Skip to main content Accessibility help
Hostname: page-component-6c8bd87754-h9sqt Total loading time: 0.436 Render date: 2022-01-20T00:06:07.396Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }
Evolution of the Rodents Evolution of the Rodents
Advances in Phylogeny, Functional Morphology and Development
Buy print or eBook[Opens in a new window]

Book contents

10 - Grades and clades among rodents: the promise of geometric morphometrics

Published online by Cambridge University Press:  05 August 2015

Lionel Hautier
Université de Montpellier
Philip G. Cox
University of York
Renaud Lebrun
Universite Montpellier
Philip G. Cox
University of York
Lionel Hautier
Université de Montpellier II
Get access



The various mammalian groups, rodents in particular, have developed a wide trophic range shown first and foremost by a significant morphological differentiation of the masticatory apparatus (skull, mandible, teeth and musculature). The mammalian masticatory apparatus is a highly plastic region of the skull, which explains why the associated features are frequently used as diagnostic phylogenetic attributes. In the first place, studying this masticatory apparatus requires precise knowledge of the extent to which its associated morphological features vary. It is only afterwards that one can focus on the factors most likely to have influenced its morphological evolution. Among mammals, the radiation of rodents constitutes a special case. Rodents are considered to be one of the great successful groups in the evolutionary history of mammals, and few mammal clades have been studied as extensively as the order Rodentia. The modern representatives of the order, around 2200 species, are spread across every continent barring Antarctica (Wilson and Reeder, 2005). Their fossil record is very rich, which makes rodents an unavoidable biostratigraphic tool for Paleogene and Neogene deposits.

Justifying the choice of a “rodent” model in a study of evolutionary biology is therefore easy, as it allows the integration of study results in such varied fields as palaeontology, anatomy, ecology or development. Although intensively studied, the phylogenetic relationships between the different groups of rodents have been a matter of debate for over 150 years. While exceptional for an intense diversification of lineages, all rodents share one of the most extreme specializations of the masticatory apparatus characterized by the reduction of the upper and lower incisor series to a single pair. This diprotodonty (i.e. single pairs of upper and lower incisors highly specialized for gnawing) is a hallmark of the rodent masticatory apparatus and is accompanied by a reduction of the number of cheek teeth in association with the development of anteroposterior movements of the mandible for gnawing and chewing (Becht, 1953).

