Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-25T18:41:05.628Z Has data issue: false hasContentIssue false

Part IV - Memory and Language

Published online by Cambridge University Press:  19 January 2018

Rex E. Jung
Affiliation:
University of New Mexico
Oshin Vartanian
Affiliation:
University of Toronto
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Abraham, A. (2013). The promises and perils of the neuroscience of creativity. Frontiers in Human Neuroscience, 7, 246.CrossRefGoogle ScholarPubMed
Abraham, A. (2014). Creative thinking as orchestrated by semantic processing versus cognitive control brain networks. Frontiers in Human Neuroscience, 8, 95.CrossRefGoogle Scholar
Abraham, A., Pieritz, K., Thybusch, K., Rutter, B., Kröger, S., Schweckendiek, J., … Hermann, C. (2012). Creativity and the brain: Uncovering the neural signature of conceptual expansion. Neuropsychologia, 50, 19061917.CrossRefGoogle ScholarPubMed
Acar, S., & Runco, M. A. (2014). Assessing associative distance among ideas elicited by tests of divergent thinking. Creativity Research Journal, 26, 229238.CrossRefGoogle Scholar
Addis, D. R., Pan, L., Musicaro, R., & Schacter, D. L. (2016). Divergent thinking and constructing episodic simulations. Memory, 24, 19.CrossRefGoogle ScholarPubMed
Anaki, D., & Henik, A. (2003). Is there a “strength effect” in automatic semantic priming? Memory & Cognition, 31, 262272.CrossRefGoogle Scholar
Andrews-Hanna, J. R., Saxe, R., & Yarkoni, T. (2014). Contributions of episodic retrieval and mentalizing to autobiographical thought: Evidence from functional neuroimaging, resting-state connectivity, and fMRI meta-analyses. NeuroImage, 91, 324335.CrossRefGoogle ScholarPubMed
Andrews-Hanna, J. R., Smallwood, J., & Spreng, R. N. (2014). The default network and self-generated thought: Component processes, dynamic control, and clinical relevance. Annals of the New York Academy of Sciences, 1316, 2952.CrossRefGoogle ScholarPubMed
Arden, R. Chavez, R. S., Grazioplene, R., & Jung, R. E. (2010). Neuroimaging creativity: A psychometric view. Behavioral Brain Research, 214, 143156.CrossRefGoogle ScholarPubMed
Baronchelli, A., Ferrer-i-Cancho, R., Pastor-Satorras, R., Chater, N., & Christiansen, M. H. (2013). Networks in cognitive science. Trends in Cognitive Sciences, 17, 348360.CrossRefGoogle ScholarPubMed
Barr, N., Pennycook, G., Stolz, J. A., & Fugelsang, J. A. (2014). Reasoned connections: A dual-process perspective on creative thought. Thinking & Reasoning, 21, 6175.CrossRefGoogle Scholar
Beaty, R. E., Benedek, M., Kaufman, S. B., & Silvia, P. J. (2015). Default and executive network coupling supports creative idea production. Scientific Reports, 5, 10964.CrossRefGoogle Scholar
Beaty, R. E., Benedek, M., Silvia, P. J., & Schacter, D. L. (2016). Creative cognition and brain network dynamics. Trends in Cognitive Sciences, 20, 8795.CrossRefGoogle ScholarPubMed
Beaty, R. E., Kaufman, S. B., Benedek, M., Jung, R. E., Kenett, Y. N., Jauk, E., … Silvia, P. J. (2016). Personality and complex brain networks: The role of openness to experience in default network efficiency. Human Brain Mapping, 37, 773779.CrossRefGoogle ScholarPubMed
Beaty, R. E., & Silvia, P. J. (2012). Why do ideas get more creative over time? An executive interpretation of the serial order effect in divergent thinking tasks. Psychology of Aesthetics, Creativity and the Arts, 6, 309319.CrossRefGoogle Scholar
Beaty, R. E., Silvia, P. J., Nusbaum, E. C., Jauk, E., & Benedek, M. (2014). The roles of associative and executive processes in creative cognition. Memory & Cognition, 42, 112.CrossRefGoogle ScholarPubMed
