Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-k7p5g Total loading time: 0 Render date: 2024-07-12T07:16:50.890Z Has data issue: false hasContentIssue false

2 - The ‘developmental origins’ hypothesis: epidemiology

Published online by Cambridge University Press:  08 August 2009

Keith Godfrey
Affiliation:
University of Southampton
Peter Gluckman
Affiliation:
University of Auckland
Mark Hanson
Affiliation:
University of Southampton
Get access

Summary

Introduction

Research worldwide has established that people who were small at birth and had poor growth in infancy have an increased risk of adult coronary heart disease and type 2 diabetes, particularly if this is followed by increased childhood weight gain. There is also evidence linking impaired early growth with other degenerative disorders in later life, including stroke, hypertension, obesity, osteoporosis, obstructive airways disease, reduced cognitive function and poor mental health. The relations between smaller infant size and an increased risk of ill health and adult disease extend across the normal range of infant size in a graded manner. Moreover, recent animal studies and epidemiological data have demonstrated that while maternal thinness and unbalanced diet during pregnancy may have modest effects on size at birth, they are nonetheless associated with raised blood pressure and altered glucose–insulin metabolism and stress responsiveness in the adult offspring. It is now clear that the associations do not simply reflect genetic influences; rather the findings indicate that interactions between the genetic influences and the early-life environment determine disease and susceptibility to adverse influences in the adult environment.

The observations have led to the hypothesis that cardiovascular disease, type 2 diabetes, osteoporosis and obstructive airways disease originate through developmental plastic responses made by the fetus and infant as part of a prediction of the subsequent environment to which it anticipates that it will be exposed.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adair, L. S., Kuzawa, C. W. and Borja, J. (2001). Maternal energy stores and diet composition during pregnancy program adolescent blood pressure. Circulation, 104, 1034–9.CrossRefGoogle ScholarPubMed
Akbarian, S., Kim, J. J., Potkin, S. G., Hetrick, W. P., Bunney, W. E. Jr. and Jones, E. G. (1996). Maldistribution of interstitial neurons in prefrontal white matter of the brains of schizophrenic patients. Arch. Gen. Psychiatry, 53, 425–36.CrossRefGoogle ScholarPubMed
Alvarsson, M., Efendic, S. and Grill, V. E. (1994). Insulin responses to glucose in healthy males are associated with adult height but not with birth weight. J. Intern. Med., 236, 275–9.CrossRefGoogle Scholar
Barker, D. J. P. (1998). Mothers, Babies and Health in Later Life, 2nd edn. Edinburgh: Churchill Livingstone.Google Scholar
Barker, D. J. P., Bull, A. R., Osmond, C. and Simmonds, S. J. (1990). Fetal and placental size and risk of hypertension in adult life. BMJ, 301, 259–62.CrossRefGoogle ScholarPubMed
Barker, D. J. P., Godfrey, K. M., Fall, C., Osmond, C., Winter, P. D. and Shaheen, S. O. (1991). Relation of birth weight and childhood respiratory infection to adult lung function and death from chronic obstructive airways disease. BMJ, 303, 671–5.CrossRefGoogle ScholarPubMed
Barker, D. J. P., Godfrey, K. M., Osmond, C. and Bull, A. (1992). The relation of fetal length, ponderal index and head circumference to blood pressure and the risk of hypertension in adult life. Paediatr. Perinat. Epidemiol., 6, 35–44.CrossRefGoogle ScholarPubMed
Barker, D. J. P., Osmond, C., Simmonds, S. J. and Wield, G. A. (1993a). The relation of small head circumference and thinness at birth to death from cardiovascular disease in adult life. BMJ, 306, 422–6.CrossRefGoogle Scholar
Barker, D. J. P., Martyn, C. N., Osmond, C., Hales, C. N. and Fall, C. H. (1993b). Growth in utero and serum cholesterol concentrations in adult life. BMJ, 307, 1524–7.CrossRefGoogle Scholar
Barker, D. J. P., Hales, C. N., Fall, C. H. D., Osmond, C., Phipps, K. and Clark, P. M. S. (1993c). Type 2 (non-insulin-dependent) diabetes mellitus, hypertension and hyperlipidaemia (syndrome X): relation to reduced fetal growth. Diabetologia, 36, 62–7.CrossRefGoogle Scholar
Barker, D. J. P., Gluckman, P. D., Godfrey, K. M., Harding, J. E., Owens, J. A. and Robinson, J. S. (1993d). Fetal nutrition and cardiovascular disease in adult life. Lancet, 341, 938–41.CrossRefGoogle Scholar
