Skip to main content Accessibility help
×
Hostname: page-component-797576ffbb-k7d4m Total loading time: 0 Render date: 2023-12-08T14:19:06.819Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "useRatesEcommerce": true } hasContentIssue false

6 - The evolutionary genetics of the creativity–psychosis connection

from Part II - Cognitive and neuroscientific perspectives on creativity and mental illness

Published online by Cambridge University Press:  05 August 2014

Aaron Kozbelt
Affiliation:
Graduate Center of the City University of New York
Scott Barry Kaufman
Affiliation:
University of Pennsylvania
Deborah J. Walder
Affiliation:
Graduate Center of the City University of New York
Luz H. Ospina
Affiliation:
Graduate Center of the City University of New York
Joseph U. Kim
Affiliation:
Vanderbilt University
James C. Kaufman
Affiliation:
University of Connecticut
Get access

Summary

Why is it that all those who have become eminent in philosophy or politics or poetry or the arts are clearly melancholics?

– Aristotle

Nothing in biology makes sense except in the light of evolution.

– Dobzhansky (1973)

Introduction

Schizophrenia, a debilitating mental illness affecting roughly 1 percent of the population worldwide, is widely accepted as being highly genetically influenced (Cardno et al., 1999; Gershon et al., 1988; Kendler and Diehl, 1993). Schizophrenia is often marked by distortions of reality, disorganized thought, emotional blunting, and/or social isolation that may interfere with optimal functioning (Cornblatt et al., 2012). Schizophrenia may be associated with creativity, although research findings are mixed (e.g., Andreasen, 2011; Kyaga et al., 2013). Evidence also points to adverse effects on fertility and reproductive success among (particularly) males with schizophrenia (Svensson et al., 2007), in part accounted for by marital status (McCabe et al., 2009), suggesting potential biological and social influences. Collectively, this raises an intriguing potential evolutionary puzzle: How does schizophrenia persist in the population at a stable prevalence rate too high to be explained by simple random mutation? (Doi et al., 2009; see also Del Giudice et al., 2010). Among various hypotheses, including in the context of the emerging field of evolutionary epidemiology, schizophrenia may represent “one extreme of a sexually selected fitness factor” (Shaner et al., 2004).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbar, M., Courtet, P., Bellivier, F., Leboyer, M., Boulenger, J. P., Castelhau, D., Ferreira, M., Lambercy, C., Mouthon, D., Paoloni-Giacobino, A., Vessaz, M., Malafosse, A. and Buresi, C. (2001). Suicide attempts and the tryptophan hydroxylase gene. Molecular Psychiatry, 6, 268–273.Google Scholar
Abdolmaleky, H. M., Cheng, K. H., Faraone, S. V., Wilcox, M., Glatt, S. J., Gao, F., Smith, C. L., Shafa, R., Aeali, B., Carnevale, J., Pan, H., Papageorgis, P., Ponte, J. F., Sivaraman, V., Tsuang, M. T. and Thiagalingam, S. (2006). Hypomethylation of MB-COMT promoter is a major risk factor for schizophrenia and bipolar disorder. Human Molecular Genetics, 15, 3132–3145.Google Scholar
Abdolmaleky, H. M., Smith, C. L., Faraone, S. V., Shafa, R., Stone, W., Glatt, S. J. and Tsuang, M. T. (2004). Methylomics in psychiatry: Modulation of gene–environment interactions may be through DNA methylation. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 127(1), 51–59.Google Scholar
Amabile, T. M. (1996). Creativity in context. Boulder, CO: Westview.
Andreasen, N. C. (1987). Creativity and mental illness: Prevalance rates in writers and their first-degree relatives. American Journal of Psychiatry, 144(10), 1288–1292.Google Scholar
Andreasen, N. C. (2008). The relationship between creativity and mood disorders. Dialogues in Clinical Neuroscience, 10(2), 251–255.Google Scholar
Andreasen, N. C. (2011). A journey into chaos: Creativity and the unconscious. Mens Sana Monographs, 9(1), 42–53.Google Scholar
Aristotle, (1984). The complete works of Aristotle: The revised Oxford translation (Vol. 2) (Foster, E. S., Trans.; Barnes, J., Ed.). Princeton University Press.
Bachner-Melman, R., Dina, C., Zohar, A. H., Constantini, N., Lerer, E., Hoch, S., Sella, S., Nemanov, L., Gritsenko, I., Lichtenberg, P., Granot, R. and Ebstein, R. P. (2005). AVPR1a and SLC6A4 gene polymorphisms are associated with creative dance performance. PLoS Genetics, 1(3), e42.Google Scholar
Barron, F. (1972). Artists in the making. New York: Seminar Press.
Barron, F. and Parisi, P. (1977). Twin resemblances in expressive behavior. Acta geneticae medicae et gemellologiae, Spring.