Benedek, M., Jauk, E., Sommer, M., Arendasy, M., & Neubauer, A. C. (2014). Intelligence, creativity, and cognitive control: The common and differential involvement of executive functions in intelligence and creativity. Intelligence, 46, 7383.CrossRefGoogle ScholarPubMed
Benedek, M., Konen, T., & Neubauer, A. C. (2012). Associative abilities underlying creativity. Psychology of Aesthetics, Creativity and the Arts, 6, 273281.CrossRefGoogle Scholar
Benedek, M., & Neubauer, A. C. (2013). Revisiting Mednick’s model on creativity-related differences in associative hierarchies. Evidence for a common path to uncommon thought. The Journal of Creative Behavior, 47, 273289.Google Scholar
Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., & Hwang, D. U. (2006). Complex networks: Structure and dynamics. Physics Reports, 424, 175308.CrossRefGoogle Scholar
Borge-Holthoefer, J., & Arenas, A. (2010). Semantic networks: Structure and dynamics. Entropy, 12, 12641302.CrossRefGoogle Scholar
Bowden, E. M., & Jung-Beeman, M. (2003). One hundred forty-four Compound Remote Associate Problems: Short insight-like problems with one-word solutions. Behavioral Research, Methods, Instruments, and Computers, 35, 634639.CrossRefGoogle Scholar
Budson, A. E., & Price, B. H. (2005). Memory dysfunction. New England Journal of Medicine, 352, 692699.CrossRefGoogle ScholarPubMed
Campbell, D. T. (1960). Blind variation and selective retentions in creative thought as in other knowledge processes. Psychological Review, 67, 380400.CrossRefGoogle ScholarPubMed
Chan, K. Y., & Vitevitch, M. S. (2010). Network structure influences speech production. Cognitive Science, 34, 685697.Google ScholarPubMed
Chwilla, D. J., & Kolk, H. H. J. (2002). Three-step priming in lexical decision. Memory & Cognition, 30, 217225.CrossRefGoogle ScholarPubMed
Coane, J. H., & Balota, D. A. (2011). Face (and nose) priming for book: The malleability of semantic memory. Experimental Psychology, 58, 6270.CrossRefGoogle ScholarPubMed
Collins, A. M., & Loftus, E. F. (1975). A spreading-activation theory of semantic processing. Psychological Review, 82, 407428.CrossRefGoogle Scholar
Davies, M. (2009). The 385+ million word Corpus of Contemporary American English (1990–2008+): Design, architecture, and linguistic insights. International Journal of Corpus Linguistics, 14, 159190.CrossRefGoogle Scholar
De Deyne, S., Kenett, Y. N., Anaki, D., Faust, M., & Navarro, D. J. (2016). Large-scale network representations of semantics in the mental lexicon. In Jones, M. N. (Ed.), Big data in cognitive science: From methods to insights (pp. 174–202). New York, NY: Psychology Press.Google Scholar
De Deyne, S., Navarro, D. J., & Storms, G. (2013). Associative strength and semantic activation in the mental lexicon: evidence from continued word associations. In Proceedings of the 35th Annual Conference of the Cognitive Science Society. Berlin, Germany.Google Scholar
De Deyne, S., & Storms, G. (2008). Word association: Network and semantic properties. Behavior Research Methods, 40, 213231.CrossRefGoogle ScholarPubMed
De Deyne, S., Verheyen, S., & Storms, G. (2016). Structure and organization of the mental lexicon: A network approach derived from syntactic dependency relations and word associations. In Mehler, A., Blanchard, P., Job, B., & Banish, S. (Eds.), Towards a theoretical framework for analyzing complex linguistic networks (pp. 4779). New York, NY: Springer.CrossRefGoogle Scholar
Den-Heyer, K., & Briand, K. (1986). Priming single digit numbers: Automatic spreading activation dissipates as a function of semantic distance. American Journal of Psychology, 99, 315340.CrossRefGoogle Scholar
