Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-cxxrm Total loading time: 0.406 Render date: 2021-12-01T11:02:00.107Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

13 - Geochemical exploration of planets: Moon and Mars as case studies

Published online by Cambridge University Press:  05 June 2012

Harry Y. McSween, Jr
Affiliation:
University of Tennessee, Knoxville
Gary R. Huss
Affiliation:
University of Hawaii, Manoa
Get access

Summary

Overview

The exploration of other planets increasingly involves combining the detailed chemical analyses of samples (laboratory or in situ) with chemical mapping by orbiting spacecraft to provide geologic context. In this chapter, we illustrate this approach to exploration by reviewing what has been learned about the Moon and Mars.

Lunar surface materials (Apollo and Luna returned samples and lunar meteorites) are classified into three geochemical end members – anorthosite, mare basalt, and KREEP. These components are clearly associated with the various geochemically mapped terrains of different age on the lunar surface. The composition of the lunar interior is inferred from the geochemical characteristics of basalts that formed by mantle melting, and geochemistry provides constraints on the Moon's impact origin and differentiation via a magma ocean.

Martian meteorites and Mars rover analyses suggest that it is a basalt-covered world, a conclusion supported by orbital measurements. Basalts of different ages appear to have distinct compositions. Since its original differentiation, the Martian mantle has remained geochemically isolated, although it is periodically melted to produce basalts. The core has an appreciable amount of sulfide, as inferred from trace elements in basalts. Water, once important in producing clays and sulfates, has now retreated into the subsurface.

Why the Moon and Mars?

The Moon and Mars are the only large bodies for which we have both samples for laboratory analysis and considerable chemical data from orbiting and landed spacecraft. Both bodies have experienced melting and differentiation.