Barker, D. J. P., Martyn, C. N., Osmond, C. and Wield, G. A. (1995). Abnormal liver growth in utero and death from coronary heart disease. BMJ, 310, 703–4.CrossRefGoogle ScholarPubMed
Barker, D. J. P., Shiell, A. W., Barker, M. E. and Law, C. M. (2000). Growth in utero and blood pressure levels in the next generation. J. Hypertens., 18, 843–6.CrossRefGoogle ScholarPubMed
Barker, D. J. P., Forsen, T., Uutela, A., Osmond, C. and Eriksson, J. G. (2001). Size at birth and resilience to the effects of poor living conditions in adult life: longitudinal study. BMJ, 323, 1273–6.CrossRefGoogle ScholarPubMed
Barker, D. J. P., Eriksson, J. G., Forsen, T. and Osmond, C. (2002). Fetal origins of adult disease: strength of effects and biological basis. Int. J. Epidemiol., 31, 1235.CrossRefGoogle ScholarPubMed
Beasley, R., Leadbitter, P., Pearce, N. and Crane, J. (1999). Is enhanced fetal growth a risk factor for the development of atopy or asthma?Int. Arch. Allergy Immunol., 118, 408–10.CrossRefGoogle ScholarPubMed
Belizan, J. M., Villar, J., Bergel, E.et al. (1997). Long term effect of calcium supplementation during pregnancy on the blood pressure of offspring: follow up of a randomised controlled trial. BMJ, 315, 281–5.CrossRefGoogle ScholarPubMed
Bertram, C. E. and Hanson, M. A. (2001). Animal models and programming of the metabolic syndrome. Br. Med. Bull., 60, 103–21.CrossRefGoogle ScholarPubMed
Bhargava, S. K., Sachdev, H. S., Fall, C. H. D.et al. (2004). Relation of serial changes in childhood body-mass index to impaired glucose tolerance in young adulthood. N. Engl. J. Med., 350, 865–75.CrossRefGoogle ScholarPubMed
Bjorntorp, P. (1995). Insulin resistance: the consequence of a neuroendocrine disturbance?Int. J. Obes., 19 (suppl 1), S6–10.Google ScholarPubMed
Brawley, L., Torrens, C., Anthony, F. W.et al. (2004). Glycine rectifies vascular dysfunction induced by dietary protein imbalance during pregnancy. J. Physiol., 554, 497–504.CrossRefGoogle ScholarPubMed
Brixey, S. N., Gallagher, B. J., McFalls, J. A. Jr. and Parmelee, L. F. (1993). Gestational and neonatal factors in the etiology of schizophrenia. J. Clin. Psychol., 49, 447–56.3.0.CO;2-4>CrossRefGoogle ScholarPubMed
Brooks, A. A., Johnson, M. R., Steer, P. J., Pawson, M. E. and Abdalla, H. I. (1995). Birth weight: nature or nurture?Early Hum. Dev., 42, 29–35.CrossRefGoogle ScholarPubMed
Brown, A. S., Susser, E. S., Lin, S. P., Neugebauer, R. and Gorman, J. M. (1995). Increased risk of affective disorders in males after second trimester prenatal exposure to the Dutch hunger winter of 1944–45. Br. J. Psychiatry, 166, 601–6.CrossRefGoogle ScholarPubMed
Campbell, D. M., Hall, M. H., Barker, D. J. P., Cross, J., Shiell, A. W. and Godfrey, K. M. (1996). Diet in pregnancy and the offspring's blood pressure 40 years later. Br. J. Obstet. Gynaecol., 103, 273–80.CrossRefGoogle ScholarPubMed
Cannon, M., Jones, P. B. and Murray, R. M. (2002). Obstetric complications and schizophrenia: historical and meta-analytic review. Am. J. Psychiatry, 159, 1080–92.CrossRefGoogle ScholarPubMed
Catalano, P. M., Thomas, A. J., Huston, L. P. and Fung, C. M. (1998). Effect of maternal metabolism on fetal growth and body composition. Diabetes Care, 21, B85–90.Google ScholarPubMed
Chapman, N., Mohamudally, A., Cerutti, A.et al. (1997). Retinal vascular network architecture in low-birth-weight men. J. Hypertens., 15, 1449–53.CrossRefGoogle ScholarPubMed
Clark, P. M., Atton, C., Law, C. M., Shiell, A., Godfrey, K. and Barker, D. J. P. (1998). Weight gain in pregnancy, triceps skinfold thickness and blood pressure in the offspring. Obstet. Gynaecol., 91, 103–7.CrossRefGoogle ScholarPubMed
Clarke, J. R., Salmon, B. and Silverman, M. (1995). Bronchial responsiveness in the neonatal period as a risk factor for wheezing in infancy. Am. J. Respir. Crit. Care Med., 151, 1434–40.CrossRefGoogle ScholarPubMed
Cooper, C., Fall, C., Egger, P., Hobbs, R., Eastell, R. and Barker, D. (1997). Growth in infancy and bone mass in later life. Ann. Rheum. Dis., 56, 17–21.CrossRefGoogle ScholarPubMed
Cooper, C., Eriksson, J. G., Forsen, T., Osmond, C., Tuomilehto, J. and Barker, D. J. P. (2001). Maternal height, childhood growth and risk of hip fracture in later life: a longitudinal study. Osteoporos. Int., 12, 623–9.CrossRefGoogle ScholarPubMed
Curhan, G. C., Willett, W. C. and Rimm, E. B.et al. (1996). Birth weight and adult hypertension and diabetes mellitus in US men. Am. J. Hypertens., 9, 11A.CrossRefGoogle Scholar
Dennison, E. M., Arden, N. K., Keen, R. W.et al. (2001). Birthweight, vitamin D receptor genotype and the programming of osteoporosis. Paediatr. Perinat. Epidemiol., 15, 211–19.CrossRefGoogle Scholar
