Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-q6k6v Total loading time: 0 Render date: 2024-07-11T21:33:24.785Z Has data issue: false hasContentIssue false

12 - Pharmacokinetic, pharmacodynamic, and pharmacogenetic considerations

from Section 3 - Evaluation and treatment

Published online by Cambridge University Press:  05 April 2013

Ching-Hon Pui
Affiliation:
St Jude's Children's Research Hospital
Get access

Summary

Introduction

Pediatric leukemias are among the most drug responsive of human malignancies. Over 80% of children with acute lymphoblastic leukemia (ALL) can now be cured by systemic chemotherapy. Because of their drug responsiveness, childhood leukemias remain an excellent model for evaluating the pharmacodynamics, kinetics, and genetics of anti-cancer drugs.

Pharmacokinetics is the study of the absorption, distribution, metabolism, and excretion of drugs. Pharmacodynamics characterizes the relationship between pharmacokinetics and pharmacologic effects, either adverse or therapeutic. Considerable interindividual variability exists in the pharmacokinetics and in the pharmacodynamics of many anti-leukemic agents in children. Pharmacogenetics/pharmacogenomics is the inherited basis for interindividual differences in pharmacokinetics/pharmacodynamics of medications, and the individualization of therapy based on germline genotypes may be one means of minimizing interindividual variability in response to anti-leukemic agents and optimizing treatment.

Many medications exhibit broad interpatient variability and for those drugs with a wide therapeutic index (e.g., penicillins), these patient-specific differences are unlikely to affect either efficacy or toxicity. For medications with wide therapeutic indices, the vast majority of patients can be given doses high enough to produce the desired therapeutic response with little risk of toxicity. In contrast, anti-leukemic agents have a very narrow therapeutic index with substantial risk for toxicity at doses required for therapeutic effects. Furthermore, the subset of patients with the highest rate of drug clearance (i.e., metabolism, elimination) may experience suboptimal systemic exposure (i.e., blood concentration) at standard doses. Those investigations of concentration–effect relationships that have been established and linked to host genetic polymorphisms are the primary focus of this chapter.

Type
Chapter
Information
Childhood Leukemias , pp. 309 - 331
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Pui, CH, Campana, D, Pei, D, et al. Treating childhood acute lymphoblastic leukemia without cranial irradiation. N Engl J Med 2009;360:2730–2741.CrossRefGoogle ScholarPubMed
Treviño, LR, Shimasaki, N, Yang, W, et al. Germline genetic variation in an organic anion transporter polypeptide associated with methotrexate pharmacokinetics and clinical effects. J Clin Oncol 2009;27:5972–5978.CrossRefGoogle Scholar
Crews, KR, Zhou, Y, Pauley, JL, et al. Effect of allopurinol versus urate oxidase on methotrexate pharmacokinetics in children with newly diagnosed acute lymphoblastic leukemia. Cancer 2010;116:227–232.
Panetta, JC, Gajjar, A, Hijiya, N, et al. Comparison of native E. coli and PEG asparaginase pharmacokinetics and pharmacodynamics in pediatric acute lymphoblastic leukemia. Clin Pharmacol Ther 2009;86:651–658.CrossRefGoogle ScholarPubMed
Horton, TM, Thompson, PA, Berg, SL, et al. Phase I pharmacokinetic and pharmacodynamic study of temozolomide in pediatric patients with refractory or recurrent leukemia: a Children's Oncology Group Study. J Clin Oncol 2007;25:4922–4928.CrossRefGoogle ScholarPubMed
Woods, WG, O'Leary, M, Nesbit, ME. Life-threatening neuropathy and hepatotoxicity in infants during induction therapy for acute lymphoblastic leukemia. J Pediatr 1981;98:642–645.CrossRefGoogle ScholarPubMed
Jolivet, J, Schilsky, RL, Bailey, BD, Drake, JC, Chabner, BA. Synthesis, retention, and biological activity of methotrexate polyglutamates in cultured human breast cancer cells. J Clin Invest 1982;70:351–360.CrossRefGoogle ScholarPubMed
Fabre, I, Fabre, G, Goldman, ID. Polyglutamylation, an important element in methotrexate cytotoxicity and selectivity in tumor versus murine granulocytic progenitor cells in vitro. Cancer Res 1984;44:3190–3195.Google ScholarPubMed
Chabner, BA, Allegra, CJ, Curt, GA, et al. Polyglutamation of methotrexate. Is methotrexate a prodrug?J Clin Invest 1985;76:907–912.CrossRefGoogle ScholarPubMed
Zhao, R, Goldman, ID. Resistance to antifolates. Oncogene 2003;22:7431–7457.CrossRefGoogle ScholarPubMed
Whitehead, VM, Shuster, JJ, Vuchich, MJ, et al. Accumulation of methotrexate and methotrexate polyglutamates in lymphoblasts and treatment outcome in children with B-progenitor-cell acute lymphoblastic leukemia: a Pediatric Oncology Group study. Leukemia 2005;19:533–536.CrossRefGoogle ScholarPubMed
Whitehead, VM, Rosenblatt, DS, Vuchich, MJ, et al. Accumulation of methotrexate and methotrexate polyglutamates in lymphoblasts at diagnosis of childhood acute lymphoblastic leukemia: a pilot prognostic factor analysis. Blood 1990;76:44–49.Google ScholarPubMed
Synold, TW, Relling, MV, Boyett, JM, et al. Blast cell methotrexate-polyglutamate accumulation in vivo differs by lineage, ploidy, and methotrexate dose in acute lymphoblastic leukemia. J Clin Invest 1994;94:1996–2001.CrossRefGoogle ScholarPubMed
Panetta, JC, Yanishevski, Y, Pui, CH, et al. A mathematical model of in vivo methotrexate accumulation in acute lymphoblastic leukemia. Cancer Chemother Pharmacol 2002;50:419–428.CrossRefGoogle ScholarPubMed
Allegra, CJ, Hoang, K, Yeh, GC, Drake, JC, Baram, J. Evidence for direct inhibition of de novo purine synthesis in human MCF-7 breast cells as a principal mode of metabolic inhibition by methotrexate. J Biol Chem 1987;262:13520–13526.Google Scholar
Fry, DW, Yalowich, JC, Goldman, ID. Rapid formation of poly-gamma-glutamyl derivatives of methotrexate and their association with dihydrofolate reductase as assessed by high pressure liquid chromatography in the Ehrlich ascites tumor cell in vitro. J Biol Chem 1982;257:1890–1896.Google ScholarPubMed
Moscow, JA, Gong, M, He, R, et al. Isolation of a gene encoding a human reduced folate carrier (RFC1) and analysis of its expression in transport-deficient, methotrexate-resistant human breast cancer cells. Cancer Res 1995;55:3790–3794.Google ScholarPubMed
Pizzorno, G, Mini, E, Coronnello, M, et al. Impaired polyglutamylation of methotrexate as a cause of resistance in CCRF-CEM cells after short-term, high-dose treatment with this drug. Cancer Res 1988;48:2149–2155.Google ScholarPubMed
Rhee, MS, Wang, Y, Nair, MG, Galivan, J. Acquisition of resistance to antifolates caused by enhanced gamma-glutamyl hydrolase activity. Cancer Res 1993;53:2227–2230.Google ScholarPubMed
Barredo, JC, Synold, TW, Laver, J, et al. Differences in constitutive and post-methotrexate folylpolyglutamate synthetase activity in B-lineage and T-lineage leukemia. Blood 1994;84:564–569.Google ScholarPubMed
Galpin, AJ, Schuetz, JD, Masson, E, et al. Differences in folylpolyglutamate synthetase and dihydrofolate reductase expression in human B-lineage versus T-lineage leukemic lymphoblasts: mechanisms for lineage differences in methotrexate polyglutamylation and cytotoxicity. Mol Pharmacol 1997;52:155–163.CrossRefGoogle ScholarPubMed
Lenz, HJ, Danenberg, K, Schnieders, B, et al. Quantitative analysis of folylpolyglutamate synthetase gene expression in tumor tissues by the polymerase chain reaction: marked variation of expression among leukemia patients. Oncol Res 1994;6:329–335.Google ScholarPubMed
Rots, MG, Pieters, R, Peters, GJ, et al. Methotrexate resistance in relapsed childhood acute lymphoblastic leukaemia. Br J Haematol 2000;109:629–634.CrossRefGoogle ScholarPubMed
Rots, MG, Pieters, R, Peters, GJ, et al. Role of folylpolyglutamate synthetase and folylpolyglutamate hydrolase in methotrexate accumulation and polyglutamylation in childhood leukemia. Blood 1999;93:1677–1683.Google ScholarPubMed
