Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-m9pkr Total loading time: 0 Render date: 2024-07-11T21:20:55.023Z Has data issue: false hasContentIssue false

19 - Chronic myeloproliferative disorders

from Section 3 - Evaluation and treatment

Published online by Cambridge University Press:  05 April 2013

Ching-Hon Pui
Affiliation:
St Jude's Children's Research Hospital
Get access

Summary

Introduction

In 1951, Dameshek first speculated that different chronic proliferative disorders share similar clinical and hematologic features and that patients with one of these diseases often develop, during the course of their illness, symptoms more typical of another disease, usually more severe than the original one. He coined the term “myeloproliferative disorders” (MPD) for these, now widely recognized, clonal proliferations of an abnormal hematopoietic stem cell. This group of related diseases, characterized by a variable propensity to evolve into acute leukemia, included chronic myeloid leukemia (CML), polycythemia vera (PV), essential thrombocythemia (ET) and primary myelofibrosis (PMF).

Myeloid neoplasms that present with aberrant proliferative and dysplastic features have raised considerable controversy with respect to their classification. The classification of MPDs by the World Health Organization (WHO) in 2001 separated these diseases into several myelodysplastic/myeloproliferative groups, including juvenile myelomonocytic leukemia (JMML), chronic myelomonocytic leukemia (CMML), atypical CML, and a group of otherwise unclassifiable diseases. While JMML represents approximately 2 to 3% of leukemias in children, CMML and atypical CML are extremely rare in young people. Occasionally, CMML is diagnosed in an adolescent with persistent monocytosis, low blast count, and the absence of genetic features of JMML or CML. In addition, a CMML-like morphology accompanied by hepatosplenomegaly may be observed in secondary hematopoietic neoplasms, following chemo- or radiotherapy for a first cancer.

Type
Chapter
Information
Childhood Leukemias , pp. 444 - 502
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Dameshek, W.Some speculations on the myeloproliferative syndromes. Blood 1951;6:372–375.Google ScholarPubMed
Thiele, J, Pierre, R, Imbert, M, Vardiman, JW, Flandrin, G. Chronic ideopathic myelofibrosis. In Jaffe, ES, Harris, NL, Stein, H, Vardiman, J (eds.) World Health Organization Classification of Tumours: Pathology and Genetics of Tumours of Haematopoietic and Lymphoid Tissue. Lyon: IARC Press, 2001:35–38.Google Scholar
Vardiman, JW. Myelodysplastic/myeloproliferative diseases. In Jaffe, ES, Harris, NL, Stein, H, Vardiman, J (eds.) World Health Organization Classification of Tumours: Pathology and Genetics of Tumours of Haematopoietic and Lymphoid Tissue. Lyon: IARC Press, 2001:47–59.Google Scholar
Hasle, H, Kerndrup, G, Jacobsen, BB. Childhood myelodysplastic syndrome in Denmark: incidence and predisposing conditions. Leukemia 1995;9:1569–1572.Google ScholarPubMed
Hasle, H, Wadsworth, LD, Massing, BG, McBride, M, Schultz, KR. A population-based study of childhood myelodysplastic syndrome in British Columbia, Canada. Br J Haematol 1999;106:1027–1032.CrossRefGoogle ScholarPubMed
Swerdlow, SH, Campos, E, Harris, NL, et al. (eds.). WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. Lyon: IARC Press, 2008.Google Scholar
Tefferi, A, Gilliland, DG. Oncogenes in myeloproliferative disorders. Cell Cycle 2007;6:550–566.CrossRefGoogle ScholarPubMed
James, C, Ugo, V, Le Couedic, JP, et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 2005;434:1144–1148.CrossRefGoogle ScholarPubMed
Baxter, EJ, Scott, LM, Campbell, PJ, et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 2005;365:1054–1061.CrossRefGoogle ScholarPubMed
Kralovics, R, Passamonti, F, Buser, AS, et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med 2005;352:1779–1790.CrossRefGoogle ScholarPubMed
Zhao, R, Xing, S, Li, Z, et al. Identification of an acquired JAK2 mutation in polycythemia vera. J Biol Chem 2005;280:22788–22792.CrossRefGoogle ScholarPubMed
Delhommeau, F, Jeziorowska, D, Marzac, C, Casadevall, N. Molecular aspects of myeloproliferative neoplasms. Int J Hematol 2010;91:165–173.CrossRefGoogle ScholarPubMed
Delhommeau, F, Pisani, DF, James, C, et al. Oncogenic mechanisms in myeloproliferative disorders. Cell Mol Life Sci 2006;63:2939–2953.CrossRefGoogle ScholarPubMed
Solmitz, W. Ein Fall von myeloischer Leukämie im ersten Kindesalter. Zeitschr Kinderh 1924;38:146–158.CrossRefGoogle Scholar
Cooke, JV. Chronic myelogenous leukemia in children. J Pediatr 1953;42:537–550.CrossRefGoogle ScholarPubMed
Bernard, J, Seligmann, M, Acar, J. La leucémie myeloide chronique de l´enfant. Étude de vingt observations. Arch Fr Pediatr 1962;19:881–894.Google Scholar
Weisgerber, DJ, Schaison, G, Seligmann, M. Les leucémies myélomonocytaires du petit enfant. Bull Cancer 1969;56:351–364.Google Scholar
Weisgerber, C, Schaison, G, Chavelet, F, Seligmann, M, Bernard, J. Les leucémies myelo-monocytaires de l´enfant. Étude de 28 observations. Arch Fr Pediatr 1972;29:11–30.Google Scholar
Schaison, G, Weisgerber, C, Seligmann, M, Bernard, J. Les leucémies myelo-monocytaires avec xanthomes. Nouv Rev Fr Hematol 1970;10:284–288.Google Scholar
Castro-Malaspina, H, Schaison, G, Passe, S, et al. Subacute and chronic myelomonocytic leukemia in children (juvenile CML). Clinical and hematologic observations, and identification of prognostic factors. Cancer 1984;54:675–686.3.0.CO;2-Q>CrossRefGoogle ScholarPubMed
Reisman, LE, Trujillo, JM. Chronic granulocytic leukemia of childhood. J Pediatr 1963;62:710–723.CrossRefGoogle ScholarPubMed
Hardisty, RM, Speed, DE, Morwenna, T. Granulocytic leukemia in childhood. Br J Haematol 1964;10:551–566.CrossRefGoogle ScholarPubMed
Freedman, MH, Estrov, Z, Chan, HS. Juvenile chronic myelogenous leukemia. Am J Pediatr Hematol Oncol 1988;10:261–267.CrossRefGoogle ScholarPubMed
Beaven, GH, Steven, BL, Dance, N, White, JC. Occurence of haemoglobin H in leukaemia. Nature 1963;199:1297–1298.CrossRefGoogle Scholar
Weatherall, DJ, Edwards, JA, Donohoe, WT. Haemoglobin and red cell enzyme changes in juvenile myeloid leukaemia. Br Med J 1968;1:679–681.CrossRefGoogle ScholarPubMed
Maurer, HS, Vida, LN, Honig, GR. Similarities of the erythrocytes in juvenile chronic myelogenous leukemia to fetal erythrocytes. Blood 1972;39:778–784.Google ScholarPubMed
Humbert, JR, Hathaway, WE, Robinson, A, Peakman, DC, Githens, JH. Pre-leukemia in children with a missing bone marrow C chromosome and a myeloproliferative disorder. Br J Haematol 1971;21:705–716.Google Scholar
Macdougall, LG, Brown, JA, Cohen, MM, Judisch, JM. C-monosomy myeloproliferative syndrome: a case of 7-monosomy. J Pediatr 1974;84:256–259.CrossRefGoogle ScholarPubMed
Sieff, CA, Chessells, JM, Harvey, BAM, Pickthall, VJ, Lawler, SD. Monosomy 7 in childhood: a myeloproliferative disorder. Br J Haematol 1981;49:235–249.CrossRefGoogle ScholarPubMed
Evans, JP, Czepulkowski, B, Gibbons, B, Swansbury, GJ, Chessells, JM. Childhood monosomy 7 revisited. Br J Haematol 1988;69:41–45.CrossRefGoogle ScholarPubMed
Passmore, SJ, Hann, IM, Stiller, CA, et al. Pediatric myelodysplasia: a study of 68 children and a new prognostic scoring system. Blood 1995;85:1742–1750.Google Scholar
Bennett, JM, Catovsky, D, Daniel, MT, et al. Proposals for the classification of the myelodysplastic syndromes. Br J Haematol 1982;51:189–199.CrossRefGoogle ScholarPubMed
Niemeyer, CM, Arico, M, Basso, G, et al. Chronic myelomonocytic leukemia in childhood: a retrospective analysis of 110 cases. European Working Group on Myelodysplastic Syndromes in Childhood (EWOG-MDS). Blood 1997;89:3534–3543.Google Scholar
Hasle, H, Kerndrup, G. Atypical chronic myeloid leukaemia and chronic myelomonocytic leukaemia in children. Br J Haematol 1995;89:428–429.CrossRefGoogle ScholarPubMed
Niemeyer, CM, Fenu, S, Hasle, H, et al. Differentiating juvenile myelomonocytic leukemia from infectious disease. Blood 1998;91:365–367.Google Scholar
Hasle, H, Niemeyer, CM, Chessells, JM, et al. A pediatric approach to the WHO classification of myelodysplastic and myeloproliferative diseases. Leukemia 2003;17:277–282.CrossRefGoogle ScholarPubMed
Baumann, I, Bennett, JM, Niemeyer, CM, Thiele, J, Shannon, K. Juvenile myelomonocytic leukaemia. In Swerdlow, SH, Campos, E, Harris, NL, et al. (eds.) WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. Lyon: IARC Press, 2008:82–84.Google Scholar
Passmore, SJ, Chessells, JM, Kempski, H, et al. Paediatric myelodysplastic syndromes and juvenile myelomonocytic leukaemia in the UK: a population-based study of incidence and survival. Br J Haematol 2003;121:758–767.CrossRefGoogle Scholar
Mark, Z, Toren, A, Amariglio, N, et al. Rearrangement of the immunoglobulin heavy chain gene in juvenile chronic myeloid leukaemia. Br J Haematol 1995;90:353–357.CrossRefGoogle ScholarPubMed
Holton, CP, Johnson, WW. Chronic myelocytic leukemia in infant siblings. J Pediatr 1968;72:377–383.CrossRefGoogle ScholarPubMed
Bader, JL, Miller, RW. Neurofibromatosis and childhood leukemia. J Pediatr 1978;92:925–929.CrossRefGoogle ScholarPubMed
Mays, JA, Neerhout, TC, Bagby, GC, Koler, RD. Juvenile chronic granulocytic leukemia. Am J Dis Child 1980;134:654–658.CrossRefGoogle ScholarPubMed
Clark, RD, Hutter, JJ. Familial neurofibromatosis and juvenile chronic myelogenous leukemia. Hum Genet 1982;60:230–232.CrossRefGoogle ScholarPubMed
Yoshida, N, Yagasaki, H, Xu, Y, et al. Correlation of clinical features with the mutational status of GM-CSF signaling pathway-related genes in juvenile myelomonocytic leukemia. Pediatr Res 2009;65:334–340.CrossRefGoogle ScholarPubMed
Perez, B, Mechinaud, F, Galambrun, C, et al. Germline mutations of the CBL gene define a new genetic syndrome with predisposition to juvenile myelomonocytic leukaemia. J Med Genet 2010;47:686–691.CrossRefGoogle ScholarPubMed
Stiller, CA, Chessells, JM, Fitchett, M. Neurofibromatosis and childhood leukaemia/lymphoma: a population- based UKCCSG study. Br J Cancer 1994;70:969–972.CrossRefGoogle ScholarPubMed
Shannon, KM, Watterson, P, Johnson, P, et al. Monosomy 7 myeloproliferative disease in children with neurofibromatosis, type 1: epidemiology and molecular analysis. Blood 1992;79:1311–1318.Google ScholarPubMed
Lutz, P, Zix-Kieffer, I, Souillet, G, et al. Juvenile myelomonocytic leukemia: analyses of treatment results in the EORTC childrens leukemia cooperative group (CLCG). Bone Marrow Transplant 1996;18:1111–1116.Google Scholar
Bader-Meunier, B, Tchernia, G, Mielot, F, et al. Occurrence of myeloproliferative disorder in patients with Noonan syndrome. J Pediatr 1997;130:885–889.CrossRefGoogle ScholarPubMed
Fukuda, M, Horibe, K, Miyajima, Y, Matsumoto, K, Nagashima, M. Spontaneous remission of juvenile chronic myelomonocytic leukemia in an infant with Noonan syndrome. J Pediatr Hematol Oncol 1997;19:177–179.CrossRefGoogle Scholar
Side, LE, Shannon, KM. Myeloid disorders in infants with Noonan syndrome and a resident's “rule” recalled. J Pediatr 1997;130:857–859.Google Scholar
Choong, K, Freedman, MH, Chitayat, D, et al. Juvenile myelomonocytic leukemia and Noonan syndrome. J Pediatr Hematol Oncol 1999;21:523–527.CrossRefGoogle ScholarPubMed
Sasaki, H, Manabe, A, Kojima, S, et al. Myelodysplastic syndrome in childhood: a retrospective study of 189 patients in Japan. Leukemia 2001;15:1713–1720.CrossRefGoogle ScholarPubMed
Tartaglia, M, Niemeyer, CM, Song, X, et al. Somatic PTPN11 mutations in juvenile myelomonocytic leukemia, myelodysplastic syndromes and acute myeloid leukemia. Nat Genet 2003;34:148–150.CrossRefGoogle ScholarPubMed
Schubbert, S, Zenker, M, Rowe, SL, et al. Germline KRAS mutations cause Noonan syndrome. Nat Genet 2006;38:331–336.CrossRefGoogle ScholarPubMed
De Filippi, P, Zecca, M, Lisini, D, et al. Germ-line mutation of the NRAS gene may be responsible for the development of juvenile myelomonocytic leukaemia. Br J Haematol 2009;147:706–709.CrossRefGoogle ScholarPubMed
Niemeyer, CM, Kang, MW, Shin, DH, et al. Germline CBL mutations cause developmental abnormalities and predispose to juvenile myelomonocytic leukemia. Nat Genet 2010;42:794–800.CrossRefGoogle ScholarPubMed
Tidyman, WE, Rauen, KA. The RASopathies: developmental syndromes of Ras/MAPK pathway dysregulation. Curr Opin Genet Dev 2009;19:230–236.CrossRefGoogle ScholarPubMed
Tartaglia, M, Gelb, BD. Disorders of dysregulated signal traffic through the RAS–MAPK pathway: phenotypic spectrum and molecular mechanisms. Ann N Y Acad Sci 2010;1214:99–121.CrossRefGoogle ScholarPubMed
Luna-Fineman, S, Shannon, KM, Atwater, SK, et al. Myelodysplastic and myeloproliferative disorders of childhood: a study of 167 patients. Blood 1999;93:459–466.Google ScholarPubMed
Alioglu, B, Demirhan, B, Ozyurek, E, et al. Pulmonary hypertension in a child with juvenile myelomonocytic leukemia secondary to pulmonary leukemic cell infiltration. Pediatr Hematol Oncol 2006;23:667–675.CrossRefGoogle Scholar
Kimura, Y, Sugita, Y, Seki, R, et al. Infant juvenile myelomonocytic leukemia (JMML) with rapid infiltration of multiple organs. Pathol Int 2010;60:333–335.Google ScholarPubMed
Sires, UI, Mallory, SB, Hess, JL, et al. Cutaneous presentation of juvenile chronic myelogenous leukemia: a diagnostic and therapeutic dilemma. Pediatr Dermatol 1995;12:364–368.CrossRefGoogle ScholarPubMed
Anzai, H, Kikuchi, A, Kinoshita, A, Nishikawa, T. Recurrent annular erythema in juvenile chronic myelogenous leukaemia. Br J Dermatol 1998;138:1058–1060.CrossRefGoogle ScholarPubMed
Heskel, NS, White, CR, Fryberger, S, et al. Aleukemic leukemia cutis: juvenile chronic granulocytic leukemia presenting with figurate cutaneous lesions. J Am Acad Dermatol 1983;9:423–427.CrossRefGoogle ScholarPubMed
Buescher, L, Anderson, PC. Circinate plaques heralding juvenile chronic myelogenous leukemia. Pediatr Dermatol 1990;7:122–125.CrossRefGoogle ScholarPubMed
Affleck, AG, Ravenscroft, JC, Leach, IH. Chilblain-like leukemia cutis. Pediatr Dermatol 2007;24:38–41.CrossRefGoogle ScholarPubMed
Krilov, LR, Jacobson, M, Shende, A. Acute febrile neutrophilic dermatosis (Sweet's syndrome) presenting as facial cellulitis in a child with juvenile chronic myelogenous leukemia. Pediatr Infect Dis 1987;6:77–79.CrossRefGoogle Scholar
Kitamura, H, Kaneko, T, Nakano, H, et al. Juvenile myelomonocytic leukemia presenting multiple painful erythematous lesions diagnosed as Sweet's syndrome. J Dermatol 2008;35:368–370.CrossRefGoogle ScholarPubMed
Jang, KA, Choi, JH, Sung, KJ, et al. Juvenile chronic myelogenous leukemia, neurofibromatosis 1, and xanthoma. J Dermatol 1999;26:33–35.CrossRefGoogle ScholarPubMed
Cham, E, Siegel, D, Ruben, BS. Cutaneous xanthogranulomas, hepatosplenomegaly, anemia, and thrombocytopenia as presenting signs of juvenile myelomonocytic leukemia. Am J Clin Dermatol 2010;11:67–71.CrossRefGoogle ScholarPubMed
Benessahraoui, M, Aubin, F, Paratte, F, Plouvier, E, Humbert, P. Juvenile myelomonocytic leukaemia, xanthoma, and neurofibromatosis type 1. Arch Pediatr 2003;10:891–894.CrossRefGoogle ScholarPubMed
Raygada, M, Arthur, DC, Wayne, AS, et al. Juvenile xanthogranuloma in a child with previously unsuspected neurofibromatosis type 1 and juvenile myelomonocytic leukemia. Pediatr Blood Cancer 2010;54:173–175.CrossRefGoogle Scholar
Oliver, JW, Farnsworth, B, Tonk, VS. Juvenile myelomonocytic leukemia in a child with Crohn disease. Cancer Genet Cytogenet 2006;167:70–73.CrossRefGoogle Scholar
Wilson, DB, Michalski, JM, Grossman, WJ, Hayashi, RJ. Isolated CNS relapse following stem cell transplantation for juvenile myelomonocytic leukemia. J Pediatr Hematol Oncol 2003;25:910–913.CrossRefGoogle ScholarPubMed
Smith, LB, Valdes, Y, Check, WE, Britt, PM, Frankel, LS. Juvenile myelomonocytic leukemia presenting with facial nerve paresis: a unique presentation. J Pediatr Hematol Oncol 2007;29:770–773.CrossRefGoogle ScholarPubMed
Shaw, NJ, Eden, OB. Juvenile chronic myelogenous leukemia and neurofibromatosis in infancy presenting as ocular hemorrhage. Pediatr Hematol Oncol 1989;6:23–26.CrossRefGoogle ScholarPubMed
Nambu, M, Shimizu, K, Ito, S, Ohta, S. A case of juvenile myelomonocytic leukemia with ocular infiltration. Ann Hematol 1999;78:568–570.CrossRefGoogle ScholarPubMed
Hasle, H, Arico, M, Basso, G, et al. Myelodysplastic syndrome and acute myeloid leukemia associated with complete or partial monosomy 7. Leukemia 1999;13:376–385.CrossRefGoogle ScholarPubMed
Honig, GR, Suarez, CR, Vida, LN, Lu, SJ, Liu, ET. Juvenile myelomonocytic leukemia (JMML) with the hematologic phenotype of severe beta thalassemia. Am J Hematol 1998;58:67–71.3.0.CO;2-2>CrossRefGoogle ScholarPubMed
Kratz, CP, Nathrath, M, Freisinger, P, et al. Lethal proliferation of erythroid precursors in a neonate with a germline PTPN11 mutation. Eur J Pediatr 2006;165:182–185.CrossRefGoogle Scholar
Shannon, K, Nunez, G, Dow, LW, et al. Juvenile chronic myelogenous leukemia: surface antigen phenotyping by monoclonal antibodies and cytogenetic studies. Pediatrics 1986;77:330–335.Google ScholarPubMed
Kraus, MD, Bartlett, NL, Fleming, MD, Dorfman, DM. Splenic pathology in myelodysplasia: a report of 13 cases with clinical correlation. Am J Surg Pathol 1998;22:1255–1266.CrossRefGoogle ScholarPubMed
Ng, CS, Lam, TK, Chan, JK, et al. Juvenile chronic myeloid leukemia. A malignancy of S-100 protein-positive histiocytes. Am J Clin Pathol 1988;90:575–582.CrossRefGoogle ScholarPubMed
Hess, JL, Zutter, MM, Castleberry, RP, Emanuel, PD. Juvenile chronic myelogenous leukemia. Am J Clin Pathol 1996;105:238–248.CrossRefGoogle ScholarPubMed
Dover, GJ, Boyer, SH, Zinkham, WH, et al. Changing erythrocyte populations in juvenile chronic myelocytic leukemia: evidence for disordered regulation. Blood 1977;49:355–365.Google ScholarPubMed
Weatherall, DJ, Clegg, JB, Wood, WG, et al. Foetal erythropoiesis in human leukaemia. Nature 1975;257:710–712.CrossRefGoogle ScholarPubMed
Weinberg, RS, Leibowitz, D, Weinblatt, D, Kochen, J, Alter, BP. Juvenile chronic myelogenous leukaemia: the only example of truly fetal (not fetal-like) erythropoiesis. Br J Haematol 1990;76:30–37.CrossRefGoogle ScholarPubMed
Papayannopoulou, T, Nakamoto, B, Anagnou, NP, et al. Expression of embryonic globins by erythroid cells in juvenile chronic myelocytic leukemia. Blood 1991;77:2569–2576.Google ScholarPubMed