Dezateux, C., Stocks, J., Dundas, I. and Fletcher, M. E. (1999). Impaired airway function and wheezing in infancy: the influence of maternal smoking and a genetic predisposition to asthma. Am. J. Respir. Crit. Care Med., 159, 403–10.CrossRefGoogle Scholar
Doblhammer, G. and Vaupel, J. W. (2001). Lifespan depends on month of birth. Proc. Natl. Acad. Sci. USA, 98, 2934–9.CrossRefGoogle ScholarPubMed
Drake, A. J. and Walker, B. R. (2004). The intergenerational effects of fetal programming: non-genomic mechanisms for the inheritance of low birth weight and cardiovascular risk. J. Endocrinol., 180, 1–16.CrossRefGoogle ScholarPubMed
Duggleby, S. L. and Jackson, A. A. (2001). Relationship of maternal protein turnover and lean body mass during pregnancy and birth length. Clin. Sci., 101, 65–72.CrossRefGoogle ScholarPubMed
Emanuel, I., Filakti, H., Alberman, E. and Evans, S. J. W. (1992). Intergenerational studies of human birthweight from the 1958 birth cohort. I. Evidence for a multigenerational effect. Br. J. Obstet. Gynaecol., 99, 67–74.CrossRefGoogle ScholarPubMed
Eriksson, J. G., Forsen, T., Tuomilehto, J., Winter, P. D., Osmond, C. and Barker, D. J. P. (1999). Catch-up growth in childhood and death from coronary heart disease: longitudinal study. BMJ, 318, 427–31.CrossRefGoogle ScholarPubMed
Eriksson, J. G., Forsen, T., Tuomilehto, J., Osmond, C. and Barker, D. J. P. (2000a). Early growth, adult income, and risk of stroke. Stroke, 31, 869–74.CrossRefGoogle Scholar
Eriksson, J. G., Forsen, T., Tuomilehto, J., Osmond, C. and Barker, D. J. P. (2000b). Fetal and childhood growth and hypertension in adult life. Hypertension, 36, 790–4.CrossRefGoogle Scholar
Eriksson, J. G., Forsen, T., Tuomilehto, J., Osmond, C. and Barker, D. J. P. (2001). Early growth and coronary heart disease in later life: longitudinal study. BMJ, 322, 949–53.CrossRefGoogle ScholarPubMed
Eriksson, J. G., Lindi, V., Uusitupa, M.et al. (2002). The effects of the Pro12Ala polymorphism of the peroxisome proliferator-activated receptor-gamma2 gene on insulin sensitivity and insulin metabolism interact with size at birth. Diabetes, 51, 2321–4.CrossRefGoogle ScholarPubMed
Eriksson, J. G., Forsen, T., Tuomilehto, J., Osmond, C. and Barker, D. J. P. (2003). Early adiposity rebound in childhood and risk of type 2 diabetes in adult life. Diabetologia, 46, 190–4.CrossRefGoogle ScholarPubMed
Fall, C. H., Barker, D. J. P., Osmond, C., Winter, P. D., Clark, P. M. and Hales, C. N. (1992). Relation of infant feeding to adult serum cholesterol concentration and death from ischaemic heart disease. BMJ, 304, 801–5.CrossRefGoogle ScholarPubMed
Fall, C. H. D., Stein, C. E., Kumaran, K.et al. (1998). Size at birth, maternal weight, and type 2 diabetes in South India. Diabet. Med., 15, 220–7.3.0.CO;2-O>CrossRefGoogle ScholarPubMed
Forsen, T., Eriksson, J. G., Tuomilehto, J., Teramo, K., Osmond, C. and Barker, D. J. P. (1997). Mother's weight in pregnancy and coronary heart disease in a cohort of Finnish men: follow up study. BMJ, 315, 837–40.CrossRefGoogle Scholar
Forsen, T., Eriksson, J. G., Tuomilehto, J., Osmond, C. and Barker, D. J. P. (1999). Growth in utero and during childhood among women who develop coronary heart disease: longitudinal study. BMJ, 319, 1403–7.CrossRefGoogle ScholarPubMed
Frankel, S., Elwood, P., Sweetnam, P., Yarnell, J. and Davey Smith, G. (1996). Birthweight, body-mass index in middle age, and incident coronary heart disease. Lancet, 348, 1478–80.CrossRefGoogle ScholarPubMed
Gale, C. R., Martyn, C. N., Kellingray, S.et al. (2001). Intrauterine programming of adult body composition. J. Clin. Endocrinol. Metab., 86, 267–72.Google ScholarPubMed
Gale, C. R., Walton, S. and Martyn, C. N. (2003). Foetal and postnatal head growth and risk of cognitive decline in old age. Brain, 126, 2273–8.CrossRefGoogle ScholarPubMed
Gale, C. R., O'Callaghan, F. J., Godfrey, K. M., Law, C. M. and Martyn, C. N. (2004). Critical periods of brain growth and cognitive function in children. Brain, 127, 321–9.CrossRefGoogle ScholarPubMed
Gluckman, P. D. and Hanson, M. A. (2004). Living with the past: evolution, development, and patterns of disease. Science, 305, 1733–6.CrossRefGoogle Scholar
Godfrey, K. M. (2000). Maternal nutrition and fetal development: implications for fetal programming. In Fetal Origins of Cardiovascular and Lung Disease In (ed. Barker, D. J. P.. New York: National Institutes of Health, pp. 249–71.Google Scholar
