Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-swr86 Total loading time: 0 Render date: 2024-07-19T02:01:01.482Z Has data issue: false hasContentIssue false

Bibliography

Published online by Cambridge University Press:  22 September 2018

David Pfister
Affiliation:
Ypso Facto
Lucrèce Nicoud
Affiliation:
Massachusetts Institute of Technology
Massimo Morbidelli
Affiliation:
Eidgenössische Technische Hochschule Zürich
Get access
Type
Chapter
Information
Continuous Biopharmaceutical Processes
Chromatography, Bioconjugation, and Protein Stability
, pp. 301 - 325
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Carter, PJ. Introduction to current and future protein therapeutics: A protein engineering perspective. Exp Cell Res. 2011; 317(9): 12611269.Google Scholar
Leader, B, Baca, QJ, Golan, DE. Protein therapeutics: A summary and pharmacological classification. Nat Rev Drug Discov. 2008; 7(1): 2139.CrossRefGoogle ScholarPubMed
Samanen, J. Similarities and differences in the discovery and use of biopharmaceuticals and small-molecule chemotherapeutics. In: Ganellin, C, Jefferis, R, Roberts, S, editors. Introduction to biological and small molecule drug research and development. Elsevier; 2013. p. 161203.Google Scholar
Wurm, FM. Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotech. 2004; 22(11): 13931398.Google Scholar
Demain, AL, Vaishnav, P. Production of recombinant proteins by microbes and higher organisms. Biotechnol Adv. 2009; 27(3): 297306.Google Scholar
Kaspar, AA, Reichert, JM. Future directions for peptide therapeutics development. Drug Discov Today. 2013; 18(17–18): 807817.CrossRefGoogle ScholarPubMed
Pina, AS, Lowe, CR, Roque, ACA. Challenges and opportunities in the purification of recombinant tagged proteins. Biotechnol Adv. 2014; 32(2): 366381.CrossRefGoogle ScholarPubMed
Arnau, J, Pedersen, J. A universal platform for the purification of therapeutic proteins using affinity tags: The use of engineered aminopeptidases for His-tag removal. BioProcess J. 2006; 5(3): 5965.Google Scholar
Uversky, V, Orengo, C, Bateman, A. Protein families: Relating protein sequence, structure, and function. John Wiley & Sons, Inc.; 2013.Google Scholar
Sammut, SJ, Finn, RD, Bateman, A. Pfam 10 years on: 10 000 families and still growing. Brief Bioinform. 2008; 9(3): 210219.Google Scholar
Finn, RD, Coggill, P, Eberhardt, RY, Eddy, SR, Mistry, J, Mitchell, AL, et al. The Pfam protein families database: Towards a more sustainable future. Nucleic Acids Res. 2016; 4(44): 279285.Google Scholar
Shukla, AA, Hubbard, B, Tressel, T, Guhan, S, Low, D. Downstream processing of monoclonal antibodies – Application of platform approaches. J Chromatogr B. 2007; 848(1): 2839.CrossRefGoogle ScholarPubMed
Ecker, DM, Jones, SD, Levine, HL. The therapeutic monoclonal antibody market. MAbs. 2015; 7(1): 914.CrossRefGoogle ScholarPubMed
Huang, CJ, Lin, H, Yang, X. Industrial production of recombinant therapeutics in Escherichia coli and its recent advancements. J Ind Microbiol Biotechnol. 2012; 39(3): 383399.Google Scholar
Clark, EdB. Protein refolding for industrial processes. Curr Opin Biotech. 2001; 12(2): 202207.Google Scholar
Walsh, G, Jefferis, R. Post-translational modifications in the context of therapeutic proteins. Nat Biotech. 2006; 24(10): 12411252.Google Scholar
Bailey, JE, Ollis, DF. Biochemical engineering fundamentals. Second edition. McGraw-Hill; 1986.Google Scholar
Katoh, S, Horiuchi, J, Yoshida, F. Biochemical engineering. Second edition. Wiley-VCH; 2015.CrossRefGoogle Scholar
Shuler, ML, Kargi, F, Delisa, M. Bioprocess engineering. Basic concepts. Third edition. Prentice Hall; 2017.Google Scholar
Liu, HF, Ma, J, Winter, C, Bayer, R. Recovery and purification process development for monoclonal antibody production. MAbs. 2010; 2(5): 480499.Google Scholar
Carta, G, Jungbauer, A. Protein chromatography: Process development and scale-up. John Wiley & Sons, Inc.; 2010.CrossRefGoogle Scholar
Curling, J. The development of antibody purification technologies. In: Gottschalk, U, editor. Process scale purification of antibodies. John Wiley & Sons, Inc.; 2008. p. 2552.Google Scholar
Hober, S, Nord, K, Linhult, M. Protein A chromatography for antibody purification. J Chromatogr B. 2007; 848(1): 4047.Google Scholar
Boedeker, BGD. Recombinant Factor VIII (Kogenate®) for the treatment of hemophilia A: The first and only world-wide licensed recombinant protein produced in high-throughput perfusion culture. In: Knablein, J, editor. Modern biopharmaceuticals. Wiley-VCH Verlag GmbH & Co. KGaA; 2013. p. 429443.Google Scholar
Burnouf, T, Radosevich, M. Affinity chromatography in the industrial purification of plasma proteins for therapeutic use. J Biochem Biophys Meth. 2001; 49(13): 575586.Google Scholar
Allen, RR, Felix, F. Affinity chromatography of enzymes. In: Hage, DS, editor. Handbook of affinity chromatography, Second edition. Chromatographic science series. CRC Press; 2005. p. 313346.Google Scholar
Arunakumari, A, Wang, J. Purification of human monoclonal antibodies: Non-protein A strategies. In: Gottschalk, U, editor. Process scale purification of antibodies. John Wiley & Sons, Inc.; 2008. p. 103123.Google Scholar
Zhou, JX, Tressel, T. Basic concepts in Q membrane chromatography for large-scale antibody production. Biotechnol Prog. 2006; 22(2):341349.CrossRefGoogle ScholarPubMed
Ghosh, R. Protein separation using membrane chromatography: Opportunities and challenges. J Chromatogr A. 2002; 952(12): 1327.Google Scholar
Pabby, AK, Rizvi, SSH, Sastre, AM. Handbook of membrane separations: Chemical, pharmaceutical, food and biotechnological applications. CRC Press; 2015.Google Scholar
Saraswat, M, Musante, L, Ravid, A, Shortt, B, Byrne, B, Holthofer, H. Preparative purification of recombinant proteins: Current status and future trends. BioMed Res Int. 2013; 2013: 312709.Google Scholar
Hustedt, H, Kroner, KH, Menge, U, Kula, MR. Protein recovery using 2-phase systems. Trends Biotechnol. 1985; 3(6): 139144.Google Scholar
Rosa, PAJ, Ferreira, IF, Azevedo, AM, Aires-Barros, MR. Aqueous two-phase systems: A viable platform in the manufacturing of biopharmaceuticals. J Chromatogr A. 2010; 1217(16): 22962305.CrossRefGoogle ScholarPubMed
Oelmeier, SA, Dismer, F, Hubbuch, J. Application of an aqueous two-phase systems high-throughput screening method to evaluate mAb HCP separation. Biotechnol Bioeng. 2011; 108(1): 6981.Google Scholar
Asenjo, JA, Andrews, BA. Aqueous two-phase systems for protein separation: A perspective. J Chromatogr A. 2011; 1218(49): 88268835.Google Scholar
Glynn, J. Process-scale precipitation of impurities in mammalian cell culture broth. In: Gottschalk, U, editor. Process scale purification of antibodies. John Wiley & Sons, Inc.; 2008. p. 309324.Google Scholar
Thömmes, J, Gottschalk, U. Alternatives to packed-bed chromatography for antibody extraction and purification. In: Gottschalk, U, editor. Process scale purification of antibodies. John Wiley & Sons, Inc.; 2008. p. 293308.Google Scholar
Gagnon, P. Technology trends in antibody purification. J Chromatogr A. 2012; 1221: 5770.Google Scholar
Mollerup, I, Jensen, SW, Larsen, P, Schou, O, Snel, L. Insulin purification. In: Flickinger, MC, Drew, SW, editors. Encyclopedia of bioprocess technology. John Wiley & Sons, Inc.; 2010. p. 17.Google Scholar
Mehta, A, Lovato Tse, M, Fogle, J, Len, A, Shrestha, R, Fontes, N, et al. Purifying therapeutic monoclonal antibodies. Society for Biological Engineering; 2008.Google Scholar
Remingtonm, KM. Fundamental strategies for viral clearance – Part 2: Technical approaches. BioProcess International; 2015.Google Scholar
European Medicines Agency. Guideline on virus safety evaluation of biotechnological investigational medicinal products; 2006.Google Scholar
Johnson, SA, Brown, MR, Lute, SC, Brorson, KA. Adapting viral safety assurance strategies to continuous processing of biological products. Biotechnol Bioeng. 2017; 114(1): 2132.Google Scholar
Daugherty, AL, Mrsny, RJ. Formulation and delivery issues for monoclonal antibody therapeutics. Adv Drug Deliver Rev. 2006; 58(56): 686706.Google Scholar
Ohtake, S, Kita, Y, Arakawa, T. Interactions of formulation excipients with proteins in solution and in the dried state. Adv Drug Deliver Rev. 2011; 63(13): 10531073.Google Scholar
Frokjaer, S, Otzen, DE. Protein drug stability: A formulation challenge. Nat Rev Drug Discov. 2005; 4(4): 298306.Google Scholar
Mach, H, Meyer, BK, Shameem, M. Properties of protein formulations. In: Meyer, BK, editor. Therapeutic protein drug products. Woodhead Publishing; 2012. p. 47–65.CrossRefGoogle Scholar
Houp, RC. Ultrafiltration and diafiltration. J Validation Technol; 2009 15(4): 4045.Google Scholar
Zydney, AL. Membrane technology for purification of therapeutic proteins. Biotechnol Bioeng. 2009; 103(2): 227230.Google Scholar
Meyer, BK, Coless, L. Compounding and filling: Drug substance to drug product. In: Meyer, BK, editor. Therapeutic protein drug products. Woodhead Publishing; 2012. p. 8395.CrossRefGoogle Scholar
Meyer, BK, Shameem, M. Commercial therapeutic protein drug products. In: Meyer, BK, editor. Therapeutic protein drug products. Woodhead Publishing; 2012. p. 111.Google Scholar
Carpenter, JF, Chang, BS, Garzon-Rodriguez, W, Randolph, TW. Rational design of stable lyophilized protein formulations: Theory and practice. In: Carpenter, JF, Manning, MC, editors. Rational design of stable protein formulations: Theory and practice. Springer US; 2002. p. 109133.Google Scholar
Jungbauer, A, Kaar, W, Schlegl, R. Folding and refolding of proteins in chromatographic beds. Curr Opin Biotech. 2004; 15(5): 487494.Google Scholar
Stephanopoulos, N, Francis, MB. Choosing an effective protein bioconjugation strategy. Nat Chem Biol. 2011; 7(12): 876884.Google Scholar
Pfister, D, Morbidelli, M. Process for protein PEGylation. J Control Release. 2014; 180: 134149.Google Scholar
Teicher, BA, Chari, RV. Antibody conjugate therapeutics: Challenges and potential. Clin Cancer Res. 2011; 17(20): 63896397.Google Scholar
ICH Harmonised tripartite guideline. Q6B. Specifications: Test procedures and acceptance criteria for biotechological/biological products. CPMP/ICH/365/96; 1999.Google Scholar
Ratanji, KD, Derrick, JP, Dearman, RJ, Kimber, I. Immunogenicity of therapeutic proteins: Influence of aggregation. J Immunotoxicol. 2014; 11(2): 99109.Google Scholar
Vázquez-Rey, M, Lang, DA. Aggregates in monoclonal antibody manufacturing processes. Biotechnol Bioeng. 2011; 108(7): 14941508.CrossRefGoogle ScholarPubMed
Consortium, SG. Protein production and purification. Nature Methods. 2008; 5(2): 135146.Google Scholar
Johnston, A, Adcock, W. The use of chromatography to manufacture purer and safer plasma products. Biotechnol Genet Eng Rev. 2000; 17: 3770.CrossRefGoogle ScholarPubMed
Denizli, A. Plasma fractionation: Conventional and chromatographic methods for albumin purification. Hacettepe J Biol Chem. 2011; 39(4): 315341.Google Scholar
