Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-x5cpj Total loading time: 0 Render date: 2024-07-29T17:12:46.596Z Has data issue: false hasContentIssue false

27 - Genetic Modulation of Sickle Cell Disease and Thalassemia

from SECTION SEVEN - SPECIAL TOPICS IN HEMOGLOBINOPATHIES

Published online by Cambridge University Press:  03 May 2010

Martin H. Steinberg
Affiliation:
Boston University
Bernard G. Forget
Affiliation:
Yale University, Connecticut
Douglas R. Higgs
Affiliation:
MRC Institute of Molecular Medicine, University of Oxford
David J. Weatherall
Affiliation:
Albert Einstein College of Medicine, New York
Get access

Summary

INTRODUCTION

Sickle cell anemia is a typical mendelian, single gene disease. Nevertheless, because of its characteristic phenotypic heterogeneity it resembles a multigenic trait. That is, the mutation in HBB is necessary, but alone insufficient to account for the phenotypic differences among patients, and other genes and the environment are likely to modulate its phenotype. In β thalassemia, and even in HbH disease, genotype–phenotype correlations are also often difficult to establish. Modulation of the phenotypes of these disorders by epistatic and other modifying genes has been a subject of increasing interest. Although studies based on candidate-modulating genes – genes chosen for study on the basis of their possible affects on a phenotype – have started to suggest genes and pathways that might modulate the phenotype of sickle cell anemia, a complete picture of genetic modulators should emerge as genome-wide association studies mature.

It is likely that fetal hemoglobin (HbF) concentration, and its distribution among erythrocytes is the major genetic modulator of both sickle cell disease and the β thalassemias. The coincidence of α thalassemia with sickle cell anemia or β thalassemia is another powerful modulatory influence. Individually, other genetic modulators are likely to have small effects, yet together the interactions of modulatory genes (and environmental factors) might have an important influence on morbidity and mortality.

In this chapter we will first discuss HbF and the genetic elements and genes that might modulate its levels and then the effects of α thalassemia in sickle cell disease and β thalassemia.

Type
Chapter
Information
Disorders of Hemoglobin
Genetics, Pathophysiology, and Clinical Management
, pp. 638 - 657
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Garner, C, Mitchell, J, Hatzis, T, Reittie, J, Farrall, M, Thein, SL. Haplotype mapping of a major quantitative-trait locus for fetal hemoglobin production, on chromosome 6q23. Am J Hum Genet. 1998;62(6):1468–1474.CrossRefGoogle Scholar
Garner, CP, Tatu, T, Best, S, Creary, L, Thein, SL. Evidence of genetic interaction between the beta-globin complex and chromosome 8q in the expression of fetal hemoglobin. Am J Hum Genet. 2002;70(3):793–799.CrossRefGoogle ScholarPubMed
Wyszynski, DF, Baldwin, CT, Cleves, MA, et al. Polymorphisms near a chromosome 6q QTL area are associated with modulation of fetal hemoglobin levels in sickle cell anemia. Cell Mol Biol. 2004;50(1):23–33.Google Scholar
Chang, YPC, Maier-Redelsperger, M, Smith, KD, et al. The relative importance of the X-linked FCP locus and β-globin haplotypes in determining haemoglobin F levels: A study of SS patients homozygous for βS haplotypes. Br J Haematol. 1997;96:806–814.CrossRefGoogle Scholar
Ofori-Acquah, SF, Lalloz, MR, Serjeant, G, Layton, DM. Dominant influence of gamma-globin promoter polymorphisms on fetal haemoglobin expression in sickle cell disease. Cell Mol Biol. 2004;50(1):35–42.Google ScholarPubMed
Platt, OS, Thorington, BD, Brambilla, DJ, et al. Pain in sickle cell disease-rates and risk factors. N Engl J Med. 1991;325:11–16.CrossRefGoogle ScholarPubMed
Platt, OS, Brambilla, DJ, Rosse, WF, et al. Mortality in sickle cell disease. Life expectancy and risk factors for early death. N Engl J Med. 1994;330(23):1639–1644.CrossRefGoogle ScholarPubMed
Steinberg, MH, Barton, F, Castro, O, et al. Effect of hydroxyurea on mortality and morbidity in adult sickle cell anemia: risks and benefits up to 9 years of treatment. JAMA. 2003;289(13):1645–1651.CrossRefGoogle Scholar
Orkin, SH, Antonarakis, SE, Kazazian, HHPolymorphism and molecular pathology of the human beta-globin gene. Prog Hematol. 1983;13:49–73.Google ScholarPubMed
Antonarakis, SE, Kazazian, HH, Orkin, SH. DNA polymorphism and molecular pathology of the human globin gene clusters. Hum Genet. 1985;69:1–14.CrossRefGoogle ScholarPubMed