Godfrey, K. M. (2002). The role of the placenta in fetal programming: a review. Placenta, 23 (Suppl. A, Trophoblast Res), S20–27.CrossRefGoogle ScholarPubMed
Godfrey, K. M., Barker, D. J. P. and Osmond, C. (1994a). Disproportionate fetal growth and raised IgE concentration in adult life. Clin. Exp. Allergy, 24, 641–8.CrossRefGoogle Scholar
Godfrey, K. M., Forrester, T., Barker, D. J. P.et al., (1994b). Maternal nutritional status in pregnancy and blood pressure in childhood. Br. J. Obstet. Gynaecol., 101, 398–403.CrossRefGoogle Scholar
Godfrey, K., Robinson, S., Barker, D. J. P., Osmond, C. and Cox, V. (1996). Maternal nutrition in early and late pregnancy in relation to placental and fetal growth. BMJ, 312, 410–4.CrossRefGoogle ScholarPubMed
Godfrey, K. M., Barker, D. J. P., Robinson, S. and Osmond, C. (1997). Maternal birthweight and diet in pregnancy in relation to the infant's thinness at birth. Br. J. Obstet Gynaecol., 104, 663–667.CrossRefGoogle ScholarPubMed
Godfrey, K. M., Walker-Bone, K., Robinson, S.et al. (2001). Neonatal bone mass: influence of parental birthweight and maternal smoking, body composition and activity during pregnancy. J. Bone Mineral Res., 16, 1694–703.CrossRefGoogle ScholarPubMed
Goodfellow, J., Bellamy, M. F. and Gorman, S. T.et al. (1998). Endothelial function is impaired in fit young adults of low birth weight. Cardiovasc. Res., 40, 600–6.CrossRefGoogle ScholarPubMed
Gregory, A., Doull, I., Pearce, N.et al. (1999). The relationship between anthropometric measurements at birth: asthma and atopy in childhood. Clin. Exp. Allergy, 29, 330–3.CrossRefGoogle ScholarPubMed
Hales, C. N. and Barker, D. J. P. (1992). Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. Diabetologia, 35, 595–601.CrossRefGoogle ScholarPubMed
Hales, C. N., Barker, D. J. P., Clark, P. M. S.et al. (1991). Fetal and infant growth and impaired glucose tolerance at age 64. BMJ, 303, 1019–22.CrossRefGoogle ScholarPubMed
Hanrahan, J. P., Tager, I. B., Segal, M. R.et al. (1992). The effect of maternal smoking during pregnancy on early infant lung function. Am. Rev. Respir. Dis., 145, 1129–35.CrossRefGoogle ScholarPubMed
Harding, J. E., Liu, L., Evans, P., Oliver, M. and Gluckman, P. (1992). Intrauterine feeding of the growth-retarded fetus: can we help?Early Hum. Dev., 29, 193–7.CrossRefGoogle ScholarPubMed
Harvey, N. and Cooper, C. (2004). The developmental origins of osteoporotic fracture. J. Br. Menopause Soc., 10, 14–29.CrossRefGoogle ScholarPubMed
Hattersley, A. T. and Tooke, J. E. (1999). The fetal insulin hypothesis: an alternative explanation of the association of low birthweight with diabetes and vascular disease. Lancet, 353, 1789–92.CrossRefGoogle ScholarPubMed
Herrick, K., Phillips, D. I. W., Haselden, S., Shiell, A. W., Campbell-Brown, M. and Godfrey, K. M. (2004). Maternal consumption of a high-meat, low-carbohydrate diet in late pregnancy: relation to adult cortisol concentrations in the offspring. J. Clin. Endocrin. Metab., 88, 3554–60.CrossRefGoogle Scholar
Hoek, H. W., Brown, A. S. and Susser, E. (1998). The Dutch famine and schizophrenia spectrum disorders. Soc. Psychiatry Psychiatr. Epidemiol., 33, 373–9.CrossRefGoogle ScholarPubMed
Hofman, P. L., Cutfield, W. S., Robinson, E. M.et al. (1997). Insulin resistance in short children with intrauterine growth retardation. J. Clin. Endocrinol. Metab., 82, 402.Google ScholarPubMed
Hofman, P. L., Regan, F., Jackson, W. E.et al. (2004). Premature birth and later insulin resistance. N. Engl. J. Med., 351, 2179–86.CrossRefGoogle ScholarPubMed
Huxley, R. R., Shiell, A. W. and Law, C. M. (2000). The role of size at birth and postnatal catch-up growth in determining systolic blood pressure: a systematic review of the literature. J. Hypertens., 18, 815–31.CrossRefGoogle ScholarPubMed
Huxley, R., Neil, A. and Collins, R. (2002). Unravelling the fetal origins hypothesis: is there really an inverse association between birthweight and subsequent blood pressure?Lancet, 360, 659–65.CrossRefGoogle ScholarPubMed
Huxley, R., Owen, C. G., Whincup, P. H., Cook, D. G., Colman, S. and Collins, R. (2004). Birth weight and subsequent cholesterol levels: exploration of the ‘fetal origins’ hypothesis. JAMA, 292, 2755–64.CrossRefGoogle Scholar
Hypponen, E., Leon, D. A., Kenward, M. G. and Lithell, H. (2001). Prenatal growth and risk of occlusive and haemorrhagic stroke in Swedish men and women born 1915–29: historical cohort study. BMJ, 323, 1033–4.CrossRefGoogle ScholarPubMed
Independent Inquiry into Inequalities in Health (1998). Report of the Independent Inquiry into Inequalities in Health. London: The Stationery Office.
