Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-16T07:29:18.123Z Has data issue: false hasContentIssue false

9 - Chronology of the solar system from radioactive isotopes

Published online by Cambridge University Press:  05 June 2012

Harry Y. McSween, Jr
Affiliation:
University of Tennessee, Knoxville
Gary R. Huss
Affiliation:
University of Hawaii, Manoa
Get access

Summary

Overview

In this chapter, we review what is known about the chronology of the solar system, based on the radioisotope systems described in Chapter 8. We start by discussing the age of materials that formed the solar system. Short-lived radionuclides also provide information about the galactic environment in which the solar system formed. We then consider how the age of the solar system is estimated from its oldest surviving materials – the refractory inclusions in chondrites. We discuss constraints on the accretion of chondritic asteroids and their subsequent metamorphism and alteration. Next, we discuss the chronology of differentiated asteroids, and of the Earth, Moon, and Mars. Finally, we consider the impact histories of the solar system bodies, the timescales for the transport of meteorites from their parent bodies to the Earth, and the residence time of meteorites on the Earth's surface before they disintegrate due to weathering.

Age of the elements and environment in which the Sun formed

The presence of radioactive isotopes in meteorites and planets demonstrates that the atoms that make up our solar system are not infinitely old. On the other hand, the abundance ratios for radioactive species, such as 235U/238U, in the solar system when it formed were much lower than the ratios in which they were produced at the stellar source, as determined from detailed nucleosynthesis models. This indicates that these isotopes were not produced at the time of solar system formation.

Type
Chapter
Information
Cosmochemistry , pp. 308 - 353
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Huss, G. R., Meyer, G. S., Srinivasan, G., Goswami, J. N. and Sahijpal, S. (2009) Stellar sources of the short-lived radionuclides in the early solar system. Geochimica et Cosmochimica Acta, 73, 4722–4745.CrossRefGoogle Scholar
Kleine, T., Touboul, M., Bourdon, B.et al. (2009) Hf–W chronology of the accretion and early evolution of asteroids and terrestrial planets. Geochimica et Cosmochimica Acta, 73, 5150–5188.CrossRefGoogle Scholar
Nyquist, L. E., Kleine, T., Shih, C.-Y. and Reese, Y. D. (2009a) The distribution of short-lived radioisotopes in the early solar system and the chronology of asteroid accretion, differentiation, and secondary mineralization. Geochimica et Cosmochimica Acta, 73, 5115–5136.CrossRefGoogle Scholar
Bogard, D. D. (1995) Impact ages of meteorites: A synthesis. Meteoritics, 30, 244–268. A nice summary of impact ages of meteorites.CrossRefGoogle Scholar
Eugster, O., Herzog, G. F., Marti, K. and Caffee, M. W. (2006) Irradiation records, cosmic-ray exposure ages, and transfer time of meteorites. In Meteorites and the Early Solar System II, eds. Lauretta, D. S. and McSween, H. Y., Jr. Tucson: University of Arizona Press, pp. 829–851. A good summary of what is known about cosmic-ray exposure ages and the transfer of meteorites from the asteroid belt to Earth.Google Scholar
Jull, A. J. T. (2006) Terrestrial ages of meteorites. In Meteorites and the Early Solar System II, eds. Lauretta, D. S. and McSween, H. Y., Jr. Tucson: University of Arizona Press, pp. 889–905. This paper reviews what is known about terrestrial ages of meteorites.Google Scholar