Dennis, S. (2007). How to use the LSA website. In Landauer, T. K., McNamara, D. S., Dennis, S., & Kintsch, W. (Eds.), Handbook of latent semantic analysis (pp. 5770). Englewood Cliffs, NJ: Lawrence Erlbaum.Google Scholar
Faust, M. (2012). Thinking outside the left box: The role of the right hemisphere in novel metaphor comprehension. In Faust, M. (Ed.), Advances in the neural substrates of language: Toward a synthesis of basic science and clinical research (pp. 425448). Malden, MA: Wiley Blackwell.Google Scholar
Forthmann, B., Gerwig, A., Holling, H., Çelik, P., Storme, , , M., & Lubart, T. (2016). The be-creative effect in divergent thinking: The interplay of instruction and object frequency. Intelligence, 57, 2532.CrossRefGoogle Scholar
Gabora, L. (2010). Revenge of the “neurds”: Characterizing creative thought in terms of the structure and dynamics of memory. Creativity Research Journal, 22, 113.CrossRefGoogle Scholar
Gonen-Yaacovi, G., de Souza, L. C., Levy, R., Urbanski, M., Josse, G., & Volle, E. (2013). Rostral and caudal prefrontal contribution to creativity: A meta-analysis of functional imaging data. Frontiers in Human Neuroscience, 7, 465.CrossRefGoogle ScholarPubMed
Green, A. E. (2016). Creativity, within reason: Semantic distance and dynamic state creativity in relational thinking and reasoning. Current Directions in Psychological Science, 25, 2835.CrossRefGoogle Scholar
Green, A. E., Cohen, M. S., Raab, H. A., Yedibalian, C. G., & Gray, J. R. (2015). Frontopolar activity and connectivity support dynamic conscious augmentation of creative state. Human Brain Mapping, 36, 923934.CrossRefGoogle ScholarPubMed
Green, A. E., Kraemer, D. J. M., Fugelsang, J. A., Gray, J. R., & Dunbar, K. N. (2010). Connecting long distance: Semantic distance in analogical reasoning modulates frontopolar cortex activity. Cerebral Cortex, 20, 7076.CrossRefGoogle ScholarPubMed
Green, A. E., Kraemer, D. J. M., Fugelsang, J. A., Gray, J. R., & Dunbar, K. N. (2012). Neural correlates of creativity in analogical reasoning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 38, 264272.Google ScholarPubMed
Green, A. E., Spiegel, K. A., Giangrande, E. J., Weinberger, A. B., Gallagher, N. M., & Turkeltaub, P. E. (2017). Thinking cap plus thinking zap: tDCS of frontopolar cortex improves creative analogical reasoning and facilitates conscious augmentation of state creativity in verb generation. Cerebral Cortex, 27, 26282639.Google ScholarPubMed
Griffiths, T. L., Steyvers, M., & Firl, A. (2007). Google and the mind: Predicting fluency with PageRank. Psychological Science, 18, 10691076.CrossRefGoogle ScholarPubMed
Gruszka, A., & Necka, E. (2002). Priming and acceptance of close and remote associations by creative and less creative people. Creativity Research Journal, 14, 193205.CrossRefGoogle Scholar
Hahn, L. W. (2008). Overcoming the limitations of single-response free associations. Electronic Journal of Integrative Biosciences, 5, 2536.Google Scholar
Hass, R. W. (2016). Conceptual Expansion During Divergent Thinking. Paper presented at the Proceedings of the 38th Annual Meeting of the Cognitive Science Society, Austin, TX.Google Scholar
Howard, M. W., & Kahana, M. J. (2002). When does semantic similarity help episodic retrieval? Journal of Memory and Language, 46, 8598.CrossRefGoogle Scholar
Hutchison, K. A., Balota, D. A., Cortese, M. J., & Watson, J. M. (2008). Predicting semantic priming at the item level. The Quarterly Journal of Experimental Psychology, 61, 10361066.CrossRefGoogle ScholarPubMed
