 168 {462}CrossRefGoogle Scholar
Xie, JW, 2013, Transit timing variation of near-resonance planetary pairs. I. Confirmation of 12 multiple planet systems. ApJS, 208, 22 {197, 269, 270, 271, 742}CrossRefGoogle Scholar
Xie, JW, 2014a, Asymmetric orbital distribution near mean motion resonance: application to planets observed by Kepler and radial velocities. ApJ, 786, 153 {508}CrossRefGoogle Scholar
Xie, JW, 2014b, Transit timing variation of near-resonance planetary pairs. II. Confirmation of 30 planets in 15 multiple-planet systems. ApJS, 210, 25 {270, 271, 742, 743, 744, 745}CrossRefGoogle Scholar
Xie, JW, Brandeker, A, Wu, Y, 2013, On the unusual gas composition in the β Pic debris disk. ApJ, 762, 114 {762}CrossRefGoogle Scholar
Xie, JW, Dong, S, Zhu, Z, et al., 2016, Exoplanet orbital eccentricities derived from LAMOST–Kepler analysis. Proc. Nat. Acad. Sci., 113, 11431–11435 {64, 289, 317, 390, 677}CrossRefGoogle ScholarPubMed
Xie, JW, Payne, MJ, Thébault, P, et al., 2010a, From dust to planetesimal: the snowball phase? ApJ, 724, 1153–1164 {470, 714}CrossRefGoogle Scholar
Xie, JW, Payne, MJ, Thébault, P, 2011, Planet formation in highly-inclined binary systems. I. Planetesimals jump inward and pile up. ApJ, 735, 10 {550}CrossRefGoogle Scholar
Xie, JW, Wu, Y, Lithwick, Y, 2014, Frequency of close companions among Kepler planets: a transit time variation study. ApJ, 789, 165 {225, 270, 271, 272, 324}CrossRefGoogle Scholar
Xie, JW, Zhou, JL, 2008, Planetesimal accretion in binary systems: the effects of gas dissipation. ApJ, 686, 570–579 {550}CrossRefGoogle Scholar
Xie, JW, Zhou, JL, Ge, J, 2010b, Planetesimal accretion in binaries: could planets form around α Cen B? ApJ, 708, 1566–1578 {714}CrossRefGoogle Scholar
Xie, Y, Deng, XM, 2014, On the (im)possibility of testing new physics in exoplanets using transit timing variations: deviation from inverse-square law of gravity. MNRAS, 438, 1832–1838 {257}CrossRefGoogle Scholar
Xu, B, Yasui, H, Nakajima, Y, et al., 2017a, Fully stabilised 750-MHz Yb: fiber frequency comb. Optics Express, 25, 11910 {33}CrossRefGoogle Scholar
Xu, G, Xu, J, 2013, On orbital disturbing effects of the solar radiation. MNRAS, 432, 584–588 {517}CrossRefGoogle Scholar
Xu, S, Jura, M, Dufour, P, et al., 2016a, Evidence for gas from a disintegrating extrasolar asteroid. ApJ, 816, L22 {418}CrossRefGoogle Scholar
Xu, S, Jura, M, Klein, B, et al., 2013, Two beyond-primitive extrasolar planetesimals. ApJ, 766, 132 {417, 419}CrossRefGoogle Scholar
Xu, S, Jura, M, Koester, D, et al., 2014, Elemental compositions of two extrasolar rocky planetesimals. ApJ, 783, 79 {415, 417, 418, 419}CrossRefGoogle Scholar
Xu, S, Rappaport, S, van Lieshout, R, et al., 2018, A dearth of small particles in the transiting material around the white dwarf WD 1145+017. MNRAS, 474, 4795–4809 {418}Google Scholar
Xu, S, Zuckerman, B, Dufour, P, et al., 2017b, The chemical composition of an extrasolar Kuiper belt object. ApJ, 836, L7 {419}Google Scholar
Xu, W, Lai, D, 2016, Disruption of planetary orbits through evection resonance with an external companion: circumbinary planets and multi-planet systems. MNRAS, 459, 2925–2939 {509}CrossRefGoogle Scholar
Xu, W, Lai, D, 2017, Migration of planets into and out of mean motion resonances in proto-planetary disks: analytical theory of second-order resonances. MNRAS, 468, 3223–3238 {508}CrossRefGoogle Scholar
Xu, WW, Liao, XH, Zhou, YH, et al., 2016b, Exoplanet detection by astrometricmethod. Acta Astronomica Sinica, 57, 422–436 {96}Google Scholar
Xu, Ww, Liao Xh, Zhou Yh, et al., 2017c, Exoplanet detection by astrometric method. Chin. Astron. Astrophys., 41, 381–398 {96}CrossRefGoogle Scholar
Xu, Y, Yang, Y, Zhang, Q, et al., 2011, Solar oblateness and Mercury's perihelion precession. MNRAS, 415, 3335–3343 {678}CrossRefGoogle Scholar
Xu, Z, Bai, XN, Murray-Clay, RA, 2017d, Pebble accretion in turbulent protoplanetary disks. ApJ, 847, 52 {471}CrossRefGoogle Scholar
Xue, Y, Masuda, K, Suto, Y, 2017, Possible outcomes of coplanar high-eccentricity migration: hot Jupiters, close-in super-Earths, and counter-orbiting planets. ApJ, 835, 204 {523}CrossRefGoogle Scholar
Xue, Y, Suto, Y, 2016, Difficulty in the formation of counter-orbiting hot Jupiters from near-coplanar hierarchical triple systems: a sub-stellar perturber. ApJ, 820, 55 {321}CrossRefGoogle Scholar
Xue, Y, Suto, Y, Taruya, A, et al., 2014, Tidal evolution of the spin–orbit angle in exo-planetary systems. ApJ, 784, 66 {255}CrossRefGoogle Scholar
Yadav, RK, Thorngren, DP, 2017, Estimating the magnetic field strength in hot Jupiters. ApJ, 849, L12 {425}CrossRefGoogle Scholar
Yamada, K, Asada, H, 2012, Post-Newtonian effects of planetary gravity on the perihelion shift. MNRAS, 423, 3540–3544 {257}CrossRefGoogle Scholar
Yamada, K, Inaba, S, 2011, Type I migration in radiatively efficient disks. MNRAS, 411, 184–192 {519}CrossRefGoogle Scholar
Yamada, K, Inaba, S, 2012, Type I migration in optically thick accretion disks. MNRAS, 424, 2746–2756 {519}CrossRefGoogle Scholar
Yamamoto, K, Matsuo, T, Shibai, H, et al., 2013, Direct imaging search for extrasolar planets in the Pleiades. PASJ, 65, 90 {358, 359}CrossRefGoogle Scholar
Yamamura, I, Tsuji, T, Tanabé, T, 2010, AKARI observations of brown dwarfs. I. CO and CO2 bands in the near-infrared spectra. ApJ, 722, 682–698 {434}CrossRefGoogle Scholar
Yamazaki, R, Hayasaki, K, Loeb, A, 2017, Optical-infrared flares and radio afterglows by Jovian planets inspiraling into their host stars. MNRAS, 466, 1421–1427 {369}CrossRefGoogle Scholar
Yan, F, Fosbury, RAE, Petr-Gotzens, MG, et al., 2015a, High-resolution transmission spectrum of the Earth's atmosphere-seeing Earth as an exoplanet using a lunar eclipse. Int. J. Astrobiol., 14, 255–266 {161}CrossRefGoogle Scholar
Yan, F, Fosbury, RAE, Petr-Gotzens, MG, 2015b, The centre-to-limb variations of solar Fraunhofer lines imprinted upon lunar eclipse spectra. Implications for exoplanet transit observations. A&A, 574, A94 {211}Google Scholar
Yan, F, Fosbury, RAE, Petr-Gotzens, MG, 2015c, Using the Rossiter–McLaughlin effect to observe the transmission spec-trumof Earth's atmosphere. ApJ, 806, L23 {161, 250}CrossRefGoogle Scholar
Yan, F, Pallé, E, Fosbury, RAE, et al., 2017, Effect of the stellar absorption line centre-to-limb variation on exoplanet transmission spectrumobservations. A&A, 603, A73 {731, 733}Google Scholar
Yan, Z, Shen, ZQ, Yuan, JP, et al., 2013, VLBI astrometry of PSR B1257+12, a pulsar with a planetary system. MNRAS, 433, 162–169 {106, 107}CrossRefGoogle Scholar
YanaGalarza, J, Meléndez, J, Ramírez, I, et al., 2016, High-precision analysis of the solar twin HIP 100963. A&A, 589, A17 {405}Google Scholar
Yang, CC, Johansen, A, 2014, On the feeding zone of planetesimal formation by the streaming instability. ApJ, 792, 86 {458}CrossRefGoogle Scholar