Krot, A. N., Hutcheon, I. D., Brearley, A. J.et al. (2006) Timescales and setting for alteration of chondritic meteorites. In Meteorites and the Early Solar System II, eds. Lauretta, D. S. and McSween, H. Y., Jr. Tucson: University of Arizona Press, pp. 525–553. A good review of what is known about the timing and nature of secondary processing in chondrites.Google Scholar
Allègre, C. J., Manhès, G. and Göpel, C. (1995) The age of the Earth. Geochimica et Cosmochimica Acta, 59, 1445–1456.CrossRefGoogle Scholar
Amelin, Y., Krot, A. N., Hutcheon, I. D. and Ulyanov, A. A. (2002) Lead isotopic ages of chondrules and calcium-aluminum-rich inclusions. Science, 297, 1679–1683.CrossRefGoogle ScholarPubMed
Baker, J., Bizzarro, M., Wittig, N., Connelly, J. and Haack, H. (2005) Early planetesimal melting from an age of 4566.2 Gyr for differentiated meteorites. Nature, 436, 1127–1131.CrossRefGoogle ScholarPubMed
Bizzarro, M., Baker, J. A. and Haack, H. (2004) Mg isotope evidence for contemporaneous formation of chondrules and refractory inclusions. Nature, 431, 275–278.CrossRefGoogle ScholarPubMed
Bizzarro, M., Baker, J. A., Haack, H. and Lundgaard, K. L. (2005) Rapid timescales for accretion and melting of differentiated planetesimals inferred from 26Al–26Mg chronometry. Astrophysical Journal, 632, L41–L44.CrossRefGoogle Scholar
Borg, L. and Drake, M. J. (2005) A review of meteorite evidence for the timing of magmatism and of surface or near-surface liquid water on Mars. Journal of Geophysical Research, 110, E12S03.CrossRefGoogle Scholar
Bottke, W. F., Nesvorny, D., Vokrouhlicky, D. and Borbidelli, A. (2009) The Gefion family as the probable source of the L chondrite meteorites (abstr.). Lunar and Planetary Science XL, CD #1445.
Bouvier, A., Blichert-Toft, J., Moynier, F., Vervoort, J. D. and Albarède, F. (2007) Pb–Pb dating constraints on the accretion and cooling history of chondrites. Geochimica et Cosmochimica Acta, 71, 1583–1604.CrossRefGoogle Scholar
Bouvier, A., Blichert-Toft, J., Vervoort, J. D., Gillet, P. and Albarede, F. (2008) The case for old basaltic shergottites. Earth and Planetary Science Letters, 266, 105–124.CrossRefGoogle Scholar
Burkhardt, C., Kleine, T., Bourdon, B.et al. (2008) Hf–W mineral isochron for Ca, Al-rich inclusions: age of the solar system and the timing of core formation in planetesimals. Geochimica et Cosmochimica Acta, 72, 6177–6197.CrossRefGoogle Scholar
Chen, J. H., Papanastassiou, D. A. and Wasserburg, G. J. (1998) Re–Os systematics in chondrites and the fractionation of platinum group elements in the early solar system. Geochimica et Cosmochimica Acta, 62, 3379–3392.CrossRefGoogle Scholar
Clayton, D. D. (1988) Nuclear cosmochronology with analytic models of the chemical evolution of the solar neighborhood. Monthly Notices of the Royal Astronomical Society, 234, 1–36.CrossRefGoogle Scholar
Clayton, R. N., Hinton, R. W. and Davis, A. M. (1988) Isotopic variations in the rock-forming elements in meteorites. Philosophical Transactions of the Royal Society of London, A325, 483–501.CrossRefGoogle Scholar
Cameron, A. G. W. and Truran, J. W. (1977) The supernova trigger for formation of the solar system. Icarus, 30, 447–461.CrossRefGoogle Scholar
Connelly, J. N. and Bizzarro, M. (2009) Pb–Pb dating of chondrules from CV chondrites by progressive dissolution. Chemical Geology, 259, 143–151.CrossRefGoogle Scholar
Dauphas, N., Cook, D. L., Sacarabany, A.et al. (2008) Iron-60 evidence for early injection and efficient mixing of stellar debris in the protosolar nebula. Astrophysical Journal, 686, 560–569.CrossRefGoogle Scholar