Jauk, E., Benedek, M., & Neubauer, A. C. (2014). The road to creative achievement: A latent variable model of ability and personality predictors. European Journal of Personality, 28, 95105.CrossRefGoogle ScholarPubMed
Jones, M. N., Willits, J., & Dennis, S. (2015). Models of semantic memory. In Busemeyer, J. & Townsend, J. (Eds.), Oxford handbook of mathematical and computational psychology (pp. 232254). New York, NY: Oxford University Press.Google Scholar
Jung, R. E., Mead, B. S., Carrasco, J., & Flores, R. A. (2013). The structure of creative cognition in the human brain. Frontiers in Human Neuroscience, 7, 330.CrossRefGoogle ScholarPubMed
Kajić, I., Gosmann, , Stewart, J., Wennekers, T. C., , T., & Eliasmith, C. (2016). Towards a cognitively realistic representation of word associations. Paper presented at the proceedings of the 38th Annual Meeting of the Cognitive Science Society, Austin, TX.Google Scholar
Kajić, I., & Wennekers, T. (2015). Neural network model of semantic processing in the remote associates test. Paper presented at the Workshop on Cognitive Computation: Integrating Neural and Symbolic Approaches, 29th Annual Conference on Neural Information Processing Systems (NIPS 2015), Montreal, Canada.Google Scholar
Kenett, Y. N., Anaki, D., & Faust, M. (2014). Investigating the structure of semantic networks in low and high creative persons. Frontiers in Human Neuroscience, 8, 407.CrossRefGoogle ScholarPubMed
Kenett, Y. N., Levi, E., Anaki, D., & Faust, M. (2017). The semantic distance task: Quantifying semantic distance with semantic network path length. Journal of Experimental Psychology: Learning, Memory, & Cognition. doi:10.1037/xlm0000391.Google ScholarPubMed
Kenett, Y. N., Beaty, R. E., Silvia, P. J., Anaki, D., & Faust, M. (2016). Structure and flexibility: Investigating the relation between the structure of the mental lexicon, fluid intelligence, and creative achievement. Psychology of Aesthetics, Creativity, and the Arts, 10(4), 377–388.CrossRefGoogle Scholar
Kenett, Y. N., Kenett, D. Y., Ben-Jacob, E., & Faust, M. (2011). Global and local features of semantic networks: Evidence from the Hebrew mental lexicon. PLoS ONE, 6, e23912.CrossRefGoogle ScholarPubMed
Kim, H. (2016). Default network activation during episodic and semantic memory retrieval: A selective meta-analytic comparison. Neuropsychologia, 80, 3546.CrossRefGoogle ScholarPubMed
Kröger, S., Rutter, , Hill, B., Windmann, H., Hermann, S., , C., & Abraham, A. (2013). An ERP study of passive creative conceptual expansion using a modified alternate uses task. Brain Research, 1527, 189198.CrossRefGoogle ScholarPubMed
Kröger, S., Rutter, , Stark, B., Windmann, R., Hermann, S., , C., & Abraham, A. (2012). Using a shoe as a plant pot: Neural correlates of passive conceptual expansion. Brain Research, 1430, 5261.CrossRefGoogle ScholarPubMed
Landauer, T. K., & Dumais, S. T. (1997). A solution to Plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological Review, 104, 211240.CrossRefGoogle Scholar
Landauer, T. K., Foltz, P. W., & Laham, D. (1998). An introduction to latent semantic analysis. Discourse Processes, 25, 259284.CrossRefGoogle Scholar
Lee, C. S., & Therriault, D. J. (2013). The cognitive underpinnings of creative thought: A latent variable analysis exploring the roles of intelligence and working memory in three creative thinking processes. Intelligence, 41, 306320.CrossRefGoogle Scholar
Madore, K. P., Addis, D. R., & Schacter, D. L. (2015). Creativity and memory: Effects of an episodic-specificity induction on divergent thinking. Psychological Science, 26, 14611468.CrossRefGoogle ScholarPubMed