James, W. P. T. (1997). Long-term fetal programming of body composition and longevity. Nutr. Rev., 55, S41–3.Google ScholarPubMed
Javaid, M. K. and Cooper, C. (2002). Prenatal and childhood influences on osteoporosis. Best Pract. Res. Clin. Endocrinol. Metab., 16, 349–67.CrossRefGoogle ScholarPubMed
Javaid, M. K., Shore, S. R., Taylor, P.et al. (2003). Maternal vitamin D status during late pregnancy and accrual of childhood bone mineral. J. Bone Mineral Res., 18 suppl. 2, S13.Google Scholar
Keller, G., Zimmer, G., Mall, G., Ritz, E. and Amann, K. (2003). Nephron number in patients with primary hypertension. N. Engl. J. Med., 348, 101–8.CrossRefGoogle ScholarPubMed
Khan, I. Y., Dekou, V., Douglas, G.et al. (2005). A high-fat diet during rat pregnancy or suckling induces cardiovascular dysfunction in adult offspring. Am. J. Physiol. Regul. Integr. Comp. Physiol., 288, R127–33.CrossRefGoogle ScholarPubMed
Konje, J. C., Bell, S. C., Morton, J. J., Chazal, R. and Taylor, D. J. (1996). Human fetal kidney morphometry during gestation and the relationship between weight, kidney morphometry and plasma active renin concentration at birth. Clin. Sci., 91, 169–75.CrossRefGoogle ScholarPubMed
Kramer, M. S. (1993). Effects of energy and protein intakes on pregnancy outcome: an overview of the research evidence from controlled clinical trials. Am. J. Clin. Nutr., 58, 627–35.CrossRefGoogle ScholarPubMed
Kuh, D., Bassey, J., Hardy, R., Sayer, A. A., Wadsworth, M. and Cooper, C. (2002). Birth weight, childhood size, and muscle strength in adult life: evidence from a birth cohort study. Am. J. Epidemiol., 156, 627–33.CrossRefGoogle ScholarPubMed
Kwong, W. Y., Wild, A., Roberts, P., Willis, A. C. and Fleming, T. P. (2000). Maternal undernutrition during the pre-implantation period of rat development causes blastocyst abnormalities and programming of postnatal hypertension. Development, 127, 4195–202.Google Scholar
Langley, S. C. and Jackson, A. A. (1994). Increased systolic blood pressure in adult rats induced by fetal exposure to maternal low protein diets. Clin. Sci. (Lond.), 86, 217–22.CrossRefGoogle ScholarPubMed
Law, C. M., Barker, D. J. P., Bull, A. R. and Osmond, C. (1991). Maternal and fetal influences on blood pressure. Arch. Dis. Child., 66, 1291–5.CrossRefGoogle ScholarPubMed
Law, C. M., Gordon, G. S., Shiell, A. W., Barker, D. J. P. and Hales, C. N. (1995). Thinness at birth and glucose tolerance in seven year old children. Diabet. Med., 12, 24–9.CrossRefGoogle ScholarPubMed
Leadbitter, P., Pearce, N., Cheng, S.et al. (1999). Relationship between fetal growth and the development of asthma and atopy in childhood. Thorax, 54, 905–10.CrossRefGoogle ScholarPubMed
Leeson, C. P. M., Whincup, P. H., Cook, D. G.et al. (1997). Flow-mediated dilation in 9- to 11-year old children. The influence of intrauterine and childhood factors. Circulation, 96, 2233–8.CrossRefGoogle ScholarPubMed
Leger, J., Levy-Marchal, C., Bloch, J.et al., (1997a). Evidence for insulin-resistance developing in young adults with intra-uterine growth retardation. Diabetologia, 40, A53.Google Scholar
Leger, J., Levy-Marchal, C., Bloch, J.et al. (1997b). Reduced final height and indications for insulin resistance in 20 year olds born small for gestational age: regional cohort study. BMJ, 315, 341–7.CrossRefGoogle Scholar
Leon, D. A., Lithell, H., Vagero, D.et al. (1997). Biological and social influences on mortality in a cohort of 15,000 Swedes followed from birth to old age. J. Epidemiol. Community Health, 51, 594.Google Scholar
Leon, D. A., Lithell, H., Vagero, D.et al. (1998). Reduced fetal growth rate and increased risk of death from ischaemic heart disease: cohort study of 15,000 Swedish men and women born 1915–29. BMJ, 317, 241–5.CrossRefGoogle ScholarPubMed
Lever, A. F. and Harrap, S. B. (1992). Essential hypertension: a disorder of growth with origins in childhood?J. Hypertens., 10, 101–20.CrossRefGoogle ScholarPubMed
Lithell, H. O., McKeigue, P. M., Berglund, L., Mohsen, R., Lithell, U. B. and Leon, D. A. (1996). Relation of size at birth to non-insulin dependent diabetes and insulin concentrations in men aged 50–60 years. BMJ, 312, 406–10.CrossRefGoogle ScholarPubMed
Lucas, J. S., Inskip, H., Godfrey, K. M.et al. (2004). Small size at birth and greater postnatal weight gain: relations to diminished infant lung function. Am. J. Resp. Critical Care Med., 170, 534–40.CrossRefGoogle Scholar
Lumey, L. H. (1998). Compensatory placental growth after restricted maternal nutrition in early pregnancy. Placenta, 19, 105–11.Google ScholarPubMed
Mackenzie, H. S. and Brenner, B. M. (1995). Fewer nephrons at birth: a missing link in the etiology of essential hypertension?Am. J. Kidney Dis., 26, 91–8.CrossRefGoogle ScholarPubMed
Margetts, B. M., Rowland, M. G. M., Foord, F. A., Cruddas, A. M., Cole, T. J. and Barker, D. J. P. (1991). The relation of maternal weight to the blood pressures of Gambian children. Int. J. Epidemiol., 20, 938–43.CrossRefGoogle ScholarPubMed
Marmot, M. G., Shipley, M. J. and Rose, G. (1984). Inequalities in death: specific explanations of a general pattern?Lancet, I, 1003–6.CrossRefGoogle Scholar