Batey, M. and Furnham, A. (2008). The relationship between measures of creativity and schizotypy. Personality and Individual Differences, 45, 816–821.Google Scholar
Beaussart, M. L., Kaufman, S. B. and Kaufman, J. C. (2012). Creative activity, personality, mental illness, and short-term mating success. Journal of Creative Behavior, 46, 151–167.Google Scholar
Bolling, M. Y. and Kohlenberg, R. J. (2004). Reasons for quitting serotonin reuptake inhibitor therapy: Paradoxical psychological side effects and patient satisfaction. Psychotherapy and Psychosomatics, 73(6), 380–385.Google Scholar
Buchsbaum, M., Christian, B. and Lehrer, D. (2006). D2/D3 dopamine receptor binding with [F-18]fallypride in thalamus and cortex of patients with schizophrenia. Schizophrenia Research, 85, 232–244.Google Scholar
Burch, G. S. J., Pavelis, C., Hemsley, D. R. and Corr, P. J. (2006). Schizotypy and creativity in visual artists. British Journal of Psychology, 97, 177–190.Google Scholar
Burns, J. K. P. (2004). An evolutionary theory of schizophrenia: Cortical connectivity, metarepresentation and the social brain. Behavioral and Brain Sciences, 27, 831–885.Google Scholar
Burt, A. and Trivers, R. (2006). Genes in conflict: The biology of selfish genetic elements. Cambridge, MA: Belknap.
Cardno, A. G. and Gottesman, I. I. (2000). Twin studies of schizophrenia: From bow-and-arrow concordances to star-wars Mx and functional genomics. American Journal of Medical Genetics, 97, 12–17.Google Scholar
Cardno, A. G., Marshall, E. J., Coid, B., Macdonald, A. M., Ribchester, T. R., Davies, N. J., Venturi, P., Jones, L. A., Lewis, S. W., Sham, P. C., Gottesman, I. I., Farmer, A. E., McGuffin, P., Reveley, A. M. and Murray, R. M. (1999). Heritability estimates for psychotic disorders: The Maudsley twin psychosis series. Archives of General Psychiatry, 56(2), 162–168.Google Scholar
Carson, S. H. (2011). Creativity and psychopathology: A shared vulnerability model. Canadian Journal of Psychiatry, 56, 144–153.Google Scholar
Carson, S. H., Peterson, J. B. and Higgins, D. M. (2003). Decreased latent inhibition is associated with increased creative achievement in high-functioning individuals. Journal of Personality and Social Psychology, 85, 499–506.Google Scholar
Caspi, A., Sugden, K., Moffitt, T. E., Taylor, A., Craig, I. W., Harrington, H., McClay, J., Mill, J., Martin, J., Braithwaite, A. and Poulton, R. (2003). Influence of life stress on depression: Moderation by a polymorphism in the 5-HTT gene. Science, 301, 386–389.Google Scholar
Chávez-Eakle, R. A. (2007). Creativity, DNA, and cerebral blood flow. In Martindale, C., Locher, P. and Petrov, V. M. (Eds.), Evolutionary and neurocognitive approaches to aesthetics, creativity, and the arts (pp. 209–224). Amityville, NY: Baywood.
Clegg, H., Nettle, D. and Miell, D. (2011). Status and mating success amongst visual artists. Frontiers in Psychology, 2, 1–4.Google Scholar
Colzato, L. S., Pratt, J. and Hommel, B. (2010). Dopaminergic control of attentional flexibility: Inhibition of return is associated with the dopamine transporter gene (DAT1). Frontiers in Human Neuroscience. doi:Google Scholar
Corfas, G., Roy, K. and Buxbaum, J. D. (2004). Neuregulin 1-erbB signaling and the molecular/cellular basis of schizophrenia. Nature Neuroscience, 7, 575–580.Google Scholar
Cornblatt, B. A., Carrión, R. E., Addington, J., Seidman, L., Walker, E. F., Cannon, T. D., Cadenhead, K. S., McGlashan, T. H., Perkins, D. O., Tsuang, M. T., Woods, S. W., Heinssen, R. and Lencz, T. (2010). Risk factors for psychosis: Impaired social and role functioning. Schizophrenia Bulletin, 38(6), 1247–1257.Google Scholar
Crespi, B. and Badcock, C. (2008a). Psychosis and autism as diametrical disorders of the social brain. Behavioral and Brain Sciences, 31, 241–261.Google Scholar
Crespi, B. and Badcock, C. (2008b). The evolutionary social brain: From genes to psychiatric conditions. Behavioral and Brain Sciences, 31, 284–296.Google Scholar
Crow, T. J. (1993). Sexual selection, Machiavellian intelligence, and the origins of psychosis. The Lancet, 342, 594–598.Google Scholar
Crow, T. J. (1995). A Darwinian approach to the origins of psychosis. British Journal of Psychiatry, 167(1), 12–25.Google Scholar
Crow, T. J. (1997). Is schizophrenia the price that Homo sapiens pays for language? Schizophrenia Research, 28, 127–141.Google Scholar
Crow, T. J. (2008). The “big bang” theory of the origin of psychosis and the faculty of language. Schizophrenia Research, 102, 31–52.Google Scholar
Csikszentmihalyi, M. (1988). Society, culture, and person: A systems view of creativity. In Sternberg, R. J. (Ed.), The nature of creativity: Contemporary psychological perspectives (pp. 325–339). New York: Cambridge University Press.