Yang, CC, Johansen, A, 2016, Integration of particle-gas systems with stiff mutual drag interaction. ApJS, 224, 39 {461}CrossRefGoogle Scholar
Yang, CC, Johansen, A, Carrera, D, 2017a, Concentrating small particles in protoplanet-ary disks through the streaming instability. A&A, 606, A80 {458}Google Scholar
Yang, CC, Mac Low, MM, Menou, K, 2012, Planetesimal and protoplanet dynamics in a turbulent protoplanetary disk: ideal stratified disks. ApJ, 748, 79 {461}CrossRefGoogle Scholar
Yang, H, Apai, D, Marley, MS, et al., 2015, HST rotational spectral mapping of two L-type brown dwarfs: variability in and out of water bands indicates high-altitude haze layers. ApJ, 798, L13 {434, 440}CrossRefGoogle Scholar
Yang, H, Liu, J, Gao, Q, et al., 2017b, The flaring activity of Mdwarfs in the Kepler field. ApJ, 849, 36 {427}CrossRefGoogle Scholar
Yang, J, Abbot, DS, 2014, A low-order model of water vapour, clouds, and thermal emission for tidally-locked terrestrial planets. ApJ, 784, 155 {621}CrossRefGoogle Scholar
Yang, J, Boué, G, Fabrycky, DC, et al., 2014a, Strong dependence of the inner edge of the habitable zone on planetary rotation rate. ApJ, 787, L2 {622}CrossRefGoogle Scholar
Yang, J, Cowan, NB, Abbot, DS, 2013, Stabilising cloud feedback dramatically expands the habitable zone of tidally-locked planets. ApJ, 771, L45 {621}CrossRefGoogle Scholar
Yang, J, Leconte, J, Wolf, ET, et al., 2016a, Differences in water vapour radiative transfer among 1d models can significantly affect the inner edge of the habitable zone. ApJ, 826, 222 {620}CrossRefGoogle Scholar
Yang, J, Liu, Y, Hu, Y, et al., 2014b, Water trapping on tidally-locked terrestrial planets requires special conditions. ApJ, 796, L22 {622}CrossRefGoogle Scholar
Yang, M, Xie, JW, Zhou, JL, et al., 2016b, Global instability of the exo-moon system triggered by photo-evaporation. ApJ, 833, 7 {276}CrossRefGoogle Scholar
Yang, W, Kostinski, AB, 2004, One-sided achromatic phase apodisation for imaging of extrasolar planets. ApJ, 605, 892–901 {334}CrossRefGoogle Scholar
Yantis, WF, Sullivan WT, III, Erickson, WC, 1977, A search for extrasolar Jovian planets by radio techniques. AAS Bulletin, volume 9, 453 {426}Google Scholar
Yashiro, S, Akiyama, S, Gopalswamy, N, et al., 2006, Different power-law indices in the frequency distributions of flares with and without coronal mass ejections. ApJ, 650, L143–L146 {427}CrossRefGoogle Scholar
Yasui, C, Kobayashi, N, Tokunaga, AT, et al., 2009, The lifetime of protoplanetary disks in a low-metallicity environment. ApJ, 705, 54–63 {462}CrossRefGoogle Scholar
Yates, JS, Palmer, PI, Biller, B, et al., 2017, Atmospheric habitable zones in Y dwarf atmospheres. ApJ, 836, 184 {621}CrossRefGoogle Scholar
Ycas, GG, Quinlan, F, Diddams, SA, et al., 2012, Demonstration of on-sky calibration of astronomical spectra using a 25GHz near-IR laser frequency comb. Optics Express, 20, 6631 {33}CrossRefGoogle Scholar
Ye, H, Han, J, Wu, Y, et al., 2016, The fiber noise suppression of astro-comb fiber link system for Chinese 2.16-m telescope. Ground-based and Airborne Instrumentation for Astronomy VI, volume 9908 of Proc. SPIE, 99087E {33}Google Scholar
Ye, QZ, Zhang, Q, Kelley, MSP, et al., 2017, Oumuamua is hot: imaging, spectroscopy, and search of meteor activity. ApJ, 851, L5 {693}CrossRefGoogle Scholar
Yeager, KE, Eberle, J, Cuntz, M, 2011, On the ejection of Earth-mass planets from the habitable zones of the solar twins HD 20782 and HD 188015. Int. J. Astrobiol., 10, 1–13 {405, 719, 723}CrossRefGoogle Scholar
Yee, JC, 2013, WFIRST planet masses from microlens parallax. ApJ, 770, L31 {143}CrossRefGoogle Scholar
Yee, JC, 2015, Lens masses and distances from microlens parallax and flux. ApJ, 814, L11 {134}CrossRefGoogle Scholar
Yee, JC, Albrow, M, Barry, RK, et al., 2014, NASA ExoPAG Study Analysis Group 11: Preparing for the WFIRST Microlensing Survey [unpublished]. ArXiv e-prints {143}
Yee, JC, Anderson, J, Akeson, R, et al., 2018, White Paper: exoplanetary microlensing from the ground in the 2020s. ArXiv e-prints {143}
Yee, JC, Gaudi, BS, 2008, Characterising long-period transiting planets observed by Kepler. ApJ, 688, 616–627 {197}CrossRefGoogle Scholar
Yee, JC, Gould, A, Beichman, C, et al., 2015a, Criteria for sample selection to maximise planet sensitivity and yield from space-based microlens parallax surveys. ApJ, 810, 155 {134, 143}CrossRefGoogle Scholar
Yee, JC, Shvartzvald, Y, Gal-Yam, A, et al., 2012, MOA–2011–BLG–293L b: a test of pure surveymicrolensing planet detections. ApJ, 755, 102 {141, 142, 145, 759}CrossRefGoogle Scholar
Yee, JC, Udalski, A, Calchi Novati, S, et al., 2015b, First space-based microlens parallax measurement of an isolated star: Spitzer observations of OGLE–2014–BLG–939. ApJ, 802, 76 {134, 143}CrossRefGoogle Scholar
Yee, JC, Udalski, A, Sumi, T, et al., 2009, Extreme magnification microlensing event OGLE–2008–BLG–279: strong limits on planetary companions to the lens star. ApJ, 703, 2082–2090 {135}CrossRefGoogle Scholar
Yeghikyan, A, Fahr, H, 2004a, Effects induced by the passage of the Sun through dense molecular clouds. I. A&A, 415, 763–770 {655}Google Scholar
Yeghikyan, A, Fahr, H, 2004b, Terrestrial atmospheric effects induced by counterstreaming dense interstellar cloudmaterial. A&A, 425, 1113–1118 {655}Google Scholar
Yelle, RV, 2004, Aeronomy of extrasolar giant planets at small orbital distances. Icarus, 170, 167–179 {601, 602}CrossRefGoogle Scholar
Yelle, RV, Lammer, H, Ip, WH, 2008, Aeronomy of extrasolar giant planets. Space Science Reviews, 139, 437–451 {601}CrossRefGoogle Scholar
Yen, HW, Takakuwa, S, Chu, YH, et al., 2017, 1000 au exterior arcs connected to the protoplanetary disk around HL Tau. A&A, 608, A134 {466}Google Scholar
Ygouf, M, Mugnier, LM, Mouillet, D, et al., 2013, Simultaneous exoplanet detection and instrument aberration retrieval in multispectral coronagraphic imaging. A&A, 551, A138 {340}Google Scholar
Yi, JS, Chen, J, Kipping, D, 2018, Forecasting the detectability of known radial velocity planets with the upcoming CHEOPS mission. MNRAS, 475, 3090–3097 {181}CrossRefGoogle Scholar
Yıldız, M, Çelik Orhan Z, Kayhan, C, et al., 2014, On the structure and evolution of planets and their host stars: effects of various heating mechanisms on the size of giant gas planets. MNRAS, 445, 4395–4405 {302}CrossRefGoogle Scholar
Yılmaz, M, Sato, B, Bikmaev, I, et al., 2017, A Jupiter-mass planet around the K0 giant HD 208897. A&A, 608, A14 {46, 724}Google Scholar
Yılmaz, M, Selam, SO, Sato, B, et al., 2013, Extrasolar planet searches at the TUG: test observations and capabilities. New Astron., 20, 24–29 {46}CrossRefGoogle Scholar
Yin, Ds, Gao, Yp, Zhao, Sh, 2017, Ensemble pulsar time scale. Chin. Astron. Astrophys., 41, 430–441 {104}Google Scholar
