Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-16T15:29:13.441Z Has data issue: false hasContentIssue false

Part VI - Reasoning and Intelligence

Published online by Cambridge University Press:  19 January 2018

Rex E. Jung
Affiliation:
University of New Mexico
Oshin Vartanian
Affiliation:
University of Toronto
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Abe, A. (1999). Two-sided hypotheses generation for abductive analogical reasoning. In Proceedings of the 11th IEEE International Conference, 145152.Google Scholar
Abe, A. (2000). Abductive analogical reasoning. Systems and Computers in Japan, 31, 1119.3.0.CO;2-E>CrossRefGoogle Scholar
Aichelburg, C., Urbanski, M., Thiebaut de Schotten, M., Humbert, F., Levy, R., & Volle, E. (2016). Morphometry of left frontal and temporal poles predicts analogical reasoning abilities. Cerebral Cortex, 26, 915932. doi:10.1093/cercor/bhu254CrossRefGoogle ScholarPubMed
Badre, D., & D’Esposito, M. (2007). Functional magnetic resonance imaging evidence for a hierarchical organization of the prefrontal cortex. Journal of Cognitive Neuroscience, 19, 20822099. doi:10.1162/jocn.2007.91201CrossRefGoogle ScholarPubMed
Badre, D., Poldrack, R. A., Pare-Blagoev, E. J., Insler, R. Z., & Wagner, A. D. (2005). Dissociable controlled retrieval and generalized selection mechanisms in ventrolateral prefrontal cortex. Neuron, 47, 907918. doi:S0896-6273(05)00643-4[pii]10.1016/j.neuron.2005.07.023CrossRefGoogle ScholarPubMed
Beaty, R. E., Benedek, M., Silvia, P. J., & Schacter, D. L. (2016). Creative cognition and brain network dynamics. Trends in Cognitive Sciences, 20, 8795. doi:10.1016/j.tics.2015.10.004CrossRefGoogle ScholarPubMed
Braver, T. S., & Bongiolatti, S. R. (2002). The role of frontopolar cortex in subgoal processing during working memory. NeuroImage, 15, 523536. doi:10.1006/nimg.2001.1019S1053811901910195[pii]CrossRefGoogle ScholarPubMed
Brunye, T. T., Moran, J. M., Cantelon, J., Holmes, A., Eddy, M. D., Mahoney, C. R., & Taylor, H. A. (2015). Increasing breadth of semantic associations with left frontopolar direct current brain stimulation: A role for individual differences. Neuroreport, 26, 296301. doi:10.1097/WNR.0000000000000348CrossRefGoogle ScholarPubMed
Brynjolfsson, E., & McAfee, A. (2014). The second machine age: Work, progress, and prosperity in a time of brilliant technologies: New York, NY: WW Norton & Company.Google Scholar
Bunge, S. A., Helskog, E. H., & Wendelken, C. (2009). Left, but not right, rostrolateral prefrontal cortex meets a stringent test of the relational integration hypothesis. NeuroImage, 46, 338342. doi:10.1016/j.neuroimage.2009.01.064CrossRefGoogle Scholar
Bunge, S. A., Kahn, I., Wallis, J. D., Miller, E. K., & Wagner, A. D. (2003). Neural circuits subserving the retrieval and maintenance of abstract rules. Journal of Neurophysiology, 90, 34193428. doi:10.1152/jn.00910.200200910.2002 [pii]CrossRefGoogle ScholarPubMed
Bunge, S. A., Wendelken, C., Badre, D., & Wagner, A. D. (2005). Analogical reasoning and prefrontal cortex: Evidence for separable retrieval and integration mechanisms. Cerebral Cortex, 15, 239249. doi:10.1093/cercor/bhh126bhh126 [pii]CrossRefGoogle ScholarPubMed
Burgess, P. W., Dumontheil, I., & Gilbert, S. J. (2007). The gateway hypothesis of rostral prefrontal cortex (area 10) function. Trends in Cognitive Sciences, 11, 290298.CrossRefGoogle ScholarPubMed
Cerruti, C., & Schlaug, G. (2009). Anodal transcranial direct current stimulation of the prefrontal cortex enhances complex verbal associative thought. Journal of Cognitive Neuroscience, 21, 19801987. doi:10.1162/jocn.2008.21143CrossRefGoogle ScholarPubMed
Chi, R. P., & Snyder, A. W. (2011). Facilitate insight by non-invasive brain stimulation. PLoS ONE, 6, e16655. doi:10.1371/journal.pone.0016655CrossRefGoogle ScholarPubMed
Chi, R. P., & Snyder, A. W. (2012). Brain stimulation enables the solution of an inherently difficult problem. Neuroscience Letters, 515, 121124. doi:10.1016/j.neulet.2012.03.012CrossRefGoogle ScholarPubMed
Christoff, K., & Gabrieli, J. D. (2000). The frontopolar cortex and human cognition: Evidence for a rostrocaudal hierarchical organization within the human prefrontal cortex. Psychobiology, 28, 168186.CrossRefGoogle Scholar
Christoff, K., Prabhakaran, V., Dorfman, J., Zhao, Z., Kroger, J. K., Holyoak, K. J., & Gabrieli, J. D. (2001). Rostrolateral prefrontal cortex involvement in relational integration during reasoning. NeuroImage, 14, 11361149. doi:10.1006/nimg.2001.0922S1053-8119(01)90922-X [pii]CrossRefGoogle ScholarPubMed
Chrysikou, E. G., Hamilton, R. H., Coslett, H. B., Datta, A., Bikson, M., & Thompson-Schill, S. L. (2013). Noninvasive transcranial direct current stimulation over the left prefrontal cortex facilitates cognitive flexibility in tool use. Cognitive Neuroscience, 4, 8189. doi:10.1080/17588928.2013.768221CrossRefGoogle ScholarPubMed
Colombo, B., Bartesaghi, N., Simonelli, L., & Antonietti, A. (2015). The combined effects of neurostimulation and priming on creative thinking. A preliminary tDCS study on dorsolateral prefrontal cortex. Frontiers in Human Neuroscience, 9, Article 403. doi:10.3389/fnhum.2015.00403CrossRefGoogle Scholar
De Neys, W., Vartanian, O., & Goel, V. (2008). Smarter than we think: When our brains detect that we are biased. Psychological Science, 19, 483489. doi:10.1111/j.1467-9280.2008.02113.xCrossRefGoogle ScholarPubMed
De Pisapia, N., Slomski, J. A., & Braver, T. S. (2007). Functional specializations in lateral prefrontal cortex associated with the integration and segregation of information in working memory. Cerebral Cortex, 17, 9931006. doi:10.1093/cercor/bhl010CrossRefGoogle ScholarPubMed
de Souza, L. C., Volle, E., Bertoux, M., Czernecki, V., Funkiewiez, A., Allali, G., … Levy, R. (2010). Poor creativity in frontotemporal dementia: A window into the neural bases of the creative mind. Neuropsychologia, 48, 37333742. doi:10.1016/j.neuropsychologia.2010.09.010CrossRefGoogle ScholarPubMed
Dunbar, K., & Blanchette, I. (2001). The in vivo/in vitro approach to cognition: The case of analogy. Trends in Cognitive Sciences, 5, 334339. doi:S1364-6613(00)01698-3 [pii]CrossRefGoogle ScholarPubMed
Fincham, J. M., Carter, C. S., van Veen, V., Stenger, V. A., & Anderson, J. R. (2002). Neural mechanisms of planning: A computational analysis using event-related fMRI. Proceedings of the National Academy of Sciences of the United States of America, 99, 33463351. doi:10.1073/pnas.052703399CrossRefGoogle ScholarPubMed
Fink, A., & Benedek, M. (2014). EEG alpha power and creative ideation. Neuroscience and Biobehavioral Reviews, 44, 111123. doi:10.1016/j.neubiorev.2012.12.002CrossRefGoogle ScholarPubMed
Fink, A., Benedek, M., Grabner, R. H., Staudt, B., & Neubauer, A. C. (2007). Creativity meets neuroscience: Experimental tasks for the neuroscientific study of creative thinking. Methods, 42, 6876. doi:10.1016/j.ymeth.2006.12.001CrossRefGoogle ScholarPubMed
Fregni, F., Boggio, P. S., Santos, M. C., Lima, M., Vieira, A. L., Rigonatti, S. P., … Pascual-Leone, A. ( 2006 ). Noninvasive cortical stimulation with transcranial direct current stimulation in Parkinson’s disease. Movement Disorders, 21, 16931702. doi:10.1002/mds.21012CrossRefGoogle ScholarPubMed
Gentner, D. (1983). Structure-mapping: A theoretical framework for analogy. Cognitive Science, 7, 155170.Google Scholar
Gick, M. L., & Holyoak, K. J. (1980). Analogical problem solving. Cognitive Psychology, 12, 306355.CrossRefGoogle Scholar
Gilbert, S. J., Spengler, S., Simons, J. S., Frith, C. D., & Burgess, P. W. (2006). Differential functions of lateral and medial rostral prefrontal cortex (area 10) revealed by brain–behavior associations. Cerebral Cortex, 16, 17831789. doi:bhj113 [pii]10.1093/cercor/bhj113CrossRefGoogle ScholarPubMed
Gilchrist, M. B., & Taft, R. (1972). Originality on demand. Psychological Reports, 31, 579582.CrossRefGoogle ScholarPubMed
Global Chief Executive Officer Study. (2010). Somers, NY: IBM Institute for Business Value.Google Scholar
Goel, V., Eimontaite, I., Goel, A., & Schindler, I. (2015). Differential modulation of performance in insight and divergent thinking tasks with tDCS. Journal of Problem Solving, 8, Article 2.CrossRefGoogle Scholar
Gonen-Yaacovi, G., de Souza, L. C., Levy, R., Urbanski, M., Josse, G., & Volle, E. (2013). Rostral and caudal prefrontal contribution to creativity: A meta-analysis of functional imaging data. Frontiers in Human Neuroscience, 7, Article 465. doi:10.3389/fnhum.2013.00465CrossRefGoogle ScholarPubMed
Green, A. E., Cohen, M. S., Kim, J. U., & Gray, J. R. (2012). An explicit cue improves creative analogical reasoning. Intelligence, 40, 598603.CrossRefGoogle Scholar
Green, A. E., Cohen, M. S., Raab, H. A., Yedibalian, C. G., & Gray, J. R. (2015). Frontopolar activity and connectivity support dynamic conscious augmentation of creative state. Human Brain Mapping, 36, 923934. doi:10.1002/hbm.22676CrossRefGoogle ScholarPubMed
Green, A. E., Fugelsang, J. A., Kraemer, D. J., & Dunbar, K. N. (2008). The micro-category account of analogy. Cognition, 106, 10041016. doi:S0010-0277(07)00094-7 [pii]10.1016/j.cognition.2007.03.015CrossRefGoogle ScholarPubMed
Green, A. E., Fugelsang, J. A., Kraemer, D. J., Shamosh, N. A., & Dunbar, K. N. (2006). Frontopolar cortex mediates abstract integration in analogy. Brain Research, 1096, 125137. doi:S0006-8993(06)01027-4 [pii]10.1016/j.brainres.2006.04.024CrossRefGoogle ScholarPubMed
Green, A. E., Kraemer, D. J., Deyoung, C. G., Fossella, J. A., & Gray, J. R. (2013). A gene–brain–cognition pathway: Prefrontal activity mediates the effect of COMT on cognitive control and IQ. Cerebral Cortex, 23, 552559. doi:10.1093/cercor/bhs035CrossRefGoogle ScholarPubMed
Green, A. E., Kraemer, D. J., Fugelsang, J. A., Gray, J. R., & Dunbar, K. N. (2010). Connecting long distance: semantic distance in analogical reasoning modulates frontopolar cortex activity. Cerebral Cortex, 20, 7076. doi:bhp081 [pii]10.1093/cercor/bhp081CrossRefGoogle ScholarPubMed
Green, A. E., Kraemer, D. J., Fugelsang, J. A., Gray, J. R., & Dunbar, K. N. (2012). Neural correlates of creativity in analogical reasoning. Journal of Experimental Psychology. Learning, Memory, and Cognition, 38, 264272. doi:10.1037/a0025764CrossRefGoogle ScholarPubMed
Green, A. E., Spiegel, K. A., Giangrande, E. J., Weinberger, A. B., Gallagher, N. M., & Turkeltaub, P. E. (2017). Thinking cap plus thinking zap: tDCS of frontopolar cortex improves creative analogical reasoning and facilitates conscious augmentation of state creativity in verb generation. Cerebral Cortex, 27, 26282639. doi:10.1093/cercor/bhw080Google ScholarPubMed
Guilford, J. P. (1950). Creativity. American Psychologist, 5, 444454.CrossRefGoogle ScholarPubMed
Hampshire, A., Thompson, R., Duncan, J., & Owen, A. M. (2011). Lateral prefrontal cortex subregions make dissociable contributions during fluid reasoning. Cerebral Cortex, 21, 110.CrossRefGoogle ScholarPubMed
Hobeika, L., Diard-Detoeuf, C., Garcin, B., Levy, R., & Volle, E. (2016). General and specialized brain correlates for analogical reasoning: A meta-analysis of functional imaging studies. Human Brain Mapping, 37, 19531969. doi:10.1002/hbm.23149CrossRefGoogle ScholarPubMed