Waltham, MC, Li, WW, Gritsman, H, Tong, WP, Bertino, JR. Gamma-glutamyl hydrolase from human sarcoma HT-1080 cells: characterization and inhibition by glutamine antagonists. Mol Pharmacol 1997;51:825–832.CrossRefGoogle ScholarPubMed
Masson, E, Relling, MV, Synold, TW, et al. Accumulation of methotrexate polyglutamates in lymphoblasts is a determinant of antileukemic effects in vivo. A rationale for high-dose methotrexate. J Clin Invest 1996;97:73–80.CrossRefGoogle ScholarPubMed
Dervieux, T, Brenner, TL, Hon, YY, et al. De novo purine synthesis inhibition and antileukemic effects of mercaptopurine alone or in combination with methotrexate in vivo. Blood 2002;100:1240–1247.CrossRefGoogle ScholarPubMed
Kamen, BA, Winick, NJ. High dose methotrexate therapy: insecure rationale?Biochem Pharmacol 1988;37:2713–2715.CrossRefGoogle ScholarPubMed
Mahoney, DH, Jr., Shuster, J, Nitschke, R, et al. Intermediate-dose intravenous methotrexate with intravenous mercaptopurine is superior to repetitive low-dose oral methotrexate with intravenous mercaptopurine for children with lower-risk B-lineage acute lymphoblastic leukemia: a Pediatric Oncology Group phase III trial. J Clin Oncol 1998;16:246–254.CrossRefGoogle ScholarPubMed
Kager, L, Cheok, M, Yang, W, et al. Folate pathway gene expression differs in subtypes of acute lymphoblastic leukemia and influences methotrexate pharmacodynamics. J Clin Invest 2005;115:110–117.CrossRefGoogle ScholarPubMed
Whitehead, VM, Vuchich, MJ, Lauer, SJ, et al. Accumulation of high levels of methotrexate polyglutamates in lymphoblasts from children with hyperdiploid (greater than 50 chromosomes) B-lineage acute lymphoblastic leukemia: a Pediatric Oncology Group study. Blood 1992;80:1316–1323.Google ScholarPubMed
Goker, E, Lin, JT, Trippett, T, et al. Decreased polyglutamylation of methotrexate in acute lymphoblastic leukemia blasts in adults compared to children with this disease. Leukemia 1993;7:1000–1004.Google ScholarPubMed
Evans, WE, Crom, WR, Abromowitch, M, et al. Clinical pharmacodynamics of high-dose methotrexate in acute lymphocytic leukemia. Identification of a relation between concentration and effect. N Engl J Med 1986;314:471–477.CrossRefGoogle ScholarPubMed
Evans, WE, Schell, MJ, Pui, CH. MTX clearance is more important for intermediate-risk ALL. J Clin Oncol 1990;8:1115–1116.CrossRefGoogle ScholarPubMed
Camitta, B, Mahoney, D, Leventhal, B, et al. Intensive intravenous methotrexate and mercaptopurine treatment of higher-risk non-T, non-B acute lymphocytic leukemia: a Pediatric Oncology Group study. J Clin Oncol 1994;12:1383–1389.CrossRefGoogle ScholarPubMed
Schmiegelow, K, Schroder, H, Gustafsson, G, et al. Risk of relapse in childhood acute lymphoblastic leukemia is related to RBC methotrexate and mercaptopurine metabolites during maintenance chemotherapy. Nordic Society for Pediatric Hematology and Oncology. J Clin Oncol 1995;13:345–351.CrossRefGoogle ScholarPubMed
Pearson, AD, Amineddine, HA, Yule, M, et al. The influence of serum methotrexate concentrations and drug dosage on outcome in childhood acute lymphoblastic leukaemia. Br J Cancer 1991;64:169–173.CrossRefGoogle ScholarPubMed
Evans, WE, Relling, MV, Rodman, JH, et al. Conventional compared with individualized chemotherapy for childhood acute lymphoblastic leukemia. N Engl J Med 1998;338:499–505.CrossRefGoogle ScholarPubMed
Relling, MV, Fairclough, D, Ayers, D, et al. Patient characteristics associated with high-risk methotrexate concentrations and toxicity. J Clin Oncol 1994;12:1667–1672.CrossRefGoogle ScholarPubMed
Stoller, RG, Hande, KR, Jacobs, SA, Rosenberg, SA, Chabner, BA. Use of plasma pharmacokinetics to predict and prevent methotrexate toxicity. N Engl J Med 1977;297:630–634.CrossRefGoogle ScholarPubMed
Jolivet, J, Cowan, KH, Curt, GA, Clendeninn, NJ, Chabner, BA. The pharmacology and clinical use of methotrexate. N Engl J Med 1983;309:1094–1104.CrossRefGoogle ScholarPubMed
Wall, AM, Gajjar, A, Link, A, et al. Individualized methotrexate dosing in children with relapsed acute lymphoblastic leukemia. Leukemia 2000;14:221–225.CrossRefGoogle ScholarPubMed
Garre, ML, Relling, MV, Kalwinsky, D, et al. Pharmacokinetics and toxicity of methotrexate in children with Down syndrome and acute lymphocytic leukemia. J Pediatr 1987;111:606–612.CrossRefGoogle ScholarPubMed
Peeters, M, Poon, A. Down syndrome and leukemia: unusual clinical aspects and unexpected methotrexate sensitivity. Eur J Pediatr 1987;146:416–422.CrossRefGoogle ScholarPubMed
Ueland, PM, Refsum, H, Christensen, B. Methotrexate sensitivity in Down's syndrome: a hypothesis. Cancer Chemother Pharmacol 1990;25:384–386.CrossRefGoogle ScholarPubMed
Peeters, MA, Megarbane, A, Cattaneo, F, Rethore, MO, Lejeune, J. Differences in purine metabolism in patients with Down's syndrome. J Intellect Disabil Res 1993;37:491–505.CrossRefGoogle ScholarPubMed
Taub, JW, Huang, X, Ge, Y, et al. Cystathionine-beta-synthase cDNA transfection alters the sensitivity and metabolism of 1-beta-d-arabinofuranosylcytosine in CCRF-CEM leukemia cells in vitro and in vivo: a model of leukemia in Down syndrome. Cancer Res 2000;60:6421–6426.Google ScholarPubMed
Chadefaux, B, Rethore, MO, Raoul, O, et al. Cystathionine beta synthase: gene dosage effect in trisomy 21. Biochem Biophys Res Commun 1985;128: 40–44.CrossRefGoogle ScholarPubMed
Lejeune, J, Peeters, M, Rethore, MO, de Blois, MC. Homocysteine and the methotrexate toxicity in trisomy 21. Cancer Chemother Pharmacol 1991;27:331–332.CrossRefGoogle ScholarPubMed
Horie, N, Aiba, H, Oguro, K, Hojo, H, Takeishi, K. Functional analysis and DNA polymorphism of the tandemly repeated sequences in the 5′-terminal regulatory region of the human gene for thymidylate synthase. Cell Struct Funct 1995;20:191–197.CrossRefGoogle ScholarPubMed
Villafranca, E, Okruzhnov, Y, Dominguez, MA, et al. Polymorphisms of the repeated sequences in the enhancer region of the thymidylate synthase gene promoter may predict downstaging after preoperative chemoradiation in rectal cancer. J Clin Oncol 2001;19:1779–1786.CrossRefGoogle ScholarPubMed
Chen, J, Hunter, DJ, Stampfer, MJ, et al. Polymorphism in the thymidylate synthase promoter enhancer region modifies the risk and survival of colorectal cancer. Cancer Epidemiol Biomarkers Prev 2003;12:958–962.Google ScholarPubMed
Pullarkat, ST, Stoehlmacher, J, Ghaderi, V, et al. Thymidylate synthase gene polymorphism determines response and toxicity of 5-FU chemotherapy. Pharmacogenomics J 2001;1:65–70.CrossRefGoogle ScholarPubMed
Rocha, JC, Cheng, C, Liu, W, et al. Pharmacogenetics of outcome in children with acute lymphoblastic leukemia. Blood 2005;105:4752–4758.CrossRefGoogle ScholarPubMed
Krajinovic, M, Costea, I, Chiasson, S. Polymorphism of the thymidylate synthase gene and outcome of acute lymphoblastic leukaemia. Lancet 2002;359:1033–1034.CrossRefGoogle ScholarPubMed
Ulrich, CM, Yasui, Y, Storb, R, et al. Pharmacogenetics of methotrexate: toxicity among marrow transplantation patients varies with the methylenetetrahydrofolate reductase C677T polymorphism. Blood 2001;98:231–234.CrossRefGoogle ScholarPubMed
Chango, A, Emery-Fillon, N, de Courcy, GP, et al. A polymorphism (80G→A) in the reduced folate carrier gene and its associations with folate status and homocysteinemia. Mol Genet Metab 2000;70:310–315.CrossRefGoogle ScholarPubMed
Laverdiere, C, Chiasson, S, Costea, I, Moghrabi, A, Krajinovic, M. Polymorphism G80A in the reduced folate carrier gene and its relationship to methotrexate plasma levels and outcome of childhood acute lymphoblastic leukemia. Blood 2002;100:3832–3834.CrossRefGoogle ScholarPubMed
Stet, EH, De Abreu, RA, Bokkerink, JP, et al. Reversal of methylmercaptopurine ribonucleoside cytotoxicity by purine ribonucleosides and adenine. Biochem Pharmacol 1995;49:49–56.CrossRefGoogle ScholarPubMed
Krynetski, EY, Krynetskaia, NF, Yanishevski, Y, Evans, WE. Methylation of mercaptopurine, thioguanine, and their nucleotide metabolites by heterologously expressed human thiopurine S-methyltransferase. Mol Pharmacol 1995;47:1141–1147.Google ScholarPubMed
