Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-19T13:24:42.932Z Has data issue: false hasContentIssue false

2 - 3D geometry of dendritic arborizations

Published online by Cambridge University Press:  03 May 2010

Sergiy Mikhailovich Korogod
Affiliation:
Dniepropetrovsk National University, Ukraine
Suzanne Tyč-Dumont
Affiliation:
CNRS, Marseille
Get access

Summary

Brief historical background

The lack of methods of fixation and the lack of staining techniques seriously handicapped the earlier workers in their observations of nervous tissues during the nineteenth century. The story changed enormously during the last decades of the twentieth century when Golgi found that osmic dichromate fixation followed by silver impregnation gave pictures that could not be achieved by any other method. The enthusiastic description by Ramón y Cajal of the beauty of the successful Golgi preparations depicts for the first time the richness of these histological images:

Against a perfectly translucent yellow ground, you can make out, dotted with dark strands, smooth and thin or rough and thick, black bodies – triangular, star-shaped, shaped like spindles – looking like designs in Indian ink on transparent paper. There is nothing to interpret, nothing to do but watch and take note of this cell with its many moving branches covered in crystals, whose movements encompass a remarkably large area; this smooth even fibre which, originating in the cell, sets off from it to cover enormous distances …

The gifted hand of Ramón y Cajal produced the first seminal book on nervous systems proposing prophetic views on the functions of dendritic arborizations (Ramón y Cajal, 1911). But the lengthy and elaborate descriptions of Golgi preparations discouraged the students who were frustrated with this type of investigation and, influenced by the new results of local electrical stimulation, tended to devote themselves to the new promising approach of electrophysiology.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, J. A. and Rosenfeld, E. (eds.) (1988). Neurocomputing: Foundations of Research, Cambridge, Mass: MIT Press.Google Scholar
Ascoli, G. A. (ed.) (2002). Computational Neuroanatomy. Principles and Methods, Totowa, NJ: Humana Press.CrossRef
Bishop, G. H. (1958). The dendrite: receptive pole of the neurone. Electroencephalogr. Clin. Neurophysiol., 35(Suppl. 10):12–21.Google ScholarPubMed
Bishop, G. H. and Clare, M. H. (1952). Sites of origin of electric potentials in striate cortex. J. Neurophysiol., 15:201–220.CrossRefGoogle ScholarPubMed
Bok, S. T. (1936a). The branching of dendrites in the cerebral cortex. Proc. Acad. Sci. Amster., 39:1209–1218.Google Scholar
Bok, S. T. (1936b). A quantitative analysis of the structure of the cerebral cortex. Proc. Acad. Sci. Amster., 35:1–55.Google Scholar
Bras, H., Gogan, P. and Tyč-Dumont, S. (1987). The dendrites of single brain-stem motoneurons intracellularly labelled with horseradish peroxidase in the cat. Morphological and electrical differences. Neuroscience, 22:947–970.CrossRefGoogle ScholarPubMed
Bras, H., Korogod, S. M., Driencourt, Y., Gogan, P. and Tyč-Dumont, S. (1993). Stochastic geometry and electrotonic architecture of dendritic arborization of a brain-stem motoneuron. Eur. J. Neurosci., 5:1485–1493.CrossRefGoogle ScholarPubMed
Capowski, J. J. (1989). Computer Techniques in Neuroanatomy, New York: Plenum Press.CrossRefGoogle Scholar
Carnevale, N. T., Tsai, K. Y., Claiborne, B. J. and Brown, T. H. (1997). Comparative electrotonic analysis of three classes of rat hippocampal neurons. J. Neurophysiol., 78:703–720.CrossRefPubMed
Chang, H. T. (1952). Cortical neurons with particular reference to the apical dendrites. Cold Spring Harbor Symposia, 27:189–202.CrossRefGoogle Scholar
Chang, H. T. (2001). Hsiang-Tung Chang. In Squire, L. R. (ed.), The History of Neuroscience in Autobiography, Vol. 3, p. 189–202, London: Academic Press.
Clements, J. D. and Redman, S. J. (1989). Cable properties of cat spinal motoneurones measured by combining voltage clamp, current clamp and intracellular staining. J. Physiol. (London), 409:63–87.CrossRefGoogle ScholarPubMed