Andersson, L, Blomberg, L, Flegel, M, Lepsa, L, Nilsson, B, Verlander, M. Large-scale synthesis of peptides. Biopolymers. 2000; 55(3): 227250.Google Scholar
Remingtonm, KM. Fundamental strategies for viral clearance – Part 1: Exploring the regulatory implications. BioProcess International; 2015.Google Scholar
ICH Harmonised tripartite guideline. Q5A(R1). Viral safety evaluation of biotechnology products derived from cell lines of human or animal origin. CPMP/ICH/295/95; 1999.Google Scholar
Cordoba-Rodriguez, RV. Aggregates in mAbs and recombinant therapeutic proteins: A regulatory perspective. BioProcess International; 2008.Google Scholar
Fekete, S, Beck, A, Fekete, J, Guillarme, D. Method development for the separation of monoclonal antibody charge variants in cation exchange chromatography – Part II: pH gradient approach. J Pharm Biomed Anal. 2015; 102: 282289.Google Scholar
Epstein, MS, Ehrenpreis, ED, Kulkarni, PM, the FDARMCotACoG. Biosimilars: The Need, the challenge, the Future: The FDA perspective. Am J Gastroenterol. 2014; 109(12): 1856– 1859.Google Scholar
Zhao, YY, Wang, N, Liu, WH, Tao, WJ, Liu, LL, Shen, ZD. Charge variants of an avastin biosimilar isolation: Characterization, in vitro properties and pharmacokinetics in rat. PLoS ONE. 2016; 11(3): e0151874.Google Scholar
Voisard, D, Meuwly, F, Ruffieux, PA, Baer, G, Kadouri, A. Potential of cell retention techniques for large-scale high-density perfusion culture of suspended mammalian cells. Biotechnol Bioeng. 2003; 82(7): 751765.Google Scholar
Kompala, DS, Ozturk, SS. Optimization of high cell density perfusion bioreactors. In: Ozturk, SS, Hu, WS, editors. Cell culture technology for pharmaceutical and cell-based therapies. CRC Press; 2005. p. 387416.Google Scholar
Reay, D, Ramshaw, C, Harvey, A. Process intensification: Engineering for efficiency, sustainability and flexibility. Second edition. Butterworth-Heinemann; 2013.Google Scholar
Anderson, NG. Practical use of continuous processing in developing and scaling up laboratory processes. Org Process Res Dev. 2001; 5(6): 613621.Google Scholar
Vervaet, C, Remon, JP. Continuous granulation in the pharmaceutical industry. Chem Eng Sci. 2005; 60(14): 39493957.Google Scholar
Poechlauer, P, Manley, J, Broxterman, R, Gregertsen, B, Ridemark, M. Continuous processing in the manufacture of active pharmaceutical ingredients and finished dosage forms: An industry perspective. Org Process Res Dev. 2012; 16(10): 15861590.Google Scholar
Byrn, S, Futran, M, Thomas, H, Jayjock, E, Maron, N, Meyer, RF, et al. Achieving continuous manufacturing for final dosage formation: Challenges and how to meet them. May 20–21, 2014 Continuous Manufacturing Symposium. J Pharm Sci. 2015; 104(3): 792802.CrossRefGoogle ScholarPubMed
Adamo, A, Beingessner, RL, Behnam, M, Chen, J, Jamison, TF, Jensen, KF, et al. On-demand continuous-flow production of pharmaceuticals in a compact, reconfigurable system. Science. 2016; 352(6281): 6167.Google Scholar
Konstantinov, KB, Cooney, CL. White paper on continuous bioprocessing. May 20–21, 2014 Continuous Manufacturing Symposium. J Pharm Sci. 2015; 104(3): 813820.CrossRefGoogle ScholarPubMed
Nicoud, RM. The amazing ability of continuous chromatography to adapt to a moving environment. Ind Eng Chem Res. 2014; 53(10): 37553765.CrossRefGoogle Scholar
Langer, ES, Rader, RA. Continuous bioprocessing and perfusion: Wider adoption coming as bioprocessing matures. BioProcess J. 2014; 13(1): 4349.CrossRefGoogle Scholar
Jungbauer, A. Continuous downstream processing of biopharmaceuticals. Trends Biotechnol. 2013; 31(8): 479492.Google Scholar
Pollock, J, Ho, SV, Farid, SS. Fed-batch and perfusion culture processes: Economic, environmental, and operational feasibility under uncertainty. Biotechnol Bioeng. 2013; 110(1): 206219.Google Scholar
Steinebach, F, Müller-Späth, T, Morbidelli, M. Continuous counter-current chromatography for capture and polishing steps in biopharmaceutical production. Biotechnol J. 2016; p. 1126–1141.Google Scholar
Pall Life Science. Is continuous bioprocessing the future? BioProcess International. Sponsored supplement; 2016.Google Scholar
Walther, J, Godawat, R, Hwang, C, Abe, Y, Sinclair, A, Konstantinov, K. The business impact of an integrated continuous biomanufacturing platform for recombinant protein production. J Biotechnol. 2015; 213: 312.Google Scholar
Xenopoulos, A. A new, integrated, continuous purification process template for monoclonal antibodies: Process modeling and cost of goods studies. J Biotechnol. 2015; 213: 4253.Google Scholar
Klutz, S, Holtmann, L, Lobedann, M, Schembecker, G. Cost evaluation of antibody production processes in different operation modes. Chem Eng Sci. 2016; 141: 6374.Google Scholar
Bunnak, P, Allmendinger, R, Ramasamy, SV, Lettieri, P, Titchener-Hooker, NJ. Life-cycle and cost of goods assessment of fed-batch and perfusion-based manufacturing processes for mAbs. Biotechnol Prog. 2016; 32(5): 13241335.Google Scholar
Subramanian, G, editor. Continuous processing in pharmaceutical manufacturing. Wiley; 2015.Google Scholar
Croughan, MS, Konstantinov, KB, Cooney, C. The future of industrial bioprocessing: Batch or continuous? Biotechnol Bioeng. 2015; 112(4): 648651.Google Scholar
Subramanian, G. Continuous biomanufacturing: Innovative technologies and methods. John Wiley & Sons; 2017.CrossRefGoogle Scholar
Karst, DJ, Steinebach, F, Morbidelli, M. Continuous integrated manufacturing of therapeutic proteins. Curr Opin Biotechnol. 2018; 53: 7684.CrossRefGoogle ScholarPubMed
Sawyer, D, Sanderson, K, Lu, R, Daszkowski, T, Clark, E, Mcduff, P, et al. Biomanufacturing technology roadmap – Executive summary. BioPhorum Operations Group; 2017.Google Scholar
Jayaraman, K. India’s cipla sets sights on Avastin, Herceptin and Enbrel. Nat Biotech. 2010; 28(9): 883884.Google Scholar
Kuhn, TS. The structure of scientific revolutions. University of Chicago Press; 1962.Google Scholar
Chatterjee, S. FDA perspective on continuous manufacturing. IFPAC Annual Meeting, Baltimore; 2012.Google Scholar
Allison, G, Cain, YT, Cooney, C, Garcia, T, Bizjak, TG, Holte, O, et al. Regulatory and quality considerations for continuous manufacturing. May 20–21, 2014 Continuous Manufacturing Symposium. J Pharm Sci. 2015; 104(3): 803812.Google Scholar
Levenspiel, O. Chemical reaction engineering. Third edition. John Wiley & Sons, Inc.; 1999.Google Scholar
Fogler, HS. Elements of chemical reaction engineering. Fourth edition. Prentice Hall; 2005.Google Scholar
Villiger, TK, Roulet, A, Perilleux, A, Stettler, M, Broly, H, Morbidelli, M, et al. Controlling the time evolution of mAb N-linked glycosylation, Part I: Microbioreactor experiments. Biotechnol Prog. 2016; 32(5): 11231134.Google Scholar
Xu, S, Chen, H. High-density mammalian cell cultures in stirred-tank bioreactor without external pH control. J Biotechnol. 2016; 231: 149159.Google Scholar
Karst, DJ, Steinhoff, RF, Kopp, MRG, Serra, E, Soos, M, Zenobi, R, et al. Intracellular CHO cell metabolite profiling reveals steady-state dependent metabolic fingerprints in perfusion culture. Biotechnol Prog. 2017; 33(4): 879890.Google Scholar
Nicoud, RM. From batch to continuous processes: A good answer, but what is the question? Part I – General considerations and the reaction unit perspective. Chemistry Today. 2016; 34(4): 3843.Google Scholar
Nicoud, RM. From batch to continuous processes: A good answer, but what is the question? Part II – The purification unit operations, specific situations, the complete process perspective. 2016. 2016; 34(5): 3338.Google Scholar
Yang, WC, Lu, J, Kwiatkowski, C, Yuan, H, Kshirsagar, R, Ryll, T, et al. Perfusion seed cultures improve biopharmaceutical fed-batch production capacity and product quality. Biotechnol Prog. 2014; 30(3): 616625.CrossRefGoogle ScholarPubMed
Hecht, V, Duvar, S, Ziehr, H, Burg, J, Jockwer, A. Efficiency improvement of an antibody production process by increasing the inoculum density. Biotechnol Prog. 2014; 30(3): 607615.Google Scholar
Karst, DJ, Serra, E, Villiger, TK, Soos, M, Morbidelli, M. Characterization and comparison of ATF and TFF in stirred bioreactors for continuous mammalian cell culture processes. Biochem Eng J. 2016; 110: 1726.Google Scholar
Hutter, S, Villiger, TK, Bruhlmann, D, Stettler, M, Broly, H, Soos, M, et al. Glycosylation flux analysis reveals dynamic changes of intracellular glycosylation flux distribution in Chinese hamster ovary fed-batch cultures. Metab Eng. 2017; 43(Pt A): 920.Google Scholar
Karst, DJ, Scibona, E, Serra, E, Bielser, JM, Souquet, J, Stettler, M, et al. Modulation and modeling of monoclonal antibody N-linked glycosylation in mammalian cell perfusion reactors. Biotechnol Bioeng. 2017; 114(9): 19781990.Google Scholar
Chrysanthopoulos, PK, Goudar, CT, Klapa, MI. Metabolomics for high-resolution monitoring of the cellular physiological state in cell culture engineering. Metab Eng. 2010; 12(3): 212222.Google Scholar
Steinhoff, RF, Karst, DJ, Steinebach, F, Kopp, MR, Schmidt, GW, Stettler, A, et al. Microarray-based MALDI-TOF mass spectrometry enables monitoring of monoclonal antibody production in batch and perfusion cell cultures. Methods. 2016; 104: 3340.CrossRefGoogle ScholarPubMed
Bertrand, V. Intracellular profiling for biopharmaceutical cultivation processes. ETH Zurich; 2018.Google Scholar
Vernardis, SI, Goudar, CT, Klapa, MI. Metabolic profiling reveals that time related physiological changes in mammalian cell perfusion cultures are bioreactor scale independent. Metab Eng. 2013; 19: 19.Google Scholar
Karst, DJ, Steinhoff, RF, Kopp, MRG, Soos, M, Zenobi, R, Morbidelli, M. Isotope labeling to determine the dynamics of metabolic response in CHO cell perfusion bioreactors using MALDI-TOF-MS. Biotechnol Prog. 2017; 33(6): 16301639.Google Scholar
Konstantinov, K, Goudar, C, Ng, M, Meneses, R, Thrift, J, Chuppa, S, et al. The “push-to-low” approach for optimization of high-density perfusion cultures of animal cells. Adv Biochem Eng Biot. 2006; 101: 7598.Google Scholar
Vogel, JH, Nguyen, H, Pritschet, M, Van Wegen, R, Konstantinov, K. Continuous annular chromatography: General characterization and application for the isolation of recombinant protein drugs. Biotechnol Bioeng. 2002; 80(5): 559568.Google Scholar
Hilbrig, F, Freitag, R. Continuous annular chromatography. J Chromatogr B. 2003; 790(12): 115.Google Scholar
Uretschläger, A, Jungbauer, A. Preparative continuous annular chromatography (P-CAC), a review. Bioproc Biosyst Eng. 2002; 25(2): 129140.Google Scholar
Wolfgang, J, Prior, A. Continuous annular chromatography. Adv Biochem Eng Biotechnol. 2002; 76: 233255.Google Scholar
Bloomingburg, GF, Carta, G. Separation of protein mixtures by continuous annular chromatography with step elution. Chem Eng J Biochem Eng. 1994; 55(1): B19B27.Google Scholar