Daly, M. P., Afroz, S. and Walder, D. J. (2012). Schizotypal traits and neurocognitive functioning among nonclinical young adults. Psychiatry Research, 200, 635–640.Google Scholar
Del Giudice, M., Angeleri, R., Brizio, A. and Elena, M. R. (2010). The evolution of autistic-like and schizotypal traits: A sexual selection hypothesis. Frontiers in Psychology, 1, 41.Google Scholar
de Manzano, Ö., Cervenka, S., Karabanov, A. and Farde, L. (2010). Thinking outside a less intact box: Thalamic dopamine D2 receptor densities are negatively related to psychometric creativity in healthy individuals. PloS ONE, 5(5): e10670.Google Scholar
Detera-Wadleigh, S. D. and McMahon, F. J. (2006). G72/G30 in schizophrenia and bipolar disorder: Review and meta-analysis. Biological Psychiatry, 60(2), 106–114.Google Scholar
DeYoung, C. G., Grazioplene, R. G. and Peterson, J. B. (2011). From madness to genius: The Openness/Intellect trait domain as a paradoxical simplex. Journal of Research in Personality, 46, 63–78.Google Scholar
Dobzhansky, T. (1973). Nothing in biology makes sense except in the light of evolution. The American Biology Teacher, 35, 125–129.Google Scholar
Dodgson, G. and Gordon, S. (2009). Avoiding false negatives: Are some auditory hallucinations an evolved design flaw? Behavioural and Cognitive Psychotherapy, 37, 325–334.Google Scholar
Doi, N., Hoshi, Y., Itokawa, M., Usui, C., Yoshikawa, T. and Tashikawa, H. (2009). Persistence criteria for susceptibility genes for schizophrenia: A discussion from an evolutionary viewpoint. PloS ONE, 4: e7799.Google Scholar
Egan, M. F., Goldberg, T. E., Kolachana, B. S., Callicott, J. H., Mazzanti, C. M., Straub, R. E., Goldman, D. and Weinberger, D. R. (2001). Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia. Proceedings of the National Academy of Sciences USA, 98, 6917–6922.Google Scholar
Epstein, R., Novick, O., Umansky, R. and Priel, B. (1996). Dopamine D4 receptor (D4DR) exon III polymorphism associated with the human personality trait of Novelty Seeking. Nature Genetics, 12, 78–80.Google Scholar
Eysenck, H. J. (1993). Creativity and personality: Suggestions for a theory. Psychological Inquiry, 4(3), 147–178.Google Scholar
Fayena-Tawil, F., Kozbelt, A. and Sitaras, L. (2011). Think global, act local: A protocol analysis comparison of artists’ and non-artists’ cognitions, metacognitions, and evaluations while drawing. Psychology of Aesthetics, Creativity, and the Arts, 5, 135–145.Google Scholar
Fett, A. K., Viechtbauer, W., Dominguez, M. D., Penn, D. L., van Os, J. and Krabbendam, L. (2011). The relationship between neurocognition and social cognition with functional outcomes in schizophrenia: A meta-analysis. Neuroscience & Bio-behavioral Reviews, 35(3), 573–588.Google Scholar
Frazer, K., Ballinger, D., Cox, D., Hinds, D., Stuve, L., Gibbs, R. et al. (2007). A second generation human haplotype map of over 3.1 million SNPs. Nature, 449(7164), 851–861.Google Scholar
Gaddum, J. H. and Hameed, K. A. (1954). Drugs which antagonize 5-hydroxytryptamine. British Journal of Pharmacology, 9(2), 240–248.Google Scholar
Galton, F. (1869). Hereditary genius: An enquiry into its laws and consequences. London: Macmillan.
Garcia-Garcia, M., Barceló, F. and Clemente, I. (2010). The role of DAT1 gene on the rapid detection of task novelty. Neuropsychologia, 48, 4136–4141.Google Scholar
Gardner, H. (2001). Creators: Multiple intelligences. In Pfenninger, K. H. and Shubik, V. R. (Eds.), The origins of creativity (pp. 117–143). New York: Oxford University Press.
Gebicke-Haerter, P. J. (2012). Epigenetics of schizophrenia. Pharmacopsychiatry, 45, Supplement 1, S42–S48.Google Scholar
Geher, G. and Kaufman, S. B. (2011). Mating intelligence. In Sternberg, R. J. and Kaufman, S. B. (Eds.), The Cambridge handbook of intelligence (pp. 603–622). Cambridge, UK: Cambridge University Press.