Pagnier, J, Mears, JG, Dunda-Belkhodja, O, et al. Evidence for the multicentric origin of the sickle cell hemoglobin gene in Africa. Proc Natl Acad Sci USA. 1984;81:1771–1773.CrossRefGoogle ScholarPubMed
Nagel, RL. Origins and dispersion of the sickle gene. In: Embury, SH, Hebbel, RP, Mohandas, N, Steinberg, MH, eds. Sickle Cell Disease: Basic Principles and Clinical Practice. 1st ed. New York: Raven Press; 1994;353–380.Google Scholar
Nagel, RL, Steinberg, MH. Genetics of the βS gene: origins, epidemiology, and epistasis. In: Steinberg, MH, Forget, BG, Higgs, DR, Nagel, RL, eds. Disorders of Hemoglobin: Genetics, Pathophysiology, and Clinical Management. 1st ed. Cambridge: Cambridge University Press; 2001;711–755.Google Scholar
Nagel, RL, Labie, D. DNA haplotypes and the beta S globin gene. Prog Clin Biol Res. 1989;316B:371–393.Google ScholarPubMed
Antonarakis, SE, Boehm, CD, Serjeant, GR, Theisen, CE, Dover, GJ, Kazazian, HH Jr. Origin of the βS-globin gene in blacks: The contribution of recurrent mutation or gene conversion or both. Proc Natl Acad Sci USA. 1984;81:853–856.CrossRefGoogle ScholarPubMed
Öner, C, Dimovski, AJ, Olivieri, NF, et al. βS Haplotypes in various world populations. Hum Genet. 1992;89:99–104.CrossRefGoogle Scholar
Nagel, RL. The sickle haplotypes in Guadeloupe and the African gene flow. Hemoglobin. 1996;20:V–VII.Google ScholarPubMed
Adekile, AD. Historical and anthropological correlates of βS haplotypes and α- and β-thalassemia alleles in the Arabian Peninsula. Hemoglobin. 1997;21:281–296.CrossRefGoogle Scholar
Bakanay, SM, Dainer, E, Clair, B, et al. Mortality in sickle cell patients on hydroxyurea therapy. Blood. 2004;105:545–547.CrossRefGoogle ScholarPubMed
Steinberg, MH, Lu, ZH, Nagel, RL, et al. Hematological effects of atypical and Cameroon beta-globin gene haplotypes in adult sickle cell anemia. Am J Hematol. 1998;59(2):121–126.3.0.CO;2-#>CrossRefGoogle ScholarPubMed
Chase, MB, Fu, S, Haga, SB, et al. BP1, a homeodomain-containing isoform of DLX4, represses the beta-globin gene. Mol Cell Biol. 2002;22(8):2505–2514.CrossRefGoogle ScholarPubMed
Mpollo, MS, Beaudoin, M, Berg, PE, Beauchemin, H, D'Agati V, Trudel M. BP1 is a negative modulator of definitive erythropoiesis. Nucl Acids Res. 2006;34(18):5232–5237.CrossRefGoogle ScholarPubMed
Miller, BA, Salameh, M, Ahmed, M, et al. Analysis of hemoglobin F production in Saudi Arabian families with sickle cell anemia. Blood. 1987;70:716–720.Google ScholarPubMed
Miller, BA, Olivieri, N, Salameh, M, et al. Molecular analysis of the high-hemoglobin-F phenotype in Saudi Arabian sickle cell anemia. N Engl J Med. 1987;316:244–250.CrossRefGoogle ScholarPubMed
Peri, KG, Gagnon, J, Gagnon, C, Bard, H. Association of −158(C–>T) (XmnI) DNA polymorphism in Gγ-globin promoter with delayed switchover from fetal to adult hemoglobin synthesis. Pediatr Res. 1997;41:214–217.CrossRefGoogle Scholar
Sampietro, M, Thein, SL, Contreras, M, Pazmany, L. Variation in HbF and F-cell number with the G-γ XmnI (C->T) polymorphisms in normal individuals. Blood. 1992;79:832–833.Google Scholar
Gilman, JG, Johnson, ME, Mishima, N. Four base-pair DNA deletion in human Aγ globin gene promoter associated with low Aγ expression in adults. Br J Haematol. 1988;68:455–458.Google Scholar
Labie, D, Pagnier, J, Lapoumeroulie, C, et al. Common haplotype dependency of high Gγ-globin gene expression and high HbF levels in β-thalassemia and sickle cell anemia patients. Proc Natl Acad Sci USA. 1985;82:2111–2114.CrossRefGoogle Scholar
Pissard, S, Beuzard, Y. A potential regulatory region for the expression of fetal hemoglobin in sickle cell disease. Blood. 1994;84:331–338.Google ScholarPubMed
Thein, SL. Genetic modifiers of beta-thalassemia. Haematologica. 2005;90(5):649–660.Google ScholarPubMed
Thein, SL, Wainscoat, JS, Sampietro, M, et al. Association of thalassaemia intermedia with a beta-globin gene haplotype. Br J Haematol. 1987;65(3):367–373.CrossRefGoogle ScholarPubMed
Papachatzopoulou, A, Kourakli, A, Makropoulou, P, et al. Genotypic heterogeneity and correlation to intergenic haplotype within high HbF beta-thalassemia intermedia. Eur J Haematol. 2006;76(4):322–330.CrossRefGoogle ScholarPubMed
Bandyopadhyay, S, Mondal, BC, Sarkar, P, Chandra, S, Das, MK, Dasgupta, UB. Two beta-globin cluster-linked polymorphic loci in thalassemia patients of variable levels of fetal hemoglobin. Eur J Haematol. 2005;75(1):47–53.CrossRefGoogle ScholarPubMed
Ma, Q-L, Abel, K, Sripichai, O, et al. β-globin gene cluster polymorphisms are strongly associated with severity of Hb E/β0 thalassemia. Clin Genet. 2007;72(6):497–505.CrossRefGoogle Scholar