Mandera, P., Keuleers, E., & Brysbaert, M. (2015). How useful are corpus-based methods for extrapolating psycholinguistic variables? The Quarterly Journal of Experimental Psychology, 68, 16231342.CrossRefGoogle ScholarPubMed
Mandera, P., Keuleers, E., & Brysbaert, M. (2017). Explaining human performance in psycholinguistic tasks with models of semantic similarity based on prediction and counting: A review and empirical validation. Journal of Memory and Language, 92, 5776.CrossRefGoogle Scholar
Martindale, C. (1995). Creativity and connectionism. In Smith, S. M., Ward, T. B., & Finke, R. A. (Eds.), The creative cognition approach (pp. 249268). Cambridge, MA: The MIT Press.Google Scholar
Mayseless, N., Eran, A., & Shamay-Tsoory, S. G. (2015). Generating original ideas: The neural underpinning of originality. NeuroImage, 116, 232239.CrossRefGoogle ScholarPubMed
McRae, K., & Jones, M. N. (2013). Semantic memory. In Reisberg, D. (Ed.), The Oxford handbook of cognitive psychology (pp. 206219). Oxford: Oxford University Press.Google Scholar
Mednick, M. T., Mednick, S. A., & Jung, C. C. (1964). Continual association as a function of level of creativity and type of verbal stimulus. Journal of Abnormal and Social Psychology, 69, 511515.CrossRefGoogle ScholarPubMed
Mednick, S. A. (1962). The associative basis of the creative process. Psychological Review, 69, 220232.CrossRefGoogle ScholarPubMed
Mendelsohn, G. A. (1976). Associative and attentional processes in creative performance 1. Journal of Personality, 44, 341369.CrossRefGoogle Scholar
Nelson, D. L., McEvoy, C. L., & Dennis, S. (2000). What is free association and what does it measure? Memory & Cognition, 28, 887899.CrossRefGoogle ScholarPubMed
Nelson, D. L., McEvoy, C. L., & Schreiber, T. A. (2004). The University of South Florida free association, rhyme, and word fragment norms. Behavior Research Methods, Instruments, & Computers, 36, 402407.CrossRefGoogle ScholarPubMed
Nusbaum, E. C., & Silvia, P. J. (2011). Are intelligence and creativity really so different? Fluid intelligence, executive processes, and strategy use in divergent thinking. Intelligence, 39, 3645.CrossRefGoogle Scholar
Olteţeanu, A.-M., & Falomir, Z. (2015). comRAT-C: A computational compound Remote Associates Test solver based on language data and its comparison to human performance. Pattern Recognition Letters, 67, 8190.CrossRefGoogle Scholar
Olteţeanu, A.-M., & Falomir, Z. (2016). Object replacement and object composition in a creative cognitive system. Towards a computational solver of the Alternative Uses Test. Cognitive Systems Research, 39, 1532.CrossRefGoogle Scholar
Patterson, K., Nestor, P. J., & Rogers, T. T. (2007). Where do you know what you know? The representation of semantic knowledge in the human brain. Nature Reviews Neuroscience, 8, 976987.CrossRefGoogle Scholar
Prabhakaran, R., Green, A. E., & Gray, J. R. (2014). Thin slices of creativity: Using single-word utterances to assess creative cognition. Behavior Research Methods, 46, 641659.CrossRefGoogle ScholarPubMed
Radel, R., Davranche, K., Fournier, M., & Dietrich, A. (2015). The role of (dis)inhibition in creativity: Decreased inhibition improves idea generation. Cognition, 134, 110120.CrossRefGoogle ScholarPubMed
Recchia, G., & Jones, M. (2009). More data trumps smarter algorithms: Comparing pointwise mutual information with latent semantic analysis. Behavior Research Methods, 41, 647656.CrossRefGoogle ScholarPubMed
Rossman, E., & Fink, A. (2010). Do creative people use shorter association pathways? Personality and Individual Differences, 49, 891895.CrossRefGoogle Scholar
Rubinsten, O., Anaki, D., Henik, A., Drori, S., & Farn, I. (2005). Norms to free associations in Hebrew. In Henik, A., Rubinsten, O., & Anaki, D. (Eds.), Word norms in Hebrew (pp. 1735). Beer-Sheva: Ben-Gurion University.Google Scholar