Krynetski, EY, Tai, HL, Yates, CR, et al. Genetic polymorphism of thiopurine S-methyltransferase: clinical importance and molecular mechanisms. Pharmacogenetics 1996;6:279–290.CrossRefGoogle ScholarPubMed
Deininger, M, Szumlanski, CL, Otterness, DM, et al. Purine substrates for human thiopurine methyltransferase. Biochem Pharmacol 1994;48:2135–2138.CrossRefGoogle ScholarPubMed
Tay, BS, Lilley, RM, Murray, AW, Atkinson, MR. Inhibition of phosphoribosyl pyrophosphate amidotransferase from Ehrlich ascites-tumour cells by thiopurine nucleotides. Biochem Pharmacol 1969;18:936–938.CrossRefGoogle ScholarPubMed
Dervieux, T, Blanco, JG, Krynetski, EY, et al. Differing contribution of thiopurine methyltransferase to mercaptopurine versus thioguanine effects in human leukemic cells. Cancer Res 2001;61:5810–5816.Google ScholarPubMed
Weinshilboum, RM, Sladek, SL. Mercaptopurine pharmacogenetics: monogenic inheritance of erythrocyte thiopurine methyltransferase activity. Am J Hum Genet 1980;32:651–662.Google ScholarPubMed
Jones, IM, Moore, DH, Thomas, CB, et al. Factors affecting HPRT mutant frequency in T-lymphocytes of smokers and nonsmokers. Cancer Epidemiol Biomarkers Prev 1993;2:249–260.Google ScholarPubMed
Bredeson, CN, Barnett, MJ, Horsman, DE, et al. Therapy-related acute myelogenous leukemia associated with 11q23 chromosomal abnormalities and topoisomerase II inhibitors: report of four additional cases and brief commentary. Leuk Lymphoma 1993;11:141–145.CrossRefGoogle ScholarPubMed
Stocco, G, Crews, KR, Evans, WE. Genetic polymorphism of inosine-triphosphate-pyrophosphatase influences mercaptopurine metabolism and toxicity during treatment of acute lymphoblastic leukemia individualized for thiopurine-S-methyl-transferase status. Expert Opin Drug Saf 2010;9:23–37.CrossRefGoogle ScholarPubMed
Tinel, M, Berson, A, Pessayre, D, et al. Pharmacogenetics of human erythrocyte thiopurine methyltransferase activity in a French population. Br J Clin Pharmacol 1991;32:729–734.Google Scholar
Klemetsdal, B, Tollefsen, E, Loennechen, T, et al. Interethnic difference in thiopurine methyltransferase activity. Clin Pharmacol Ther 1992;51:24–31.CrossRefGoogle ScholarPubMed
Szumlanski, C, Otterness, D, Her, C, et al. Thiopurine methyltransferase pharmacogenetics: human gene cloning and characterization of a common polymorphism. DNA Cell Biol 1996;15:17–30.CrossRefGoogle ScholarPubMed
Krynetski, EY, Schuetz, JD, Galpin, AJ, et al. A single point mutation leading to loss of catalytic activity in human thiopurine S-methyltransferase. Proc Natl Acad Sci USA 1995;92: 949–953.CrossRefGoogle ScholarPubMed
Lee, D, Szumlanski, C, Houtman, J, et al. Thiopurine methyltransferase pharmacogenetics. Cloning of human liver cDNA and a processed pseudogene on human chromosome 18q21.1. Drug Metab Dispos 1995;23:398–405.Google Scholar
Tai, HL, Krynetski, EY, Yates, CR, et al. Thiopurine S-methyltransferase deficiency: two nucleotide transitions define the most prevalent mutant allele associated with loss of catalytic activity in Caucasians. Am J Hum Genet 1996;58:694–702.Google ScholarPubMed
Yates, CR, Krynetski, EY, Loennechen, T, et al. Molecular diagnosis of thiopurine S-methyltransferase deficiency: genetic basis for azathioprine and mercaptopurine intolerance. Ann Intern Med 1997;126:608–614.CrossRefGoogle ScholarPubMed
Lennard, L, Van Loon, JA, Weinshilboum, RM. Pharmacogenetics of acute azathioprine toxicity: relationship to thiopurine methyltransferase genetic polymorphism. Clin Pharmacol Ther 1989;46:149–154.CrossRefGoogle ScholarPubMed
Lennard, L, Van Loon, JA, Lilleyman, JS, Weinshilboum, RM. Thiopurine pharmacogenetics in leukemia: correlation of erythrocyte thiopurine methyltransferase activity and 6-thioguanine nucleotide concentrations. Clin Pharmacol Ther 1987;41:18–25.CrossRefGoogle ScholarPubMed
Escousse, A, Rifle, G, Sgro, C, et al. Azathioprine toxicity, 6-mercaptopurine accumulation and the “poor” 6-thiopurine methylator phenotype. Eur J Clin Pharmacol 1995;48:309–310.Google ScholarPubMed
Schutz, E, Gummert, J, Mohr, F, Oellerich, M. Azathioprine-induced myelosuppression in thiopurine methyltransferase deficient heart transplant recipient. Lancet 1993;341: 436.CrossRefGoogle ScholarPubMed
Lennard, L, Rees, CA, Lilleyman, JS, Maddocks, JL. Childhood leukaemia: a relationship between intracellular 6-mercaptopurine metabolites and neutropenia. Br J Clin Pharmacol 1983;16:359–363.CrossRefGoogle ScholarPubMed
Evans, WE, Horner, M, Chu, YQ, Kalwinsky, D, Roberts, WM. Altered mercaptopurine metabolism, toxic effects, and dosage requirement in a thiopurine methyltransferase-deficient child with acute lymphocytic leukemia. J Pediatr 1991;119:985–989.CrossRefGoogle Scholar
Lennard, L, Gibson, BE, Nicole, T, Lilleyman, JS. Congenital thiopurine methyltransferase deficiency and 6-mercaptopurine toxicity during treatment for acute lymphoblastic leukaemia. Arch Dis Child 1993;69:577–579.CrossRefGoogle ScholarPubMed
Relling, MV, Hancock, ML, Rivera, GK, et al. Mercaptopurine therapy intolerance and heterozygosity at the thiopurine S-methyltransferase gene locus. J Natl Cancer Inst 1999;91:2001–2008.CrossRefGoogle ScholarPubMed
Evans, WE, Hon, YY, Bomgaars, L, et al. Preponderance of thiopurine S-methyltransferase deficiency and heterozygosity among patients intolerant to mercaptopurine or azathioprine. J Clin Oncol 2001;19:2293–2301.CrossRefGoogle ScholarPubMed
Relling, MV, Pui, CH, Cheng, C, Evans, WE. Thiopurine methyltransferase in acute lymphoblastic leukemia. Blood 2006;107:843–844.CrossRefGoogle ScholarPubMed
Bo, J, Schroder, H, Kristinsson, J, et al. Possible carcinogenic effect of 6-mercaptopurine on bone marrow stem cells: relation to thiopurine metabolism. Cancer 1999;86:1080–1086.Google Scholar
Relling, MV, Rubnitz, JE, Rivera, GK, et al. High incidence of secondary brain tumours after radiotherapy and antimetabolites. Lancet 1999;354:34–39.CrossRefGoogle ScholarPubMed
Relling, MV, Yanishevski, Y, Nemec, J, et al. Etoposide and antimetabolite pharmacology in patients who develop secondary acute myeloid leukemia. Leukemia 1998;12:346–352.CrossRefGoogle ScholarPubMed
Lennard, L, Thomas, S, Harrington, CI, Maddocks, JL. Skin cancer in renal transplant recipients is associated with increased concentrations of 6-thioguanine nucleotide in red blood cells. Br J Dermatol 1985;113:723–729.CrossRefGoogle ScholarPubMed
Krynetskaia, NF, Cai, X, Nitiss, JL, Krynetski, EY, Relling, MV. Thioguanine substitution alters DNA cleavage mediated by topoisomerase II. FASEB J 2000;14:2339–2344.CrossRefGoogle ScholarPubMed
Stanulla, M, Schaeffeler, E, Flohr, T, et al. Thiopurine methyltransferase (TPMT) genotype and early treatment response to mercaptopurine in childhood acute lymphoblastic leukemia. JAMA 2005;293:1485–1489.CrossRefGoogle ScholarPubMed
Lennard, L, Lilleyman, JS, Van Loon, J, Weinshilboum, RM. Genetic variation in response to 6-mercaptopurine for childhood acute lymphoblastic leukaemia. Lancet 1990;336: 225–229.CrossRefGoogle ScholarPubMed
Relling, MV, Hancock, ML, Boyett, JM, Pui, CH, Evans, WE. Prognostic importance of 6-mercaptopurine dose intensity in acute lymphoblastic leukemia. Blood 1999;93:2817–2823.Google ScholarPubMed
Davies, HA, Lennard, L, Lilleyman, JS. Variable mercaptopurine metabolism in children with leukaemia: a problem of non-compliance?BMJ 1993;306:1239–1240.CrossRefGoogle ScholarPubMed
Momparler, RL. Kinetic and template studies with 1-d-arabinofuranosylcytosine 5′-triphosphate and mammalian deoxyribonucleic acid polymerase. Mol Pharmacol 1972;8:362–370.Google ScholarPubMed
Band, PR, Holland, JF, Bernard, J, et al. Treatment of central nervous system leukemia with intrathecal cytosine arabinoside. Cancer 1973;32:744–748.3.0.CO;2-J>CrossRefGoogle ScholarPubMed
Kufe, DW, Major, PP, Egan, EM, Beardsley, GP. Correlation of cytotoxicity with incorporation of ara-C into DNA. J Biol Chem 1980;255:8997–9000.Google ScholarPubMed
Major, PP, Sargent, L, Egan, EM, Kufe, DW. Correlation of thymidine-enhanced incorporation of ara-C in deoxyribonucleic acid with increased cell kill. Biochem Pharmacol 1981;30:2221–2224.CrossRefGoogle ScholarPubMed