Gershon, E. S., DeLisi, L. E., Hamovit, J., Nurnberger, J. I., Maxwell, M. E., Schreiber, J., Dauphinais, D., Dingman, C. W. and Guroff, J. J. (1988). A controlled family study of chronic psychoses: Vs schizophrenia and schizoaffective disorder. Archives of General Psychiatry, 45(4), 328–336.Google Scholar
Goldman, D., Weinberger, D. R., Malhotra, A. K. and Goldberg, T. E. (2009). The role of COMT Val158Met in cognition. Biological Psychiatry, 65(1), e1–2.Google Scholar
Guilford, J. P. (1950). Creativity. American Psychologist, 5, 444–454.Google Scholar
Guilford, J. P. (1967). The nature of human intelligence. New York: McGraw-Hill.
Hall, J., Whalley, H. C., Job, D. E., Baig, B. J., McIntosh, A. M., Evans, K. L., Thomson, P. A., Porteous, D. J., Cunningham-Owens, D. G., Johnstone, E. C. and Lawrie, S. M. (2006). A neuregulin 1 variant associated with abnormal cortical function and psychotic symptoms. Nature Neuroscience, 9, 1477–1478.Google Scholar
Hammock, E. A. and Young, L. J. (2006). Oxytocin, vasopressin and pair bonding: Implications for autism. Philosophical Transactions of the Royal Society of London B. Biological Sciences, 361, 2187–2198.Google Scholar
Harrison, P. J. and Law, A. J. (2006). Neuregulin 1 and schizophrenia: Genetics, gene expression, and neurobiology. Biological Psychiatry, 60(2), 132–140.Google Scholar
Hawks, J., Wang, E. T., Cochran, G. M., Harpending, H. C. and Moyzis, R. K. (2007). Recent acceleration of human adaptive evolution. Proceedings of the National Academy of Sciences, 104(52), 20753–20758.Google Scholar
Hennah, W., Thomson, P., Peltonen, L. and Porteous, D. (2006). Genes and schizophrenia. Beyond schizophrenia: The role of DISC1 in major mental illness. Schizophrenia Bulletin, 32(3), 409–416. doi:Google Scholar
Honea, R., Verchinski, B. A., Pezawas, L., Kolachana, B. S., Callicott, J. H., Mattay, V. S., Weinberger, D. R. and Meyer-Lindenberg, A. (2009). Impact of interacting functional variants in COMT on regional gray matter volume in human brain. Neuroimage, 45, 44–51.Google Scholar
Hyman, S. (2000). Mental illness: Genetically complex disorders of neural circuitry and neural communication. Neuron, 28(2), 321–323.Google Scholar
Jablensky, A., Sartorius, N., Ernberg, G., Anker, M., Korten, A., Cooper, J. E., Day, R. and Bertelsen, O. (1992). Schizophrenia: Manifestations, incidence and course in different cultures. A World Health Organization ten-country study. New York: Cambridge University Press.
Jamison, K. R. (1993). Touched with fire: Manic-depressive illness and the artistic temperament. New York: Simon & Schuster.
Joober, R., Boksa, P., Benkelfat, C. and Rouleau, G. (2002). Genetics of schizophrenia: From animal models to clinical studies. Journal of Psychiatry and Neuroscience, 27, 336–347.Google Scholar
Kandel, E. R. (1998). A new intellectual framework for psychiatry. American Journal of Psychiatry, 155(4), 457–469.Google Scholar
Kaufman, J. C. and Baer, J. (Eds.) (2005). Creativity across domains: Faces of the muse. Mahwah, NJ: Erlbaum.
Kaufman, J. C. and Beghetto, R. A. (2009). Beyond big and little: The four c model of creativity. Review of General Psychology, 13, 1–12.Google Scholar
Kaufman, S. B., DeYoung, C. G., Gray, J. R., Jimenez, L., Brown, J. B. and Mackintosh, N. (2010). Implicit learning as an ability. Cognition, 116, 321–340.Google Scholar
Kelleher, I., Jenner, J. A. and Cannon, M. (2010). Psychotic symptoms in the general population: An evolutionary perspective. The British Journal of Psychiatry, 197, 167–169. doi:Google Scholar
Keller, M. and Miller, G. F. (2006). An evolutionary framework for mental disorders: Integrating adaptationist and evolutionary genetics models. Behavioral and Brain Sciences, 29, 429–452.Google Scholar
Kendler, K. S. and Diehl, S. R. (1993). The genetics of schizophrenia: A current, genetic-epidemiologic perspective. Schizophrenia Bulletin, 19, 261–285.Google Scholar
Kéri, S. (2009). Genes for psychosis and creativity: A promoter polymorphism of the neuregulin 1 gene is related to creativity in people with high intellectual achievement. Psychological Science, 20(9), 1070–1073.Google Scholar
Kirov, G., Gumus, D., Chen, W., Norton, N., Georgieva, L., Sari, M., O’Donovan, M. C., Erdogan, F., Owen, M. J., Ropers, H.-H. and Ullman, R. (2008). Comparative genome hybridization suggests a role for NRXN1 and APBA2 in schizophrenia. Human Molecular Genetics, 17(3), 458–465.Google Scholar
Kottler, J. (2005). Divine madness. San Francisco, CA: Jossey-Bass.