Evolution of the Rodents
Advances in Phylogeny, Functional Morphology and Development
, pp. 277 - 299
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Adkins, R. M., Walton, A. H. and Honeycutt, R. (2003). Higher-level systematics of rodents and divergence time estimates based on two congruent nuclear genes. Molecular Phylogenetics and Evolution, 26, 409–420.CrossRefGoogle ScholarPubMed
Becht, G. (1953). Comparative biologic-anatomical researches on mastication in some mammals, I and II. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, Series C, 56, 508–527.Google Scholar
Bock, W. J. (1958). Preadaptation and multiple evolutionary pathways. Evolution, 13, 194–211.Google Scholar
Bookstein, F. L. (1991). Morphometric Tools for Landmark Data. Geometry and Biology. Cambridge: Cambridge University Press.Google Scholar
Bookstein, F. L., Gunz, P., Mitteroecker, P., et al. (2003). Cranial integration in Homo: singular warps analysis of the midsagittal plane in ontogeny and evolution. Journal of Human Evolution, 44, 167–187.CrossRefGoogle ScholarPubMed
Brandt, J. F. (1855). Untersuchungen über die craniologischen Entwicklungsstufen und Classification der Nage der Jetzwelt. Mémoires de l'Academie Imperiale des Sciences de St Pétersbourg Série 6, 9, 1–365.Google Scholar
Bryant, J. D. and McKenna, M. C. (1995). Cranial anatomy and phylogenetic position of Tsaganomys altaicus (Mammalia, Rodentia) from the Hsanda Gol Formation (Oligocene), Mongolia. American Museum Novitates, 3156, 1–42.Google Scholar
Bugge, J. (1985). Systematic value of the carotid arterial pattern in Rodents. In: Evolutionary Relationships Among Rodents: a Multidisciplinary Analysis, eds. Luckett, W. P. and Hartenberger, J-L.. New York: Plenum Press, pp. 381–402.Google Scholar
Churakov, G., Sadasivuni, M., Rosebloom, K., et al. (2010). Rodent evolution back to the root. Molecular Biology and Evolution, 27, 1315–1327.CrossRefGoogle ScholarPubMed
Cox, P. G. and Jeffery, N. (2011). Reviewing the morphology of the jaw-closing musculature in squirrels, rats, and guinea pigs with contrast-enhanced microCT. Anatomical Record, 294, 915–928.CrossRefGoogle ScholarPubMed
Cox, P. G., Rayfield, E. J., Fagan, M. J., et al. (2012). Functional evolution of the feeding system in rodents. PLoS ONE, 7, e36299.CrossRefGoogle ScholarPubMed
Darwin, C. (1859). On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life. London: John Murray.Google Scholar
Dawson, M. R., Marivaux, L., Li, C., Beard, C. and Métais, G. (2006). Laonastes aenigmamus and the “Lazarus effect” in recent mammals. Science, 311, 1456–1458.CrossRefGoogle Scholar
Dryden, I. L. and Mardia, K. V. (1998). Statistical Shape Analysis. Chichester: John Wiley & Sons.Google Scholar
Fabre, P.-H., Hautier, L., Dimitrov, D. and Douzery, E. J. P. (2012). A glimpse on the pattern of rodent diversification: a phylogenetic approach. BMC Evolutionary Biology, 12, 88.CrossRefGoogle ScholarPubMed
Gunz, P., Ramsier, M., Kuhrig, M., Hublin, J.-J. and Spoor, F. (2012). The mammalian bony labyrinth reconsidered, introducing a comprehensive geometric morphometric approach. Journal of Anatomy, 6, 529–543.Google Scholar
Haas, O. and Simpson, G. G. (1946). Analysis of some phylogenetic terms, with attempts at redefinition. Proceedings of the American Philosophical Society, 90, 319–349.Google ScholarPubMed
Hall, B. K. (1998). Evolutionary Developmental Biology. London: Chapman.Google Scholar
Hautier, L., Michaux, J., Marivaux, L. and Vianey-Liaud, M. (2008). The evolution of the zygomasseteric construction in Rodentia, as revealed by a geometric morphometric analysis of the mandible of Graphiurus (Rodentia, Gliridae). Zoological Journal of the Linnean Society, 154, 807–821.CrossRefGoogle Scholar
Hautier, L., Fabre, P.-H. and Michaux, J. (2009). Mandible shape and dwarfism in squirrels (Mammalia, Rodentia): interaction of allometry and adaptation. Naturwissenschaften, 96, 725–730.CrossRefGoogle ScholarPubMed
Hautier, L., Clavel, J., Lazzari, V., Gomes Rodrigues, H. and Vianey-Liaud, M. (2010). Changes in the direction of mastication during mammalian evolution, and relationships with the remodeling of the masticatory apparatus: the case of the Issiodoromyinae (Rodentia, Mammalia). Palaios, 25, 4–11.CrossRefGoogle Scholar