Martin, H., Hu, J., Gennser, G. and Norman, M. (2000). Impaired endothelial function and increased carotid stiffness in 9-year-old children with low birthweight. Circulation, 102, 2739–44.CrossRefGoogle ScholarPubMed
Martinez, F. D., Wright, A. L., Taussig, L. M., Holberg, C. J., Halonen, M. and Morgan, W. J. (1995). Asthma and wheezing in the first six years of life. The Group Health Medical Associates. N. Engl. J. Med., 332, 133–8.CrossRefGoogle Scholar
Martyn, C. N. and Greenwald, S. E. (1997). Impaired synthesis of elastin in walls of aorta and large conduit arteries during early development as an initiating event in pathogenesis of systemic hypertension. Lancet, 350, 953–5.CrossRefGoogle Scholar
Martyn, C. N., Barker, D. J. P., Jespersen, S., Greenwald, S., Osmond, C. and Berry, C. (1995a). Growth in utero, adult blood pressure, and arterial compliance. Br. Heart J., 73, 116–21.CrossRefGoogle Scholar
Martyn, C. N., Meade, T. W., Stirling, Y. and Barker, D. J. P. (1995b). Plasma concentrations of fibrinogen and factor VII in adult life and their relation to intra-uterine growth. Br. J. Haematol., 89, 142–6.CrossRefGoogle Scholar
Martyn, C. N., Barker, D. J. P. and Osmond, C. (1996a). Mothers' pelvic size, fetal growth, and death from stroke and coronary heart disease in men in the UK. Lancet, 348, 1264–8.CrossRefGoogle Scholar
Martyn, C. N., Lever, A. F. and Morton, J. J. (1996b). Plasma concentrations of inactive renin in adult life are related to indicators of foetal growth. J. Hypertens., 14, 881–6.CrossRefGoogle Scholar
Martyn, C. N., Gale, C. R., Jespersen, S. and Sherriff, S. B. (1998). Impaired fetal growth and atherosclerosis of carotid and peripheral arteries. Lancet, 352, 173–8.CrossRefGoogle ScholarPubMed
McCance, D. R., Pettitt, D. J., Hanson, R. L., Jacobsson, L. T. H., Knowler, W. C. and Bennett, P. H. (1994). Birth weight and non-insulin dependent diabetes: thrifty genotype, thrifty phenotype, or surviving small baby genotype?BMJ, 308, 942–5.CrossRefGoogle ScholarPubMed
Mednick, S. A., Machon, R. A., Huttunen, M. O. and Bonett, D. (1988). Adult schizophrenia following prenatal exposure to an influenza epidemic. Arch. Gen. Psychiatry, 45, 189–92.CrossRefGoogle Scholar
Mi, J., Law, C., Zhang, K.- L., Osmond, C., Stein, C. and Barker, D. J. P. (2000). Effects of infant birthweight and maternal body mass index in pregnancy on components of the insulin resistance syndrome in China. Ann. Intern. Med., 132, 253–60.CrossRefGoogle Scholar
Mittendorfer-Rutz, E., Rasmussen, F. and Wasserman, D. (2004). Restricted fetal growth and adverse maternal psychosocial and socioeconomic conditions as risk factors for suicidal behaviour of offspring: a cohort study. Lancet, 364, 1135–40.CrossRefGoogle ScholarPubMed
Moore, V. M., Cockington, R. A., Ryan, P. and Robinson, J. S. (1999). The relationship between birth weight and blood pressure amplifies from childhood to adulthood. J. Hypertens., 17, 883–8.CrossRefGoogle ScholarPubMed
Morton, N. E. (1955). The inheritance of human birth weight. Ann. Hum. Genet., 20, 123–34.CrossRefGoogle ScholarPubMed
Murray, C. S., Pipis, S. D., McArdle, E. C., Lowe, L. A., Custovic, A. and Woodcock, A. (2002). Lung function at one month of age as a risk factor for infant respiratory symptoms in a high risk population. Thorax, 57, 388–92.CrossRefGoogle Scholar
Nikolajev, K., Heinonen, K., Hakulinen, A. and Lansimies, E. (1998). Effects of intrauterine growth retardation and prematurity on spirometric flow values and lung volumes at school age in twin pairs. Pediatr. Pulmonol., 25, 367–70.3.0.CO;2-E>CrossRefGoogle ScholarPubMed
Oren, A., Vos, L. E., Uiterwaal, C. S., Gorissen, W. H., Grobbee, D. E. and Bots, M. L. (2004). Birth weight and carotid intima-media thickness: new perspectives from the atherosclerosis risk in young adults (ARYA) study. Ann. Epidemiol., 14, 8–16.CrossRefGoogle ScholarPubMed
Osmond, C., Barker, D. J. P., Winter, P. D., Fall, C. H. D. and Simmonds, S. J. (1993). Early growth and death from cardiovascular disease in women. BMJ, 307, 1519–24.CrossRefGoogle ScholarPubMed
Pasamanick, B., Rogers, M. E. and Lilienfeld, A. M. (1956). Pregnancy experience and the development of behavior disorders in children. Am. J. Psychiatry, 112, 613–18.CrossRefGoogle ScholarPubMed
Petersen, K. F., Dufour, S., Befroy, D., Garcia, R. and Shulman, G. I. (2004). Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N. Engl. J. Med., 350, 664–71.CrossRefGoogle ScholarPubMed
Phillips, D. I. W. (1995). Relation of fetal growth to adult muscle mass and glucose tolerance. Diabet Med. 12, 686–90.CrossRefGoogle ScholarPubMed
Phillips, D. I. W. and Barker, D. J. P. (1997). Association between low birthweight and high resting pulse in adult life: is the sympathetic nervous system involved in programming the insulin resistance syndrome?Diabet. Med., 14, 673–7.3.0.CO;2-9>CrossRefGoogle ScholarPubMed
Phillips, D. I. W., Barker, D. J. P., Hales, C. N., Hirst, S. and Osmond, C. (1994a). Thinness at birth and insulin resistance in adult life. Diabetologia, 37, 150–4.CrossRefGoogle Scholar