Brozio, J, Bart, HJ. A rigorous model for annular chromatography. Chem Eng Technol. 2004; 27(9): 962970.Google Scholar
Evans, DH, Piermarini, PM, Choe, KP. The multifunctional fish gill: Dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiol Rev. 2004; 85(1): 97177.Google Scholar
Broughton, DB, Gerhold, CG, inventors; Continuous sorption process employing fixed bed of sorbent and moving inlets and outlets. US 2985589 A; 1961, filing date.Google Scholar
Majozi, T. Batch chemical process integration. Analysis, synthesis and optimization. Springer; 2010.Google Scholar
[125] El-Halwagi, MM. Process integration. vol. 7. Elsevier; 2006.Google Scholar
Smith, R. Chemical process: Design and integration, Second edition. Wiley; 2016.Google Scholar
Warikoo, V, Godawat, R, Brower, K, Jain, S, Cummings, D, Simons, E, et al. Integrated continuous production of recombinant therapeutic proteins. Biotechnol Bioeng. 2012; 109(12): 30183029.Google Scholar
Godawat, R, Konstantinov, K, Rohani, M, Warikoo, V. End-to-end integrated fully continuous production of recombinant monoclonal antibodies. J Biotechnol. 2015; 213: 1319.Google Scholar
Steinebach, F, Ulmer, N, Wolf, M, Decker, L, Schneider, V, Wälchli, R, et al. Design and operation of a continuous integrated monoclonal antibody production process. Biotechnol Prog. 2017; 33(5): 13031313.Google Scholar
Gomes, J, Chopda, VR, Rathore, AS. Integrating systems analysis and control for implementing process analytical technology in bioprocess development. J Chem Technol Biotechnol. 2015; 90(4): 583589.Google Scholar
Jiang, M, Severson, KA, Love, JC, Madden, H, Swann, P, Zang, L, et al. Opportunities and challenges of real-time release testing in biopharmaceutical manufacturing. Biotechnol Bioeng. 2017; 114(11): 24452456.Google Scholar
Rögner, M. Size exclusion chromatography. In: Michael, K, editor. Protein liquid chromatography. Volume 61 of Journal of chromatography library. Elsevier; 2000. p. 89145.Google Scholar
Carpenter, JF, Randolph, TW, Jiskoot, W, Crommelin, DJ, Middaugh, CR, Winter, G. Potential inaccurate quantitation and sizing of protein aggregates by size exclusion chromatography: Essential need to use orthogonal methods to assure the quality of therapeutic protein products. J Pharm Sci. 2010; 99(5): 22002208.Google Scholar
Arakawa, T, Ejima, D, Li, T, Philo, JS. The critical role of mobile phase composition in size exclusion chromatography of protein pharmaceuticals. J Pharm Sci. 2010; 99(4): 1674– 1692.Google Scholar
Jacob, LR. Hydrophobic interaction chromatography. In: Michael, K, editor. Protein liquid chromatography. Volume 61 of Journal of chromatography library. Elsevier; 2000. p. 235269.Google Scholar
Schlüter, H. Reversed-phase chromatography. In: Michael, K, editor. Protein liquid chromatography. Volume 61 of Journal of chromatography library. Elsevier; 2000. p. 147234.Google Scholar
Helfferich, FG. Ion exchange. Courier Corporation; 1962.Google Scholar
Roos, PH. Ion exchange chromatography. In: Michael, K, editor. Protein liquid chromatography. Volume 61 of Journal of chromatography library. Elsevier; 2000. p. 388.Google Scholar
Haddad, PR, Jackson, PE. Ion-exclusion chromatography. In: Haddad, PR, Jackson, PE, editors. Ion chromatography – Principles and applications. Volume 46 of Journal of chromatography library. Elsevier; 1990. p. 195222.Google Scholar
Fritz, JS. Principles and applications of ion-exclusion chromatography. J Chromatogr A. 1991; 546: 111118.Google Scholar
Starkenstein, E. Über Fermentwirkung und deren Beeinflussung durch Neutralsalze. Biochem Z. 1910; 24: 210.Google Scholar
Cuatrecasas, P, Wilchek, M. Single-step purification of avidin from egg white by affinity chromatography on biocytin-Sepharose columns. Biochem Biophys Res Co. 1968; 33(2): 235239.Google Scholar
Grönwall, C, Ståhl, S. Engineered affinity proteins – Generation and applications. J Biotechnol. 2009; 140(34): 254269.Google Scholar
Kastner, M. Immobilized metal ion affinity chromatography. In: Michael, K, editor. Protein liquid chromatography. Volume 61 of Journal of chromatography library. Elsevier; 2000. p. 301383.Google Scholar
Cheung, RCF, Wong, JH, Ng, TB. Immobilized metal ion affinity chromatography: A review on its applications. Applied Microbiol Biot. 2012; 96(6): 14111420.Google Scholar
Block, H, Maertens, B, Spriestersbach, A, Brinker, N, Kubicek, J, Fabis, R, et al. Immobilized-metal affinity chromatography (IMAC): A review. Methods in enzymology. 2009; 463: 439473.Google Scholar
Feldman, PA, Bradbury, PI, Williams, JD, Sims, GE, McPhee, JW, Pinnell, MA, et al. Large-scale preparation and biochemical characterization of a new high purity factor IX concentrate prepared by metal chelate affinity chromatography. Blood Coagul Fibrinolysis. 1994; 5(6): 939948.Google Scholar
Barros de Genaro, AC, Tamagawa, RE, Azzoni, AR, Alves Bueno, SM, Miranda, EA. Recovery and purification of aprotinin from industrial insulin-processing effluent by immobilized chymotrypsin and negative IMAC chromatographies. Process Biochem. 2002; 37(12): 14131420.Google Scholar
Yang, Y, Geng, X. Mixed-mode chromatography and its applications to biopolymers. J Chromatogr A. 2011; 1218(49): 88138825.Google Scholar
Zhang, K, Liu, X. Mixed-mode chromatography in pharmaceutical and biopharmaceutical applications. J Pharmaceut Biomed. 2016; 128: 7388.Google Scholar
Zhao, G, Dong, XY, Sun, Y. Ligands for mixed-mode protein chromatography: Principles, characteristics and design. J Biotechnol. 2009; 144(1): 311.Google Scholar
Khalaf, R, Forrer, N, Buffolino, G, Butt, A, Morbidelli, M. Model-based description of peptide retention on doped reversed-phase media. J Chromatogr A. 2015; 1407: 169175.Google Scholar
Deppert, WR, Lukačin, R. Hydroxyapatite chromatography. In: Michael, K, editor. Protein liquid chromatography. Volume 61 of Journal of chromatography library. Elsevier; 2000. p. 271299.Google Scholar
[154] Cummings, LJ, Snyder, MA, Brisack, K. Protein chromatography on hydroxyapatite columns. In: Richard, RB, Murray, PD, editors. Methods in enzymology. Volume 463. Academic Press; 2009. p. 387404.Google Scholar
Kaleas, KA, Schmelzer, CH, Pizarro, SA. Industrial case study: Evaluation of a mixed-mode resin for selective capture of a human growth factor recombinantly expressed in E. coli. J Chromatogr A. 2010; 1217(2): 235242.Google Scholar
Pezzini, J, Joucla, G, Gantier, R, Toueille, M, Lomenech, AM, Le Sénéchal, C, et al. Antibody capture by mixed-mode chromatography: A comprehensive study from determination of optimal purification conditions to identification of contaminating host cell proteins. J Chromatogr A. 2011; 1218(45): 81978208.Google Scholar
Hilbrig, F, Freitag, R. Isolation and purification of recombinant proteins, antibodies and plasmid DNA with hydroxyapatite chromatography. Biotechnol J. 2012; 7(1): 90102.Google Scholar
Nicoud, RM. Chromatographic processes: Modeling, simulation and design. Cambridge University Press; 2015.Google Scholar
Schmidt-Traub, H, Schulte, M, Seidel-Morgenstern A. Preparative chromatography. John Wiley & Sons; 2012.Google Scholar
Guiochon, G, Felinger, A, Shirazi, DG, Katti, A. Fundamentals of preparative and nonlinear chromatography. Second edition. Elsevier; 2006.Google Scholar
Ruthven, DM. Principles of adsorption and adsorption processes. John Wiley & Sons; 1984.Google Scholar
Gu, T, Tsai, GJ, Tsao, G. Modeling of nonlinear multicomponent chromatography. Adv Biochem Eng Biot. 1993; 49: 4571.Google Scholar
DeGroot, MH. A conversation with George Box. Stat Sci. 1987; 2(3): 239258.Google Scholar
Coquebert de Neuville, B, Tarafder, A, Morbidelli, M. Distributed pore model for bio-molecule chromatography. J Chromatogr A. 2013; 1298: 2634.Google Scholar
Stickel, JJ, Fotopoulos, A. Pressure-flow relationships for packed beds of compressible chromatography media at laboratory and production Scale. Biotechnol Prog. 2001; 17(4): 744751.Google Scholar
Flodin, P. Methodological aspects of gel filtration with special reference to desalting operations. J Chromatogr A. 1961; 5(2): 103115.Google Scholar
Hagel, L. Gel filtration: Size exclusion chromatography. In: Janson, JC, editor. Protein purification: Principles, high resolution methods, and applications. Third edition. John Wiley & Sons, Inc.; 2011. p. 5191.Google Scholar
DePhillips, P, Lenhoff, AM. Pore size distributions of cation-exchange adsorbents determined by inverse size-exclusion chromatography. J Chromatogr A. 2000; 883(1–2): 3954.Google Scholar
Kuga, S. Pore-size distribution analyis of gel substances by size exclusion chromatography. J Chromatogr A. 1981; 206(3): 449461.Google Scholar
Giddings, JC, Kucera, E, Russell, CP, Myers, MN. Statistical theory for the equilibrium distribution of rigid molecules in inert porous networks. Exclusion chromatography. J Phys Chem. 1968; 72(13): 43974408.Google Scholar
Knox, JH, Scott, HP. Theoretical-models for size-exclusion chromatography and calculation of pore-size distribution from size exclusion chromatography data. J Chromatogr A. 1984; 316(DEC): 311332.Google Scholar
Kvaalen, E, Tondeur, D. Constraints on phase equilibrium equations. Chem Eng Sci. 1988; 43(4): 803810.Google Scholar
Kopaciewicz, W, Rounds, MA, Fausnaugh, J, Regnier, FE. Second international symposium on high-performance liquid chromatography of proteins, peptides and polynucleotides retention model for high-performance ion-exchange chromatography. J Chromatogr A. 1983; 266: 321.Google Scholar
Brooks, CA, Cramer, SM. Steric mass-action ion exchange – Displacement profiles and induced salt gradients. AICHe J. 1992; 38(12): 19691978.Google Scholar
Hunter, AK, Carta, G. Protein adsorption on novel acrylamido-based polymeric ion-exchangers I. Morphology and equilibrium adsorption. J Chromatogr A. 2000; 897(1–2): 6580.Google Scholar
Mollerup, JM. The thermodynamic principles of ligand binding in chromatography and biology. J Biotechnol. 2007; 132(2): 187195.Google Scholar
Mollerup, JM. A review of the thermodynamics of protein association to ligands, protein adsorption, and adsorption isotherms. Chem Eng Technol. 2008; 31(6): 864874.Google Scholar
Poole, CF, Schuette, SA. Contemporary practice of chromatography. Elsevier; 1984.Google Scholar
Melander, W, Horvath, C. Salt effects on hydrophobic interactions in precipitation and chromatography of proteins – Interpretation of lyotropic series. Arch Biochem Biophys. 1977; 183(1): 200215.Google Scholar
Danckwerts, PV. Continuous flow systems. Chem Eng Sci. 1953; 2(1): 113.Google Scholar
Martin, AJP, Synge, RLM. A new form of chromatogram employing two liquid phases: A theory of chromatography. 2. Application to the micro-determination of the higher monoamino-acids in proteins. Biochem J. 1941; 35(12): 13581368.Google Scholar
Kozeny, J. Uber kapillare Leitung der Wasser in Boden. Sitzungsber Akad Wiss Wien. 1927; 136: 271306.Google Scholar