Diehl, R., Halloin, H., Kretschmer, K.et al. (2006) 26Al in the inner galaxy. Astronomy and Astrophysics, 449, 1025–1031.CrossRefGoogle Scholar
Endress, M, Ainner, E. and Bischoff, A. (1996) Early aqueous activity on primitive meteorite parent bodies. Nature, 379, 701–703.CrossRefGoogle ScholarPubMed
Galer, S. J. G. and Goldstein, S. L. (1996) Influence of accretion on lead in the Earth. In Isotopic Studies of Crust-Mantle Evolution, eds. Basu, A. R. and Hart, S. R.Washington, D.C.: American Geophysical Union, pp. 75–98.Google Scholar
Göpel, C, Manhès, G. and Allègre, C.-J. (1994) U–Pb systematics of phosphates from unequilibrated ordinary chondrites. Earth and Planetary Science Letters, 121, 153–171.CrossRefGoogle Scholar
Halliday, A. N. (2000) Terrestrial accretion rates and the origin of the Moon. Earth and Planetary Science Letters, 176, 17–30.CrossRefGoogle Scholar
Halliday, A. N. (2004) The origin and earliest history of the Earth. In Treatise on Geochemistry, Vol. 1. Meteorites, Comets, and Planets, ed. Davis, A. M.Oxford: Elsevier, pp. 509–557.Google Scholar
Harper, C. L. and Jacobsen, S. B. (1996) Evidence for 142Hf in the early solar system and constraints on the timescale of terrestrial core formation. Geochimica et Cosmochimica Acta, 60, 1131–1153.CrossRefGoogle Scholar
Hartmann, W. K., Ryder, G., Dones, L. and Grinspoon, D. (2000) The time-dependent intense bombardment of the primordial Earth/Moon system. In Origin of the Earth and Moon, eds. Canup, R. M. and Righter, K.Tucson: University of Arizona Press, pp. 493–512.Google Scholar
Herzog, G. F. (2005) Cosmic-ray exposure ages of meteorites. In Treatise on Geochemistry, Vol. 1. Meteorites, Comets, and Planets, ed. Davis, A. M.Oxford: Elsevier, pp. 347–380.Google Scholar
Hohenberg, C. M. and Pravdivtseva, O. V. (2008) I–Xe dating: from adolescence to maturity. Chemie der Erde, 68, 339–351.CrossRefGoogle Scholar
Hoppe, P., Macdougall, D. and Lugmair, G. W. (2004) High spatial resolution ion microprobe measurements refine chronology of Orgueil carbonate formation (abstr.). Lunar and Planetary Science XXXV, CD #1313.
Hsu, W., Huss, G. R. and Wasserburg, G. J. (2003) Al–Mg systematics of CAIs, POI, and ferromagnesian chondrules from Ningqiang. Meteoritics and Planetary Science, 38, 35–48.CrossRefGoogle Scholar
Hsu, W., Wasserburg, G. J. and Huss, G. R. (2000) High time resolution using 26Al in the multistage formation of a CAI. Earth and Planetary Science Letters, 182, 15–29.CrossRefGoogle Scholar
Hua, X., Huss, G. R., Tachibana, S. and Sharp, T. G. (2005) Oxygen, silicon, and Mn–Cr isotopes of fayalite in the oxidized Kaba CV3 chondrite: constraints for its formation history. Geochimica et Cosmochimica Acta, 69, 1333–1348.CrossRefGoogle Scholar
Huss, G. R., MacPherson, G. J., Wasserburg, G. J., Russell, S. S. and Srinivasan, G. (2001) Aluminum-26 in calcium-aluminum-rich inclusions and chondrules from unequilibrated ordinary chondrites. Meteoritics and Planetary Science, 36, 975–997.CrossRefGoogle Scholar
Huss, G. R., Tachibana, S. and Nagashima, K. (2007) 26Al and 60Fe in chondrules from unequilibrated ordinary chondrites. Meteoritics and Planetary Science, 42, A57.Google Scholar
Hutcheon, I. D., Krot, A. N., Keil, K., Phinney, D. L. and Scott, E. R. D. (1998) 53Mn–53Cr dating of fayalite formation in the CV3 chondrite Mokoia: evidence for asteroidal alteration. Science, 282, 1865–1867.CrossRefGoogle ScholarPubMed
Hutcheon, I. D., Krot, A. N. and Ulyanov, A. A. (2000) 26Al in anorthite-rich chondrules in primitive carbonaceous chondrites: evidence chondrules postdate CAI (abstr.). Lunar and Planetary Science XXXI, CD #1869.