Yin, JH, Battisti, DS, 2001, The importance of tropical sea surface temperature patterns in simulations of Last Glacial Maximum climate. Journal of Climate, 14(4), 565–581 {676}2.0.CO;2>CrossRefGoogle Scholar
Yin, Q, Jacobsen, SB, Yamashita, K, et al., 2002, A short time scale for terrestrial planet formation from Hf–W chronometry of meteorites. Nature, 418, 949–952 {652, 665}CrossRefGoogle Scholar
Yock, P, 2006, Detecting Earth-like extrasolar planets from Antarctica by gravitational microlensing. Acta Astronomica Sinica, 47, 410–417 {142}Google Scholar
Yoder, CF, 1979, How tidal heating in Io drives the Galilean orbital resonance locks. Nature, 279, 767–770 {544, 627}CrossRefGoogle Scholar
Yoder, CF, 1995, Astrometric and Geodetic Properties of Earth and the Solar System. American Geophysical Union, editor T. J. Ahrens {703}CrossRefGoogle Scholar
Yoder, CF, 1997, Venusian spin dynamics. Venus II, 1087 {679}Google Scholar
Yoder, CF, Peale, SJ, 1981, The tides of Io. Icarus, 47, 1–35 {536, 544}CrossRefGoogle Scholar
Yoneda, H, Tsukamoto, Y, Furuya, K, et al., 2016, Chemistry in a forming protoplanetary disk: main accretion phase. ApJ, 833, 105 {463}CrossRefGoogle Scholar
Yoneda, M, Berdyugina, S, Kuhn, J, 2017, Space weathering of super-Earths: model simulations of exospheric sodiumescape from 61 Vir b. AJ, 154, 139 {716}CrossRefGoogle Scholar
Yoo, J, DePoy, DL, Gal-Yam, A, et al., 2004a, Constraints on planetary companions in the magnification A = 256 microlensing event OGLE–2003–BLG–423. ApJ, 616, 1204–1214 {140}CrossRefGoogle Scholar
Yoo, J, DePoy, DL, Gal-Yam, A, 2004b, OGLE–2003–BLG–262: finite-source effects from a point-mass lens. ApJ, 603, 139–151 {132, 140}CrossRefGoogle Scholar
York, DG, Adelman, J, Anderson, JE, et al., 2000, The Sloan Digital Sky Survey (SDSS): technical summary. AJ, 120, 1579–1587 {432}CrossRefGoogle Scholar
Yoshida, F, Terai, T, 2017, Small Jupiter Trojans Survey with the Subaru/Hyper Suprime-Cam. AJ, 154, 71 {689}CrossRefGoogle Scholar
Yoshizawa, M, Nishikawa, J, Ohishi, N, et al., 2006, MIRA status report: recent progress of MIRA-I.2 and future plans. SPIE Conf. Ser., volume 6268, 8 {348}Google Scholar
You, XP, Hobbs, GB, Coles, WA, et al., 2007, An improved solar wind electron density model for pulsar timing. ApJ, 671, 907–911 {109}CrossRefGoogle Scholar
Youdin, A, Johansen, A, 2007, Protoplanetary disk turbulence driven by the streaming instability: linear evolution and numericalmethods. ApJ, 662, 613–626 {458}CrossRefGoogle Scholar
Youdin, AN, 2010, From grains to planetesimals. EAS Pub. Ser., volume 41, 187–207 {454, 469}CrossRefGoogle Scholar
Youdin, AN, 2011a, The formation of planetesimals via secular gravitational instability with turbulent stirring. ApJ, 731, 99 {488}CrossRefGoogle Scholar
Youdin, AN, 2011b, The exoplanet census: a general method applied to Kepler. ApJ, 742, 38 {289, 293, 294, 308}CrossRefGoogle Scholar
Youdin, AN, Chiang, EI, 2004, Particle pileups and planetesimal formation. ApJ, 601, 1109–1119 {457, 460}CrossRefGoogle Scholar
Youdin, AN, Goodman, J, 2005, Streaming instabilities in protoplanetary disks. ApJ, 620, 459–469 {458}CrossRefGoogle Scholar
Youdin, AN, Kratter, KM, Kenyon, SJ, 2012, Circumbinary chaos: using Pluto's newest moon to constrain the masses of Nix and Hydra. ApJ, 755, 17 {550, 682, 688}CrossRefGoogle Scholar
Youdin, AN, Mitchell, JL, 2010, The mechanical greenhouse: burial of heat by turbulence in hot Jupiter atmospheres. ApJ, 721, 1113–1126 {303}CrossRefGoogle Scholar
Youdin, AN, Shu, FH, 2002, Planetesimal formation by gravitational instability. ApJ, 580, 494–505 {460}CrossRefGoogle Scholar
Young, AT, 1967, Photometric error analysis. VI. Confirmation of Reiger's theory of scintillation. AJ, 72, 747–753 {188}CrossRefGoogle Scholar
Young, LA, 2013, Pluto's Seasons: predictions for New Horizons. ApJ, 766, L22 {682}CrossRefGoogle Scholar
Young, MD, Clarke, CJ, 2016, Quantification of stochastic fragmentation of self-gravitating disks. MNRAS, 455, 1438–1442 {488}CrossRefGoogle Scholar
Young, PA, Liebst, K, Pagano, M, 2012, The impact of stellar abundance variations on stellar habitable zone evolution. ApJ, 755, L31 {628}CrossRefGoogle Scholar
Youngblood, A, France, K, Parke Loyd, RO, et al., 2016, The MUSCLES Treasury Survey. II. Intrinsic Ly-α and extreme ultraviolet spectra of K and M dwarfs with exo-planets. ApJ, 824, 101 {424}CrossRefGoogle Scholar
Yseboodt, M, Margot, JL, 2006, Evolution of Mercury's obliquity. Icarus, 181, 327–337 {678}CrossRefGoogle Scholar
Yu, C, 2017, The formation of super-Earths by tidally forced turbulence. ApJ, 850, 198 {501}CrossRefGoogle Scholar
Yu, C, Li, H, Li, S, et al., 2010, Type I planetmigration in nearly laminar disks: long-term behaviour. ApJ, 712, 198–208 {517}CrossRefGoogle Scholar
Yu, L, Donati, JF, Hébrard, EM, et al., 2017, A hot Jupiter around the very active weak-line T Tauri star TAP 26. MNRAS, 467, 1342–1359 {725}Google Scholar
Yu, L, Winn, JN, Gillon, M, et al., 2015, Tests of the planetary hypothesis for PTFO 8–8695 b. ApJ, 812, 48 {750}CrossRefGoogle Scholar
Yu, M, Willacy, K, Dodson-Robinson, SE, et al., 2016, Probing planet forming zones with rare CO isotopologues. ApJ, 822, 53 {464}CrossRefGoogle Scholar
Yu, Q, Tremaine, S, 2001, Resonant capture by inward-migrating planets. AJ, 121, 1736–1740 {321, 522}CrossRefGoogle Scholar
Yuan, X, Cui, X, Gong, X, et al., 2010, Progress of Antarctic Schmidt telescopes (AST3) for Dome A. SPIE Conf. Ser., volume 7733, 57 {170}Google Scholar
Yuan, X, Cui, X, Gu, B, et al., 2014, The AST3 project: Antarctic Survey Telescopes for Dome A. Ground-based and Airborne Telescopes V, volume 9145 of Proc. SPIE, 91450F {347}Google Scholar
Yung, YL, Demore, WB, 1999, Photochemistry of Planetary Atmospheres. Oxford University Press {587}Google Scholar
Yurchenko, SN, Barber, RJ, Tennyson, J, 2011, A variationally computed line list for hot NH3. MNRAS, 413, 1828–1834 {570}CrossRefGoogle Scholar
Yurchenko, SN, Tennyson, J, Bailey, J, et al., 2014, Spectrum of hot methane in astronomical objects using a comprehensive computed line list. Proc. Nat. Acad. Sci., 111, 9379–9383 {570, 731}CrossRefGoogle ScholarPubMed
Zacharias, N, Dorland, B, 2006, The concept of a stare-mode astrometric space mission. PASP, 118, 1419–1427 {100}CrossRefGoogle Scholar
Zacharias, P, 2014, An independent review of existing total solar irradiance records. Surveys in Geophysics, 35, 897–912 {656}CrossRefGoogle Scholar
Zackrisson, E, Calissendorff, P, Asadi, S, et al., 2015, Extragalactic SETI: the Tully–Fisher relation as a probe of Dysonian astroengineering in disk galaxies. ApJ, 810, 23 {646}CrossRefGoogle Scholar
Zackrisson, E, Calissendorff, P, González, J, et al., 2016, Terrestrial planets across space and time. ApJ, 833, 214 {625}CrossRefGoogle Scholar