Hofstadter, D. R. (2001). Analogy as the core of cognition. In Gentner, D., Holyoak, K. J., & Kokinov, B. N. (Eds.), The analogical mind: Perspectives from cognitive science (pp. 499538). Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Holyoak, K. J., & Thagard, P. (1995). Mental leaps. Cambridge, MA: MIT Press.Google Scholar
Jacobs, B., Schall, M., Prather, M., Kapler, E., Driscoll, L., Baca, S., … Treml, M. (2001). Regional dendritic and spine variation in human cerebral cortex: A quantitative Golgi study. Cerebral Cortex, 11, 558571.CrossRefGoogle ScholarPubMed
Jauk, E., Benedek, M., & Neubauer, A. C. (2012). Tackling creativity at its roots: Evidence for different patterns of EEG alpha activity related to convergent and divergent modes of task processing. International Journal of Psychophysiology, 84, 219225. doi:10.1016/j.ijpsycho.2012.02.012CrossRefGoogle ScholarPubMed
Jung, R. E., & Haier, R. J. (2013). Creativity and intelligence: Brain networks that link and differentiate the expression of genius. In Vartanian, O., Bristol, A. S., & Kaufman, J. C. (Eds.), Neuroscience of creativity (pp. 233254). Cambridge, MA: The MIT Press.CrossRefGoogle Scholar
Jung, R. E., Segall, J. M., Jeremy Bockholt, H., Flores, R. A., Smith, S. M., Chavez, R. S., & Haier, R. J. (2010). Neuroanatomy of creativity. Human Brain Mapping, 31, 398409. doi:10.1002/hbm.20874CrossRefGoogle ScholarPubMed
Knowlton, B. J., Morrison, R. G., Hummel, J. E., & Holyoak, K. J. (2012). A neurocomputational system for relational reasoning. Trends in Cognitive Sciences, 16, 373381. doi:10.1016/j.tics.2012.06.002CrossRefGoogle ScholarPubMed
Koechlin, E., & Hyafil, A. (2007). Anterior prefrontal function and the limits of human decision-making. Science, 318, 594598.CrossRefGoogle ScholarPubMed
Koechlin, E., Ody, C., & Kouneiher, F. (2003). The architecture of cognitive control in the human prefrontal cortex. Science, 302, 11811185. doi:10.1126/science.1088545302/5648/1181 [pii]CrossRefGoogle ScholarPubMed
Krawczyk, D. C., McClelland, M. M., Donovan, C. M., Tillman, G. D., & Maguire, M. J. (2010). An fMRI investigation of cognitive stages in reasoning by analogy. Brain Research, 1342, 6373. doi:10.1016/j.brainres.2010.04.039CrossRefGoogle ScholarPubMed
Krawczyk, D. C., Michelle McClelland, M., & Donovan, C. M. (2011). A hierarchy for relational reasoning in the prefrontal cortex. Cortex, 47, 588597. doi:10.1016/j.cortex.2010.04.008CrossRefGoogle ScholarPubMed
Lagarde, J., Valabregue, R., Corvol, J. C., Garcin, B., Volle, E., Le Ber, I., … Levy, R. (2015). Why do patients with neurodegenerative frontal syndrome fail to answer: “In what way are an orange and a banana alike?” Brain, 138, 456471. doi:10.1093/brain/awu359CrossRefGoogle Scholar
Lakoff, G., & Johnson, M. (1980). Metaphors we live by. Chicago, IL: University of Chicago Press.Google Scholar
Landauer, T. K., & Dumais, S. T. (1997). A solution to Plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological Review, 104, 211240.CrossRefGoogle Scholar
Landauer, T. K., Foltz, P. W., & Laham, D. (1998). Introduction to Latent Semantic Analysis. Discourse Processes, 25, 259284.CrossRefGoogle Scholar
Lustenberger, C., Boyle, M. R., Foulser, A. A., Mellin, J. M., & Frohlich, F. (2015). Functional role of frontal alpha oscillations in creativity. Cortex, 67, 7482. doi:10.1016/j.cortex.2015.03.012CrossRefGoogle ScholarPubMed
Maguire, M. J., McClelland, M. M., Donovan, C. M., Tillman, G. D., & Krawczyk, D. C. (2012). Tracking cognitive phases in analogical reasoning with event-related potentials. Journal of Experimental Psychology. Learning, Memory, and Cognition, 38, 273281. doi:10.1037/a0025485CrossRefGoogle ScholarPubMed
Mayer, R. E. (1999). Fifty years of creativity research. In Sternberg, R. J. (Ed.), Handbook of creativity (pp. 449460). Cambridge, UK: Cambridge University Press.Google Scholar
Mayseless, N., & Shamay-Tsoory, S. G. (2015). Enhancing verbal creativity: Modulating creativity by altering the balance between right and left inferior frontal gyrus with tDCS. Neuroscience, 291, 167176. doi:10.1016/j.neuroscience.2015.01.061CrossRefGoogle ScholarPubMed
Metuki, N., Sela, T., & Lavidor, M. (2012). Enhancing cognitive control components of insight problems solving by anodal tDCS of the left dorsolateral prefrontal cortex. Brain Stimulation, 5, 110115. doi:10.1016/j.brs.2012.03.002CrossRefGoogle ScholarPubMed
Morrison, R. G., Krawczyk, D. C., Holyoak, K. J., Hummel, J. E., Chow, T. W., Miller, B. L., & Knowlton, B. J. (2004). A neurocomputational model of analogical reasoning and its breakdown in frontotemporal lobar degeneration. Journal of Cognitive Neuroscience, 16, 260271. doi:10.1162/089892904322984553CrossRefGoogle ScholarPubMed
Nitsche, M. A., Boggio, P. S., Fregni, F., & Pascual-Leone, A. (2009). Treatment of depression with transcranial direct current stimulation (tDCS): A review. Experimental Neurology, 219, 1419. doi:10.1016/j.expneurol.2009.03.038CrossRefGoogle ScholarPubMed
Nitsche, M. A., Cohen, L. G., Wassermann, E. M., Priori, A., Lang, N., Antal, A., … Pascual-Leone, A. (2008). Transcranial direct current stimulation: State of the art 2008. Brain Stimulation, 1, 206223. doi:10.1016/j.brs.2008.06.004CrossRefGoogle ScholarPubMed
NSF (Producer). (2011). Empowering the nation through discovery and innovation: NSF strategic plan for fiscal years 2011–2016. [Press Release] Retrieved from www.nsf.gov/news/strategicplan/nsfstrategicplan_2011_2016.pdfGoogle Scholar
Nusbaum, E. C., Silvia, P. J., & Beaty, R. E. (2014). Ready, set, create: What instructing people to “be creative” reveals about the meaning and mechanisms of divergent thinking. Psychology of Aesthetics, Creativity, and the Arts, 8, 423432.CrossRefGoogle Scholar
O’Hara, L. A., & Sternberg, R. J. (2001). It doesn’t hurt to ask: Effects of instructions to be creative, practical, or analytical on essay-writing performance and their interaction with students’ thinking styles. Creativity Research Journal, 13, 197210.CrossRefGoogle Scholar
Pennington, J., Socher, R., & Manning, C. D. (2014). Glove: Global vectors for word representation. Paper presented at the Proceedings of the Empiricial Methods in Natural Language Processing (EMNLP 2014).CrossRefGoogle Scholar
Petersen, S. E., Fox, P. T., Posner, M. I., Mintun, M., & Raichle, M. E. (1989). Positron emission tomographic studies of the processing of single words. Journal of Cognitive Neuroscience, 1, 153170.CrossRefGoogle Scholar
Poldrack, R. A. (2015). Is “efficiency” a useful concept in cognitive neuroscience? Developmental Cognitive Neuroscience, 11, 1217.CrossRefGoogle Scholar
Prabhakaran, R., Green, A. E., & Gray, J. R. (2014). Thin slices of creativity: Using single-word utterances to assess creative cognition. Behavior Research Methods, 46, 641659. doi:10.3758/s13428-013-0401-7CrossRefGoogle ScholarPubMed
Qiu, J., Li, H., Chen, A., & Zhang, Q. (2008). The neural basis of analogical reasoning: An event-related potential study. Neuropsychologia, 46, 30063013. doi:10.1016/j.neuropsychologia.2008.06.008CrossRefGoogle ScholarPubMed
Ramnani, N., & Owen, A. M. (2004). Anterior prefrontal cortex: Insights into function from anatomy and neuroimaging. Nature Reviews Neuroscience, 5, 184194. doi:10.1038/nrn1343nrn1343 [pii]CrossRefGoogle ScholarPubMed
Reilly, J. P. (2012). Applied bioelectricity: From electrical stimulation to electropathology. New York, NY: Springer Science & Business Media.Google Scholar
Reynolds, J. R., McDermott, K. B., & Braver, T. S. (2006). A direct comparison of anterior prefrontal cortex involvement in episodic retrieval and integration. Cerebral Cortex, 16, 519528. doi:10.1093/cercor/bhi131CrossRefGoogle ScholarPubMed
Runco, M. A., & Jaeger, G. J. (2012). The standard definition of creativity. Creativity Research Journal, 24, 9296.CrossRefGoogle Scholar
Shamosh, N., DeYoung, C., Green, A., Reis, D., Conway, A. R. A., Johnson, R., … Gray, J. R. (2008). Individual differences in delay discounting: Relation to intelligence, working memory, and frontopolar cortex. Psychological Science, 19, 904911.CrossRefGoogle Scholar
Simis, M., Bravo, G. L., Boggio, P. S., Devido, M., Gagliardi, R. J., & Fregni, F. (2014). Transcranial direct current stimulation in de novo artistic ability after stroke. Neuromodulation, 17, 497501. doi:10.1111/ner.12140CrossRefGoogle ScholarPubMed
Sternberg, R. J. (1977). Component processes in analogical reasoning. Psychological Review, 84(4), 353378.CrossRefGoogle Scholar
Thompson-Schill, S. L., D’Esposito, M., Aguirre, G. K., & Farah, M. J. (1997). Role of left inferior prefrontal cortex in retrieval of semantic knowledge: A reevaluation. Proceedings of the National Academy of Sciences of the United States of America, 94, 1479214797.CrossRefGoogle ScholarPubMed
Torrance, E. P. (1974). Norms technical manual: Torrance Tests of Creative Thinking. Lexington, MA: Ginn and Co.Google Scholar
Vartanian, O. (2012). Dissociable neural systems for analogy and metaphor: Implications for the neuroscience of creativity. British Journal of Psychology, 103, 302316. doi:10.1111/j.2044-8295.2011.02073.xCrossRefGoogle ScholarPubMed
Volle, E., Gilbert, S. J., Benoit, R. G., & Burgess, P. W. (2010). Specialization of the rostral prefrontal cortex for distinct analogy processes. Cerebral Cortex, 20, 26472659. doi:bhq012 [pii]10.1093/cercor/bhq012CrossRefGoogle ScholarPubMed
Wagner, A. D., Schacter, D. L., Rotte, M., Koutstaal, W., Maril, A., Dale, A. M., … Buckner, R. L. (1998). Building memories: Remembering and forgetting of verbal experiences as predicted by brain activity. Science, 281, 11881191.CrossRefGoogle ScholarPubMed
Waltz, J. A., Knowlton, B. J., Holyoak, K. J., Boone, K. B., Back-Madruga, C., McPherson, S., … Miller, B. L. (2004). Relational integration and executive function in Alzheimer’s disease. Neuropsychology, 18, 296305. doi:10.1037/0894-4105.18.2.2962004-12990-011 [pii]CrossRefGoogle ScholarPubMed
Ward, T. B., Finke, R. A., & Smith, S. M. (1995). Problem solving and reasoning. In Creativity and the mind (pp. 89120). New York, NY: Springer.CrossRefGoogle Scholar
Weinberger, A. B., Iyer, H., & Green, A. E. (2016). Conscious augmentation of creative state enhances “real” creativity in open-ended analogical reasoning. PLoS ONE, 11(3), e0150773. doi:10.1371/journal.pone.0150773CrossRefGoogle ScholarPubMed
Wendelken, C., Nakhabenko, D., Donohue, S. E., Carter, C. S., & Bunge, S. A. (2008). “Brain is to thought as stomach is to??”: Investigating the role of rostrolateral prefrontal cortex in relational reasoning. Journal of Cognitive Neuroscience, 20, 682693. doi:10.1162/jocn.2008.20055CrossRefGoogle ScholarPubMed
Wig, G. S., Miller, M. B., Kingstone, A., & Kelley, W. M. (2004). Separable routes to human memory formation: Dissociating task and material contributions in the prefrontal cortex. Journal of Cognitive Neuroscience, 16, 139148. doi:10.1162/089892904322755629CrossRefGoogle ScholarPubMed
Wolfe, M. B., & Goldman, S. R. (2003). Use of latent semantic analysis for predicting psychological phenomena: Two issues and proposed solutions. Behavior Research Methods, Instruments, & Computers, 35, 2231.CrossRefGoogle ScholarPubMed