Carman, PC. Fluid flow through granular beds. Trans Ins Chem Eng. 1937; 15: 150167.Google Scholar
Taylor, R, Krishna, R. Multicomponent mass transfer. John Wiley & Sons, Inc; 1993.Google Scholar
Krishna, R, Wesselingh, J. The Maxwell–Stefan approach to mass transfer. Chem Eng Sci. 1997; 52(6): 861911.Google Scholar
Wakao, N, Funazkri, T. Effect of fluid dispersion coefficients on particle-to-fluid mass transfer coefficients in packed beds. Chem Eng Sci. 1978; 33(10): 13751384.Google Scholar
Carberry, JJ. A boundary-layer model of fluid-particle mass transfer in fixed beds. AIChE J. 1960; 6(3): 460463.Google Scholar
Wilson, EJ, Geankoplis, CJ. Liquid mass transfer at very low Reynolds numbers in packed beds. Ind Eng Chem Fund. 1966; 5(1): 914.Google Scholar
Einstein, A. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewe-gung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann d Physik. 1905; 322(8): 549560.Google Scholar
Polson, A. The some aspects of diffusion in solution and a definition of a colloidal particle. J Phys Colloid Chem. 1950; 54(5): 649652.Google Scholar
Wang, CK, Northfield, SE, Swedberg, JE, Harvey, PJ, Mathiowetz, AM, Price, DA, et al. Translational diffusion of cyclic peptides measured using pulsed-field gradient NMR. J Phys Chem B. 2014; 118(38): 1112911136.Google Scholar
García De La Torre, J, Huertas, ML, Carrasco, B. Calculation of hydrodynamic properties of globular proteins from their atomic-level structure. Biophys J. 2000; 78(2): 719730.Google Scholar
Flury, M, Gimmi, TF. Solute diffusion. In: Dane, HD, Topp, CG, editors. Methods of soil analysis: Part 4 – physical methods. vol. 5 of Soil science society of America book series. Soil Science Society of America; 2002. p. 13231351.Google Scholar
Cunningham, AB, Lennox, JE, Ross, RJ. Biofilm: The hypertextbook. National Science Foundation; 2011.Google Scholar
van Deemter, JJ, Zuiderweg, FJ, Klinkenberg, A. Longitudinal diffusion and resistance to mass transfer as causes of nonideality in chromatography. Chem Eng Sci. 1956; 5(6): 271289.Google Scholar
Carta, G, Ubiera, AR, Pabst, TM. Protein mass transfer kinetics in ion exchange media: Measurements and interpretations. Chem Eng Technol. 2005; 28(11): 12521264.Google Scholar
Carta, G, Rodrigues, AE. Diffusion and convection in chromatographic processes using permeable supports with a bidisperse pore structure. Chem Eng Sci. 1993; 48(23): 3927– 3935.Google Scholar
Rodrigues, AE. Permeable packings and perfusion chromatography in protein separation. J Chromatogr B Biomed Sci Appl. 1997; 699(1–2): 4761.Google Scholar
Wu, Y, Abraham, D, Carta, G. Particle size effects on protein and virus-like particle adsorption on perfusion chromatography media. J Chromatogr A. 2015; 1375: 92100.Google Scholar
Wu, Y, Simons, J, Hooson, S, Abraham, D, Carta, G. Protein and virus-like particle adsorption on perfusion chromatography media. J Chromatogr A. 2013; 1297: 96105.Google Scholar
Coquebert de Neuville, B, Lamprou, A, Morbidelli, M, Soos, M. Perfusive ion-exchange chromatographic materials with high capacity. J Chromatogr A. 2014; 1374: 180188.Google Scholar
Hahn, R, Bauerhansl, P, Shimahara, K, Wizniewski, C, Tscheliessnig, A, Jungbauer, A. Comparison of protein A affinity sorbents: II. Mass transfer properties. J Chromatogr A. 2005; 1093(12): 98110.Google Scholar
Nfor, BK, Noverraz, M, Chilamkurthi, S, Verhaert, PDEM, van der Wielen, LAM, Ottens, M. High-throughput isotherm determination and thermodynamic modeling of protein adsorption on mixed mode adsorbents. J Chromatogr A. 2010; 1217(44): 68296850.Google Scholar
Pakiman, N, Isa, NH, Abol Hassan, MA, Walter, JK, Abdullah, N. Comparison of binding capacity and affinity of monoclonal antibody towards different affinity resins using high-throughput chromatography method. J Appl Sci. 2012; 12(11): 1136.Google Scholar
Baur, D, Angarita, M, Müller-Späth, T, Morbidelli, M. Optimal model-based design of the twin-column CaptureSMB process improves capacity utilization and productivity in protein A affinity capture. Biotechnol J. 2016; 11(1): 135145.Google Scholar
Melter, L, Ströhlein, G, Butté, A, Morbidelli, M. Adsorption of monoclonal antibody variants on analytical cation-exchange resin. J Chromatogr A. 2007; 1154(12): 121131.Google Scholar
Yamamoto, S, Nakanishi, K, Matsuno, R. Ion-exchange chromatography of proteins. vol. 43 of Chromatographic Science; 1988.Google Scholar
Ishihara, T, Kadoya, T, Yamamoto, S. Application of a chromatography model with linear gradient elution experimental data to the rapid scale-up in ion-exchange process chromatography of proteins. J Chromatogr A. 2007; 1162(1): 3440.Google Scholar
Pfister, D, Steinebach, F, Morbidelli, M. Linear isotherm determination from linear gradient elution experiments. J Chromatogr A. 2015; 1375: 3341.Google Scholar
Vajda, J, Conze, W, Muller, E. Kinetic plots in aqueous size exclusion chromatography of monoclonal antibodies and virus particles. J Chromatogr A. 2015; 1426: 118125.Google Scholar
Schmidt-Nielsen, K. Countercurrent systems in animals. Sci Am. 1981; 244(5): 118129.Google Scholar
Gottschalk, CW, Mylle, M. Micropuncture study of the mammalian urinary concentrating mechanism: Evidence for the countercurrent hypothesis. Am J Physiol-Legacy Content. 1959; 196(4): 927936.Google Scholar
Midtgård, U. The rete tibiotarsale and arteriovenous association in the hind limb of birds: A compartive morphological study on countercurrent heat exchange systems. Acta Zool. 1981; 62(2): 6787.Google Scholar
Taylor, CR, Lyman, CP. Heat storage in running antelopes: Independence of brain and body temperatures. Am J Physiol-Legacy Content. 1972; 222(1): 114117.Google Scholar
Biegler, LT, Grossman, IE, Westerberg AW. Systematic methods of chemical process design. Prentice Hall; 1997.Google Scholar
Ruthven, DM, Ching, CB. Counter-current and simulated counter-current adsorption separation processes. Chem Eng Sci. 1989; 44(5): 10111038.Google Scholar
Migliorini, C, Mazzotti, M, Morbidelli, M. Continuous chromatographic separation through simulated moving beds under linear and nonlinear conditions. J Chromatogr A. 1998; 827(2): 161173.Google Scholar
Mazzotti, M, Storti, G, Morbidelli, M. Optimal operation of simulated moving bed units for nonlinear chromatographic separations. J Chromatogr A. 1997; 769(1): 324.Google Scholar
Berg, C. The hypersorption process for gas fractionation. The Hague; 1951. Third World Petroleum Congress.Google Scholar
Rodrigues, AE. Simulated moving bed technology. Principles, design and process applications. Butterworth-Heinemann; 2015.Google Scholar
Mazzotti, M. Equilibrium theory based design of simulated moving bed processes for a generalized Langmuir isotherm. J Chromatogr A. 2006; 1126(1–2): 311322.Google Scholar
Mazzotti, M. Design of simulated moving bed separations: Generalized Langmuir isotherm. Ind Eng Chem Res. 2006; 45(18): 63116324.Google Scholar
Ma, Z, Wang, NHL. Standing wave analysis of SMB chromatography: Linear systems. AIChE J. 1997; 43(10): 24882508.Google Scholar
Xie, Y, Wu, D, Ma, Z, Wang, NHL. Extended standing wave design method for simulated moving bed chromatography: Linear systems. Ind Eng Chem Res. 2000; 39(6): 19932005.Google Scholar
Mallmann, T, Burris, BD, Ma, Z, Wang, NHL. Standing wave design of nonlinear SMB systems for fructose purification. AIChE J. 1998; 44(12): 26282646.Google Scholar
Siitonen, J, Sainio, T. Unified design of chromatographic separation processes. Chem Eng Sci. 2015; 122: 436451.Google Scholar
Charton, F, Nicoud, RM. Complete design of a simulated moving bed. J Chromatogr A. 1995; 702(1): 97112.Google Scholar
Biressi, G, Ludemann-Hombourger, O, Mazzotti, M, Nicoud, RM, Morbidelli, M. Design and optimisation of a simulated moving bed unit: Role of deviations from equilibrium theory. J Chromatogr A. 2000; 876(1): 315.Google Scholar
David, L, Yun, J, Nicoud, RM. Comparing multi-column chromatographic processes for purifying monosaccharides part I: A simplified approach. Adsorption. 2017; p. 577–591.Google Scholar
Shukla, AA, Hinckley, P. Host cell protein clearance during protein A chromatography: Development of an improved column wash step. Biotechnol Prog. 2008; 24(5): 11151121.Google Scholar
Nogal, B, Chhiba, K, Emery, JC. Select host cell proteins coelute with monoclonal antibodies in protein A chromatography. Biotechnol Prog. 2012; 28(2): 454458.Google Scholar
Hahn, R, Schlegel, R, Jungbauer, A. Comparison of protein A affinity sorbents. J Chromatogr B. 2003; 790(1): 3551.Google Scholar
Perez-Almodovar, EX, Carta, G. IgG adsorption on a new protein A adsorbent based on macroporous hydrophilic polymers. I. Adsorption equilibrium and kinetics. J Chromatogr A. 2009; 1216(47): 83398347.Google Scholar
Urh, M, Simpson, D, Zhao, K. Affinity chromatography: General methods. In: Richard, RB, Murray, PD, editors. Methods in enzymology. Volume 463. Academic Press; 2009. p. 417– 438.Google Scholar
Wrzosek, K, Gramblička, M, Tóthová, D, Antošová, M, Polakovič, M. Impact of ionic strength on adsorption capacity of chromatographic particles employed in separation of monoclonal antibodies. Chem Pap. 2010; 64(4): 461468.Google Scholar
Gramblička, M, Tóthová, D, Antošová, M, Polakovič, M. Influence of pH on adsorption of human immunoglobulin gamma, human serum albumin and horse myoglobin by commercial chromatographic materials designed for downstream processing of monoclonal antibodies. Acta Chimica Slovaca. 2008; 1(1): 8594.Google Scholar
Shalliker, RA, Catchpoole, HJ, Dennis, GR, Guiochon, G. Visualising viscous fingering in chromatography columns: High viscosity solute plug. J Chromatogr A. 2007; 1142(1): 4855.Google Scholar
Stone, MC, Carta, G. Patterns of protein adsorption in chromatographic particles visualized by optical microscopy. J Chromatogr A. 2007; 1160(1–2): 206214.Google Scholar
Tao, Y, Carta, G. Rapid monoclonal antibody adsorption on dextran-grafted agarose media for ion-exchange chromatography. J Chromatogr A. 2008; 1211(1–2): 7079.Google Scholar
Zhu, M, Carta, G. Protein adsorption equilibrium and kinetics in multimodal cation exchange resins. Adsorption. 2016; 22(2): 165179.Google Scholar
Spahn, H, Schlünder, EU. The scale-up of activated carbon columns for water purification, based on results from batch tests – I: Theoretical and experimental determination of adsorption rates of single organic solutes in batch tests. Chem Eng Sci. 1975; 30(5): 529537.Google Scholar
Steinebach, F, Angarita, M, Karst, DJ, Müller-Späth, T, Morbidelli, M. Model based adaptive control of a continuous capture process for monoclonal antibodies production. J Chromatogr A. 2016; 1444: 5056.Google Scholar
Angarita, M, Müller-Späth, T, Baur, D, Lievrouw, R, Lissens, G, Morbidelli, M. Twin-column CaptureSMB: A novel cyclic process for protein A affinity chromatography. J Chromatogr A. 2015; 1389: 8595.Google Scholar