Kozbelt, A. (2006). Dynamic evaluation of Matisse’s 1935 “Large Reclining Nude.” Empirical Studies of the Arts, 24, 119–137.Google Scholar
Kozbelt, A. (2007). A quantitative analysis of Beethoven as self-critic: Implications for psychological theories of musical creativity. Psychology of Music, 35, 147–172.Google Scholar
Kozbelt, A. (2008). Longitudinal hit ratios of classical composers: Reconciling “Darwinian” and expertise acquisition perspectives on lifespan creativity. Psychology of Aesthetics, Creativity, and the Arts, 2, 221–235.Google Scholar
Kozbelt, A. (2009). Ontogenetic heterochrony and the creative process in visual art: A précis. Psychology of Aesthetics, Creativity, and the Arts, 3, 35–37.Google Scholar
Kyaga, S., Landén, M., Boman, M., Hultman, C., Langstrom, N. and Lichtenstein, P. (2013). Mental illness, suicide and creativity: 40-year prospective total population study. Journal of Psychiatric Research, 47, 83–90.Google Scholar
Kyaga, S., Lichtenstein, P., Boman, M., Hultman, C., Langstrom, N. and Landén, M. (2011). Creativity and mental disorder: Family study of 300,000 people with severe mental disorder. British Journal of Psychiatry, 199, 373–379.Google Scholar
Lencz, T., Morgan, T., Athanasiou, M., Dain, B., Reed, C., Kane, J., Kucherlapati, R. and Malhotra, A. (2007). Converging evidence for a pseudoautosomal cytokine receptor gene locus in schizophrenia. Molecular Psychiatry, 12(6), 572–580.Google Scholar
Lesch, K. P., Bengel, D., Heils, A., Sabol, S. Z., Greenberg, B. D., Petri, S., Benjamin, J., Müller, C. R., Hamer, D. H. and Murphy, D. L. (1996). Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science, 274(5292), 1527–1531.Google Scholar
Lu, L. and Shi, J. (2010). Association between creativity and COMT genotype. National Natural Science Foundation of China, 30670716, 1–4. IEEE.
Ludwig, A. M. (1995). The price of greatness: Resolving the creativity and madness controversy. New York: Guilford Press.
McCabe, J. H., Koupil, I. and Leon, D. A. (2009). Lifetime reproductive output over two generations in patients with psychosis and their unaffected siblings: The Uppsala 1915–1929 Birth Cohort Multigenerational Study. Psychological Medicine, 39(10), 1667–1676.Google Scholar
McGrath, J. J., Hearle, J., Jenner, L., Plant, K., Drummond, A. and Barkla, J. M. (1999). The fertility and fecundity of patients with psychoses. Acta Psychiatrica Scandinavica, 99, 441–446.Google Scholar
Malhotra, A. K., Kestler, L. J., Mazzanti, C., Bates, J. A., Goldberg, T. and Goldman, D. (2002). A functional polymorphism in the COMT gene and performance on a test of prefrontal cognition. American Journal of Psychiatry, 159, 652–654.Google Scholar
Martindale, C. (1990). The clockwork muse: The predictability of artistic change. New York: Basic Books.
Meehl, P. E. (1962). Schizotaxia, schizotypy, schizophrenia. American Psychologist, 17, 827–838.Google Scholar
Meehl, P. E. (1990). Toward an integrated theory of schizotaxia, schizotypy, and schizophrenia. Journal of Personality Disorders, 4, 1–99.Google Scholar
Mei, L. and Xiong, W. C. (2008). Neuregulin-1 signaling in neural development, synaptic plasticity and schizophrenia. Nature Reviews Neuroscience, 9, 437–452.Google Scholar
Miller, G. F. (2001). The mating mind: How sexual choice shaped the evolution of human nature. New York: Anchor.
Miller, G. F. (2010). Are pleiotropic mutations and Holocene selective sweeps the only evolutionary-genetic processes left for explaining heritable variation in human psychological traits? In Buss, D. M. and Hawley, P. H. (Eds.), The evolution of personality and individual differences (pp. 376–399). New York: Oxford University Press.
Miller, G. F. and Tal, I. (2007). Schizotypy versus intelligence and openness as predictors of creativity. Schizophrenia Research, 93(1–3), 317–324.Google Scholar
Murphy, K. C., Jones, L. A. and Owen, M. J. (1999). High rates of schizophrenia in adults with velo-cardio-facial syndrome. Archives of General Psychiatry, 56, 940–945.Google Scholar
Nelson, B. and Rawlings, D. (2010). Relating schizotypy and personality to the phenomenology of creativity. Schizophrenia Bulletin, 36, 388–399.Google Scholar
Nesse, R. M. (2004). Cliff-edged fitness functions and the persistence of schizophrenia (commentary). Behavioral and Brain Sciences, 27, 862–863.Google Scholar
Nettle, D. (2001). Strong imagination: Madness, creativity and human nature. Oxford: Oxford University Press.