Cannat, A, Seligmann, M. Immunological abnormalities in juvenile myelomonocytic leukemia. Br Med J 1973;1:71–74.CrossRefGoogle Scholar
Butcher, M, Frenck, R, Emperor, J, et al. Molecular evidence that childhood monosomy 7 syndrome is distinct from juvenile chronic myelogenous leukemia and other childhood myeloproliferative disorders. Genes Chromosomes Cancer 1995;12:50–57.CrossRefGoogle ScholarPubMed
Meck, JM, Otani-Rosa, JA, Neuberg, RW, et al. A rare finding of deletion 5q in a child with juvenile myelomonocytic leukemia. Cancer Genet Cytogenet 2009;195:192–194.CrossRefGoogle Scholar
Michalova, K, Bartsch, O, Stary, J, et al. Partial trisomy of 3q detected by chromosome painting in a case of juvenile chronic myelomonocytic leukemia. Cancer Genet Cytogenet 1993;71:67–70.CrossRefGoogle Scholar
Tosi, S, Mosna, G, Cazzaniga, G, et al. Unbalanced t(3;12) in a case of juvenile myelomonocytic leukemia (JMML) results in partial trisomy of 3q as defined by FISH. Leukemia 1997;11:1465–1468.CrossRefGoogle Scholar
Matsuzaki, S, Matsuda, K, Miki, J, et al. Development of two cytogenetically abnormal clones from multipotential hematopoietic stem cells in a patient with juvenile myelomonocytic leukemia. Leuk Res 2005;29:1069–1072.CrossRefGoogle Scholar
Borkhardt, A, Bojesen, S, Haas, OA, et al. The human GRAF gene is fused to MLL in a unique t(5;11)(q31;q23) and both alleles are disrupted in three cases of myelodysplastic syndrome/acute myeloid leukemia with a deletion 5q. Proc Natl Acad Sci USA 2000;97:9168–9173.CrossRefGoogle Scholar
Rottgers, S, Gombert, M, Teigler-Schlegel, A, et al. ALK fusion genes in children with atypical myeloproliferative leukemia. Leukemia 2010;24:1197–1200.CrossRefGoogle ScholarPubMed
Buijs, A, Bruin, M. Fusion of FIP1L1 and RARA as a result of a novel t(4;17)(q12;q21) in a case of juvenile myelomonocytic leukemia. Leukemia 2007;21:1104–1108.CrossRefGoogle Scholar
Mizoguchi, Y, Fujita, N, Taki, T, Hayashi, Y, Hamamoto, K. Juvenile myelomonocytic leukemia with t(7;11)(p15;p15) and NUP98-HOXA11 fusion. Am J Hematol 2009;84:295–297.CrossRefGoogle Scholar
Amenomori, T, Tomonaga, M, Yoshida, Y, et al. Cytogenetic evidence for partially committed myeloid progenitor cell origin of chronic myelomonocytic leukaemia and juvenile chronic myeloid leukaemia: both granulocyte–macrophage precursors and erythroid precursors carry identical marker cells. Br J Haematol 1986;64:539–546.CrossRefGoogle Scholar
Inoue, S, Shibata, T, Ravindranath, Y, Gohle, N. Clonal origin of erythroid cells in juvenile chronic myelogenous leukemia. Blood 1987;69:975–976.Google ScholarPubMed
Flotho, C, Valcamonica, S, Mach-Pascual, S, et al. Ras mutations and clonality analysis in children with juvenile myelomonocytic leukemia (JMML). Leukemia 1999;13:32–37.CrossRefGoogle Scholar
Busque, L, Gilliland, DG, Prchal, JT, et al. Clonality in juvenile chronic myelogenous leukemia. Blood 1995;85:21–30.Google ScholarPubMed
Lau, RC, Squire, J, Brisson, L, et al. Lymphoid blast crisis of B-lineage phenotype with monosomy 7 in a patient with juvenile chronic myelogenous leukemia (JCML). Leukemia 1994;8:903–908.Google Scholar
Attias, D, Grunberger, T, Vanek, W, et al. B-lineage lymphoid blast crisis in juvenile chronic myelogenous leukemia: II. Interleukin-1-mediated autocrine growth regulation of the lymphoblasts. Leukemia 1995;9:884–888.Google ScholarPubMed
Yamamoto, M, Nakagawa, M, Ichimura, N, et al. Lymphoblastic transformation of chronic myelomonocytic leukemia in an infant. Am J Hematol 1996;52:212–214.3.0.CO;2-H>CrossRefGoogle ScholarPubMed
Nakazawa, T, Koike, K, Agematsu, K, et al. Cytogenetic clonality analysis in monosomy 7 associated with juvenile myelomonocytic leukemia: clonality in B and NK cells, but not in T cells. Leuk Res 1998;22:887–892.CrossRefGoogle Scholar
Miles, DK, Freedman, MH, Stephens, K, et al. Patterns of hematopoietic lineage involvement in children with neurofibromatosis type 1 and malignant disorders. Blood 1996;88:4314–4320.Google Scholar
Neubauer, A, Greenberg, P, Negrin, R, Ginzton, N, Liu, E. Mutations in the ras proto-oncogenes in patients with myelodysplastic syndromes. Leukemia 1994;8:638–641.Google ScholarPubMed
Cooper, LJ, Shannon, KM, Loken, MR, et al. Evidence that juvenile myelomonocytic leukemia can arise from a pluripotential stem cell. Blood 2000;96:2310–2313.Google ScholarPubMed
Pinkel, D.Differentiating juvenile myelomonocytic leukemia from infectious disease. Blood 1998;91:365–367.Google ScholarPubMed
Manabe, A, Yoshimasu, T, Ebihara, Y, et al. Viral infections in juvenile myelomonocytic leukemia: prevalence and clinical implications. J Pediatr Hematol Oncol 2004;26:636–641.CrossRefGoogle ScholarPubMed
Moritake, H, Ikeda, T, Manabe, A, Kamimura, S, Nunoi, H. Cytomegalovirus infection mimicking juvenile myelomonocytic leukemia showing hypersensitivity to granulocyte–macrophage colony stimulating factor. Pediatr Blood Cancer 2009;53:1324–1326.CrossRefGoogle ScholarPubMed
Prabhu, SB, Gupta, R, Seth, R. Juvenile myelomonocytic leukemia presenting with coexistent cytomegalovirus infection: a case report. J Pediatr Hematol Oncol 2010;32:e153–e154.CrossRefGoogle ScholarPubMed
Janik-Moszant, A, Barc-Czarnecka, M, van der Burg, M, et al. Concomitant EBV-related B-cell proliferation and juvenile myelomonocytic leukemia in a 2-year-old child. Leuk Res 2008;32:181–184.CrossRefGoogle Scholar
Lorenzana, A, Lyons, H, Sawaf, H, et al. Human herpesvirus 6 infection mimicking juvenile myelomonocytic leukemia in an infant. J Pediatr Hematol Oncol 2002;24:136–141.CrossRefGoogle ScholarPubMed
Yetgin, S, Cetin, M, Yenicesu, I, Ozaltin, F, Uckan, D. Acute parvovirus B19 infection mimicking juvenile myelomonocytic leukemia. Eur J Haematol 2000;65:276–278.CrossRefGoogle Scholar
Gupta, N, Gupta, R, Bakhshi, S. Transient myeloproliferation mimicking JMML associated with parvovirus infection of infancy. Pediatr Blood Cancer 2009;52:411–413.CrossRefGoogle ScholarPubMed
Ozdemir, N, Aki, H, Hakyemez, HT, Cokugras, FC, Apak, H. Parvovirus B19 infection mimicking juvenile myelomonocytic leukemia. Int J Infect Dis 2010;14(Suppl 3):e379--e380.CrossRefGoogle ScholarPubMed
Karow, A, Baumann, I, Niemeyer, CM. Morphologic differential diagnosis of juvenile myelomonocytic leukemia: pitfalls apart from viral infection. J Pediatr Hematol Oncol 2009;31:380.CrossRefGoogle Scholar
Kuijpers, TW, Van Lier, RA, Hamann, D, et al. Leukocyte adhesion deficiency type 1 (LAD-1)/variant. A novel immunodeficiency syndrome characterized by dysfunctional beta2 integrins. J Clin Invest 1997;100:1725–1733.CrossRefGoogle ScholarPubMed
Watanabe, N, Yoshimi, A, Kamachi, Y, et al. Wiskott–Aldrich syndrome is an important differential diagnosis in male infants with juvenile myelomonocytic leukemia like features. J Pediatr Hematol Oncol 2007;29:836–838.CrossRefGoogle Scholar
Arachchillage, DR, Carr, TF, Kerr, B, et al. Juvenile myelomonocytic leukemia presenting with features of neonatal hemophagocytic lymphohistiocytosis and cutaneous juvenile xanthogranulomata and successfully treated with allogeneic hemopoietic stem cell transplant. J Pediatr Hematol Oncol 2010;32:152–155.CrossRefGoogle ScholarPubMed
Shin, HT, Harris, MB, Orlow, SJ. Juvenile myelomonocytic leukemia presenting with features of hemophagocytic lymphohistiocytosis in association with neurofibromatosis and juvenile xanthogranulomas. J Pediatr Hematol Oncol 2004;26:591–595.CrossRefGoogle ScholarPubMed
Unal, S, Cetin, M, Kutlay, NY, et al. Hemophagocytosis associated with leukemia: a striking association with juvenile myelomonocytic leukemia. Ann Hematol 2010;89:359–364.CrossRefGoogle ScholarPubMed
Gerritsen, A, Lam, K, Marion, SE, van den Heuvel-Eibrink, MM. An exclusive case of juvenile myelomonocytic leukemia in association with Kikuchi's disease and hemophagocytic lymphohistiocytosis and a review of the literature. Leuk Res 2006;30:1299–1303.CrossRefGoogle Scholar
Altman, AJ, Palmer, CG, Baehner, RL. Juvenile “chronic granulocytic” leukemia: a panmyelopathy with prominent monocytic involvement and circulating monocyte colony-forming cells. Blood 1974;43:341–350.Google ScholarPubMed
Barak, Y, Levin, S, Vogel, R. Juvenile and adult types of chronic granulocytic leukemia of childhood: growth patterns and characteristics of granulocyte–macrophage colony forming cells. Am J Hematol 1981;10:269–275.CrossRefGoogle ScholarPubMed
Suda, T, Miura, Y, Mizoguchi, H, et al. Characterization of hemopoietic precursor cells in juvenile-type chronic myelocytic leukemia. Leuk Res 1982;6:43–53.CrossRefGoogle ScholarPubMed
Estrov, Z, Grunberger, T, Chan, HSL, Freedman, MH. Juvenile chronic myelogenous leukemia: characterization of the disease using cell cultures. Blood 1986;67:1382–1387.Google ScholarPubMed
Bagby, GC, Jr., Dinarello, CA, Neerhout, RC, Ridgway, D, McCall, E. Interleukin 1-dependent paracrine granulopoiesis in chronic granulocytic leukemia of the juvenile type. J Clin Invest 1988;82:1430–1436.CrossRefGoogle ScholarPubMed
Gualtieri, RJ, Emanuel, PD, Zuckermann, KS, et al. Granulocyte-macrophage colony-stimulating factor is an endogenous regulator of cell proliferation in juvenile chronic myelogenous leukemia. Blood 1989;74:2360–2367.Google ScholarPubMed
Freedman, MH, Cohen, A, Grunberger, T, et al. Central role of tumour necrosis factor, GM-CSF, and interleukin 1 in the pathogenesis of juvenile chronic myelogenous leukaemia. Br J Haematol 1992;80:40–48.CrossRefGoogle ScholarPubMed
Emanuel, PD, Bates, LJ, Zhu, SW, et al. The role of monocyte-derived hemopoietic growth factors in the regulation of myeloproliferation in juvenile chronic myelogenous leukemia. Exp Hematol 1991;19:1017–1024.Google ScholarPubMed
Freedman, MH, Hitzler, JK, Bunin, N, Grunberger, T, Squire, J. Juvenile chronic myelogenous leukemia multilineage CD34+ cells: aberrant growth and differentiation properties. Stem Cells 1996;14:690–701.CrossRefGoogle ScholarPubMed
Schiro, R, Longoni, D, Rossi, V, et al. Suppression of juvenile chronic myelogenous leukemia colony growth by interleukin-1 receptor antagonist. Blood 1994;83:460–465.Google ScholarPubMed
Gualtieri, RJ, Castleberry, RP, Gibbons, J, et al. Cell culture studies and oncogene expressions in juvenile chronic myelogenous leukemia. Exp Hematol 1988;16:613–619.Google Scholar
Emanuel, PD, Bates, LJ, Castleberry, RP, Gualtieri, RJ, Zuckerman, KS. Selective hypersensitivity to granulocyte–macrophage colony-stimulating factor by juvenile chronic myeloid leukemia hematopoietic progenitors. Blood 1991;77:925–929.Google ScholarPubMed
Lapidot, T, Grunberger, T, Vormoor, J, et al. Identification of human juvenile chronic myelogenous leukemia stem cells capable of initiating the disease in primary and secondary mice. Blood 1996;88:2655–2664.Google Scholar
Tanaka, M, Takahashi, Y, Xu, Y, et al. Quantification of granulocyte–macrophage colony-stimulating factor hypersensitivity in juvenile myelomonocytic leukemia by 3H-thymidine assay. Leuk Res 2008;32:1036–1042.CrossRefGoogle ScholarPubMed
Emanuel, PD, Shannon, KM, Castleberry, RP. Juvenile myelomonocytic leukemia: molecular understanding and prospects for therapy. Mol Med Today 1996;3:468–475.CrossRefGoogle Scholar
Frankel, AE, Lilly, M, Kreitman, R, et al. Diphtheria toxin fused to granulocyte–macrophage colony-stimulating factor is toxic to blasts from patients with juvenile myelomonocytic leukemia and chronic myelomonocytic leukemia. Blood 1998;92:4279–4286.Google ScholarPubMed
Iversen, PO, Rodwell, RL, Pitcher, L, Taylor, KM, Lopez, AF. Inhibition of proliferation and induction of apoptosis in juvenile myelomonocytic leukemic cells by the granulocyte–macrophage colony-stimulating factor analogue E21R. Blood 1996;88:2634–2639.Google ScholarPubMed
Iversen, PO, Lewis, ID, Turczynowicz, S, et al. Inhibition of granulocyte–macrophage colony-stimulating factor prevents dissemination and induces remission of juvenile myelomonocytic leukemia in engrafted immunodeficient mice. Blood 1997;90:4910–4917.Google ScholarPubMed
Iversen, PO, Hart, PH, Bonder, CS, Lopez, AF. Interleukin (IL)-10, but not IL-4 or IL-13, inhibits cytokine production and growth in juvenile myelomonocytic leukemia cells. Cancer Res 1997;57:476–480.Google ScholarPubMed
Iversen, PO, Sioud, M. Modulation of granulocyte–macrophage colony-stimulating factor gene expression by a tumor necrosis factor specific ribozyme in juvenile myelomonocytic leukemic cells. Blood 1998;92:4263–4268.Google ScholarPubMed
Kochetkova, M, Iversen, PO, Lopez, AF, Shannon, MF. Deoxyribonucleic acid triplex formation inhibits granulocyte macrophage colony-stimulating factor gene expression and suppresses growth in juvenile myelomonocytic leukemic cells. J Clin Invest 1997;99:3000–3008.CrossRefGoogle ScholarPubMed
Emanuel, PD, Zuckerman, KS, Wimmer, R, et al. In vivo 13-cis retinoic acid therapy decreases the in vitro GM-CSF hypersensitivity in juvenile chronic myelogenous leukemia (JCML). Blood 1991;78(Suppl1):170a.Google Scholar
Castleberry, RP, Emanuel, PD, Zuckerman, KS, et al. A pilot study of isotretinoin in the treatment of juvenile chronic myelogenous leukemia. N Engl J Med 1994;331:1680–1684.CrossRefGoogle ScholarPubMed
Cambier, N, Menot, ML, Schlageter, MH, et al. All trans retinoic acid abrogates spontaneous monocytic growth in juvenile chronic myelomonocytic leukaemia. Hematol J 2001;2:97–102.CrossRefGoogle ScholarPubMed
Muccio, DD, Brouillette, WJ, Breitman, TR, et al. Conformationally defined retinoic acid analogues. 4. Potential new agents for acute promyelocytic and juvenile myelomonocytic leukemias. J Med Chem 1998;41:1679–1687.CrossRefGoogle ScholarPubMed
Emanuel, PD, Sokol, JM, Castleberry, RP. Characterization of early response gene expression in juvenile myelomonocytic leukemia syndrome (JMML). Blood 1995;86(Suppl 1):728a.Google Scholar
Estrov, Z, Lau, AS, Williams, BR, Freedman, MH. Recombinant human interferon alpha-2 and juvenile chronic myelogenous leukemia: cell receptor binding, enzymatic induction, and growth suppression in vitro. Exp Hematol 1987;15:127–132.Google ScholarPubMed
Emanuel, PD, Snyder, RC, Wiley, T, et al. Inhibition of juvenile myelomonocytic leukemia cell growth in vitro by farnesyltransferase inhibitors. Blood 2000;95:639–645.Google ScholarPubMed
Sawai, N, Koike, K, Ito, S, et al. Aberrant growth of granulocyte–macrophage progenitors in juvenile chronic myelogenous leukemia in serum-free culture. Exp Hematol 1996;24:116–122.Google Scholar
Zhang, YY, Vik, TA, Ryder, JW, et al. Nf1 regulates hematopoietic progenitor cell growth and ras signaling in response to multiple cytokines. J Exp Med 1998;187:1893–1902.CrossRefGoogle ScholarPubMed
Sawai, N, Koike, K, Higuchi, T, Ogami, K, Oda, M. Thrombopoietin enhances the production of myeloid cells, but not megakaryocytes, in juvenile chronic myelogenous leukemia. Blood 1998;91:4065–4073.Google Scholar
Symann, M, de Montpellier, C, Ninane, J, van den Berghe, H. “Spontaneous” erythroid progenitor cells in the circulation and monosomy 7 in juvenile chronic myelogenous leukemia. Cancer Genet Cytogenet 1982;6:183–185.CrossRefGoogle ScholarPubMed
Kotecha, N, Flores, NJ, Irish, JM, et al. Single-cell profiling identifies aberrant STAT5 activation in myeloid malignancies with specific clinical and biologic correlates. Cancer Cell 2008;14:335–343.CrossRefGoogle ScholarPubMed
Kalaitzidis, D, Gilliland, DG. Going with the flow: JAK–STAT signaling in JMML. Cancer Cell 2008;14:279–280.CrossRefGoogle ScholarPubMed
Gaipa, G, Bugarin, C, Longoni, D, et al. Aberrant GM-CSF signal transduction pathway in juvenile myelomonocytic leukemia assayed by flow cytometric intracellular STAT5 phosphorylation measurement. Leukemia 2009;23:791–793.CrossRefGoogle ScholarPubMed
Freeburn, RW, Gale, RE, Wagner, HM, et al. Juvenile chronic myeloid leukemia (JCML), GM-CSF receptor. Analysis of the coding sequence for the GM-CSF receptor alpha and beta chains in patients with juvenile chronic myeloid leukemia (JCML). Exp Hematol 1997;25:306–311.Google Scholar
Tartaglia, M, Zampino, G, Gelb, BD. Noonan syndrome: clinical aspects and molecular pathogenesis. Mol Syndromol 2010;1:2–26.CrossRefGoogle ScholarPubMed
Shaw, AC, Kalidas, K, Crosby, AH, Jeffery, S, Patton, MA. The natural history of Noonan syndrome: a long-term follow-up study. Arch Dis Child 2007;92:128–132.CrossRefGoogle ScholarPubMed
Sharland, M, Burch, M, McKenna, WM, Paton, MA. A clinical-study of Noonan syndrome. Arch Dis Child 1992;67:178–183.CrossRefGoogle ScholarPubMed
Martinelli, S, De Luca, A, Stellacci, E, et al. Heterozygous germline mutations in the CBL tumor-suppressor gene cause a Noonan syndrome-like phenotype. Am J Hum Genet 2010;87:250–257.CrossRefGoogle Scholar
Roberts, AE, Araki, T, Swanson, KD, et al. Germline gain-of-function mutations in SOS1 cause Noonan syndrome. Nat Genet 2007;39:70–74.CrossRefGoogle ScholarPubMed
Tartaglia, M, Pennacchio, LA, Zhao, C, et al. Gain-of-function SOS1 mutations cause a distinctive form of Noonan syndrome. Nat Genet 2007;39:75–79.CrossRefGoogle Scholar
Pandit, B, Sarkozy, A, Pennacchio, LA, et al. Gain-of-function RAF1 mutations cause Noonan and LEOPARD syndromes with hypertrophic cardiomyopathy. Nat Genet 2007;39:1007–1012.CrossRefGoogle ScholarPubMed
Razzaque, MA, Nishizawa, T, Komoike, Y, et al. Germline gain-of-function mutations in RAF1 cause Noonan syndrome. Nat Genet 2007;39:1013–1017.CrossRefGoogle ScholarPubMed
Digilio, MC, Conti, E, Sarkozy, A, et al. Grouping of multiple-lentigines/LEOPARD and Noonan syndromes on the PTPN11 gene. Am J Hum Genet 2002;71:389–394.CrossRefGoogle ScholarPubMed
Cordeddu, V, Di Schiavi, E, Pennacchio, LA, et al. Mutation of SHOC2 promotes aberrant protein N-myristoylation and causes Noonan-like syndrome with loose anagen hair. Nat Genet 2009;41:1022–1026.CrossRefGoogle ScholarPubMed
Hennekam, RC. Costello syndrome: an overview. Am J Med Genet C Semin Med Genet 2003;117C:42–48.CrossRefGoogle ScholarPubMed
Aoki, Y, Niihori, T, Kawame, H, et al. Germline mutations in HRAS proto-oncogene cause Costello syndrome. Nat Genet 2005;37:1038–1040.CrossRefGoogle ScholarPubMed
Rodriguez-Viciana, P, Tetsu, O, Tidyman, WE, et al. Germline mutations in genes within the MAPK pathway cause cardio-facio-cutaneous syndrome. Science 2006;311:1287–1290.CrossRefGoogle ScholarPubMed
Niihori, T, Aoki, Y, Narumi, Y, et al. Germline KRAS and BRAF mutations in cardio-facio-cutaneous syndrome. Nat Genet 2006;38:294–296.CrossRefGoogle ScholarPubMed