Gottschlich, N, Kasche, V. Purification of monoclonal antibodies by simulated moving-bed chromatography. J Chromatogr A. 1997; 765(2): 201206.Google Scholar
Bryntesson, M, Hall, M, Lacki, K, inventors; Chromatography method. WO 2008153472 A1; 2008, filing date.Google Scholar
Mierendorf, R, Paaren, H, Grabski, A, Wilke, A, Baier, J, Oroskar, A, inventors; Continuous Isocratic Affinity Chromatography. US20080053901 A1; 2007, filing date.Google Scholar
Müller-Späth, T, Aumann, L, Ströhlein, G, Bavand, M, inventors; Method for identification and purification of multi-specific polypeptides. EP 2500073 A1; 2011, filing date.Google Scholar
Ransohoff, TC, Bisschops, MAT, inventors; Continuous processing methods for biological products. WO 2012078677 A3; 2011, filing date.Google Scholar
Valery, E, Morey, C, inventors; Method and device for separating fractions of a mixture. WO 2007101944 A2; 2007, filing date.Google Scholar
Gjoka, X, Rogler, K, Martino, RA, Gantier, R, Schofield, M. A straightforward methodology for designing continuous monoclonal antibody capture multi-column chromatography processes. J Chromatogr A. 2015; 1416: 3846.Google Scholar
Pfister, D, David, L, Holzer, M, Nicoud, RM. Designing affinity chromatographic processes for the capture of antibodies. Part I: A simplified approach. J Chromatogr A. 2017; 1494: 2739.Google Scholar
Angelo, J, Pagano, J, Müller-Späth, T, Mihlbacher, K, Chollangi, S, Xu, X, et al. Scale-up of twin-column periodic counter-current chromatography for mAb purification. BioProcess International. 2018; 16(4).Google Scholar
Baur, D, Angarita, M, Müller-Späth, T, Steinebach, F, Morbidelli, M. Comparison of batch and continuous multicolumn protein A capture processes by optimal design. Biotechnol J. 2016; 11: 920931.Google Scholar
Ng, CK, Osuna-Sanchez, H, Valéry, E, Sørensen, E, Bracewell, DG. Design of high productivity antibody capture by protein A chromatography using an integrated experimental and modeling approach. J Chromatogr B. 2012; 899: 116126.Google Scholar
Ng, CK, Rousset, F, Valéry, E, Bracewell, DG, Sørensen, E. Design of high productivity sequential multi-column chromatography for antibody capture. Food Bioprod Process. 2014; 92(2): 233241.Google Scholar
Corriou, JP. Process control: Theory and applications. Springer; 2004.Google Scholar
Bequette, BW. Process control: Modeling, design and simulation. Prentice Hall; 2003.Google Scholar
Engell, S, Toumi, A. Optimisation and control of chromatography. Comp Chem Eng. 2005; 29(6): 12431252.Google Scholar
Morari, M, Zafiriou E. Robust process control. Prentice Hall; 1989.Google Scholar
Borrelli, F, Bemporad, A, Morari M. Predictive control for linear and hybrid systems. Cambridge University Press; 2017.Google Scholar
Karst, DJ, Steinebach, F, Soos, M, Morbidelli, M. Process performance and product quality in an integrated continuous antibody production process. Biotechnol Bioeng. 2017; 114(2): 298307.Google Scholar
Mathiasson, L, Åkerblom, A, Skoglar, H, Blom, H, Ła̧cki, K. The use of dynamic control in periodic counter-current chromatography. GE Healthcare Life Sciences; 2015.Google Scholar
Chromacon. Contichrom Twin-column FPLC Chromatography. Process Control and Optimization by AutomAb; 2016.Google Scholar
Müller-Späth, T, Ulmer, N, Aumann, L, Ströhlein, G, Bavand, M. Automated process development and control of a twin-column counter-current process (CaptureSMB) for affinity capture. Prep Symposium. Boston; 2014.Google Scholar
Gottschalk, U. Process scale purification of antibodies. John Wiley & Sons; 2011.Google Scholar
Kelley, BD, Tobler, SA, Brown, P, Coffman, JL, Godavarti, R, Iskra, T, et al. Weak partitioning chromatography for anion exchange purification of monoclonal antibodies. Biotechnol Bioeng. 2008; 101(3): 553566.Google Scholar
Fahrner, RL, Lester, PM, Blank, GS, Reifsnyder, DH. Non-flammable preparative reversed-phase liquid chromatography of recombinant human insulin-like growth factor-I. J Chromatogr A. 1999; 830(1): 127134.Google Scholar
Garke, G, Hartmann, R, Papamichael, N, Deckwer, WD, Anspach, F. The influence of protein size on adsorption kinetics and equilibria in ion-exchange chromatography. Sep Sci Technol. 1999; 34(13): 25212538.Google Scholar
Walton, KS, Sholl, DS. Predicting multicomponent adsorption: 50 years of the ideal adsorbed solution theory. AIChE J. 2015; 61(9): 27572762.Google Scholar
Myers, A, Prausnitz, JM. Thermodynamics of mixed-gas adsorption. AIChE J. 1965; 11(1): 121127.Google Scholar
Radke, CJ, Prausnitz, JM. Thermodynamics of multi-solute adsorption from dilute liquid solutions. AIChE J. 1972; 18(4): 761768.Google Scholar
Guélat, B, Ströhlein, G, Lattuada, M, Morbidelli, M. Electrostatic model for protein adsorption in ion-exchange chromatography and application to monoclonal antibodies, lysozyme and chymotrypsinogen A. J Chromatogr A. 2010; 1217(35): 56105621.Google Scholar
Guélat, B, Khalaf, R, Lattuada, M, Costioli, M, Morbidelli, M. Protein adsorption on ion exchange resins and monoclonal antibody charge variant modulation. J Chromatogr A. 2016; 1447: 8291.Google Scholar
Guélat, B, Ströhlein, G, Lattuada, M, Delegrange, L, Valax, P, Morbidelli, M. Simulation model for overloaded monoclonal antibody variants separations in ion-exchange chromatography. J Chromatogr A. 2012; 1253: 3243.Google Scholar
Pfister, D, Morbidelli, M, Nicoud, RM. A continuum theory for multicomponent chromatography modeling. J Chromatogr A. 2016; 1446: 5058.Google Scholar
Carta, G, Lewus, RK. Film model approximation for multicomponent adsorption. Adsorption. 2000; 6(1): 513.Google Scholar
Tao, Y, Chen, N, Carta, G, Ferreira, G, Robbins, D. Modeling multicomponent adsorption of monoclonal antibody charge variants in cation exchange columns. AIChE J. 2012; 58(8): 25032511.Google Scholar
Forrer, N, Butte, A, Morbidelli, M. Chromatographic behavior of a polyclonal antibody mixture on a strong cation exchanger column. Part I: Adsorption characterization. J Chromatogr A. 2008; 1214(1–2): 5970.Google Scholar
Forrer, N, Butte, A, Morbidelli, M. Chromatographic behavior of a polyclonal antibody mixture on a strong cation exchanger column. Part II: Adsorption modelling. J Chromatogr A. 2008; 1214(1–2): 7180.Google Scholar
Nicoud, RM, Clavier, JY, Perrut, M. Preparative SFC: Basics and applications. In: Caude M, Thiébaut D, editors. Practical supercritical fluid chromatography and extraction. vol. 2; 1999. p. 397.Google Scholar
Mazzotti, M, Storti, G, Morbidelli, M. Supercritical fluid simulated moving bed chromatography. J Chromatogr A. 1997; 786(2): 309320.Google Scholar
Jensen, TB, Billiet, HAH, Van, DWLAM, inventors; Method of substantially continuously separating two compounds using a moving bed or a simulated moving bed. WO2000033934 A1; 1999, filing date.Google Scholar
Abel, S, Mazzotti, M, Morbidelli, M. Solvent gradient operation of simulated moving beds: II. Langmuir isotherms. J Chromatogr B. 2004; 1026(1): 4755.Google Scholar
Keßler, LC, Gueorguieva, L, Rinas, U, Seidel-Morgenstern, A. Step gradients in 3-zone simulated moving bed chromatography: Application to the purification of antibodies and bone morphogenetic protein-2. J Chromatogr A. 2007; 1176(12): 6978.Google Scholar
Martínez Cristancho, CA, Seidel-Morgenstern, A. Purification of single-chain antibody fragments exploiting pH-gradients in simulated moving bed chromatography. J Chromatogr A. 2016; 1434: 2938.Google Scholar
Song, SM, Kim, IH. A three-zone simulated moving-bed for separation of immunoglobulin Y. Korean J Chem Eng. 2013; 30(8): 15271532.Google Scholar
Li, P, Xiu, G, Rodrigues, AE. Proteins separation and purification by salt gradient ion-exchange SMB. AIChE J. 2007; 53(9): 24192431.Google Scholar
Seidel-Morgenstern, A, Keßler, LC, Kaspereit, M. New developments in simulated moving bed chromatography. Chem Eng Technol. 2008; 31(6): 826837.Google Scholar
Agrawal, G, Kawajiri, Y. Comparison of various ternary simulated moving bed separation schemes by multi-objective optimization. J Chromatogr A. 2012; 1238: 105113.Google Scholar
Nicolaos, A, Muhr, L, Gotteland, P, Nicoud, RM, Bailly, M. Application of equilibrium theory to ternary moving bed configurations (four+four, five+four, eight and nine zones): I. Linear case. J Chromatogr A. 2001; 908(12): 7186.Google Scholar
Xie, Y, Mun, S, Chin, CY, Wang, NHL. Simulated moving bed technologies for producing high purity biochemicals and pharmaceuticals. In: Hwang, NHC, Woo, SLY, editors. Frontiers in Biomedical Engineering: Proceedings of the World Congress for Chinese Biomedical Engineers. Springer US; 2003. p. 507527.Google Scholar
Xie, Y, Mun, S, Kim, J, Wang, NHL. Standing wave design and experimental validation of a tandem simulated moving bed process for insulin purification. Biotechnol Prog. 2002; 18(6): 13321344.Google Scholar
Voigt, U, Kinkel, J, Hempel, R, Nicoud, RM, inventors; Chromatographic process for obtaining highly purified cyclosporin A and related cyclosporins. US006306306B1; 1997, filing date.Google Scholar
Hotier, G, Toussaint, JM, Terneuil, G, Lonchamp, D, inventors; Continuous process and apparatus for chromatographic separation of a mixture of at least three constituents into three purified effluents using two solvents. US005093004A; 1990, filing date.Google Scholar
Abel, S, Bäbler, MU, Arpagaus, C, Mazzotti, M, Stadler, J. Two-fraction and three-fraction continuous simulated moving bed separation of nucleosides. J Chromatogr A. 2004; 1043(2): 201210.Google Scholar
Paredes, G, Abel, S, Mazzotti, M, Morbidelli, M, Stadler, J. Analysis of a simulated moving bed operation for three-fraction separations (3F-SMB). Ind Eng Chem Res. 2004; 43(19): 61576167.Google Scholar
Wei, F, Li, M, Huang, F, Chen, M, Jiang, H, Zhao, Y. A novel pseudo simulated moving bed with solvent gradient for ternary separations. J Chromatogr A. 2011; 1218(20): 29062911.Google Scholar
Wei, F, Shen, B, Chen, M, Zhao, Y. Study on a pseudo-simulated moving bed with solvent gradient for ternary separations. J Chromatogr A. 2012; 1225: 99106.Google Scholar
Aumann, L, Morbidelli, M. A continuous multi-column counter-current solvent gradient purification (MCSGP) process. Biotechnol Bioeng. 2007; 98(5): 10431055.Google Scholar
Aumann, L, Stroehlein, G, Morbidelli, M. Parametric study of a 6-column counter-current solvent gradient purification (MCSGP) unit. Biotechnol Bioeng. 2007; 98(5): 10291042.Google Scholar
Müller-Späth, T, Aumann, L, Morbidelli, M. Role of cleaning-in-place in the purification of mAb supernatants using continuous cation exchange chromatography. Sep Sci Technol. 2009; 44(1): 126.Google Scholar
Krättli, M, Müller-Späth, T, Morbidelli, M. Multifraction separation in counter-current chromatography (MCSGP). Biotechnol Bioeng. 2013; 110(9): 24362444.Google Scholar
Silva, RJS, Rodrigues, RCR, Osuna-Sanchez, H, Bailly, M, Valéry, E, Mota, JPB. A new multi-column, open-loop process for center-cut separation by solvent-gradient chromatography. J Chromatogr A. 2010; 1217(52): 82578269.Google Scholar