Ofori-Acquah, SF, Lalloz, MRA, Layton, DM. Localisation of cis regulatory elements at the β-globin locus: analysis of hybrid haplotype chromosomes. Biochem Biophys Res Commun. 1999;254(1):181–187.CrossRefGoogle ScholarPubMed
Ofori-Acquah, SF, Lalloz, MRA, Layton, DM, Luzzatto, L. Localization of cis-active determinants of fetal hemoglobin level in sickle cell anemia. Blood. 1996;88:493a.Google Scholar
Lu, ZH, Steinberg, MH. Fetal hemoglobin in sickle cell anemia: Relation to regulatory sequences cis to the β-globin gene. Blood. 1996;87:1604–1611.Google ScholarPubMed
Merghoub, T, Maier-Redelsperger, M, Labie, D, et al. Variation of fetal hemoglobin and F-cell number with the LCR-HS2 polymorphism in nonanemic individuals. Blood. 1996;87:2607–2609.Google ScholarPubMed
Merghoub, T, Perichon, B, Maier-Redelsperger, M, et al. Dissection of the association status of two polymorphisms in the β-globin gene cluster with variations in F-cell number in non-anemic individuals. Am J Hematol. 1997;56(4):239–243.3.0.CO;2-Y>CrossRefGoogle ScholarPubMed
Ofori-Acquah, SF, Lalloz, MR, Layton, DM. Nucleotide variation regulates the level of enhancement by hypersensitive site 2 of the beta-globin locus control region. Blood Cells Mol Dis. 2001;27(5):803–811.CrossRefGoogle ScholarPubMed
Elion, J, Berg, PE, Lapouméroulie, C, et al. DNA sequence variation in a negative control region 5′ to the β-globin gene correlates with the phenotypic expression of the βS mutation. Blood. 1992;79:787–792.Google Scholar
Steinberg, MH, Forget, BG, Higgs, DR, Nagel, RL, eds. Disorders of Hemoglobin: Genetics, Pathophysiology, and Clinical Management. 1st ed. Cambridge: Cambridge University Press; 2001.Google Scholar
Chen, Z, Hong-Yuan, L, Basran, RK, et al. A T-G transversion at NT-567 upstream of the Gγ-globin gene in a GATA-1 binding motif Is associated with elevated HbF. Mol Cell Biol. 2008;28(13):4386–4393.CrossRefGoogle Scholar
Harju-Baker, S, Costa, FC, Fedosyuk, H, Neades, R, Peterson, KR. Silencing of Aã-globin gene expression during adult definitive erythropoiesis mediated by GATA-1-FOG-1-Mi2 complex binding at the −566 GATA site. Mol. Cell. Biol. 2008;28:3101–3113.CrossRefGoogle ScholarPubMed
Papachatzopoulou, A, Kaimakis, P, Pourfarzad, F, et al. Increased gamma-globin gene expression in beta-thalassemia intermedia patients correlates with a mutation in 3′HS1. Am J Hematol. 2007;82(11):1005–1009.CrossRefGoogle ScholarPubMed
Thein, SL, Sampietro, M, Rohde, K, et al. Detection of a major gene for heterocellular hereditary persistence of fetal hemoglobin after accounting for genetic modifiers. Am J Hum Genet. 1994;54:214–228.Google Scholar
Garner, C, Silver, N, Best, S, et al. A quantitative trait locus on chromosome 8q influences the switch from fetal to adult hemoglobin. Blood. 2004;104:2184–2186.CrossRefGoogle ScholarPubMed
Menzel, S, Garner, C, Gut, I, et al. A QTL influencing F cell production maps to a gene encoding a zinc-finger protein on chromosome 2p15. Nat Genet. 2007;39(10):1197–1199.CrossRefGoogle ScholarPubMed
Haan, G, Bystrykh, LV, Weersing, E, et al. A genetic and genomic analysis identifies a cluster of genes associated with hematopoietic cell turnover. Blood. 2002;100(6):2056–2062.CrossRefGoogle ScholarPubMed
Liu, X, Barker, DF. Evidence for effective suppression of recombination in the chromosome 17q21 segment spanning RNU2-BRCA1. Am J Hum Genet. 1999;64(5):1427–1439.CrossRefGoogle ScholarPubMed
Close, J, Game, L, Clark, B, Bergounioux, J, Gerovassili, A, Thein, SL. Genome annotation of a 1.5 Mb region of human chromosome 6q23 encompassing a quantitative trait locus for fetal hemoglobin expression in adults. BMC Genomics. 2004;5(1):33.CrossRefGoogle ScholarPubMed
Jiang, J, Best, S, Menzel, S, et al. cMYB is involved in the regulation of fetal hemoglobin production in adults. Blood. 2006;108(3):1077–1083.CrossRefGoogle ScholarPubMed
Thein, SL, Menzel, S, Peng, X, et al. Intergenic variants of HBS1L-MYB are responsible for a major quantitative trait locus on chromosome 6q23 influencing fetal hemoglobin levels in adults. Proc Natl Acad Sci USA. 2007;104(27):11346–11351.CrossRefGoogle Scholar
Garner, C, Menzel, S, Martin, C, et al. Interaction between two quantitative trait loci affects fetal haemoglobin expression. Ann Hum Genet. 2005;69(Pt 6):707–714.CrossRefGoogle ScholarPubMed
Ma, Q, Wyszynski, DF, Farrell, JJ, et al. Fetal hemoglobin in sickle cell anemia: genetic determinants of response to hydroxyurea. Pharmacogenomics J. 2007;7:386–394.CrossRefGoogle ScholarPubMed
Sebastiani, P, Wang, L, Nolan, VG, et al. Fetal hemoglobin in sickle cell anemia: Bayesian modeling of genetic associations. Am J Hematol. 2008;83(3):189–195.CrossRefGoogle ScholarPubMed