Williams, VC, Lucas, J, Babcock, MA, et al. Neurofibromatosis type 1 revisited. Pediatrics 2009;123:124–133.CrossRefGoogle ScholarPubMed
National Institutes of Health. Consensus development conference statement: neurofibromatosis, Bethesda, MD, July 13–15, 1987. Neurofibromatosis 1988;1:172–178.Google Scholar
Brems, H, Chmara, M, Sahbatou, M, et al. Germline loss-of-function mutations in SPRED1 cause a neurofibromatosis 1-like phenotype. Nat Genet 2007;39:1120–1126.CrossRefGoogle Scholar
Kratz, CP, Niemeyer, CM, Thomas, C, et al. Mutation analysis of Son of Sevenless in juvenile myelomonocytic leukemia. Leukemia 2007;21:1108–1109.CrossRefGoogle ScholarPubMed
Flotho, C, Batz, C, Hasle, H, et al. Mutational analysis of SHOC2, a novel gene for Noonan-like syndrome, in JMML. Blood 2010;115:913.CrossRefGoogle ScholarPubMed
Batz, C, Hasle, H, Bergstrasser, E, et al. Does SPRED1 contribute to leukemogenesis in juvenile myelomonocytic leukemia (JMML)? Blood 2010;115:2557–2558.CrossRefGoogle Scholar
de Vries, AC, Stam, RW, Kratz, CP, et al. Mutation analysis of the BRAF oncogene in juvenile myelomonocytic leukemia. Haematologica 2007;92:1574–1575.CrossRefGoogle ScholarPubMed
Bos, JL. Ras oncogenes in human cancer: a review. Cancer Res 1989;49:4682–4689.Google ScholarPubMed
Miyauchi, J, Asada, M, Sasaki, M, et al. Mutations of the N-ras gene in juvenile chronic myelogenous leukemia. Blood 1994;83:2248–2254.Google ScholarPubMed
Kalra, R, Paderanga, DC, Olson, K, Shannon, KM. Genetic analysis is consistent with the hypothesis that NF1 limits myeloid cell growth through p21ras. Blood 1994;84:3435–3439.Google ScholarPubMed
Sheng, XM, Kawamura, M, Ohnishi, H, et al. Mutations of the RAS genes in childhood acute myeloid leukemia, myelodysplastic syndrome and juvenile chronic myelocytic leukemia. Leuk Res 1997;21:697–701.CrossRefGoogle ScholarPubMed
Perez, B, Kosmider, O, Cassinat, B, et al. Genetic typing of Cbl, Asxl1, Aml1, Tet2, and Jak2 in juvenile myelomonocytic leukemia (JMML) reveals a genetic profile distinct from chronic myelomonocytic leukemia (CMML). Haematologica 2010;95:220–221.Google Scholar
Reimann, C, Arola, M, Bierings, M, et al. A novel somatic KRAS mutation in juvenile myelomonocytic leukemia. Leukemia 2006;20:1637–1638.CrossRefGoogle Scholar
Matsuda, K, Nakazawa, Y, Sakashita, K, et al. Acquisition of loss of the wild-type NRAS locus with aggressive disease progression in a patient with juvenile myelomonocytic leukemia and a heterozygous NRAS mutation. Haematologica 2007;92:1576–1578.CrossRefGoogle Scholar
Carta, C, Pantaleoni, F, Bocchinfuso, G, et al. Germline missense mutations affecting KRAS isoform B are associated with a severe Noonan syndrome phenotype. Am J Hum Genet 2006;79:129–135.CrossRefGoogle ScholarPubMed
Cirstea, IC, Kutsche, K, Dvorsky, R, et al. A restricted spectrum of NRAS mutations causes Noonan syndrome. Nat Genet 2010;42:27–29.CrossRefGoogle ScholarPubMed
Schubbert, S, Bollag, G, Lyubynska, N, et al. Biochemical and functional characterization of germ line KRAS mutations. Mol Cell Biol 2007;27:7765–7770.CrossRefGoogle ScholarPubMed
Flotho, C, Kratz, CP, Bergstrasser, E, et al. Genotype-phenotype correlation in cases of juvenile myelomonocytic leukemia with clonal RAS mutations. Blood 2008;111:966–967.CrossRefGoogle ScholarPubMed
Imamura, M, Imai, C, Takachi, T, et al. Juvenile myelomonocytic leukemia with less aggressive clinical course and KRAS mutation. Pediatr Blood Cancer 2008;51:569.CrossRefGoogle ScholarPubMed
Oliveira, JB, Bidere, N, Niemela, JE, et al. NRAS mutation causes a human autoimmune lymphoproliferative syndrome. Proc Natl Acad Sci USA 2007;104:8953–8958.CrossRefGoogle ScholarPubMed
Takagi, M, Shinoda, K, Piao, J, et al. Autoimmune lymphoproliferative syndrome-like disease with somatic KRAS mutation. Blood 2011;117:2887–2890.CrossRefGoogle ScholarPubMed
Niemela, JE, Lu, L, Fleisher, TA, et al. Somatic KRAS mutations associated with a human non-malignant syndrome of autoimmunity and abnormal leukocyte homeostasis. Blood 2011;117:2883–2886.CrossRefGoogle Scholar
Kitahara, M, Koike, K, Kurokawa, Y, et al. Lupus nephritis in juvenile myelomonocytic leukemia. Clin Nephrol 1999;51:314–318.Google ScholarPubMed
Braun, BS, Tuveson, DA, Kong, N, et al. Somatic activation of oncogenic KRAS in hematopoietic cells initiates a rapidly fatal myeloproliferative disorder. Proc Natl Acad Sci USA 2004;101:597–602.CrossRefGoogle ScholarPubMed
Chan, IT, Kutok, JL, Williams, IR, et al. Conditional expression of oncogenic K-ras from its endogenous promoter induces a myeloproliferative disease. J Clin Invest 2004;113:528–538.CrossRefGoogle ScholarPubMed
Sabnis, AJ, Cheung, LS, Dail, M, et al. Oncogenic KRAS initiates leukemia in hematopoietic stem cells. PLoS Biol 2009;7:e59.CrossRefGoogle ScholarPubMed
Zhang, Y, Taylor, BR, Shannon, K, Clapp, DW. Quantitative effects of Nf1 inactivation on in vivo hematopoiesis. J Clin Invest 2001;108:709–715.CrossRefGoogle ScholarPubMed
Shannon, KM, O'Connell, P, Martin, G, et al. Loss of the normal NF1 allele from the bone marrow of children with type 1 neurofibromatosis and malignant disorders. N Engl J Med 1994;330:597–601.CrossRefGoogle Scholar
Bollag, G, Clapp, DW, Shih, S, et al. Loss of NF1 results in activation of the Ras signaling pathway and leads to aberrant growth in haematopoietic cells. Nat Genet 1996;12:144–148.CrossRefGoogle ScholarPubMed
Kai, S, Sumita, H, Fujioka, K, et al. Loss of heterozygosity of NF1 gene in juvenile chronic myelogenous leukemia with neurofibromatosis type 1. Int J Hematol 1998;68:53–60.CrossRefGoogle ScholarPubMed
Stephens, K, Weaver, M, Leppig, KA, et al. Interstitial uniparental isodisomy at clustered breakpoint intervals is a frequent mechanism of NF1 inactivation in myeloid malignancies. Blood 2006;108:1684–1689.CrossRefGoogle ScholarPubMed
Flotho, C, Steinemann, D, Mullighan, CG, et al. Genome-wide single-nucleotide polymorphism analysis in juvenile myelomonocytic leukemia identifies uniparental disomy surrounding the NF1 locus in cases associated with neurofibromatosis but not in cases with mutant RAS or PTPN11. Oncogene 2007;26:5816–5821.CrossRefGoogle ScholarPubMed
Steinemann, D, Arning, L, Praulich, I, et al. Mitotic recombination and compound-heterozygous mutations are predominant NF1-inactivating mechanisms in children with juvenile myelomonocytic leukemia and neurofibromatosis type 1. Haematologica 2010;95:320–323.CrossRefGoogle ScholarPubMed
Side, LE, Emanuel, PD, Taylor, B, et al. Mutations of the NF1 gene in children with juvenile myelomonocytic leukemia without clinical evidence of neurofibromatosis, type 1. Blood 1998;92:267–272.Google ScholarPubMed
Jacks, T, Shih, TS, Schmitt, EM, et al. Tumor predisposition in mice heterozygous for a targeted mutation in NF1. Nat Genet 1994;7:353–361.CrossRefGoogle ScholarPubMed
Largaespada, DA, Brannan, CI, Jenkins, NA, Copeland, NG. Nf1 deficiency causes Ras-mediated granulocyte/macrophage colony stimulating factor hypersensitivity and chronic myeloid leukaemia. Nat Genet 1996;12:137–143.CrossRefGoogle ScholarPubMed
Birnbaum, RA, O'Marcaigh, A, Wardak, Z, et al. Nf1 and GMCSF interact in myeloid leukemogenesis. Mol Cell 2000;5:189–195.CrossRefGoogle ScholarPubMed
Ingram, DA, Wenning, MJ, Shannon, K, Clapp, DW. Leukemic potential of doubly mutant Nf1 and Wv hematopoietic cells. Blood 2003;101:1984–1986.CrossRefGoogle ScholarPubMed
Le, DT, Kong, N, Zhu, Y, et al. Somatic inactivation of Nf1 in hematopoietic cells results in a progressive myeloproliferative disorder. Blood 2004;103:4243–4250.CrossRefGoogle Scholar
Kim, A, Morgan, K, Hasz, DE, et al. Beta common receptor inactivation attenuates myeloproliferative disease in Nf1 mutant mice. Blood 2007;109:1687–1691.CrossRefGoogle ScholarPubMed
Yin, B, Delwel, R, Valk, PJ, et al. A retroviral mutagenesis screen reveals strong cooperation between Bcl11a overexpression and loss of the Nf1 tumor suppressor gene. Blood 2009;113:1075–1085.CrossRefGoogle ScholarPubMed
Chan, RJ, Feng, GS. PTPN11 is the first identified proto-oncogene that encodes a tyrosine phosphatase. Blood 2007;109:862–867.CrossRefGoogle ScholarPubMed
Hof, P, Pluskey, S, Dhe-Paganon, S, Eck, MJ, Shoelson, SE. Crystal structure of the tyrosine phosphatase SHP-2. Cell 1998;92:441–450.CrossRefGoogle ScholarPubMed
Tartaglia, M, Kalidas, K, Shaw, A, et al. PTPN11 mutations in Noonan syndrome: molecular spectrum, genotype–phenotype correlation, and phenotypic heterogeneity. Am J Hum Genet 2002;70:1555–1563.CrossRefGoogle ScholarPubMed
Ferraris, S, Lanza, C, Barisone, E, et al. Transient abnormal myelopoiesis in Noonan syndrome. J Pediatr Hematol Oncol 2002;24:763–764.Google Scholar
Niemeyer, CM, Tartaglia, M, Büchner, J, et al. Clinical characteristis of children with juvenile myelomonocytic leukemia (JMML) and germline of somatic PTPN11 mutations, ras mutations or neurofibromatosis type 1. Blood 2002;100:796a.Google Scholar
Loh, ML, Vattikuti, S, Schubbert, S, et al. Mutations in PTPN11 implicate the SHP-2 phosphatase in leukemogenesis. Blood 2004;103:2325–2331.CrossRefGoogle ScholarPubMed
Kratz, CP, Niemeyer, CM, Castleberry, RP, et al. The mutational spectrum of PTPN11 in juvenile myelomonocytic leukemia and Noonan syndrome/myeloproliferative disease. Blood 2005;106:2183–2185.CrossRefGoogle ScholarPubMed
Fragale, A, Tartaglia, M, Wu, J, Gelb, BD. Noonan syndrome-associated SHP2/PTPN11 mutants cause EGF-dependent prolonged GAB1 binding and sustained ERK2/MAPK1 activation. Hum Mutat 2004;23:267–277.CrossRefGoogle ScholarPubMed
Niihori, T, Aoki, Y, Ohashi, H, et al. Functional analysis of PTPN11/SHP-2 mutants identified in Noonan syndrome and childhood leukemia. J Hum Genet 2005;50:192–202.CrossRefGoogle ScholarPubMed
Chan, RJ, Leedy, MB, Munugalavadla, V, et al. Human somatic PTPN11 mutations induce hematopoietic-cell hypersensitivity to granulocyte–macrophage colony-stimulating factor. Blood 2005;105:3737–3742.CrossRefGoogle ScholarPubMed
Mohi, MG, Williams, IR, Dearolf, CR, et al. Prognostic, therapeutic, and mechanistic implications of a mouse model of leukemia evoked by Shp2 (PTPN11) mutations. Cancer Cell 2005;7:179–191.CrossRefGoogle ScholarPubMed
Schubbert, S, Lieuw, K, Rowe, SL, et al. Functional analysis of leukemia-associated PTPN11 mutations in primary hematopoietic cells. Blood 2005;106:311–317.CrossRefGoogle ScholarPubMed
Yang, Z, Li, Y, Yin, F, Chan, RJ. Activating PTPN11 mutants promote hematopoietic progenitor cell-cycle progression and survival. Exp Hematol 2008;36:1285–1296.CrossRefGoogle Scholar
Araki, T, Mohi, MG, Ismat, FA, et al. Mouse model of Noonan syndrome reveals cell type- and gene dosage-dependent effects of Ptpn11 mutation. Nat Med 2004;10:849–857.CrossRefGoogle ScholarPubMed
Wang, S, Yu, WM, Zhang, W, et al. Noonan syndrome/leukemia-associated gain-of-function mutations in SHP-2 phosphatase (PTPN11) enhance cell migration and angiogenesis. J Biol Chem 2009;284:913–920.CrossRefGoogle ScholarPubMed
Xu, D, Wang, S, Yu, WM, et al. A germline gain-of-function mutation in Ptpn11 (Shp-2) phosphatase induces myeloproliferative disease by aberrant activation of hematopoietic stem cells. Blood 2010;116:3611–3621.CrossRefGoogle ScholarPubMed
Abbas, S, Rotmans, G, Löwenberg, B, Valk, PJ. Exon 8 splice site mutations in the gene encoding the E3-ligase CBL are associated with core binding factor acute myeloid leukemias. Haematologica 2008;93:1595–1597.CrossRefGoogle ScholarPubMed
Dunbar, AJ, Gondek, LP, O'Keefe, CL, et al. 250K single nucleotide polymorphism array karyotyping identifies acquired uniparental disomy and homozygous mutations, including novel missense substitutions of c-Cbl, in myeloid malignancies. Cancer Res 2008;68:10349–10357.CrossRefGoogle ScholarPubMed
Grand, FH, Hidalgo-Curtis, CE, Ernst, T, et al. Frequent CBL mutations associated with 11q acquired uniparental disomy in myeloproliferative neoplasms. Blood 2009;113:6182–6192.CrossRefGoogle ScholarPubMed
Kales, SC, Ryan, PE, Nau, MM, Lipkowitz, S. Cbl and human myeloid neoplasms: the Cbl oncogene comes of age. Cancer Res 2010;70:4789–4794.CrossRefGoogle ScholarPubMed
Loh, ML, Sakai, DS, Flotho, C, et al. Mutations in CBL occur frequently in juvenile myelomonocytic leukemia. Blood 2009;114:1859–1863.CrossRefGoogle ScholarPubMed
Muramatsu, H, Makishima, H, Jankowska, AM, et al. Mutations of an E3 ubiquitin ligase c-Cbl but not TET2 mutations are pathogenic in juvenile myelomonocytic leukemia. Blood 2010;115:1969–1975.CrossRefGoogle Scholar
Shiba, N, Kato, M, Park, MJ, et al. CBL mutations in juvenile myelomonocytic leukemia and pediatric myelodysplastic syndrome. Leukemia 2010;24:1090–1092.CrossRefGoogle ScholarPubMed
Matsuda, K, Taira, C, Sakashita, K, et al. Long-term survival after nonintensive chemotherapy in some juvenile myelomonocytic leukemia patients with CBL mutations, and the possible presence of healthy persons with the mutations. Blood 2010;115:5429–5431.CrossRefGoogle ScholarPubMed
Naramura, M, Jang, IK, Kole, H, et al. c-Cbl and Cbl-b regulate T cell responsiveness by promoting ligand-induced TCR down-modulation. Nat Immunol 2002;3:1192–1199.CrossRefGoogle ScholarPubMed
Kitaura, Y, Jang, IK, Wang, Y, et al. Control of the B cell-intrinsic tolerance programs by ubiquitin ligases Cbl and Cbl-b. Immunity 2007;26:567–578.CrossRefGoogle Scholar
Sugimoto, Y, Muramatsu, H, Makishima, H, et al. Spectrum of molecular defects in juvenile myelomonocytic leukaemia includes ASXL1 mutations. Br J Haematol 2010;150:83–87.Google ScholarPubMed
Masunaga, A, Mitsuya, T, Kadofuku, T, et al. Mutation analysis of AML1 gene in pediatric primary myelodysplastic syndrome and juvenile myelomonocytic leukemia. Leuk Res 2008;32:995–997.CrossRefGoogle ScholarPubMed
Tono, C, Xu, G, Toki, T, et al. JAK2 Val617Phe activating tyrosine kinase mutation in juvenile myelomonocytic leukemia. Leukemia 2005;19:1843–1844.CrossRefGoogle ScholarPubMed
Zecca, M, Bergamaschi, G, Kratz, C, et al. JAK2 V617F mutation is a rare event in juvenile myelomonocytic leukemia. Leukemia 2007;21:367–369.CrossRefGoogle ScholarPubMed
Luria, D, Avigad, S, Cohen, IJ et al. p53 mutation as the second event in juvenile chronic myelogenous leukemia in a patient with neurofibromatosis type 1. Cancer 1997;80:2013–2018.3.0.CO;2-Z>CrossRefGoogle Scholar
Miyauchi, J, Asada, M, Tsunematsu, Y, et al. Abnormalities of the p53 gene in juvenile myelomonocytic leukaemia. Br J Haematol 1999;106:980–986.CrossRefGoogle ScholarPubMed
Xu, F, Taki, T, Yang, HW, et al. Tandem duplication of the FLT3 gene is found in acute lymphoblastic leukaemia as well as acute myeloid leukaemia but not in myelodysplastic syndrome or juvenile chronic myelogenous leukaemia in children. Br J Haematol 1999;105:155–162.CrossRefGoogle ScholarPubMed
Gratias, EJ, Liu, YL, Meleth, S, Castleberry, RP, Emanuel, PD. Activating FLT3 mutations are rare in children with juvenile myelomonocytic leukemia. Pediatr Blood Cancer 2005;44:142–146.CrossRefGoogle ScholarPubMed
de Vries, AC, Stam, RW, Schneider, P, et al. Role of mutation independent constitutive activation of FLT3 in juvenile myelomonocytic leukemia. Haematologica 2007;92:1557–1560.CrossRefGoogle ScholarPubMed
Gerhardt, TM, Schmahl, GE, Flotho, C, Rath, AV, Niemeyer, CM. Expression of the EVI-1 gene in haematopoietic cells of children with juvenile myelomonocytic leukaemia and normal donors. Br J Haematol 1997;99:882–887.CrossRefGoogle ScholarPubMed
Privitera, E, Longoni, D, Brambillasca, F, Biondi, A. EVI-1 gene expression in myeloid clonogenic cells from juvenile myelomonocytic leukemia (JMML). Leukemia 1997;11:2045–2048.CrossRefGoogle Scholar
Mild, GC, Schmahl, GE, Shayan, P, Niemeyer, CM. Expression of interferon regulatory factor 1 and 2 in hematopoietic cells of children with juvenile myelomonocytic leukemia. Leuk Lymphoma 1999;35:507–511.CrossRefGoogle ScholarPubMed
Liu, YL, Castleberry, RP, Emanuel, PD. PTEN deficiency is a common defect in juvenile myelomonocytic leukemia. Leuk Res 2009;33:671–677.CrossRefGoogle ScholarPubMed
Batz, C, Sandrock, I, Niemeyer, CM, Flotho, C. Methylation of the PTEN gene CpG island is infrequent in juvenile myelomonocytic leukemia: Comments on “PTEN deficiency is a common defect in juvenile myelomonocytic leukemia” (Leuk Res 2009;33:671–677). Leuk Res 2009;33:1578–1579.CrossRefGoogle Scholar
Matsuda, K, Shimada, A, Yoshida, N, et al. Spontaneous improvement of hematologic abnormalities in patients having juvenile myelomonocytic leukemia with specific RAS mutations. Blood 2007;109:5477–5480.CrossRefGoogle ScholarPubMed
Doisaki, S, Muramatsu, H, Hama, A, et al. A favorable outcome in children with juvenile myelomonocytic leukemia (JMML) with RAS mutations. Blood 2010;116:21.Google Scholar
Locatelli, F, Nollke, P, Zecca, M, et al. Hematopoietic stem cell transplantation (HSCT) in children with juvenile myelomonocytic leukemia (JMML): results of the EWOG-MDS/EBMT trial. Blood 2005;105:410–419.CrossRefGoogle ScholarPubMed
Bresolin, S, Zecca, M, Flotho, C, et al. Gene expression-based classification as an independent predictor of clinical outcome in juvenile myelomonocytic leukemia. J Clin Oncol 2010;28:1919–1927.CrossRefGoogle ScholarPubMed
Batz, C, Poetsch, AR, Nöllke, P, et al. Aberrant DNA methylation characterizes juvenile myelomonocytic leukemia (JMML) with poor outcome. Blood 2011;117:4871–4880.CrossRefGoogle Scholar
Bergstraesser, E, Hasle, H, Rogge, T, et al. Non-hematopoietic stem cell transplantation treatment of juvenile myelomonocytic leukemia: a retrospective analysis and definition of response criteria. Pediatr Blood Cancer 2007;49:629–633.CrossRefGoogle ScholarPubMed
Lilleyman, JS, Harrison, JF, Black, JA. Treatment of juvenile chronic myeloid leukemia with sequential subcutaneus cytarabine and oral mercaptopurine. Blood 1977;49:559–562.Google Scholar
Matsuda, K, Matsuzaki, S, Miki, J, et al. Chromosomal change during 6-mercaptopurine (6-MP) therapy in juvenile myelomonocytic leukemia: the growth of a 6-MP-refractory clone that already exists at onset. Leukemia 2006;20:485–490.CrossRefGoogle Scholar
Corey, SJ, Elopre, M, Weitman, S, et al. Complete remission following clofarabine treatment in refractory juvenile myelomonocytic leukemia. J Pediatr Hematol Oncol 2005;27:166–168.CrossRefGoogle ScholarPubMed
Laver, J, Kushner, BH, Steinherz, PG. Juvenile chronic myeloid leukemia: therapeutic insights. Leukemia 1987;1:730–733.Google ScholarPubMed