Zahn, J, 1977, Tidal friction in close binary stars. A&A, 57, 383–394 {535, 541, 542, 545}Google Scholar
Zahn, JP, 1966a, Les marées dans une étoile double serrée. Annales d'Astrophysique, 29, 313 {541}Google Scholar
Zahn, JP, 1966b, Les marées dans une étoile double serrée (suite). Annales d'Astrophysique, 29, 489 {541}Google Scholar
Zahn, JP, 1970, Forced oscillations in close binaries: the adiabatic approximation. A&A, 4, 452 {542}Google Scholar
Zahn, JP, 1975, The dynamical tide in close binaries. A&A, 41, 329–344 {230, 542}Google Scholar
Zahnle, KJ, 2008, Atmospheric chemistry: her dark materials. Nature, 454, 41–42 {587}CrossRefGoogle ScholarPubMed
Zahnle, KJ, Arndt, N, Cockell, C, et al., 2007, Emergence of a habitable planet. Space Sci. Rev., 129, 35–78 {624, 626, 672, 673}CrossRefGoogle Scholar
Zahnle, KJ, Catling, DC, 2017, The cosmic shoreline: the evidence that escape determines which planets have atmospheres, and what this may mean for Prox-ima Cen b. ApJ, 843, 122 {714}CrossRefGoogle Scholar
Zahnle, KJ, Kasting, JF, Pollack, JB, 1988, Evolution of a steam atmosphere during Earth's accretion. Icarus, 74, 62–97 {576}CrossRefGoogle ScholarPubMed
Zahnle, KJ, Marley, MS, 2014, , CH4, CO ApJ, 797, 41 {436}CrossRefGoogle Scholar
Zahnle, KJ, Marley, MS, Freedman, RS, et al., 2009, Atmospheric sulphur photochemistry on hot Jupiters. ApJ, 701, L20–L24 {587}CrossRefGoogle Scholar
Zahnle, KJ, Marley, MS, Morley, CV, et al., 2016, Photolytic hazes in the atmosphere of 51 Eri b. ApJ, 824, 137 {589, 590, 761}CrossRefGoogle Scholar
Zahnle, KJ, Pollack, JB, Kasting, JF, 1990, Mass fractionation of noble gases in diffusion-limited hydrodynamic hydrogen escape. Icarus, 84, 503–527 {601}CrossRefGoogle ScholarPubMed
Zahnle, KJ, Schaefer, L, Fegley, B, 2010, Earth's earliest atmosphere. Cold Spring Harbor Perspectives in Biology, 2, a004895 {597, 672, 673}CrossRefGoogle Scholar
Zakamska, NL, Pan, M, Ford, EB, 2011, Observational biases in determining extrasolar planet eccentricities in single-planet systems. MNRAS, 410, 1895–1910 {63, 323}Google Scholar
Zakamska, NL, Tremaine, S, 2004, Excitation and propagation of eccentricity disturbances in planetary systems. AJ, 128, 869–877 {526}CrossRefGoogle Scholar
Zakamska, NL, Tremaine, S, 2005, Constraints on the acceleration of the solar system from high-precision timing. AJ, 130, 1939–1950 {687}CrossRefGoogle Scholar
Zakharov, AF, 2015, The duration of astrometric (weak) microlensing events. Astronomy Reports, 59, 823–828 {138}CrossRefGoogle Scholar
Zakharov, AF, Ingrosso, G, De Paolis, F, et al., 2014, Exoplanetary searches with gravita-tionalmicrolensing: polarisation issues. Adv. Space Res., 54, 1319–1325 {136}CrossRefGoogle Scholar
Zalucha, AM, Michaels, TI, Madhusudhan, N, 2013, An investigation of a super-Earth exoplanet with a greenhouse-gas atmosphere using a general circulation model. Icarus, 226, 1743–1761 {593, 622, 735}CrossRefGoogle Scholar
Zanazzi, JJ, Lai, D, 2017a, Extended transiting disks and rings around planets and brown dwarfs: theoretical constraints. MNRAS, 464, 3945–3954 {219, 751}CrossRefGoogle Scholar
Zanazzi, JJ, Lai, D, 2017b, Lidov–Kozaimechanism in hydrodynamical disks: linear stability analysis. MNRAS, 467, 1957–1964 {529}Google Scholar
Zanazzi, JJ, Lai, D, 2017c, Triaxial deformation and asynchronous rotation of rocky planets in the habitable zone of low-mass stars. MNRAS, 469, 2879–2885 {541, 622}CrossRefGoogle Scholar
ZapateroOsorio, MR, Béjar, VJS, Martín, EL, et al., 2000, Discovery of young, isolated planetary mass objects in the σ Ori star cluster. Science, 290, 103–107 {446}Google Scholar
ZapateroOsorio, MR, Béjar, VJS, Martín, EL, 2002, A methane, isolated, planetary-mass object in Orion. ApJ, 578, 536–542 {10, 446}Google Scholar
ZapateroOsorio, MR, Béjar, VJS, Miles-Páez, PA, et al., 2014a, Trigonometric parallaxes of young field L dwarfs. A&A, 568, A6 {434}Google Scholar
ZapateroOsorio, MR, Béjar, VJS, Peña Ramírez K, 2017, Optical and near-infrared spectra of σ Ori isolated planetary-mass objects. ApJ, 842, 65 {446}CrossRefGoogle Scholar
ZapateroOsorio, MR, Caballero, JA, Béjar, VJS, et al., 2007, Disks of planetary-mass objects in σ Ori. A&A, 472, L9–L12 {443}Google Scholar
ZapateroOsorio, MR, Gálvez-Ortiz, MC, Bihain, G, et al., 2014b, Search for free-floating planetary-mass objects in the Pleiades. A&A, 568, A77 {434}Google Scholar
ZapateroOsorio, MR, Martín, EL, del Burgo, C, et al., 2009, Infrared radial velocities of vB 10. A&A, 505, L5–L8 {90}Google Scholar
Zapolsky, HS, Salpeter, EE, 1969, The mass–radius relation for cold spheres of low mass. ApJ, 158, 809–813 {296, 302, 565}CrossRefGoogle Scholar
Zaqarashvili, TV, 1997, On a possible generation mechanism for the solar cycle. ApJ, 487, 930–935 {656}CrossRefGoogle Scholar
Zaqarashvili, TV, Javakhishvili, G, Belvedere, G, 2002, On a mechanism for enhancing magnetic activity in tidally interacting binaries. ApJ, 579, 810–816 {420}CrossRefGoogle Scholar
Zarka, P, 1992, The auroral radio emissions from planetarymagnetospheres: what do we know, what don't we know, what do we learn from them? Adv. Space Res., 12, 99–115 {424, 425}CrossRefGoogle Scholar
Zarka, P, 2004, Non-thermal radio emissions from extrasolar planets. Extrasolar Planets: Today and Tomorrow, volume 321 of ASP Conf. Ser., 160–169 {425, 426}Google Scholar
Zarka, P, 2007, Plasma interactions of exoplanets with their parent star and associated radio emissions. Planet. Space Sci., 55, 598–617 {425}CrossRefGoogle Scholar
Zarka, P, Bougeret, JL, Briand, C, et al., 2012, Planetary and exoplanetary low-frequency radio observations from the Moon. Planet. Space Sci., 74, 156–166 {591}CrossRefGoogle Scholar
Zarka, P, Cecconi, B, Kurth, WS, 2004, Jupiter's low-frequency radio spectrum from Cassini–Radio and Plasma Wave Science absolute flux density measurements. J. Geophys. Res., 109(18), 9–26 {426}CrossRefGoogle Scholar
Zarka, P, Farrell, W, Fischer, G, et al., 2008, Ground-based and space-based radio observations of planetary lightning. Planetary Atmospheric Electricity, 257 {591}CrossRefGoogle Scholar
Zarka, P, Halbwachs, JL, 2006, Plasma interactions of exoplanets with their parent stars and associated radio emissions. Formation Planétaire et Exoplanètes, Ecole Thé-matique du CNRS, Goutelas, 28, 190–241 {425}Google Scholar
Zarka, P, Kurth, WS, 2005, Radio wave emission from the outer planets before Cassini. Space Sci. Rev., 116, 371–397 {426}CrossRefGoogle Scholar
Zarka, P, Lazio, J, Hallinan, G, 2015, Magnetospheric radio emissions from exo-planets with the SKA. Advancing Astrophysics with the Square Kilometer Array (AASKA14), 120 {427}CrossRefGoogle Scholar