Type
Chapter
Information
Cosmochemistry , pp. 445 - 483
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bell, J. (2008) The Martian Surface: Composition, Mineralogy, and Physical Properties. Cambridge: Cambridge University Press, 636 pp. This up-to-date book contains excellent chapters on chemical analyses by Pathfinder and MER APXS, Mars Odyssey GRS analyses, Martian meteorites, and geochemical interpretations of rocks and soils.CrossRefGoogle Scholar
Carr, M. (2006) The Surface of Mars. Cambridge: Cambridge University Press, 307 pp.Google Scholar
Solomon, S. C., plus 16 coauthors (2005) New perspectives on ancient Mars. Science, 307, 1214–1220.CrossRefGoogle ScholarPubMed
Jolliff, B. L., Wieczorek, M. A., Shearer, C. K. and Neal, C. R., eds. (2006) New Views of the Moon, Reviews in Mineralogy and Geochemistry60, Washington, D.C.: Mineralogical Society of America and Geochemical Society.Google Scholar
Taylor, S. R. and McLennan, S. M. (2009) Planetary Crusts: Their Composition, Origin and Evolution. Cambridge: Cambridge University Press, 378 pp.Google Scholar
Wilhelms, D. E. (1987) The Geologic History of the Moon. U.S. Geological Survey Professional Paper 1348.
Bibring, J.-P., Langevin, Y., Gendrin, A.et al. (2005) Mars surface diversity as revealed by the OMEGA/Mars Express observations. Science, 307, 1576–1581.CrossRefGoogle ScholarPubMed
Binzel, R. P., Gaffey, M. J., Thomas, P.et al. (1997) Geologic mapping of Vesta from 1994 Hubble Space Telescope images. Icarus, 128, 95–103.CrossRefGoogle Scholar
Blewett, D. T., Lucey, P. G. and Hawke, B. R. (1997) Clementine images of the lunar sample-return stations: Refinement of FeO and TiO2 mapping techniques. Journal of Geophysical Research, 102, 16 319–16 325.CrossRefGoogle Scholar
Boynton, W. V. plus 27 coauthors (2007) Concentration of S, Si, Cl, K, Fe, and Th in the low- and mid-latitude regions of Mars. Journal of Geophysical Research, 112, E12S99, doi:10.1029/2007JE002887.CrossRefGoogle Scholar
Boynton, W. V., Taylor, G. J., Karunatillake, S., Reedy, R. C. and Keller, J. M. (2008) Elemental abundances determined via the Mars Odyssey GRS. In The Martian Surface: Composition, Mineralogy, and Physical Properties, ed. Bell, J. F.Cambridge: Cambridge University Press, pp. 105–124.Google Scholar
Bruckner, J., Dreibus, G., Gellert, R.et al. (2008) Mars Exploration Rovers: Chemical composition by the APXS. In The Martian Surface: Composition, Mineralogy, and Physical Properties, ed. Bell, J. F.Cambridge: Cambridge University Press, pp. 58–101.CrossRefGoogle Scholar
Clark, B. C., Baird, A. K., Weldon, R. J.et al. (1982) Chemical composition of Martian fines. Journal of Geophysical Research, 87, 10 050–10 067.CrossRefGoogle Scholar
Clark, B. C. plus 23 coauthors (2005) Chemistry and mineralogy of outcrops at Meridiani Planum. Earth and Planetary Science Letters, 240, 73–94.CrossRefGoogle Scholar
Elphic, R. C., Lawrence, D. J., Feldman, W. C.et al. (2002) Lunar Prospector neutron spectrometer constraints on TiO2. Journal of Geophysical Research, 107 (E4), doi:10.1029/2000JE001460.CrossRefGoogle Scholar
Feldman, W. C., Maurice, S., Lawrence, D. J.et al. (2001) Evidence for water ice near the lunar poles. Journal of Geophysical Research, 106 (E10), 23 231–23 251.CrossRefGoogle Scholar
Feldman, W. C. plus 12 coauthors (2002) Global distribution of neutrons from Mars: results from Mars Odyssey. Science, 297, 75–78.CrossRefGoogle ScholarPubMed
Feldman, W. C., Mellon, M. T., Gasnault, O., Maurice, S. and Prettyman, T. H. (2008) Volatiles on Mars: Scientific results from the Mars Odyssey Neutron Spectrometer. In The Martian Surface: Composition, Mineralogy, and Physical Properties, ed. Bell, J. F.Cambridge: Cambridge University Press, pp. 125–148.CrossRefGoogle Scholar
Foley, C. N., Economou, T. E., Clayton, R. N.et al. (2008) Martian surface chemistry: APXS results from the Pathfinder landing site. In The Martian Surface: Composition, Mineralogy, and Physical Properties, ed. Bell, J. F.Cambridge: Cambridge University Press, pp. 35–57.Google Scholar
Gellert, R., Rieder, R., Brückner, J.et al. (2006) The Alpha Particle X-Ray Spectrometer (APXS): results from Gusev crater and calibration report. Journal of Geophysical Research, 111, E02S05, doi:10.1029/2005JE002555.CrossRefGoogle Scholar