Hicsonmez, G, Cetin, M, Tunc, B, et al. Dramatic resolution of pleural effusion in children with chronic myelomonocytic leukemia following short-course high-dose methylprednisolone. Leuk Lymphoma 1998;29:617–623.CrossRefGoogle ScholarPubMed
Chan, HS, Estrov, Z, Weitzman, SS, Freedman, MH. The value of intensive combination chemotherapy for juvenile chronic myelogenous leukemia. J Clin Oncol 1987;5:1960–1967.CrossRefGoogle ScholarPubMed
DeHeredia, CD, Ortega, JJ, Coll, MT, Bastida, P, Olivé, T. Results of intensive chemotherapy in children with juvenile chronic myelomonocytic leukemia: a pilot study. Med Pediatr Oncol 1998;31:516–520.3.0.CO;2-Q>CrossRefGoogle Scholar
Woods, WG, Barnard, DR, Alonzo, TA, et al. Prospective study of 90 children requiring treatment for juvenile myelomonocytic leukemia or myelodysplastic syndrome: a report from the Children's Cancer Group. J Clin Oncol 2002;20:434–440.Google ScholarPubMed
Festa, RS, Shende, A, Lanzkowsky, P. Juvenile chronic myelocytic leukemia: experience with intensive combination chemotherapy. Med Pediatr Oncol 1990;18:311–316.CrossRefGoogle ScholarPubMed
Hasle, H, Kerndrup, G, Yssing, M, et al. Intensive chemotherapy in childhood myelodysplastic syndrome. A comparison with results in acute myeloid leukemia. Leukemia 1996;10:1269–1273.Google ScholarPubMed
Brethon, B, Auvrignon, A, Galambrun, C, et al. Efficacy and tolerability of gemtuzumab ozogamicin (anti-CD33 monoclonal antibody, CMA-676, Mylotarg) in children with relapsed/refractory myeloid leukemia. BMC Cancer 2006;6:172.CrossRefGoogle ScholarPubMed
Mutz, ID, Zoubek, A. Transient response to alpha-interferon in juvenile chronic myelomonocytic leukemia. Pediatr Hematol Oncol 1988;5:71–75.CrossRefGoogle ScholarPubMed
Suttorp, M, Rister, M, Schmitz, N. Interferon-alpha-2 (IFN) plus hydroxyurea for treatment of juvenile chronic myelogenous leukemia. Med Pediatr Oncol 1994;22:358–359.CrossRefGoogle ScholarPubMed
Aricò, M, Nespoli, L, Caselli, D, et al. Juvenile chronic myeloid leukaemia and alpha-interferon. Eur J Pediatr 1989;148:379–380.CrossRefGoogle ScholarPubMed
Mirro, J, Dow, LW, Kalwinsky, DK, et al. Phase I–II study of continuous-infusion high-dose human lymphoblastoid interferon and the in vitro sensitivity of leukemic progenitors in nonlymphocytic leukemia. Cancer Treat Rep 1986;70:363–367.Google ScholarPubMed
Hazani, A, Barak, Y, Berant, M, Bar-Maor, A.Congenital juvenile chronic myelogenous leukemia: therapeutical trial with interferon alpha-2. Med Pediatr Oncol 1993;21:73–76.CrossRefGoogle Scholar
Maybee, D, Dubowy, R, Krischer, J, et al. Unusual toxicity of high dose alpha interferon (aIFN) in the treatment of juvenile chronic myelogenous leukemia (JCML). Proc Am Soc Clin Oncol 1992;1:950a.Google Scholar
Ohta, H, Kawai, M, Sawada, A, et al. Juvenile myelomonocytic leukemia relapsing after allogeneic bone marrow transplantation successfully treated with interferon-alpha. Bone Marrow Transplant 2000;26:681–683.CrossRefGoogle ScholarPubMed
Pui, CH, Aricò, M. Isotretinoin for juvenile chronic myelogenous leukemia. N Engl J Med 1995;332:1520–1521.Google ScholarPubMed
Castelberry, RP, Chang, M, Maybee, D, Emanuel, P. A phase II study of 13-cis retinoic acid in juvenile myelomonoctic leukemia. Blood 1997;90:346a.Google Scholar
Maguire, AM, Vowels, MR, Russell, S, et al. Allogeneic bone marrow transplant improves outcome for juvenile myelomonocytic leukaemia. J Paediatr Child Health 2002;38:166–169.CrossRefGoogle ScholarPubMed
Ohtsuka, Y, Manabe, A, Kawasaki, H, et al. RAS-blocking bisphosphonate zoledronic acid inhibits the abnormal proliferation and differentiation of juvenile myelomonocytic leukemia cells in vitro. Blood 2005;106:3134–3141.CrossRefGoogle ScholarPubMed
Shimada, H, Shima, H, Shimasaki, N, et al. Little response to zoledronic acid in a child of juvenile myelomonocytic leukemia (JMML) harboring the PTPN11 mutation. Ann Oncol 2005;16:1400.CrossRefGoogle Scholar
Ruter, B, Wijermans, P, Claus, R, Kunzmann, R, Lubbert, M. Preferential cytogenetic response to continuous intravenous low-dose decitabine (DAC) administration in myelodysplastic syndrome with monosomy 7. Blood 2007;110:1080–1082.CrossRefGoogle ScholarPubMed
Furlan, I, Batz, C, Flotho, C, et al. Intriguing response to azacitidine in a patient with juvenile myelomonocytic leukemia and monosomy 7. Blood 2009;113:2867–2868.CrossRefGoogle Scholar
Iversen, PO, Turczynowicz, S, Lewis, J, et al. A second generation GM-CSF analogue that prevents dissemination and induces remission of human juvenile myelomonocytic leukemia in engrafted immunodeficient mice. Blood 1997;90:4910–4917.Google Scholar
Bernard, F, Thomas, C, Emile, JF, et al. Transient hematologic and clinical effect of E21R in a child with end-stage juvenile myelomonocytic leukemia. Blood 2002;99:2615–2616.CrossRefGoogle Scholar
Mahgoub, N, Taylor, BR, Gratiot, M, et al. In vitro and in vivo effects of a farnesyltransferase inhibitor on Nf1-deficient hematopoietic cells. Blood 1999;94:2469–2476.Google ScholarPubMed
Castleberry, R, Mignon, L, Jayaprakash, N, et al. Phase II window study of the farnesyltransferase inhibitor R115777 (Zarnestra®) in untreated juvenile myelomonocytic leukemia (JMML): a Children's Oncology Group study. Blood 2005;106:727a.Google Scholar
Chan, RJ, Cooper, T, Kratz, CP, Weiss, B, Loh, ML. Juvenile myelomonocytic leukemia: a report from the 2nd International JMML Symposium. Leuk Res 2009;33:355–362.CrossRefGoogle ScholarPubMed
Iversen, PO, Emanuel, PD, Sioud, M. Targeting Raf-1 gene expression by a DNA enzyme inhibits juvenile myelomonocytic leukemia cell growth. Blood 2002;99:4147–4153.CrossRefGoogle ScholarPubMed
Lauchle, JO, Le, DT, Kim, D, et al. Mutations that cooperate with Nf1 inactivation in leukemogenesis influence therapeutic response to MEK inhibition. Blood 2007;110:183a.Google Scholar
Steinherz, PG, Exelby, PR, Young, J, Watson, RC. Splenectomy after angiographic embolization of the splenic artery in patients with massive splenomegaly and severe thrombocytopenia, in juvenile subacute myelomonocytic leukemia. Med Pediatr Oncol 1984;12:28–32.CrossRefGoogle ScholarPubMed
Locatelli, F, Niemeyer, C, Angelucci, E, et al. Allogenic bone marrow transplantation for chronic myelomonocytic leukemia in childhood: a report from the European Working Group on Myelodysplastic Syndrome in Childhood. J Clin Oncol 1997;15:566–573.CrossRefGoogle Scholar
Bunin, N, Saunders, F, Leahey, A, et al. Alternative donor bone marrow transplantation for children with juvenile myelomonocytic leukemia. J Pediatr Hematol Oncol 1999;21:479–485.CrossRefGoogle ScholarPubMed
Manabe, A, Okamura, J, Yumura-Yagi, K, et al. Allogeneic hematopoietic stem cell transplantation for 27 children with juvenile myelomonocytic leukemia diagnosed based on the criteria of the International JMML Working Group. Leukemia 2002;16:645–649.CrossRefGoogle ScholarPubMed
Chown, SR, Potter, MN, Cornish, J, et al. Matched and mismatched unrelated donor bone marrow transplantation for juvenile chronic myeloid leukaemia. Br J Haematol 1996;93:674–676.CrossRefGoogle ScholarPubMed
Smith, FO, King, R, Nelson, G, et al. Unrelated donor bone marrow transplantation for children with juvenile myelomonocytic leukaemia. Br J Haematol 2002;116:716–724.CrossRefGoogle ScholarPubMed
Matthes-Martin, S, Mann, G, Peters, C, et al. Allogeneic bone marrow transplantation for juvenile myelomonocytic leukaemia: a single centre experience and review of the literature. Bone Marrow Transplant 2000;26:377–382.CrossRefGoogle ScholarPubMed
Peltier, JY, Girault, D, Debré, M, et al. Donor for BMT with haemoglobin H disease. Bone Marrow Transplant 1993;12:81–84.Google ScholarPubMed
Donadieu, J, Stephan, JL, Blanche, S, et al. Treatment of juvenile chronic myelomonocytic leukemia by allogeneic bone marrow transplantation. Bone Marrow Transplant 1994;13:777–782.Google ScholarPubMed
Wagner, JE, Broxmeyer, HE, Byrd, RL, et al. Transplantation of umbilical cord blood after myeloablative therapy: analysis of engraftment. Blood 1992;79:1874–1881.Google ScholarPubMed
MacMillan, ML, Davies, SM, Orchard, PJ, Ramsay, NK, Wagner, JE. Haemopoietic cell transplantation in children with juvenile myelomonocytic leukaemia. Br J Haematol 1998;103:552–558.CrossRefGoogle ScholarPubMed
Ohnuma, K, Isoyama, K, Ikuta, K, et al. Cord blood transplantation from HLA-mismatched unrelated donors as a treatment for children with haematological malignancies. Br J Haematol 2001;112:981–987.CrossRefGoogle ScholarPubMed
Locatelli, F, Noellke, P, Zecca, M, et al. Allogeneic stem cell transplantation in children with juvenile myelomonocytic leukemia: results of a prospective study of the EWOG-MDS/EBMT. Blood 2001;98:848a.Google Scholar
Tanoshima, R, Goto, H, Yanagimachi, M, et al. Graft versus leukemia effect against juvenile myelomonocytic leukemia after unrelated cord blood transplantation. Pediatr Blood Cancer 2008;50:665–667.CrossRefGoogle ScholarPubMed
Yabe, M, Sako, M, Yabe, H, et al. A conditioning regimen of busulfan, fludarabine, and melphalan for allogeneic stem cell transplantation in children with juvenile myelomonocytic leukemia. Pediatr Transplant 2008;12:862–867.CrossRefGoogle ScholarPubMed
de Vries, AC, Bredius, RG, Lankester, AC, et al. HLA-identical umbilical cord blood transplantation from a sibling donor in juvenile myelomonocytic leukemia. Haematologica 2009;94:302–304.CrossRefGoogle ScholarPubMed
Crotta, A, Vanderson, R, Eapen, M, et al. Analysis of risk factors influencing outcomes after unrelated cord blood transplantation in children with juvenile myelomonocytic leukemia. An Eurocord, EBMT, EWOG-MDS, CIBMTR Study. Blood 2010;116:237.Google Scholar
Sanders, JE, Buckner, CD, Thomas, ED, et al. Allogeneic marrow transplantation for children with juvenile chronic myelogenous leukemia. Blood 1988;71:1144–1146.Google ScholarPubMed
Urban, C, Schwinger, W, Slavc, I, et al. Busulfan/cyclophosphamide plus bone marrow transplantation is not sufficient to eradicate the malignant clone in juvenile chronic myelogenous leukemia. Bone Marrow Transplant 1990;5:353–356.Google Scholar
Rubie, H, Attal, M, Demur, C, et al. Intensified conditioning regimen with busulfan followed by allogeneic BMT in children with myelodysplastic syndromes. Bone Marrow Transplant 1994;13:759–762.Google ScholarPubMed
Koyama, M, Nakano, T, Takeshita, Y, et al. Successful treatment of JMML with related bone marrow transplantation after reduced-intensity conditioning. Bone Marrow Transplant 2005;36:453–454.CrossRefGoogle ScholarPubMed
Rassam, SM, Katz, F, Chessells, JM, Morgan, G. Successful allogeneic bone marrow transplantation in juvenile CML: conditioning or graft-versus-leukaemia effect? Bone Marrow Transplant 1993;11:247–250.Google ScholarPubMed
Kressler, EJ, Haas, OA, Konig, M, et al. Extramedullary relapse despite graft-versus-leukemia effect after bone marrow transplantation in a girl with juvenile myelomonocytic leukemia. Leuk Lymphoma 1999;33:597–600.CrossRefGoogle Scholar
Orchard, PJ, Miller, JS, McGlennen, R, Davies, SM, Ramsay, NK. Graft-versus-leukemia is sufficient to induce remission in juvenile myelomonocytic leukemia. Bone Marrow Transplant 1998;22:201–203.CrossRefGoogle ScholarPubMed
Stachel, DK, Leipold, A, Kuhlen, M, et al. Simultaneous control of third-degree graft-versus-host disease and prevention of recurrence of juvenile myelomonocytic leukemia (JMML) with 6-mercaptopurine following fulminant JMML relapse early after KIR-mismatched bone marrow transplantation. J Pediatr Hematol Oncol 2005;27:672–674.CrossRefGoogle ScholarPubMed
Yoshimi, A, Niemeyer, CM, Bohmer, V, et al. Chimaerism analyses and subsequent immunological intervention after stem cell transplantation in patients with juvenile myelomonocytic leukaemia. Br J Haematol 2005;129:542–549.CrossRefGoogle ScholarPubMed
Archambeault, S, Flores, NJ, Yoshimi, A, et al. Development of an allele-specific minimal residual disease assay for patients with juvenile myelomonocytic leukemia. Blood 2008;111:1124–1127.CrossRefGoogle ScholarPubMed
Matsuda, K, Sakashita, K, Taira, C, et al. Quantitative assessment of PTPN11 or RAS mutations at the neonatal period and during the clinical course in patients with juvenile myelomonocytic leukaemia. Br J Haematol 2010;148:593–599.CrossRefGoogle ScholarPubMed
Neudorf, S, Nourani, A, Kempert, P, et al. Chemotherapy and donor leukocyte infusions for relapsed juvenile myelomonocytic leukemia (JMML). Bone Marrow Transplant 2004;33:1069.CrossRefGoogle Scholar
Worth, A, Rao, K, Webb, D, et al. Successful treatment of juvenile myelomonocytic leukemia relapsing after stem cell transplantation using donor lymphocyte infusion. Blood 2003;101:1713–1714.CrossRefGoogle ScholarPubMed
Pulsipher, MA, Adams, RH, Asch, J, Petersen, FB. Successful treatment of JMML relapsed after unrelated allogeneic transplant with cytoreduction followed by DLI and interferon-alpha: evidence for a graft-versus-leukemia effect in non-monosomy-7 JMML. Bone Marrow Transplant 2004;33:113–115.CrossRefGoogle ScholarPubMed
Yoshimi, A, Bader, P, Matthes-Martin, S, et al. Donor leukocyte infusion after hematopoietic stem cell transplantation in patients with juvenile myelomonocytic leukemia. Leukemia 2005;19:971–977.CrossRefGoogle ScholarPubMed
Pamphilon, DH, Cornish, JM, Goodman, S, et al. Successful second unrelated donor BMT in a child with juvenile chronic myeloid leukaemia: documentation of chimaerism using the polymerase chain reaction. Bone Marrow Transplant 1993;11:81–84.Google Scholar
Yoshimi, A, Mohamed, M, Bierings, M, et al. Second allogeneic hematopoietic stem cell transplantation (HSCT) results in outcome similar to that of first HSCT for patients with juvenile myelomonocytic leukemia. Leukemia 2007;21:556–560.CrossRefGoogle ScholarPubMed
Grier, HE, Civin, CI. Myeloid leukemias, myelodysplasia and myeloproliferative disease in children. In Nathan, DG, Orkin, SH (eds.) Nathan and Oski's Hematology of Infancy and Childhood. Philadelphia, PA:Saunders, 1998:1300–1308.Google Scholar
Hall, GW. Cytogenetic and molecular genetic aspects of childhood myeloproliferative/myelodysplastic disorders. Acta Haematol 2002;108:171–179.CrossRefGoogle ScholarPubMed
Rowley, JD. Letter: A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 1973;243:290–293.CrossRefGoogle ScholarPubMed
Deininger, MW, Goldman, JM, Melo, JV. The molecular biology of chronic myeloid leukemia. Blood 2000;96:3343–3356.Google ScholarPubMed
Biernaux, C, Loos, M, Sels, A, Huez, G, Stryckmans, P. Detection of major bcr-abl gene expression at a very low level in blood cells of some healthy individuals. Blood 1995;86:3118–3122.Google Scholar
Kurzrock, R, Bueso-Ramos, CE, Kantarjian, H, et al. BCR rearrangement-negative chronic myelogenous leukemia revisited. J Clin Oncol 2001;19:2915–2926.CrossRefGoogle ScholarPubMed
Sawyers, CL. Chronic myeloid leukemia. N Engl J Med 1999;340:1330–1340.CrossRefGoogle ScholarPubMed
Hasford, J, Pfirrmann, M, Hehlmann, R, et al. A new prognostic score for survival of patients with chronic myeloid leukemia treated with interferon alfa. Writing Committee for the Collaborative CML Prognostic Factors Project Group. J Natl Cancer Inst 1998;90:850–858.CrossRefGoogle ScholarPubMed
Baccarani, M, Rosti, G, de Vivo, A, et al. A randomized study of interferon-alpha versus interferon-alpha and low-dose arabinosyl cytosine in chronic myeloid leukemia. Blood 2002;99:1527–1535.CrossRefGoogle ScholarPubMed
Chronic Myeloid Leukemia Trialists´Collaborative Group. Interferon alfa versus chemotherapy for chronic myeloid leukemia: a meta-analysis of seven randomized trials. J Natl Cancer Inst 1997;89:1616–1620.CrossRefGoogle Scholar
Druker, BJ, Tamura, S, Buchdunger, E, et al. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med 1996;2:561–566.CrossRefGoogle ScholarPubMed
Druker, BJ, Talpaz, M, Resta, DJ, et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 2001;344:1031–1037.CrossRefGoogle ScholarPubMed
Kantarjian, H, Sawyers, C, Hochhaus, A, et al. Hematologic and cytogenetic responses to imatinib mesylate in chronic myelogenous leukemia. N Engl J Med 2002;346:645–652.CrossRefGoogle ScholarPubMed
Talpaz, M, Silver, RT, Druker, BJ, et al. Imatinib induces durable hematologic and cytogenetic responses in patients with accelerated phase chronic myeloid leukemia: results of a phase 2 study. Blood 2002;99:1928–1937.CrossRefGoogle ScholarPubMed
Sawyers, CL, Hochhaus, A, Feldman, E, et al. Imatinib induces hematologic and cytogenetic responses in patients with chronic myelogenous leukemia in myeloid blast crisis: results of a phase II study. Blood 2002;99:3530–3539.CrossRefGoogle ScholarPubMed
Kantarjian, HM, Cortes, J, O'Brien, S, et al. Imatinib mesylate (STI571) therapy for Philadelphia chromosome-positive chronic myelogenous leukemia in blast phase. Blood 2002;99:3547–3553.CrossRefGoogle ScholarPubMed
Champagne, MA, Capdeville, R, Krailo, M, et al. Imatinib mesylate (STI571) for treatment of children with Philadelphia chromosome-positive leukemia: results from a Children's Oncology Group phase 1 study. Blood 2004;104:2655–2660.CrossRefGoogle ScholarPubMed
Suttorp, M. Innovative approaches of targeted therapy for CML of childhood in combination with paediatric haematopoietic SCT. Bone Marrow Transplant 2008;42(Suppl 2):S40–S46.CrossRefGoogle ScholarPubMed
Millot, F, Guilhot, J, Nelken, B, et al. Imatinib mesylate is effective in children with chronic myelogenous leukemia in late chronic and advanced phase and in relapse after stem cell transplantation. Leukemia 2006;20:187–192.CrossRefGoogle ScholarPubMed
Belgaumi, AF, Al Shehri, A, Ayas, M, et al. Clinical characteristics and treatment outcome of pediatric patients with chronic myeloid leukemia. Haematologica 2010;95:1211–1215.CrossRefGoogle Scholar
O'Brien, SG, Guilhot, F, Larson, RA. Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase myeloid leukaemia. N Engl J Med 2003;348:994–1004.CrossRefGoogle Scholar
Deininger, M, O'Brien, SG, Guilhot, F, et al. International randomized study of interferon vs STI571 (IRIS) 8-year follow up: sustained survival and low risk for progression or events in patients with newly diagnosed chronic myeloid leukemia in chronic phase (CML-CP) treated with imatinib. Blood 2009;114:462.Google Scholar
Alvarado, Y, Kantarjian, H, O'Brien, S, et al. Significance of suboptimal response to imatinib, as defined by the European LeukemiaNet, in the long-term outcome of patients with early chronic myeloid leukemia in chronic phase. Cancer 2009;115:3709–3718.CrossRefGoogle ScholarPubMed