Müller-Späth, T, Ströhlein, G, Aumann, L, Kornmann, H, Valax, P, Delegrange, L, et al. Model simulation and experimental verification of a cation-exchange IgG capture step in batch and continuous chromatography. J Chromatogr A. 2011; 1218(31): 51955204.Google Scholar
Ströhlein, G, Aumann, L, Mazzotti, M, Morbidelli, M. A continuous, counter-current multi-column chromatographic process incorporating modifier gradients for ternary separations. J Chromatogr A. 2006; 1126(1): 338346.Google Scholar
Steinebach, F, Krättli, M, Storti, G, Morbidelli, M. Equilibrium theory based design space for the multicolumn countercurrent solvent gradient purification process. Indus Eng Chem Res. 2017; 56(45): 1348213489.Google Scholar
Aumann, L, Morbidelli, M. A semicontinuous 3-column counter-current solvent gradient purification (MCSGP) process. Biotechnol Bioeng. 2008; 99(3): 728733.Google Scholar
Steinebach, F, Ulmer, N, Decker, L, Aumann, L, Morbidelli, M. Experimental design of a twin-column counter-current gradient purification process. J Chromatogr A. 2017; 1492: 1926.Google Scholar
Müller-Späth, T, Krättli, M, Aumann, L, Ströhlein, G, Morbidelli, M. Increasing the activity of monoclonal antibody therapeutics by continuous chromatography (MCSGP). Biotechnol Bioeng. 2010; 107(4): 652662.Google Scholar
Müller-Späth, T, Aumann, L, Melter, L, Ströhlein, G, Morbidelli, M. Chromatographic separation of three monoclonal antibody variants using multi-column counter-current solvent gradient purification (MCSGP). Biotechnol Bioeng. 2008; 100(6): 11661177.Google Scholar
Müller-Späth, T, Ströhlein, G, Lyngberg, O, Maclean, D. Enabling high purities and yields in therapeutic peptide purification using multicolumn countercurrent solvent gradient purification. Chim Oggi Chem Today. 2013; 31(5): 5660.Google Scholar
Krättli, M, Steinebach, F, Morbidelli, M. Online control of the twin-column counter-current solvent gradient process for biochromatography. J Chromatogr A. 2013; 1293: 5159.Google Scholar
Hendriks, LJA, de Kruif, J, Throsby, M, Bakker, ABH, Müller-Späth, T, Ulmer, N, et al. Purifying common light-chain bispecific antibodies. Bioprocess Int. 2013; 11(5): 3645.Google Scholar
Müller-Späth, T, Aumann, L, Ströhlein, G, Kornmann, H, Valax, P, Delegrange, L, et al. Two step capture and purification of IgG2 using multi-column counter-current solvent gradient purification (MCSGP). Biotechnol Bioeng. 2010; 107(6): 974984.Google Scholar
Ulmer, N, Steinebach, F, Morbidelli, M. Short course on continuous chromatography for biotherapeutics. Labcourse on the continuous purification of PEGylated lysozyme. ETH Zurich; 2015.Google Scholar
Erdem, G, Abel, S, Morari, M, Mazzotti, M, Morbidelli, M, Lee, JH. Automatic control of simulated moving beds. Indus Eng Chem Res. 2004; 43(2): 405421.Google Scholar
Erdem, G, Abel, S, Morari, M, Mazzotti, M, Morbidelli, M. Automatic control of simulated moving beds II: Nonlinear isotherm. Indus Eng Chem Res. 2004; 43(14): 38953907.Google Scholar
Grossmann, C, Ströhlein, G, Morari, M, Morbidelli, M. Optimizing model predictive control of the chromatographic multi-column solvent gradient purification (MCSGP) process. J Process Contr. 2010; 20(5): 618629.Google Scholar
Papathanasiou, MM, Avraamidou, S, Oberdieck, R, Mantalaris, A, Steinebach, F, Morbidelli, M, et al. Advanced control strategies for the multi-column counter-current solvent gradient purification process. AIChE J. 2016; 62(7): 23412357.Google Scholar
Birch, JR, Onakunle, Y. Biopharmaceutical proteins. vol. 308 of Therapeutic proteins. Humana Press; 2005.Google Scholar
Dembowsky, K, Stadler, P. Novel therapeutic proteins: Selected case studies. Wiley-VCH; 2001.Google Scholar
Farkaš, P, Bystrický, S. Chemical conjugation of biomacromolecules: A mini-review. Chemical Pap. 2010; 64(6): 683695.Google Scholar
Shu, JY, Panganiban, B, Xu, T. Peptide-polymer conjugates: From fundamental science to application. Annu Rev Phys Chem. 2013; 64: 631657.Google Scholar
Wong, SS. Chemistry of protein conjugation and cross-linking. CRC Press; 1991.Google Scholar
Kalia, J, Raines, RT. Advances in bioconjugation. Current Org Chem. 2010; 14(2): 138147.Google Scholar
Dean, KM, Palmer, AE. Advances in fluorescence labeling strategies for dynamic cellular imaging. Nat Chem Biol. 2014; 10(7): 512523.Google Scholar
Hermanson, GT. Bioconjugate techniques. Third edition. Academic Press; 2013.Google Scholar
Fee, CJ. Protein conjugates purification and characterization. In: PEGylated protein drugs: Basic science and clinical applications. Springer; 2009. p. 113125.Google Scholar
Pfister, D, Ulmer, N, Klaue, A, Ingold, O, Morbidelli, M. Modeling the kinetics of protein conjugation reactions. Chem Ing Tech. 2016; 88(11): 15981608.Google Scholar
Perez, HL, Cardarelli, PM, Deshpande, S, Gangwar, S, Schroeder, GM, Vite, GD, et al. Antibody-drug conjugates: Current status and future directions. Drug Discov Today. 2014; 19(7): 869881.Google Scholar
Dozier, JK, Distefano, MD. Site-specific PEGylation of therapeutic proteins. Int J Mol Sci. 2015; 16(10): 2583125864.Google Scholar
Schumacher, D, Hackenberger, CPR. More than add-on: Chemoselective reactions for the synthesis of functional peptides and proteins. Curr Opin Chem Biol. 2014; 22: 6269.Google Scholar
Veronese, FM, Mero, A, Pasut, G. Protein PEGylation, basic science and biological applications. In: PEGylated Protein Drugs: Basic Science and Clinical Applications. Springer; 2009. p. 1131.Google Scholar
Brocchini, S, Balan, S, Godwin, A, Choi, JW, Zloh, M, Shaunak, S. PEGylation of native disulfide bonds in proteins. Nature Protoc. 2006; 1(5): 22412252.Google Scholar
Brocchini, S, Godwin, A, Balan, S, Choi, JW, Zloh, M, Shaunak, S. Disulfide bridge based PEGylation of proteins. Adv Drug Deliver Rev. 2008; 60(1): 312.Google Scholar
Fontana, A, Spolaore, B, Mero, A, Veronese, FM. Site-specific modification and PEGylation of pharmaceutical proteins mediated by transglutaminase. Adv Drug Deliver Rev. 2008; 60(1): 1328.Google Scholar
Pfister, D, Bourgeaux, E, Morbidelli, M. Kinetic modeling of protein PEGylation. Chem Eng Sci. 2015; 137: 816827.Google Scholar
Fee, CJ, Van Alstine, JM. Prediction of the viscosity radius and the size exclusion chromatography behavior of PEGylated proteins. Bioconjugate Chem. 2004; 15(6): 13041313.Google Scholar
Birdsall, RE, Shion, H, Kotch, FW, Xu, A, Porter, TJ, Chen, W. A rapid on-line method for mass spectrometric confirmation of a cysteine-conjugated antibody-drug-conjugate structure using multidimensional chromatography. MAbs. 2015; 7(6): 10361044.Google Scholar
Le, LN, Moore, JM, Ouyang, J, Chen, X, Nguyen, MD, Galush, WJ. Profiling antibody drug conjugate positional isomers: A system-of-equations approach. Anal Chem. 2012; 84(17): 74797486.Google Scholar
Monkarsh, SP, Spence, C, Porter, JE, Palleroni, A, Nalin, C, Rosen, P, et al. Isolation of positional isomers of mono-poly(ethylene glycol)ylated interferon α-2a and the determination of their biochemical and biological characteristics. In: Harris, JL, Zalipsky, S, editors. Poly(ethylene glycol). Chemistry and biological applications. vol. 680 of ACS Symposium Series. American Chemical Society; 1997. p. 207216.Google Scholar
Maiser, B, Kroner, F, Dismer, F, Brenner-Weiss, G, Hubbuch, J. Isoform separation and binding site determination of mono-PEGylated lysozyme with pH gradient chromatography. J Chromatogr A. 2012; 1268: 102108.Google Scholar
ATTO-TEC. Recommended procedures for labeling; 2016. Accessible from: https://www.atto-tec.com/.Google Scholar
Pfister, D, Ingold, O, Morbidelli, M. Model-based development of an on-column PEGylation process. React Chem Eng. 2016; 1: 204217.Google Scholar
Pfister, D, Morbidelli, M. Integrated process for high conversion and high yield protein PEGylation. Biotechnol Bioeng. 2016; 113(8): 17111718.Google Scholar
Wang, X, Hu, J, Pan, D, Teng, H, Xiu, Z. PEGylation kinetics of recombinant hirudin and its application for the production of PEGylated HV2 species. Biochem Eng J. 2014; 85: 3848.Google Scholar
Turecek, PL, Bossard, MJ, Schoetens, F, Ivens, IA. PEGylation of biopharmaceuticals: A review of chemistry and nonclinical safety information of approved drugs. J Pharm Sci. 2016; 105(2): 460475.Google Scholar
Grace, M, Youngster, S, Gitlin, G, Sydor, W, Xie, L, Westreich, L, et al. Structural and biologic characterization of pegylated recombinant IFN α-2b. J Interf Cytok Res. 2001; 21(12): 11031115.Google Scholar
Marcoux, J, Champion, T, Colas, O, Wagner-Rousset, E, Corva, N, Van Dorsselaer, A, et al. Native mass spectrometry and ion mobility characterization of trastuzumab emtansine, a lysine-linked antibody drug conjugate. Protein Sci. 2015; 24(8): 12101223.Google Scholar
Shen, BQ, Xu, K, Liu, L, Raab, H, Bhakta, S, Kenrick, M, et al. Conjugation site modulates the in vivo stability and therapeutic activity of antibody-drug conjugates. Nature Biotechnol. 2012; 30(2): 184189.Google Scholar
Molek, J, Ruanjaikaen, K, Zydney, AL. Effect of electrostatic interactions on transmission of PEGylated proteins through charged ultrafiltration membranes. J Membrane Sci. 2010; 353(1–2): 6069.Google Scholar
Molek, JR, Zydney, AL. Separation of PEGylated αLactalbumin from unreacted precursors and byproducts using ultrafiltration. Biotechnol Prog. 2007; 23(6): 14171424.Google Scholar
Ruanjaikaen, K, Zydney, AL. Purification of singly PEGylated α-lactalbumin using charged ultrafiltration membranes. Biotechnol Bioeng. 2011; 108(4): 822829.Google Scholar
Rohrer, T. Consideration for the safe and effective manufacturing of antibody drug conjugates. Chem Oggi/Chem Today. 2012; 30: 7679.Google Scholar
Zeman, LJ, Zydney, AL. Microfiltration and Ultrafiltration. Principles and Applications. Marcel Dekker; 1996.Google Scholar
Molek, KS. Ultrafiltration of PEGylated proteins. Pennsylvania State University; 2008.Google Scholar
Rodriguez-Aller, M, Guillarme, D, Beck, A, Fekete, S. Practical method development for the separation of monoclonal antibodies and antibody-drug-conjugate species in hydrophobic interaction chromatography. Part 1: Optimization of the mobile phase. J Pharmaceut Biomed. 2016; 118: 393403.Google Scholar
Pfister, D. Processes for the production of PEGylated proteins. ETH Zurich; 2015.Google Scholar
Thayer, AM. Building antibody-drug conjugates. Chem Eng News. 2014; 92(3): 1320.Google Scholar
Seely, JE, Richey, CW. Use of ion-exchange chromatography and hydrophobic interaction chromatography in the preparation and recovery of polyethylene glycol-linked proteins. J Chromatogr A. 2001; 908(1–2): 235241.Google Scholar
Moosmann, A, Christel, J, Boettinger, H, Mueller, E. Analytical and preparative separation of PEGylated lysozyme for the characterization of chromatography media. J Chromatogr A. 2010; 1217(2): 209215.Google Scholar