Major, PP, Egan, EM, Beardsley, GP, Minden, MD, Kufe, DW. Lethality of human myeloblasts correlates with the incorporation of arabinofuranosylcytosine into DNA. Proc Natl Acad Sci USA 1981;78:3235–3239.CrossRefGoogle ScholarPubMed
Kessel, D, Hall, TC, Wodinsky, I. Transport and phosphorylation as factors in the antitumor action of cytosine arabinoside. Science 1967;156:1240–1241.CrossRefGoogle ScholarPubMed
Wiley, JS, Jones, SP, Sawyer, WH, Paterson, AR. Cytosine arabinoside influx and nucleoside transport sites in acute leukemia. J Clin Invest 1982;69:479–489.CrossRefGoogle ScholarPubMed
Heinemann, V, Estey, E, Keating, MJ, Plunkett, W. Patient-specific dose rate for continuous infusion high-dose cytarabine in relapsed acute myelogenous leukemia. J Clin Oncol 1989;7:622–628.CrossRefGoogle ScholarPubMed
Plunkett, W, Liliemark, JO, Adams, TM, et al. Saturation of 1-beta-d-arabinofuranosylcytosine 5′-triphosphate accumulation in leukemia cells during high-dose 1-beta-d-arabinofuranosylcytosine therapy. Cancer Res 1987;47:3005–3011.Google ScholarPubMed
Muus, P, Drenthe-Schonk, A, Haanen, C, Wessels, H, Linssen, P. In-vitro studies on phosphorylation and dephosphorylation of cytosine arabinoside in human leukemic cells. Leuk Res 1987;11:319–325.Google ScholarPubMed
White, JC, Rathmell, JP, Capizzi, RL. Membrane transport influences the rate of accumulation of cytosine arabinoside in human leukemia cells. J Clin Invest 1987;79:380–387.CrossRefGoogle ScholarPubMed
Plunkett, W, Iacoboni, S, Estey, E, et al. Pharmacologically directed ara-C therapy for refractory leukemia. Semin Oncol 1985;12:20–30.Google ScholarPubMed
Rustum, YM, Preisler, HD. Correlation between leukemic cell retention of 1-beta-d-arabinofuranosylcytosine 5′-triphosphate and response to therapy. Cancer Res 1979;39:42–49.Google ScholarPubMed
Bekassy, AN, Liliemark, J, Garwicz, S, et al. Pharmacokinetics of cytosine arabinoside in cerebrospinal fluid and of its metabolite in leukemic cells. Med Pediatr Oncol 1990;18:136–142.CrossRefGoogle ScholarPubMed
Avramis, VI, Biener, R, Krailo, M, et al. Biochemical pharmacology of high dose 1-beta-d-arabinofuranosylcytosine in childhood acute leukemia. Cancer Res 1987;47:6786–6792.Google ScholarPubMed
Boos, J, Hohenlochter, B, Schulze-Westhoff, P, et al. Intracellular retention of cytosine arabinoside triphosphate in blast cells from children with acute myelogenous and lymphoblastic leukemia. Med Pediatr Oncol 1996;26:397–404.3.0.CO;2-C>CrossRefGoogle ScholarPubMed
Plunkett, W, Iacoboni, S, Keating, MJ. Cellular pharmacology and optimal therapeutic concentrations of 1-beta-d-arabinofuranosylcytosine 5′-triphosphate in leukemic blasts during treatment of refractory leukemia with high-dose 1-beta-d-arabinofuranosylcytosine. Scand J Haematol Suppl 1986;44:51–59.Google ScholarPubMed
Estey, EH, Keating, MJ, McCredie, KB, Freireich, EJ, Plunkett, W. Cellular ara-CTP pharmacokinetics, response, and karyotype in newly diagnosed acute myelogenous leukemia. Leukemia 1990;4:95–99.Google ScholarPubMed
Bishop, JF, Matthews, JP, Young, GA, et al. A randomized study of high-dose cytarabine in induction in acute myeloid leukemia. Blood 1996;87:1710–1717.Google ScholarPubMed
Mayer, RJ, Davis, RB, Schiffer, CA, et al. Intensive postremission chemotherapy in adults with acute myeloid leukemia. Cancer and Leukemia Group B. N Engl J Med 1994;331:896–903.CrossRefGoogle ScholarPubMed
Kakihara, T, Fukuda, T, Tanaka, A, et al. Expression of deoxycytidine kinase (dCK) gene in leukemic cells in childhood: decreased expression of dCK gene in relapsed leukemia. Leuk Lymphoma 1998;31:405–409.CrossRefGoogle ScholarPubMed
Stammler, G, Zintl, F, Sauerbrey, A, Volm, M. Deoxycytidine kinase mRNA expression in childhood acute lymphoblastic leukemia. Anticancer Drugs 1997;8:517–521.CrossRefGoogle ScholarPubMed
Colly, LP, Peters, WG, Richel, D, et al. Deoxycytidine kinase and deoxycytidine deaminase values correspond closely to clinical response to cytosine arabinoside remission induction therapy in patients with acute myelogenous leukemia. Semin Oncol 1987;14:257–261.Google ScholarPubMed
Veuger, MJ, Heemskerk, MH, Honders, MW, Willemze, R, Barge, RM. Functional role of alternatively spliced deoxycytidine kinase in sensitivity to cytarabine of acute myeloid leukemic cells. Blood 2002;99:1373–1380.CrossRefGoogle ScholarPubMed
Veuger, MJ, Honders, MW, Landegent, JE, Willemze, R, Barge, RM. High incidence of alternatively spliced forms of deoxycytidine kinase in patients with resistant acute myeloid leukemia. Blood 2000;96:1517–1524.Google ScholarPubMed
Lamba, JK, Crews, K, Pounds, S, et al. Pharmacogenetics of deoxycytidine kinase: identification and characterization of novel genetic variants. J Pharmacol Exp Ther 2007;323:935–945.CrossRefGoogle ScholarPubMed
Galmarini, CM, Graham, K, Thomas, X, et al. Expression of high Km 5′-nucleotidase in leukemic blasts is an independent prognostic factor in adults with acute myeloid leukemia. Blood 2001;98:1922–1926.CrossRefGoogle Scholar
Jahns-Streubel, G, Reuter, C, Auf der Landwehr, U, et al. Activity of thymidine kinase and of polymerase alpha as well as activity and gene expression of deoxycytidine deaminase in leukemic blasts are correlated with clinical response in the setting of granulocyte–macrophage colony-stimulating factor-based priming before and during TAD-9 induction therapy in acute myeloid leukemia. Blood 1997;90:1968–1976.Google Scholar
Yue, L, Saikawa, Y, Ota, K, et al. A functional single-nucleotide polymorphism in the human cytidine deaminase gene contributing to ara-C sensitivity. Pharmacogenetics 2003;13:29–38.CrossRefGoogle ScholarPubMed
Pounds, S, Cheng, C, Cao, X, et al. PROMISE: a tool to identify genomic features with a specific biologically interesting pattern of associations with multiple endpoint variables. Bioinformatics 2009;25:2013–2019.CrossRefGoogle ScholarPubMed
Ho, DH, Frei, E, 3rd. Clinical pharmacology of 1-beta-d-arabinofuranosyl cytosine. Clin Pharmacol Ther 1971;12:944–954.CrossRefGoogle ScholarPubMed
Pui, CH, Mahmoud, HH, Rivera, GK, et al. Early intensification of intrathecal chemotherapy virtually eliminates central nervous system relapse in children with acute lymphoblastic leukemia. Blood 1998;92:411–415.Google ScholarPubMed
Taub, JW, Matherly, LH, Stout, ML, et al. Enhanced metabolism of 1-beta-d-arabinofuranosylcytosine in Down syndrome cells: a contributing factor to the superior event free survival of Down syndrome children with acute myeloid leukemia. Blood 1996;87:3395–3403.Google ScholarPubMed
Kojima, S, Kato, K, Matsuyama, T, Yoshikawa, T, Horibe, K. Favorable treatment outcome in children with acute myeloid leukemia and Down syndrome. Blood 1993;81:3164.Google ScholarPubMed
Ravindranath, Y, Abella, E, Krischer, JP, et al. Acute myeloid leukemia (AML) in Down's syndrome is highly responsive to chemotherapy: experience on Pediatric Oncology Group AML Study 8498. Blood 1992;80:2210–2214.Google ScholarPubMed
Taub, JW, Huang, X, Matherly, LH, et al. Expression of chromosome 21-localized genes in acute myeloid leukemia: differences between Down syndrome and non-Down syndrome blast cells and relationship to in vitro sensitivity to cytosine arabinoside and daunorubicin. Blood 1999;94:1393–1400.Google ScholarPubMed
Tsai, MY, Bignell, M, Schwichtenberg, K, Hanson, NQ. High prevalence of a mutation in the cystathionine beta-synthase gene. Am J Hum Genet 1996;59:1262–1267.Google ScholarPubMed
Ge, Y, Jensen, T, James, SJ, et al. High frequency of the 844ins68 cystathionine-beta-synthase gene variant in Down syndrome children with acute myeloid leukemia. Leukemia 2002;16:2339–2341.CrossRefGoogle ScholarPubMed
Gandhi, V, Estey, E, Keating, MJ, Chucrallah, A, Plunkett, W. Chlorodeoxyadenosine and arabinosylcytosine in patients with acute myelogenous leukemia: pharmacokinetic, pharmacodynamic, and molecular interactions. Blood 1996;87:256–264.Google ScholarPubMed
Kornblau, SM, Gandhi, V, Andreeff, HM, et al. Clinical and laboratory studies of 2-chlorodeoxyadenosine ± cytosine arabinoside for relapsed or refractory acute myelogenous leukemia in adults. Leukemia 1996;10:1563–1569.Google ScholarPubMed