Giguere, T. A., Taylor, G. J., Hawke, B. R. and Lucey, P. G. (2000) The titanium contents of lunar mare basalts. Meteoritics and Planetary Science, 35, 193–200.CrossRefGoogle Scholar
Ghosh, A. and McSween, H. Y. (1998) A thermal model for the differentiation of asteroid 4 Vesta, based on radiogenic heating. Icarus, 134, 187–206.CrossRefGoogle Scholar
Grotzinger, J. P. plus 19 coauthors (2005) Stratigraphy and sedimentology of a dry to wet eolian depositional system, Burns formation, Meridiani Planum, Mars. Earth and Planetary Science Letters, 240, 11–72.CrossRefGoogle Scholar
Halliday, A. N. (2004) The origin and earliest history of the Earth. In Treatise on Geochemistry, Vol. 1. Meteorites, Comets and Planets, ed. Davis, A. M., New York: Elsevier, pp. 509–557.Google Scholar
Hamilton, V. E., Wyatt, M. B., McSween, H. Y. and Christensen, P. R. (2001) Analysis of terrestrial and Martian volcanic compositions using thermal emission spectroscopy: 2. Application to Martian surface spectra from the Mars Global Surveyor thermal emission spectrometer. Journal of Geophysical Research, 106, 14,733–14,746.CrossRefGoogle Scholar
Hartmann, W. K.et al., editors (1986) Origin of the Moon. Lunar and Planetary Institute.
Hiesinger, H. and Head, J. W. (2006) New views of lunar geoscience: an introduction and overview. In New Views of the Moon, Reviews in Mineralogy and Geochemistry60, eds. Jolliff, B. L., Wieczorek, M. A., Shearer, C. K. and Neal, C. R.Washington, D.C.: Mineralogical Society of America and Geochemical Society, pp. 1–18.Google Scholar
Hurowitz, J. A., McLennan, S. M., Tosca, N. J.et al. (2006) In situ and experimental evidence for acidic weathering of rocks and soils on Mars. Journal of Geophysical Research, 111, E02S19, doi:10.1029/2005JE002515.CrossRefGoogle Scholar
Jolliff, B. L., Gillis, J. J., Haskin, L. A., Korotev, R. L. and Weiczorek, M. A. (2000) Major lunar crustal terranes: Surface expressions and crust-mantle origins. Journal of Geophysical Research, 105 (E2), 4197–4216.CrossRefGoogle Scholar
Keil, K. (2002) Geological history of asteroid 4 Vesta: The “smallest terrestrial planet.” In Asteroids III, eds. Bottke, W., Cellino, A., Paolicchi, P. and Binzel, R. P.Tucson: University of Arizona Press, pp. 473–585.Google Scholar
Korotev, R. L., Jolliff, B. L., Zeigler, R. A., Gillis, J. J. and Haskin, L. A. (2003) Feldspathic lunar meteorites and their implications for compositional remote sensing of the lunar surface and the composition of the lunar crust. Geochimica et Cosmochimica Acta, 67, 4895–4923.CrossRefGoogle Scholar
Lawrence, D. J., Feldman, W. C., Barraclough, B. L.et al. (1998) Global elemental maps of the Moon: the Lunar Prospector gamma-ray spectrometer. Science, 281, 1484–1489.CrossRefGoogle ScholarPubMed
Leshin, L. A. (2000) Insights into Martian water reservoirs from analysis of Martian meteorite QUE 94201. Geophysical Research Letters, 27, 2017–2020.CrossRefGoogle Scholar
Leshin, L. A., Epstein, S. and Stolper, E. M. (1996) Hydrogen isotope geochemistry of SNC meteorites. Geochimica et Cosmochimica Acta, 60, 2635–2650.CrossRefGoogle Scholar
Lodders, K. (1998) A survey of shergottite, nakhlite and chassigny meteorites whole-rock compositions. Meteoritics and Planetary Science, 33, A183–A190.CrossRefGoogle Scholar
Lodders, K. and Fegley, B. (1997) An oxygen isotope model for the composition of Mars. Icarus, 126, 373–394.CrossRefGoogle Scholar
Lucey, P. G., Blewett, D. T. and Hawke, B. R. (1998) Mapping the FeO and TiO2 content of the lunar surface with multispectral imagery. Journal of Geophysical Research, 103, 3679–3699.CrossRefGoogle Scholar
Lucey, P. G., plus 17 coauthors (2006) Understanding the lunar surface and space-Moon interactions. In New Views of the Moon, Reviews in Mineralogy and Geochemistry60, eds. Jolliff, B. L., Wieczorek, M. A., Shearer, C. K. and Neal, C. R.Washington, D.C.: Mineralogical Society of America and Geochemical Society, 83–219.Google Scholar
McLennan, S. M. plus 31 coauthors (2005) Provenance and diagenesis of the evaporite-bearing Burns formation, Meridiani Planum, Mars. Earth and Planetary Science Letters, 240, 95–121.CrossRefGoogle Scholar