Runco, M. A., & Acar, S. (2012). Divergent thinking as an indicator of creative potential. Creativity Research Journal, 24, 6675.CrossRefGoogle Scholar
Rutter, B., Kröger, S., Hill, , Windmann, H., Hermann, S., , C., & Abraham, A. (2012). Can clouds dance? Part 2: An ERP investigation of passive conceptual expansion. Brain and Cognition, 80, 301310.CrossRefGoogle ScholarPubMed
Rutter, B., Kröger, S., Stark, , Schweckendiek, R., Windmann, J., Hermann, S., , C., & Abraham, A. (2012). Can clouds dance? Neural correlates of passive conceptual expansion using a metaphor processing task: Implications for creative cognition. Brain and Cognition, 78, 114122.CrossRefGoogle ScholarPubMed
Schilling, M. A. (2005). A “small-world” network model of cognitive insight. Creativity Research Journal, 17, 131154.CrossRefGoogle Scholar
Shapira-Lichter, I., Oren, N., Jacob, Y., Gruberger, M., & Hendler, T. (2013). Portraying the unique contribution of the default mode network to internally driven mnemonic processes. Proceedings of the National Academy of Sciences, 110, 49504955.CrossRefGoogle ScholarPubMed
Silvia, P. J., Beaty, R. E., & Nusbaum, E. C. (2013). Verbal fluency and creativity: General and specific contributions of broad retrieval ability (Gr) factors to divergent thinking. Intelligence, 41, 328340.CrossRefGoogle Scholar
Simmons, S., & Estes, Z. (2006). Using latent semantic analysis to estimate similarity. In Proceedings of the 28th Annual Meeting of the Cognitive Science Society, Austin, TX.Google Scholar
Simonton, D. K. (2010). Creative thought as blind-variation and selective-retention: Combinatorial models of exceptional creativity. Physics of Life Reviews, 7, 190194.CrossRefGoogle ScholarPubMed
Simonton, D. K. (2013). Creative thought as blind variation and selective retention: Why creativity is inversely related to sightedness. Journal of Theoretical and Philosophical Psychology, 33, 253266.CrossRefGoogle Scholar
Simonton, D. K. (2015). On praising convergent thinking: Creativity as blind variation and selective retention. Creativity Research Journal, 27, 262270.CrossRefGoogle Scholar
Smith, S. M., & Ward, T. B. (2012). Cognition and the creation of ideas. In Holyoak, K. M., & Morrison, R. G. (Eds.), Oxford handbook of thinking and reasoning (pp. 456474). Oxford: Oxford University Press.CrossRefGoogle Scholar
Sowden, P. T., Pringle, A., & Gabora, L. (2014). The shifting sands of creative thinking: Connections to dual-process theory. Thinking & Reasoning, 21, 4060.CrossRefGoogle Scholar
Steyvers, M., Shiffrin, R. M., & Nelson, D. L. (2004). Word association spaces for predicting semantic similarity effects in episodic memory. In Healy, A. F. (Ed.), Experimental cognitive psychology and its applications: Festchrift in honor of Lyle Bourne, Walter Kintsch, and Thomas Landauer (pp. 237249). Washington, DC: American Psychological Association.Google Scholar
Steyvers, M., & Tenenbaum, J. B. (2005). The large scale structure of semantic networks: Statistical analysis and a model of semantic growth. Cognitive Science, 29, 4178.CrossRefGoogle Scholar
Van Petten, C. (2014). Examining the N400 semantic context effect item-by-item: Relationship to corpus-based measures of word co-occurrence. International Journal of Psychophysiology, 94, 407419.CrossRefGoogle ScholarPubMed
Vitevitch, M. S. (2008). What can graph theory tell us about word learning and lexical retrieval? Journal of Speech Language and Hearing Research, 51, 408422.CrossRefGoogle ScholarPubMed