Druker, BJ, Guilhot, F, O'Brien, SG, et al. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med 2006;355:2408–2417.CrossRefGoogle ScholarPubMed
Apperley, JF.Part I: Mechanisms of resistance to imatinib in chronic myeloid leukaemia. Lancet Oncology 2007;8:1018–1029.CrossRefGoogle ScholarPubMed
Agrawal, M, Garg, RJ, Kantarjian, H, Cortes, J. Chronic myeloid leukemia in the tyrosine kinase inhibitor era: what is the “best” therapy?Curr Oncol Rep 2010;12:302–313.CrossRefGoogle ScholarPubMed
Branford, S.Chronic myeloid leukemia: molecular monitoring in clinical practice. Hematol Am Soc Hematol Educ Program 2007:376–383.Google ScholarPubMed
Shah, NP, Skaggs, BJ, Branford, S, et al. Sequential ABL kinase inhibitor therapy selects for compound drug-resistant BCR-ABL mutations with altered oncogenic potency. J Clin Invest 2007;117:2562–2569.CrossRefGoogle ScholarPubMed
Wang, L, Giannoudis, A, Lane, S, et al. Expression of the uptake drug transporter hOCT1 is an important clinical determinant of the response to imatinib in chronic myeloid leukemia. Clin Pharmacol Ther 2008;83:258–264.CrossRefGoogle Scholar
Rice, KN, Jamieson, CHM. Molecular pathways to CML stem cells. Int J Hematol 2010;91:748–752.CrossRefGoogle ScholarPubMed
Jabbour, E, Kantarjian, HM, Jones, D, et al. Imatinib mesylate dose escalation is associated with durable responses in patients with chronic myeloid leukemia after cytogenetic failure on standard-dose imatinib therapy. Blood 2009;113:2154–2160.CrossRefGoogle ScholarPubMed
Cortes, J. Towards a cure for chronic myeloid leukemia: are we there yet? Semin Hematol 2010;47:299–301.CrossRefGoogle Scholar
Apperley, JF, Cortes, JE, Kim, DW, et al. Dasatinib in the treatment of chronic myeloid leukemia in accelerated phase after imatinib failure: the START A trial. J Clin Oncol 2009;27:3472–3479.CrossRefGoogle ScholarPubMed
Cortes, J, Kim, DW, Raffoux, E, et al. Efficacy and safety of dasatinib in imatinib-resistant or -intolerant patients with chronic myeloid leukemia in blast phase. Leukemia 2008;22:2176–2183.CrossRefGoogle Scholar
Kantarjian, H, Pasquini, R, Levy, V, et al. Dasatinib or high-dose imatinib for chronic-phase chronic myeloid leukemia resistant to imatinib at a dose of 400 to 600 milligrams daily: two-year follow-up of a randomized phase 2 study (START-R). Cancer 2009;115:4136–4147.CrossRefGoogle Scholar
Sawyers, CL. Even better kinase inhibitors for chronic myeloid leukemia. N Engl J Med 2010;362:2314–2315.CrossRefGoogle ScholarPubMed
Quintas-Cardama, A, Cortes, JE, O'Brien, S, et al. Dasatinib early intervention after cytogenetic or hematologic resistance to imatinib in patients with chronic myeloid leukemia. Cancer 2009;115:2912–2921.CrossRefGoogle ScholarPubMed
Kantarjian, H, Shah, NP, Hochhaus, A, et al. Dasatinib versus imatinib in newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med 2010;362:2260–2270.CrossRefGoogle ScholarPubMed
Weisberg, E, Manley, PW, Breitenstein, W, et al. Characterization of AMN107, a selective inhibitor of native and mutant Bcr-Abl. Cancer Cell 2005;7:129–141.CrossRefGoogle ScholarPubMed
Kantarjian, H, Giles, F, Bhalla, K, et al. Nilotinib in chronic myeloid leukemia patients in chronic phase (CML-CP) with imatinib (IM) resistance or intolerance: Longer follow-up results of a phase II study. J Clin Oncol 2009;27:7029.Google Scholar
Le Coutre, PD, Giles, F, Hochhaus, A, et al. Nilotinib in chronic myeloid leukemia patients in accelerated phase (CML-AP) with imatinib (IM) resistance or intolerance: Longer follow-up results of a phase II study. J Clin Oncol 2009;27:7057.Google Scholar
Jabbour, E, Kantarjian, HM, Baccarani, M, et al. Minimal cross-intolerance between nilotinib and imatinib in patients with imatinib-intolerant chronic myeloid leukemia in chronic phase (CML-CP) or accelerated phase (CML-AP). Blood 2008;112:1103.Google Scholar
Puttini, M, Coluccia, AM, Boschelli, F, et al. In vitro and in vivo activity of SKI-606, a novel Src-Abl inhibitor, against imatinib-resistant Bcr-Abl+ neoplastic cells. Cancer Res 2006;66:11314–11322.CrossRefGoogle ScholarPubMed
Cortes, J, Kantarjian, H, Brümmendorf, T, et al. Safety and efficacy of bosutinib (SKI-606) in patients with chronic phase chronic myeloid leukemia following resistance or intolerance to imatinib. J Clin Oncol 2010;28(Suppl):abstr 6502.CrossRefGoogle Scholar
Yokota, A, Kimura, S, Masuda, S, et al. INNO-406, a novel BCR-ABL/Lyn dual tyrosine kinase inhibitor, suppresses the growth of Ph+ leukemia cells in the central nervous system, and cyclosporine A augments its in vivo activity. Blood 2007;109:306–314.CrossRefGoogle ScholarPubMed
Agrawal, M, Garg, RJ, Cortes, J, Quintas-Cardama, A. Tyrosine kinase inhibitors: the first decade. Curr Hematol Malig Rep 2010;5:70–80.CrossRefGoogle ScholarPubMed
van Rhee, F, Szydlo, RM, Hermans, J, et al. Long-term results after allogeneic bone marrow transplantation for chronic myelogenous leukemia in chronic phase: a report from the Chronic Leukemia Working Party of the European Group for Blood and Marrow Transplantation. Bone Marrow Transplant 1997;207:553–560.CrossRefGoogle Scholar
Goldman, JM, Apperley, JF, Jones, L, et al. Bone marrow transplantation for patients with chronic myeloid leukemia. N Engl J Med 1986;314:202–207.CrossRefGoogle ScholarPubMed
Hansen, JA, Gooley, TA, Martin, PJ, et al. Bone marrow transplants from unrelated donors for patients with chronic myeloid leukemia. N Engl J Med 1998;338:962–968.CrossRefGoogle ScholarPubMed
McGlave, PB, Shu, XO, Wen, W, et al. Unrelated donor marrow transplantation for chronic myelogenous leukemia: 9 years' experience of the national marrow donor program. Blood 2000;95:2219–2225.Google ScholarPubMed
Davies, SM, DeFor, TE, McGlave, PB, et al. Equivalent outcomes in patients with chronic myelogenous leukemia after early transplantation of phenotypically matched bone marrow from related or unrelated donors. Am J Med 2001;110:339–346.CrossRefGoogle Scholar
Gratwohl, A, Hermans, J, Goldman, JM, et al. Risk assessment for patients with chronic myeloid leukaemia before allogeneic blood or marrow transplantation. Chronic Leukemia Working Party of the European Group for Blood and Marrow Transplantation. Lancet 1998;352:1087–1092.CrossRefGoogle ScholarPubMed
Gamis, AS, Haake, R, McGlave, P, Ramsay, NK. Unrelated-donor bone marrow transplantation for Philadelphia chromosome-positive chronic myelogenous leukemia in children. J Clin Oncol 1993;11:834–838.CrossRefGoogle ScholarPubMed
Dini, G, Rondelli, R, Miano, M, et al. Unrelated-donor bone marrow transplantation for Philadelphia chromosome-positive chronic myelogenous leukemia in children: experience of eight European Countries. The EBMT Paediatric Diseases Working Party. Bone Marrow Transplant 1996;18(Suppl 2):80–85.Google ScholarPubMed
Cwynarski, K, Roberts, IA, Iacobelli, S, et al. Stem cell transplantation for chronic myeloid leukemia in children. Blood 2003;102:1224–1231.CrossRefGoogle ScholarPubMed
Sasazuki, T, Juji, T, Morishima, Y, et al. Effect of matching of class I HLA alleles on clinical outcome after transplantation of hematopoietic stem cells from an unrelated donor. Japan Marrow Donor Program. N Engl J Med 1998;339:1177–1185.CrossRefGoogle Scholar
Petersdorf, EW, Gooley, TA, Anasetti, C, et al. Optimizing outcome after unrelated marrow transplantation by comprehensive matching of HLA class I and II alleles in the donor and recipient. Blood 1998;92:3515–3520.Google Scholar
Kolb, HJ, Mittermuller, J, Clemm, C, et al. Donor leukocyte transfusions for treatment of recurrent chronic myelogenous leukemia in marrow transplant patients. Blood 1990;76:2462–2465.Google ScholarPubMed
Collins, RH, Jr., Shpilberg, O, Drobyski, WR, et al. Donor leukocyte infusions in 140 patients with relapsed malignancy after allogeneic bone marrow transplantation. J Clin Oncol 1997;15:433–444.CrossRefGoogle ScholarPubMed
Locatelli, F. The role of repeat transplantation of haemopoietic stem cells and adoptive immunotherapy in treatment of leukaemia relapsing following allogeneic transplantation. Br J Haematol 1998;102:633–638.CrossRefGoogle ScholarPubMed
Raiola, AM, Van Lint, MT, Valbonesi, M, et al. Factors predicting response and graft-versus-host disease after donor lymphocyte infusions: a study on 593 infusions. Bone Marrow Transplant 2003;31:687–693.CrossRefGoogle ScholarPubMed
Goldman, JM. Chronic myeloid leukemia: a historical perspective. Semin Hematol 2010;47:302–311.CrossRefGoogle ScholarPubMed
Adamson, JW, Fialkow, PJ, Murphy, S, Prchal, JF, Steinmann, L. Polycythemia vera: stem-cell and probable clonal origin of the disease. N Engl J Med 1976;295:913–916.CrossRefGoogle ScholarPubMed
Prchal, JF, Axelrad, AA. Bone-marrow responses in polycythemia vera. N Engl J Med 1974;290:1382.Google ScholarPubMed
Eaves, CJ, Eaves, AC. Erythropoietin (Ep) dose–response curves for 3 classes of erythroid progenitors in normal human marrow and in patients with polycythemia-vera. Blood 1978;52:1196–1210.Google Scholar
Reid, CD, Fidler, J, Kirk, A. Endogenous erythroid clones (EEC) in polycythaemia and their relationship to diagnosis and the response to treatment. Br J Haematol 1988;68:395–400.CrossRefGoogle ScholarPubMed
Hess, G, Rose, P, Gamm, H, et al. Molecular analysis of the erythropoietin receptor system in patients with polycythaemia vera. Br J Haematol 1994;88:794–802.CrossRefGoogle ScholarPubMed
Mirza, AM, Correa, PN, Axelrad, AA. Increased basal and induced tyrosine phosphorylation of the insulin-like growth factor I receptor beta subunit in circulating mononuclear cells of patients with polycythemia vera. Blood 1995;86:877–882.Google ScholarPubMed
Wickrema, A, Chen, F, Namin, F, et al. Defective expression of the SHP-1 phosphatase in polycythemia vera. Exp Hematol 1999;27:1124–1132.CrossRefGoogle ScholarPubMed
Sui, X, Krantz, SB, Zhao, Z. Identification of increased protein tyrosine phosphatase activity in polycythemia vera erythroid progenitor cells. Blood 1997;90:651–657.Google ScholarPubMed
Roder, S, Steimle, C, Meinhardt, G, Pahl, HL. STAT3 is constitutively active in some patients with polycythemia rubra vera. Exp Hematol 2001;29:694–702.CrossRefGoogle ScholarPubMed
Dai, C, Krantz, SB. Increased expression of the INK4a/ARF locus in polycythemia vera. Blood 2001;97:3424–3432.CrossRefGoogle ScholarPubMed
Fruehauf, S, Topaly, J, Villalobos, M, et al. Development of a new quantitative PCR-based assay for the polycythemia rubra vera-1 (PRV-1) gene: Diagnostic and therapeutic implications. Blood 2001;98:629a.Google Scholar
Klippel, S, Strunck, E, Temerinac, S, et al. Quantification of PRV-1 expression, a molecular marker for the diagnosis of polycythemia vera. Blood 2001;98:470a.Google Scholar
Zeuner, A, Pedini, F, Signore, M, et al. Increased death receptor resistance and FLIPshort expression in polycythemia vera erythroid precursor cells. Blood 2006;107:3495–3502.CrossRefGoogle ScholarPubMed
Garcon, L, Rivat, C, James, C, et al. Constitutive activation of STAT5 and Bcl-xL overexpression can induce endogenous erythroid colony formation in human primary cells. Blood 2006;108:1551–1554.CrossRefGoogle ScholarPubMed
Moliterno, AR, Spivak, JL. Posttranslational processing of the thrombopoietin receptor is impaired in polycythemia vera. Blood 1999;94:2555–2561.Google ScholarPubMed
Le Blanc, K, Andersson, P, Samuelsson, J. Marked heterogeneity in protein levels and functional integrity of the thrombopoietin receptor c-mpl in polycythaemia vera. Br J Haematol 2000;108:80–85.CrossRefGoogle ScholarPubMed
Anstey, L, Kemp, N, Stafford, J, Tanner, R. Leukocyte alkaline-phosphatase activity in polycythaemia rubra vera. Br J Haematol 1963;9:91–100.CrossRefGoogle ScholarPubMed
Levine, RL, Wadleigh, M, Cools, J, et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell 2005;7:387–397.CrossRefGoogle ScholarPubMed
Scott, LM, Tong, W, Levine, RL, et al. JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. N Engl J Med 2007;356:459–468.CrossRefGoogle ScholarPubMed
Tefferi, A, Sirhan, S, Lasho, TL, et al. Concomitant neutrophil JAK2(V617F) mutation screening and PRV-1 expression analysis in myeloproliferative disorders and secondary polycythaemia. Br J Haematol 2005;131:166–171.CrossRefGoogle ScholarPubMed
Berlin, NI. Diagnosis and classification of the polycythemias. Semin Hematol 1975;12:339–351.Google ScholarPubMed
Thiele, J, Kvasnicka, HM, Orazi, A, Tefferi, A, Birgegard, G. Polycythemia vera. In Swerdlow, SH, Campos, E, Harris, NL, et al. (eds.) WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. Lyon: IARC Press, 2008:40–43.Google Scholar
Cario, H, McMullin, MF, Pahl, HL. Clinical and hematological presentation of children and adolescents with polycythemia vera. Ann Hematol 2009;88:713–719.CrossRefGoogle ScholarPubMed
Cario, H.Childhood polycythemias/erythrocytoses: classification, diagnosis, clinical presentation, and treatment. Ann Hematol 2005;84:137–145.CrossRefGoogle ScholarPubMed
Mitchell, MC, Boitnott, JK, Kaufman, S, Cameron, JL, Maddrey, WC. Budd–Chiari syndrome: etiology, diagnosis and management. Medicine 1982;61:199–218.CrossRefGoogle ScholarPubMed
Thomas, DJ, Marshall, J, Russell, RWR, et al. Cerebral blood-flow in polycythemia. Lancet 1977;ii:161–163.CrossRefGoogle Scholar
Jaillard, AS, Hommel, M, Mazetti, P. Prevalence of stroke at high-altitude (3380 m) in Cuzco, a town of Peru: a population-based study. Stroke 1995;26:562–568.CrossRefGoogle ScholarPubMed
Niazi, GA. Assessment of hemoglobin as risk factor in Saudi patients with stroke. Clin Res 1994;42:A261.Google Scholar
Najean, Y, Mugnier, P, Dresch, C, Rain, JD. Polycythemia-vera in young-people – an analysis of 58 cases diagnosed before 40 years. Br J Haematol 1987;67:285–291.CrossRefGoogle ScholarPubMed
Perea, G, Remacha, A, Besses, C, et al. Is polycythemia vera a serious disease in young adults? Haematologica 2001;86:543–544.Google ScholarPubMed
Zadek, I. Die Polycythämien. Erg Ges Med 1927;10:355.Google Scholar
Cautley, E.Chronic polycythemia. Lancet 1908;i:1204.CrossRefGoogle Scholar
Chiusolo, P, La Barbera, EO, Laurenti, L, et al. Clonal hemapoiesis and risk of thrombosis in young female patients with essential thrombocythemia. Exp Hematol 2001;29:670–676.CrossRefGoogle Scholar
Afshar-Kharghan, V, Lopez, JA, Gray, LA, et al. Hemostatic gene polymorphisms and the prevalence of thrombohemorrhagic complications in polycythemia vera and essential thrombocythemia. Blood 2001;98:471a.Google Scholar
Thiele, J, Kvasnicka, HM, Muehlhausen, K, et al. Polycythemia rubra vera versus secondary polycythemias. A clinicopathological evaluation of distinctive features in 199 patients. Pathol Res Pract 2001;197:77–84.CrossRefGoogle ScholarPubMed
Lundberg, LG, Lerner, R, Sundelin, P, et al. Bone marrow in polycythemia vera, chronic myelocytic leukemia, and myelofibrosis has an increased vascularity. Am J Pathology 2000;157:15–19.CrossRefGoogle ScholarPubMed
Videbaek, A.[Polycythemia vera; course and prognosis.]Ugeskr Laeger 1950;112:795–799.Google Scholar
Gray, AG, Boughton, BJ, Burt, DS, Struthers, GR. Basophils, histamine and gastric-acid secretion in chronic myeloproliferative disorders. Br J Haematol 1982;51:117–123.CrossRefGoogle ScholarPubMed
Perkins, J, Wilkinson, JF, Israels, MCG. Polycythaemia vera: clinical studies on series of 127 patients managed without radiation therapy. Quart J Med 1964;33: 499.Google ScholarPubMed
Westwood, NB, Gruszka-Westwood, AM, Pearson, CE, et al. The incidences of trisomy 8, trisomy 9 and D20S108 deletion in polycythaemia vera: an analysis of blood granulocytes using interphase fluorescence in situ hybridization. Br J Haematol 2000;110:839–846.CrossRefGoogle ScholarPubMed
Percy, MJ, Rumi, E. Genetic origins and clinical phenotype of familial and acquired erythrocytosis and thrombocytosis. Am J Hematol 2009;84:46–54.CrossRefGoogle ScholarPubMed
Prchal, JT, Sokol, L. “Benign erythrocytosis” and other familial and congenital polycythemias. Eur J Haematol 1996;57:263–268.CrossRefGoogle ScholarPubMed
Kralovics, R, Prchal, JT. Genetic heterogeneity of primary familial and congenital polycythemia. Am J Hematol 2001;68:115–121.CrossRefGoogle ScholarPubMed
Percy, MJ, Lee, FS. Familial erythrocytosis: molecular links to red blood cell control. Haematologica 2008;93:963–967.CrossRefGoogle ScholarPubMed
Patnaik, MM, Tefferi, A. The complete evaluation of erythrocytosis: congenital and acquired. Leukemia 2009;23:834–844.CrossRefGoogle Scholar
Ang, SO, Chen, H, Hirota, K, et al. Disruption of oxygen homeostasis underlies congenital Chuvash polycythemia. Nat Genet 2002;32:614–621.CrossRefGoogle Scholar
Lee, FS. Genetic causes of erythrocytosis and the oxygen-sensing pathway. Blood Rev 2008;22:321–332.CrossRefGoogle ScholarPubMed
Perrotta, S, Della, RF. The HIF2A gene in familial erythrocytosis. N Engl J Med 2008;358:1966–1967.Google ScholarPubMed
Huang, LJ, Shen, YM, Bulut, GB. Advances in understanding the pathogenesis of primary familial and congenital polycythaemia. Br J Haematol 2010;148:844–852.CrossRefGoogle ScholarPubMed
Lawrence, JH, Winchell, HS, Donald, WG. Leukemia in polycythemia vera: relationship to splenic myeloid metaplasia and therapeutic radiation dose. Ann Intern Med 1969;70:763–771.CrossRefGoogle ScholarPubMed
Silverstein, MN. Evolution into and treatment of late stage polycythemia-vera. Semin Hematol 1976;13:79–84.Google ScholarPubMed
Lippert, E, Boissinot, M, Kralovics, R, et al. The JAK2-V617F mutation is frequently present at diagnosis in patients with essential thrombocythemia and polycythemia vera. Blood 2006;108:1865–1867.CrossRefGoogle ScholarPubMed
Riuniti, O, Barbui, T, Finazzi, G, et al. Polycythemia-vera: the natural-history of 1213 patients followed for 20 years. Ann Intern Med 1995;123:656–664.Google Scholar
Diez-Martin, JL, Graham, DL, Petitt, RM, Dewald, GW. Chromosome studies in 104 patients with polycythemia vera. Mayo Clin Proc 1991;66:287–299.CrossRefGoogle ScholarPubMed
Swolin, B, Weinfeld, A, Westin, J. A prospective long-term cytogenetic study in polycythemia vera in relation to treatment and clinical course. Blood 1988;72:386–395.Google Scholar
Van Baren, N, Issa, A, Delannoy, A. Von Recklinghausen neurofibromatosis and hematologic malignancies: 2 case reports in adulthood. Acta Clin Belg 1993;48:164–170.CrossRefGoogle Scholar
Schnetz, H.Polycythemia vera mit Ausgang in Agranulocytose und Thrombarteriitis pulmonalis. Folia Haematol 1937;57:110.Google Scholar