Coombs, J. S., Curtis, D. R. and Ecdes, J. C. (1956). Time courses of motoneuronal responses. Nature, 178:1049–1050.CrossRefGoogle ScholarPubMed
Czarkowska, J., Jankowska, E. and Sibirska, E. (1976). Axonal projections of spinal interneurones excited by group I afferents in the cat, revealed by intracellular staining with horseradish peroxidase. Brain Res., 105:557–562.Google Scholar
Davis, L. and Lorente de Noo, R. (1947). Contribution to the mathematical theory of the electrotonus. Stud. Rockfeller Inst. Med. Res., 131:442–496.Google ScholarPubMed
Durbin, R., Miall, C. and Mitchison, G. (eds.) (1989). The Computing Neuron. Boston, Mass: Addison-Wesley.Google Scholar
Eccles, J. C. (1960). The properties of the dendrites. In Tower, D. B. and Schade, J. P. (eds.), Structure and Function of the Cerebral Cortex, p. 192–203, Amsterdam: Elsevier
Elias, H. and Hyde, D. M. (1983). A Guide to Practical Stereology, Basel: Karger.
Fleshman, J. W., Segev, I. and Burke, R. E. (1988). Electrotonic architecture of type identified alpha-motoneurons in the cat spinal cord. J. Neurophysiol., 60:60–85.CrossRefPubMed
Frank, K. and Fuortes, M. G. (1956). Stimulation of spinal motoneurones with intracellular electrodes. J. Physiol. (Lond.), 134:451–470.CrossRefGoogle ScholarPubMed
Glaser, E. M. and Van der Loos, H. (1965). A semi-automatic computer-microscope for the analysis of neuronal morphology. IEEE Trans. Bio-Med. Eng., BME-12:22–31.CrossRefGoogle ScholarPubMed
Grace, A. A. and Llinásas, R. (1985). Morphological artefacts induced in intracellularly stained neurons: circumvention using rapid dimethyl sulfoxide clearing. Neuroscience, 16:461–475.CrossRefPubMed
Grundfest, H. (1958). Electrophysiology and pharmacology of dendrites. Electroencephalogr. Clin. Neurophysiol., 35(Supl. 10):22–41.Google ScholarPubMed
Grundfest, H. and Purpura, D. P. (1956). Nature of dendritic potentials and synaptic mechanisms in cerebral cortex of cat. J. Neurophysiol., 19:573–595.
Harmon, L. D. and Lewis, E. R. (1966). Neural modeling. Physiol. Rev., 46:513–591.CrossRef
Hodgkin, A. L. (1964). The Conduction of the Nervous Impulse, Liverpool: Liverpool University Press.Google Scholar
Holmes, W. R. and Rall, W. (1992). Electrotonic models of neuronal dendrites and single neuron computation. In McKenna, T., Davis, J. and Zornetzer, S. F. (eds.), Single Neuron Computation, p. 7–25, London: Academic Press.CrossRefGoogle Scholar
Horcholle-Bossavit, G., Gogan, P., Ivanov, Y., Korogod, S. and Tyč-Dumont, S. (2000). The problem of morphological noise in reconstructed dendritic arborizations. J. Neurosci. Methods, 95:83–93.CrossRef
Horcholle-Bossavit, G., Korogod, S. M., Gogan, P. and Tyč-Dumont, S. (1997). The dendritic architecture of motoneurons: a case study. Neurophysiology, 29:112–124.CrossRef
Jack, J. J. B, Noble, D. and Tsien, R. W. (1975). Electric Current Flow in Excitable Cells, Oxford: Oxford University Press.Google Scholar
Jankowska, E. and Lindstrom, S. (1970). Morphological identification of physiologically defined neurones in the cat spinal cord. Brain Res., 20:323–326.CrossRef
Jankowska, E., Rastad, J. and Westman, J. (1976). Intracellular application of horseradish peroxidase and its light and electron microscopical appearance in spinocervical tract cells. Brain Res., 105:557–562.CrossRef
Kaspirzhny, A. V., Gogan, P., Horcholle-Bossavit, G. and Tyč-Dumont, S. (2002). Neuronal morphology databases: morphological noise and assessment of data quality. Network, 13:357–380.CrossRef
Kater, S. B. and Nicholson, C. (eds.) (1973). Intracellular Staining in Neurobiology, Berlin: Springer-Verlag.CrossRefGoogle Scholar
Koch, C. and Segev, I. (eds.) (1999). Methods in Neuronal Modeling, 2nd edn. Cambridge, Mass: MIT Press.
Korogod, S. M. (1996). Electro-geometrical coupling in non-uniform branching dendrites. Consequences for relative synaptic effectiveness. Biol. Cybern., 74:85–93.CrossRef
Korogod, S. M., Bras, H., Sarana, V. N., Gogan, P. and Tyč-Dumont, S. (1994). Electrotonic clusters in the dendritic arborization of abducens motoneurons of the rat. Eur. J. Neurosci., 6:1517–1527.CrossRef
