Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-sh8wx Total loading time: 0 Render date: 2024-07-19T09:43:37.271Z Has data issue: false hasContentIssue false

12 - Lifshitz–Slyozov–Wagner theory

Published online by Cambridge University Press:  10 February 2010

Rashmi C. Desai
Affiliation:
University of Toronto
Raymond Kapral
Affiliation:
University of Toronto
Get access

Summary

The late stages of model B dynamics for asymmetric quenches, where the initial condition places the post-quench system just inside and quite near to the coexistence curve, exhibit characteristic features. For an asymmetric system, ψ0 is a measure of the extent of off-criticality of the system. For ψ0 > 0 the majority phase equilibrates at ψ+ = +1 and the minority phase at ψ= –1. At late times, the minority-phase clusters have a characteristic radius R(τ) which is much larger than the interface width ξ. An important coupling exists between the interface and the majority phase through the surface tension σ. The conservation law dictates that the minority phase will occupy a much smaller “volume” fraction than the majority phase in the final equilibrium state. The dynamics is governed by interactions between the different domains of the minority phase. At late times, these domains have spherical and circular shapes for three- and twodimensional systems, respectively. Late-stage coarsening is referred to as Ostwald ripening.

The late-stage dynamics may be mapped onto a diffusion equation with sources and sinks (domains) whose boundaries are time dependent. The classic papers by Lifshitz and Slyozov (1961) and Wagner (1961) form the theoretical cornerstone for the description of domain coarsening dynamics for model B. The Lifshitz– Slyozov–Wagner (LSW) theory of coarsening is based on the assumption that each interface between a minority phase domain and the majority phase background is infinitely sharp. It describes the diffusive interactions between the domains through a mean-field treatment with precisely defined boundary conditions at each of the interfaces.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×