Zarka, P, Pedersen, BM, 1986, Radio detection of Uranian lightning by Voyager 2. Nature, 323, 605–608 {591}CrossRefGoogle Scholar
Zarka, P, Treumann, RA, Ryabov, BP, et al., 2001, Magnetically-driven planetary radio emissions and application to extrasolar planets. Ap&SS, 277, 293–300 {424, 425, 426}Google Scholar
Zasowski, G, An, D, Pinsonneault, M, 2015, Preliminary evaluation of the Kepler Input Catalogue extinction model using stellar temperatures. Astrophysics and Space Science Proceedings, 39, 83 {176}CrossRefGoogle Scholar
Zebker, HA, Marouf, EA, Tyler, GL, 1985, Saturn's rings: particle size distributions for thin layer model. Icarus, 64, 531–548 {690}CrossRefGoogle Scholar
Zechmeister, M, Kürster, M, 2009, The generalised Lomb–Scargle periodogram: a new formalism for the floating-mean and Keplerian periodograms. A&A, 496, 577–584 {22}Google Scholar
Zechmeister, M, Kürster, M, Endl, M, 2009, The M dwarf planet search programme at the ESO VLT–UVES: a search for terrestrial planets in the habitable zone of Mdwarfs. A&A, 505, 859–871 {21, 55}Google Scholar
Zechmeister, M, Kürster, M, Endl, M, et al., 2013, The planet search programme at the ESO CES and HARPS. IV. The search for Jupiter analogues around solar-like stars. A&A, 552, A78 {55, 60}Google Scholar
Zechmeister, M, Reiners, A, Amado, PJ, et al., 2018, Spectrum radial velocity analyser (SERVAL): high-precision radial velocities and two alternative spectral indicators. A&A, 609, A12 {25}Google Scholar
Zejda, M, Paunzen, E, Mikulášek, Z, 2016, BRITE: constellation project of astronomical nanosatellites. Open European Journal on Variable Stars, 176, 49 {187}Google Scholar
Zellem, RT, Griffith, CA, Deroo, P, et al., 2014a, The ground-based H-, K-, and L-band absolute emission spectra of HD 209458 b. ApJ, 796, 48 {610, 732}CrossRefGoogle Scholar
Zellem, RT, Griffith, CA, Pearson, KA, et al., 2015, XO–2 b: a hot Jupiter with a variable host star that potentially affects its measured transit depth. ApJ, 810, 11 {757}CrossRefGoogle Scholar
Zellem, RT, Lewis, NK, Knutson, HA, et al., 2014b, The 4.5μm full-orbit phase curve of the hot Jupiter HD 209458 b. ApJ, 790, 53 {596, 610, 611, 612, 615, 732}CrossRefGoogle Scholar
Zellem, RT, Swain, MR, Roudier, G, et al., 2017, Forecasting the impact of stellar activity on transiting exoplanet spectra. ApJ, 844, 27 {188}CrossRefGoogle Scholar
Zellner, NEB, Norman, MD, 2012, Apollo 15 lunar impact glasses: geochemistry, age, and the Earth–Moon bombardment. Meteor. Plan. Sci. Sup., 75, 5277 {669}Google Scholar
Zendejas, J, Segura, A, Raga, AC, 2010, Atmospheric mass loss by stellar wind from planets around main sequence Mstars. Icarus, 210, 539–544 {623}CrossRefGoogle Scholar
ZendejasDominguez, J, Koppenhoefer, J, Saglia, RP, et al., 2013, Searching for transits in the Wide Field Camera Transit Survey (WFTS) with difference-imaging light curves. A&A, 560, A92 {169}Google Scholar
Zeng, L, Jacobsen, SB, 2016, Variational principle for planetary interiors. ApJ, 829, 18 {603, 604}CrossRefGoogle Scholar
Zeng, L, Jacobsen, SB, 2017, A simple analytical model for rocky planet interiors. ApJ, 837, 164 {574, 575, 734, 740, 743}CrossRefGoogle Scholar
Zeng, L, Sasselov, D, 2013, A detailed model grid for solid planets from 0.1-100 M⊕. PASP, 125, 227–239 {603}CrossRefGoogle Scholar
Zeng, L, Sasselov, D, 2014, The effect of temperature evolution on the interior structure of H2O-rich planets. ApJ, 784, 96 {569}CrossRefGoogle Scholar
Zeng, L, Sasselov, DD, Jacobsen, SB, 2016, Mass–radius relation for rocky planets based on PREM. ApJ, 819, 127 {603, 743}CrossRefGoogle Scholar
Zeng, L, Seager, S, 2008, A computational tool to interpret the bulk composition of solid exoplanets based on mass and radius measurements. PASP, 120, 983–991 {603}CrossRefGoogle Scholar
Zhang, B, Sigurdsson, S, 2003, Electromagnetic signals from planetary collisions. ApJ, 596, L95–L98 {368}CrossRefGoogle Scholar
Zhang, H, Liu, HG, Zhou, JL, et al., 2014a, Gap formation in a self-gravitating disk and the associated migration of the embedded giant planet. Res. Astron. Astrophys., 14, 433 {520}CrossRefGoogle Scholar
Zhang, H, Zhou, JL, 2010a, On the orbital evolution of a giant planet pair embedded in a gaseous disk. I. Jupiter–Saturn configuration. ApJ, 714, 532–548 {698}CrossRefGoogle Scholar
Zhang, H, Zhou, JL, 2010b, On the orbital evolution of a giant planet pair embedded in a gaseous disk. II. A Saturn–Jupiter configuration. ApJ, 719, 671–684 {698}CrossRefGoogle Scholar
Zhang, J, Kempton, EMR, Rauscher, E, 2017a, Constraining hot Jupiter atmospheric structure and dynamics through Doppler-shifted emission spectra. ApJ, 851, 84 {731, 733, 755}CrossRefGoogle Scholar
Zhang, JC, Cao, C, Song, N, et al., 2011, Observation and research of the transits of extrasolar planets. Chinese Astronomy and Astrophysics, 35, 409–420 {735, 750, 751, 752, 757}CrossRefGoogle Scholar
Zhang, K, 2011, A multi-object exoplanet detecting technique. Acta Astronomica Sinica, 52, 263–264 {46, 50}Google Scholar
Zhang, K, Bergin, EA, Blake, GA, et al., 2016, On the commonality of 10–30 au sized axisymmetric dust structures in protoplanetary disks. ApJ, 818, L16 {463}CrossRefGoogle Scholar
Zhang, K, Hamilton, DP, Matsumura, S, 2013a, Secular orbital evolution of compact planet systems. ApJ, 778, 6 {545, 736}CrossRefGoogle Scholar
Zhang, K, Kong, D, Schubert, G, 2017b, Shape, internal structure, zonal winds, and gravitational field of rapidly rotating Jupiter-like planets. Ann. Rev. Earth Plan. Sci., 45, 419–446 {607}CrossRefGoogle Scholar
Zhang, K, Pontoppidan, KM, Salyk, C, et al., 2013b, Evidence for a snow line beyond the transition radius in the TWHya protoplanetary disk. ApJ, 766, 82 {467}CrossRefGoogle Scholar
Zhang, M, Huang, CL, 2017, Exoplanet's figure and its interior. Acta Astronomica Sinica, 58, 2 {229}Google Scholar
Zhang, M, Knutson, HA, Kataria, T, et al., 2018a, Phase curves of WASP–33 b and HD 149026 b and a new correlation between phase curve offset and irradiation temperature. AJ, 155, 83 {729, 754}CrossRefGoogle Scholar
Zhang, N, Ji, J, Sun, Z, 2010, A hybrid mechanism forming a 2:1 librating-circulating resonant configuration in the planetary system. MNRAS, 405, 2016–2022 {70, 509, 720, 722}Google Scholar
Zhang, Q, 2018, Prospects for backtracing Oumuamua and future interstellar objects. ApJ, 852, L13 {693}CrossRefGoogle Scholar
Zhang, X, Li, H, Li, S, et al., 2014b, Resonances of multiple exoplanets and implications for their formation. ApJ, 789, L23 {509}CrossRefGoogle Scholar
Zhang, X, Liang, MC, Mills, FP, et al., 2012, Sulphur chemistry in the middle atmosphere of Venus. Icarus, 217, 714–739 {589}CrossRefGoogle Scholar
Zhang, X, Liu, B, Lin, DNC, et al., 2014c, Migration and growth of protoplanetary embryos. I. Convergence of embryos in protoplanetary disks. ApJ, 797, 20 {508}CrossRefGoogle Scholar