Zabelina, D., & Robinson, M. D. (2010). Creativity as flexible cognitive control. Psychology of Aesthetics, Creativity, and the Arts, 4, 136143.CrossRefGoogle Scholar

References

Allen, E. A., Damaraju, E., Plis, S. M., Erhardt, E. B., Eichele, T., & Calhoun, V. D. (2014). Tracking whole-brain connectivity dynamics in the resting state. Cerebral Cortex, 24, 663676. http://doi.org/10.1093/cercor/bhs352CrossRefGoogle ScholarPubMed
Andrews-Hanna, J. R., Smallwood, J., & Spreng, R. N. (2014). The default network and self-generated thought: Component processes, dynamic control, and clinical relevance. Annals of the New York Academy of Sciences, 1316, 2952. http://doi.org/10.1111/nyas.12360CrossRefGoogle ScholarPubMed
Asato, M. R., Sweeney, J. A., & Luna, B. (2006). Cognitive processes in the development of TOL performance. Neuropsychologia, 44, 22592269. http://doi.org/10.1016/j.neuropsychologia.2006.05.010CrossRefGoogle ScholarPubMed
Ball, G., Aljabar, P., Zebari, S., Tusor, N., Arichi, T., Merchant, N., … Counsell, S. J. (2014). Rich-club organization of the newborn human brain. Proceedings of the National Academy of Sciences of the United States of America, 111, 74567461. http://doi.org/10.1073/pnas.1324118111CrossRefGoogle ScholarPubMed
Barbey, A. K., Colom, R., & Grafman, J. (2013a). Architecture of cognitive flexibility revealed by lesion mapping. NeuroImage, 82, 547554. http://doi.org/10.1016/j.neuroimage.2013.05.087CrossRefGoogle ScholarPubMed
Barbey, A. K., Colom, R., & Grafman, J. (2013b). Dorsolateral prefrontal contributions to human intelligence. Neuropsychologia, 51, 13611369. http://dx.doi.org/10.1016/j.neuropsychologia.2012.05.017CrossRefGoogle ScholarPubMed
Barbey, A. K., Colom, R., Solomon, J., Krueger, F., Forbes, C., & Grafman, J. (2012). An integrative architecture for general intelligence and executive function revealed by lesion mapping. Brain: A Journal of Neurology, 135, 11541164. http://doi.org/10.1093/brain/aws021CrossRefGoogle ScholarPubMed
Beaty, R. E., Benedek, M., Barry Kaufman, S., & Silvia, P. J. (2015). Default and executive network coupling supports creative idea production. Scientific Reports, 5, 10964. http://doi.org/10.1038/srep10964CrossRefGoogle Scholar
Beaty, R. E., Benedek, M., Wilkins, R. W., Jauk, E., Fink, A., Silvia, P. J., … Neubauer, A. C. (2014). Creativity and the default network: A functional connectivity analysis of the creative brain at rest. Neuropsychologia, 64C, 9298. http://doi.org/10.1016/j.neuropsychologia.2014.09.019CrossRefGoogle Scholar
Beaty, R. E., & Silvia, P. J. (2013). Metaphorically speaking: Cognitive abilities and the production of figurative language. Memory and Cognition, 41, 255267. http://doi.org/10.3758/s13421-012-0258-5CrossRefGoogle ScholarPubMed
Benedek, M., Franz, F., Heene, M., & Neubauer, A. C. (2012). Differential effects of cognitive inhibition and intelligence on creativity. Personality and Individual Differences, 53, 480485. http://doi.org/10.1016/j.paid.2012.04.014CrossRefGoogle ScholarPubMed
Benedek, M., Jauk, E., Sommer, M., Arendasy, M., & Neubauer, A. C. (2014). Intelligence, creativity, and cognitive control: The common and differential involvement of executive functions in intelligence and creativity. Intelligence, 46, 7383. http://doi.org/10.1016/j.intell.2014.05.007CrossRefGoogle ScholarPubMed
Braver, T., Cohen, J., Nystrom, L., & Jonides, J. (1997). A parametric study of prefrontal cortex involvement in human working memory. NeuroImage, 5, 4962. www.sciencedirect.com/science/article/pii/S1053811996902475CrossRefGoogle ScholarPubMed
Bullmore, E. T., & Bassett, D. S. (2011). Brain graphs: Graphical models of the human brain connectome. Annual Review of Clinical Psychology, 7, 113–40. http://doi.org/10.1146/annurev-clinpsy-040510-143934CrossRefGoogle ScholarPubMed
Bullmore, E., & Sporns, O. (2009). Complex brain networks: Graph theoretical analysis of structural and functional systems. Nature Reviews Neuroscience, 10, 186198. http://doi.org/10.1038/nrn2575CrossRefGoogle ScholarPubMed
Bunge, S. A., Dudukovic, N. M., Thomason, M. E., Vaidya, C. J., & Gabrieli, J. D. E. (2002). Immature frontal lobe contributions to cognitive control in children: Evidence from fMRI. Neuron, 33, 301311.CrossRefGoogle ScholarPubMed
Byrge, L., Sporns, O., & Smith, L. B. (2014). Developmental process emerges from extended brain–body–behavior networks. Trends in Cognitive Sciences, 18, 395403. http://doi.org/10.1016/j.tics.2014.04.010CrossRefGoogle ScholarPubMed
Callicott, J. H., Mattay, V. S., Bertolino, A., Finn, K., Coppola, R., Frank, J. A., … Weinberger, D. R. (1999). Physiological characteristics of capacity constraints in working memory as revealed by functional MRI. Cerebral Cortex, 9, 2026. www.ncbi.nlm.nih.gov/pubmed/10022492CrossRefGoogle ScholarPubMed
Carew, J. V. (1987). Experience and the development of intelligence in young children at home and in day care. Monographs of the Society for Research in Child Development (Vol. 45). Hoboken, NJ: Wiley, on behalf of the Society for Research in Child Development.Google Scholar
Casey, B. J., Castellanos, F. X., Giedd, J. N., Marsh, W. L., Hamburger, S. D., Schubert, A. B., … Rapoport, J. L. (1997). Implication of right frontostriatal circuitry in response inhibition and Attention-Deficit/Hyperactivity Disorder. Journal of the American Academy of Child & Adolescent Psychiatry, 36, 374383. http://doi.org/10.1097/00004583-199703000-00016CrossRefGoogle ScholarPubMed
Casey, B. J., Tottenham, N., Liston, C., & Durston, S. (2005). Imaging the developing brain: What have we learned about cognitive development? Trends in Cognitive Sciences, 9, 104110. http://doi.org/10.1016/j.tics.2005.01.011CrossRefGoogle ScholarPubMed
Christoff, K., Irving, Z. C., Fox, K. C. R., Spreng, R. N., & Andrews-Hanna, J. R. (2016). Mind-wandering as spontaneous thought: A dynamic framework. Nature Reviews Neuroscience, 17, 718731. http://doi.org/10.1038/nrn.2016.113CrossRefGoogle ScholarPubMed
Cole, M. W., Reynolds, J. R., Power, J. D., Repovs, G., Anticevic, A., & Braver, T. S. (2013). Multi-task connectivity reveals flexible hubs for adaptive task control. Nature Neuroscience, 16, 13481355. http://doi.org/10.1038/nn.3470CrossRefGoogle ScholarPubMed
Crone, E. A., & Dahl, R. E. (2012). Understanding adolescence as a period of social – Affective engagement and goal flexibility. Nature, 13, 636650. http://doi.org/10.1038/nrn3313Google ScholarPubMed
Crossley, N. A., Mechelli, A., Scott, J., Carletti, F., Fox, P. T., McGuire, P., & Bullmore, E. T. (2014). The hubs of the human connectome are generally implicated in the anatomy of brain disorders. Brain, 137, 23822395. http://doi.org/10.1093/brain/awu132CrossRefGoogle ScholarPubMed
Crossley, N. A., Mechelli, A., Vértes, P. E., Winton-Brown, T. T., Patel, A. X., Ginestet, C. E., … Bullmore, E. T. (2013). Cognitive relevance of the community structure of the human brain functional coactivation network. Proceedings of the National Academy of Sciences of the United States of America, 110, 1158311588. http://doi.org/10.1073/pnas.1220826110CrossRefGoogle ScholarPubMed
De Dreu, C. K. W., Nijstad, B. A., Baas, M., Wolsink, I., & Roskes, M. (2012). Working memory benefits creative insight, musical improvisation, and original ideation through maintained task-focused attention. Personality and Social Psychology Bulletin, 38, 656669. http://doi.org/10.1177/0146167211435795CrossRefGoogle ScholarPubMed
Deco, G., Jirsa, V. K., & McIntosh, A. R. (2011). Emerging concepts for the dynamical organization of resting-state activity in the brain. Nature Reviews. Neuroscience, 12, 4356. http://doi.org/10.1038/nrn2961CrossRefGoogle ScholarPubMed
Dehaene, S., & Changeux, J. P. (2011). Experimental and theoretical approaches to conscious processing. Neuron, 70, 200227. http://doi.org/10.1016/j.neuron.2011.03.018CrossRefGoogle ScholarPubMed
Dehaene, S., Kerszberg, M., & Changeux, J. P. (1998). A neuronal model of a global workspace in effortful cognitive tasks. Proceedings of the National Academy of Sciences of the United States of America, 95, 1452914534. http://doi.org/10.1073/pnas.95.24.14529CrossRefGoogle ScholarPubMed
DiMartino, A., Fair, D. A., Kelly, C., Satterthwaite, T. D., Castellanos, F. X., Thomason, M. E., … Milham, M. P. (2014). Unraveling the miswired connectome: A developmental perspective. Neuron, 83, 13351353. http://doi.org/10.1016/j.neuron.2014.08.050CrossRefGoogle Scholar
Dosenbach, N. U. F., Fair, D. A., Cohen, A. L., Schlaggar, B. L., & Petersen, S. E. (2008). A dual-networks architecture of top-down control. Trends in Cognitive Sciences, 12, 99105. http://doi.org/10.1016/j.tics.2008.01.001CrossRefGoogle ScholarPubMed
Dosenbach, N. U. F., Visscher, K. M., Palmer, E. D., Miezin, F. M., Wenger, K. K., Kang, H. C., … Petersen, S. E. (2006). A core system for the implementation of task sets. Neuron, 50, 799812. http://doi.org/10.1016/j.neuron.2006.04.031CrossRefGoogle ScholarPubMed
Duncan, J. (2010). The multiple-demand (MD) system of the primate brain: mental programs for intelligent behaviour. Trends in Cognitive Sciences, 14, 172179. http://doi.org/10.1016/j.tics.2010.01.004CrossRefGoogle ScholarPubMed
Durston, S., Thomas, K. M., Yang, Y., Zimmerman, R. D., & Casey, B. J. (2002). A neural basis for the development of inhibitory control. Developmental Science, 4, 916.Google Scholar
Eichele, T., Debener, S., Calhoun, V. D., Specht, K., Engel, A. K., Hugdahl, K., … Ullsperger, M. (2008). Prediction of human errors by maladaptive changes in event-related brain networks. Proceedings of the National Academy of Sciences of the United States of America, 105, 61736178. http://doi.org/10.1073/pnas.0708965105CrossRefGoogle ScholarPubMed
Fair, D. A., Dosenbach, N. U. F., Church, J. A., Cohen, A. L., Brahmbhatt, S., Miezin, F. M., … Schlaggar, B. L. (2007). Development of distinct control networks through segregation and integration. Proceedings of the National Academy of Sciences of the United States of America, 104, 1350713512. http://doi.org/10.1073/pnas.0705843104CrossRefGoogle ScholarPubMed
Finn, E. S., Shen, X., Scheinost, D., Rosenberg, M. D., Huang, J., Chun, M. M., … Constable, R. T. (2015). Functional connectome fingerprinting: Identifying individuals using patterns of brain connectivity. Nature Neuroscience, 18, 16641671. http://doi.org/10.1038/nn.4135CrossRefGoogle ScholarPubMed
Gazzaniga, M. S. (2000). Cerebral specialization and interhemispheric communication: Does the corpus callosum enable the human condition? Brain: A Journal of Neurology, 123, 12931326. http://doi.org/10.1093/brain/123.7.1293CrossRefGoogle ScholarPubMed
Giessing, C., Thiel, C. M., Alexander-Bloch, A. F., Patel, A. X., & Bullmore, E. T. (2013). Human brain functional network changes associated with enhanced and impaired attentional task performance. Journal of Neuroscience, 33, 59035914. http://doi.org/10.1523/JNEUROSCI.4854-12.2013CrossRefGoogle ScholarPubMed
Gläscher, J., Rudrauf, , Colom, D., Paul, R., Tranel, L. K., Damasio, D., , H., & Adolphs, R. (2010). Distributed neural system for general intelligence revealed by lesion mapping. Proceedings of the National Academy of Sciences, 107, 47054709. http://doi.org/10.1073/pnas.0910397107CrossRefGoogle ScholarPubMed
