Skip to main content Accessibility help
×
Home
Hostname: page-component-5d6d958fb5-z6b88 Total loading time: 1.259 Render date: 2022-11-29T07:32:43.440Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

Part 5 - Difficult-to-Characterize Cognitive/Behavioral Disorders

Published online by Cambridge University Press:  03 November 2020

Keith Josephs
Affiliation:
Mayo Clinic Alzheimer’s Disease Research Center
Federico Rodriguez-Porcel
Affiliation:
Medical University of South Carolina
Rhonna Shatz
Affiliation:
University of Cincinnati
Daniel Weintraub
Affiliation:
University of Pennsylvania
Alberto Espay
Affiliation:
University of Cincinnati
Get access
Type
Chapter
Information
Common Pitfalls in Cognitive and Behavioral Neurology
A Case-Based Approach
, pp. 67 - 82
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Duffy, J. R. and Josephs, K. A. 2012. The diagnosis and understanding of apraxia of speech: why including neurodegenerative etiologies may be important. J Speech Lang Hear Res 55(5) S15181522.CrossRefGoogle ScholarPubMed
Gleichgerrcht, E., Fridriksson, J. and Bonilha, L. 2015. Neuroanatomical foundations of naming impairments across different neurologic conditions. Neurology 85(3) 284292.CrossRefGoogle ScholarPubMed
Gorno-Tempini, M. L. et al. 2011. Classification of primary progressive aphasia and its variants. Neurology 76(11) 10061014.CrossRefGoogle ScholarPubMed
Graff-Radford, J. et al. 2014. The neuroanatomy of pure apraxia of speech in stroke. Brain Lang 129 4346.CrossRefGoogle ScholarPubMed
Josephs, K. A. et al. 2014. The evolution of primary progressive apraxia of speech. Brain 137(Pt 10) 27832795.CrossRefGoogle ScholarPubMed
Josephs, K. A. et al. 2013. Syndromes dominated by apraxia of speech show distinct characteristics from agrammatic PPA. Neurology 81(4) 337345.CrossRefGoogle ScholarPubMed
Josephs, K. A. et al. 2012. Characterizing a neurodegenerative syndrome: primary progressive apraxia of speech. Brain 135(Pt 5) 15221536.CrossRefGoogle ScholarPubMed
Josephs, K. A. et al. 2006. Clinicopathological and imaging correlates of progressive aphasia and apraxia of speech. Brain 129(Pt 6) 13851398.CrossRefGoogle ScholarPubMed
Jung, Y., Duffy, J. R. and Josephs, K. A. 2013. Primary progressive aphasia and apraxia of speech. Semin Neurol 33(4) 342347.CrossRefGoogle ScholarPubMed
Levelt, W. J., Roelofs, A. and Meyer, A. S. 1999. A theory of lexical access in speech production. Behav Brain Sci 22(1) 138; discussion 3875.CrossRefGoogle ScholarPubMed
Strand, E. A., Duffy, J. R., Clark, H. M. and Josephs, K. 2014. The apraxia of speech rating scale: a tool for diagnosis and description of apraxia of speech. J Commun Disord 51 4350.CrossRefGoogle ScholarPubMed

References

Abul-Kasim, K., Palm, L., Maly, P. and Sundgren, P. C. 2009. The neuroanatomic localization of Epstein–Barr virus encephalitis may be a predictive factor for its clinical outcome: a case report and review of 100 cases in 28 reports. J Child Neurol 24(6) 720726.CrossRefGoogle ScholarPubMed
Baumann, O. et al. 2015. Consensus paper: the role of the cerebellum in perceptual processes. Cerebellum 14(2) 197220.CrossRefGoogle ScholarPubMed
Bodranghien, F. et al. 2015. Consensus paper: revisiting the symptoms and signs of cerebellar syndrome. The Cerebellum 15(3) 369391.CrossRefGoogle Scholar
Cho, T. A., Schmahmann, J. D. and Cunnane, M. E. 2013. Case records of the Massachusetts General Hospital: case 30–2013. A 19-year-old man with otalgia, slurred speech, and ataxia. N Engl J Med 369(13) 12531261.CrossRefGoogle ScholarPubMed
Hoche, F. et al. 2015. Cerebellar contribution to social cognition. Cerebellum 15(6) 732-743.CrossRefGoogle Scholar
Hoche, F. et al. 2018. The cerebellar cognitive affective/Schmahmann syndrome scale. Brain 141(1) 248270.CrossRefGoogle ScholarPubMed
Koziol, L. F. et al. 2014. Consensus paper: the cerebellum’s role in movement and cognition. Cerebellum 13(1) 151177.CrossRefGoogle ScholarPubMed
Leggio, M. G., Silveri, M. C., Petrosini, L. and Molinari, M. 2000. Phonological grouping is specifically affected in cerebellar patients: a verbal fluency study. J Neurol Neurosurg Psychiatry 69(1) 102106.CrossRefGoogle ScholarPubMed
Manto, M. and Marien, P. 2015. Schmahmann’s syndrome – identification of the third cornerstone of clinical ataxiology. Cerebellum Ataxias 2 2.CrossRefGoogle ScholarPubMed
Marien, P. et al. 2013. Consensus paper: language and the cerebellum: an ongoing enigma. Cerebellum 13(3) 386410.Google Scholar
Marien, P. and Beaton, A. 2014. The enigmatic linguistic cerebellum: clinical relevance and unanswered questions on nonmotor speech and language deficits in cerebellar disorders. Cerebellum Ataxias 1 12.CrossRefGoogle ScholarPubMed
Marien, P., van Dun, K. and Verhoeven, J. 2015. Cerebellum and apraxia. Cerebellum 14(1) 3942.CrossRefGoogle ScholarPubMed
Pruitt, A. A. 2014. Infections of the cerebellum. Neurol Clin 32(4) 11171131.CrossRefGoogle ScholarPubMed
Schmahmann, J. D. 2004. Plasmapheresis improves outcome in postinfectious cerebellitis induced by Epstein–Barr virus. Neurology 62(8) 1443.CrossRefGoogle ScholarPubMed
Schmahmann, J. D. and Sherman, J. C. 1998. The cerebellar cognitive affective syndrome. Brain 121(Pt 4) 561579.CrossRefGoogle ScholarPubMed
Schmahmann, J. D., Weilburg, J. B. and Sherman, J. C. 2007. The neuropsychiatry of the cerebellum – insights from the clinic. Cerebellum 6(3) 254267.CrossRefGoogle ScholarPubMed
Stoodley, C. J. and Schmahmann, J. D. 2010. Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex 46(7) 831844.CrossRefGoogle ScholarPubMed
Tedesco, A. M. et al. 2011. The cerebellar cognitive profile. Brain 134(Pt 12) 36723686.CrossRefGoogle ScholarPubMed
Tselis, A. C. 2014. Epstein–Barr virus infections of the nervous system. Handb Clin Neurol 123 285305.CrossRefGoogle ScholarPubMed