Zhang, X, Showman, AP, 2017, Effects of bulk composition on the atmospheric dynamics on close-in exoplanets. ApJ, 836, 73 {591}CrossRefGoogle Scholar
Zhang, X, Tian, F, Wang, Y, et al., 2017c, Surface variability of short-wavelength radiation and temperature on exoplanets around Mdwarfs. ApJ, 837, L27 {621}CrossRefGoogle Scholar
Zhang, XD, Zhou, JL, 2006, The formation and stability of the configuration of the planetary system HD 12661. Chinese Astronomy and Astrophysics, 30, 420–430 {75, 718}Google Scholar
Zhang, Y, Jin, L, 2015, The evolution of the snow line in a protoplanetary disk. ApJ, 802, 58 {564}CrossRefGoogle Scholar
Zhang, Z, Zhou, Y, Rackham, B, et al., 2018b, The near-infrared transmission spectra of TRAPPIST–1 planets b, c, d, e, f, and g and stellar contamination in multi-epoch transit spectra. ArXiv e-prints {750}
Zhao, G, Chen, YQ, Qiu, HM, et al., 2002, Chemical abundances of 15 extrasolar planet host stars. AJ, 124, 2224–2232 {388}CrossRefGoogle Scholar
Zhao, G, Xie, JW, Zhou, JL, et al., 2012a, Planetesimal dynamics in inclined binary systems: the role of gas-disk gravity. ApJ, 749, 172 {549}CrossRefGoogle Scholar
Zhao, L, Fischer, DA, Brewer, J, et al., 2018a, Planet detectability in the α Cen system. AJ, 155, 24 {714}CrossRefGoogle Scholar
Zhao, M, Milburn, J, Barman, T, et al., 2012b, Detection of Ks-band thermal emission from WASP–3 b. ApJ, 748, L8 {752}CrossRefGoogle Scholar
Zhao, M, Monnier, JD, Che, X, et al., 2011, Toward direct detection of hot Jupiters with precision closure phase: calibration studies and first results from CHARA. PASP, 123, 964–975 {348}CrossRefGoogle Scholar
Zhao, M, Monnier, JD, Swain, MR, et al., 2012c, Ground-based detections of thermal emission from CoRoT–1 b and WASP–12 b. ApJ, 744, 122 {173, 733, 753}CrossRefGoogle Scholar
Zhao, M, Monnier, JD, ten Brummelaar, T, et al., 2008, Exoplanet studies with CHARA–MIRC. SPIE Conf. Ser., volume 7013 {183, 236}Google Scholar
Zhao, M, O'Rourke, JG, Wright, JT, et al., 2014, Characterisation of the atmosphere of the hot Jupiter HAT–P–32A b and the M-dwarf companion HAT–P–32B. ApJ, 796, 115 {737}CrossRefGoogle Scholar
Zhao, S, Jiang-hui, J, Yao, D, 2018b, Photometric follow-up transit observations of WASP–43 b and TrES–3 b and a study on their transit timing variations. Chin. As-tron. Astrophys., 42, 101–128 {751, 755}Google Scholar
Zhao, SS, Xie, Y, 2013, Parametrised post-Newtonian secular transit timing variations for exoplanets. Res. Astron. Astrophys., 13, 1231 {257}CrossRefGoogle Scholar
Zharkov, VN, Gudkova, TV, 1991, Models of giant planets with a variable ratio of ice to rock. Annales Geophysicae, 9, 357–366 {658}Google Scholar
Zharkov, VN, Trubitsyn, VP, 1971, The figure of planets with a uniform or two-component density distribution. Soviet Ast., 14, 1012–1018 {605, 658}Google Scholar
Zharkov, VN, Trubitsyn, VP, 1974, Determination of the equation of state of the molecular envelopes of Jupiter and Saturn from their gravitational moments. Icarus, 21, 152–156 {605}CrossRefGoogle Scholar
Zharkov, VN, Trubitsyn, VP, 1978, Physics of Planetary Interiors. Pachart Tucson {605}Google Scholar
Zheng, X, Lin, DNC, Kouwenhoven, MBN, et al., 2017, Clearing residual planetesimals by sweeping secular resonances in transitional disks: a lone-planet scenario for the wide gaps in debris disks around Vega and Fomalhaut. ApJ, 849, 98 {761}CrossRefGoogle Scholar
Zhou, G, Bakos GÁ, Hartman, JD, et al., 2017a, HAT–P–67 b: an extremely low density Saturn transiting an F-subgiant confirmed via Doppler tomography. AJ, 153, 211 {252, 737}CrossRefGoogle Scholar
Zhou, G, Bayliss, D, Hartman, JD, et al., 2015a, A high obliquity orbit for the hot- upiter HATS–14 b transiting a 5400K star. ApJ, 814, L16 {737}CrossRefGoogle Scholar
Zhou, G, Bayliss, D, Penev, K, et al., 2014a, HATS–5 b: a transiting hot Saturn from the HATSouth survey. AJ, 147, 144 {737}CrossRefGoogle Scholar
Zhou, G, Bayliss, DDR, 2012, Detection of sodiumabsorption in WASP–17 b with Mag-ellan. MNRAS, 426, 2483–2488 {753}Google Scholar
Zhou, G, Bayliss, DDR, Kedziora-Chudczer, L, et al., 2014b, Ks -band secondary eclipses of WASP–19 b and WASP–43 b with the Anglo–Australian Telescope. MNRAS, 445, 2746–2757 {754, 755}CrossRefGoogle Scholar
Zhou, G, Bayliss, DDR, Kedziora-Chudczer, L, 2015b, Secondary eclipse observations for seven hot-Jupiters from the Anglo–Australian Telescope. MNRAS, 454, 3002–3019 {751, 752, 753, 754, 755, 756}CrossRefGoogle Scholar
Zhou, G, Huang, CX, 2013, A highly inclined orbit for the 110 day period M-dwarf companion KOI–368.01. ApJ, 776, L35 {553}CrossRefGoogle Scholar
Zhou, G, Kedziora-Chudczer, L, Bailey, J, et al., 2016a, Simultaneous infrared and optical observations of the transiting debris cloud around WD 1145+017. MNRAS, 463, 4422–4432 {418}CrossRefGoogle Scholar
Zhou, G, Kedziora-Chudczer, L, Bayliss, DDR, et al., 2013, Examining the broad-band emission spectrum of WASP–19 b: a new z-band eclipse detection. ApJ, 774, 118 {754}CrossRefGoogle Scholar
Zhou, G, Latham, DW, Bieryla, A, et al., 2016b, Spin–orbit alignment for KELT–7 b and HAT–P–56 b via Doppler tomography with TRES. MNRAS, 460, 3376–3383 {252, 540, 737, 738}CrossRefGoogle Scholar
Zhou, G, Rodriguez, JE, Collins, KA, et al., 2016c, KELT–17 b: a hot-Jupiter transiting an A-star in a misaligned orbit detected with Doppler tomography. AJ, 152, 136 {252, 738}CrossRefGoogle Scholar
Zhou, JL, Aarseth, SJ, Lin, DNC, et al., 2005, Origin and ubiquity of short-period Earth-like planets: evidence for the sequential accretion theory of planet formation. ApJ, 631, L85–L88 {315, 500}CrossRefGoogle Scholar
Zhou, JL, Lin, DNC, 2007, Planetesimal accretion onto growing proto-gas giant planets. ApJ, 666, 447–465 {480}CrossRefGoogle Scholar
Zhou, JL, Lin, DNC, Sun, YS, 2007, Post-oligarchic evolution of protoplanetary embryos and the stability of planetary systems. ApJ, 666, 423–435 {475}CrossRefGoogle Scholar
Zhou, JL, Sun, YS, 2003, Occurrence and stability of apsidal resonance in multiple planetary systems. ApJ, 598, 1290–1300 {506}CrossRefGoogle Scholar
Zhou, LY, Dvorak, R, Sun, YS, 2011, The dynamics of Neptune Trojans. II. Eccentric orbits and observed objects. MNRAS, 410, 1849–1860 {690}Google Scholar
Zhou, LY, Ferraz-Mello, S, Sun, YS, 2008, Formation and transformation of the 3:1 mean-motion resonance in the 55 Cnc system. IAU Symp., volume 249, 485–490 {70}Google Scholar
Zhou, Y, Apai, D, Lew, BWP, et al., 2017b, A physicalmodel-based correction for charge traps in the HST–WFC3 near-IR detector and its applications to transiting exo-planets and brown dwarfs. AJ, 153, 243 {185}CrossRefGoogle Scholar