Phillips, D. I. W., Hirst, S., Clark, P. M. S., Hales, C. N. and Osmond, C. (1994b). Fetal growth and insulin secretion in adult life. Diabetologia, 37, 592–6.CrossRefGoogle Scholar
Phillips, D. I. W., Taylor, D. J. and Kemp, G. J.et al. (1994c). Programming of muscle metabolism in adults who experienced growth retardation in utero. Diabetologia, 37, A57.Google Scholar
Phillips, D. I. W., Walker, B. R., Reynolds, R. M.et al. (2000). Low birth weight predicts elevated plasma cortisol concentrations in adults from 3 populations. Hypertension, 35, 1301–6.CrossRefGoogle ScholarPubMed
Pilowsky, L. S., Kerwin, R. W. and Murray, R. M. (1993). Schizophrenia: a neurodevelopmental perspective. Neuropsychopharmacology, 9, 83–91.CrossRefGoogle ScholarPubMed
Power, C. and Jefferis, B. J. (2002). Fetal environment and subsequent obesity: a study of maternal smoking. Int. J. Epidemiol., 31, 413–19.CrossRefGoogle ScholarPubMed
Ravelli, A. C. J., Meulen, J. H. P. and Michels, R. P. J.et al. (1998). Glucose tolerance in adults after prenatal exposure to famine. Lancet, 351, 173–7.CrossRefGoogle Scholar
Rich-Edwards, J. W., Stampfer, M. J., Manson, J. E.et al. (1997). Birth weight and risk of cardiovascular disease in a cohort of women followed up since 1976. BMJ, 315, 396–400.CrossRefGoogle Scholar
Roberts, C. T., Sohlstrom, A., Kind, K. L.et al. (2001). Maternal food restriction reduces the exchange surface area and increases the barrier thickness of the placenta in the guinea-pig. Placenta, 22, 177–85.CrossRefGoogle ScholarPubMed
Robinson, J. S., Owens, J. A., de Barro, T., et al. (1994). Maternal nutrition and fetal growth. In Early Fetal Growth and Development (ed. Ward, R. H. T., Smith, S. K. and Donnai, D.). London: Royal College of Obstetricians and Gynaecologists, pp. 317–34.Google Scholar
Robinson, S., Walton, R. J., Clark, P. M., Barker, D. J. P., Hales, C. N. and Osmond, C. (1992). The relation of fetal growth to plasma glucose in young men. Diabetologia, 35, 444–6.CrossRefGoogle ScholarPubMed
Rolland-Cachera, M. F., Deheeger, M., Guilloud-Bataille, M., Avons, P., Patois, E. and Sempe, M. (1987). Tracking the development of adiposity from one month of age to adulthood. Ann. Hum. Biol., 14, 219–29.CrossRefGoogle Scholar
Rona, R. J., Gulliford, M. C. and Chinn, S. (1993). Effects of prematurity and intrauterine growth on respiratory health and lung function in childhood. BMJ, 306, 817–20.CrossRefGoogle ScholarPubMed
Roseboom, T. J., Meulen, J. H., Osmond, C., Barker, D. J. P., Ravelli, A. C. and Bleker, O. P. (2000a). Plasma lipid profiles in adults after prenatal exposure to the Dutch famine. Am. J. Clin. Nutr., 72, 1101–6.CrossRefGoogle Scholar
Roseboom, T. J., Meulen, J. H. and Osmond, C.et al., (2000b). Coronary heart disease after prenatal exposure to the Dutch famine, 1944–45. Heart, 84, 595–8.CrossRefGoogle Scholar
Roseboom, T. J., Meulen, J. H., Ravelli, A. C., Osmond, C., Barker, D. J. P. and Bleker, O. P. (2001a). Effects of prenatal exposure to the Dutch famine on adult disease in later life: an overview. Mol. Cell. Endocrinol., 185, 93–8.CrossRefGoogle Scholar
Roseboom, T. J., Meulen, J. H., Montfrans, G. A.et al. (2001b). Maternal nutrition during gestation and blood pressure in later life. J. Hypertens., 19, 29–34.CrossRefGoogle Scholar
Rush, D. (1989). Effects of changes in maternal energy and protein intake during pregnancy, with special reference to fetal growth. In Fetal Growth (ed. Sharp, F., Fraser, R. B. and Milner, R. D. G.). London: Royal College of Obstetricians and Gynaecologists, pp. 203–33.CrossRefGoogle Scholar
Sacker, A., Done, D. J., Crow, T. J. and Golding, J. (1995). Antecedents of schizophrenia and affective illness: obstetric complications. Br. J. Psychiatry, 166, 734–41.CrossRefGoogle ScholarPubMed
Sayer, A. A., Cooper, C. and Evans, J. R.et al. (1998). Are rates of ageing determined in utero?Age Ageing, 27, 579–83.CrossRefGoogle ScholarPubMed
Sayer, A. A., Syddall, H. E., Gilbody, H. J., Dennison, E. M. and Cooper, C. (2004). Does sarcopenia originate in early life? Findings from the Hertfordshire cohort study. J. Gerontol. A Biol. Sci. Med. Sci., 59, M930–4.CrossRefGoogle ScholarPubMed
Schofield, P. W., Logroscino, G., Andrews, H. F., Albert, S. and Stern, Y. (1997). An association between head circumference and Alzheimer's disease in a population-based study of aging and dementia. Neurology, 49, 30–37.CrossRefGoogle Scholar
Shiell, A. W., Campbell, D. M., Hall, M. H. and Barker, D. J. P. (2000). Diet in late pregnancy and glucose-insulin metabolism of the offspring 40 years later. Br. J. Obstet. Gynaecol., 107, 890–5.CrossRefGoogle ScholarPubMed
Shiell, A. W., Campbell-Brown, M., Haselden, S., Robinson, S., Godfrey, K. M. and Barker, D. J. P. (2001). A high meat, low carbohydrate diet in pregnancy: relation to adult blood pressure in the offspring. Hypertension, 38, 1282–8.CrossRefGoogle ScholarPubMed
Silverman, B. L., Purdy, L. P. and Metzger, B. E. (1996). The intrauterine environment: implications for the offspring of diabetic mothers. Diabetes Rev., 4, 21–35.Google Scholar
Smith, G. D., Whitley, E., Gissler, M. and Hemminki, E. (2000). Birth dimensions of offspring, premature birth, and the mortality of mothers. Lancet, 356, 2066–7.CrossRefGoogle ScholarPubMed