Maiser, B, Dismer, F, Hubbuch, J. Optimization of random PEGylation reactions by means of high throughput screening. Biotechnol Bioeng. 2014; 111(1): 104114.Google Scholar
Moosmann, A, Blath, J, Lindner, R, Muller, E, Bottingert, H. Aldehyde PEGylation kinetics: A Standard protein versus a pharmaceutically relevant single chain variable fragment. Bioconjugate Chem. 2011; 22(8): 15451558.Google Scholar
Chavez, DM, Orpiszewski, J, inventors; Apparatuses and processes for increasing protein pegylation reaction yields. US20050089952 A1; 2004, filing date.Google Scholar
Rathore, A, Bhambure, R, Ghare, V. Process analytical technology (PAT) for biopharmaceutical products. Anal Bioanal Chem. 2010; 398(1): 137154.Google Scholar
Cromwell, MEM, Hilario, E, Jacobson, F. Protein aggregation and bioprocessing. AAPS J. 2006; 8(3): E572E579.Google Scholar
Wang, W, Nema, S, Teagarden, D. Protein aggregation – Pathways and influencing factors. Int J Pharm. 2010; 390(2): 8999.Google Scholar
Shire, SJ, Shahrokh, Z, Liu, J. Challenges in the development of high protein concentration formulations. J Pharm Sci. 2004; 93(6): 13901402.Google Scholar
Rathore, A, Anderson, S, Sharma, A. Filter clogging issues in sterile filtration. BioPharm Int; 2008.Google Scholar
Narhi, LO, Schmit, J, Bechtold-Peters, K, Sharma, D. Classification of protein aggregates. J Pharm Sci. 2012; 101(2): 493498.Google Scholar
Sharma, VK, Kalonia, DS. Experimental detection and characterization of protein aggregates. In: Wang, W, Roberts, CJ, editors. Aggregation of therapeutic proteins. John Wiley & Sons, Inc.; 2010. p. 205256.Google Scholar
Cole, JL, Lary, JW, Moody, T, Laue, TM. Analytical ultracentrifugation: Sedimentation velocity and sedimentation equilibrium. Method Cell Biol. 2008; 84: 143179.Google Scholar
Wahlund, KG, Nilsson, L. Flow FFF, Basics and key applications. In: Williams, RSK, Caldwell, DK, editors. Field-flow fractionation in biopolymer analysis. Springer Vienna; 2012. p. 121.Google Scholar
Sahin, E, Roberts, CJ. Size-exclusion chromatography with multi-angle light scattering for elucidating protein aggregation mechanisms. In: Voynov, V, Caravella, AJ, editors. Therapeutic proteins: Methods and protocols. Humana Press; 2012. p. 403423.Google Scholar
Li, Y, Weiss, WFt, Roberts, CJ. Characterization of high-molecular-weight non-native aggregates and aggregation kinetics by size exclusion chromatography with inline multi-angle laser light scattering. J Pharm Sci. 2009; 98(11): 39974016.Google Scholar
Nicoud, L, Arosio, P, Sozo, M, Yates, A, Norrant, E, Morbidelli, M. Kinetic analysis of the multistep aggregation mechanism of monoclonal antibodies. J Phys Chem B. 2014; 118(36): 10595–606.Google ScholarPubMed
Amin, S, Barnett, GV, Pathak, JA, Roberts, CJ, Sarangapani, PS. Protein aggregation, particle formation, characterization & rheology. Curr Opin Colloid Interface Sci. 2014; 19(5): 438449.Google Scholar
Das, TK. Protein particulate detection issues in biotherapeutics development – Current status. AAPS PharmSciTech. 2012; 13(2): 732746.Google Scholar
Paul, R, Graff-Meyer, A, Stahlberg, H, Lauer, ME, Rufer, AC, Beck, H, et al. Structure and function of purified monoclonal antibody dimers induced by different stress conditions. Pharm Res. 2012; 29(8): 20472059.Google Scholar
Esue, O, Kanai, S, Liu, J, Patapoff, TW, Shire, SJ. Carboxylate-dependent gelation of a monoclonal antibody. Pharm Res. 2009; 26(11): 24782485.Google Scholar
Brych, SR, Gokarn, YR, Hultgen, H, Stevenson, RJ, Rajan, R, Matsumura, M. Characterization of antibody aggregation: Role of buried, unpaired cysteines in particle formation. J Pharm Sci. 2010; 99(2): 764781.Google Scholar
Telikepalli, SN, Kumru, OS, Kalonia, C, Esfandiary, R, Joshi, SB, Middaugh, CR, et al. Structural characterization of IgG1 mAb aggregates and particles generated under various stress conditions. J Pharm Sci. 2014; 103(3): 796809.Google Scholar
Nicoud, L, Owczarz, M, Arosio, P, Morbidelli, M. A multiscale view of therapeutic protein aggregation: A colloid science perspective. Biotechnol J. 2015; 10(3): 367378.Google Scholar
Lazzari, S, Nicoud, L, Jaquet, B, Lattuada, M, Morbidelli, M. Fractal-like structures in colloid science. Adv Colloid Interface Sci. 2016; 235: 113.Google Scholar
Nicoud, L, Lattuada, M, Yates, A, Morbidelli, M. Impact of aggregate formation on the viscosity of protein solutions. Soft Matter. 2015; 11(27): 55135522.Google Scholar
Nicoud, L, Jagielski, J, Pfister, D, Lazzari, S, Massant, J, Lattuada, M, et al. Kinetics of monoclonal antibody aggregation from dilute toward concentrated conditions. J Phys Chem B. 2016; 120(13): 32673280.Google Scholar
Chi, EY, Krishnan, S, Randolph, TW, Carpenter, JF. Physical stability of proteins in aqueous solution: Mechanism and driving forces in non-native protein aggregation. Pharm Res. 2003; 20(9): 13251336.Google Scholar
Saito, S, Hasegawa, J, Kobayashi, N, Tomitsuka, T, Uchiyama, S, Fukui, K. Effects of ionic strength and sugars on the aggregation propensity of monoclonal antibodies: Influence of colloidal and conformational stabilities. Pharm Res. 2013; 30(5): 12631280.Google Scholar
Lehermayr, C, Mähler, HC, Mäder, K, Fischer, S. Assessment of net charge and protein– protein interactions of different monoclonal antibodies. J Pharm Sci. 2011; 100(7): 2551– 2562.Google Scholar
Arzensek, D, Kuzman, D, Podgornik, R. Colloidal interactions between monoclonal antibodies in aqueous solutions. J Colloid Interface Sci. 2012; 384(1): 207216.Google Scholar
Roberts, D, Keeling, R, Tracka, M, van der Walle, CF, Uddin, S, Warwicker, J, et al. The role of electrostatics in protein–protein interactions of a monoclonal antibody. Mol Pharm. 2014; 11(7): 24752489.Google Scholar
Saluja, A, Fesinmeyer, RM, Hogan, S, Brems, DN, Gokarn, YR. Diffusion and sedimentation interaction parameters for measuring the second virial coefficient and their utility as predictors of protein aggregation. Biophys J. 2010; 99(8): 26572665.Google Scholar
Chennamsetty, N, Voynov, V, Kayser, V, Helk, B, Trout, BL. Design of therapeutic proteins with enhanced stability. Proc Natl Acad Sci USA. 2009; 106(29): 1193711942.Google Scholar
Chennamsetty, N, Voynov, V, Kayser, V, Helk, B, Trout, BL. Prediction of aggregation prone regions of therapeutic proteins. J Phys Chem B. 2010; 114(19): 66146624.Google Scholar
Agrawal, NJ, Kumar, S, Wang, XL, Helk, B, Singh, SK, Trout, BL. Aggregation in protein-based biotherapeutics: Computational studies and tools to identify aggregation-prone regions. J Pharm Sci. 2011; 100(12): 50815095.Google Scholar
Neal, BL, Asthagiri, D, Lenhoff, AM. Molecular origins of osmotic second virial coefficients of proteins. Biophys J. 1998; 75(5): 24692477.Google Scholar
Curtis, RA, Lue, L. A molecular approach to bioseparations: Protein–protein and protein– salt interactions. Chem Eng Sci. 2006; 61(3): 907923.Google Scholar
Fischer, H, Polikarpov, I, Craievich, AF. Average protein density is a molecular-weight-dependent function. Protein Sci. 2004; 13(10): 28252828.Google Scholar
Tessier, PM, Lenhoff, AM, Sandler, SI. Rapid measurement of protein osmotic second virial coefficients by self-interaction chromatography. Biophys J. 2002; 82(3): 16201631.Google Scholar
Chi, EY, Krishnan, S, Kendrick, BS, Chang, BS, Carpenter, JF, Randolph, TW. Roles of conformational stability and colloidal stability in the aggregation of recombinant human granulocyte colony-stimulating factor. Protein Sci. 2003; 12(5): 903913.Google Scholar
Kelly, SM, Price, NC. The use of circular dichroism in the investigation of protein structure and function. Curr Protein Pept Sci. 2000; 1(4): 349384.Google Scholar
Garidel, P, Hegyi, M, Bassarab, S, Weichel, M. A rapid, sensitive and economical assessment of monoclonal antibody conformational stability by intrinsic tryptophan fluorescence spectroscopy. Biotechnol J. 2008; 3(9–10): 12011211.Google Scholar
Hawe, A, Sutter, M, Jiskoot, W. Extrinsic fluorescent dyes as tools for protein characterization. Pharm Res. 2008; 25(7): 14871499.Google Scholar
Barth, A, Zscherp, C. What vibrations tell us about proteins. Q Rev Biophys. 2002; 35(4): 369430.Google Scholar
Wen, ZQ. Raman spectroscopy of protein pharmaceuticals. J Pharm Sci. 2007; 96(11): 28612878.Google Scholar
Angarita, M, Arosio, P, Müller-Späth, T, Baur, D, Falkenstein, R, Kuhne, W, et al. Role of urea on recombinant Apo A-I stability and its utilization in anion exchange chromatography. J Chromatogr A. 2014; 1354: 1825.Google Scholar
Sahin, E, Weiss, WF, Kroetsch, AM, King, KR, Kessler, RK, Das, TK, et al. Aggregation and pH-temperature phase behavior for aggregates of an IgG2 antibody. J Pharm Sci. 2012; 101(5): 16781687.Google Scholar
Johnson, CM. Differential scanning calorimetry as a tool for protein folding and stability. Arch Biochem Biophys. 2013; 531(1–2): 100–9.Google Scholar
Vermeer, AWP, Norde, W. The thermal stability of immunoglobulin: Unfolding and aggregation of a multi-domain protein. Biophys J. 2000; 78(1): 394404.Google Scholar
He, F, Becker, GW, Litowski, JR, Narhi, LO, Brems, DN, Razinkov, VI. High-throughput dynamic light scattering method for measuring viscosity of concentrated protein solutions. Anal Biochem. 2010; 399(1): 141143.Google Scholar
Connolly, BD, Petry, C, Yadav, S, Demeule, B, Ciaccio, N, Moore, JMR, et al. Weak interactions govern the viscosity of concentrated antibody solutions: High-throughput analysis using the diffusion interaction parameter. Biophys J. 2012; 103(1): 6978.Google Scholar
Chari, R, Jerath, K, Badkar, AV, Kalonia, DS. Long- and short-range electrostatic interactions affect the rheology of highly concentrated antibody solutions. Pharm Res. 2009; 26(12): 26072618.Google Scholar
Yadav, S, Shire, SJ, Kalonia, DS. Viscosity behavior of high-concentration monoclonal antibody solutions: Correlation with interaction parameter and electroviscous effects. J Pharm Sci. 2012; 101(3): 9981011.Google Scholar
He, F, Woods, CE, Litowski, JR, Roschen, LA, Gadgil, HS, Razinkov, VI, et al. Effect of sugar molecules on the viscosity of high concentration monoclonal antibody solutions. Pharm Res. 2011; 28(7): 15521560.Google Scholar
Chiti, F, Stefani, M, Taddei, N, Ramponi, G, Dobson, CM. Rationalization of the effects of mutations on peptide and protein aggregation rates. Nature. 2003; 424(6950): 805808.Google Scholar
Hiemenz, PC. Principles of colloid and surface chemistry. Dekker; 1986.Google Scholar
Russel, WB, Saville, DA, Schowalter, WR. Colloidal dispersions. Cambridge University Press; 1989.Google Scholar
Andrews, JM, Roberts, CJ. A Lumry-Eyring nucleated polymerization model of protein aggregation kinetics: 1. Aggregation with pre-equilibrated unfolding. J Phys Chem B. 2007; 111(27): 78977913.Google Scholar