Sedgewick, A, Timofeev, N, Sebastiani, P, et al. BCL11A (2p16) is a major HbF quantitative trait locus in three different populations. Blood Cells Mol. Dis. 2008;41:255–258.CrossRefGoogle ScholarPubMed
Uda, M, Galanello, R, Sanna, S, et al. Genome-wide association study shows BCL11A associated with persistent fetal hemoglobin and amelioration of the phenotype of beta-thalassemia. Proc. Natl. Acad. Sci. USA. 2008;105:1620–1625.CrossRefGoogle ScholarPubMed
Kumkhaek, C, Taylor, JG, Zhu, J, et al. Fetal haemoglobin response to hydroxycarbamide treatment and sar1a promoter polymorphisms in sickle cell anaemia. Br J Haematol. 2008;141:254–259.CrossRefGoogle ScholarPubMed
Tang, DC, Zhu, J, Liu, W, et al. The hydroxyurea-induced small GTP-binding protein SAR modulates gamma-globin gene expression in human erythroid cells. Blood. 2005;106:3256–3263.CrossRefGoogle ScholarPubMed
Ohene-Frempong, K, Nkrumah, FK. Sickle cell disease in Africa. In: Embury, SH, Hebbel, RP, Mohandas, N, eds. Sickle Cell Disease: Basic Principles and Clinical Practice. 1st ed. New York: Raven Press; 1994;423–435.Google Scholar
Powars, DR. βS-Gene-cluster haplotypes in sickle cell anemia: Clinical and hematologic features. Hematol Oncol Clin North Am. 1991;5:475–493.CrossRefGoogle ScholarPubMed
Powars, DR. Sickle cell anemia: βS-gene-cluster haplotypes as prognostic indicators of vital organ failure. Semin Hematol. 1991;28:202–208.Google ScholarPubMed
Powars, DR, Elliott Mills, DD, Chan, L. Chronic renal failure in sickle cell disease: risk factors, clinical course, and mortality. Ann Intern Med. 1991;115:614–620.CrossRefGoogle ScholarPubMed
Steinberg, MH, Hsu, H, Nagel, RL, et al. Gender and haplotype effects upon hematological manifestations of adult sickle cell anemia. Am J Hematol. 1995;48(3):175–181.CrossRefGoogle ScholarPubMed
Padmos, MA, Roberts, GT, Sackey, K, et al. Two different forms of homozygous sickle cell disease occur in Saudi Arabia. Br J Haematol. 1991;79:93–98.CrossRefGoogle ScholarPubMed
El-Hazmi, MAF. Clinical and haematological diversity of sickle cell disease in Saudi children. J Trop Pediatr. 1992;38:106–112.CrossRefGoogle ScholarPubMed
El-Hazmi, MAF. Heterogeneity and variation of clinical and haematological expression of haemoglobin S in Saudi Arabs. Acta Haematol. 1992;88:67–71.CrossRefGoogle ScholarPubMed
Adekile, AD, Haider, MZ. Morbidity, βS haplotype and α-globin gene patterns among sickle cell anemia patients in Kuwait. Acta Haematol. 1996;96:150–154.CrossRefGoogle Scholar
Thomas, PW, Higgs, DR, Serjeant, GR. Benign clinical course in homozygous sickle cell disease: A search for predictors. J Clin Epidemiol. 1997;50:121–126.CrossRefGoogle ScholarPubMed
Alexander, N, Higgs, D, Dover, G, Serjeant, GR. Are there clinical phenotypes of homozygous sickle cell disease?Br J Haematol. 2004;126(4):606–611.CrossRefGoogle ScholarPubMed
Sebastiani, P, Ramoni, MF, Nolan, V, Baldwin, CT, Steinberg, MH. Genetic dissection and prognostic modeling of overt stroke in sickle cell anemia. Nat Genet. 2005;37(4):435–440.CrossRefGoogle ScholarPubMed
Nolan, VG, Wyszynski, DF, Farrer, , Steinberg, MH. Hemolysis-associated priapism in sickle cell disease. Blood. 2005;106(9):3264–3267.CrossRefGoogle ScholarPubMed
Nolan, VG, Adewoye, A, Baldwin, C, et al. Sickle cell leg ulcers: associations with haemolysis and SNPs in Klotho, TEK and genes of the TGF-beta/BMP pathway. Br J Haematol. 2006;133(5):570–578.CrossRefGoogle ScholarPubMed
Kato, GJ, Gladwin, MT, Steinberg, MH. Deconstructing sickle cell disease: Reappraisal of the role of hemolysis in the development of clinical subphenotypes. Blood Rev. 2007;21:37–47.CrossRefGoogle ScholarPubMed
Camaschella, C, Kattamis, AC, Petroni, D, et al. Different hematological phenotypes caused by the interaction of triplicated α-globin genes and heterozygous β-thalassemia. Am J Hematol. 1997;55:83–88.3.0.CO;2-Z>CrossRefGoogle ScholarPubMed
Traeger-Synodinos, J, Kanavakis, E, Vrettou, C, et al. The triplicated α-globin gene locus in β-thalassaemia heterozygotes: Clinical, haematological, biosynthetic and molecular studies. Br J Haematol. 1996;95:467–471.CrossRefGoogle ScholarPubMed
Kihm, AJ, Kong, Y, Hong, W, et al. An abundant erythroid protein that stabilizes free alpha-haemoglobin. Nature. 2002;417(6890):758–763.CrossRefGoogle ScholarPubMed
Kong, Y, Zhou, S, Kihm, AJ, et al. Loss of alpha-hemoglobin-stabilizing protein impairs erythropoiesis and exacerbates beta-thalassemia. J Clin Invest. 2004;114(10):1457–1466.CrossRefGoogle ScholarPubMed
Viprakasit, V, Tanphaichitr, VS, Chinchang, W, Sangkla, P, Weiss, MJ, Higgs, DR. Evaluation of alpha hemoglobin stabilizing protein (AHSP) as a genetic modifier in patients with beta thalassemia. Blood. 2004;103(9):3296–3299.CrossRefGoogle ScholarPubMed