References

Brown, R. G. et al. 2010. Cognitive impairment in patients with multiple system atrophy and progressive supranuclear palsy. Brain 133(Pt 8) 23822393.CrossRefGoogle ScholarPubMed
Colosimo, C. et al. 2010. Non-motor symptoms in atypical and secondary parkinsonism: the PRIAMO study. J Neurol 257(1) 514.CrossRefGoogle ScholarPubMed
Cykowski, M. D. et al. 2015. Expanding the spectrum of neuronal pathology in multiple system atrophy. Brain 138(Pt 8) 22932309.CrossRefGoogle ScholarPubMed
Kawai, Y. et al. 2008. Cognitive impairments in multiple system atrophy: MSA-C vs MSA-P. Neurology 70(16 Pt 2) 13901396.CrossRefGoogle ScholarPubMed
Koga, S. et al. 2017. Profile of cognitive impairment and underlying pathology in multiple system atrophy. Mov Disord 32(3) 405413.CrossRefGoogle ScholarPubMed
Monza, D. et al. 1998. Cognitive dysfunction and impaired organization of complex motility in degenerative parkinsonian syndromes. Arch Neurol 55(3) 372378.CrossRefGoogle ScholarPubMed
O’Sullivan, S. S. et al. 2008. Clinical outcomes of progressive supranuclear palsy and multiple system atrophy. Brain 131(Pt 5) 13621372.CrossRefGoogle ScholarPubMed
Schmahmann, J. D. 2019. The cerebellum and cognition. Neurosci Lett 688 6275.CrossRefGoogle ScholarPubMed
Schrag, A. et al. 2010. A comparison of depression, anxiety, and health status in patients with progressive supranuclear palsy and multiple system atrophy. Mov Disord 25(8) 10771081.CrossRefGoogle ScholarPubMed
Siri, C. et al. 2013. A cross-sectional multicenter study of cognitive and behavioural features in multiple system atrophy patients of the parkinsonian and cerebellar type. J Neural Transm 120(4) 613618.CrossRefGoogle ScholarPubMed
Stankovic, I. et al. 2014. Cognitive impairment in multiple system atrophy: a position statement by the Neuropsychology Task Force of the MDS Multiple System Atrophy (MODIMSA) study group. Mov Disord 29(7) 857867.CrossRefGoogle ScholarPubMed
Wenning, G. K. et al. 1997. Multiple system atrophy: a review of 203 pathologically proven cases. Mov Disord 12(2) 133147.CrossRefGoogle ScholarPubMed

References

Bonfante, E., Riascos, R. and Arevalo, O. 2018. Imaging of chronic concussion. Neuroimaging Clin N Am 28(1) 127135.CrossRefGoogle ScholarPubMed
Jordan, B. D. 2014. Chronic traumatic encephalopathy and other long-term sequelae. Continuum 20(6) 15881604.Google ScholarPubMed
McKee, A. C. et al. 2016. The first NINDS/NIBIB consensus meeting to define neuropathological criteria for the diagnosis of chronic traumatic encephalopathy. Acta Neuropathol 131(1) 7586.CrossRefGoogle Scholar
Montenigro, P. H. et al. 2014. Clinical subtypes of chronic traumatic encephalopathy: literature review and proposed research diagnostic criteria for traumatic encephalopathy syndrome. Alzheimers Res Ther 6(5) 68.CrossRefGoogle ScholarPubMed

References

Ahmed, S. et al. 2016. Utility of testing for apraxia and associated features in dementia. J Neurol Neurosurg Psychiatry 87(11) 11581162.CrossRefGoogle ScholarPubMed
Heilman, K. M. 2010. Apraxia. Continuum 16(4) 8698.Google ScholarPubMed
Leiguarda, R. C. and Marsden, C. D. 2000. Limb apraxias: higher-order disorders of sensorimotor integration. Brain 123(Pt 5) 860879.CrossRefGoogle ScholarPubMed
Mozaz, M. et al. 2006. Posture recognition in Alzheimer’s disease. Brain Cogn 62(3) 241245.CrossRefGoogle ScholarPubMed
Osiurak, F. and Gall, D. 2012. Apraxia: Clinical Types, Theoretical Models, and Evaluation. Rijeka, Croatia: Neuroscience InTech.Google Scholar
Zadikoff, C. and Lang, A. E. 2005. Apraxia in movement disorders. Brain 128(Pt 7) 14801497.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×