Vitevitch, M. S., Chan, K. Y., & Goldstein, R. (2014). Insights into failed lexical retrieval from network science. Cognitive Psychology, 68, 132.CrossRefGoogle ScholarPubMed
Vitevitch, M. S., Chan, K. Y., & Roodenrys, S. (2012). Complex network structure influences processing in long-term and short-term memory. Journal of Memory and Language, 67, 3044.CrossRefGoogle ScholarPubMed
Ward, T. B. (1994). Structured imagination: The role of category structure in exemplar generation. Cognitive Psychology, 27, 140.CrossRefGoogle Scholar
Wirth, M., Jann, K., Dierks, T., Federspiel, A., Wiest, R., & Horn, H. (2011). Semantic memory involvement in the default mode network: A functional neuroimaging study using independent component analysis. NeuroImage, 54, 30573066.CrossRefGoogle ScholarPubMed
Zabelina, D. L., Saporta, A., & Beeman, M. (2015). Flexible or leaky attention in creative people? Distinct patterns of attention for different types of creative thinking. Memory & Cognition, 44, 488498.CrossRefGoogle Scholar

References

Abraham, A., Pieritz, K., Thybusch, K., Rutter, B., Kröger, S., Schweckendiek, J., … Hermann, C. (2012). Creativity and the brain: Uncovering the neural signature of conceptual expansion. Neuropsychologia, 50, 19061917.CrossRefGoogle ScholarPubMed
Addis, D. R., Pan, L., Musicaro, R., & Schacter, D. L. (2016). Divergent thinking and constructing episodic simulations. Memory, 24, 8997.CrossRefGoogle ScholarPubMed
Andrews-Hanna, J. R., Smallwood, J., & Spreng, R. N. (2014). The default network and self-generated thought: Component processes, dynamic control, and clinical relevance. Annals of the New York Academy of Sciences, USA, 1316, 2952.CrossRefGoogle ScholarPubMed
Badre, D., & Wagner, A. D. (2004). Selection, integration, and conflict monitoring: Assessing the nature and generality of prefrontal cognitive control mechanisms. Neuron, 41, 473487.CrossRefGoogle ScholarPubMed
Badre, D., & Wagner, A. D. (2007). Left ventrolateral prefrontal cortex and the cognitive control of memory. Neuropsychologia, 45, 28832901.CrossRefGoogle ScholarPubMed
Beaty, R. E. (2015). The neuroscience of musical improvisation. Neuroscience & Biobehavioral Reviews, 51, 108117.CrossRefGoogle ScholarPubMed
Beaty, R. E., Benedek, M., Kaufman, S. B., & Silvia, P. J. (2015). Default and executive network coupling supports creative idea production. Scientific Reports, 5, 10964.CrossRefGoogle Scholar
Beaty, R. E., Benedek, M., Silvia, P. J., & Schacter, D. L. (2016). Creative cognition and brain network dynamics. Trends in Cognitive Science, 20, 8795.CrossRefGoogle ScholarPubMed
Beaty, R. E., & Silvia, P. J. (2012). Why do ideas get more creative across time? An executive interpretation of the serial order effect in divergent thinking tasks. Psychology of Aesthetics, Creativity, and the Arts, 6, 309.CrossRefGoogle Scholar
Beaty, R. E., & Silvia, P. J. (2013). Metaphorically speaking: Cognitive abilities and the production of figurative language. Memory & Cognition, 41, 255267.CrossRefGoogle ScholarPubMed
Benedek, M., Jauk, E., Beaty, R. E., Fink, A., Koschutnig, K., & Neubauer, A. C. (2016). Brain mechanisms associated with internally directed attention and self-generated thought. Scientific Reports, 6, 22959.CrossRefGoogle ScholarPubMed
Benedek, M., Jauk, E., Fink, A., Koschutnig, K., Reishofer, G., Ebner, F., & Neubauer, A. C. (2014a). To create or to recall? Neural mechanisms underlying the generation of creative new ideas. NeuroImage, 88, 125133.CrossRefGoogle ScholarPubMed
Benedek, M., Jauk, E., Sommer, M., Arendasy, M., & Neubauer, A. C. (2014b). Intelligence, creativity, and cognitive control: The common and differential involvement of executive functions in intelligence and creativity. Intelligence, 46, 7383.CrossRefGoogle ScholarPubMed