Nettle, D. (2006). Schizotypy and mental health amongst poets, visual artists, and mathematicians. Journal of Research in Personality, 40, 876–890.Google Scholar
Nettle, D. and Clegg, H. (2006). Schizotypy, creativity, and mating success in humans. Proceedings of the Royal Society, 273, 611–615.Google Scholar
Ng, M. Y., Levinson, D. F., Faraone, S. V., Suarez, B. K., DeLisi, L. E., Arinami, T. et al. (2009). Meta-analysis of 32 genome-wide linkage studies of schizophrenia. Molecular Psychiatry, 14(8), 774–785.Google Scholar
Nieoullon, A. (2002). Dopamine and the regulation of cognition and attention. Progress in Neurobiology, 67(1), 53–83.Google Scholar
Nuechterlein, K. H., Subotnik, K. L., Ventura, J., Green, M. F., Gretchen-Doorly, D. and Asarnow, R. F. (2012). The puzzle of schizophrenia: Tracking the core role of cognitive deficits. Developmental Psychopathology, 24(2), 529–536.Google Scholar
Numakawa, T., Yagasaki, Y., Ishimoto, T., Okada, T., Suzuki, T., Iwata, N., Ozaki, N., Taguchi, T., Tatsumi, M., Kamijima, K., Straub, R. E., Weinberger, D. R., Kunugi, H. and Hashimoto, R. (2004). Evidence of novel neuronal functions of dysbindin, a susceptibility gene for schizophrenia. Human Molecular Genetics, 13(21), 2699–2708.Google Scholar
O’Donovan, M. C., Craddock, N., Norton, N., Williams, H., Peirce, T., Moskvina, V. et al. (2008). Identification of loci associated with schizophrenia by genome-wide association and follow-up. Nature Genetics, 40, 1053–1055.Google Scholar
Opbroek, A., Delgado, P. and Laukes, C. (2002). Emotional blunting associated with SSRI-induced sexual dysfunction: Do SSRIs inhibit emotional responses? The International Journal of Neuropsychopharmacology, 5, 147–151.Google Scholar
O’Reilly, T., Dunbar, R. and Bentall, R. (2001). Schizotypy and creativity: An evolutionary connection? Personality and Individual Differences, 31, 1067–1078.Google Scholar
Pidsley, R. and Mill, J. (2011) Research highlights: Epigenetic changes to serotonin receptor gene expression in schizophrenia and bipolar disorder. Epigenomics, 3(5), 521–523.Google Scholar
Pluess, M., Belsky, J., Way, B. M. and Taylor, S. E. (2010). 5-HTTLPR moderates effects of current life events on neuroticism: Differential susceptibility to environmental influences. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 34, 1070–1074.Google Scholar
Polesskaya, O. O., Aston, C. and Sokolov, B. P. (2006). Allele C-specific methylation of the 5-HT2A receptor gene: Evidence for correlation with its expression and expression of DNA methylase DNMT1. Journal of Neuroscience Research, 83(3), 362–373. doi:.Google Scholar
Post, F. (1996). Verbal creativity, depression, and alcoholism: An investigation of one hundred American and British writers. British Journal of Psychiatry, 168, 545–555.Google Scholar
Prokosch, M. D., Yeo, R. A. and Miller, G. F. (2005). Intelligence tests with higher g-loadings show higher correlations with body symmetry: Evidence for a general fitness factor mediated by developmental stability. Intelligence, 33, 203−213.Google Scholar
Rawlings, D. and Locarnini, A. (2008). Dimensional schizotypy, autism, and unusual word associations in artists and scientists. Journal of Research in Personality, 42, 465–471.Google Scholar
Reuter, M., Panksepp, J., Schnabel, N., Kellerhoff, N., Kempel, P. and Hennig, J. (2005). Personality and biological markers of creativity. European Journal of Personality, 19, 83–95.Google Scholar
Reuter, M., Roth, S. and Holve, K. (2006). Identification of first candidate genes for creativity: A pilot study. Brain Research, 1069(1), 190–197.Google Scholar
Reznikoff, M., Domino, G., Bridges, C. and Honeyman, M. (1973). Creative abilities in identical and fraternal twins. Behavior Genetics, 3(4), 365–377.Google Scholar
Rodriguez-Murillo, L., Gogos, J. A. and Karayiorgou, M. (2012). The genetic architecture of schizophrenia: New mutations and emerging paradigms. Annual Review of Medicine, 63, 63–80.Google Scholar
Ross, C. A., Margolis, R. L., Reading, S. A., Pletnikov, M. and Coyle, J. T. (2006). Neurobiology of schizophrenia. Neuron, 52(1), 139–153.Google Scholar
Rothenberg, A. (1990). Creativity and madness. Baltimore, MD: Johns Hopkins University Press.