dos Santos, CO, Costa, FF. AHSP and beta-thalassemia: a possible genetic modifier. Hematology. 2005;10(2):157–161.CrossRefGoogle ScholarPubMed
Lai, MI, Jiang, J, Silver, N, et al. Alpha-haemoglobin stabilising protein is a quantitative trait gene that modifies the phenotype of beta-thalassaemia. Br J Haematol. 2006;133(6):675–682.CrossRefGoogle ScholarPubMed
Steinberg, MH. Predicting clinical severity in sickle cell anaemia. Br J Haematol. 2005;129:465–481.CrossRefGoogle ScholarPubMed
Bertolino, P, Deckers, M, Lebrin, F, ten DP. Transforming growth factor-beta signal transduction in angiogenesis and vascular disorders. Chest. 2005;128(6 Suppl):585S–590S.CrossRefGoogle ScholarPubMed
Kimchi-Sarfaty, C, Oh, JM, Kim, IW, et al. A “silent” polymorphism in the MDR1 gene changes substrate specificity. Science. 2007;315(5811):525–528.CrossRefGoogle ScholarPubMed
Saxena, R, Voight, BF, Lyssenko, V, et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science. 2007;316(5829):1331–1336.Google ScholarPubMed
Balding, DJ. A tutorial on statistical methods for population association studies. Nat Rev Genet. 2006;7(10):781–791.CrossRefGoogle ScholarPubMed
Lettre, G, Sankaran, VG, Bezerra, MA, et al. DNA polymorphisms at the BCL11A, HBS1L-MYB, and beta-globin loci associate with fetal hemoglobin levels and pain crises in sickle cell disease. Proc. Natl. Acad. Sci. USA. 2008;105:11869–11874.CrossRefGoogle ScholarPubMed
Lotsch, J, Skarke, C, Liefhold, J, Geisslinger, G. Genetic predictors of the clinical response to opioid analgesics: clinical utility and future perspectives. Clin Pharmacokinet. 2004;43(14):983–1013.CrossRefGoogle ScholarPubMed
Driscoll, MC, Hurlet, A, Styles, L, et al. Stroke risk in siblings with sickle cell anemia. Blood. 2003;101(6):2401–2404.CrossRefGoogle ScholarPubMed
Taylor, JG, Tang, DC, Savage, SA, et al. Variants in the VCAM1 gene and risk for symptomatic stroke in sickle cell disease. Blood. 2002;100(13):4303–4309.Google ScholarPubMed
Hoppe, C, Klitz, W, Cheng, S, et al. Gene interactions and stroke risk in children with sickle cell anemia. Blood. 2004;103(6):2391–2396.CrossRefGoogle ScholarPubMed
Kutlar, A, Brambilla, D, Clair, B, et al. Candidate gene polymorphisms and their association with TCD velocities in children with sickle cell disease. Blood. 2007;110:133a.Google Scholar
Styles, , Hoppe, C, Klitz, W, Vichinsky, E, Lubin, B, Trachtenberg, E. Evidence for HLA-related susceptibility for stroke in children with sickle cell disease. Blood. 2000;95(11):3562–3567.Google ScholarPubMed
Hoppe, C, Klitz, W, Noble, J, Vigil, L, Vichinsky, E, Styles, L. Distinct HLA associations by stroke subtype in children with sickle cell anemia. Blood. 2002;101:2865–2869.CrossRefGoogle ScholarPubMed
Tang, DC, Prauner, R, Liu, W, et al. Polymorphisms within the angiotensinogen gene (GT-repeat) and the risk of stroke in pediatric patients with sickle cell disease: a case-control study. Am J Hematol. 2001;68(3):164–169.CrossRefGoogle ScholarPubMed
Romana, M, Diara, JP, Doumbo, L, et al. Angiotensinogen gene associated polymorphisms and risk of stroke in sickle cell anemia: additional data supporting an association. Am J Hematol. 2004;76(3):310–311.CrossRefGoogle ScholarPubMed
Hoppe, C, Cheng, S, Grow, M, et al. A novel multilocus genotyping assay to identify genetic predictors of stroke in sickle cell anaemia. Br J Haematol. 2001;114(3):718–720.CrossRefGoogle ScholarPubMed
Romana, M, Muralitharan, S, Ramasawmy, R, Nagel, RL, Krishnamoorthy, R. Thrombosis-associated gene variants in sickle cell anemia. Thromb Haemost. 2002;87(2):356–358.Google ScholarPubMed
Hebbel, RP, Wei, P, Jiang, A, et al. Genetic influence on the systems biology of sickle cell stroke risk detected by endothelial cell gene expression. Blood. 2008;111(7):3872–3879.Google Scholar
Nolan, VG, Baldwin, CT, Ma, Q-L, et al. Association of single nucleotide polymorphisms in KLOTHO with priapism in sickle cell anemia. Br J Haematol. 2004;128:266–272.CrossRefGoogle Scholar
Elliott, L, Ashley-Koch, A, Castro, L.D., et al. Genetic polymorphisms associated with priapism in sickle cell disease. Br J Haematol. 2007;137:262–267.CrossRefGoogle ScholarPubMed
El-khatib, A, Ashley-Koch, A, Kail, M, et al. Further investigation of the role of factor XIII in priapism associated with SCD. Blood. 2007;110:998a.Google Scholar
Kutlar, F, Tural, C, Park, D, Markowitz, RB, Woods, KF, Kutlar, A. MTHFR (5, 10-methlylenetetrathydrofolate reductase) 677 C->T mutation as a candidate risk factor for avascular necrosis (AVN) in patients with sickle cell disease. Blood. 1998;92:695a.Google Scholar