McSween, H. Y. (2008) Martian meteorites as crustal samples. In The Martian Surface: Composition, Mineralogy, and Physical Properties, ed. Bell, J. F.Cambridge: Cambridge University Press, pp. 383–395.Google Scholar
McSween, H. Y. and 14 coauthors (1999) Chemical, multispectral and textural constraints on the composition and origin of rocks at the Mars Pathfinder landing site. Journal of Geophysical Research, 104, 8679–8715.CrossRefGoogle Scholar
McSween, H. Y., Grove, T. L., Lentz, R. C. F.et al. (2001) Geochemical evidence for magmatic water within Mars from pyroxenes in the Shergotty meteorite. Nature, 409, 487–490.CrossRefGoogle ScholarPubMed
McSween, H. Y., Grove, T. L. and Wyatt, M. B. (2003) Constraints on the composition and petrogenesis of the Martian crust. Journal of Geophysical Research, 108 (E12), 5135, doi:10.1029/2003JE002175.CrossRefGoogle Scholar
McSween, H. Y., Taylor, G. J. and Wyatt, M. B. (2009) Elemental composition of the Martian crust. Science, 324, 736–739.CrossRefGoogle ScholarPubMed
Ming, D. W., plus 16 coauthors (2006) Geochemical and mineralogical indicators for aqueous processes in the Columbia Hills of Gusev crater, Mars. Journal of Geophysical Research, 111, E02S12, doi:10.1029/2005JE002560.CrossRefGoogle Scholar
Ming, D. W., Morris, R. V. and Clark, B. C. (2008) Aqueous alteration on Mars. In The Martian Surface: Composition, Mineralogy, and Physical Properties, ed. Bell, J. F.Cambridge: Cambridge University Press, pp. 519–540.CrossRefGoogle Scholar
Mittlefehldt, D. W. (2004) Achondrites. In Treatise on Geochemistry, Volume 1. Meteorites, Comets, and Planets, ed. Davis, A. M.Oxford: Elsevier, pp. 291–324.Google Scholar
Mittlefehldt, D. W., McCoy, T. J., Goodrich, C. A. and Kracher, A. (1998) In Planetary Materials, Reviews in Mineralogy36, ed. Papike, J. J.Washington, D.C.: Mineralogical Society of America, pp. 4–1 to 4–195.Google Scholar
Ouri, Y., Shirari, N. and Ebihara, M. (2003) Chemical composition of Yamato (Y)980459 and Y000749: Neutron-induced prompt gamma-ray analysis study. Antarctic Meteorite Research, 16, 80–93.Google Scholar
Pahlevan, K. and Stevenson, D. J. (2007) Equilibrium in the aftermath of the lunar-forming giant impact. Earth and Planetary Science Letters, 262, 438–449.CrossRefGoogle Scholar
Papike, J. J., Ryder, G. and Shearer, C. K. (1998) Lunar samples. In Planetary Materials, Reviews in Mineralogy36, ed. Papike, J. J.Washington, D.C.: Mineralogical Society of America, pp. 5–1 to 5–234.Google Scholar
Prettyman, T. H., Hagerty, J. J., Elphic, R. C.et al. (2006) Elemental composition of the lunar surface: analysis of gamma ray spectroscopy data from Lunar Prospector. Journal of Geophysical Research, 111, E12007, doi:10.1029/2005JE002656.CrossRefGoogle Scholar
Rieder, R., Gellert, R., Anderson, R. C.et al. (2004) Chemistry of rocks and soils at Meridiani Planum from the alpha particle X-ray spectrometer. Science, 306, 1746–1749.CrossRefGoogle ScholarPubMed
Righter, K. and Drake, M. J. (1996) Core formation in the Earth's Moon, Mars and Vesta. Icarus, 124, 513–529.CrossRefGoogle Scholar
Righter, K. and Drake, M. J. (1997) A magma ocean on Vesta: core formation and petrogenesis of eucrites and diogenites. Meteoritics and Planetary Science, 32, 929–944.CrossRefGoogle Scholar
Rogers, A. D. and Christensen, P. R. (2007) Surface mineralogy of Martian low-albedo regions from MGS-TES data: implications for upper crustal evolution and surface alteration. Journal of Geophysical Research, 112, E01003, doi:10.1029/2006JE002727.CrossRefGoogle Scholar
Russell, C. T., plus 20 coauthors (2006) Dawn Discovery mission to Vesta and Ceres: present status. Advanced Space Research, 38, 2043–2048.CrossRefGoogle Scholar
Ryder, G. (1991) Lunar ferroan anorthosites and mare basalt sources: the mixed connection. Journal of Geophysical Research, 118, 2065–2068.CrossRefGoogle Scholar
Sanloup, C., Jambon, A. and Gillet, P. (1999) A simple chondritic model of Mars. Earth and Planetary Science Letters, 112, 43–54.CrossRefGoogle Scholar
Shearer, C. K., plus 15 coauthors (2006) Thermal and magmatic evolution of the Moon. In New Views of the Moon, Reviews in Mineralogy and Geochemistry60, eds. Jolliff, B. L., Wieczorek, M. A., Shearer, C. K. and Neal, C. R.Washington, D.C.: Mineralogical Society of America and Geochemical Society, pp. 365–518.Google Scholar