Bethard, WF, Block, MH, Robson, M. Coexistent chronic lymphatic leukemia and polycythemia vera; morphologic and clinical studies with particular reference to unusual iron metabolism. Blood 1953;8:934–943.Google ScholarPubMed
Heinle, EW, Jr., Sarasti, HO, Garcia, D, Kenny, JJ, Westerman, MP. Polycythemia vera associated with lymphomatous diseases and myeloma. Arch Intern Med 1966;118:351–355.CrossRefGoogle ScholarPubMed
Rosenthal, N, Bassen, F. Course of polycythemia. Arch Intern Med 1938;62:903.CrossRefGoogle Scholar
Chievitz, E, Thiede, T. Complications and causes of death in polycythaemia vera. Acta Med Scand 1962;172:513.CrossRefGoogle ScholarPubMed
Ania, BJ, Suman, VJ, Sobell, JL, et al. Trends in the incidence of polycythemia-vera among Olmsted County, Minnesota residents, 1935–1989. Am J Hematol 1994;47:89–93.CrossRefGoogle ScholarPubMed
Berk, P, Waserman, L, Fruchtman, S, et al. Treatment of polycythemia vera: a summary of trials conducted by the polycythemia vera study group. In Wasserman, L, Berk, P, Berlin, N (eds.) Polycythemia Vera and the Myeloproliferative Disorders. Philadelphia, PA:Saunders, 1995:166–194.Google Scholar
Brodsky, I. Busulfan treatment of polycythemia-vera. Br J Haematol 1982;52:1–6.CrossRefGoogle Scholar
Kaplan, ME, Mack, K, Goldberg, JD, et al. Polycythemia-vera: an update. 2. Long-term management of polycythemia-vera with hydroxyurea: a progress report. Semin Hematol 1986;23:167–171.Google Scholar
Nand, S, Stock, W, Godwin, J, Fisher, SG. Leukemogenic risk of hydroxyurea therapy in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Am J Hematol 1996;52:42–46.3.0.CO;2-6>CrossRefGoogle ScholarPubMed
Najean, Y, Rain, JD. Treatment of polycythemia vera: use of P-32 alone or in combination with maintenance therapy using hydroxyurea in 461 patients greater than 65 years of age. Blood 1997;89:2319–2327.Google ScholarPubMed
Sacchi, S, Leoni, P, Liberati, M, et al. A prospective comparison between treatment with phlebotomy alone and with interferon-alpha in patients with polycythemia-vera. Ann Hematol 1994;68:247–250.CrossRefGoogle Scholar
Lengfelder, E, Berger, U, Hehlmann, R. Interferon alpha in the treatment of polycythemia vera. Ann Hematol 2000;79:103–109.CrossRefGoogle ScholarPubMed
Finelli, C, Gugliotta, L, Gamberi, B, et al. Relief of intractable pruritus in polycythemia-vera with recombinant interferon-alfa. Am J Hematol 1993;43:316–318.CrossRefGoogle ScholarPubMed
Kreft, A, Nolde, G, Busche, G, et al. Polycythaemia vera: bone marrow histopathology under treatment with interferon, hydroxyurea and busulphan. Eur J Haematol 2000;64:32–41.CrossRefGoogle ScholarPubMed
Kiladjian, JJ, Cassinat, B, Turlure, P, et al. High molecular response rate of polycythemia vera patients treated with pegylated interferon alpha-2a. Blood 2006;108:2037–2040.CrossRefGoogle ScholarPubMed
Anagrelide Study Group. Anagrelide, a therapy for thrombocythemic states: experience in 577 patients. Am J Med 1992;92:69–76.CrossRefGoogle Scholar
Harrison, CN, Campbell, PJ, Buck, G, et al. Hydroxyurea compared with anagrelide in high-risk essential thrombocythemia. N Engl J Med 2005;353:33–45.CrossRefGoogle ScholarPubMed
Jones, CM, Dickinson, TM. Polycythemia vera responds to imatinib mesylate. Am J Med Sci 2003;325:149–152.CrossRefGoogle ScholarPubMed
Silver, RT. Imatinib mesylate (Gleevec (TM)) reduces phlebotomy requirements in polycythemia vera. Leukemia 2003;17:1186–1187.CrossRefGoogle Scholar
Pack, G, Craver, LF. Radiation therapy of polycythemia vera. Am J Med Sci 1930;180:609.CrossRefGoogle Scholar
Harman, JB, Ledlie, EM. Survival of polycythaemia vera patients treated with radioactive phosphorus. Br Med J 1967;2:146.CrossRefGoogle ScholarPubMed
Jurado, M, Deeg, HJ, Gooley, T, et al. Haemopoietic stem cell transplantation for advanced polycythaemia vera or essential thrombocythaemia. Br J Haematol 2001;112:392–396.CrossRefGoogle Scholar
Stobart, K, Rogers, PCJ. Allogeneic bone-marrow transplantation for an adolescent with polycythemia-vera. Bone Marrow Transplant 1994;13:337–339.Google ScholarPubMed
Solberg, LA, Jr. Therapeutic options for essential thrombocythemia and polycythemia vera. Semin Oncol 2002;29(Suppl 10):10–15.CrossRefGoogle ScholarPubMed
Landolfi, R, Marchioli, R, Kutti, J, et al. Efficacy and safety of low-dose aspirin in polycythemia vera. N Engl J Med 2004;350:114–124.CrossRefGoogle ScholarPubMed
Thiele, J, Kvasnicka, HM, Orazi, A, Tefferi, A, Gisslinger, H. Essential thrombocythaemia. In Swerdlow, SH, Campos, E, Harris, NL, et al. (eds.) WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. Lyon: IARC Press, 2008:48–50.Google Scholar
Pikman, Y, Lee, BH, Mercher, T, et al. MPLW515L is Anovel somatic activating mutation in myelofibrosis with myeloid metaplasia. PloS Med 2006;3:1140–1151.CrossRefGoogle Scholar
Pardanani, AD, Levine, RL, Lasho, T, et al. MPL515 mutations in myeloproliferative and other myeloid disorders: a study of 1182 patients. Blood 2006;108:3472–3476.CrossRefGoogle ScholarPubMed
Jensen, MK, Brown, PD, Nielsen, OJ, Hasselbalch, HC. Incidence, clinical features and outcome of essential thrombocythaemia in a well defined geographical area. Eur J Haematol 2000;65:132–139.CrossRefGoogle Scholar
Johansson, P, Kutti, J, Andreasson, B, et al. Trends in the incidence of chronic Philadelphia chromosome negative (Ph−) myeloproliferative disorders in the city of Goteborg, Sweden, during 1983–99. J Intern Med 2004;256:161–165.CrossRefGoogle ScholarPubMed
Ruggeri, M, Tosetto, A, Frezzato, M, Rodeghiero, F. The rate of progression to polycythemia vera or essential thrombocythemia in patients with erythrocytosis or thrombocytosis. Ann Intern Med 2003;139:470–475.CrossRefGoogle ScholarPubMed
Hasle, H.Incidence of essential thrombocythaemia in children. Br J Haematol 2000;110:751.CrossRefGoogle ScholarPubMed
Randi, ML, Putti, MC, Fabris, F, et al. Features of essential thrombocythaemia in childhood: a study of five children. Br J Haematol 2000;108:86–89.CrossRefGoogle ScholarPubMed
Randi, ML, Putti, MC, Scapin, M, et al. Pediatric patients with essential thrombocythemia are mostly polyclonal and V617FJAK2 negative. Blood 2006;108:3600–3602.CrossRefGoogle ScholarPubMed
Chaiter, Y, Brenner, B, Aghai, E, Tatarsky, I. High-incidence of myeloproliferative disorders in Ashkenazi Jews in northern Israel. Leuk Lymphoma 1992;7:251–255.CrossRefGoogle ScholarPubMed
Fialkow, PJ, Faguet, GB, Jacobson, RJ, Vaidya, K, Murphy, S. Evidence that essential thrombocythemia is a clonal disorder with origin in a multipotent stem-cell. Blood 1981;58:916–919.Google Scholar
Harrison, CN, Gale, RE, Machin, SJ, Linch, DC. A large proportion of patients with a diagnosis of essential thrombocythemia do not have a clonal disorder and may be at lower risk of thrombotic complications. Blood 1999;93:417–424.Google Scholar
Antonioli, E, Guglielmelli, P, Pancrazzi, A, et al. Clinical implications of the JAK2 V617F mutation in essential thrombocythemia. Leukemia 2005;19:1847–1849.CrossRefGoogle ScholarPubMed
Wolanskyj, AP, Lasho, TL, Schwager, SM, et al. JAK2(V617F) mutation in essential thrombocythaemia: clinical associations and long-term prognostic relevance. Br J Haematol 2005;131:208–213.CrossRefGoogle ScholarPubMed
Juvonen, E, Ikkala, E, Oksanen, K, Ruutu, T. Megakaryocyte and erythroid colony formation in essential thrombocythemia and reactive thrombocytosis: diagnostic-value and correlation to complications. Br J Haematol 1993;83:192–197.CrossRefGoogle ScholarPubMed
Axelrad, AA, Eskinazi, D, Correa, PN, Amato, D. Hypersensitivity of circulating progenitor cells to megakaryocyte growth and development factor (PEG-rHu MGDF) in essential thrombocythemia. Blood 2000;96:3310–3321.Google Scholar
Messinezy, M, Westwood, NB, El Hemaidi, I, et al. Serum erythropoietin values in erythrocytoses and in primary thrombocythaemia. Br J Haematol 2002;117:47–53.CrossRefGoogle ScholarPubMed
Yoon, SY, Li, CY, Tefferi, A. Megakaryocyte c-Mp1 expression in chronic myeloproliferative disorders and the myelodysplastic syndrome: immunoperoxidase staining patterns and clinical correlates. Eur J Haematol 2000;65:170–174.CrossRefGoogle Scholar
Harrison, CN, Gale, RE, Pezella, F, et al. Platelet c-mpl expression is dysregulated in patients with essential thrombocythaemia but this is not of diagnostic value. Br J Haematol 1999;107:139–147.CrossRefGoogle Scholar
Tefferi, A, Lasho, TL, Wolanskyj, AP, Mesa, RA. Neutrophil PRV-1 expression across the chronic myeloproliferative disorders and in secondary or spurious polycythemia. Blood 2004;103:3547–3548.CrossRefGoogle ScholarPubMed
Koch, CA, Lasho, TL, Tefferi, A. Platelet-rich plasma serotonin levels in chronic myeloproliferative disorders: evaluation of diagnostic use and comparison with the neutrophil PRV-1 assay. Br J Haematol 2004;127:34–39.CrossRefGoogle ScholarPubMed
Kobayashi, S, Teramura, M, Hoshino, S, et al. Circulating megakaryocyte progenitors in myeloproliferative disorders are hypersensitive to interleukin-3. Br J Haematol 1993;83:539–544.CrossRefGoogle ScholarPubMed
Wang, JC, Chen, C, Novetsky, AD, et al. Blood thrombopoietin levels in clonal thrombocytosis and reactive thrombocytosis. Am J Med 1998;104:451–455.CrossRefGoogle ScholarPubMed
Cerutti, A, Custodi, P, Duranti, M, Noris, P, Balduini, CL. Thrombopoietin levels in patients with primary and reactive thrombocytosis. Br J Haematol 1997;99:281–284.CrossRefGoogle ScholarPubMed
Wang, JC, Chen, C, Lou, LH, Mora, M. Blood thrombopoietin, IL-6 and IL-11 levels in patients with agnogenic myeloid metaplasia. Leukemia 1997;11:1827–1832.CrossRefGoogle ScholarPubMed
Moliterno, AR, Hankins, WD, Spivak, JL. Impaired expression of the thrombopoietin receptor by platelets from patients with polycythemia vera. N Engl J Med 1998;338:572–580.CrossRefGoogle ScholarPubMed
Fabris, F, Randi, ML. Essential thrombocythemia: past and present. Intern Emerg Med 2009;4:381–388.CrossRefGoogle ScholarPubMed
Randi, ML, Putti, MC, Pacquola, E, et al. Normal thrombopoietin and its receptor (c-mpl) genes in children with essential thrombocythemia. Pediatr Blood Cancer 2005;44:47–50.CrossRefGoogle ScholarPubMed
Elliott, MA, Tefferi, A. Thrombosis and haemorrhage in polycythaemia vera and essential thrombocythaemia. Br J Haematol 2005;128:275–290.CrossRefGoogle ScholarPubMed
Michiels, JJ, Berneman, ZN, Schroyens, W, van Vliet, HHDM. Pathophysiology and treatment of platelet-mediated microvascular disturbances, major thrombosis and bleeding complications in essential thrombocythaemia and polycythaemia vera. Platelets 2004;15:67–84.CrossRefGoogle ScholarPubMed
Barbui, T, Barosi, G, Grossi, A, et al. Practice guidelines for the therapy of essential thrombocythemia. A statement from the Italian Society of Hematology, the Italian Society of Experimental Hematology and the Italian Group for Bone Marrow Transplantation. Haematologica 2004;89:215–232.Google Scholar
Falanga, A, Marchetti, M, Vignoli, A, Balducci, D, Barbui, T. Leukocyte-platelet interaction in patients with essential thrombocythemia and polycythemia vera. Exp Hematol 2005;33:523–530.CrossRefGoogle ScholarPubMed
Wolanskyj, AP, Schwager, SM, McClure, RF, Larson, DR, Tefferi, A. Essential thrombocythemia beyond the first decade: life expectancy, long-term complication rates, and prognostic factors. Mayo Clin Proc 2006;81:159–166.CrossRefGoogle ScholarPubMed
Budde, U, Schaefer, G, Mueller, N, et al. Acquired von Willebrands disease in the myeloproliferative syndrome. Blood 1984;64:981–985.Google ScholarPubMed
Besses, C, Cervantes, F, Pereira, A, et al. Major vascular complications in essential thrombocythemia: a study of the predictive factors in a series of 148 patients. Leukemia 1999;13:150–154.CrossRefGoogle Scholar
Michiels, JJ, Berneman, Z, van Bockstaele, D, et al. Clinical and laboratory features, pathobiology of platelet-mediated thrombosis and bleeding complications, and the molecular etiology of essential thrombocythemia and polycythemia vera: therapeutic implications. Semin Thromb Hemostas 2006;32:174–207.CrossRefGoogle ScholarPubMed
Tefferi, A, Fonseca, R, Pereira, DL, Hoagland, HC. A long-term retrospective study of young women with essential thrombocythemia. Mayo Clin Proc 2001;76:22–28.CrossRefGoogle ScholarPubMed
Fenaux, P, Simon, M, Caulier, MT, et al. Clinical course of essential thrombocythemia in 147 cases. Cancer 1990;66:549–556.3.0.CO;2-6>CrossRefGoogle ScholarPubMed
Michiels, JJ, van Genderen, PJJ, Lindemans, J, van Vliet, HHDM. Erythromelalgic, thrombotic and hemorrhagic manifestations in 50 cases of thrombocythemia. Leuk Lymphoma 1996;22:47–56.CrossRefGoogle ScholarPubMed
Michiels, JJ, Koudstaal, PJ, Mulder, AH, van Vliet, HHDM. Transient neurologic and ocular manifestations in primary thrombocythemia. Neurology 1993;43:1107–1110.CrossRefGoogle ScholarPubMed
Gangat, N, Wolanskyj, AP, Tefferi, A. Abdominal vein thrombosis in essential thrombocythemia: prevalence, clinical correlates, and prognostic implications. Eur J Haematol 2006;77:327–333.CrossRefGoogle ScholarPubMed
Cervantes, F, Passamonti, F, Barosi, G. Life expectancy and prognostic factors in the classic BCR/ABL-negative myeloproliferative disorders. Leukemia 2008;22:905–914.CrossRefGoogle ScholarPubMed
Vannucchi, AM, Antonioli, E, Guglielmelli, P, et al. Clinical profile of homozygous JAK2 617V > F mutation in patients with polycythemia vera or essential thrombocythemia. Blood 2007;110:840–846.CrossRefGoogle ScholarPubMed
van Genderen, PJJ, Budde, U, Michiels, JJ, et al. The reduction of large von Willebrand factor multimers in plasma in essential thrombocythaemia is related to the platelet count. Br J Haematol 1996;93:899.Google ScholarPubMed
Tefferi, A, Ho, TC, Ahmann, GJ, Katzmann, JA, Greipp, PR. Plasma interleukin-6 and C-reactive protein-levels in reactive versus clonal thrombocytosis. Am J Med 1994;97:374–378.CrossRefGoogle ScholarPubMed
Osselaer, JC, Jamart, J, Scheiff, JM. Platelet distribution width for differential diagnosis of thrombocytosis. Clin Chem 1997;43:1072–1076.Google ScholarPubMed
Michiels, JJ, Berneman, Z, Schroyens, W, et al. Philadelphia (Ph) chromosome-positive thrombocythemia without features of chronic myeloid leukemia in peripheral blood: natural history and diagnostic differentiation from Ph-negative essential thrombocythemia. Ann Hematol 2004;83:504–512.CrossRefGoogle ScholarPubMed
Thiele, J, Kvasnicka, HM, Diehl, V, Fischer, R, Michiels, JJ. Clinicopathological diagnosis and differential criteria of thrombocythemias in various myeloproliferative disorders by histopathology, histochemistry and immunostaining from bone marrow biopsies. Leuk Lymphoma 1999;33:207–218.CrossRefGoogle ScholarPubMed
Thiele, J, Kvasnicka, HM. Clinicopathological criteria for differential diagnosis of thrombocythemias in various myeloproliferative disorders. Semin Thromb Hemostas 2006;32:219–230.CrossRefGoogle ScholarPubMed
Tefferi, A, Elliott, MA. Schistocytes on the peripheral blood smear. Mayo Clin Proc 2004;79:809.CrossRefGoogle ScholarPubMed
Arora, B, Sirhan, S, Hoyer, JD, Mesa, RA, Tefferi, A. Peripheral blood CD34 count in myelofibrosis with myeloid metaplasia: a prospective evaluation of prognostic value in 94 patients. Br J Haematol 2005;128:42–48.CrossRefGoogle ScholarPubMed
Steensma, DP, Tefferi, A. Cytogenetic and molecular genetic aspects of essential thrombocythemia. Acta Haematol 2002;108:55–65.CrossRefGoogle ScholarPubMed
Tefferi, A, Gilliland, DG. The JAK2(V617F) tyrosine kinase mutation in myeloproliferative disorders: status report and immediate implications for disease classification and diagnosis. Mayo Clin Proc 2005;80:947–958.CrossRefGoogle Scholar
Gonzalez-Gay, MA, Lopez-Diaz, MJ, Barros, S, et al. Giant cell arteritis: laboratory tests at the time of diagnosis in a series of 240 patients. Medicine 2005;84:277–290.CrossRefGoogle Scholar
Yamazaki-Nakashimada, MA, Espinosa-Lopez, M, Hernandez-Bautista, V, Espinosa-Padilla, S, Espinosa-Rosales, F. Catastrophic Kawasaki disease or juvenile polyarteritis nodosa? Semin Arthritis Rheum 2006;35:349–354.CrossRefGoogle ScholarPubMed
Chanet, V, Tournilhac, O, Dieu-Bellamy, V, et al. Isolated spleen agenesis: a rare cause of thrombocytosis mimicking essential thrombocythemia. Haematologica 2000;85:1211–1213.Google ScholarPubMed
Croese, J, Harris, O, Bain, B. Celiac-disease: hematological features, and delay in diagnosis. Med J Aust 1979;2:335–338.Google Scholar
Gertz, MA, Kyle, RA, Greipp, PR. Hyposplenism in primary systemic amyloidosis. Ann Intern Med 1983;98:475–477.CrossRefGoogle ScholarPubMed
Dawson, AA, Bennett, B, Jones, PF, Munro, A. Thrombotic risks of staging laparotomy with splenectomy in Hodgkins-disease. Br J Surgery 1981;68:842–845.CrossRefGoogle Scholar
Boxer, MA, Braun, J, Ellman, L. Thromboembolic risk of postsplenectomy thrombocytosis. Arch Surg 1978;113:808–809.CrossRefGoogle ScholarPubMed
Valade, N, Decailliot, F, Rebufat, Y, et al. Thrombocytosis after trauma: incidence, aetiology, and clinical significance. Br J Anaesth 2005;94:18–23.CrossRefGoogle ScholarPubMed
Akan, H, Guven, N, Aydogdu, I, et al. Thrombopoietic cytokines in patients with iron deficiency anemia with or without thrombocytosis. Acta Haematol 2000;103:152–156.CrossRefGoogle ScholarPubMed
Deray, G, Lejonc, JL, Galacteros, F. Thrombocytosis as a feature of iron-deficiency therapeutic correction. Arch Intern Med 1984;144:414–415.CrossRefGoogle ScholarPubMed
Kondo, T, Okabe, M, Sanada, M, et al. Familial essential thrombocythemia associated with one-base deletion in the 5′-untranslated region of the thrombopoietin gene. Blood 1998;92:1091–1096.Google ScholarPubMed
Glembotsky, AC, Korin, L, Lev, PR, et al. Screening for MPL mutations in essential thrombocythemia and primary myelofibrosis: normal MPL expression and absence of constitutive STAT3 and STAT5 activation in MPLW515L-positive platelets. Eur J Haematol 2010;84:398–405.CrossRefGoogle ScholarPubMed
Wiestner, A, Padosch, SA, Ghilardi, N, et al. Hereditary thrombocythaemia is a genetically heterogeneous disorder: exclusion of TPO and MPL in two families with hereditary thrombocythaemia. Br J Haematol 2000;110:104–109.CrossRefGoogle ScholarPubMed
Gangat, N, Wolanskyj, AP, McClure, RF, et al. Risk stratification for survival and leukemic transformation in essential thrombocythemia: a single institutional study of 605 patients. Leukemia 2007;21:270–276.CrossRefGoogle ScholarPubMed