Zimmerman, SA, Ware, RE. Inherited DNA mutations contributing to thrombotic complications in patients with sickle cell disease. Am J Hematol. 1998;59(4):267–272.3.0.CO;2-W>CrossRefGoogle ScholarPubMed
Baldwin, C, Nolan, VG, Wyszynski, DF, et al. Association of klotho, bone morphogenic protein 6, and annexin A2 polymorphisms with sickle cell osteonecrosis. Blood. 2005;106(1):372–375.CrossRefGoogle ScholarPubMed
Adewoye, AH, Nolan, VG, Ma, Q, et al. Association of polymorphisms of IGF1R and genes in the transforming growth factor- beta/bone morphogenetic protein pathway with bacteremia in sickle cell anemia. Clin Infect Dis. 2006;43(5):593–598.CrossRefGoogle ScholarPubMed
Powars, DR, Chan, L, Schroeder, WA. Beta S-gene-cluster haplotypes in sickle cell anemia: clinical implications. Am J Pediatr Hematol Oncol. 1990;12(3):367–374.CrossRefGoogle ScholarPubMed
Nolan, VG, Qian, Li M, Cohen, HT, et al. Estimated glomerular filtration rate in sickle cell anemia is associated with polymorphisms of bone morphogenetic protein receptor 1B (BMPR1B). Am J Hematol. 2007;82:179–184.CrossRefGoogle Scholar
Gladwin, MT, Sachdev, V, Jison, ML, et al. Pulmonary hypertension as a risk factor for death in patients with sickle cell disease. N Engl J Med. 2004;350(9):886–895.CrossRefGoogle ScholarPubMed
Vichinsky, EP, Neumayr, LD, Earles, AN, et al. Causes and outcomes of the acute chest syndrome in sickle cell disease. N Engl J Med. 2000;342(25):1855–1865.CrossRefGoogle ScholarPubMed
Ameshima, S, Golpon, H, Cool, CD, et al. Peroxisome proliferator-activated receptor gamma (PPAR gamma) expression is decreased in pulmonary hypertension and affects endothelial cell growth. Circ Res. 2003;92(10):1162–1169.CrossRefGoogle Scholar
Nichols, WC, Koller, DL, Slovis, B, et al. Localization of the gene for familial primary pulmonary hypertension to chromosome 2q31-32. Nat Genet. 1997;15(3):277–280.CrossRefGoogle ScholarPubMed
Machado, RD, Pauciulo, MW, Thomson, JR, et al. BMPR2 haploinsufficiency as the inherited molecular mechanism for primary pulmonary hypertension. Am J Hum Genet. 2001;68(1):92–102.CrossRefGoogle ScholarPubMed
Ashley-Koch, A, DeCastro, L, Lennon-Graham, F, et al. Genetic polymorphisms associated with the risk for pulmonary hypertension and proteinuria in sickle cell disease. Blood. 2004;104:464a.Google Scholar
Ashley-Koch, AE, Elliott, L, Kail, ME, et al. Identification of genetic polymorphisms associated with risk for pulmonary hypertension in sickle cell disease. Blood. 2008;111(12):5721–5726.CrossRefGoogle ScholarPubMed
Sharan, K, Surrey, S, Ballas, S, et al. Association of T-786C eNOS gene polymorphism with increased susceptibility to acute chest syndrome in females with sickle cell disease. Br J Haematol. 2004;124(2):240–243.CrossRefGoogle ScholarPubMed
Chaar, V, Tarer, V, Etienne-Julan, M, Diara, JP, Elion, J, Romana M. ET-1 and ecNOS gene polymorphisms and susceptibility to acute chest syndrome and painful vaso-occlusive crises in children with sickle cell anemia. Haematologica. 2006;91(9):1277–1278.Google ScholarPubMed
Duckworth, L, Hsu, L, Feng, H, et al. Physician-diagnosed asthma and acute chest syndrome: associations with NOS polymorphisms. Pediatr Pulmonol. 2007;42(4):332–338.CrossRefGoogle ScholarPubMed
Sullivan, KJ, Kissoon, N, Duckworth, LJ, et al. Low exhaled nitric oxide and a polymorphism in the NOS I gene is associated with acute chest syndrome. Am J Respir Crit Care Med. 2001;164(12):2186–2190.CrossRefGoogle Scholar
Martinez-Castaldi, C, Nolan, VG, Baldwin, CT, Farrer, , Steinberg MH, Klings ES. Association of genetic polymorphisms in the TGF-β pathway with the acute chest syndrome of sickle cell disease. Blood. 2007;118:666a.Google Scholar
Fertrin, KY, Melo, MB, Assis, AM, Saad, ST, Costa, FF. UDP-glucuronosyltransferase 1 gene promoter polymorphism is associated with increased serum bilirubin levels and cholecystectomy in patients with sickle cell anemia. Clin Genet. 2003;64(2):160–162.CrossRefGoogle ScholarPubMed
Passon, RG, Howard, TA, Zimmerman, SA, Schultz, WH, Ware, RE. Influence of bilirubin uridine diphosphate-glucuronosyltransferase 1A promoter polymorphisms on serum bilirubin levels and cholelithiasis in children with sickle cell anemia. J Pediatr Hematol Oncol. 2001;23(7):448–451.CrossRefGoogle ScholarPubMed
Adekile, A, Kutlar, F, McKie, K, et al. The influence of uridine diphosphate glucuronosyl transferase 1A promoter polymorphisms, beta-globin gene haplotype, co-inherited alpha-thalassemia trait and Hb F on steady-state serum bilirubin levels in sickle cell anemia. Eur J Haematol. 2005;75(2):150–155.CrossRefGoogle ScholarPubMed