Hautier, L., Lebrun, R., Saksiri, S., et al. (2011). Hystricognathy vs sciurognathy in the rodent jaw: a new morphometric assessment of hystricognathy applied to living fossil Laonastes (Rodentia, Diatomyidae). PLoS ONE, 6, e18698.CrossRefGoogle Scholar
Hautier, L., Lebrun, R. and Cox, P. G. (2012). Patterns of covariation in the masticatory apparatus of hystricognathous rodents: implications for evolution and diversification. Journal of Morphology, 273, 1319–1337CrossRefGoogle ScholarPubMed
Hodin, J. (2000). Plasticity and constraints in development and evolution. Journal of Experimental Zoology, 288, 1–20.3.0.CO;2-7>CrossRefGoogle ScholarPubMed
Huchon, D., Madsen, O., Sibbald, M., et al. (2002). Rodent phylogeny and a timescale for the evolution of glires: evidence from an extensive taxon sampling using three nuclear genes. Molecular Biology and Evolution, 19, 1053–1065.CrossRefGoogle Scholar
Huchon, D., Chevret, P., Jordan, U., et al. (2007). Multiple molecular evidences for a living mammalian fossil. Proceedings of the National Academy of Sciences, USA, 104, 7495–7499.CrossRefGoogle ScholarPubMed
Landry, S. O. (1999). A proposal for a new classification and nomenclature for the glires (Lagomorpha and Rodentia). Mitteilungen aus dem Museum für Naturkunde in Berlin Zoologische Reihe, 2, 283–316.Google Scholar
Lavocat, R. (1973). Les rongeurs du Miocène d'Afrique Orientale I. Miocène inférieur. Mémoires et Travaux de l'EPHE, 1, 1–284.Google Scholar
Lebrun, R. (2008). Evolution and development of the strepsirrhine primate skull. Unpublished PhD thesis, University Montpellier II and University of Zürich.
Lebrun, R., Ponce de León, M. S., Tafforeau, P. and Zollikofer, C. P. E. (2010). Deep evolutionary roots of strepsirrhine primate labyrinthine morphology. Journal of Anatomy, 216, 368–380.CrossRefGoogle ScholarPubMed
Luckett, W. P. and Hartenberger, J.-L. (1985). Evolutionary relationships among rodents: comments and conclusion. In: Evolutionary Relationships Among Rodents: a Multidisciplinary Analysis, eds. Luckett, W. P. and Hartenberger, J.-L.. New York: Plenum Press, pp. 685–712.CrossRefGoogle Scholar
Maier, W. and Schrenk, F. (1987). The hystricomorphy of the Bathyergidae, as determined from ontogenetic evidence. Zeitschrift fur Säugetierkunde, 56, 156–164.Google Scholar
Maier, W., Klingler, P. and Ruf, I. (2003). Ontogeny of the medial masseter muscle, pseudo-myomorphy, and the systematic position of the Gliridae. Journal of Mammalian Evolution, 9, 253–269.Google Scholar
Marivaux, L., Vianey-Liaud, M., Welcomme, J.-L. and Jaeger, J.-J. (2002). The role of Asia in the origin and diversification of Hystricognathous rodents. Zoologica Scripta, 31, 225–239.CrossRefGoogle Scholar
Marivaux, L., Vianey-Liaud, M. and Jaeger, J.-J. (2004). High-level phylogeny of early Tertiary rodents: dental evidence. Zoological Journal of the Linnean Society, 142, 105–132.CrossRefGoogle Scholar
Rensch, B. (1947). Neuere Probleme der Abstammungslehre: Die Transspezifische Evolution. Stuttgart: Ferdinand Enke Verlag.Google Scholar
Rohlf, F. J. (1999). Shape statistics: Procrustes superimpositions and tangent spaces. Journal of Classification, 16, 197–223.CrossRefGoogle Scholar
Rohlf, F. J. and Corti, M. (2000). Use of two-block partial least-squares to study covariation in shape. Systematic Biology, 49, 740–753.CrossRefGoogle Scholar
Sampson, P. D., Streissguth, A. P., Barr, H. M. and Bookstein, F. L. (1989). Neurobehavioral effects of prenatal alcohol: part II. Partial least square analysis. Neurotoxicology and Teratology, 11, 477–491.CrossRefGoogle Scholar
Schmidt-Kittler, N. (1997). Non-selective emergence of patterns and gradual change in macroevolution. Courier Forschungsinstitut Senckenberg, 201, 393–408.Google Scholar
Simpson, G. G. (1945). The principles of classification and a classification of mammals. Bulletin of the American Museum of Natural History, 85, 1–350.Google Scholar
Simpson, G. G. (1953). The Major Futures of Evolution. New York: Columbia University Press.Google Scholar
Specht, M. (2007). Spherical surface parameterization and its application to geometric morphometric analysis of the braincase. Unpublished PhD thesis, University of Zürich.