Hutcheon, I. D., Marhas, K. K., Krot, A. N., Goswami, J. N. and Jones, R. H. (2009) 26Al in plagioclase-rich chondrules in carbonaceous chondrites: evidence for extended duration of chondrule formation. Geochimica et Cosmochimica Acta, 73, 5080–5099.CrossRefGoogle Scholar
Jacobsen, B., Yin, Q.-Z., Moynier, F.et al. (2008) 26Al–26Mg and 207Pb–206Pb systematics of Allende CAIs: canonical solar initial 26Al/27Al ratio reinstated. Earth and Planetary Science Letters, 272, 353–364.CrossRefGoogle Scholar
Kita, N. T., Lin, Y., Kimura, M. and Morishita, Y. (2004) The 26Al–26Mg chronology of a type C CAI and POIs in Ningqiang carbonaceous chondrite (abstr.). Lunar and Planetary Science XXXV, CD #1471.
Kita, N. T., Nagahara, H., Togashi, S. and Morshita, Y. (2000) A short duration of chondrule formation in the solar nebula: evidence from 26Al in Semarkona ferromagnesian chondrules. Geochimica et Cosmochimica Acta, 64, 3913–3922.CrossRefGoogle Scholar
Kleine, T., Mezger, K., Münker, C., Palme, H. and Bischoff, A. (2004) 182Hf–182W isotope systematics of chondrites, eucrites, and Martian meteorites: chronology of core formation and early mantle differentiation in Vesta and Mars. Geochimica et Cosmochimica Acta, 68, 2935–2946.CrossRefGoogle Scholar
Kleine, T., Münker, C., Mezger, K. and Palme, H. (2002) Rapid accretion and early core formation on asteroids and the terrestrial planets from Hf–W chronometry. Nature, 418, 952–955.CrossRefGoogle ScholarPubMed
Krot, A. N., Amelin, Y., Cassen, P. and Meibom, A. (2005) Young chondrules in CB chondrites from a giant impact in the early solar system. Nature 436, 989–992.CrossRefGoogle Scholar
Kunihiro, T., Rubin, A. E., McKeegan, K. D. and Wasson, J. T. (2004) Initial 26Al/27Al in carbonaceous-chondrite chondrules: too little 26Al to melt asteroids. Geochimica et Cosmochimica Acta, 68, 2947–2957.CrossRefGoogle Scholar
Kurahashi, E., Kita, N. T., Nagahara, H. and Morishita, Y. (2008) 26Al–26Mg systematics of chondrules in primitive CO chondrite. Geochimica et Cosmochimica Acta, 72, 3865–3882.CrossRefGoogle Scholar
Lada, C. J. and Lada, E. A. (2003) Embedded clusters in molecular clouds. Annual Reviews of Astronomy and Astrophysics, 41, 57–115.CrossRefGoogle Scholar
Lee, D. C. and Halliday, A. N. (1997) Core formation on Mars and differentiated asteroids. Nature, 388, 854–857.CrossRefGoogle Scholar
Lee, T., Papanastassiou, D. A. and Wasserburg, G. J. (1977) Aluminum-26 in the early solar system: fossil or fuel?Astrophysical Journal Letters, 211, L107–L110.CrossRefGoogle Scholar
Lugmair, G. W. and Shukolyukov, A. (1998) Early solar system timescales according to the 53Mn–53Cr system. Geochimica et Cosmochimica Acta, 62, 2863–2886.CrossRefGoogle Scholar
McKee, C. F. and Ostriker, J. P. (1977) A theory of the interstellar medium: three components regulated by supernova explosions in an inhomogeneous substrate. Astrophysical Journal, 218, 148–169.CrossRefGoogle Scholar
McKeegan, K. D., Greenwood, J. P., Leshin, L. A. and Cosarinsky, M. (2000) Abundance of 26Al in ferromagnesian chondrules of unequilibrated ordinary chondrites (abstr.). Lunar and Planetary Science XXXI, CD #2009.