Graber, J. A., & Petersen, A. C. (1991). Cognitive changes at adolescence: Biological perspectives. Foundations of human behavior. In Gibson, K. R., & Peterson, A. R. (Eds.), Brain maturation and cognitive development: Comparative and cross-cultural perspectives. New Brunswick, NJ: Aldine Transaction. www.sciencedirect.com/science/article/B6WVC-446CXBY-1WY/1/6dab32f6d1b86b9e94ff7d3c6262614cGoogle Scholar
Green, A. E., Cohen, M. S., Raab, H. A., Yedibalian, C. G., & Gray, J. R. (2015). Frontopolar activity and connectivity support dynamic conscious augmentation of creative state. Human Brain Mapping, 36, 923934. http://doi.org/10.1002/hbm.22676CrossRefGoogle ScholarPubMed
Greenough, W. T., Black, J. E., & Wallace, C. S. (1987). Experience and brain development. Child Development, 58, 539559. http://doi.org/10.2307/1130197CrossRefGoogle ScholarPubMed
Güntürkün, O. (2005). Avian and mammalian “prefrontal cortices”: Limited degrees of freedom in the evolution of the neural mechanisms of goal-state maintenance. Brain Research Bulletin, 66, 311316. http://doi.org/10.1016/j.brainresbull.2005.02.004CrossRefGoogle ScholarPubMed
Hampshire, A., Highfield, R. R., Parkin, B. L., & Owen, A. M. (2012). Fractionating human intelligence. Neuron, 76, 12251237. http://doi.org/10.1016/j.neuron.2012.06.022CrossRefGoogle ScholarPubMed
Harriger, L., van den Heuvel, M. P., & Sporns, O. (2012). Rich club organization of macaque cerebral cortex and its role in network communication. PLoS ONE, 7(9), e46497. http://doi.org/10.1371/journal.pone.0046497CrossRefGoogle ScholarPubMed
Hering, H., & Sheng, M. (2001). Dendritic spines: Structure, dynamics and regulation. Nature Reviews. Neuroscience, 2, 880888. http://doi.org/10.1038/35104061CrossRefGoogle ScholarPubMed
Huizinga, M., Dolan, C. V., & van der Molen, M. W. (2006). Age-related change in executive function: Developmental trends and a latent variable analysis. Neuropsychologia, 44, 20172036. http://doi.org/10.1016/j.neuropsychologia.2006.01.010CrossRefGoogle Scholar
Hutchison, R. M., & Morton, J. B. (2015). Tracking the brain’s functional coupling dynamics over development. The Journal of Neuroscience, 35, 68496859. http://doi.org/10.1523/JNEUROSCI.4638-14.2015CrossRefGoogle ScholarPubMed
Hutchison, R. M., Womelsdorf, T., Allen, E. A., Bandettini, P. A., Calhoun, V. D., Corbetta, M., … Chang, C. (2013). Dynamic functional connectivity: Promise, issues, and interpretations. NeuroImage, 80, 360378. http://doi.org/10.1016/j.neuroimage.2013.05.079CrossRefGoogle ScholarPubMed
Jaeggi, S. M., Buschkuehl, M., Etienne, A., Ozdoba, C., Perrig, W. J., & Nirkko, A. C. (2007). On how high performers keep cool brains in situations of cognitive overload. Cognitive, Affective & Behavioral Neuroscience, 7, 7589. http://doi.org/10.3758/CABN.7.2.75CrossRefGoogle ScholarPubMed
Jones, D. T., Vemuri, P., Murphy, M. C., Gunter, J. L., Senjem, M. L., Machulda, M. M., … Jack, C. R. (2012). Non-stationarity in the “resting brain’s” modular architecture. PLoS ONE, 7(6), e39731. http://doi.org/10.1371/journal.pone.0039731CrossRefGoogle ScholarPubMed
Jung, R. E., Brooks, W. M., Yeo, R. A., Chiulli, S. J., Weers, D. C., & Sibbitt, W. L. (1999). Biochemical markers of intelligence: A proton MR spectroscopy study of normal human brain. Proceedings. Biological Sciences/The Royal Society, 266, 13751379. http://doi.org/10.1098/rspb.1999.0790CrossRefGoogle ScholarPubMed
Jung, R. E., & Haier, R. J. (2007). The Parieto-Frontal Integration Theory (P-FIT) of intelligence: Converging neuroimaging evidence. Behavioral and Brain Sciences, 30, 135154. http://doi.org/10.1017/S0140525X07001185CrossRefGoogle ScholarPubMed
Jung, R. E., Haier, R. J., Yeo, R. A., Rowland, L. M., Petropoulos, H., Levine, A. S., … Brooks, W. M. (2005). Sex differences in N-acetylaspartate correlates of general intelligence: An 1H-MRS study of normal human brain. NeuroImage, 26, 965972. http://doi.org/10.1016/j.neuroimage.2005.02.039CrossRefGoogle ScholarPubMed
Jung, R. E., Mead, B. S., Carrasco, J., & Flores, R. A. (2013). The structure of creative cognition in the human brain. Frontiers in Human Neuroscience, 7. https://doi.org/10.3389/fnhum.2013.00330CrossRefGoogle ScholarPubMed
Just, M. A., Carpenter, P. A., Maguire, M., Diwadkar, V., & McMains, S. (2001). Mental rotation of objects retrieved from memory: A functional MRI study of spatial processing. Journal of Experimental Psychology. General, 130, 493504. http://doi.org/10.1037/0096-3445.130.3.493CrossRefGoogle ScholarPubMed
Just, M. A., & Varma, S. (2007). The organization of thinking: What functional brain imaging reveals about the neuroarchitecture of complex cognition. Cognitive, Affective & Behavioral Neuroscience, 7, 153191. http://doi.org/10.3758/CABN.7.3.153CrossRefGoogle ScholarPubMed
Kane, M. J., & Engle, R. W. (2002). The role of prefrontal cortex in working-memory capacity, executive attention, and general fluid intelligence: An individual-differences perspective. Psychonomic Bulletin & Review, 9, 637671. www.ncbi.nlm.nih.gov/pubmed/12613671CrossRefGoogle ScholarPubMed
Keating, D. P., Lerner, R. M., & Steinberg, L. (2004). Cognitive and brain development. In Lerner, R. M., & Steinberg, L. (Eds.), Handbook of adolescent psychology (2nd ed.). Hoboken, NJ: John Wiley and Sons. http://doi.org/10.4074/S0013754512003035Google Scholar
Kelly, A. M. C., Uddin, L. Q., Biswal, B. B., Castellanos, F. X., & Milham, M. P. (2008). Competition between functional brain networks mediates behavioral variability. NeuroImage, 39, 527537. http://doi.org/10.1016/j.neuroimage.2007.08.008CrossRefGoogle ScholarPubMed
Kim, K. H. (2005). Can only intelligent people be creative? A meta-analysis. Journal of Secondary Gifted Education, 16, 5766. http://doi.org/10.4219/jsge-2005-473CrossRefGoogle Scholar
Kitzbichler, M. G., Henson, R. N. A., Smith, M. L., Nathan, P. J., & Bullmore, E. T. (2011). Cognitive effort drives workspace configuration of human brain functional networks. Journal of Neuroscience, 31, 82598270. http://doi.org/10.1523/JNEUROSCI.0440-11.2011CrossRefGoogle ScholarPubMed
Klingberg, T., Forssberg, H., & Westerberg, H. (2002). Training of working memory in children with ADHD. Journal of Clinical Experimental Neuropsychology, 24, 781791. http://doi.org/10.1076/jcen.24.6.781.8395CrossRefGoogle ScholarPubMed
Kucyi, A., & Davis, K. D. (2014). Dynamic functional connectivity of the default mode network tracks daydreaming. NeuroImage, 100, 471480. http://doi.org/10.1016/j.neuroimage.2014.06.044CrossRefGoogle ScholarPubMed
Langeslag, S. J. E., Schmidt, M., Ghassabian, A., Jaddoe, V. W., Hofman, A., Lugt, A. Van Der, … White, T. J. H. (2013). Functional connectivity between parietal and frontal brain regions and intelligence in young children: The Generation R Study. Human Brain Mapping, 34, 32993307. http://doi.org/10.1002/hbm.22143CrossRefGoogle ScholarPubMed
Levin, H. S., Culhane, K. A., Hartmann, J., Evankovich, K., Mattson, A. J., Harward, H., … Fletcher, J. M. (1991). Developmental changes in performance on tests of purported frontal lobe functioning. Developmental Neuropsychology, 7, 377395. http://doi.org/10.1080/87565649109540499CrossRefGoogle Scholar
Liu, X., Chang, C., & Duyn, J. H. (2013). Decomposition of spontaneous brain activity into distinct fMRI co-activation patterns. Frontiers in Systems Neuroscience, 7, 101. http://doi.org/10.3389/fnsys.2013.00101CrossRefGoogle ScholarPubMed
Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24, 167202. Retrieved from www.ncbi.nlm.nih.gov/pubmed/11283309CrossRefGoogle ScholarPubMed
Moore, D. W., Bhadelia, R. A., Billings, R. L., Fulwiler, C., Heilman, K. M., Rood, K. M. J., & Gansler, D. A. (2009). Hemispheric connectivity and the visual–spatial divergent-thinking component of creativity. Brain and Cognition, 70, 267272. http://doi.org/10.1016/j.bandc.2009.02.011CrossRefGoogle ScholarPubMed
Moussa, M. N. M., Vechlekar, C. D. C., Burdette, J. H., Steen, M. R., Hugenschmidt, C. E., & Laurienti, P. J. (2011). Changes in cognitive state alter human functional brain networks. Frontiers in Human Neuroscience, 5, 115. http://doi.org/10.3389/fnhum.2011.00083XXCrossRefGoogle ScholarPubMed
Nagy, Z., Westerberg, H., & Klingberg, T. (2004). Maturation of white matter is associated with the development of cognitive functions during childhood. Journal of Cognitive Neuroscience, 16, 12271233. http://doi.org/10.1162/0898929041920441 [doi]CrossRefGoogle ScholarPubMed
Newman, S. D., & Just, M. A. (2005). The neural bases of intelligence: A perspective based on functional neuroimaging. In Sternberg, R. J., & Pretz, J. (Eds.), Cognition and intelligence (pp. 88103). New York, NY: Cambridge University Press. http://doi.org/10.1017/CBO9780511607073.006Google Scholar
Nikolaidis, A., Baniqued, P. L., Kranz, M. B., Scavuzzo, C. J., Barbey, A. K., Kramer, A. F., & Larsen, R. J. (2017). Multivariate associations of fluid intelligence and NAA. Cerebral Cortex, 27, 26072616. http://doi.org/10.1093/cercor/bhw070Google ScholarPubMed
Nikolaidis, A., Goatz, D., Smaragdis, P., & Kramer, A. (2015). Predicting skill-based task performance and learning with fMRI motor and subcortical network connectivity. In 2015 International Workshop on Pattern Recognition in NeuroImaging (pp. 9396). Washington, DC: IEEE Computer Society. http://doi.org/10.1109/PRNI.2015.35CrossRefGoogle Scholar
Nikolaidis, A., Voss, M. W., Lee, H., Vo, L. T. K., & Kramer, A. F. (2014). Parietal plasticity after training with a complex video game is associated with individual differences in improvements in an untrained working memory task. Frontiers in Human Neuroscience, 8, 111. http://doi.org/10.3389/fnhum.2014.00169CrossRefGoogle Scholar
Nusbaum, E. C., & Silvia, P. J. (2011). Are intelligence and creativity really so different? Fluid intelligence, executive processes, and strategy use in divergent thinking. Intelligence, 39, 3645. http://doi.org/10.1016/j.intell.2010.11.002CrossRefGoogle Scholar
Olesen, P. J., Nagy, Z., Westerberg, H., & Klingberg, T. (2003). Combined analysis of DTI and fMRI data reveals a joint maturation of white and grey matter in a frontoparietal network. Cognitive Brain Research, 18, 4857. http://doi.org/10.1016/j.cogbrainres.2003.09.003CrossRefGoogle Scholar
Pascual-Leone, A., Amedi, A., Fregni, F., & Merabet, L. B. (2005). The plastic human brain cortex. Annual Review of Neuroscience, 28, 377401. http://doi.org/10.1146/annurev.neuro.27.070203.144216CrossRefGoogle ScholarPubMed
Paul, E. J., Larsen, R. J., Nikolaidis, A., Ward, N., Hillman, C. H., Cohen, N. J., … Barbey, A. K. (2016). Dissociable brain biomarkers of fluid intelligence. NeuroImage, 137, 201211. http://doi.org/10.1016/j.neuroimage.2016.05.037CrossRefGoogle ScholarPubMed
Paus, T. (2005). Mapping brain maturation and cognitive development during adolescence. Trends in Cognitive Sciences, 9, 6068.CrossRefGoogle ScholarPubMed
Paus, T., Zijdenbos, A., Worsley, K., Collins, D. L., Blumenthal, J., Giedd, J. N., … Evans, A. C. (1999). Structural maturation of neural pathways in children and adolescents: In vivo study. Science, 283, 19081911. http://doi.org/10.1126/science.283.5409.1908CrossRefGoogle ScholarPubMed