Specht, M., Lebrun, R. and Zollikofer, C. P. E. (2007). Visualizing shape transformation between chimpanzee and human braincases. The Visual Computer, 23, 743–751.CrossRefGoogle Scholar
Tullberg, T. (1899). Über das System der Nagetiere. Eine phylogenetische studie. Nova Acta Regiae Societatis Scientiarium Upsaliensis, 18, 1–514.Google Scholar
Valentine, J. W. (1986). Fossil record of the origin of Baupläne and its implications. In: Patterns and Processes in the History of Life, eds. Raup, D. M and Jablonski, D. Berlin: Springer Verlag, pp. 209–922.Google Scholar
Van Valen, L. and Sloan, R. E. (1966). The extinction of the multituberculates. Systematic Zoology, 15, 261–278.Google Scholar
Vassallo, A. I. and Verzi, D. H. (2001). Patrones craneanos y modalidades de masticacion en roedores caviomorfos (Rodentia, Caviomorpha). Boletín de la Sociedad de Biología de Concepción Chile, 72, 145–151.Google Scholar
Vianey-Liaud, M. (1972). Un cas de parallélisme intragénérique: l’évolution du genre Theridomys (Rod. Theridomyidae) à l'Oligocène moyen. Comptes Rendus de l'Académie des Sciences de Paris, 274, 1007–1010.Google Scholar
Vianey-Liaud, M. (1985). Nouvelle quantification de l'hypsodontie chez les Theridomyidae: l'exemple de Theridomys ludensis nov. sp. Palaeovertebrata, 15, 159–172.Google Scholar
Vianey-Liaud, M. (1989). Parallelism among Gliridae (Rodentia): the genus Gliravus Stehlin and Schaub. Historical Biology, 2, 213–226.CrossRefGoogle Scholar
Waterhouse, G. R. (1839a). On the geographical distribution of the Rodentia. Proceedings of the Zoological Society of London, 7, 172–174.Google Scholar
Waterhouse, G. R. (1839b). Observations on the Rodentia with a view to point out groups as indicated by the structure of the crania in this order of mammals. Magazine of Natural History, 3, 90–96, 184–188, 274–279, 593–600.Google Scholar
Waterhouse, G. R. (1842a). Observations on the Rodentia. Annals and Magazine of Natural History, 8, 81–84.Google Scholar
Waterhouse, G. R. (1842b). Observations on the Rodentia. Annals and Magazine of Natural History, 10, 197–203, 344–347.Google Scholar
Waterhouse, G. R. (1848). A Natural History of the Mammalia. Vol. 2, Rodentia. London: Hippolyte Bailliere.Google Scholar
Wilson, D. and Reeder, D. (2005). Mammal Species of the World. Baltimore: Johns Hopkins University Press.Google Scholar
Wood, A. E. (1955). A revised classification of the rodents. Journal of Mammalogy, 36, 165–187.Google Scholar
Wood, A. E. (1958). Are there rodent suborders?Systematic Zoology, 7, 169–173.Google Scholar
Wood, A. E. (1962). The early Tertiary rodents of the family Paramyidae. Transactions of the American Philosophical Society of Philadelphia, 52, 1–260.Google Scholar
Wood, A. E. (1965). Grades and clades among rodents. Evolution, 19, 115–130.CrossRefGoogle Scholar
Wood, A. E. (1972). An Eocene Hystricognathous rodent from Texas: its significance in interpretation of continental drift. Science, 175, 1250–1251.CrossRefGoogle Scholar
Wood, A. E. (1974). The evolution of the Old World and New World Hystricomorphs. In Symposium of the Zoological Society on the Biology of Hystricomorph Rodents, ed. Rowlands, B. J.. London: Zoological Society of London, Symposium, pp. 21–54.Google Scholar
Wood, A. E. (1975). The problem of the Hystricognathous rodents. In: Studies on Cenozoic Paleontology and Stratigraphy in Honor of C. Hibbard, eds. Smith, N. E. and Friedland, G.. Ann Arbor: University of Michigan Press, pp. 75–80.Google Scholar
Woodger, J. H. (1945). On biological transformations. In: Essays on Growth and Form Presented to D'arcy Wentworth Thompson, eds. Clark, W. R. L. G. and Medawar, P. B.. Cambridge: Cambridge University Press, pp. 95–120.Google Scholar
Woods, C. A. and Hermanson, J. W. (1985). Myology of hystricognath rodents: an analysis of form, function and phylogeny. In Evolutionary Relationships Among Rodents: a Multidisciplinary Analysis, eds. Luckett, W. P. and Hartenberger, J.-L.. New York: Plenum Press, pp. 515–548.Google Scholar
Cited by

Send book to Kindle

To send this book to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats

Send book to Dropbox

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Dropbox.

Available formats

Send book to Google Drive

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Google Drive.

Available formats