Taylor, G. J., Warren, P., Ryder, G., Delano, J. and Pieters, C. (1991) Lunar rocks. In Lunar Sourcebook: A User's Guide to the Moon, eds. Heiken, G. H., Vaniman, D. T. and French, B. M.Cambridge: Cambridge University Press, pp. 183–284.Google Scholar
Taylor, G. J., plus 26 coauthors (2007) Variations in K/Th on Mars. Journal of Geophysical Research, 111, E03S06, doi:10.1029/2006JE002676.Google Scholar
Taylor, G. J., McLennan, S. M., McSween, H. Y., Wyatt, M. B. and Lentz, R. C. F. (2008) Implications of observed primary lithologies. In The Martian Surface: Composition, Mineralogy, and Physical Properties, ed. Bell, J. F.Cambridge: Cambridge University Press, pp. 501–518.CrossRefGoogle Scholar
Taylor, S. R., Pieters, C. M. and MacPherson, G. J. (2006a) Earth-Moon system, planetary science, and lessons learned. In New Views of the Moon, Reviews in Mineralogy and Geochemistry60, eds. Jolliff, B. L., Wieczorek, M. A., Shearer, C. K. and Neal, C. R.Washington, D.C.: Mineralogical Society of America and Geochemical Society, pp. 657–704.Google Scholar
Taylor, S. R., Taylor, G. J. and Taylor, L. A. (2006b) The Moon: a Taylor perspective. Earth and Planetary Science Letters, 70, 5904–5918.Google Scholar
Thomas, P. C., Binzel, R. P., Gaffey, M. J.et al. (1997) Impact excavation on asteroid 4 Vesta: Hubble Space Telescope results. Science, 277, 1492–1495.CrossRefGoogle Scholar
Tosca, N. J., McLennan, S. M., Clark, B. C.et al. (2005) Geochemical modeling of evaporation processes on Mars: insight from the sedimentary record at Meridiani Planum. Earth and Planetary Science Letters, 240, 122–148.CrossRefGoogle Scholar
Treiman, A. H., Jones, J. H. and Drake, M. J. (1987) Core formation in the shergottite parent body and comparison with the Earth. Journal of Geophysical Research, 92, E627–E632.CrossRefGoogle Scholar
Usui, T. and McSween, H. Y. (2007) Geochemistry of 4 Vesta based on HED meteorites: prospective study for interpretation of gamma-ray and neutron spectrometer for the Dawn mission. Meteoritics and Planetary Science, 42, 255–269.CrossRefGoogle Scholar
Wadhwa, M., Srinivasan, G. and Carlson, R. W. (2006) Timescales of planetesimal differentiation in the early solar system. In Meteorites and the Early Solar System II, eds. Lauretta, D. S. and McSween, H. Y.. Tucson: University of Arizona Press, pp. 715–731.Google Scholar
Wänke, H. and Dreibus, G. (1988) Chemical composition and accretion history of terrestrial planets. Philosophical Transactions of the Royal Society of London, A325, 545–557.CrossRefGoogle Scholar
Wänke, H., Bruckner, J., Dreibus, G., Rieder, R. and Ryabchikov, I. (2001) Chemical composition of rocks and soils at the Pathfinder site. Space Science Reviews, 96, 317–330.CrossRefGoogle Scholar
Warren, P. H. (1993) A concise compilation of petrologic information on possibly pristine nonmare Moon rocks. American Mineralogist, 78, 360–376.Google Scholar
Warren, P. H. and Wasson, J. T. (1977) Pristine nonmare rocks and the nature of the lunar crust. Proceedings of the 8th Lunar Science Conference, 2215–2235.Google Scholar
Weichert, U., Halliday, A. N., Lee, D-C., Snyder, G. A.et al. (2001) Oxygen isotopes and the Moon-forming giant impact. Science, 294, 345–348.CrossRefGoogle Scholar
Wieczorek, M. A., plus 15 coauthors (2006) The constitution and structure of the lunar interior. In New Views of the Moon, Reviews in Mineralogy and Geochemistry60, eds. Jolliff, B. L., Wieczorek, M. A., Shearer, C. K. and Neal, C. R.Washington, D.C.: Mineralogical Society of America and Geochemical Society, pp. 221–364.Google Scholar
Wyatt, M. B., Hamilton, V. E., McSween, H. Y., Christensen, P. R. and Taylor, L. R. (2001) Analysis of terrestrial and Martian volcanic compositions using thermal emission spectroscopy: 1. Determination of mineralogy, chemistry, and classification strategies. Journal of Geophysical Research, 106, 14,711–14,732.CrossRefGoogle Scholar

Send book to Kindle

To send this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Send book to Dropbox

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Dropbox.

Available formats
×

Send book to Google Drive

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Google Drive.

Available formats
×