Snow, M. H. L. (1989). Effects of genome on fetal size at birth. In Fetal Growth. (ed. Sharp, F., Fraser, R. B. and Milner, R. D. G.). London: Royal College of Obstetricians and Gynaecologists, pp. 1–11.CrossRefGoogle Scholar
Stein, C. E., Fall, C. H. D., Kumaran, K., Osmond, C., Cox, V. and Barker, D. J. P. (1996). Fetal growth and coronary heart disease in south India. Lancet, 348, 1269–73.CrossRefGoogle ScholarPubMed
Stein, C. E., Kumaran, K., Fall, C. H., Shaheen, S. O., Osmond, C. and Barker, D. J. P. (1997). Relation of fetal growth to adult lung function in south India. Thorax, 52, 895–9.CrossRefGoogle ScholarPubMed
Stettler, N., Kumanyika, S. K., Katz, S. H., Zemel, B. S. and Stallings, V. A. (2003). Rapid weight gain during infancy and obesity in young adulthood in a cohort of African Americans. Am. J. Clin. Nutr., 77, 1374–8.CrossRefGoogle Scholar
Stewart, R. J. C., Sheppard, H., Preece, R. and Waterlow, J. C. (1980). The effect of rehabilitation at different stages of development of rats marginally malnourished for ten to twelve generations. Br. J. Nutr., 43, 403–12.CrossRefGoogle ScholarPubMed
Stick, S. M., Burton, P. R., Gurrin, L., Sly, P. D. and LeSouef, P. N. (1996). Effects of maternal smoking during pregnancy and a family history of asthma on respiratory function in newborn infants. Lancet, 348, 1060–4.CrossRefGoogle Scholar
Stocks, J. and Dezateux, C. (2003). The effect of parental smoking on lung function and development during infancy. Respirology, 8, 266–85.CrossRefGoogle ScholarPubMed
Susser, E., Neugebauer, R., Hoek, H. W.et al. (1996). Schizophrenia after prenatal famine: further evidence. Arch. Gen. Psychiatry, 53, 25–31.CrossRefGoogle ScholarPubMed
Svanes, C., Omenaas, E., Heuch, J. M., Irgens, L. M. and Gulsvik, A. (1998). Birth characteristics and asthma symptoms in young adults: results from a population-based cohort study in Norway. Eur. Respir. J., 12, 1366–70.CrossRefGoogle ScholarPubMed
Syddall, H., Cooper, C., Martin, F., Briggs, R. and Sayer, A. A. (2003). Is grip strength a useful single marker of frailty?Age Ageing, 32, 650–6.CrossRefGoogle ScholarPubMed
Taylor, D. J., Thompson, C. H., Kemp, G. J.et al. (1995). A relationship between impaired fetal growth and reduced muscle glycolysis revealed by 31P magnetic resonance spectroscopy. Diabetologia, 38, 1205–12.CrossRefGoogle ScholarPubMed
Thame, M., Osmond, C., Wilks, R. J., Bennett, F. I., McFarlane-Anderson, N. and Forrester, T. E. (2000). Blood pressure is related to placental volume and birth weight. Hypertension, 35, 662–7.CrossRefGoogle ScholarPubMed
Thompson, C., Syddall, H., Rodin, I., Osmond, C. and Barker, D. J. P. (2001). Birth weight and the risk of depressive disorder in late life. Br. J. Psychiatry, 179, 450–5.CrossRefGoogle ScholarPubMed
Valdez, R., Athens, M. A., Thompson, G. H., Bradshaw, B. S. and Stern, M. P. (1994). Birthweight and adult health outcomes in a biethnic population in the USA. Diabetologia, 37, 624–31.CrossRefGoogle Scholar
Vickers, M. H., Breier, B. H., Cutfield, W. S., Hofman, P. L. and Gluckman, P. D. (2000). Fetal origins of hyperphagia, obesity, and hypertension and postnatal amplification by hypercaloric nutrition. Am. J. Physiol. Endocrinol. Metab., 279, E83–7.CrossRefGoogle ScholarPubMed
Vijayakumar, M., Fall, C. H., Osmond, C. and Barker, D. J. P. (1995). Birth weight, weight at one year, and left ventricular mass in adult life. Br. Heart. J., 73, 363–7.CrossRefGoogle ScholarPubMed
Walker, S. K., Hartwick, K. M. and Robinson, J. S. (2000). Long-term effects on offspring of exposure of oocytes and embryos to chemical and physical agents. Hum. Reprod. Update, 6, 564–7.CrossRefGoogle ScholarPubMed
Weinberger, D. R. (1995). From neuropathology to neurodevelopment. Lancet, 346, 552–7.CrossRefGoogle ScholarPubMed
Whincup, P. H., Cook, D. G., Adshead, F.et al. (1997). Childhood size is more strongly related than size at birth to glucose and insulin levels in 10–11-year-old children. Diabetologia, 40, 319–26.CrossRefGoogle ScholarPubMed
Whitaker, R. C., Wright, J. A., Pepe, M. S., Seidel, K. D. and Dietz, W. H. (1997). Predicting obesity in young adulthood from childhood and parental obesity. N. Engl. J. Med., 337, 869–73.CrossRefGoogle ScholarPubMed
Wills, J., Watson, J. M., Hales, C. N. and Phillips, D. I. W. (1996). The relation of fetal growth to insulin secretion in young men. Diabet. Med., 13, 773–4.3.0.CO;2-Q>CrossRefGoogle ScholarPubMed
Winston, R. M. L. and Hardy, K. (2002). Are we ignoring potential dangers of in vitro fertilization and related treatments?Nat. Cell Biol., 2, S14–18.CrossRefGoogle Scholar
Yarbrough, D. E., Barrett-Connor, E. and Morton, D. J. (2000). Birth weight as a predictor of adult bone mass in postmenopausal women: the Rancho Bernardo study. Osteoporos. Int., 11, 626–30.CrossRefGoogle ScholarPubMed
Zureik, M., Bonithon-Kopp, C., Lecomte, E., Siest, G. and Ducimetiere, P. (1996). Weights at birth and in early infancy, systolic pressure, and left ventricular structure in subjects aged 8 to 24 years. Hypertension, 27, 339–45.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×