Penke, L., Maniega, S. M., Bastin, M. E., Valdés Hernández, M. C., Murray, C., Royle, N. A., … Deary, I. J. (2012). Brain white matter tract integrity as a neural foundation for general intelligence. Molecular Psychiatry, 17, 10261030. http://doi.org/10.1038/mp.2012.66CrossRefGoogle ScholarPubMed
Petanjek, Z., Judas, M., Simic, G., Rasin, M. R., Uylings, H. B. M., Rakic, P., & Kostovic, I. (2011). Extraordinary neoteny of synaptic spines in the human prefrontal cortex. Proceedings of the National Academy of Sciences of the United States of America, 108, 1328113286. http://doi.org/10.1073/pnas.1105108108CrossRefGoogle ScholarPubMed
Plucker, J. A., & Kaufman, J. C. (2011). Intelligence and creativity. In Sternberg, R. J., & Kaufman, S. B. (Eds.), The Cambridge handbook of intelligence (pp. 771783). New York, NY: Cambridge University Press. http://doi.org/10.1037/e518652004-001Google Scholar
Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E. (2012). Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. NeuroImage, 59, 21422154. http://doi.org/10.1016/j.neuroimage.2011.10.018CrossRefGoogle ScholarPubMed
Power, J. D., Cohen, A. L., Nelson, S. M., Wig, G. S., Barnes, K. A., Church, J. A., … Petersen, S. E. (2011). Functional network organization of the human brain. Neuron, 72, 665678. http://doi.org/10.1016/j.neuron.2011.09.006CrossRefGoogle ScholarPubMed
Power, J. D., & Petersen, S. E. (2013). Control-related systems in the human brain. Current Opinion in Neurobiology, 23, 223228. http://doi.org/10.1016/j.conb.2012.12.009CrossRefGoogle ScholarPubMed
Röder, B., Stock, O., Neville, H., Bien, S., & Rösler, F. (2002). Brain activation modulated by the comprehension of normal and pseudo-word sentences of different processing demands: A functional magnetic resonance imaging study. NeuroImage, 15, 10031014. http://doi.org/10.1006/nimg.2001.1026CrossRefGoogle ScholarPubMed
Ross, A. J., & Sachdev, P. S. (2004). Magnetic resonance spectroscopy in cognitive research. Brain Research. Brain Research Reviews, 44, 83102. http://doi.org/10.1016/j.brainresrev.2003.11.001CrossRefGoogle ScholarPubMed
Roth, G., & Dicke, U. (2005). Evolution of the brain and intelligence. Trends in Cognitive Sciences, 9, 250257. http://doi.org/10.1016/j.tics.2005.03.005CrossRefGoogle ScholarPubMed
Rubinov, M., & Sporns, O. (2009). Complex network measures of brain connectivity: Uses and interpretations. NeuroImage, 52, 10591069. http://doi.org/10.1016/j.neuroimage.2009.10.003CrossRefGoogle ScholarPubMed
Ruff, H. A. (1989). The infant’s use of visual and haptic information in the perception and recognition of objects. Canadian Journal of Psychology, 43, 302319. http://doi.org/10.1037/h0084222CrossRefGoogle ScholarPubMed
Sabaté, M., González, B., & Rodríguez, M. (2004). Brain lateralization of motor imagery: Motor planning asymmetry as a cause of movement lateralization. Neuropsychologia, 42, 10411049. http://doi.org/10.1016/j.neuropsychologia.2003.12.015CrossRefGoogle ScholarPubMed
Sadaghiani, S., Hesselmann, G., Friston, K. J., & Kleinschmidt, A. (2010). The relation of ongoing brain activity, evoked neural responses, and cognition. Frontiers in Systems Neuroscience, 4, 20. http://doi.org/10.3389/fnsys.2010.00020Google ScholarPubMed
Sakoglu, U., Pearlson, G. D., Kiehl, K. A., Wang, Y. M., Michael, A. M., & Calhoun, V. D. (2010). A method for evaluating dynamic functional network connectivity and task-modulation: Application to schizophrenia. Magnetic Resonance Materials in Physics, Biology and Medicine, 23, 351366. http://doi.org/10.1007/s10334-010-0197-8CrossRefGoogle ScholarPubMed
Schwarzer, G. (2014). How motor and visual experiences shape infants’ visual processing of objects and faces. Child Development Perspectives, 8, 213217. http://doi.org/10.1111/cdep.12093CrossRefGoogle Scholar
Silvia, P. J., & Beaty, R. E. (2012). Making creative metaphors: The importance of fluid intelligence for creative thought. Intelligence, 40, 343351. http://doi.org/10.1016/j.intell.2012.02.005CrossRefGoogle Scholar
Soska, K. C., & Johnson, S. P. (2013). Development of three-dimensional completion of complex objects. Infancy, 18, 325344. http://doi.org/10.1111/j.1532-7078.2012.00127.xCrossRefGoogle ScholarPubMed
Spear, L. P. (2000). The adolescent brain and age-related behavioral manifestations. Neuroscience and Biobehavioral Reviews, 24, 417463. http://doi.org/10.1016/S0149-7634(00)00014-2CrossRefGoogle ScholarPubMed
Starck, T., Nikkinen, J., Remes, J., Rahko, J., Moilanen, I., Tervonen, O., & Kiviniemi, V. (2012). Temporally varying connectivity between ICA default-mode sub-networks – ASD vs. controls. In Organization for human brain mapping. Beijing.Google Scholar
Steinberg, L. (2005). Cognitive and affective development in adolescence. Trends in Cognitive Sciences, 9, 6974. http://doi.org/10.1016/j.tics.2004.12.005CrossRefGoogle ScholarPubMed
Sun, J., Chen, Q., Zhang, Q., Li, Y., Li, H., Wei, D., … Qiu, J. (2016). Training your brain to be more creative: Brain functional and structural changes induced by divergent thinking training. Human Brain Mapping, 37, 33753387. http://doi.org/10.1002/hbm.23246CrossRefGoogle ScholarPubMed
Supekar, K., Musen, M., & Menon, V. (2009). Development of large-scale functional brain networks in children. PLoS Biology, 7(7), e1000157. http://doi.org/10.1371/journal.pbio.1000157CrossRefGoogle ScholarPubMed
Süß, H. M., Oberauer, , Wittmann, K., Wilhelm, W. W., , O., & Schulze, R. (2002). Working-memory capacity explains reasoning ability – And a little bit more. Intelligence, 30, 261288. http://doi.org/10.1016/S0160-2896(01)00100-3CrossRefGoogle Scholar
Thompson, G. J., Magnuson, M. E., Merritt, M. D., Schwarb, H., Pan, W. J., Mckinley, A., … Keilholz, S. D. (2013). Short-time windows of correlation between large-scale functional brain networks predict vigilance intraindividually and interindividually. Human Brain Mapping, 34, 32803298. http://doi.org/10.1002/hbm.22140CrossRefGoogle ScholarPubMed
Todd, J. J., & Marois, R. (2005). Posterior parietal cortex activity predicts individual differences in visual short-term memory capacity. Cognitive, Affective, & Behavioral Neuroscience, 5, 144155. http://doi.org/10.3758/CABN.5.2.144CrossRefGoogle ScholarPubMed
Uddin, L. Q., Kelly, A. M. C., Biswal, B. B., Castellanos, F. X., & Milham, M. P. (2009). Functional connectivity of default mode network components: Correlation, anticorrelation, and causality. Human Brain Mapping, 30, 625637. http://doi.org/10.1002/hbm.20531CrossRefGoogle ScholarPubMed
Uddin, L. Q., Supekar, K. S., Ryali, S., & Menon, V. (2011). Dynamic reconfiguration of structural and functional connectivity across core neurocognitive brain networks with development. Journal of Neuroscience, 31, 1857818589. http://doi.org/10.1523/JNEUROSCI.4465-11.2011CrossRefGoogle ScholarPubMed
Vakhtin, A. A., Ryman, S. G., Flores, R. A., & Jung, R. E. (2014). Functional brain networks contributing to the Parieto-Frontal Integration Theory of intelligence. NeuroImage, 103, 349354. http://doi.org/10.1016/j.neuroimage.2014.09.055CrossRefGoogle Scholar
van den Heuvel, M. P., Kahn, R. S., Goñi, J., & Sporns, O. (2012). High-cost, high-capacity backbone for global brain communication. Proceedings of the National Academy of Sciences of the United States of America, 109, 1137211377. http://doi.org/10.1073/pnas.1203593109/-/DCSupplemental.www.pnas.org/cgi/doi/10.1073/pnas.1203593109CrossRefGoogle ScholarPubMed
van den Heuvel, M. P., & Sporns, O. (2013). Network hubs in the human brain. Trends in Cognitive Sciences, 17, 683696. http://doi.org/10.1016/j.tics.2013.09.012CrossRefGoogle ScholarPubMed
van den Heuvel, M. P., Stam, C. J., Kahn, R. S., & Hulshoff Pol, H. E. (2009). Efficiency of functional brain networks and intellectual performance. The Journal of Neuroscience, 29, 76197624. http://doi.org/10.1523/JNEUROSCI.1443-09.2009CrossRefGoogle ScholarPubMed
Weissman, D. H., Roberts, K. C., Visscher, K. M., & Woldorff, M. G. (2006). The neural bases of momentary lapses in attention. Nature Neuroscience, 9, 971978. http://doi.org/10.1038/nn1727CrossRefGoogle ScholarPubMed
Whitaker, K. J., Vértes, P. E., Romero-Garcia, R., Váša, F., Moutoussis, M., Prabhu, G., … Bullmore, E. T. (2016). Adolescence is associated with genomically patterned consolidation of the hubs of the human brain connectome. Proceedings of the National Academy of Sciences, 113, 91059110. http://doi.org/10.1073/pnas.1601745113CrossRefGoogle ScholarPubMed

References

Abushanab, B., & Bishara, A. J. (2013). Memory and metacognition for piano melodies: Illusory advantages of fixed-over random-order practice. Memory & Cognition, 41, 928937.CrossRefGoogle ScholarPubMed
Amabile, T. M. (1983). The social psychology of creativity: A componential conceptualization. Journal of Personality and Social Psychology, 45, 357376.CrossRefGoogle Scholar
Amabile, T. M. (1996). Creativity in context: Update to “The Social Psychology of Creativity”. Boulder, CO: Westview Press.Google Scholar
Amabile, T. M., & Pillemer, J. (2012). Perspectives on the social psychology of creativity. The Journal of Creative Behavior, 46, 315.CrossRefGoogle Scholar
Barbot, B., Tan, M., & Grigorenko, E. L. (2013). The genetics of creativity: The generative and receptive sides of the creativity equation. In Vartanian, O., Bristol, A. S., & Kaufman, J. C. (Eds.), The neuroscience of creativity (pp. 7193). Cambridge, MA: The MIT Press.CrossRefGoogle Scholar
Berkowitz, A. L., & Ansari, D. (2010). Expertise-related deactivation of the right temporoparietal junction during musical improvisation. NeuroImage, 49, 712719.CrossRefGoogle ScholarPubMed
Bilalić, M., McLeod, , , P., & Gobet, F. (2007). Does chess need intelligence? – A study with young chess players. Intelligence, 35, 457470.CrossRefGoogle Scholar
Bilalić, M., Smallbone, , McLeod, K., , P., & Gobet, F. (2009). Why are (the best) women so good at chess? Participation rates and gender differences in intellectual domains. Proceedings of the Royal Society of London B: Biological Sciences, 276, 11611165.Google ScholarPubMed
Bjork, E. L., & Bjork, R. A. (2011). Making things hard on yourself, but in a good way: Creating desirable difficulties to enhance learning. In Gernsbacher, M. A., Pew, R. W., & Hough, L. M. (Eds.), Psychology and the real world: Essays illustrating fundamental contributions to society (pp. 5664). Duffield: Worth.Google Scholar
Bjork, R. A. (1994). Memory and metamemory considerations in the training of human beings. In Metcalfe, J., & Shimamura, A. (Eds.), Metacognition: Knowing about knowing (pp. 185205). Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Blackwell, L. S., Trzesniewski, K. H., & Dweck, C. S. (2007). Implicit theories of intelligence predict achievement across an adolescent transition: A longitudinal study and an intervention. Child Development, 78, 246263.CrossRefGoogle ScholarPubMed
Bloom, B. S. (1985). Generalizations about talent development. In Bloom, B. S. (Ed.), Developing talent in young people (pp. 507549). New York, NY: Ballantine Books.Google Scholar
Bonneville-Roussy, A., & Bouffard, T. (2015). When quantity is not enough: Disentangling the roles of practice time, self-regulation and deliberate practice in musical achievement. Psychology of Music, 43, 686704.CrossRefGoogle Scholar