Vasavda, N, Menzel, S, Kondaveeti, S, et al. The linear effects of alpha-thalassaemia, the UGT1A1 and HMOX1 polymorphisms on cholelithiasis in sickle cell disease. Br J Haematol. 2007;138(2):263–270.CrossRefGoogle ScholarPubMed
Haverfield, EV, McKenzie, CA, Forrester, T, et al. UGT1A1 variation and gallstone formation in sickle cell disease. Blood. 2005;105(3):968–972.CrossRefGoogle ScholarPubMed
Chaar, V, Keclard, L, Etienne-Julan, M, et al. UGT1A1 polymorphism outweighs the modest effect of deletional (−3.7 kb) alpha-thalassemia on cholelithogenesis in sickle cell anemia. Am J Hematol. 2006;81(5):377–379.CrossRefGoogle ScholarPubMed
Steinberg, MH, West, MS, Gallagher, D, Mentzer, W. Effects of glucose-6-phosphate dehydrogenase deficiency upon sickle cell anemia. Blood. 1988;71:748–752.Google ScholarPubMed
Bouanga, JC, Mouélé, R, Préhu, C, Wajcman, H, Feingold, J, Galactéros, F. Glucose-6-phosphate dehydrogenase deficiency and homozygous sickle cell disease in Congo. Hum Hered. 1998;48(4):192–197.CrossRefGoogle ScholarPubMed
Belhassen, L, Pelle, G, Sediame, S, et al. Endothelial dysfunction in patients with sickle cell disease is related to selective impairment of shear stress-mediated vasodilation. Blood. 2001;97(6):1584–1589.CrossRefGoogle ScholarPubMed
Forgione, MA, Loscalzo, J, Holbrook, M, et al. The A326G (A+) variant of the glocose-6-phosphate dehydrogenase gene is associated with endothelial dysfunction in African Americans. J Am Coll Cardiol. 2003;41:249A.CrossRefGoogle Scholar
Schrader, MC, Simplaceanu, V, Ho, C. Measurement of fluxes through the pentose phosphate pathway in erythrocytes from individuals with sickle cell anemia by carbon-13 nuclear magnetic resonance spectroscopy. Biochim Biophys Acta. 1993;1182(2):179–188.CrossRefGoogle ScholarPubMed
Amer, J, Ghoti, H, Rachmilewitz, E, Koren, A, Levin, C, Fibach, E. Red blood cells, platelets and polymorphonuclear neutrophils of patients with sickle cell disease exhibit oxidative stress that can be ameliorated by antioxidants. Br J Haematol. 2006;132(1):108–113.CrossRefGoogle ScholarPubMed
Leopold, J, Dam, A, Maron, BA, et al. Aldosterone impairs vascular reactivity by decreasing glucose-6-phosphate dehydrogenase activity. Nat Med. 2007;13:189–197.CrossRefGoogle ScholarPubMed
Eyler, CE, Jackson, T, Elliott, , et al. Beta(2)-adrenergic receptor and adenylate cyclase gene polymorphisms affect sickle red cell adhesion. Br J Haematol. 2008;141:105–108.CrossRefGoogle ScholarPubMed
Castro, V, Alberto, FL, Costa, RN, et al. Polymorphism of the human platelet antigen-5 system is a risk factor for occlusive vascular complications in patients with sickle cell anemia. Vox Sang. 2004;87(2):118–123.CrossRefGoogle ScholarPubMed
Sebastiani, P, NolanVG, A VG, A, et al. Predicting severity of sickle cell disease. Blood. 2007;110:2727–2735.CrossRefGoogle ScholarPubMed
Sebastiani, P, Wang, L, Perls, T, et al. A repertoire of genes modifying the risk of death in sickle cell anemia. Blood. 2007;110:52a.Google Scholar
Sebastiani, P, Timofeev, N, Hartley, SH, et al. Genome-wide association studies suggest shared polymorphisms are associated with severity of sickle cell anemia and exceptional longevity. Blood. 2008;112:1446a.Google Scholar
Afenyi, A, Kail, M, Combs, MR, et al. Lack of Duffy antigen expression is associated with organ damage in patients with sickle cell disease. Transfusion. 2008;48:917–924.CrossRefGoogle Scholar
Galanello, R, Melis, MA, Podda, A, et al. Deletion delta-thalassemia: the 7.2 kb deletion of Corfu δβ-thalassemia in a non-beta-thalassemia chromosome. Blood. 1990;75:1747–1749.Google Scholar
Galanello, R, Perseu, L, Melis, MA, et al. Hyperbilirubinaemia in heterozygous beta-thalassaemia is related to co-inherited Gilbert's syndrome. Br J Haematol. 1997;99(2):433–436.CrossRefGoogle ScholarPubMed
Galanello, R, Piras, S, Barella, S, et al. Cholelithiasis and Gilbert's syndrome in homozygous beta-thalassaemia. Br J Haematol. 2001;115(4):926–928.CrossRefGoogle ScholarPubMed
Sampietro, M, Lupica, L, Perrero, L, et al. The expression of uridine diphosphate glucuronosyltransferase gene is a major determinant of bilirubin level in heterozygous beta-thalassaemia and in glucose-6-phosphate dehydrogenase deficiency. Br J Haematol. 1997;99(2):437–439.CrossRefGoogle ScholarPubMed
Huang, YY, Huang, CS, Yang, SS, Lin, MS, Huang, MJ, Huang, CS. Effects of variant UDP-glucuronosyltransferase 1A1 gene, glucose-6-phosphate dehydrogenase deficiency and thalassemia on cholelithiasis. World J Gastroenterol. 2005;11(36):5710–5713.CrossRefGoogle ScholarPubMed