Sawaguchi, T. and Goldman-Rakic, P. (1991). D1 dopamine receptors in prefrontal cortex: Involvement in working memory. Science, 251(4996), 947–950.Google Scholar
Sawyer, R. K. (2006). Explaining creativity: The science of human innovation. New York: Oxford University Press.
Schlesinger, J. (2009). Creative mythconceptions: A closer look at the evidence for the “mad genius” hypothesis. Psychology of Aesthetics, Creativity, and the Arts, 3(2), 62–72.Google Scholar
Shaner, A., Miller, G. and Mintz, J. (2004). Schizophrenia as one extreme of a sexually selected fitness indicator. Schizophrenia. Research, 70(1), 101–109.Google Scholar
Shaner, A., Miller, G. and Mintz, J. (2008). Mental disorders as catastrophic failures of mating intelligence. In Geher, G. and Miller, G. (Eds.), Mating intelligence: Sex, relationships, and the mind’s reproductive system (pp. 193–223). New York: Psychology Press.
Shifman, S., Johannesson, M., Bronstein, M., Chen, S. X., Collier, D. A., Craddock, N. J., Kendler, K. S., Li, T., O’Donovan, M., O’Neill, F. A., Owen, M. J., Walsh, D., Weinberger, D. R., Sun, C., Flint, J. and Darvasi, A. (2008). Genome-wide association identifies a common variant in the Reelin gene that increases the risk of schizophrenia only in women. PLoS Genetics, 4(2), e28. doi:Google Scholar
Silvia, P. J. (2008). Discernment and creativity: How well can people identify their most creative ideas? Psychology of Aesthetics, Creativity, and the Arts, 2, 139–146.Google Scholar
Silvia, P. J. and Kaufman, J. C. (2011). Creativity and mental illness. In Kaufman, J. C. and Sternberg, R. J. (Eds.), The Cambridge handbook of creativity (pp. 381–394). New York: Cambridge University Press.
Simonton, D. K. (1984). Creative productivity and age: A mathematical model based on a two-step cognitive process. Developmental Review, 4, 77–111.Google Scholar
Simonton, D. K. (1994). Greatness: Who makes history and why. New York: Guilford Press.
Stefanis, N. C., Trikalinos, T. A., Avramopoulos, D., Smyrnis, N., Evdokimidis, I., Ntzani, E. E., Ioannidis, J. P. and Stefanis, C. N. (2007). Impact of schizophrenia candidate genes on schizotypy and cognitive endophenotypes at the population level. Biological Psychiatry, 62, 784–792.Google Scholar
Sternberg, R. J. and Lubart, T. I. (1995). Defying the crowd: Cultivating creativity in a culture of conformity. New York: Free Press.
Stoltenberg, S., Twitchell, G., Hanna, G., Cook, E., Fitzgerald, H., Zucker, R. and Little, K. (2002). Serotonin transporter promoter polymorphism, peripheral indexes of serotonin function, and personality measures in families with alcoholism. American Journal of Medical Genetics, 114(2), 230–234.Google Scholar
Straub, R. E., Jiang, Y., MacLean, C. J., Ma, Y., Webb, B. T., Myakishev, M. V., Harris-Kerr, C., Wormley, B., Sadek, H., Kadambi, B., Cesare, A. J., Gibberman, A., Wang, X., O’Neill, F. A., Walsh, D. and Kendler, K. S. (2002). Genetic variation in the 6p22.3 gene DTNBP1, the human ortholog of the mouse dysbindin gene, is associated with schizophrenia. American Journal of Human Genetics, 71(2), 337–348.Google Scholar
Svensson, A. C., Lichtenstein, P., Sandin, S. and Hultman, C. M. (2007). Fertility of first-degree relatives of patients with schizophrenia: A three generation perspective. Schizophrenia Research, 91(1), 238–245.Google Scholar
Szatmari, P., Paterson, A., Zwaigenbaum, L., Roberts, W., Brian, J., Liu, X. et al. (2007). Mapping autism risk loci using genetic linkage and chromosomal rearrangements. Nature Genetics, 39(3), 319–328.Google Scholar
Talvik, M., Nordström, A. and Olsson, H. (2003). Decreased thalamic D2/D3 receptor binding in drug-naive patients with schizophrenia: A PET study with [11C]FLB 457. The International Journal of Neuropsychopharmacology, 6(4), 361–370.Google Scholar
Thompson, R., Gupta, S., Miller, K., Mills, S. and Orr, S. (2004). The effects of vasopressin on human facial responses related to social communication. Psychoneuroendocrinology, 29, 35–48.Google Scholar
Torrance, E. P. (1969). Creativity: What research says to the teacher. Washington, DC: National Education Association.