Bryan, W. L., & Harter, N. (1897). Studies in the physiology and psychology of the telegraphic language. Psychological Review, 4, 2753.CrossRefGoogle Scholar
Bryan, W.L., & Harter, N. (1899). Studies on the telegraphic language: The acquisition of a hierarchy of habits. Psychological Review, 6, 345375.CrossRefGoogle Scholar
Charness, N., Krampe, R., & Mayr, U. (1996). The role of practice and coaching in entrepreneurial skill domains: An international comparison of life-span chess skill acquisition. In Ericsson, K. A. (Ed.), The road to excellence: The acquisition of expert performance in the arts and sciences, sports, and games (pp. 5180). Mahwah, NJ: Erlbaum.Google Scholar
Chase, W. G., & Ericsson, K. A. (1982). Skill and working memory. In Bower, G. H. (Ed.), The psychology of learning and motivation (Vol. 16, pp. 158). New York, NY: Academic Press.Google Scholar
Chase, W. G., & Simon, H. A. (1973). Perception in chess. Cognitive Psychology, 4, 5581.CrossRefGoogle Scholar
Clapham, M. M., & Schuster, D. H. (1992). Can engineering students be trained to think more creatively. Journal of Creative Behavior, 26, 165171.CrossRefGoogle Scholar
Claxton, A. F., Pannells, T. C., & Rhoads, P. A. (2005). Developmental trends in the creativity of school-age children. Creativity Research Journal, 17, 327335.CrossRefGoogle Scholar
Colquitt, J. A., LePine, J. A., & Noe, R. A. (2000). Toward an integrative theory of training motivation: A meta-analytic path analysis of 20 years of research. Journal of Applied Psychology, 85, 678.CrossRefGoogle ScholarPubMed
Cowan, N. (2005). Working memory capacity. Hove: Psychology Press.Google Scholar
De Dreu, C. K., Nijstad, B. A., Baas, M., Wolsink, I., & Roskes, M. (2012). Working memory benefits creative insight, musical improvisation, and original ideation through maintained task-focused attention. Personality and Social Psychology Bulletin, 38, 656669.CrossRefGoogle ScholarPubMed
de Groot, A. D. (1946). Het denken van den schaker. Amsterdam: Noord Hollandsche.Google Scholar
de Groot, A. D. (1965). Thought and choice in chess. The Hague: Mouton Publishers.Google Scholar
Djakow, I., Petrowski, N., & Rudik, P. (1927). Psychologie des Schachspiels. Berlin: de Gruyter.CrossRefGoogle Scholar
Draganski, B., Gaser, C., Busch, V., Schuierer, G., Bogdahn, U., & May, A. (2004). Neuroplasticity: Changes in grey matter induced by training. Nature, 427, 311312.CrossRefGoogle ScholarPubMed
Dweck, C. (2015). Growth mindset, revisited. Education Week, 35, 20.Google Scholar
Dweck, C. S., & Leggett, E. L. (1988). A social-cognitive approach to motivation and personality. Psychological Review, 95, 256273.CrossRefGoogle Scholar
Dweck, C. S., Mangels, J. A., & Good, C. (2004). Motivational effects on attention, cognition, and performance. In Dai, D. Y., & Sternberg, R. J. (Eds.), Motivation, emotion, and cognition: Integrative perspectives on intellectual functioning and development (Part II, pp. 4155). Abingdon: Routledge.Google Scholar
Ericsson, A., & Pool, R. (2016). Peak: Secrets from the new science of expertise. New York, NY: Houghton Mifflin Harcourt.Google Scholar
Ericsson, K. A. (2004). Deliberate practice and the acquisition and maintenance of expert performance in medicine and related domains. Academic Medicine, 79, S70S81.CrossRefGoogle Scholar
Ericsson, K. A., Charness, N., Feltovich, P. J., & Hoffman, R. R. (Eds.). (2006). The Cambridge handbook of expertise and expert performance. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Ericsson, K. A., Chase, W. G., & Faloon, S. (1980). Acquisition of a memory skill. Science, 208, 11811182.CrossRefGoogle Scholar
Ericsson, K. A., Krampe, R. T., & Tesch-Römer, C. (1993). The role of deliberate practice in the acquisition of expert performance. Psychological Review, 100, 363406.CrossRefGoogle Scholar
Etkin, J. (2016). The hidden cost of personal quantification. Journal of Consumer Research, 42, 967984.CrossRefGoogle Scholar
Forgeard, M., Winner, E., Norton, A., & Schlaug, G. (2008). Practicing a musical instrument in childhood is associated with enhanced verbal ability and nonverbal reasoning. PLoS ONE, 3, e3566.CrossRefGoogle ScholarPubMed
Galamian, I. (1962). Principles of violin playing & teaching. Englewood Cliffs, NJ: Prentice Hall.Google Scholar
Galton, F. (1865). Heredity, talent and character. Macmillan’s Magazine, 12, 157166, 318327.Google Scholar
Gobet, F., & Simon, H. A. (1996). Templates in chess memory: A mechanism for recalling several boards. Cognitive Psychology, 31, 140.CrossRefGoogle ScholarPubMed
Gobet, F., & Simon, H. (1998). Expert chess memory: Revisiting the chunking hypothesis. Memory, 6, 225255.CrossRefGoogle ScholarPubMed
Haimovitz, K., Wormington, S. V., & Corpus, J. H. (2011). Dangerous mindsets: How beliefs about intelligence predict motivational change. Learning and Individual Differences, 21, 747752.CrossRefGoogle Scholar
Hennessey, B. A. (1996). Teaching for creative development: A social-psychological approach. In Colangelo, N. & Davis, G. (Eds.), Handbook of gifted education (2nd ed., pp. 282291). Needham Heights, MA: Allyn and Bacon.Google Scholar
Herholz, S. C., & Zatorre, R. J. (2012). Musical training as a framework for brain plasticity: Behavior, function, and structure. Neuron, 76, 486502.CrossRefGoogle ScholarPubMed
Howard, R. W. (2009). Individual differences in expertise development over decades in a complex intellectual domain. Memory & Cognition, 37, 194209.CrossRefGoogle Scholar
Howard, R. W. (2011). Does high-level intellectual performance depend on practice alone? Debunking the Polgar sisters case. Cognitive Development, 26, 196202.CrossRefGoogle Scholar
Hyde, K. L., Lerch, J., Norton, A., Forgeard, M., Winner, E., Evans, A. C., & Schlaug, G. (2009). The effects of musical training on structural brain development. Annals of the New York Academy of Sciences, 1169, 182186.CrossRefGoogle ScholarPubMed
Jacoby, L. L., Bjork, R. A., & Kelley, C. M. (1994). Illusions of comprehension, competence, and remembering. In Druckman, D. & Bjork, R A. (Eds.), Learning, remembering, believing: Enhancing human performance (pp. 5780). Washington, DC: National Academy Press.Google Scholar
Jauk, E., Benedek, M., Dunst, B., & Neubauer, A. C. (2013). The relationship between intelligence and creativity: New support for the threshold hypothesis by means of empirical breakpoint detection. Intelligence, 41, 212221.CrossRefGoogle ScholarPubMed
Keller, F. S. (1958). The phantom plateau. Journal of the Experimental Analysis of Behavior, 1, 113.CrossRefGoogle ScholarPubMed
Kim, K. H. (2011). The creativity crisis: The decrease in creative thinking scores on the Torrance Tests of Creative Thinking. Creativity Research Journal, 23, 285295.CrossRefGoogle Scholar
Klingberg, T. (2012). Is working memory capacity fixed? Journal of Applied Research in Memory and Cognition, 1, 194196.CrossRefGoogle Scholar
Limb, C. J., & Braun, A. R. (2008). Neural substrates of spontaneous musical performance: An fMRI study of jazz improvisation. PLoS ONE, 3, e1679.CrossRefGoogle ScholarPubMed
Lin, C. H. J., Chiang, M. C., Wu, A. D., Iacoboni, M., Udompholkul, P., Yazdanshenas, O., & Knowlton, B. J. (2012). Age related differences in the neural substrates of motor sequence learning after interleaved and repetitive practice. NeuroImage, 62, 20072020.CrossRefGoogle ScholarPubMed
Lin, C. H. J., Knowlton, B. J., Chiang, M. C., Iacoboni, M., Udompholkul, P., & Wu, A. D. (2011). Brain–behavior correlates of optimizing learning through interleaved practice. NeuroImage, 56, 17581772.CrossRefGoogle ScholarPubMed
Ma, W. J., Husain, M., & Bays, P. M. (2014). Changing concepts of working memory. Nature Neuroscience, 7, 347356.CrossRefGoogle Scholar
Mangels, J. A., Butterfield, B., Lamb, J., Good, C., & Dweck, C. S. (2006). Why do beliefs about intelligence influence learning success? A social cognitive neuroscience model. Social, Cognitive and Affective Neuroscience, 1, 7586.CrossRefGoogle ScholarPubMed
McPherson, G. E., & McCormick, J. (1999 ). Motivational and self-regulated learning components of musical practice. Bulletin of the Council for Research in Music Education, 141, 98102.Google Scholar
McPherson, G. E., & McCormick, J. (2006). Self-efficacy and music performance. Psychology of Music, 34, 322336.CrossRefGoogle Scholar
Meador, K. S. (1994). The effects of synectics training on gifted and non-gifted kindergarten students. Journal for the Education of the Gifted, 18, 5573.CrossRefGoogle Scholar
Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review, 63, 8197.CrossRefGoogle ScholarPubMed
Mueller, C. M., & Dweck, C. S. (1998). Praise for intelligence can undermine children’s motivation and performance. Journal of Personality and Social Psychology, 75, 3352.CrossRefGoogle ScholarPubMed
Mumford, M. D., Mobley, M. I., Reiter-Palmon, R., Uhlman, C. E., & Doares, L. M. (1991). Process analytic models of creative capacities. Creativity Research Journal, 4, 91122.CrossRefGoogle Scholar
Pinho, A. L., de Manzano, Ö., Fransson, P., Eriksson, H., & Ullén, F. (2014). Connecting to create: Expertise in musical improvisation is associated with increased functional connectivity between premotor and prefrontal areas. The Journal of Neuroscience, 34, 61566163.CrossRefGoogle ScholarPubMed
Pressing, J. (1988). Improvisation: Methods and models. In Sloboda, J. A. (Ed.), Generative processes in music: The psychology of performance, improvisation, and composition (pp. 129178). Oxford: Oxford University Press.Google Scholar
Reder, L., & Klatzky, R. L. (1994). Transfer: Training for performance. In Druckman, D., & Bjork, R. A. (Eds.), Learning, remembering, believing: Enhancing human performance (pp. 2556). Washington, DC: National Academy Press.Google Scholar
Reuter, M., Roth, S., Holve, K., & Hennig, J. (2006). Identification of first candidate genes for creativity: A pilot study. Brain Research, 1069, 190197.CrossRefGoogle ScholarPubMed
Runco, M. A., & Cayirdag, N. (2006). The development of children’s creativity. In Saracho, B., & Spodek, O. N (Eds.), Handbook of research on the education of young children (pp. 121131). New York, NY: Routledge.Google Scholar
Runco, M. A., & Jaeger, G. J. (2012). The standard definition of creativity. Creativity Research Journal, 24, 9296.CrossRefGoogle Scholar
Saggar, M., Quintin, E. M., Bott, N. T., Kienitz, E., Chien, Y. H., Hong, D. W., … Reiss, A. L. (2016). Changes in brain activation associated with spontaneous improvisation and figural creativity after design-thinking-based training: A longitudinal fMRI study. Cerebral Cortex, epub ahead of print.CrossRefGoogle Scholar
Saggar, M., Stankov, A., Schreiber, M., & Reiss, A.L. (2016). Finding the neural correlates of middle childhood “slump” in creativity. Poster presented at the annual meeting of the Society for Neuroscience, San Diego, CA.Google Scholar
Scott, G., Leritz, L. E., & Mumford, M. D. (2004). The effectiveness of creativity training: A quantitative review. Creativity Research Journal, 16, 361388.CrossRefGoogle Scholar
Shalley, C. E., & Gilson, L. L. (2004). What leaders need to know: A review of social and contextual factors that can foster or hinder creativity. The Leadership Quarterly, 15, 3353.CrossRefGoogle Scholar