McSween, H. Y. (2008) Martian meteorites as crustal samples. In The Martian Surface: Composition, Mineralogy, and Physical Properties, ed. Bell, J. F., III. Cambridge: Cambridge University Press, pp. 383–396.Google Scholar
Mostefaoui, S., Kita, N., Togashi, S.et al. (2002) The relative formation ages of ferromagnesian chondrules inferred from their initial aluminum-26/aluminum-27 ratios. Meteoritics and Planetary Science, 37, 421–438.CrossRefGoogle Scholar
Nagashima, K., Krot, A. N. and Chaussidon, M. (2007) Aluminum–magnesium isotope systematics of chondrules from CR chondrites (abstr.). Meteoritics and Planetary Science, 42, Supplement, A115.Google Scholar
Nagashima, K., Krot, A. N. and Huss, G. R. (2008) 26Al in chondrules from CR carbonaceous chondrites (abstr.). Lunar and Planetary Science XXXIX, CD #2224.
Neukum, G., Ivanov, B. A. and Hartmann, W. K. (2001) Cratering records in the inner solar system in relation to the lunar reference system. Space Science Reviews, 96, 55–86.CrossRefGoogle Scholar
Nyquist, L. E., Bogard, D. D., Shih, C.-Y.et al. (2001) Ages and geologic histories of Martian meteorites. Space Science Reviews, 96, 105–164.CrossRefGoogle Scholar
Nyquist, L. E., Bogard, D. D., Shih, C.-Y.et al. (2009b) Concordant Rb–Sr, Sm–Nd, and Ar–Ar ages for Northwest Africa 1460: a 346 Ma old basaltic shergottite related to “lherzolitic” shergottites. Geochimica et Cosmochimica Acta, 73, 4288–4309.CrossRefGoogle Scholar
Reynolds, J. H. (1960) Determination of the age of the elements. Physical Reviews Letters, 4, 8–10.CrossRefGoogle Scholar
Rudraswami, N. G. and Goswami, J. N. (2007) 26Al in chondrules from unequilibrated L chondrites: onset and duration of chondrule formation in the early solar system. Earth and Planetary Science Letters, 257, 231–244.CrossRefGoogle Scholar
Schmitz, B., Peucker-Ehrenbrink, B., Linstrom, M. and Tassinari, M. (1997) Accretion rates of meteorites and cosmic dust in the early Ordovician. Science, 278, 88–90.CrossRefGoogle ScholarPubMed
Schmitz, B., Tassinari, M. and Peucker-Ehrenbrink, B. (2001) A rain of ordinary chondritic meteorites in the early Ordovician. Earth and Planetary Science Letters, 194, 1–15.CrossRefGoogle Scholar
Schmitz, B., Häggström, T. and Tassinari, M. (2003) Sediment-dispersed extraterrestrial chromite traces a major asteroid disruption event. Science, 300, 961–964.CrossRefGoogle Scholar
Shen, J. J., Papanastassiou, D. A. and Wasserburg, G. J. (1996) Precise Re–Os determinations and systematics of iron meteorites. Geochimica et Cosmochimica Acta, 60, 2887–2900.CrossRefGoogle Scholar
Sheng, Y. J., Hutcheon, I. D. and Wasserburg, G. J. (1991) Origin of plagioclase-olivine inclusions in carbonaceous chondrites. Geochimica et Cosmochimica Acta, 55, 581–599.CrossRefGoogle Scholar
Smoliar, M. I. (1993) A survey of Rb–Sr systematics of eucrites. Meteoritics, 28, 105–113.CrossRefGoogle Scholar
Snyder, G. A., Borg, L. E., Nyquist, L. E. and Taylor, L. A. (2000) Chronology and isotopic constraints on lunar evolution. In Origin of the Earth and Moon, eds. Canup, R. M. and Righter, K.Tucson: University of Arizona Press, pp. 361–393.Google Scholar