Crews, KR, Gandhi, V, Srivastava, DK, et al. Interim comparison of a continuous infusion versus a short daily infusion of cytarabine given in combination with cladribine for pediatric acute myeloid leukemia. J Clin Oncol 2002;20:4217–4224.CrossRefGoogle Scholar
Rubnitz, JE, Crews, KR, Pounds, S, et al. Combination of cladribine and cytarabine is effective for childhood acute myeloid leukemia: results of the St. Jude AML97 trial. Leukemia 2009;23:1410–1416.CrossRefGoogle ScholarPubMed
Sirotnak, FM, Chello, PL, Dorick, DM, Montgomery, JA. Specificity of systems mediating transport of adenosine, 9-beta-d-arabinofuranosyl-2-fluoroadenine, and other purine nucleoside analogues in L1210 cells. Cancer Res 1983;43:104–109.Google ScholarPubMed
Gandhi, V, Plunkett, W. Modulation of arabinosylnucleoside metabolism by arabinosylnucleotides in human leukemia cells. Cancer Res 1988;48:329–334.Google ScholarPubMed
Gandhi, V, Estey, E, Keating, MJ, Plunkett, W. Fludarabine potentiates metabolism of cytarabine in patients with acute myelogenous leukemia during therapy. J Clin Oncol 1993;11:116–124.CrossRefGoogle ScholarPubMed
Gandhi, V, Nowak, B, Keating, MJ, Plunkett, W. Modulation of arabinosylcytosine metabolism by arabinosyl-2-fluoroadenine in lymphocytes from patients with chronic lymphocytic leukemia: implications for combination therapy. Blood 1989;74: 2070–2075.Google ScholarPubMed
Gandhi, V, Robertson, LE, Keating, MJ, Plunkett, W. Combination of fludarabine and arabinosylcytosine for treatment of chronic lymphocytic leukemia: clinical efficacy and modulation of arabinosylcytosine pharmacology. Cancer Chemother Pharmacol 1994;34:30–36.CrossRefGoogle ScholarPubMed
Kemena, A, Gandhi, V, Shewach, DS, Keating, M, Plunkett, W. Inhibition of fludarabine metabolism by arabinosylcytosine during therapy. Cancer Chemother Pharmacol 1992;31:193–199.CrossRefGoogle ScholarPubMed
Estey, E, Plunkett, W, Gandhi, V, et al. Fludarabine and arabinosylcytosine therapy of refractory and relapsed acute myelogenous leukemia. Leuk Lymphoma 1993;9:343–350.CrossRefGoogle ScholarPubMed
Avramis, VI, Wiersma, S, Krailo, MD, et al. Pharmacokinetic and pharmacodynamic studies of fludarabine and cytosine arabinoside administered as loading boluses followed by continuous infusions after a phase I/II study in pediatric patients with relapsed leukemias. The Children's Cancer Group. Clin Cancer Res 1998;4:45–52.Google ScholarPubMed
Dinndorf, PA, Avramis, VI, Wiersma, S, et al. Phase I/II study of idarubicin given with continuous infusion fludarabine followed by continuous infusion cytarabine in children with acute leukemia: a report from the Children's Cancer Group. J Clin Oncol 1997;15:2780–2785.CrossRefGoogle ScholarPubMed
Leahey, A, Kelly, K, Rorke, LB, Lange, B. A phase I/II study of idarubicin (Ida) with continuous infusion fludarabine (F-ara-A) and cytarabine (ara-C) for refractory or recurrent pediatric acute myeloid leukemia (AML). J Pediatr Hematol Oncol 1997;19: 304–308.CrossRef
Fleischhack, G, Hasan, C, Graf, N, Mann, G, Bode, U. IDA-FLAG (idarubicin, fludarabine, cytarabine, G-CSF), an effective remission- induction therapy for poor-prognosis AML of childhood prior to allogeneic or autologous bone marrow transplantation: experiences of a phase II trial. Br J Haematol 1998;102:647–655.CrossRefGoogle ScholarPubMed
Jabbour, E, O'Brien, S, Kantarjian, H, et al. Neurologic complications associated with intrathecal liposomal cytarabine given prophylactically in combination with high-dose methotrexate and cytarabine to patients with acute lymphocytic leukemia. Blood 2007;109:3214–3218.CrossRefGoogle ScholarPubMed
Pui, CH. Toward optimal use of intrathecal liposomal cytarabine. Leuk Lymphoma 2007;48:1672–1673.CrossRefGoogle ScholarPubMed
Bachur, NR, Cradock, JC. Daunomycin metabolism in rat tissue slices. J Pharmacol Exp Ther 1970;175: 331–337.Google ScholarPubMed
Huffman, DH, Benjamin, RS, Bachur, NR. Daunorubicin metabolism in acute nonlymphocytic leukemia. Clin Pharmacol Ther 1972;13:895–905.CrossRefGoogle ScholarPubMed
Gil, P, Favre, R, Durand, A, et al. Time dependency of adriamycin and adriamycinol kinetics. Cancer Chemother Pharmacol 1983;10:120–124.CrossRefGoogle ScholarPubMed
Dessypris, EN, Brenner, DE, Hande, KR. Toxicity of doxorubicin metabolites to human marrow erythroid and myeloid progenitors in vitro. Cancer Treat Rep 1986;70:487–490.Google ScholarPubMed
Schott, B, Robert, J. Comparative activity of anthracycline 13-dihydrometabolites against rat glioblastoma cells in culture. Biochem Pharmacol 1989;38:4069–4074.CrossRefGoogle ScholarPubMed
Olson, RD, Mushlin, PS, Brenner, DE, et al. Doxorubicin cardiotoxicity may be caused by its metabolite, doxorubicinol. Proc Natl Acad Sci USA 1988;85:3585–3589.CrossRefGoogle ScholarPubMed
Hempel, G, Flege, S, Wurthwein, G, Boos, J. Peak plasma concentrations of doxorubicin in children with acute lymphoblastic leukemia or non-Hodgkin lymphoma. Cancer Chemother Pharmacol 2002;49:133–141.CrossRefGoogle ScholarPubMed
Galettis, P, Boutagy, J, Ma, DD. Daunorubicin pharmacokinetics and the correlation with P-glycoprotein and response in patients with acute leukaemia. Br J Cancer 1994;70:324–329.CrossRefGoogle ScholarPubMed
Preisler, HD, Gessner, T, Azarnia, N, et al. Relationship between plasma adriamycin levels and the outcome of remission induction therapy for acute nonlymphocytic leukemia. Cancer Chemother Pharmacol 1984;12:125–130.CrossRefGoogle ScholarPubMed
Kokenberg, E, Sonneveld, P, Sizoo, W, Hagenbeek, A, Löwenberg, B. Cellular pharmacokinetics of daunorubicin: relationships with the response to treatment in patients with acute myeloid leukemia. J Clin Oncol 1988;6:802–812.CrossRefGoogle ScholarPubMed
Marie, JP, Faussat-Suberville, AM, Zhou, D, Zittoun, R. Daunorubicin uptake by leukemic cells: correlations with treatment outcome and mdr1 expression. Leukemia 1993;7:825–831.Google ScholarPubMed
Steinberg, JS, Cohen, AJ, Wasserman, AG, Cohen, P, Ross, AM. Acute arrhythmogenicity of doxorubicin administration. Cancer 1987;60:1213–1218.3.0.CO;2-V>CrossRefGoogle ScholarPubMed
Lenaz, L, Page, JA. Cardiotoxicity of adriamycin and related anthracyclines. Cancer Treat Rev 1976;3:111–120.CrossRefGoogle ScholarPubMed
Ferrans, VJ. Overview of cardiac pathology in relation to anthracycline cardiotoxicity. Cancer Treat Rep 1978;62:955–961.Google ScholarPubMed
Von Hoff, DD, Rozencweig, M, Layard, M, Slavik, M, Muggia, FM. Daunomycin-induced cardiotoxicity in children and adults. A review of 110 cases. Am J Med 1977;62:200–208.CrossRefGoogle ScholarPubMed
Bristow, MR, Billingham, ME, Mason, JW, Daniels, JR. Clinical spectrum of anthracycline antibiotic cardiotoxicity. Cancer Treat Rep 1978;62:873–879.Google ScholarPubMed
Friedman, MA, Bozdech, MJ, Billingham, ME, Rider, AK. Doxorubicin cardiotoxicity. Serial endomyocardial biopsies and systolic time intervals. JAMA 1978;240:1603–1606.CrossRefGoogle ScholarPubMed
Haq, MM, Legha, SS, Choksi, J, et al. Doxorubicin-induced congestive heart failure in adults. Cancer 1985;56:1361–1365.3.0.CO;2-S>CrossRefGoogle ScholarPubMed
Schwartz, RG, McKenzie, WB, Alexander, J, et al. Congestive heart failure and left ventricular dysfunction complicating doxorubicin therapy. Seven-year experience using serial radionuclide angiocardiography. Am J Med 1987;82:1109–1118.CrossRefGoogle ScholarPubMed
Steinherz, LJ, Steinherz, PG, Tan, CT, Heller, G, Murphy, ML. Cardiac toxicity 4 to 20 years after completing anthracycline therapy. JAMA 1991;266:1672–1677.CrossRefGoogle ScholarPubMed
Lipshultz, SE, Colan, SD, Gelber, RD, et al. Late cardiac effects of doxorubicin therapy for acute lymphoblastic leukemia in childhood. N Engl J Med 1991;324:808–815.CrossRefGoogle ScholarPubMed
Yeung, ST, Yoong, C, Spink, J, Galbraith, A, Smith, PJ. Functional myocardial impairment in children treated with anthracyclines for cancer. Lancet 1991;337:816–818.CrossRefGoogle ScholarPubMed