Silvia, P. J., Nusbaum, E. C., Berg, C., Martin, C., & O’Connor, A. (2009). Openness to experience, plasticity, and creativity: Exploring lower-order, higher-order, and interactive effects. Journal of Research in Personality, 43, 10871090.CrossRefGoogle Scholar
Silvia, P. J., Winerstein, B. P., Willse, J. T., Barona, C. M., Cram, J. T., Hess, K. I., … Richard, C. A. (2008). Assessing creativity with divergent thinking tasks: Exploring the reliability and validity of new subjective scoring methods. Psychology of Aesthetics, Creativity, and the Arts, 2, 6885.CrossRefGoogle Scholar
Simon, H. A., & Gilmartin, K. (1973). A simulation of memory for chess positions. Cognitive Psychology, 5(1), 2946.CrossRefGoogle Scholar
Simonton, D. K. (1997). Creative productivity: A predictive and explanatory model of career trajectories and landmarks. Psychological Review, 104, 6689.CrossRefGoogle Scholar
Smith, G. F. (1998). Idea generation techniques: A formulary of active ingredients. Journal of Creative Behavior, 32, 107134.CrossRefGoogle Scholar
Sternberg, R. J., & Lubart, T. I. (1991). An investment theory of creativity and its development. Human Development, 34(1), 131.CrossRefGoogle Scholar
Torrance, E. P. (1968). A longitudinal examination of the fourth grade slump in creativity. Gifted Child Quarterly, 12, 195199.CrossRefGoogle Scholar
Torrance, E. P. (1972). Can we teach children to think creatively? The Journal of Creative Behavior, 6, 114143.CrossRefGoogle Scholar
Unterrainer, J. M., Kaller, C. P., Halsband, U., & Rahm, B. (2006). Planning abilities and chess: A comparison of and non-chess players on the Tower of London. British Journal of Psychology, 97, 299311.CrossRefGoogle Scholar
Woollett, K., & Maguire, E. A. (2011). Acquiring “the Knowledge” of London’s layout drives structural brain changes. Current Biology, 21, 21092114.CrossRefGoogle ScholarPubMed

References

Ackerman, P. L., Beier, M. E., & Boyle, M. O. (2005). Working memory and intelligence: The same or different constructs? Psychological Bulletin, 131, 3060.CrossRefGoogle ScholarPubMed
Amabile, T. M. (1982). Social psychology of creativity: A consensual assessment technique. Journal of Personality and Social Psychology, 43, 9971013.CrossRefGoogle Scholar
Andrews-Hanna, J. R., Smallwood, J., & Spreng, R. N. (2014). The default network and self-generated thought: Component processes, dynamic control, and clinical relevance. Annals of the New York Academy of Sciences, 1316, 2952.CrossRefGoogle ScholarPubMed
Arden, R., Chavez, R. S., Grazioplene, R., & Jung, R. E. (2010). Neuroimaging creativity: A psychometric view. Behavioral Brain Research, 214, 143156.CrossRefGoogle ScholarPubMed
Ardila, A., Pineda, D., & Rosselli, M. (2000). Correlation between intelligence test scores and executive function measures. Archives of Clinical Neuropsychology, 15, 3136.CrossRefGoogle ScholarPubMed
Baird, B., Smallwood, J., Mrazek, M. D., Kam, J. W. Y., Franklin, M. S., & Schooler, J. W. (2012). Inspired by distraction: Mind wandering facilitates creative incubation. Psychological Science, 23, 11171122.CrossRefGoogle ScholarPubMed
Barbey, A. K., Koenigs, M., & Grafman, J. (2013). Dorsolateral prefrontal contributions to human working memory. Cortex, 49, 11951205.CrossRefGoogle ScholarPubMed
Barron, F. (1955). The disposition towards originality. Journal of Abnormal and Social Psychology, 51, 478485.CrossRefGoogle Scholar
Barron, F. (1963). Creativity and psychological health. Princeton, NJ: D. Van Nostrand.Google Scholar
Barron, F. (1969). Creative person and creative process. New York, NY: Holt, Rinehart & Winston.Google Scholar
Basten, U., Hilger, K., & Fiebach, C. J. (2015). Where smart brains are different: A quantitative meta-analysis of functional and structural brain imaging studies on intelligence. Intelligence, 51, 1027.CrossRefGoogle Scholar
Beaty, R. E., Benedek, M., Kaufman, S. B., & Silvia, P. J. (2015). Default and executive network coupling supports creative idea production. Scientific Reports, 5, 10964.CrossRefGoogle Scholar
Beaty, R. E., Benedek, M., Silvia, P. J., & Schacter, D. L. (2016). Creative cognition and brain network dynamics. Trends in Cognitive Sciences, 20, 8795.CrossRefGoogle ScholarPubMed
Beaty, R. E., Benedek, M., Wilkins, R. W., Jauk, E., Fink, A., Silvia, P. J., … Neubauer, A. C. (2014). Creativity and the default network: A functional connectivity analysis of the creative brain at rest. Neuropsychologia, 64, 9298.CrossRefGoogle ScholarPubMed
Benedek, M., & Jauk, E. (forthcoming, 2017). Spontaneous and controlled processes in creative cognition. In Fox, K. C. R., & Christoff, K. (Eds.), The Oxford handbook of spontaneous thought: Mind-wandering, creativity, dreaming, and clinical disorder. Oxford: Oxford University Press.Google Scholar
Benedek, M., Jauk, E., Beaty, R. E., Fink, A., Koschutnig, K., & Neubauer, A. C. (2016). Probing the mind’s eye – Brain activation and connectivity associated with internally-directed attention during goal-directed thinking. Scientific Reports, 6, 22959.CrossRefGoogle Scholar
Benedek, M., Franz, F., Heene, M., & Neubauer, A. C. (2012). Differential effects of cognitive inhibition and intelligence on creativity. Personality and Individual Differences, 53, 480485.CrossRefGoogle ScholarPubMed
Benedek, M., Jauk, E., Sommer, M., Arendasy, M., & Neubauer, A. C. (2014). Intelligence, 46, 7383.CrossRefGoogle ScholarPubMed
Benedek, M., Mühlmann, C., Jauk, , , E., & Neubauer, A. C. (2013). Assessment of divergent thinking by means of the subjective top-scoring method: Effects of the number of top-ideas and time-on-task on reliability and validity. Psychology of Aesthetics, Creativity, and the Arts, 7, 341349.CrossRefGoogle ScholarPubMed
Bressler, S. L., & Menon, V. (2010). Large-scale brain networks in cognition: Emerging methods and principles. Trends in Cognitive Sciences, 14, 277290.CrossRefGoogle ScholarPubMed
Buckner, R. L., Andrews-Hanna, J. R., & Schacter, D. L. (2008). The brain’s default network: Anatomy, function, and relevance to disease. Annals of the New York Academy of Sciences, 1124, 138.CrossRefGoogle ScholarPubMed
Buckner, R., & Carroll, D. (2007). Self-projection and the brain. Trends in Cognitive Sciences, 11, 4957.CrossRefGoogle ScholarPubMed
Burgaleta, M., MacDonald, P. A., Martínez, K., Román, F. J., Álvarez-Linera, J., González, A. R., … Colom, R. (2014). Subcortical regional morphology correlates with fluid and spatial intelligence. Human Brain Mapping, 35, 19571968.CrossRefGoogle ScholarPubMed
Chen, Q.-L., Xu, T., Yang, W.-J., Li, Y.-D., Sun, J.-Z., Wang, K.-C., … Qiu, J. (2015). Individual differences in verbal creative thinking are reflected in the precuneus. Neuropsychologia, 75, 441449.CrossRefGoogle ScholarPubMed
Christoff, K., Gordon, A. M., Smallwood, J., Smith, R., & Schooler, J. W. (2009). Experience sampling during fMRI reveals default network and executive system contributions to mind wandering. Proceedings of the National Academy of Sciences, 106, 87198724.CrossRefGoogle ScholarPubMed
Colom, R., Haier, R. J., Head, K., Álvarez-Linera, J., Ángeles Quiroga, M., Chun Shih, , , P., & Jung, R. E. (2009). Gray matter correlates of fluid, crystallized, and spatial intelligence: Testing the P-FIT model. Intelligence, 37, 124135.CrossRefGoogle Scholar
Colom, R., Rebollo, I., Palacios, A., Juan-Espinosa, M., & Kyllonen, P. C. (2004). Working memory is (almost) perfectly predicted by g. Intelligence, 32, 277296.CrossRefGoogle Scholar
Cropley, A. (2006). In praise of convergent thinking. Creativity Research Journal, 18, 391404.CrossRefGoogle Scholar
Curtis, C. E., & D’Esposito, M. (2003). Persistent activity in the prefrontal cortex during working memory. Trends in Cognitive Science, 7, 415423.CrossRefGoogle ScholarPubMed
De Dreu, C. K. W., Nijstad, B. A., Bass, M., Wolsink, I., & Roskes, M. (2012). Working memory benefits creative insight, musical improvisation, and original ideation through maintained task-focused attention. Personality and Social Psychology Bulletin, 38, 656669.CrossRefGoogle ScholarPubMed
Deary, I. J., Penke, L., & Johnson, W. (2010). The neuroscience of human intelligence differences. Nature Reviews Neuroscience, 11, 201211.CrossRefGoogle ScholarPubMed
Diedrich, J., Benedek, M., Jauk, E., & Neubauer, A. C. (2015). Are creative ideas novel and useful? Psychology of Aesthetics, Creativity, and the Arts, 9, 3540.CrossRefGoogle Scholar
Dietrich, A., & Kanso, R. (2010). A review of EEG, ERP, and neuroimaging studies of creativity and insight. Psychological Bulletin, 136, 822848.CrossRefGoogle ScholarPubMed
Dul, J. (2016). Necessary Condition Analysis (NCA) logic and methodology of “necessary but not sufficient” causality. Organizational Research Methods, 19, 1052.CrossRefGoogle Scholar
Dunst, B., Benedek, M., Jauk, E., Bergner, S., Koschutnig, K., Sommer, M., … Neubauer, A. C. (2014). Neural efficiency as a function of task demands. Intelligence, 42, 2230.CrossRefGoogle ScholarPubMed
Edl, S., Benedek, M., Papousek, I., Weiss, E. M., & Fink, A. (2014). Creativity and the Stroop interference effect. Personality and Individual Differences, 69, 3842.CrossRefGoogle Scholar
Fink, A., Benedek, M., Grabner, R. H., Staudt, B., & Neubauer, A. C. (2007). Creativity meets neuroscience: Experimental tasks for the neuroscientific study of creative thinking. Methods, 42, 6876.CrossRefGoogle ScholarPubMed
Fink, A., Koschutnig, K., Hutterer, L., Steiner, E., Benedek, M., Weber, B., … Weiss, E. M. (2014). Gray matter density in relation to different facets of verbal creativity. Brain Structure and Function, 219, 12631269.CrossRefGoogle ScholarPubMed
Fox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., Van Essen, D. C., & Raichle, M.E. (2005). The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proceedings of the National Academy of Sciences, 102, 96739678.CrossRefGoogle ScholarPubMed
Fransson, P., & Marrelec, G. (2008). The precuneus/posterior cingulate cortex plays a pivotal role in the default mode network: Evidence from a partial correlation network analysis. NeuroImage, 42, 11781184.CrossRefGoogle Scholar
Friedman, N. P., Miyake, A., Corley, R. P., Young, S. E., DeFries, J. C., & Hewitt, J. K. (2006). Not all executive functions are related to intelligence. Psychological Science, 17, 172179.CrossRefGoogle ScholarPubMed
Galton, F. (1883). Inquiries into human faculty. London: Dent.CrossRefGoogle Scholar
Galton, F. (1888). Head growth in students at the University of Cambridge. Nature, 38, 1415.Google Scholar
Getzels, J. W., & Jackson, P. W. (1962). Creativity and intelligence: Explorations with gifted students. New York, NY: Wiley.Google Scholar
Gonen-Yaacovi, G., de Souza, L. C., Levy, R., Urbanski, M., Josse, G., & Volle, E. (2013). Rostral and caudal prefrontal contribution to creativity: A meta-analysis of functional imaging data. Frontiers in Human Neuroscience, 7, 465.CrossRefGoogle ScholarPubMed
Grazioplene, R. G., Ryman, S. G., Gray, J. R., Rustichini, A., Jung, R. E., & DeYoung, C. G. (2015). Subcortical intelligence: Caudate volume predicts IQ in healthy adults. Human Brain Mapping, 36, 14071416.CrossRefGoogle ScholarPubMed
Guilford, J. P. (1966). Intelligence: 1965 model. American Psychologist, 21, 2026.CrossRefGoogle Scholar