Zhou, Y, Apai, D, Schneider, GH, et al., 2016d, Discovery of rotational modulations in the planetary-mass companion 2M J1207 b: intermediate rotation period and heterogeneous clouds in a low gravity atmosphere. ApJ, 818, 176 {12, 43, 438, 440, 763}CrossRefGoogle Scholar
Zhou, Y, Herczeg, GJ, Kraus, AL, et al., 2014c, Accretion onto planetary mass companions of low-mass young stars. ApJ, 783, L17 {762, 764}CrossRefGoogle Scholar
Zhu, W, Gould, A, 2016, Augmenting WFIRST microlensing with a ground-based telescope network. Journal of Korean Astronomical Society, 49, 93–107 {143}CrossRefGoogle Scholar
Zhu, W, Gould, A, Beichman, C, et al., 2015a, Planet sensitivity from combined ground-and space-based microlensing observations. ApJ, 814, 129 {134, 760}CrossRefGoogle Scholar
Zhu, W, Gould, A, Penny, M, et al., 2014a, Empirical study of simulated two-planet microlensing events. ApJ, 794, 53 {131}CrossRefGoogle Scholar
Zhu, W, Huang, CX, Udalski, A, et al., 2017a, Extracting microlensing signals from K2 Campaign 9. PASP, 129(10), 104501 {135}CrossRefGoogle Scholar
Zhu, W, Huang, CX, Zhou, G, et al., 2014b, Constraining the oblateness of Kepler planets. ApJ, 796, 67 {12, 220, 221, 735, 741}CrossRefGoogle Scholar
Zhu, W, Penny, M, Mao, S, et al., 2014c, Predictions for microlensing planetary events from core accretion theory. ApJ, 788, 73 {142}CrossRefGoogle Scholar
Zhu, W, Udalski, A, Calchi Novati, S, et al., 2017b, Toward a Galactic distribution of planets. I. Methodology and planet sensitivities of the 2015 high-cadence Spitzer microlens sample. AJ, 154, 210 {143}CrossRefGoogle Scholar
Zhu, W, Udalski, A, Gould, A, et al., 2015b, Spitzer as amicrolens parallax satellite: mass and distance measurements of the binary lens system OGLE–2014–BLG–1050L. ApJ, 805, 8 {134, 143}CrossRefGoogle Scholar
Zhu, W, Udalski, A, Huang, CX, et al., 2017c, An isolated microlens observed from K2, Spitzer, and Earth. ApJ, 849, L31 {135}CrossRefGoogle Scholar
Zhu, W, Wang, J, Huang, C, 2016a, Dependence of small planet frequency on stellar metallicity hidden by their prevalence. ApJ, 832, 196 {463}CrossRefGoogle Scholar
Zhu, WW, Stairs, IH, Demorest, PB, et al., 2015c, Testing theories of gravitation using 21-year timing of pulsar binary J1713+0747. ApJ, 809, 41 {257}CrossRefGoogle Scholar
Zhu, Z, Hartmann, L, Nelson, RP, et al., 2012a, Challenges in forming planets by gravitational instability: disk irradiation and clump migration, accretion, and tidal destruction. ApJ, 746, 110 {489, 490, 519, 739}CrossRefGoogle Scholar
Zhu, Z, Ju, W, Stone, JM, 2016b, Shock-driven accretion in circumplanetary disks: observables and satellite formation. ApJ, 832, 193 {463}CrossRefGoogle Scholar
Zhu, Z, Nelson, RP, Dong, R, et al., 2012b, Dust filtration by planet-induced gap edges: implications for transition disks. ApJ, 755, 6 {465}CrossRefGoogle Scholar
Zhu, Z, Nelson, RP, Hartmann, L, et al., 2011, Transition and pre-transition disks: gap opening by multiple planets? ApJ, 729, 47 {465, 467}CrossRefGoogle Scholar
Zhu, Z, Stone, JM, 2014, Dust trapping by vortices in transition disks: evidence for non-ideal magnetohydrodynamic effects in protoplanetary disks. ApJ, 795, 53 {466}CrossRefGoogle Scholar
Zhuang, Q, Gao, X, Yu, Q, 2012, The Rossiter–McLaughlin effect for exomoons or binary planets. ApJ, 758, 111 {250, 278, 280}CrossRefGoogle Scholar
Zhukov, A, 2016, PROBA–3: a formation-flying solar coronagraph mission. 41st COSPAR Scientific Assembly, volume 41 of COSPARMeeting, 2183–2185 {339}Google Scholar
Ziegler, C, Law, NM, Morton, T, et al., 2017, Robo–AO Kepler planetary candidate survey. III. Adaptive optics imaging of 1629 Kepler exoplanet candidate host stars. AJ, 153, 66 {176, 361}CrossRefGoogle Scholar
Ziegler, U, Yorke, HW, 1997, A nested grid refinement technique for magnetohydrodynamical flows. Computer Physics Communications, 101, 54–74 {462}CrossRefGoogle Scholar
Ziglin, SL, 1975, Secular evolution of the orbit of a planet in a binary-star system. Soviet Astronomy Letters, 1, 194–195 {549}Google Scholar
Zimmerman, N, Brenner, D, Oppenheimer, BR, et al., 2011, A data-cube extraction pipeline for a coronagraphic integral field spectrograph. PASP, 123, 746–763 {341, 343}CrossRefGoogle Scholar
Zinnecker, H, 1982, Prediction of the protostellar mass spectrum in the Orion near-infrared cluster. Annals New York Acad. Sci., 395, 226–235 {451}CrossRefGoogle Scholar
Zinzi, A, Turrini, D, 2017, Anti-correlation between multiplicity and orbital properties in exoplanetary systems as a possible record of their dynamical histories. A&A, 605, L4 {317, 750}Google Scholar
Zoghbi, JPA, 2011, Quantisation of planetary systems and its dependency on stellar rotation. Publ. Astron. Soc. Australia, 28, 177–201 {387}CrossRefGoogle Scholar
Zollinger, R, Armstrong, JC, 2009, Additional planets in the habitable zone of GJ 581? A&A, 497, 583–587 {77, 716}Google Scholar
Zollinger, RR, Armstrong, JC, Heller, R, 2017, Exomoon habitability and tidal evolution in low-mass star systems. MNRAS, 472, 8–25 {627}CrossRefGoogle Scholar
Zolotova, NV, Ponyavin, DI, 2015, The Gnevishev–Ohl rule and its violations. Geomag-netismand Aeronomy, 55, 902–906 {656}Google Scholar
Zong, W, Fu, JN, Niu, JS, et al., 2015, Discovery of multiple pulsations in the new – Scuti star HD 92277: asteroseismology from Dome A, Antarctica. AJ, 149, 84 {347}CrossRefGoogle Scholar
Zorotovic, M, Schreiber, MR, 2013, Origin of apparent period variations in eclipsing post-common-envelope binaries. A&A, 549, A95 {113}Google Scholar
Zsom, A, Dullemond, CP, 2008, A representative particle approach to coagulation and fragmentation of dust aggregates and fluid droplets. A&A, 489, 931–941 {470}Google Scholar
Zsom, A, Kaltenegger, L, Goldblatt, C, 2012, A 1d microphysical cloud model for Earth, and Earth-like exoplanets: liquid water and water ice clouds in the convective troposphere. Icarus, 221, 603–616 {598}CrossRefGoogle Scholar
Zsom, A, Ormel, CW, Dullemond, CP, et al., 2011a, The outcome of protoplanetary dust growth: pebbles, boulders, or planetesimals? III. Sedimentation driven coagulation inside the snow line. A&A, 534, A73 {457, 468, 470}Google Scholar
Zsom, A, Ormel, CW, Güttler, C, et al., 2010, The outcome of protoplanetary dust growth: pebbles, boulders, or planetesimals? II. Introducing the bouncing barrier. A&A, 513, A57 {457, 468, 469, 470}Google Scholar
Zsom, A, Sándor, Z, Dullemond, CP, 2011b, The first stages of planet formation in binary systems: how far can dust coagulation proceed? A&A, 527, A10 {550}Google Scholar
Zsom, A, Seager, S, de Wit, J, et al., 2013, Toward the minimum inner edge distance of the habitable zone. ApJ, 778, 109 {620}CrossRefGoogle Scholar
Zub, M, Cassan, A, Heyrovský, D, et al., 2011, Limb-darkeningmeasurements for a cool red giant in microlensing event OGLE–2004–BLG–482. A&A, 525, A15 {132}Google Scholar