Tsuang, M. T. (2000). Schizophrenia: Genes and environment. Biological Psychiatry, 47(3), 210–220.Google Scholar
Tunbridge, E. M., Harrison, P. J. and Weinberger, D. R. (2006). Catechol-o-Methyltransferase, cognition, and psychosis: Val158Met and beyond. Biological Psychiatry, 60, 141–151.Google Scholar
Ukkola, L. T., Onkamo, P., Raijas, P., Karma, K. and Järvelä, I. (2009). Musical aptitude is associated with AVPR1A-haplotypes. PLoS ONE, 4(5): e5534.Google Scholar
Vandenberg, S. G. (Ed.) (1968). Progress in human behavior genetics. Baltimore, MD: Johns Hopkins University Press.
Van Os, J., Linscott, R. J., Myin-Germeys, I., Delespaul, P. and Krabbendam, L. (2008). A systematic review and meta-analysis of the psychosis continuum: Evidence for a psychosis-proneness-persistence-impairment model of psychotic disorder. Psychological Medicine, 8, 1–17.Google Scholar
Venkatasubramanian, G. and Kalmady, S. V. (2010). Creativity, psychosis and human evolution: The exemplar case of neuregulin 1 gene. Indian Journal of Psychiatry 2010, 52, 282.Google Scholar
Vinkhuyzen, A. A. E., van der Sluis, S., Posthuma, D. and Boomsma, D. I. (2009). The heritability of aptitude and exceptional talent across different domains in adolescents and young adults. Behavioral Genetics, 39(4), 380–392.Google Scholar
Volf, N., Kulikov, A. and Bortsov, C. (2009). Association of verbal and figural creative achievement with polymorphism in the human serotonin transporter gene. Neuroscience Letters, 463, 154–157.Google Scholar
Walder, D. J., Ospina, L., Daly, M. P., Statucka, M. and Raparia, E. (2012). Early neurodevelopment and psychosis risk: Role of neurohormones and biological sex in modulating genetic, prenatal and sensory processing factors in brain development. In Anastassiou-Hadjicharalambous, X. (Ed.), Psychosis: Causes, diagnosis and treatment (pp. 44–78). Hauppauge, NY: Nova Science.
Walder, D. J., Statucka, M., Daly, M. P., Axen, K. and Haber, M. (2012). Biological sex and menstrual cycle phase modulation of cortisol levels and psychiatric symptoms in a non-clinical sample of young adults. Psychiatry Research, 197, 314–321.Google Scholar
Walder, D. J., Trotman, H., Cubells, J., Brasfield, J. and Walker, E. F. (2010). Catechol-O-Methyltransferase (COMT) modulation of cortisol among adolescents at high-risk for psychopathology and healthy controls. Psychiatric Genetics, 20(4), 166–170.Google Scholar
Walker, E. and Diforio, D. (1997). Schizophrenia: A neural diasthesis-stress model. Psychological Review, 104, 667–685.Google Scholar
Walker, E., Kestler, L., Bollini, A. and Hochman, K. M. (2004). Schizophrenia: Etiology and course. Annual Review of Psychology, 55, 401–430.Google Scholar
Wang, H., Ng, K., Hayes, D., Gao, X., Forster, G., Blaha, C. and Yeomans, J. (2004). Decreased amphetamine-induced locomotion and improved latent inhibition in mice mutant for the M5 muscarinic receptor gene found in the human 15q schizophrenia region. Neuropsychopharmacology, 29, 2126–2139.Google Scholar
Wang, W. Y., Barratt, B. J., Clayton, D. G. and Todd, J. A. (2005). Genome-wide association studies: Theoretical and practical concerns. Nature Reviews Genetics, 6, 109–118.Google Scholar
Ward, T. B., Smith, S. M. and Finke, R. A. (1999). Creative cognition. In Sternberg, R. J. (Ed.), Handbook of creativity (pp. 189–212). New York: Cambridge University Press.
Weisberg, R. W. (2006). Creativity: Understanding innovation in problem solving, science, invention, and the arts. Hoboken, NJ: Wiley.
White, H. A. and Shah, P. (2006). Uninhibited imaginations: Creativity in adults with attention deficit/hyperactivity disorder. Personality and Individual Differences, 40(6), 1121–1131.Google Scholar
Woody, E. and Claridge, G. (1977). Psychoticism and thinking. British Journal of Social and Clinical Psychology, 16(3), 241–248.Google Scholar
Zaboli, G., Gizatullin, R., Nilsonne, A., Wilczek, A., Jonsson, E. G., Ahnemark, E., Asberg, M. and Leopardi, R. (2006). Tryptophan hydroxylase-1 gene variants associate with a group of suicidal borderline women. Neuropsychopharmacology, 31(9), 1982–1990.Google Scholar
Zeki, S. (2007). The neurobiology of love. Federation of European Biochemical Societies Letters, 581, 2575–2579.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×