Au, WY, Cheung, WC, Chan, GC, Ha, SY, Khong, PL, Ma, ES. Risk factors for hyperbilirubinemia and gallstones in Chinese patients with β thalassemia syndrome. Haematologica. 2003;88(2):220–222.Google Scholar
Rees, DC, Luo, LY, Thein, SL, Singh, BM, Wickramasinghe, S. Nontransfusional iron overload in thalassemia: Association with hereditary hemochromatosis. Blood. 1997;90(8):3234–3236.Google ScholarPubMed
Cappellini, MD, Fargion, SR, Sampietro, M, Graziadei, G, Fiorelli, G. Nontransfusional iron overload in thalassemia intermedia: Role of the hemochromatosis allele. Blood. 1998;92(11):4479–4480.Google ScholarPubMed
Borgna-Pignatti, C, Solinas, A, Bombieri, C, et al. The haemochromatosis mutations do not modify the clinical picture of thalassaemia major in patients regularly transfused and chelated. Br J Haematol. 1998;103(3):813–816.CrossRefGoogle Scholar
Piperno, A, Mariani, R, Arosio, C, et al. Haemochromatosis in patients with β-thalassaemia trait. Br J Haematol. 2000;111(3):908–914.Google ScholarPubMed
Melis, MA, Cau, M, Deidda, F, Barella, S, Cao, A, Galanello, R. H63D mutation in the HFE gene increases iron overload in beta-thalassemia carriers. Haematologica. 2002;87(3):242–245.Google ScholarPubMed
Merryweather-Clarke, AT, Pointon, JJ, Shearman, JD, Robson, KJ. Global prevalence of putative haemochromatosis mutations. J Med Genet. 1997;34(4):275–278.CrossRefGoogle ScholarPubMed
Garewal, G, Das, R, Ahluwalia, J, Marwaha, RK. Prevalence of the H63D mutation of the HFE in north India: its presence does not cause iron overload in beta thalassemia trait. Eur J Haematol. 2005;74(4):333–336.CrossRefGoogle Scholar
Ma, ES, Lam, KK, Chan, AY, Ha, SY, Au, WY, Chan, LC. Transferrin receptor-2 polymorphisms and iron overload in transfusion independent β-thalassemia intermedia. Haematologica. 2003;88(3):345–346.Google Scholar
Uitterlinden, AG, Meurs, JB, Rivadeneira, F, Pols, HA. Identifying genetic risk factors for osteoporosis. J Musculoskelet Neuronal Interact. 2006;6(1):16–26.Google ScholarPubMed
Wonke, B, Jensen, C, Hanslip, JJ, et al. Genetic and acquired predisposing factors and treatment of osteoporosis in thalassaemia major. J Pediatr Endocrinol Metab. 1998;11(Suppl 3):795–801.Google ScholarPubMed
Pollak, RD, Rachmilewitz, E, Blumenfeld, A, Idelson, M, Goldfarb, AW. Bone mineral metabolism in adults with β-thalassaemia major and intermedia. Br J Haematol. 2000;111(3):902–907.Google Scholar
Perrotta, S, Cappellini, MD, Bertoldo, F, et al. Osteoporosis in β-thalassaemia major patients: analysis of the genetic background. Br J Haematol. 2000;111(2):461–466.CrossRefGoogle ScholarPubMed
Arisal, O, Deviren, A, Fenerci, EY, et al. Polymorphism analysis in the COLIA1 gene of patients with thalassemia major and intermedia. Haematologia. 2002;32(4):475–482.Google ScholarPubMed
Economou-Petersen, E, Aessopos, A, Kladi, A, et al. Apolipoprotein E epsilon 4 allele as a genetic risk factor for left ventricular failure in homozygous beta-thalassemia. Blood. 1998;92(9):3455–3459.Google Scholar
Ferrara, M, Matarese, SM, Borrelli, B, et al. Impact of excess weight and estrogen receptor gene polymorphisms on clinical course of homozygous beta thalassemia. Hematology. 2005;10(5):407–411.CrossRefGoogle ScholarPubMed
Chen, FE, Ooi, C, Ha, SY, et al. Genetic and clinical features of hemoglobin H disease in Chinese patients. N Engl J Med. 2000;343(8):544–550.CrossRefGoogle ScholarPubMed
Au, WY, Cheung, WC, Hu, WH, et al. Hyperbilirubinemia and cholelithiasis in Chinese patients with hemoglobin H disease. Ann Hematol. 2005;84(10):671–674.CrossRefGoogle ScholarPubMed
Chan, V, Wong, MS, Ooi, C, et al. Can defects in transferrin receptor 2 and hereditary hemochromatosis genes account for iron overload in HbH disease?Blood Cells Mol Dis. 2003;30(1):107–111.CrossRefGoogle ScholarPubMed
DeCastro, L, Rinder, HM, Howe, JG, Smith, BR. Thrombophilic genotypes do not adversely affect the course of sickle cell disease (SCD). Blood. 1998;92:161a.Google Scholar
Zimmerman, SA, Howard, TA, Whorton, MR, Rosse, WF, Ware, RE. The A312G polymorphism in α-fibrinogen is associated with stroke and avascular necrosis in patients with sickle cell anemia. Blood. 1998;92:36b.Google Scholar
Sullivan, KJ, Kissoon, N, Duckworth, LJ, et al. Low exhaled nitric oxide and a polymorphism in the NOS I gene is associated with acute chest syndrome. Am J Respir Crit Care Med. 2001;164(12):2186–2190.CrossRefGoogle Scholar
Powars, D, Hiti, A. Sickle cell anemia: βS gene cluster haplotypes as genetic markers for severe disease expression. Am J Dis Child. 1993;147:1197–1202.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×