Li, Y, Roberts, CJ. A Lumry-Eyring nucleated-polymerization model of protein aggregation kinetics. 2. Competing growth via condensation and chain polymerization. J Phys Chem B. 2009; 113(19): 70207032.Google Scholar
Sahin, E, Grillo, AO, Perkins, MD, Roberts, CJ. Comparative effects of pH and ionic strength on protein-protein interactions, unfolding, and aggregation for IgG1 antibodies. J Pharm Sci. 2010; 99(12): 48304848.Google Scholar
Campioni, S, Carret, G, Jordens, S, Nicoud, L, Mezzenga, R, Riek, R. The presence of an air–water interface affects formation and elongation of alpha-synuclein fibrils. J Am Chem Soc. 2014; 136(7): 28662875.Google Scholar
Arosio, P, Beeg, M, Nicoud, L, Morbidelli, M. Time evolution of amyloid fibril length distribution described by a population balance model. Chem Eng Sci. 2012; 78: 2132.Google Scholar
Nicoud, L, Lazzari, S, Balderas Barragn, D, Morbidelli, M. Fragmentation of amyloid fibrils occurs in preferential positions depending on the environmental conditions. J Phys Chem B. 2015; 119(13): 46444652.Google Scholar
Roberts, CJ. Non-native protein aggregation kinetics. Biotechnol Bioeng. 2007; 98(5): 927938.Google Scholar
Pinholt, C, Hartvig, RA, Medlicott, NJ, Jorgensen, L. The importance of interfaces in protein drug delivery – Why is protein adsorption of interest in pharmaceutical formulations? Expert Opin Drug Deliv. 2011; 8(7): 949964.Google Scholar
Nicoud, L, Sozo, M, Arosio, P, Yates, A, Norrant, E, Morbidelli, M. Role of cosolutes in the aggregation kinetics of monoclonal antibodies. J Phys Chem B. 2014; 118(41): 11921– 11930.Google Scholar
Arosio, P, Jaquet, B, Wu, H, Morbidelli, M. On the role of salt type and concentration on the stability behavior of a monoclonal antibody solution. Biophys Chem. 2012; 168–169: 1927.Google Scholar
Timasheff, SN. The control of protein stability and association by weak interactions with water: How do solvents affect these processes? Annu Rev Biophys Biomol Struct. 1993; 22: 6797.Google Scholar
Vagenende, V, Yap, MGS, Trout, BL. Molecular anatomy of preferential interaction coefficients by elucidating protein solvation in mixed solvents: Methodology and application for lysozyme in aqueous glycerol. J Phys Chem B. 2009; 113(34): 1174311753.Google Scholar
Nicoud, L, Cohrs, N, Arosio, P, Norrant, E, Morbidelli, M. Effect of polyol sugars on the stabilization of monoclonal antibodies. Biophys Chem. 2015; 197(0): 4046.Google Scholar
Arosio, P, Rima, S, Lattuada, M, Morbidelli, M. Population balance modeling of antibodies aggregation kinetics. J Phys Chem B. 2012; 116(24): 70667075.Google Scholar
Wang, W, Roberts, CJ. Non-Arrhenius protein aggregation. AAPS J. 2013; 15(3): 840851.Google Scholar
Kayser, V, Chennamsetty, N, Voynov, V, Helk, B, Forrer, K, Trout, BL. Evaluation of a non-Arrhenius model for therapeutic monoclonal antibody aggregation. J Pharm Sci. 2011; 100(7): 25262542.Google Scholar
Wu, H, Truncali, K, Ritchie, J, Kroe-Barrett, R, Singh, S, Robinson, AS, et al. Weak protein interactions and pH- and temperature-dependent aggregation of human Fc1. MAbs. 2015; 7(6): 10721083.Google Scholar
Weiss, WFI, Young, TM, Roberts, CJ. Principles, approaches, and challenges for predicting protein aggregation rates and shelf life. J Pharm Sci. 2009; 98(4): 12461277.Google Scholar
Privalov, PL. Cold denaturation of proteins. Crit Rev Biochem Mol Biol. 1990; 25(5): 281306.Google Scholar
Ghosh, R, Calero-Rubio, C, Saluja, A, Roberts, CJ. Relating protein-protein interactions and aggregation rates from low to high concentrations. J Pharm Sci. 2016; 105(3): 10861096.Google Scholar
Lilyestrom, WG, Yadav, S, Shire, SJ, Scherer, TM. Monoclonal antibody self-association, cluster formation, and rheology at high concentrations. J Phys Chem B. 2013; 117(21): 63736384.Google Scholar
Nicoud, L, Lattuada, M, Lazzari, S, Morbidelli, M. Viscosity scaling in concentrated dispersions and its impact on colloidal aggregation. Phys Chem Chem Phys. 2015; 17(37): 24392–2402.Google Scholar
Wiesbauer, J, Prassl, R, Nidetzky, B. Renewal of the air–water interface as a critical system parameter of protein stability: Aggregation of the human growth hormone and its prevention by surface-active compounds. Langmuir. 2013; 29(49): 1524015250.Google Scholar
Mazzer, AR, Perraud, X, Halley, J, OHara, J, Bracewell, DG. Protein A chromatography increases monoclonal antibody aggregation rate during subsequent low pH virus inacti-vation hold. J Chromatogr A. 2015; 1415: 8390.Google Scholar
Gagnon, P, Nian, R, Leong, D, Hoi, A. Transient conformational modification of immunoglobulin G during purification by protein A affinity chromatography. J Chromatogr A. 2015; 1395: 136142.Google Scholar
Shukla, AA, Gupta, P, Han, X. Protein aggregation kinetics during protein A chromatography: Case study for an Fc fusion protein. J Chromatogr A. 2007; 1171(12): 2228.Google Scholar
Arosio, P, Rima, S, Morbidelli, M. Aggregation mechanism of an IgG2 and two IgG1 monoclonal antibodies at low pH: From oligomers to larger aggregates. Pharm Res. 2013; 30(3): 641654.Google Scholar
Yu, L, Zhang, L, Sun, Y. Protein behavior at surfaces: Orientation, conformational transitions and transport. J Chromatogr A. 2015; 1382: 118134.Google Scholar
Gillespie, R, Nguyen, T, Macneil, S, Jones, L, Crampton, S, Vunnum, S. Cation exchange surface-mediated denaturation of an aglycosylated immunoglobulin (IgG1). J Chromatogr A. 2012; 1251: 101110.Google Scholar
Guo, J, Carta, G. Unfolding and aggregation of monoclonal antibodies on cation exchange columns: Effects of resin type, load buffer, and protein stability. J Chromatogr A. 2015; 1388: 184194.Google Scholar
Gospodarek, AM, Hiser, DE, O’Connell, JP, Fernandez, EJ. Unfolding of a model protein on ion exchange and mixed mode chromatography surfaces. J Chromatogr A. 2014; 1355: 238252.Google Scholar
Guo, J, Zhang, S, Carta, G. Unfolding and aggregation of a glycosylated monoclonal antibody on a cation exchange column. Part I. Chromatographic elution and batch adsorption behavior. J Chromatogr A. 2014; 1356: 117128.Google Scholar
Guo, J, Carta, G. Unfolding and aggregation of a glycosylated monoclonal antibody on a cation exchange column. Part II. Protein structure effects by hydrogen deuterium exchange mass spectrometry. J Chromatogr A. 2014; 1356: 129137.Google Scholar
Muca, R, Marek, W, Piatkowski, W, Antos, D. Influence of the sample-solvent on protein retention, mass transfer and unfolding kinetics in hydrophobic interaction chromatography. J Chromatogr A. 2010; 1217(17): 28122820.Google Scholar
Jungbauer, A, Machold, C, Hahn, R. Hydrophobic interaction chromatography of proteins: III. Unfolding of proteins upon adsorption. J Chromatogr A. 2005; 1079(12): 221228.Google Scholar
Fogle, JL, Fernandez, EJ. Amide hydrogen-deuterium exchange: A fast tool for screening protein stabilities in chromatography. LCGC North America. 2006; p. 96–101.Google Scholar
Benedek, K, Dong, S, Karger, BL. Kinetics of unfolding of proteins on hydrophobic surfaces in reversed-phase liquid chromatography. J Chromatogr. 1984; 317: 227243.Google Scholar
McNay, JL, Fernandez, EJ. Protein unfolding during reversed-phase chromatography: I. Effect of surface properties and duration of adsorption. Biotechnol Bioeng. 2001; 76(3): 224232.Google Scholar
McNay, JL, O’Connell, JP, Fernandez, EJ. Protein unfolding during reversed-phase chromatography: II. Role of salt type and ionic strength. Biotechnol Bioeng. 2001; 76(3): 233240.Google Scholar
Xiao, Y, Rathore, A, O’Connell, JP, Fernandez, EJ. Generalizing a two-conformation model for describing salt and temperature effects on protein retention and stability in hydrophobic interaction chromatography. J Chromatogr A. 2007; 1157(12): 197206.Google Scholar
Arosio, P, Barolo, G, Müller-Späth, T, Wu, H, Morbidelli, M. Aggregation stability of a monoclonal antibody during downstream processing. Pharm Res. 2011; 28(8): 18841894.Google Scholar
Ghosh, R. Protein bioseparation using ultrafiltration: Theory, applications and new developments. Imperial College Press; 2003.Google Scholar
Rosenberg, E, Hepbildikler, S, Kuhne, W, Winter, G. Ultrafiltration concentration of monoclonal antibody solutions: Development of an optimized method minimizing aggregation. J Membrane Sci. 2009; 342(1–2): 5059.Google Scholar
Wang, W. Protein aggregation and its inhibition in biopharmaceutics. Int J Pharm. 2005; 289(12): 130.Google Scholar
Roberts, CJ, Das, TK, Sahin, E. Predicting solution aggregation rates for therapeutic proteins: Approaches and challenges. Int J Pharm. 2011; 418(2): 318333.Google Scholar
Rouet, R, Lowe, D, Christ, D. Stability engineering of the human antibody repertoire. FEBS Lett. 2014; 588(2): 269277.Google Scholar
Rajan, RS, Li, T, Aras, M, Sloey, C, Sutherland, W, Arai, H, et al. Modulation of protein aggregation by polyethylene glycol conjugation: GCSF as a case study. Protein Sci. 2006; 15(5): 10631075.Google Scholar
Kamerzell, TJ, Esfandiary, R, Joshi, SB, Middaugh, CR, Volkin, DB. Protein-excipient interactions: Mechanisms and biophysical characterization applied to protein formulation development. Adv Drug Deliver Rev. 2011; 63(13): 11181159.Google Scholar
Shukla, AA, Hinckley, PJ, Gupta, P, Yigzaw, Y, Hubbard, B. Strategies to address aggregation during protein A chromatography. Bioprocess Int. 2005; 3: 3644.Google Scholar
Arakawa, T, Philo, JS, Tsumoto, K, Yumioka, R, Ejima, D. Elution of antibodies from a protein-A column by aqueous arginine solutions. Protein Expr Purif. 2004; 36(2): 244248.Google Scholar
Turecek, P, Siekmann, J. Factor VIII polymer conjugates. EP2318050B1; 2009.Google Scholar
Bankston, TE, Carta, G. Apolipoprotein A-I-Milano anion exchange chromatography: Self association and adsorption equilibrium. Biotechnol J. 2010; 5(10): 10281039.Google Scholar
Arakawa, T, Timasheff, SN. Stabilization of protein structure by sugars. Biochemistry. 1982; 21(25): 65366544.Google Scholar
Gao, D, Wang, LL, Lin, DQ, Yao, SJ. Evaluating antibody monomer separation from associated aggregates using mixed-mode chromatography. J Chromatogr A. 2013; 1294: 7075.Google Scholar
Chmielowski, RA, Meissner, S, Roush, D, Linden, TO, Glowacki, E, Konietzko, J, et al. Resolution of heterogeneous charged antibody aggregates via multimodal chromatography: A comparison to conventional approaches. Biotechnol Prog. 2014; 30(3): 636645.Google Scholar
Aldington, S, Bonnerjea, J. Scale-up of monoclonal antibody purification processes. J Chromatogr B. 2007; 848(1): 6478.Google Scholar
Wellhoefer, M, Sprinzl, W, Hahn, R, Jungbauer, A. Continuous processing of recombinant proteins: Integration of refolding and purification using simulated moving bed size-exclusion chromatography with buffer recycling. J Chromatogr A. 2014; 1337: 4856.Google Scholar
Park, BJ, Lee, CH, Koo, YM. Development of novel protein refolding using simulated moving bed chromatography. Korean J Chem Eng. 2005; 22(3): 425432.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×