Kotter, R. (2001). Neurosciences databases: tools for exploring brain structure-function relationships. Philos. Trans. R. Soc. Lond. B, 356:1111–1120.CrossRef
Kravitz, E. A., Stretton, A. O. W., Alvarez, J. and Furshpan, E. J. (1968). Determination of neuronal geometry using an intracellular dye injection technique. Fedn. Proc. Fedn. Am. Socs. Exp. Biol., 27:749.,
Ling, G. and Gerard, R. W. (1949). The normal membrane potential of frog sartorious fibers. J. Cell Comp. Physiol., 34:383–396.CrossRef
Lorente de No, R. (1922). La corteza cerebral del rato. Trab. Lab. Invest. Biol. Univ. Madr., 20:41–78.
Lorente de No, R. (1934). Studies on the structure of the cerebral cortex. J. Psychol. Neurol. Leibzig, 46:113–177.
Lorente de No, R. and Condouris, G. A. (1959). Decremental conduction in peripheral nerve. integration of stimuli in the neuron. Proc. Natl. Acad. Sci. USA, 45:592– 617.
Macgregor, R. J. (1987). Neural and Brain Modeling, London: Academic Press.
Mainen, Z. F. and Sejnowski, T. J. (1996). Influence of dendritic structure on firing pattern in model neocortical neurons. Nature, 382:363–366.CrossRef
Mannen, H. (1966). Contribution to the morphological study of dendritic arborization in the brain stem. In Tokizane, T. and Shade, J. P. (eds.), Progress in Brain Research, Vol. 21A, p.131–162, Amsterdam: Elsevier.
McKenna, T., Davis, J. and Zornetzer, S. F. (eds.) (1992). Single Neuron Computation, London: Academic Press.Google Scholar
Rall, W. (1957). Membrane time constant of motoneurons. Science, 126:454.CrossRef
Rall, W. (1959). Branching dendritic trees and motoneurons membrane resistivity. Exp. Neurol., 1:491–527.CrossRef
Rall, W. (1960). Membrane potential transients and membrane time constant of motoneurons. Exp. Neurol., 2:503–532.CrossRef
Rall, W. (1962a). Electrophysiology of a dendritic neuron model. Biophys. J., 2:145–167.CrossRef
Rall, W. (1962b). Theory of physiological properties of dendrites. Ann. N.Y. Acad. Sci., 96:1071–1092.CrossRef
Rall, W. (1967). Distinguishing theoretical synaptic potentials computed for different soma-dendritic distribution of synaptic input. J. Neurophysiol., 30:1138–1168.CrossRef
Rall, W. (1970). Cable properties of dendrites and effects of synaptic location. In Andersen, P. and Jansen, J. K. S. (eds.), Excitatory Synaptic Mechanisms, p. 175–187, Oslo: Universitetsforlaget.
Rall, W. (1977). Core conductor theory and cable properties of neurons. In Kandel, E. R., Brookhardt, J. M. and Mountcastle, V. B. (eds.), The Handbook of Physiology. The Nervous System. Cellular Biology of Neurons, Vol. 1, p. 39–97, Bethesda: American Physiological Society.
Rall, W. (1989). Cable theory for dendritic neurons. In Koch, C. and Segev, I. (eds.), Methods in Neuronal Modeling, p. 9–62, Cambridge, Mass: MIT Press.
Rall, W. (2006). In Squire, L. R. (ed.), The History of Neuroscience in Autobiography, Vol. 5, p. 552–611, San Diego: Academic Press.
Rall, W. and Shepherd, G. M. (1968). Theoretical reconstruction of field potentials and dendrodendritic synaptic interactions in olfactory bulb. J. Neurophysiol., 31:884–915.CrossRef
Ramon y Cajal, S. (1911). Histologie du Systéme Nerveux de l'Homme et des Vertébrés, Paris:Maloine.Google Scholar
Redman, S. J. (1973). The attenuation of passively propagating dendritic potentials in a motoneurone cable model. J. Physiol. (Lond.), 234:637–664.CrossRef
Sadler, M. and Berry, M. (1983). Morphometric study of the development of Purkinje cell dendritic trees in the mouse using vertex analysis. J. Microsc., 131:341–354.CrossRef
Sadler, M. and Berry, M. (1988). Link-vertex analysis of Purkinje cell dendritic trees from the murine cerebellum. Brain Res., 474:130–146.CrossRef
Schierwagen, A. and Grantyn, R. (1986). Quantitative morphological analysis of deep superior colliculus neurons stained intracellularly with HRP in the cat. J. Hirnforsch., 27:611–623.
Segev, I., Fleshman, J. W. and Burke, R. E. (1989). Compartmental models of complex neurons. In Koch, C. and Segev, I. (eds.), Methods in Neuronal Modeling, p. 63–96, Cambridge, Mass: MIT Press.Google Scholar