Harrison, CN. Essential thrombocythaemia: challenges and evidence-based management. Br J Haematol 2005;130:153–165.CrossRefGoogle ScholarPubMed
Campbell, PJ, Scott, LM, Buck, G, et al. Definition of subtypes of essential thrombocythaemia and relation to polycythaemia vera based on JAK2 V617F mutation status: a prospective study. Lancet 2005;366:1945–1953.CrossRefGoogle ScholarPubMed
Zamora, L, Espinet, B, Florensa, L, et al. Clonality analysis by HUMARA assay in Spanish females with essential thrombocythemia and polycythemia vera. Haematologica 2005;90:259–261.Google ScholarPubMed
Vannucchi, AM, Grossi, A, Pancrazzi, A, et al. PRV-1, erythroid colonies and platelet Mpl are unrelated to thrombosis in essential thrombocythaemia. Br J Haematol 2004;127:214–219.CrossRefGoogle ScholarPubMed
Cortelazzo, S, Finazzi, G, Ruggeri, M, et al. Hydroxyurea for patients with essential thrombocythemia and a high risk of thrombosis. N Engl J Med 1995;332:1132–1136.CrossRefGoogle Scholar
Ruggeri, M, Finazzi, G, Tosetto, A, et al. No treatment for low-risk thrombocythaemia: results from a prospective study. Br J Haematol 1998;103:772–777.CrossRefGoogle ScholarPubMed
Storen, EC, Tefferi, A. Long-term use of anagrelide in young patients with essential thrombocythemia. Blood 2001;97:863–866.CrossRefGoogle ScholarPubMed
Silver, RT. Interferon alfa: effects of long-term treatment for polycythemia vera. Semin Hematol 1997;34:40–50.Google ScholarPubMed
Dror, Y, Blanchette, VS. Essential thrombocythaemia in children. Br J Haematol 1999;107:691–698.CrossRefGoogle ScholarPubMed
Jacobson, RJ, Salo, A, Fialkow, PJ. Agnogenic myeloid metaplasia: clonal proliferation of hematopoietic stem-cells with secondary myelofibrosis. Blood 1978;51:189–194.Google ScholarPubMed
Mesa, RA, Silverstein, MN, Jacobsen, SJ, Wollan, PC, Tefferi, A. Population-based incidence and survival figures in essential thrombocythemia and agnogenic myeloid metaplasia: an Olmsted County study, 1976–1995. Am J Hematol 1999;61:10–15.3.0.CO;2-I>CrossRefGoogle ScholarPubMed
Cervantes, F, Barosi, G, Hernandez-Boluda, JC, Marchetti, M, Montserrat, E. Myelofibrosis with myeloid metaplasia in adult individuals 30 years old or younger: presenting features, evolution and survival. Eur J Haematol 2001;66:324–327.CrossRefGoogle ScholarPubMed
Sekhar, M, Prentice, HG, Popat, U, et al. Idiopathic myelofibrosis in children. Br J Haematol 1996;93:394–397.CrossRefGoogle ScholarPubMed
Altura, RA, Head, DR, Wang, WC. Long-term survival of infants with idiopathic myelofibrosis. Br J Haematol 2000;109:459–462.CrossRefGoogle ScholarPubMed
Tondel, M, Persson, B, Carstensen, J. Myelofibrosis and benzene exposure. Occup Med (Oxford) 1995;45:51–52.CrossRefGoogle ScholarPubMed
Honda, Y, Delzell, E, Cole, P. An updated study of mortality among workers at a petroleum manufacturing plant. J Occup Environ Med 1995;37:194–200.CrossRefGoogle Scholar
Bastrup-Madsen, P, Jensen, BN. Myelofibrosis with myeloid metaplasia and pancytopenia after thorotrast injection. Acta Med Scand 1971;189:355–358.CrossRefGoogle ScholarPubMed
Jones, LC, Tefferi, A, Idos, GE, et al. RARbeta2 is a candidate tumor suppressor gene in myelofibrosis with myeloid metaplasia. Oncogene 2004;23:7846–7853.CrossRefGoogle ScholarPubMed
Chagraoui, H, Komura, E, Tulliez, M, et al. Prominent role of TGF-beta 1 in thrombopoietin-induced myelofibrosis in mice. Blood 2002;100:3495–3503.CrossRefGoogle ScholarPubMed
Chagraoui, H, Tulliez, M, Smayra, T, et al. Stimulation of osteoprotegerin production is responsible for osteosclerosis in mice overexpressing TPO. Blood 2003;101:2983–2989.CrossRefGoogle ScholarPubMed
Vannucchi, AM, Bianchi, L, Cellai, C, et al. Development of myelofibrosis in mice genetically impaired for Gata-1 expression (Gata-1(low) mice). Blood 2002;100:1123–1132.CrossRefGoogle Scholar
Schmitt, A, Jouault, H, Guichard, J, et al. Pathologic interaction between megakaryocytes and polymorphonuclear leukocytes in myelofibrosis. Blood 2000;96:1342–1347.Google ScholarPubMed
Xu, M, Bruno, E, Chao, J, et al. Constitutive mobilization of CD34+cells into the peripheral blood in idiopathic myelofibrosis may be due to the action of a number of proteases. Blood 2005;105:4508–4515.CrossRefGoogle ScholarPubMed
Massa, M, Rosti, V, Ramajoli, I, et al. Circulating CD34+, CD133+, and vascular endothelial growth factor receptor 2-positive endothelial progenitor cells in myelofibrosis with myeloid metaplasia. J Clin Oncol 2005;23:5688–5695.CrossRefGoogle ScholarPubMed
Wolf, BC, Neiman, RS. Hypothesis: splenic filtration and the pathogenesis of extramedullary hematopoiesis in agnogenic myeloid metaplasia. Hematol Pathol 1987;1:77–80.Google ScholarPubMed
Steensma, DP, Dewald, GW, Lasho, TL, et al. The JAK2 V617F activating tyrosine kinase mutation is an infrequent event in both “atypical” myeloproliferative disorders and myelodysplastic syndromes. Blood 2005;106:1207–1209.CrossRefGoogle ScholarPubMed
Wernig, G, Mercher, T, Okabe, R, et al. Expression of JAK2 V617F causes a polycythemia vera-like disease with associated myelofibrosis in a murine bone marrow transplant model. Blood 2006;107:4274–4281.CrossRefGoogle Scholar
Lacout, C, Pisani, DF, Tulliez, M, et al. JAK2V617F expression in murine hematopoietic cells leads to MPD mimicking human PV with secondary myelofibrosis. Blood 2006;108:1652–1660.CrossRefGoogle ScholarPubMed
Tefferi, A, Mesa, RA, Schroeder, G, et al. Cytogenetic findings and their clinical relevance in myelofibrosis with myeloid metaplasia. Br J Haematol 2001;113:763–771.CrossRefGoogle ScholarPubMed
Dingli, D, Grand, FH, Mahaffey, V, et al. Der(6)t(1;6)(q21–23;p21.3): a specific cytogenetic abnormality in myelofibrosis with myeloid metaplasia. Br J Haematol 2005;130:229–232.CrossRefGoogle Scholar
Tefferi, A, Meyer, RG, Wyatt, WA, Dewald, GW. Comparison of peripheral blood interphase cytogenetics with bone marrow karyotype analysis in myelofibrosis with myeloid metaplasia. Br J Haematol 2001;115:316–319.CrossRefGoogle ScholarPubMed
Al Assar, O, Ul-Hassan, A, Brown, R, et al. Gains on 9p are common genomic aberrations in idiopathic myelofibrosis: a comparative genomic hybridization study. Br J Haematol 2005;129:66–71.CrossRefGoogle Scholar
Cervantes, F, Alvarez-Larran, A, Arellano-Rodrigo, E, et al. Frequency and risk factors for thrombosis in idiopathic myelofibrosis: analysis in a series of 155 patients from a single institution. Leukemia 2006;20:55–60.CrossRefGoogle Scholar
Jaroch, MT, Broughan, TA, Hermann, RE. The natural history of splenic infarction. Surgery 1986;100:743–750.Google ScholarPubMed
Koch, CA, Li, CY, Mesa, RA, Tefferi, A. Nonhepatosplenic extramedullary hematopoiesis: associated diseases, pathology, clinical course, and treatment. Mayo Clin Proc 2003;78:1223–1233.CrossRefGoogle ScholarPubMed
Visani, G, Finelli, C, Castelli, U, et al. Myelofibrosis with myeloid metaplasia: clinical and haematological parameters predicting survival in a series of 133 patients. Br J Haematol 1990;75:4–9.CrossRefGoogle Scholar
Dupriez, B, Morel, P, Demory, JL, et al. Prognostic factors in agnogenic myeloid metaplasia: a report on 195 cases with a new scoring system. Blood 1996;88:1013–1018.Google ScholarPubMed
Kreft, A, Weiss, M, Wiese, B, et al. Chronic idiopathic myelofibrosis: prognostic impact of myelofibrosis and clinical parameters on event-free survival in 122 patients who presented in prefibrotic and fibrotic stages. A retrospective study identifying subgroups of different prognoses by using the RECPAM method. Ann Hematol 2003;82:605–611.CrossRefGoogle ScholarPubMed
Thiele, J, Kvasnicka, HM, Facchetti, F, et al. European consensus on grading bone marrow fibrosis and assessment of cellularity. Haematologica 2005;90:1128–1132.Google ScholarPubMed
Thiele, J, Kvasnicka, HM. Hematopathologic findings in chronic idiopathic myelofibrosis. Semin Oncol 2005;32:380–394.CrossRefGoogle ScholarPubMed
Dingli, D, Utz, JP, Krowka, MJ, Oberg, AL, Tefferi, A. Unexplained pulmonary hypertension in chronic myeloproliferative disorders. Chest 2001;120:801–808.CrossRefGoogle ScholarPubMed
Okamura, T, Kinukawa, N, Niho, Y, Mizoguchi, H. Primary chronic myelofibrosis: clinical and prognostic evaluation in 336 Japanese patients. Int J Hematol 2001;73:194–198.CrossRefGoogle ScholarPubMed
Mesa, RA, Tefferi, A. Survival and outcomes to therapy in leukemic transformation of myelofibrosis with myeloid metaplasia; a single institution experience with 91 patients. Blood 2003;102:917a–918a.Google Scholar
Dingli, D, Schwager, SM, Mesa, RA, Li, CY, Tefferi, A. Prognosis in transplant-eligible patients with agnogenic myeloid metaplasia: a simple CBC-based scoring system. Cancer 2006;106:623–630.CrossRefGoogle ScholarPubMed
Kvasnicka, HM, Thiele, J, Werden, C, et al. Prognostic factors in idiopathic (primary) osteomyelofibrosis. Cancer 1997;80:708–719.3.0.CO;2-I>CrossRefGoogle ScholarPubMed
Tefferi, A, Dingli, D, Li, CY, Dewald, GW. Prognostic diversity among cytogenetic abnormalities in myelofibrosis with myeloid metaplasia. Cancer 2005;104:1656–1660.CrossRefGoogle ScholarPubMed
Dingli, D, Schwager, SM, Mesa, RA, et al. Presence of unfavorable cytogenetic abnormalities is the strongest predictor of poor survival in secondary myelofibrosis. Cancer 2006;106:1985–1989.CrossRefGoogle ScholarPubMed
Cervantes, F, Alvarez-Larran, A, Hernandez-Boluda, JC, et al. Erythropoietin treatment of the anaemia of myelofibrosis with myeloid metaplasia: results in 20 patients and review of the literature. Br J Haematol 2004;127:399–403.CrossRefGoogle ScholarPubMed
Cervantes, F, Alvarez-Larran, A, Domingo, A, Arellano-Rodrigo, E, Montserrat, E. Efficacy and tolerability of danazol as a treatment for the anaemia of myelofibrosis with myeloid metaplasia: long-term results in 30 patients. Br J Haematol 2005;129:771–775.CrossRefGoogle ScholarPubMed
Elliott, MA, Mesa, RA, Li, CY, et al. Thalidomide treatment in myelofibrosis with myeloid metaplasia. Br J Haematol 2002;117:288–296.CrossRefGoogle ScholarPubMed
Tefferi, A, Cortes, J, Verstovsek, S, et al. Lenalidomide therapy in myelofibrosis with myeloid metaplasia. Blood 2006;108:1158–1164.CrossRefGoogle ScholarPubMed
Mesa, RA, Steensma, DP, Pardanani, A, et al. A phase 2 trial of combination low-dose thalidomide and prednisone for the treatment of myelofibrosis with myeloid metaplasia. Blood 2003;101:2534–2541.CrossRefGoogle ScholarPubMed
Huang, J, Li, CY, Mesa, RA, et al. Risk factors for leukemic transformation in patients with primary myelofibrosis. Cancer 2008;112:2726–2732.CrossRefGoogle ScholarPubMed
Tefferi, A, Silverstein, MN, Li, CY. 2-Chlorodeoxyadenosine treatment after splenectomy in patients who have myelofibrosis with myeloid metaplasia. Br J Haematol 1997;99:352–357.CrossRefGoogle ScholarPubMed
Petti, MC, Latagliata, R, Spadea, T, et al. Melphalan treatment in patients with myelofibrosis with myeloid metaplasia. Br J Haematol 2002;116:576–581.CrossRefGoogle ScholarPubMed
Shojania, AM. Reversion of post polycythemia vera (PV) myelofibrosis (MF) to PV following busulfan therapy. Blood 2002;100:343b.Google Scholar
Gilbert, HS. Long term treatment of myeloproliferative disease with interferon-alpha-2b: feasibility and efficacy. Cancer 1998;83:1205–1213.3.0.CO;2-8>CrossRefGoogle ScholarPubMed
Tefferi, A, Elliot, MA, Yoon, SY, et al. Clinical and bone marrow effects of interferon alfa therapy in myelofibrosis with myeloid metaplasia. Blood 2001;97:1896.CrossRefGoogle ScholarPubMed
Kiladjian, JJ, Cassinat, B, Chevret, S, et al. Pegylated interferon-alfa-2a induces complete hematologic and molecular responses with low toxicity in polycythemia vera. Blood 2008;112:3065–3072.CrossRefGoogle ScholarPubMed
Quintas-Cardama, A, Kantarjian, H, Manshouri, T, et al. Pegylated interferon alfa-2a yields high rates of hematologic and molecular response in patients with advanced essential thrombocythemia and polycythemia vera. J Clin Oncol 2009;27:5418–5424.CrossRefGoogle ScholarPubMed
Agrawal, M, Garg, RJ, Cortes, J, et al. Experimental therapeutics for patients with myeloproliferative neoplasias. Cancer 2011;117:662–676.CrossRefGoogle ScholarPubMed
Tefferi, A, Mesa, RA, Nagorney, DM, Schroeder, G, Silverstein, MN. Splenectomy in myelofibrosis with myeloid metaplasia: a single-institution experience with 223 patients. Blood 2000;95:2226–2233.Google ScholarPubMed
Rambaldi, A.Therapy of myelofibrosis (excluding JAK2 inhibitors). Int J Hematol 2010;91:180–188.CrossRefGoogle Scholar
Steensma, DP, Hook, CC, Stafford, SL, Tefferi, A. Low-dose, single-fraction, whole-lung radiotherapy for pulmonary hypertension associated with myelofibrosis with myeloid metaplasia. Br J Haematol 2002;118:813–816.CrossRefGoogle ScholarPubMed
Deeg, HJ, Gooley, TA, Flowers, MED, et al. Allogeneic hematopoietic stem cell transplantation for myelofibrosis. Blood 2003;102:3912–3918.CrossRefGoogle ScholarPubMed
Ditschkowski, M, Beelen, DW, Trenschel, R, Koldehoff, M, Elmaagacli, AH. Outcome of allogeneic stem cell transplantation in patients with myelofibrosis. Bone Marrow Transplant 2004;34:807–813.CrossRefGoogle ScholarPubMed
Daly, A, Song, K, Nevill, T, et al. Stem cell transplantation for myelofibrosis: a report from two Canadian centers. Bone Marrow Transplant 2003;32:35–40.CrossRefGoogle ScholarPubMed
Guardiola, P, Anderson, JE, Gluckman, E. Myelofibrosis with myeloid metaplasia. N Engl J Med 2000;343:659.Google ScholarPubMed
Kroger, N, Holler, E, Kobbe, G, et al. Allogeneic stem cell transplantation after reduced-intensity conditioning in patients with myelofibrosis: a prospective, multicenter study of the Chronic Leukemia Working Party of the European Group for Blood and Marrow Transplantation. Blood 2009;114:5264–5270.CrossRefGoogle ScholarPubMed
Devine, SM, Hoffman, R, Verma, A, et al. Allogeneic blood cell transplantation following reduced-intensity conditioning is effective therapy for older patients with myelofibrosis with myeloid metaplasia. Blood 2002;99:2255–2258.CrossRefGoogle ScholarPubMed
Rondelli, D, Barosi, G, Bacigalupo, A, et al. Allogeneic hematopoietic stem-cell transplantation with reduced-intensity conditioning in intermediate- or high-risk patients with myelofibrosis with myeloid metaplasia. Blood 2005;105:4115–4119.CrossRefGoogle ScholarPubMed
Patriarca, F, Bacigalupo, A, Sperotto, A, et al. Allogeneic hematopoietic stem cell transplantation in myelofibrosis: the 20-year experience of the Gruppo Italiano Trapianto di Midollo Osseo (GITMO). Haematologica 2008;93:1514–1522.CrossRefGoogle Scholar
Bacigalupo, A, Soraru, M, Dominietto, A, et al. Allogeneic hemopoietic SCT for patients with primary myelofibrosis: a predictive transplant score based on transfusion requirement, spleen size and donor type. Bone Marrow Transplant 2010;45:458–463.CrossRefGoogle ScholarPubMed
Ciurea, SO, Sadegi, B, Wilbur, A, et al. Effects of extensive splenomegaly in patients with myelofibrosis undergoing a reduced intensity allogeneic stem cell transplantation. Br J Haematol 2008;141:80–83.CrossRefGoogle ScholarPubMed
Kroger, N, Mesa, RA. Choosing between stem cell therapy and drugs in myelofibrosis. Leukemia 2008;22:474–486.CrossRefGoogle ScholarPubMed
Anderson, JE, Tefferi, A, Craig, F, et al. Myeloablation and autologous peripheral blood stem cell rescue results in hematologic and clinical responses in patients with myeloid metaplasia with myelofibrosis. Blood 2001;98:586–593.CrossRefGoogle ScholarPubMed
Ballen, K, Sobocinski, KA, Zhang, MJ, et al. Outcome of bone marrow transplantation for myelofibrosis. Blood 2005;106:53a.Google Scholar
Vannucchi, AM. How do JAK2-inhibitors work in myelofibrosis: an alternative hypothesis. Leuk Res 2009;33:1581–1583.CrossRefGoogle Scholar
Shi, J, Zhao, Y, Ishii, T, et al. Effects of chromatin-modifying agents on CD34(+) cells from patients with idiopathic myelofibrosis. Cancer Res 2007;67:6417–6424.CrossRefGoogle ScholarPubMed
Fernandez-Mercado, M, Cebrian, V, Euba, B, et al. Methylation status of SOCS1 and SOCS3 in BCR-ABL negative and JAK2V617F negative chronic myeloproliferative neoplasms. Leuk Res 2008;32:1638–1640.CrossRefGoogle ScholarPubMed
Teofili, L, Martini, M, Cenci, T, et al. Epigenetic alteration of SOCS family members is a possible pathogenetic mechanism in JAK2 wild type myeloproliferative diseases. Int J Cancer 2008;123:1586–1592.CrossRefGoogle ScholarPubMed
Lee, J.Clinical efficacy of vorinostat in a patient with essential thrombocytosis and subsequent myelofibrosis. Ann Hematol 2009;88:699–700.CrossRefGoogle Scholar
Golay, J, Cuppini, L, Leoni, F, et al. The histone deacetylase inhibitor ITF2357 has anti-leukemic activity in vitro and in vivo and inhibits IL-6 and VEGF production by stromal cells. Leukemia 2007;21:1892–1900.CrossRefGoogle ScholarPubMed
Mascarenhas, J, Wang, XL, Rodriguez, A, et al. A phase I study of LBH589, a novel histone deacetylase inhibitor in patients with primary myelofibrosis (PMF) and post-polycythemia/essential thrombocythemia myelofibrosis (Post-PV/ET MF). Blood 2009;114:130–131.Google Scholar
Vannucchi, AM, Bogani, C, Bartalucci, N, et al. The mTOR inhibitor, RAD001, inhibits the growth of cells from patients with myeloproliferative neoplasms. Blood 2009;114:1139.Google Scholar
Hardy, WR, Anderson, RE. Hypereosinophilic syndromes. Ann Intern Med 1968;68:1220–1229.CrossRefGoogle ScholarPubMed
Bain, B, Pierre, R, Imbert, M, et al. Chronic eosinophilic leukemia/hypereosinophilic syndrome. In Jaffe, ES, Harris, NL, Stein, H, Vardiman, J (eds.) World Health Organization Classification of Tumours: Pathology and Genetics of Tumours of Haematopoietic and Lymphoid Tissue. Lyon: IARC Press, 2001:29–34.Google Scholar
Bain, B, Gilliland, D, Horny, H, Vardiman, J. Myeloid and lymphoid neoplasms with eosinophilia and abnormalities of PDGFRA, PDGFRB or PGFR1. In Swerdlow, SH, Campos, E, Harris, NL, et al. (eds.) WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. Lyon: IARC Press, 2008:68–73.Google Scholar
Darbyshire, PJ, Shortland, D, Swansbury, GJ et al. A myeloproliferative disease in two infants associated with eosinophilia and chromosome t(1;5) translocation. Br J Haematol 1987;66:483–486.CrossRefGoogle Scholar
Michel, G, Thuret, I, Capodano, AM, et al. Myelofibrosis in a child suffering from a hypereosinophilic syndrome with trisomy 8: response to corticotherapy. Med Pediatr Oncol 1991;19:62–65.CrossRefGoogle Scholar
