Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-7drxs Total loading time: 0 Render date: 2024-07-19T13:31:42.793Z Has data issue: false hasContentIssue false

7 - Electrical structure of an artificial dendritic path

Published online by Cambridge University Press:  03 May 2010

Sergiy Mikhailovich Korogod
Affiliation:
Dniepropetrovsk National University, Ukraine
Suzanne Tyč-Dumont
Affiliation:
CNRS, Marseille
Get access

Summary

The mathematical tools described in the preceding chapters can now be applied first to simple artificial structures for the sake of demonstration of the electrical relations between proximal and distal dendritic sites. Studying these relationships means analyzing the electrical states of the sites. In a dendritic cable, the local electrical state, that is the state of a site, is characterized by the transmembrane voltage, current and/or conductance. A set of values of voltage (current, conductance) defined at consecutive sites along a path forms the so-called path profile of the corresponding values. It is graphically represented by a plot of these values as a function of the path distance from the soma.

A single dendritic path has a unique dimension measured in units of distance along the dendrite. Electrical relationships between all the sites situated in this continuous one-dimension space at shorter or longer distances from the reference point, usually the soma, provide a one-dimension representation of the electrical structure of a path. The electrical relation between proximal and distal sites is the only type of spatial relationship that can be assessed by the electrical picture of a single path. As a single dendritic path (Figure 7.1) is the most simple building block of an arborization, its study provides basic insights into the complexity of the dendritic structure.

In this chapter, the impact of a variation in diameter on the electrical structure of a single dendritic path is analyzed in detail.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbot, L. F. (1991). Realistic synaptic inputs for model neural network. Network, 2:245–258.CrossRef
Barrett, J. N. and Crill, W. E. (1974). Influence of dendritic location and membrane properties on the effectiveness of synapses on cat motoneurons. J. Physiol., 239:325–345.CrossRef
Bernander, O., Koch, C. and Douglas, R. J. (1994). Amplification and linearization of distal synaptic input to cortical pyramidal cells. J. Neurophysiol., 72:2743–2753.CrossRef
Brodin, L., Traven, H. G. C., Lansner, A., Wallen, P., Ekeberg, O. E. and Grillner, S. (1991). Computer simulations of N-methyl-d-aspartate receptor-induced membrane properties in a neuron model. J. Neurophysiol., 66:473–484.CrossRef
Carnevale, N. T., Tsai, K. Y., Clairborne, B. J. and Brown, T. H. (1997). Comparative electrotonic analysis of three classes of rat hippocampal neurons. J. Neurophysiol., 78:703–720.CrossRef
Clements, J. D. and Redman, S. J. (1989). Cable properties of cat spinal motoneurones measured by combining voltage clamp, current clamp and intracellular staining. J. Physiol., 409:63–87.CrossRef
Gutman, A. M. (1991). Bistability of dendrites. J. Neural Syst., 1:291–304.CrossRef
Holmes, W. R. and Woody, C. D. (1989). Effects of uniform and non-uniform synaptic ‘activation-distribution’ on the cable properties of modeled cortical pyramidal neurons. Brain Res., 505:12–22.CrossRef
Katz, B. and Miledi, R. (1963). A study of spontaneous miniature potentials in spinal motoneurones. J. Physiol., 168:389–422.CrossRef
Koch, C. (1999). Biophysics of Computation: Information Processing in Single Neurons,New York, Oxford: Oxford University Press.
Korogod, S. M. (1996). Electro-geometrical coupling in non-uniform branching dendrites. Consequences for relative synaptic effectiveness. Biol. Cybern., 74:85–93.CrossRef
Korogod, S. M. and Kulagina, I. B. (1998a). Conditions of dominant effectiveness of distal sites of active uniform dendrites with distributed tonic inputs. Neurophysiology, 30(4/5):376–382.
Korogod, S. M. and Kulagina, I. B. (1998b). Geometry-induced features of current transfer in neuronal dendrites with tonically activated conductance. Biol. Cybern., 79:231–240.CrossRef
Powers, R. K. and Binder, M. D. (1995). Effective synaptic current and motoneuron firing rate modulation. J. Neurophysiol., 74:793–801.CrossRef
Powers, R. K., Robinson, F. R., Konodi, M. A. and Binder, M. D. (1992). Effective synaptic current can be estimated from measurements of neuronal discharges. J. Neurophysiol., 68:964–968.CrossRef
Rospars, J.-P., Lansky, P., Tuckwel, H. C. and Vermeule, A. (1996). Coding of odor intensity in a steady-state deterministic model of an olfactory receptor neuron. J. Comput. Neurosci., 3:51–72.CrossRef
Rusakov, D. A., Stewart, M. G. and Korogod, S. M. (1996). Branching of active dendritic spines as a mechanism for controlling synaptic efficacy. Neuroscience, 75:315–323.CrossRef
Schwindt, P. C. and Crill, W. E. (1980). Properties of a persistent inward current in normal and TEA-injected motoneurons. J. Neurophysiol., 43:1700–1724.CrossRef
Stuart, G., Spruston, N. and (eds.) (2001). Dendrites, London: Oxford University Press.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×