Larsen, RL, Jakacki, RI, Vetter, VL, et al. Electrocardiographic changes and arrhythmias after cancer therapy in children and young adults. Am J Cardiol 1992;70:73–77.CrossRefGoogle ScholarPubMed
Minow, RA, Benjamin, RS, Lee, ET, Gottlieb, JA. Adriamycin cardiomyopathy: risk factors. Cancer 1977;39:1397–1402.3.0.CO;2-U>CrossRefGoogle ScholarPubMed
Mosijczuk, AD, Ruymann, FB, Mease, AD, Bernier, RD. Anthracycline cardiomyopathy in children: report of two cases. Cancer 1979;44:1582–1587.3.0.CO;2-H>CrossRefGoogle ScholarPubMed
Pratt, CB, Ransom, JL, Evans, WE. Age-related adriamycin cardiotoxicity in children. Cancer Treat Rep 1978;62:1381–1385.Google ScholarPubMed
Lipshultz, SE, Giantris, AL, Lipsitz, SR, et al. Doxorubicin administration by continuous infusion is not cardioprotective: the Dana-Farber 91-01 Acute Lymphoblastic Leukemia protocol. J Clin Oncol 2002;20:1677–1682.CrossRefGoogle Scholar
Daghestani, AN, Arlin, ZA, Leyland-Jones, B, et al. Phase I and II clinical and pharmacological study of 4-demethoxydaunorubicin (idarubicin) in adult patients with acute leukemia. Cancer Res 1985;45:1408–1412.Google ScholarPubMed
Gill, PS, Espina, BM, Muggia, F, et al. Phase I/II clinical and pharmacokinetic evaluation of liposomal daunorubicin. J Clin Oncol 1995;13:996–1003.CrossRefGoogle ScholarPubMed
Uziely, B, Jeffers, S, Isacson, R, et al. Liposomal doxorubicin: antitumor activity and unique toxicities during two complementary phase I studies. J Clin Oncol 1995;13:1777–1785.CrossRefGoogle ScholarPubMed
Blanco, JG, Leisenring, WM, Gonzalez-Covarrubias, VM, et al. Genetic polymorphisms in the carbonyl reductase 3 gene CBR3 and the NAD(P)H:quinone oxidoreductase 1 gene NQO1 in patients who developed anthracycline-related congestive heart failure after childhood cancer. Cancer 2008;112:2789–2795.CrossRefGoogle ScholarPubMed
Wolff, AC, Ettinger, DS, Neuberg, D, et al. Phase II study of ifosfamide, carboplatin, and oral etoposide chemotherapy for extensive-disease small-cell lung cancer: an Eastern Cooperative Oncology Group pilot study. J Clin Oncol 1995;13:1615–1622.CrossRefGoogle Scholar
Ochs, J, Rodman, J, Abromowitch, M, et al. A phase II study of combined methotrexate and teniposide infusions prior to reinduction therapy in relapsed childhood acute lymphoblastic leukemia: a Pediatric Oncology Group study. J Clin Oncol 1991;9:139–144.CrossRefGoogle ScholarPubMed
Rivera, GK, Hudson, MM, Liu, Q, et al. Effectiveness of intensified rotational combination chemotherapy for late hematologic relapse of childhood acute lymphoblastic leukemia. Blood 1996;88:831–837.Google ScholarPubMed
Lowis, SP, Newell, DR. Etoposide for the treatment of paediatric tumours: what is the best way to give it?Eur J Cancer 1996;32A:2291–2297.CrossRefGoogle Scholar
Clark, PI, Slevin, ML. The clinical pharmacology of etoposide and teniposide. Clin Pharmacokinet 1987;12:223–252.CrossRefGoogle ScholarPubMed
Relling, MV, Nemec, J, Schuetz, EG, et al. O-Demethylation of epipodophyllotoxins is catalyzed by human cytochrome P450 3A4. Mol Pharmacol 1994;45:352–358.Google ScholarPubMed
Relling, MV, Evans, R, Dass, C, Desiderio, DM, Nemec, J. Human cytochrome P450 metabolism of teniposide and etoposide. J Pharmacol Exp Ther 1992;261:491–496.Google ScholarPubMed
Liliemark, EK, Liliemark, J, Pettersson, B, et al. In vivo accumulation of etoposide in peripheral leukemic cells in patients treated for acute myeloblastic leukemia; relation to plasma concentrations and protein binding. Leuk Lymphoma 1993;10:323–328.CrossRefGoogle ScholarPubMed
Relling, MV, Mahmoud, HH, Pui, CH, et al. Etoposide achieves potentially cytotoxic concentrations in CSF of children with acute lymphoblastic leukemia. J Clin Oncol 1996;14:399–404.CrossRefGoogle ScholarPubMed
van der Gaast, A, Sonneveld, P, Mans, DR, Splinter, TA. Intrathecal administration of etoposide in the treatment of malignant meningitis: feasibility and pharmacokinetic data. Cancer Chemother Pharmacol 1992;29:335–337.CrossRefGoogle ScholarPubMed
Ratain, MJ, Mick, R, Schilsky, RL, Vogelzang, NJ, Berezin, F. Pharmacologically based dosing of etoposide: a means of safely increasing dose intensity. J Clin Oncol 1991;9:1480–1486.CrossRefGoogle ScholarPubMed
Karlsson, MO, Port, RE, Ratain, MJ, Sheiner, LB. A population model for the leukopenic effect of etoposide. Clin Pharmacol Ther 1995;57:325–334.CrossRefGoogle ScholarPubMed
Clark, PI, Slevin, ML, Joel, SP, et al. A randomized trial of two etoposide schedules in small-cell lung cancer: the influence of pharmacokinetics on efficacy and toxicity. J Clin Oncol 1994;12:1427–1435.CrossRefGoogle ScholarPubMed
Relling, MV, McLeod, HL, Bowman, LC, Santana, VM. Etoposide pharmacokinetics and pharmacodynamics after acute and chronic exposure to cisplatin. Clin Pharmacol Ther 1994;56:503–511.CrossRefGoogle ScholarPubMed
Stewart, CF, Arbuck, SG, Fleming, RA, Evans, WE. Relation of systemic exposure to unbound etoposide and hematologic toxicity. Clin Pharmacol Ther 1991;50:385–393.CrossRefGoogle ScholarPubMed
Ratain, MJ, Schilsky, RL, Choi, KE, et al. Adaptive control of etoposide administration: impact of interpatient pharmacodynamic variability. Clin Pharmacol Ther 1989;45:226–233.CrossRefGoogle ScholarPubMed
Sonnichsen, DS, Ribeiro, RC, Luo, X, Mathew, P, Relling, MV. Pharmacokinetics and pharmacodynamics of 21-day continuous oral etoposide in pediatric patients with solid tumors. Clin Pharmacol Ther 1995;58:99–107.CrossRefGoogle ScholarPubMed
Evans, WE, Rodman, JH, Relling, MV, et al. Differences in teniposide disposition and pharmacodynamics in patients with newly diagnosed and relapsed acute lymphocytic leukemia. J Pharmacol Exp Ther 1992;260:71–77.Google ScholarPubMed
Clark, PI. Clinical pharmacology and schedule dependency of the podophyllotoxin derivatives. Semin Oncol 1992;19:20–27.Google ScholarPubMed
Rodman, JH, Murry, DJ, Madden, T, Santana, VM. Altered etoposide pharmacokinetics and time to engraftment in pediatric patients undergoing autologous bone marrow transplantation. J Clin Oncol 1994;12:2390–2397.CrossRefGoogle ScholarPubMed
Edick, MJ, Gajjar, A, Mahmoud, HH, et al. Pharmacokinetics and pharmacodynamics of oral etoposide in children with relapsed or refractory acute lymphoblastic leukemia. J Clin Oncol 2003;21:1340–1346.CrossRefGoogle ScholarPubMed
McLeod, HL, Baker, DK, Jr., Pui, CH, Rodman, JH. Somnolence, hypotension, and metabolic acidosis following high-dose teniposide treatment in children with leukemia. Cancer Chemother Pharmacol 1991;29: 150–154.CrossRefGoogle ScholarPubMed
Rodman, JH, Abromowitch, M, Sinkule, JA, et al. Clinical pharmacodynamics of continuous infusion teniposide: systemic exposure as a determinant of response in a phase I trial. J Clin Oncol 1987;5:1007–1014.CrossRefGoogle Scholar
Davies, SM, Robison, LL, Buckley, JD, et al. Glutathione S-transferase polymorphisms and outcome of chemotherapy in childhood acute myeloid leukemia. J Clin Oncol 2001;19:1279–1287.CrossRefGoogle ScholarPubMed
Adamson, PC, Bailey, J, Pluda, J, et al. Pharmacokinetics of all-trans-retinoic acid administered on an intermittent schedule. J Clin Oncol 1995;13:1238–1241.CrossRefGoogle ScholarPubMed
Adamson, PC, Boylan, JF, Balis, FM, et al. Time course of induction of metabolism of all-trans-retinoic acid and the up-regulation of cellular retinoic acid-binding protein. Cancer Res 1993;53:472–476.Google ScholarPubMed
Muindi, JF, Young, CW. Lipid hydroperoxides greatly increase the rate of oxidative catabolism of all-trans-retinoic acid by human cell culture microsomes genetically enriched in specified cytochrome P-450 isoforms. Cancer Res 1993;53:1226–1229.Google Scholar
Takitani, K, Tamai, H, Morinobu, T, et al. Pharmacokinetics of all-trans retinoic acid in pediatric patients with leukemia. Jpn J Cancer Res 1995;86: 400–405.CrossRefGoogle ScholarPubMed
Adamson, PC, Reaman, G, Finklestein, JZ, et al. Phase I trial and pharmacokinetic study of all-trans-retinoic acid administered on an intermittent schedule in combination with interferon-alpha2a in pediatric patients with refractory cancer. J Clin Oncol 1997;15:3330–3337.CrossRefGoogle ScholarPubMed