Shepherd, G. M. (1992). Canonical neurons and their computational organization. In McKenna, T., Davis, J. and Zornetzer, S. F. (eds.), Single Neuron Computation, 27–60, London: Academic Press.CrossRefGoogle Scholar
Shepherd, G. M., Mirsky, J. S., Healy, M. D., Singer, M. S., Skoufos, E., Hines, M. S., Nadkarni, P. M. and Miller, P. L. (1998). The human brain project: neuroinformatics tools for integrating, searching and modeling multidisciplinary neuroscience data. TINS, 21:460–468.
Sholl, D. A. (1953). Dendritic organization in the neurons of the visual and motor cortices of the cat. J. Anat., 87:387–406.
Sholl, D. A. (1956). The Organization of the Cerebral Cortex, London: Methuen and Co.Google ScholarPubMed
Smit, G. J., Uylings, H. B. M.and Veldmaat-Wansink, L. (1972). The branching pattern in dendrites of cortical neurons. Acta Morphol. Neerl. Scand., 9:253–274.
Snow, P. J., Rose, P. K. and Brown, A. (1976). Tracing axons and axon collaterals of spinal neurones using intracellular injection of horseradish peroxidase. Science, 191:312–313.CrossRef
Stratford, K., Mason, A., Larkman, A., Major, G. and Jack, J. (1989). The modelling of pyramidal neurones in the visual cortex. In Durbin, R., Miall, C. and Mitchison, G., (eds.), The Computing Neuron, p. 296–321, Boston, Mass: Addison and Wesley.Google Scholar
Stuart, G., Spruston, N. and Hausser, M. (eds.) (2001). Dendrites, London: Oxford University Press.Google Scholar
Taylor, R. E. (1963). Cable theory. In Nastuk, W. L. (ed.), Physical Technique in Biological Research, Vol. 6, p. 219–262, New York: Academic Press.
Tuckwell, H. C. (1985). Some aspects of cable theory with synaptic reversal potentials. J. Theoret. Neurobiol., 4:113–127.
Uylings, H. B. M. and van Pelt, J. (2002). Measures for quantifying dendritic arborizations. Network, 13:397–414.CrossRef
Van Ooyen, A., Duijnhouwer, J., Remme, M. W. H. (2002). The effect of dendritic topology on firing patterns in model neurons. Network, 13:311–325.CrossRef
Van Pelt, J. (2002). Quantitative neuroanatomy and neuroinformatics. Editorial special issue quantitative neuroanatomy tools. Network, 13:243–245.CrossRef
Van Pelt, J., Dityatev, A. E. and Uylings, H. B. M. (1997). Natural variability in the number of dendritic segments: model-based inferences about branching during neurite outgrowth. J. Comp. Neurol., 387:325–340.3.0.CO;2-2>CrossRef
Van Pelt, J. and Schierwagen, A. (1994). Electrotonic properties of passive dendritic trees - effect of dendritic topology. In Van Pelt, J., Corner, M. A., Uylings, H. B. M. and Lopez da Silva, F. H. (eds.), Progress in Brain Research. The Self-Organizing Brain: From Growth Cones to Functional Networks, Vol. 102, p. 127–149, Amsterdam: Elsevier.CrossRef
Van Pelt, J. and Schierwagen, A. (2004). Morphological analysis and modeling of neuronal dendrites. Math. Biosci., 188:147–155.CrossRef
Van Pelt, J., Uylings, H. B., Verwer, R. W., Pentney, R. J. and Woldenberg, M. J. (1992). Tree asymmetry: a sensitive and practical measure for binary topological trees. Bull. Math. Biol., 54:759–784.CrossRef
Van Pelt, J. and Uylings, H. B. (1999). Modeling the natural variability in the shape of dendritic trees: application to basal dendrites of small rat cortical layer 5 pyramidal neurons. Neurocomputing, 26–27:305–311.
Van Pelt, J. and Verwer, R. W. (1986). Topological properties of binary trees grown with order-dependent branching probabilities. Bull. Math. Biol., 48:197–211.CrossRef
Verwer, R. W. H., van Pelt, J. and Uylings, H. B. M. (1992). An introduction to topological analysis of neurones. In Stewart, M. G. (ed.), Quantitative Methods in Neuroanatomy, p. 295–323, New York: John Wiley & Sons, Inc.Google Scholar
Wann, D. F., Woolsey, T. A., Dierker, M. L. and Cowan, W. M. (1973). An on-line digital-computer system for the semiautomatic analysis of Golgi-impregnated neurons. IEEE Trans. Bio-Med. Eng., BME-20:233–247.CrossRef
Zsuppan, F. (1984). A new approach to merging neuronal tree segments traced from serial sections. J. Neurosci. Methods, 10:199–204.CrossRef

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×