Sakamoto, K, Erdreich-Epstein, A, deClerck, Y, Coates, T. Prolonged clinical response to vincristine treatment in two patients with idiopathic hypereosinophilic syndrome. Am J Pediatr Hematol Oncol 1992;14:348–351.CrossRefGoogle ScholarPubMed
Bakhshi, S, Hamre, M, Mohamed, AN, Feldman, G, Ravindranath, Y. t(5;9)(q11;q34): a novel familial translocation involving Abelson oncogene and association with hypereosinophilia. J Pediatr Hematol Oncol 2003;25:82–84.CrossRefGoogle Scholar
Gotlib, J.Eosinophilic myeloid disorders: new classification and novel therapeutic strategies. Curr Opin Hematol 2010;17:117–124.CrossRefGoogle ScholarPubMed
Bain, B, Gilliland, D, Vardiman, J, Horny, H. Chronic eosinophilic leukaemia, not otherwise specified. In Swerdlow, SH, Campos, E, Harris, NL, et al. (eds.) WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. Lyon: IARC Press, 2008:51–53.Google Scholar
Tefferi, A, Gotlib, J, Pardanani, A. Hypereosinophilic syndrome and clonal eosinophilia: point-of-care diagnostic algorithm and treatment update. Mayo Clin Proc 2010;85:158–164.CrossRefGoogle ScholarPubMed
Chusid, MJ, Dale, DC, West, BC, Wolff, SM. The hypereosinophilic syndrome: analysis of fourteen cases with review of the literature. Medicine (Baltimore) 1975;54:1–27.CrossRefGoogle ScholarPubMed
Chang, HW, Leong, KH, Koh, DR, Lee, SH. Clonality of isolated eosinophils in the hypereosinophilic syndrome. Blood 1999;93:1651–1657.Google ScholarPubMed
Malcovati, L, La Starza, R, Merante, S, et al. Hypereosinophilic syndrome and cyclic oscillations in blood cell counts. A clonal disorder of hematopoiesis originating in a pluripotent stem cell. Haematologica 2004;89:497–499.Google Scholar
Brown, NJ, Stein, RS. Idiopathic hypereosinophilic syndrome progressing to acute myelomonocytic leukemia with chloromas. South Med J 1989;82:1303–1305.CrossRefGoogle ScholarPubMed
Gleich, GJ, Leiferman, KM. The hypereosinophilic syndromes: current concepts and treatments. Br J Haematol 2009;145:271–285.CrossRefGoogle ScholarPubMed
Golub, TR, Barker, GF, Lovett, M, Gilliland, DG. Fusion of PDGF receptor-beta to a novel Ets-like gene, Tel, in chronic myelomonocytic leukemia with t(512) chromosomal translocation. Cell 1994;77:307–316.CrossRefGoogle Scholar
Roufosse, F, Cogan, E, Goldman, M. The hypereosinophilic syndrome revisited. Ann Rev Med 2003;54:169–184.CrossRefGoogle ScholarPubMed
Cools, J, DeAngelo, DJ, Gotlib, J, et al. A tyrosine kinase created by fusion of the PDGFRA and FIP1L1 genes as a therapeutic target of imatinib in idiopathic hypereosinophilic syndrome. N Engl J Med 2003;348:1201–1214.CrossRefGoogle ScholarPubMed
Griffin, JH, Leung, J, Bruner, RJ, Caligiuri, MA, Briesewitz, R. Discovery of a fusion kinase in EOL-1 cells and idiopathic hypereosinophilic syndrome. Proc Natl Acad Sci USA 2003;100:7830–7835.CrossRefGoogle ScholarPubMed
Klion, AD, Noel, P, Akin, C, et al. Elevated serum tryptase levels identify a subset of patients with a myeloproliferative variant of idiopathic hypereosinophilic syndrome associated with tissue fibrosis, poor prognosis, and imatinib responsiveness. Blood 2003;101:4660–4666.CrossRefGoogle ScholarPubMed
Metzgeroth, G, Walz, C, Score, J, et al. Recurrent finding of the FIP1L1-PDGFRA fusion gene in eosinophilia-associated acute myeloid leukemia and lymphoblastic T-cell lymphoma. Leukemia 2007;21:1183–1188.CrossRefGoogle ScholarPubMed
Klion, AD, Robyn, J, Akin, C, et al. Molecular remission and reversal of myelofibrosis in response to imatinib mesylate treatment in patients with the myeloproliferative variant of hypereosinophilic syndrome. Blood 2004;103:473–478.CrossRefGoogle ScholarPubMed
Baccarani, M, Cilloni, D, Rondoni, M, et al. The efficacy of imatinib mesylate in patients with FIP1L1–PDGFR alpha-positive hypereosinophilic syndrome. Results of a multicenter prospective study. Haematologica 2007;92:1173–1179.CrossRefGoogle Scholar
Jovanovic, JV, Score, J, Waghorn, K, et al. Low-dose imatinib mesylate leads to rapid induction of major molecular responses and achievement of complete molecular remission in FIP1L1-PDGFRA-positive chronic eosinophilic leukemia. Blood 2007;109:4635–4640.CrossRefGoogle ScholarPubMed
Klion, AD, Robyn, J, Maric, I, et al. Relapse following discontinuation of imatinib mesylate therapy for FIP1L1/PDGFRA-positive chronic eosinophilic leukemia: implications for optimal dosing. Blood 2007;110:3552–3556.CrossRefGoogle ScholarPubMed
Helbig, G, Stella-Holowiecka, B, Majewski, M, et al. A single weekly dose of imatinib is sufficient to induce and maintain remission of chronic eosinophilic leukaemia in FIP1L1-PDGFRA-expressing patients. Br J Haematol 2008;141:200–204.CrossRefGoogle ScholarPubMed
Pitini, V, Arrigo, C, Azzarello, D, et al. Serum concentration of cardiac troponin T in patients with hypereosinophilic syndrome treated with imatinib is predictive of adverse outcomes. Blood 2003;102:3456–3457.CrossRefGoogle ScholarPubMed
Chen, J, DeAngelo, DJ, Kutok, JL, et al. PKC412 inhibits the zinc finger 198-fibroblast growth factor receptor 1 fusion tyrosine kinase and is active in treatment of stem cell myeloproliferative disorder. Proc Natl Acad Sci USA 2004;101:14479–14484.CrossRefGoogle ScholarPubMed
Lierman, E, Michaux, L, Beullens, E, et al. FIP1L1–PDGFRalpha D842V, a novel panresistant mutant, emerging after treatment of FIP1L1–PDGFRalpha T674I eosinophilic leukemia with single agent sorafenib. Leukemia 2009;23:845–851.CrossRefGoogle ScholarPubMed
Ohnishi, H, Kandabashi, K, Maeda, Y, Kawamura, M, Watanabe, T. Chronic eosinophilic leukaemia with FIP1L1-PDGFRA fusion and T6741 mutation that evolved from Langerhans cell histiocytosis with eosinophilia after chemotherapy. Br J Haematol 2006;134:547–549.CrossRefGoogle ScholarPubMed
Cools, J, Stover, EH, Boulton, CL, et al. PKC412 overcomes resistance to imatinib in a murine model of FIP1L1–PDGFRalpha-induced myeloproliferative disease. Cancer Cell 2003;3:459–469.CrossRefGoogle Scholar
Lierman, E, Folens, C, Stover, EH, et al. Sorafenib is a potent inhibitor of FIP1L1–PDGFRalpha and the imatinib-resistant FIP1L1–PDGFRalpha T674I mutant. Blood 2006;108:1374–1376.CrossRefGoogle ScholarPubMed
Stover, EH, Chen, J, Lee, BH, et al. The small molecule tyrosine kinase inhibitor AMN107 inhibits TEL-PDGFRbeta and FIP1L1–PDGFRalpha in vitro and in vivo. Blood 2005;106:3206–3213.CrossRefGoogle ScholarPubMed
von Bubnoff, N, Gorantla, SP, Thone, S, Peschel, C, Duyster, J. The FIP1L1–PDGFRA T674I mutation can be inhibited by the tyrosine kinase inhibitor AMN107 (nilotinib). Blood 2006;107:4970–4971.CrossRefGoogle Scholar
Ceretelli, S, Capochiani, E, Petrini, M. Interferon-alpha in the idiopathic hypereosinophilic syndrome: consideration of five cases. Ann Hematol 1998;77:161–164.CrossRefGoogle ScholarPubMed
Yamada, Y, Rothenberg, ME, Lee, AW, et al. The FIP1L1-PDGFRA fusion gene cooperates with IL-5 to induce murine hypereosinophilic syndrome (HES)/chronic eosinophilic leukemia (CEL)-like disease. Blood 2006;107:4071–4079.CrossRefGoogle ScholarPubMed
Rothenberg, ME, Klion, AD, Roufosse, FE, et al. Treatment of patients with the hypereosinophilic syndrome with mepolizumab. N Engl J Med 2008;358:1215–1228.CrossRefGoogle ScholarPubMed
Sefcick, A, Sowter, D, DasGupta, E, Russell, NH, Byrne, JL. Alemtuzumab therapy for refractory idiopathic hypereosinophilic syndrome. Br J Haematol 2004;124:558–559.CrossRefGoogle ScholarPubMed
Verstovsek, S, Tefferi, A, Kantarjian, H, et al. Alemtuzumab therapy for hypereosinophilic syndrome and chronic eosinophilic leukemia. Clin Cancer Res 2009;15:368–373.CrossRefGoogle ScholarPubMed
Juvonen, E, Volin, L, Koponen, A, Ruutu, T. Allogeneic blood stem cell transplantation following non-myeloablative conditioning for hypereosinophilic syndrome. Bone Marrow Transplant 2002;29:457–458.CrossRefGoogle ScholarPubMed
Brito-Babapulle, F. The eosinophilias, including the idiopathic hypereosinophilic syndrome. Br J Haematol 2003;121:203–223.CrossRefGoogle ScholarPubMed
Meltzer, E, Percik, R, Shatzkes, J, Sidi, Y, Schwartz, E. Eosinophilia among returning travelers: a practical approach. Am J Trop Med Hyg 2008;78:702–709.Google ScholarPubMed
Meeker, TC, Hardy, D, Willman, C, Hogan, T, Abrams, J. Activation of the interleukin-3 gene by chromosome translocation in acute lymphocytic leukemia with eosinophilia. Blood 1990;76:285–289.Google ScholarPubMed
Jani, K, Kempski, HM, Reeves, BR. A case of myelodysplasia with eosinophilia having a translocation t(5;12) (q31;q13) restricted to myeloid cells but not involving eosinophils. Br J Haematol 1994;87:57–60.CrossRefGoogle Scholar
Metcalfe, DD. Mast cells and mastocytosis. Blood 2008;112:946–956.CrossRefGoogle ScholarPubMed
Pardanani, A, Tefferi, A. Systemic mastocytosis in adults: a review on prognosis and treatment based on 342 Mayo Clinic patients and current literature. Curr Opin Hematol 2010;17:125–132.CrossRefGoogle Scholar
Hartmann, K, Metcalfe, DD. Pediatric mastocytosis. Hematol Oncol Clin North Am 2000;14:625–640.CrossRefGoogle ScholarPubMed
Valent, P, Akin, C, Sperr, WR, et al. Aggressive systemic mastocytosis and related mast cell disorders: current treatment options and proposed response criteria. Leuk Res 2003;27:635–641.CrossRefGoogle ScholarPubMed
Valent, P, Horny, H-P, Li, CY, et al. Mastocytosis. In Jaffe, ES, Harris, NL, Stein, H, Vardiman, J (eds.) World Health Organization Classification of Tumours: Pathology and Genetics of Tumours of Haematopoietic and Lymphoid Tissue. Lyon: IARC Press, 2001:293–302.Google Scholar
Longley, BJ, Tyrrell, L, Lu, SZ, et al. Somatic c-KIT activating mutation in urticaria pigmentosa and aggressive mastocytosis: establishment of clonality in a human mast cell neoplasm. Nat Genet 1996;12:312–314.CrossRefGoogle Scholar
Nagata, H, Worobec, AS, Oh, CK, et al. Identification of a point mutation in the catalytic domain of the protooncogene c-kit in peripheral blood mononuclear cells of patients who have mastocytosis with an associated hematologic disorder. Proc Natl Acad Sci USA 1995;92:10560–10564.CrossRefGoogle ScholarPubMed
Yavuz, AS, Lipsky, PE, Yavuz, S, Metcalfe, DD, Akin, C. Evidence for the involvement of a hematopoietic progenitor cell in systemic mastocytosis from single-cell analysis of mutations in the c-kit gene. Blood 2002;100:661–665.CrossRefGoogle ScholarPubMed
Ma, Y, Zeng, S, Metcalfe, DD, et al. The c-KIT mutation causing human mastocytosis is resistant to STI571 and other KIT kinase inhibitors; kinases with enzymatic site mutations show different inhibitor sensitivity profiles than wild-type kinases and those with regulatory-type mutations. Blood 2002;99:1741–1744.CrossRefGoogle ScholarPubMed
Büttner, C, Henz, BM, Welker, P, Sepp, NT, Grabbe, J. Identification of activating c-kit mutations in adult-, but not in childhood-onset indolent mastocytosis: a possible explanation for divergent clinical behavior. J Invest Dermatol 1998;111:1227–1231.CrossRefGoogle Scholar
Longley, BJ, Jr., Metcalfe, DD, Tharp, M, et al. Activating and dominant inactivating c-KIT catalytic domain mutations in distinct clinical forms of human mastocytosis. Proc Natl Acad Sci USA 1999;96:1609–1614.CrossRefGoogle ScholarPubMed
Azana, JM, Torrelo, A, Mediero, IG, Zambrano, A. Urticaria pigmentosa: a review of 67 pediatric cases. Pediatr Dermatol 1994;11:102–106.CrossRefGoogle ScholarPubMed
Carter, MC, Metcalfe, DD. Paediatric mastocytosis. Arch Dis Child 2002;86:315–319.CrossRefGoogle ScholarPubMed
Valent, P, Akin, C, Escribano, L, et al. Standards and standardization in mastocytosis: consensus statements on diagnostics, treatment recommendations and response criteria. Eur J Clin Invest 2007;37:435–453.CrossRefGoogle ScholarPubMed
Travis, WD, Li, CY, Bergstralh, EJ, Yam, LT, Swee, RG. Systemic mast cell disease. Analysis of 58 cases and literature review. Medicine (Baltimore) 1988;67:345–368.CrossRefGoogle ScholarPubMed
Robyn, J, Lemery, S, McCoy, JP, et al. Multilineage involvement of the fusion gene in patients with FIP1L1/PDGFRA-positive hypereosinophilic syndrome. Br J Haematol 2006;132:286–292.CrossRefGoogle ScholarPubMed
Escribano, L, Diaz-Agustin, B, Lopez, A, et al. Immunophenotypic analysis of mast cells in mastocytosis: when and how to do it. Proposals of the Spanish Network on Mastocytosis (REMA). Cytometry B Clin Cytom 2004;58B:1–8.CrossRefGoogle Scholar
Krokowski, M, Sotlar, K, Krauth, MT, et al. Delineation of patterns of bone marrow mast cell infiltration in systemic mastocytosis: value of CD25, correlation with subvariants of the disease, and separation from mast cell hyperplasia. Am J Clin Pathol 2005;124:560–568.CrossRefGoogle ScholarPubMed
Lim, KH, Tefferi, A, Lasho, TL, et al. Systemic mastocytosis in 342 consecutive adults: survival studies and prognostic factors. Blood 2009;113:5727–5736.CrossRefGoogle ScholarPubMed
Koide, T, Nakajima, T, Makifuchi, T, Fukuhara, N. Systemic mastocytosis and recurrent anaphylactic shock. Lancet 2002;359:2084.CrossRefGoogle ScholarPubMed
Horny, HP. Mastocytosis an unusual clonal disorder of bone marrow-derived hematopoietic progenitor cells. Am J Clin Pathol 2009;132:438–447.CrossRefGoogle ScholarPubMed
Valent, P, Horny, HP, Escribano, L, et al. Diagnostic criteria and classification of mastocytosis: a consensus proposal. Leuk Res 2001;25:603–625.CrossRefGoogle ScholarPubMed
Horny, HP, Metcalfe, DD, Bennett, JM, et al. Mastocytosis. In Swerdlow, SH, Campos, E, Harris, NL, et al. (eds.) WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. Lyon: IARC Press, 2008:54–63.Google Scholar
Horny, HP, Valent, P. Diagnosis of mastocytosis: general histopathological aspects, morphological criteria, and immunohistochemical findings. Leuk Res 2001;25:543–551.CrossRefGoogle ScholarPubMed
Horny, HP, Sotlar, K, Valent, P. Mastocytosis: state of the art. Pathobiology 2007;74:121–132.CrossRefGoogle ScholarPubMed
Kettelhut, BV, Parker, RI, Travis, WD, Metcalfe, DD. Hematopathology of the bone-marrow in pediatric cutaneous mastocytosis: a study of 17 patients. Am J Clin Pathol 1989;91:558–562.CrossRefGoogle ScholarPubMed
Li, CY. Diagnosis of mastocytosis: value of cytochemistry and immunohistochemistry. Leuk Res 2001;25:537–541.CrossRefGoogle ScholarPubMed
Brockow, K, Akin, C, Huber, M, Metcalfe, DD. IL-6 levels predict disease variant and extent of organ involvement in patients with mastocytosis. Clin Immunol 2005;115:216–223.CrossRefGoogle ScholarPubMed
Oskeritzian, CA, Wang, ZL, Kochan, JP, et al. Recombinant human (rh)IL-4-mediated apoptosis and recombinant human IL-6-mediated protection of recombinant human stem cell factor-dependent human mast cells derived from cord blood mononuclear cell progenitors. J Immunol 1999;163:5105–5115.Google ScholarPubMed
Daley, T, Metcalfe, DD, Akin, C. Association of the Q576R polymorphism in the interleukin-4 receptor alpha chain with indolent mastocytosis limited to the skin. Blood 2001;98:880–882.CrossRefGoogle Scholar
Baldus, SE, Zirbes, TK, Thiele, J, et al. Altered apoptosis and cell cycling of mast cells in bone marrow lesions of patients with systemic mastocytosis. Haematologica 2004;89:1525–1527.Google ScholarPubMed
Longley, BJ, Reguera, MJ, Ma, YS. Classes of c-KIT activating mutations: proposed mechanisms of action and implications for disease classification and therapy. Leuk Res 2001;25:571–576.CrossRefGoogle ScholarPubMed
Worobec, AS. Treatment of systemic past cell disorders. Hematol Oncol Clin North Am 2000;14:659.CrossRefGoogle Scholar
Valent, P, Sperr, WR, Akin, C. How I treat patients with advanced systemic mastocytosis. Blood 2010;116:5812–5817.CrossRefGoogle Scholar
Friedman, B, Darling, G, Norton, J, Hamby, L, Metcalfe, D. Splenectomy in the management of systemic mast-cell disease. Surgery 1990;107:94–100.Google ScholarPubMed
Valent, P, Ghannadan, M, Akin, C, et al. On the way to targeted therapy of mast cell neoplasms: identification of molecular targets in neoplastic mast cells and evaluation of arising treatment concepts. Eur J Clin Invest 2004;34:41–52.CrossRefGoogle ScholarPubMed
Santos, DD, Hatjiharissi, E, Tournilhac, O, et al. CD52 is expressed on human mast cells and is a potential therapeutic target in Waldenstrom's macroglobulinemia and mast cell disorders. Clin Lymphoma Myeloma 2006;6:478–483.CrossRefGoogle ScholarPubMed
Nakamura, R, Chakrabarti, S, Akin, C, et al. A pilot study of nonmyeloablative allogeneic hematopoietic stem cell transplant for advanced systemic mastocytosis. Bone Marrow Transplant 2006;37:353–358.CrossRefGoogle ScholarPubMed
Heinrich, MC, Blanke, CD, Druker, BJ, Corless, CL. Inhibition of KIT tyrosine kinase activity: a novel molecular approach to the treatment of KIT-positive malignancies. J Clin Oncol 2002;20:1692–1703.CrossRefGoogle ScholarPubMed
Droogendijk, HJ, Kluin-Nelemans, HJC, van Doormaal, JJ, et al. Imatinib mesylate in the treatment of systemic mastocytosis: a phase II trial. Cancer 2006;107:345–351.CrossRefGoogle ScholarPubMed
Ueda, S, Ikeda, H, Mizuki, M, et al. Constitutive activation of c-Kit by the juxtamembrane but not the catalytic domain mutations is inhibited selectively by tyrosine kinase inhibitors STI571 and AG1296. Int J Hematol 2002;76:427–435.CrossRefGoogle Scholar
Fain, O, Stirnemann, J, Eclache, V, et al. Systemic mastocytosis. Presse Med 2005;34:681–687.CrossRefGoogle ScholarPubMed
Tanaka, A, Konno, M, Muto, S, et al. A novel NF-kappa B inhibitor, IMD-0354, suppresses neoplastic proliferation of human mast cells with constitutively activated c-kit receptors. Blood 2005;105:2324–2331.CrossRefGoogle Scholar
Fumo, G, Akin, C, Metcalfe, DD, Neckers, L. 17-allylamino-17-demethoxygeldanamycin (17-AAG) is effective in down-regulating mutated, constitutively activated KIT protein in human mast cells. Blood 2004;103:1078–1084.CrossRefGoogle ScholarPubMed
Worobec, AS, Semere, T, Nagata, H, Metcalfe, DD. Clinical correlates of the presence of the Asp816Val c-kit mutation in the peripheral blood mononuclear cells of patients with mastocytosis. Cancer 1998;83:2120–2129.3.0.CO;2-C>CrossRefGoogle ScholarPubMed
Stankovic, K, Sarrot-Reynauld, F, Puget, M, et al. Systemic mastocytosis: predictable factors of poor prognosis present at the onset of disease. Eur J Intern Med 2010;16:387–390.CrossRefGoogle Scholar
Thiele, J, Kvasnicka, HM, Tefferi, A, et al. Primary myelofibrosis. In Swerdlow, SH, Campos, E, Harris, NL, et al. (eds.) WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. Lyon: IARC Press, 2008:44–47.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×