Agadir, A, Cornic, M, Lefebvre, P, et al. All-trans retinoic acid pharmacokinetics and bioavailability in acute promyelocytic leukemia: intracellular concentrations and biologic response relationship. J Clin Oncol 1995;13:2517–2523.CrossRefGoogle ScholarPubMed
Conley, BA, Egorin, MJ, Sridhara, R, et al. Phase I clinical trial of all-trans-retinoic acid with correlation of its pharmacokinetics and pharmacodynamics. Cancer Chemother Pharmacol 1997;39:291–299.CrossRefGoogle ScholarPubMed
Jones, B, Holland, JF, Glidewell, O, et al. Optimal use of l-asparaginase (NSC-109229) in acute lymphocytic leukemia. Med Pediatr Oncol 1977;3:387–400.CrossRefGoogle Scholar
Capizzi, RL, Bertino, JR, Skeel, RT, et al. l-Asparaginase: clinical, biochemical, pharmacological, and immunological studies. Ann Intern Med 1971;74:893–901.CrossRefGoogle ScholarPubMed
Ohnuma, T, Holland, JF, Freeman, A, Sinks, LF. Biochemical and pharmacological studies with asparaginase in man. Cancer Res 1970;30:2297–2305.Google ScholarPubMed
Schwartz, MK, Lash, ED, Oettgen, HF, Tomato, FA. l-Asparaginase activity in plasma and other biological fluids. Cancer 1970;25:244–252.3.0.CO;2-V>CrossRefGoogle ScholarPubMed
Ho, DH, Thetford, B, Carter, CJ, Frei, E, 3rd. Clinical pharmacologic studies of l-asparaginase. Clin Pharmacol Ther 1970;11:408–417.CrossRefGoogle ScholarPubMed
Asselin, BL, Whitin, JC, Coppola, DJ, et al. Comparative pharmacokinetic studies of three asparaginase preparations. J Clin Oncol 1993;11:1780–1786.CrossRefGoogle ScholarPubMed
Avramis, VI, Sencer, S, Periclou, AP, et al. A randomized comparison of native Escherichia coli asparaginase and polyethylene glycol conjugated asparaginase for treatment of children with newly diagnosed standard-risk acute lymphoblastic leukemia: a Children's Cancer Group study. Blood 2002;99:1986–1994.CrossRefGoogle ScholarPubMed
Silverman, LB, Gelber, RD, Dalton, VK, et al. Improved outcome for children with acute lymphoblastic leukemia: results of Dana-Farber Consortium Protocol 91-01. Blood 2001;97:1211–1218.CrossRefGoogle ScholarPubMed
Cheung, NK, Chau, IY, Coccia, PF. Antibody response to Escherichia coli l-asparaginase. Prognostic significance and clinical utility of antibody measurement. Am J Pediatr Hematol Oncol 1986;8:99–104.Google ScholarPubMed
Killander, D, Dohlwitz, A, Engstedt, L, et al. Hypersensitive reactions and antibody formation during l-asparaginase treatment of children and adults with acute leukemia. Cancer 1976;37:220–228.3.0.CO;2-W>CrossRefGoogle ScholarPubMed
Woo, MH, Hak, LJ, Storm, MC, et al. Anti-asparaginase antibodies following E. coli asparaginase therapy in pediatric acute lymphoblastic leukemia. Leukemia 1998;12:1527–1533.CrossRefGoogle ScholarPubMed
Abshire, TC, Pollock, BH, Billett, AL, Bradley, P, Buchanan, GR. Weekly polyethylene glycol conjugated l-asparaginase compared with biweekly dosing produces superior induction remission rates in childhood relapsed acute lymphoblastic leukemia: a Pediatric Oncology Group Study. Blood 2000;96:1709–1715.Google ScholarPubMed
Gentili, D, Zucchetti, M, Conter, V, Masera, G, D'Incalci, M. Determination of l-asparagine in biological samples in the presence of l-asparaginase. J Chromatogr B Biomed Appl 1994;657:47–52.CrossRefGoogle ScholarPubMed
Woo, MH, Hak, LJ, Storm, MC, et al. Hypersensitivity or development of antibodies to asparaginase does not impact treatment outcome of childhood acute lymphoblastic leukemia. J Clin Oncol 2000;18:1525–1532.CrossRefGoogle Scholar
Hak, LJ, Relling, MV, Cheng, C, et al. Asparaginase pharmacodynamics differ by formulation among children with newly diagnosed acute lymphoblastic leukemia. Leukemia 2004;18:1072–1077.CrossRefGoogle ScholarPubMed
Iwamoto, S, Mihara, K, Downing, JR, Pui, CH, Campana, D. Mesenchymal cells regulate the response of acute lymphoblastic leukemia cells to asparaginase. J Clin Invest 2007;117:1049–1057.CrossRefGoogle ScholarPubMed
Woo, MH, Hak, LJ, Storm, MC, et al. Cerebrospinal fluid asparagine concentrations after Escherichia coli asparaginase in children with acute lymphoblastic leukemia. J Clin Oncol 1999;17:1568–1573.CrossRefGoogle ScholarPubMed
Ahlke, E, Nowak-Gottl, U, Schulze-Westhoff, P, et al. Dose reduction of asparaginase under pharmacokinetic and pharmacodynamic control during induction therapy in children with acute lymphoblastic leukaemia. Br J Haematol 1997;96:675–681.CrossRefGoogle ScholarPubMed
Schwartz, SA, Morgenstern, B, Capizzi, RL. Schedule-dependent synergy and antagonism between high-dose 1-beta-d-arabinofuranosylcytosine and asparaginase in the L5178Y murine leukemia. Cancer Res 1982;42:2191–2197.Google ScholarPubMed
Jolivet, J, Cole, DE, Holcenberg, JS, Poplack, DG. Prevention of methotrexate cytotoxicity by asparaginase inhibition of methotrexate polyglutamate formation. Cancer Res 1985;45:217–220.Google ScholarPubMed
Ffrench, M, Manel, AM, Magaud, JP, et al. Adult acute lymphoblastic leukaemia: is cell proliferation related to other clinical and biological features?Br J Haematol 1987;65:419–423.CrossRefGoogle ScholarPubMed
Sur, P, Fernandes, DJ, Kute, TE, Capizzi, RL. l-Asparaginase-induced modulation of methotrexate polyglutamylation in murine leukemia L5178Y. Cancer Res 1987;47:1313–1318.Google ScholarPubMed
Yang, L, Panetta, JC, Cai, X, et al. Asparaginase may influence dexamethasone pharmacokinetics in acute lymphoblastic leukemia. J Clin Oncol 2008;26:1932–1939.CrossRefGoogle ScholarPubMed
Amylon, MD, Shuster, J, Pullen, J, et al. Intensive high-dose asparaginase consolidation improves survival for pediatric patients with T cell acute lymphoblastic leukemia and advanced stage lymphoblastic lymphoma: a Pediatric Oncology Group study. Leukemia 1999;13:335–342.CrossRefGoogle Scholar
Pui, CH, Relling, MV, Behm, FG, et al. l-Asparaginase may potentiate the leukemogenic effect of the epipodophyllotoxins. Leukemia 1995;9:1680–1684.Google ScholarPubMed
Veerman, AJ, Hahlen, K, Kamps, WA, et al. High cure rate with a moderately intensive treatment regimen in non-high-risk childhood acute lymphoblastic leukemia. Results of protocol ALL VI from the Dutch Childhood Leukemia Study Group. J Clin Oncol 1996;14:911–918.CrossRefGoogle ScholarPubMed
Schwartz, CL, Thompson, EB, Gelber, RD, et al. Improved response with higher corticosteroid dose in children with acute lymphoblastic leukemia. J Clin Oncol 2001;19:1040–1046.CrossRefGoogle ScholarPubMed
Ito, C, Evans, WE, McNinch, L, et al. Comparative cytotoxicity of dexamethasone and prednisolone in childhood acute lymphoblastic leukemia. J Clin Oncol 1996;14:2370–2376.CrossRefGoogle ScholarPubMed
Kaspers, GJ, Veerman, AJ, Popp-Snijders, C, et al. Comparison of the antileukemic activity in vitro of dexamethasone and prednisolone in childhood acute lymphoblastic leukemia. Med Pediatr Oncol 1996;27:114–121.3.0.CO;2-I>CrossRefGoogle ScholarPubMed
Gaynon, PS, Carrel, AL. Glucocorticosteroid therapy in childhood acute lymphoblastic leukemia. Adv Exp Med Biol 1999;457:593–605.CrossRefGoogle ScholarPubMed
Bostrom, BC, Sensel, MR, Sather, HN, et al. Dexamethasone versus prednisone and daily oral versus weekly intravenous mercaptopurine for patients with standard-risk acute lymphoblastic leukemia: a report from the Children's Cancer Group. Blood 2003;101:3809–3817.CrossRefGoogle ScholarPubMed
Jones, B, Freeman, AI, Shuster, JJ, et al. Lower incidence of meningeal leukemia when prednisone is replaced by dexamethasone in the treatment of acute lymphocytic leukemia. Med Pediatr Oncol 1991;19:269–275.CrossRefGoogle ScholarPubMed
Gaynon, PS, Trigg, ME, Heerema, NA, et al. Children's Cancer Group trials in childhood acute lymphoblastic leukemia: 1983–1995. Leukemia 2000;14:2223–2233.CrossRefGoogle ScholarPubMed
Gaynon, PS, Bostrom, BC, Hutchinson, RJ, et al. Duration of hospitalization as a measure of cost on Children's Cancer Group acute lymphoblastic leukemia studies. J Clin Oncol 2001;19:1916–1925.CrossRefGoogle ScholarPubMed
Meikle, AW, Tyler, FH. Potency and duration of action of glucocorticoids. Effects of hydrocortisone, prednisone and dexamethasone on human pituitary-adrenal function. Am J Med 1977;63:200–207.CrossRefGoogle ScholarPubMed