Srinivasan, G., Huss, G. R. and Wasserburg, G. J. (2000) A petrographic, chemical and isotopic study of calcium-aluminum inclusions and aluminum-rich chondrules from the Axtell (CV3) chondrite: Meteoritics and Planetary Science, 35, 1333–1354.CrossRefGoogle Scholar
Sugiura, N. and Krot, A. N. (2007) 26Al–26Mg systematics of Ca-Al-rich inclusions, amoeboid olivine aggregates and chondrules form the ungrouped carbonaceous chondrite Acfer 094. Meteoritics and Planetary Science, 42, 1183–1195.CrossRefGoogle Scholar
Tera, F. (1980) Reassessment of the ‘Age of the Earth’. Carnegie Institution of Washington Year Book, 79, 524–531.Google Scholar
Thrane, K., Bizzarro, M. and Baker, J. A. (2006) Extremely brief formation interval for refractory inclusions and uniform distribution of Al-26 in the early solar system. Astrophysical Journal Letters, 646, L159–L162.CrossRefGoogle Scholar
Trieloff, M., Jessberger, E. K., Herrwerth, I.et al. (2003) Structure and thermal history of the H-chondrite parent asteroid revealed by thermochronometry. Nature, 422, 502–506.CrossRefGoogle ScholarPubMed
Trinquier, A., Birck, J.-L., Allègre, C. J., Göpel, C. and Ulfbeck, D. (2008) 53Mn–53Cr systematics of early solar system revisited. Geochimica et Cosmochimica Acta 72, 5146–5163.CrossRefGoogle Scholar
Wadhwa, M., Srinivasan, G. and Carlson, R. W. (2006) Timescales of planetesimal differentiation in the early solar system. In Meteorites and the Early Solar System II, eds. Lauretta, D. S. and McSween, H. Y., Jr. Tucson: University of Arizona Press, pp. 715–731.Google Scholar
Wadhwa, M., Amelin, Y., Bogdanovski, O.et al. (2009) Ancient relative and absolute ages for a basaltic meteorite: implications for timescales of planetesimal accretion and differentiation. Geochimica et Cosmochimica Acta, 73, 5189–5201.CrossRefGoogle Scholar
Walton, E. L., Kelley, S. P. and Herd, C. R. D. (2008) Isotopic and petrographic evidence for young Martian basalts. Geochimica et Cosmochimica Acta, 72, 5819–5837.CrossRefGoogle Scholar
Wang, W., Harris, M. J., Diehl, R.et al. (2007) SPI observations of the diffuse 60Fe emission in the galaxy. Astronomy and Astrophysics, 469, 1005–1012.CrossRefGoogle Scholar
Warren, P. H. (2004) The Moon. In Treatise on Geochemistry, Vol. 1. Meteorites, Comets, and Planets, ed. Davis, A. M.Oxford: Elsevier, pp. 559–599.Google Scholar
Yin, Q. Z., Jacobsen, S. B., Yamashita, K.et al. (2002) A short timescale for terrestrial planet formation from Hf–W chronometry of meteorites. Nature, 418, 949–952.CrossRefGoogle Scholar
Young, E., Simon, J. I., Galy, A.et al. (2005) Supra-canonical 26Al/27Al and the residence time of CAIs in the solar protoplanetary disk. Science, 308, 223–227.CrossRefGoogle ScholarPubMed
Zinner, E. and Göpel, C. (2002) Aluminum-26 in H4 chondrites: implications for its production and its usefulness as a fine-scale chronometer for early solar system events. Meteoritics and Planetary Science, 37, 1001–1013.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×