Zuber, MT, Head, JW, Smith, DE, et al., 2012, Constraints on the volatile distribution within Shackleton crater at the lunar south pole. Nature, 486, 378–381 {666}CrossRefGoogle ScholarPubMed
Zuber, MT, Smith, DE, Lehman, DH, et al., 2013a, GRAIL: mapping the lunar Interior from crust to core. Space Sci. Rev., 178, 3–24 {665}CrossRefGoogle Scholar
Zuber, MT, Smith, DE, Watkins, MM, et al., 2013b, Gravity field of the Moon from the GRAIL mission. Science, 339, 668–671 {665}CrossRefGoogle Scholar
Zubko, V, Hennessy, GS, Dorland, BN, 2015, JMAPS observations planning simulator. AJ, 149, 173 {100}CrossRefGoogle Scholar
Zubovas, K, Nayakshin, S, Markoff, S, 2012, Sgr A* flares: tidal disruption of asteroids and planets? MNRAS, 421, 1315–1324 {231}CrossRefGoogle Scholar
Zucker, S, Giryes, R, 2018, Shallow transits, deep learning. I. Feasibility study of deep learning to detect periodic transits of exoplanets. AJ, 155, 147 {194}CrossRefGoogle Scholar
Zucker, S, Mazeh, T, 2000, Analysis of the Hipparcos measurements of HD 10697: a mass determination of a brown dwarf secondary. ApJ, 531, L67–L69 {94, 718}CrossRefGoogle Scholar
Zucker, S, Mazeh, T, 2001, Analysis of the Hipparcos observations of the extrasolar planets and the brown dwarf candidates. ApJ, 562, 549–557 {94, 95}CrossRefGoogle Scholar
Zucker, S, Mazeh, T, 2002, On the mass–period correlation of the extrasolar planets. ApJ, 568, L113–L116 {62, 79, 293}CrossRefGoogle Scholar
Zucker, S, Mazeh, T, Alexander, T, 2007, Beaming binaries: a new observational category of photometric binary stars. ApJ, 670, 1326–1330 {206, 238, 239}CrossRefGoogle Scholar
Zucker, S, Mazeh, T, Santos, NC, et al., 2003, Multi-order TODCOR: application to observations taken with the CORALIE echelle spectrograph. I. The system HD 41004. A&A, 404, 775–781 {39, 719}Google Scholar
Zucker, S, Mazeh, T, Santos, NC, 2004, Multi-order TODCOR: application to observations taken with the CORALIE echelle spectrograph. II. A planet in the system HD 41004. A&A, 426, 695–698 {39, 551, 719}Google Scholar
Zucker, S, Naef, D, Latham, DW, et al., 2002, A planet candidate in the stellar triple system HD 178911. ApJ, 568, 363–368 {723}CrossRefGoogle Scholar
Zuckerman, B, 2001, Dusty circumstellar disks. ARA&A, 39, 549–580 {493}Google Scholar
Zuckerman, B, 2014, The occurrence of wide-orbit planets in binary star systems. ApJ, 791, L27 {418}CrossRefGoogle Scholar
Zuckerman, B, 2015, Recognition of the first observational evidence of an extrasolar planetary system. 19th European Workshop on White Dwarfs, volume 493 of ASP Conf. Ser., 291 {416}Google Scholar
Zuckerman, B, Becklin, EE, 1987a, A search for brown dwarfs and late Mdwarfs in the Hyades and the Pleiades. ApJ, 319, L99–L102 {431}CrossRefGoogle Scholar
Zuckerman, B, Becklin, EE, 1987b, Excess infrared radiation from a white dwarf: an orbiting brown dwarf? Nature, 330, 138–140 {416, 431}CrossRefGoogle Scholar
Zuckerman, B, Fekel, FC, Williamson, MH, et al., 2008, Planetary systems around close binary stars: the case of the very dusty, sun-like, spectroscopic binary BD+20 307. ApJ, 688, 1345–1351 {493}CrossRefGoogle Scholar
Zuckerman, B, Koester, D, Dufour, P, et al., 2011, An Al/Ca-rich, Fe-poor, white dwarf star: evidence for an extrasolar planetary lithosphere? ApJ, 739, 101 {417, 419}CrossRefGoogle Scholar
Zuckerman, B, Koester, D, Melis, C, et al., 2007, The chemical composition of an extra-solar minor planet. ApJ, 671, 872–877 {416, 417, 419}CrossRefGoogle Scholar
Zuckerman, B, Koester, D, Reid, IN, et al., 2003, Metal lines in DA white dwarfs. ApJ, 596, 477–495 {416}CrossRefGoogle Scholar
Zuckerman, B, Melis, C, Klein, B, et al., 2010, Ancient planetary systems are orbiting a large fraction of white dwarf stars. ApJ, 722, 725–736 {417}CrossRefGoogle Scholar
Zuckerman, B, Melis, C, Rhee, JH, et al., 2012, Stellar membership and dusty debris disks in the α Persei cluster. ApJ, 752, 58 {493, 496}CrossRefGoogle Scholar
Zuckerman, B, Song, I, 2004, Young stars near the Sun. ARA&A, 42, 685–721 {358}Google Scholar
Zuckerman, B, Song, I, 2012, A 40Myr old gaseous circumstellar disk at 49 Cet: massive CO-rich comet clouds at young A-type stars. ApJ, 758, 77 {282}CrossRefGoogle Scholar
Zuckerman, B, Xu, S, Klein, B, et al., 2013, The Hyades cluster: identification of a planetary system and escaping white dwarfs. ApJ, 770, 140 {418}CrossRefGoogle Scholar
Zugger, ME, Kasting, JF, Williams, DM, et al., 2010, Light scattering from exoplanet oceans and atmospheres. ApJ, 723, 1168 {237, 246}CrossRefGoogle Scholar
Zugger, ME, Kasting, JF, Williams, DM, 2011, Searching for water Earths in the near-infrared. ApJ, 739, 12 {641}CrossRefGoogle Scholar
Zuluaga, JI, Bustamante, S, Cuartas, PA, et al., 2013, The influence of thermal evolution in the magnetic protection of terrestrial planets. ApJ, 770, 23 {425, 717, 719}CrossRefGoogle Scholar
Zuluaga, JI, Cuartas, PA, 2012, The role of rotation in the evolution of dynamo-generated magnetic fields in super-Earths. Icarus, 217, 88–102 {425}CrossRefGoogle Scholar
Zuluaga, JI, Kipping, DM, Sucerquia, M, et al., 2015, A novel method for identifying exoplanetary rings. ApJ, 803, L14 {210, 217}CrossRefGoogle Scholar
Zuluaga, JI, Mason, PA, Cuartas-Restrepo, PA, 2016, Constraining the radiation and plasma environment of the Kepler circumbinary habitable-zone planets. ApJ, 818, 160 {623, 739, 741, 746}CrossRefGoogle Scholar
Zuluaga, JI, Sanchez-Hernandez, O, Sucerquia, M, et al., 2017, A general method for assessing the origin of interstellar small bodies: the case of Oumuamua. ArXiv e-prints {693}
Zurlo, A, Vigan, A, Galicher, R, et al., 2016, First light of the VLT planet finder SPHERE. III. New spectrophotometry and astrometry of the HR 8799 exoplanetary system. A&A, 587, A57 {360, 365, 763}Google Scholar
Zurlo, A, Vigan, A, Mesa, D, et al., 2014, Performance of the planet finder VLT–SPHERE. I. Photometry and astrometry precision with IRDIS and IFS in laboratory. A&A, 572, A85 {344}Google Scholar
Zwicky, F, 1937a, Nebulae as gravitational lenses. Physical Review, 51, 290–290 {120}Google Scholar
Zwicky, F, 1937b, On the probability of detecting nebulae which act as gravitational lenses. Physical Review, 51, 679–679 {120}Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Michael Perryman
  • Book: The Exoplanet Handbook
  • Online publication: 25 August 2018
  • Chapter DOI: https://doi.org/10.1017/9781108304160.020
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Michael Perryman
  • Book: The Exoplanet Handbook
  • Online publication: 25 August 2018
  • Chapter DOI: https://doi.org/10.1017/9781108304160.020
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Michael Perryman
  • Book: The Exoplanet Handbook
  • Online publication: 25 August 2018
  • Chapter DOI: https://doi.org/10.1017/9781108304160.020
Available formats
×