Hurwitz, CA, Silverman, LB, Schorin, MA, et al. Substituting dexamethasone for prednisone complicates remission induction in children with acute lymphoblastic leukemia. Cancer 2000;88:1964–1969.3.0.CO;2-1>CrossRefGoogle ScholarPubMed
Lausten, GS, Egfjord, M, Olgaard, K. Metabolism of prednisone in kidney transplanted patients with necrosis of the femoral head. Pharmacol Toxicol 1993;72:78–83.CrossRefGoogle ScholarPubMed
Mattano, LA, Jr., Sather, HN, Trigg, ME, Nachman, JB. Osteonecrosis as a complication of treating acute lymphoblastic leukemia in children: a report from the Children's Cancer Group. J Clin Oncol 2000;18:3262–3272.CrossRefGoogle ScholarPubMed
Ribeiro, RC, Fletcher, BD, Kennedy, W, et al. Magnetic resonance imaging detection of avascular necrosis of the bone in children receiving intensive prednisone therapy for acute lymphoblastic leukemia or non-Hodgkin lymphoma. Leukemia 2001;15:891–897.CrossRefGoogle ScholarPubMed
Patel, B, Richards, SM, Rowe, JM, Goldstone, AH, Fielding, AK. High incidence of avascular necrosis in adolescents with acute lymphoblastic leukaemia: a UKALL XII analysis. Leukemia 2008;22:308–312.CrossRefGoogle ScholarPubMed
Relling, MV, Yang, W, Das, S, et al. Pharmacogenetic risk factors for osteonecrosis of the hip among children with leukemia. J Clin Oncol 2004;22:3930–3936.CrossRefGoogle ScholarPubMed
French, D, Hamilton, LH, Mattano, LA, Jr., et al. A PAI-1 (SERPINE1) polymorphism predicts osteonecrosis in children with acute lymphoblastic leukemia: a report from the Children's Oncology Group. Blood 2008;111:4496–4499.CrossRefGoogle ScholarPubMed
Hurley, DM, Accili, D, Stratakis, CA, et al. Point mutation causing a single amino acid substitution in the hormone binding domain of the glucocorticoid receptor in familial glucocorticoid resistance. J Clin Invest 1991;87:680–686.CrossRefGoogle ScholarPubMed
Weaver, JU, Hitman, GA, Kopelman, PG. An association between a Bc1I restriction fragment length polymorphism of the glucocorticoid receptor locus and hyperinsulinaemia in obese women. J Mol Endocrinol 1992;9:295–300.CrossRefGoogle ScholarPubMed
van Rossum, EF, Koper, JW, Huizenga, NA, et al. A polymorphism in the glucocorticoid receptor gene, which decreases sensitivity to glucocorticoids in vivo, is associated with low insulin and cholesterol levels. Diabetes 2002;51:3128–3134.CrossRefGoogle ScholarPubMed
DeRijk, RH, Schaaf, M, de Kloet, ER. Glucocorticoid receptor variants: clinical implications. J Steroid Biochem Mol Biol 2002;81:103–122.CrossRefGoogle ScholarPubMed
Tissing, WJ, Meijerink, JP, den Boer, ML, Pieters, R. Molecular determinants of glucocorticoid sensitivity and resistance in acute lymphoblastic leukemia. Leukemia 2003;17:17–25.CrossRefGoogle ScholarPubMed
Kishi, S, Yang, W, Boureau, B, et al. Effects of prednisone and genetic polymorphisms on etoposide disposition in children with acute lymphoblastic leukemia. Blood 2004;103:67–72.CrossRefGoogle ScholarPubMed
Anderer, G, Schrappe, M, Brechlin, AM, et al. Polymorphisms within glutathione S-transferase genes and initial response to glucocorticoids in childhood acute lymphoblastic leukaemia. Pharmacogenetics 2000;10:715–726.CrossRefGoogle ScholarPubMed
Desai, ZR, van den Berg, HW, Bridges, JM, Shanks, RG. Can severe vincristine neurotoxicity be prevented?Cancer Chemother Pharmacol 1982;8:211–214.CrossRefGoogle ScholarPubMed
de Graaf, SS, Bloemhof, H, Vendrig, DE, Uges, DR. Vincristine disposition in children with acute lymphoblastic leukemia. Med Pediatr Oncol 1995;24:235–240.CrossRefGoogle ScholarPubMed
Gidding, CE, Meeuwsen-de Boer, GJ, Koopmans, P, et al. Vincristine pharmacokinetics after repetitive dosing in children. Cancer Chemother Pharmacol 1999;44:203–209.CrossRefGoogle ScholarPubMed
Groninger, E, Meeuwsen-de Boar, T, Koopmans, P, et al. Pharmacokinetics of vincristine monotherapy in childhood acute lymphoblastic leukemia. Pediatr Res 2002;52:113–118.CrossRefGoogle ScholarPubMed
Villikka, K, Kivisto, KT, Maenpaa, H, Joensuu, H, Neuvonen, PJ. Cytochrome P450-inducing antiepileptics increase the clearance of vincristine in patients with brain tumors. Clin Pharmacol Ther 1999;66:589–593.Google ScholarPubMed
Relling, MV, Pui, CH, Sandlund, JT, et al. Adverse effect of anticonvulsants on efficacy of chemotherapy for acute lymphoblastic leukaemia. Lancet 2000;356:285–290.CrossRefGoogle ScholarPubMed
Kamaluddin, M, McNally, P, Breatnach, F, et al. Potentiation of vincristine toxicity by itraconazole in children with lymphoid malignancies. Acta Paediatr 2001;90:1204–1207.CrossRefGoogle ScholarPubMed
Lamba, JK, Lin, YS, Thummel, K, et al. Common allelic variants of cytochrome P4503A4 and their prevalence in different populations. Pharmacogenetics 2002;12:121–132.CrossRefGoogle ScholarPubMed
Kuehl, P, Zhang, J, Lin, Y, et al. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat Genet 2001;27:383–391.CrossRefGoogle ScholarPubMed
Hoffmeyer, S, Burk, O, von Richter, O, et al. Functional polymorphisms of the human multidrug-resistance gene: multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proc Natl Acad Sci USA 2000;97:3473–3478.CrossRefGoogle ScholarPubMed
Renbarger, JL, McCammack, KC, Rouse, CE, Hall, SD. Effect of race on vincristine-associated neurotoxicity in pediatric acute lymphoblastic leukemia patients. Pediatr Blood Cancer 2008;50:769–771.CrossRefGoogle ScholarPubMed
Jackson, DV, Jr., Castle, MC, Bender, RA. Biliary excretion of vincristine. Clin Pharmacol Ther 1978;24:101–107.CrossRefGoogle ScholarPubMed
Crom, WR, de Graaf, SS, Synold, T, et al. Pharmacokinetics of vincristine in children and adolescents with acute lymphocytic leukemia. J Pediatr 1994;125:642–649.CrossRefGoogle ScholarPubMed
Niemeyer, CM, Hitchcock-Bryan, S, Sallan, SE. Comparative analysis of treatment programs for childhood acute lymphoblastic leukemia. Semin Oncol 1985;12:122–130.Google ScholarPubMed
Pinkel, D, Hernandez, K, Borella, L, et al. Drug dosage and remission duration in childhood lymphocytic leukemia. Cancer 1971;27:247–256.3.0.CO;2-C>CrossRefGoogle ScholarPubMed
Reiter, A, Schrappe, M, Ludwig, WD, et al. Chemotherapy in 998 unselected childhood acute lymphoblastic leukemia patients. Results and conclusions of the multicenter trial ALL-BFM 86. Blood 1994;84:3122–3133.Google ScholarPubMed
Kamen, BA, Frenkel, E, Colvin, OM. Ifosfamide: should the honeymoon be over?J Clin Oncol 1995;13:307–309.CrossRefGoogle ScholarPubMed
Yule, SM, Price, L, Pearson, AD, Boddy, AV. Cyclophosphamide and ifosfamide metabolites in the cerebrospinal fluid of children. Clin Cancer Res 1997;3:1985–1992.Google ScholarPubMed
Ayash, LJ, Wright, JE, Tretyakov, O, et al. Cyclophosphamide pharmacokinetics: correlation with cardiac toxicity and tumor response. J Clin Oncol 1992;10:995–1000.CrossRefGoogle ScholarPubMed
McDonald, GB, Slattery, JT, Bouvier, ME, et al. Cyclophosphamide metabolism, liver toxicity, and mortality following hematopoietic stem cell transplantation. Blood 2003;101:2043–2048.CrossRefGoogle ScholarPubMed
Huang, Z, Roy, P, Waxman, DJ. Role of human liver microsomal CYP3A4 and CYP2B6 in catalyzing N-dechloroethylation of cyclophosphamide and ifosfamide. Biochem Pharmacol 2000;59:961–972.CrossRefGoogle ScholarPubMed
Lang, T, Klein, K, Fischer, J, et al. Extensive genetic polymorphism in the human CYP2B6 gene with impact on expression and function in human liver. Pharmacogenetics 2001;11:399–415.CrossRefGoogle ScholarPubMed
Grabstein, KH, Eisenman, J, Shanebeck, K, et al. Cloning of a T cell growth factor that interacts with the beta chain of the interleukin-2 receptor. Science 1994;264:965–968.CrossRefGoogle Scholar
Treviño, LR, Yang, W, French, D, et al. Germline genomic variants associated with childhood acute lymphoblastic leukemia. Nat Genet 2009;41:1001–1005.CrossRefGoogle ScholarPubMed
Papaemmanuil, E, Hosking, FJ, Vijayakrishnan, J, et al. Loci on 7p12.2, 10q21.2 and 14q11.2 are associated with risk of childhood acute lymphoblastic leukemia. Nat Genet 2009;41:1006–1010.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×