Guilford, J. P. (1967). The nature of human intelligence. New York, NY: McGraw-Hill.Google Scholar
Gusnard, D. A., & Raichle, M. E. (2001). Searching for a baseline: Functional imaging and the resting human brain. Nature Reviews Neuroscience, 2, 685694.CrossRefGoogle ScholarPubMed
Haier, R. J., Siegel, B. V., Nuechterlein, K. H., Hazlett, E., Wu, J. C., Paek, J., … Buchsbaum, M. S. (1988). Cortical glucose metabolic rate correlates of abstract reasoning and attention studied with positron emission tomography. Intelligence, 12, 199217.CrossRefGoogle Scholar
Hasenkamp, W., Wilson-Mendenhall, C. D., Duncan, E., & Barsalou, L. W. (2012). Mind wandering and attention during focused meditation: A fine-grained temporal analysis of fluctuating cognitive states. NeuroImage, 59, 750760.CrossRefGoogle ScholarPubMed
Jauk, E., Benedek, M., Dunst, B., & Neubauer, A. C. (2013). The relationship between intelligence and creativity: New support for the threshold hypothesis by means of empirical breakpoint detection. Intelligence, 41, 212221.CrossRefGoogle ScholarPubMed
Jauk, E., Benedek, M., & Neubauer, A. C. (2012). Tackling creativity at its roots: Evidence for different patterns of EEG alpha activity related to convergent and divergent modes of task processing. International Journal of Psychophysiology, 84, 219225.CrossRefGoogle ScholarPubMed
Jauk, E., Benedek, M., & Neubauer, A. C. (2014). The road to creative achievement: A latent variable model of ability and personality predictors. European Journal of Personality, 28, 95105.CrossRefGoogle ScholarPubMed
Jauk, E., Neubauer, A. C., Dunst, B., Fink, A., & Benedek, M. (2015). Gray matter correlates of creative potential: A latent variable voxel-based morphometry study. NeuroImage, 111, 312320.CrossRefGoogle ScholarPubMed
Jung, R. E. (2014). Evolution, creativity, intelligence, and madness: “Here be dragons”. Frontiers in Psychology, 5, 784.CrossRefGoogle Scholar
Jung, R. E., Gasparovic, C., Chavez, R. S., Flores, R. A., Smith, S. M., Caprihan, A., & Yeo, R. A. (2009). Biochemical support for the “threshold” theory of creativity: A magnetic resonance spectroscopy study. The Journal of Neuroscience, 22, 53195325.CrossRefGoogle Scholar
Jung, R. E., & Haier, R. J. (2007). The Parieto-Frontal Integration Theory (P-FIT) of intelligence: Converging neuroimaging evidence. Behavioral and Brain Sciences, 30, 135187.CrossRefGoogle ScholarPubMed
Jung, R. E., & Haier, R. J. (2013). Creativity and intelligence. In Vartanian, O., Bristol, A. S., & Kaufman, J. C. (Eds.), Neuroscience of creativity (pp. 233254). Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Kahneman, D. (2011). Thinking, fast and slow. New York, NY: Farrar Straus & Giroux.Google Scholar
Karwowski, M., Dul, J., Gralewski, J., Jauk, E., Jankowska, D. M., Gajda, A., … Benedek, M. (2016). Is creativity without intelligence possible? A Necessary Condition Analysis. Intelligence, 57, 105117.CrossRefGoogle Scholar
Karwowski, M., & Gralewski, J. (2013). Threshold hypothesis: Fact or artifact? Thinking Skills and Creativity, 8, 2533.CrossRefGoogle Scholar
Kim, K. H. (2005). Can only intelligent people be creative? The Journal of Secondary Gifted Education, 16, 5766.CrossRefGoogle Scholar
Kris, E. (1952). Psychoanalytic explorations in art. Oxford: International Universities Press.Google Scholar
Kühn, S., Ritter, S. M., Müller, B. C. N., Van Baaren, , Brass, R. B., , M., & Dijksterhuis, A. (2014). The importance of the default mode network in creativity – A structural MRI study. The Journal of Creative Behavior, 48, 152163.CrossRefGoogle Scholar
Langeslag, S. J. E., Schmidt, M., Ghassabian, A., Jaddoe, V. W., Hofman, A., van der Lugt, A., … White, T. J. H. (2013). Functional connectivity between parietal and frontal brain regions and intelligence in young children: The generation R study. Human Brain Mapping, 34, 32993307.CrossRefGoogle ScholarPubMed
Leech, R., & Sharp, D. J. (2014). The role of the posterior cingulate cortex in cognition and disease. Brain, 137, 1232.CrossRefGoogle ScholarPubMed
Martindale, C. (1999). Biological bases of creativity. In Sternberg, R. J. (Ed.), Handbook of creativity (pp. 137152). Cambridge: Cambridge University Press.Google Scholar
Mason, M. F., Norton, M. I., Van Horn, J. D., Wegner, D. M., Grafton, S. T., & Macrae, N. (2007). Wandering minds: The default network and stimulus-independent thought. Science, 315, 393395.CrossRefGoogle ScholarPubMed
McDaniel, M. A. (2005). Big-brained people are smarter: A meta-analysis of the relationship between in vivo brain volume and intelligence. Intelligence, 33, 337346.CrossRefGoogle Scholar
Mednick, S. A. (1962). The associative basis of the creative process. Psychological Review, 69, 220232.CrossRefGoogle ScholarPubMed
Mendelsohn, G. A. (1976). Associative and attentional processes in creative performance. Journal of Personality, 44, 341369.CrossRefGoogle Scholar
Miyake, A., Friedman, N. P., Emerson, M. J., Witzko, A. H., Howerter, A., & Wagner, T. D. (2000). The unity and diversity of executive functions and their contributions to complex ‘‘frontal lobe’’ tasks: A latent variable analysis. Cognitive Psychology, 41, 49100.CrossRefGoogle ScholarPubMed
Neubauer, A. C., & Fink, A. (2009). Intelligence and neural efficiency. Neuroscience and Biobehavioral Reviews, 33, 10041023.CrossRefGoogle ScholarPubMed
Nusbaum, E. C., & Silvia, P. J. (2011). Are intelligence and creativity really so different? Fluid intelligence, executive processes, and strategy use in divergent thinking. Intelligence, 39, 3645.CrossRefGoogle Scholar
Oberauer, K., Süß, H.-M., Wilhelm, , , O., & Wittmann, W. W. (2008). Which working memory functions predict intelligence? Intelligence, 36, 641652.CrossRefGoogle Scholar
Pan, X., & Yu, H. (2016). Different effects of cognitive shifting and intelligence on creativity. The Journal of Creative Behavior. doi:10.1002/jocb.144Google Scholar
Penke, L., Muñoz Maniega, S., Bastin, M. E., Valdés Hernández, M. C., Murray, C., … Deary, I. J. (2012). Brain white matter tract integrity as a neural foundation for general intelligence. Molecular Psychiatry, 17, 10261030.CrossRefGoogle ScholarPubMed
Preckel, F., Holling, H., & Wiese, M. (2006). Relationship of intelligence and creativity in gifted and non-gifted students: An investigation of threshold theory. Personality and Individual Differences, 40, 159170.CrossRefGoogle Scholar
Preckel, F., Wermer, C., & Spinath, F. M. (2011). The interrelationship between speeded and unspeeded divergent thinking and reasoning, and the role of mental speed. Intelligence, 39, 378388.CrossRefGoogle Scholar
Raichle, M. E., & Snyder, A. Z. (2007). A default mode of brain function: A brief history of an evolving idea. NeuroImage, 37, 10831090.CrossRefGoogle ScholarPubMed
Runco, M. A., & Jaeger, G. J. (2012). The standard definition of creativity. Creativity Research Journal, 24, 9296.CrossRefGoogle Scholar
Ryman, S. G., van den Heuvel, M. P., Yeo, R. A., Caprihan, A., Carrasco, J., Vakhtin, A. A., & Jung, R. E. (2014). Sex differences in the relationship between white matter connectivity and creativity. NeuroImage, 101, 380389.CrossRefGoogle ScholarPubMed
Sawyer, K. (2011). The cognitive neuroscience of creativity: A critical review. Creativity Research Journal, 23, 137154.CrossRefGoogle Scholar
Silvia, P. J. (2008a). Creativity and intelligence revisited: A reanalysis of Wallach and Kogan (1965). Creativity Research Journal, 20, 3439.CrossRefGoogle Scholar
Silvia, P. J. (2008b). Another look at creativity and intelligence: Exploring higher-order models and probable confounds. Personality and Individual Differences, 44, 10121021.CrossRefGoogle Scholar
Silvia, P. J. (2015). Intelligence and creativity are pretty similar after all. Educational Psychology Review, 27, 599606.CrossRefGoogle Scholar
Silvia, P. J., Winterstein, B. B., Willse, J. T., Barona, C. M., Cram, J. T., Hess, K. I., … Richard, C. A. (2008). Assessing creativity with divergent thinking tasks: Exploring the reliability and validity of new subjective scoring methods. Psychology of Aesthetics, Creativity, and the Arts, 2, 6885.CrossRefGoogle Scholar
Song, M., Zhou, Y., Li, J., Liu, Y., Tian, L., Yu, C., & Jiang, T. (2008). Brain spontaneous functional connectivity and intelligence. NeuroImage, 41, 11681176.CrossRefGoogle ScholarPubMed
Sporns, O. (2014). Contributions and challenges for network models in cognitive neuroscience. Nature Neuroscience, 17, 652660.CrossRefGoogle Scholar
Spreng, R. N., Stevens, W. D., Chamberlain, J. P., Gilmore, A. W., Schacter, D. L. (2010). Default network activity, coupled with the frontoparietal control network, supports goal-directed cognition. NeuroImage, 53, 303317.CrossRefGoogle ScholarPubMed
Stanovich, K. E. (1999). Who is rational? Studies of individual differences in reasoning. Mahwah, NJ: Erlbaum.CrossRefGoogle Scholar
Stein, M. I. (1953). Creativity and culture. Journal of Psychology, 36, 311322.CrossRefGoogle Scholar
Sternberg, R. J., & O’Hara, L. A. (1999). Creativity and intelligence. In Sternberg, R. J. (Ed.), Handbook of creativity (pp. 251272). Cambridge: Cambridge University Press.Google Scholar
Takeuchi, H., Taki, Y., Hashizume, H., Sassa, Y., Nagase, T., Nouchi, R., & Kawashima, R. (2011). Failing to deactivate: The association between brain activity during a working memory task and creativity. NeuroImage, 55, 681687.CrossRefGoogle ScholarPubMed
Takeuchi, H., Taki, Y., Sassa, Y., Hashizume, H., Sekiguchi, A., Fukushima, A., & Kawashima, R. (2010). Regional gray matter volume of dopaminergic system associate with creativity: Evidence from voxel-based morphometry. NeuroImage, 51, 578585.CrossRefGoogle ScholarPubMed
Vakhtin, A. A., Ryman, S. G., Flores, R. A., & Jung, R. E. (2014). Functional brain networks contributing to the Parieto-Frontal Integration Theory of Intelligence. NeuroImage, 103, 349354.CrossRefGoogle Scholar
van den Heuvel, M. P., Stam, C. J., Kahn, R. S., & Hulshoff Pol, H. E. (2009). Efficiency of functional brain networks and intellectual performance. The Journal of Neuroscience, 29, 76197624.CrossRefGoogle ScholarPubMed
Vartanian, O., Jobidon, M.-E., Bouak, F., Nakashima, A., Smith, I., Lam, Q., & Cheung, B. (2013). Working memory training is associated with lower prefrontal cortex activation in a divergent thinking task. Neuroscience, 236, 186194.CrossRefGoogle Scholar
Wallach, M. A., & Kogan, N. (1965). Modes of thinking in young children: A study of the creativity–intelligence distinction. New York, NY: Holt, Rinehart and Winston.Google Scholar
Wu, X., Yang, W., Tong, D., Sun, J., Chen, Q., Wei, D., … Qiu, J. (2015). A meta-analysis of neuroimaging studies on divergent thinking using activation likelihood estimation. Human Brain Mapping, 36, 27032718.CrossRefGoogle ScholarPubMed
Yeo, B. T. T., Krienen, F. M., Sepulcre, J., Sabuncu, M. R., Lashkari, D., Hollinshead, M., … Buckner, R. L. (2011). The organization of the human cerebral cortex estimated by intrinsic functional connectivity. Journal of Neurophysiology, 106, 11251165.Google ScholarPubMed
Zhu, F., Zhang, Q., & Qiu, J. (2013). Relating inter-individual differences in verbal creative thinking to cerebral structures: An optimal voxel-based morphometry study. PLoS ONE, 8, e79272.CrossRefGoogle ScholarPubMed