Benedek, M., Könen, T., & Neubauer, A. C. (2012). Associative abilities underlying creativity. Psychology of Aesthetics, Creativity, and the Arts, 6, 273.CrossRefGoogle Scholar
Benoit, R. G., & Schacter, D. L. (2015). Specifying the core network supporting episodic simulation and episodic memory by activation likelihood estimation. Neuropsychologia, 75, 450457.CrossRefGoogle ScholarPubMed
Boccia, M., Piccardi, L., Palermo, L., Nori, R., & Palmiero, M. (2015). Where do bright ideas occur in our brain? Meta-analytic evidence from neuroimaging studies of domain-specific creativity. Frontiers in Psychology, 6.CrossRefGoogle ScholarPubMed
Bowden, E. M., & Jung-Beeman, M. (1998). Getting the right idea: Semantic activation in the right hemisphere may help solve insight problems. Psychological Science, 9, 435440.CrossRefGoogle Scholar
Buckner, R. L., Andrews-Hanna, J. R., & Schacter, D. L. (2008). The brain’s default network. Annals of the New York Academy of Sciences, 1124, 138.CrossRefGoogle ScholarPubMed
Burianova, H., McIntosh, A. R., & Grady, C. L. (2010). A common functional brain network for autobiographical, episodic, and semantic memory retrieval. NeuroImage, 49, 865874.CrossRefGoogle Scholar
De Brigard, F., Addis, D. R., Ford, J. H., Schacter, D. L., & Giovanello, K. S. (2013). Remembering what could have happened: Neural correlates of episodic counterfactual thinking. Neuropsychologia, 51, 24012414.CrossRefGoogle ScholarPubMed
DeYoung, C. G., Flanders, J. L., & Peterson, J. B. (2008). Cognitive abilities involved in insight problem solving: An individual differences model. Creativity Research Journal, 20, 278290.CrossRefGoogle Scholar
Duff, M. C., Kurczek, J., Rubin, R., Cohen, N. J., & Tranel, D. (2013). Hippocampal amnesia disrupts creative thinking. Hippocampus, 23, 11431149.CrossRefGoogle ScholarPubMed
Ellamil, M., Dobson, C., Beeman, M., & Christoff, K. (2012). Evaluative and generative modes of thought during the creative process. NeuroImage, 59, 17831794.CrossRefGoogle ScholarPubMed
Fink, A., Grabner, R. H., Benedek, M., Reishofer, G., Hauswirth, V., Fally, M., … Neubauer, A. C. (2009). The creative brain: Investigation of brain activity during creative problem solving by means of EEG and fMRI. Human Brain Mapping, 30, 734748.CrossRefGoogle ScholarPubMed
Finke, R. A., Ward, T. B., & Smith, S. M. (1992). Creative cognition: Theory, research, and applications. Cambridge, MA: MIT Press.Google Scholar
Fisher, R. P., & Geiselman, R. E. (1992). Memory-enhancing techniques for investigative interviewing: The cognitive interview. Springfield, IL: Charles C. Thomas Books.Google Scholar
Forthmann, B., Gerwig, A., Holling, H., Çelik, P., Storme, , , M., & Lubart, T. (2016). The be-creative effect in divergent thinking: The interplay of instruction and object frequency. Intelligence, 57, 2532.CrossRefGoogle Scholar
Gilhooly, K. J., Fioratou, E., Anthony, S. H., & Wynn, V. (2007). Divergent thinking: Strategies and executive involvement in generating novel uses for familiar objects. British Journal of Psychology, 98, 611625.CrossRefGoogle ScholarPubMed
Gonen-Yaacovi, G., de Souza, L. C., Levy, R., Urbanski, M., Josse, G., & Volle, E. (2013). Rostral and caudal prefrontal contributions to creativity: A meta-analysis of functional imaging data. Frontiers in Human Neuroscience, 7, 465.CrossRefGoogle ScholarPubMed
Green, A. E., Cohen, M. S., Raab, H. A., Yedibalian, C. G., & Gray, J. R. (2015). Frontopolar activity and connectivity support dynamic conscious augmentation of creative state. Human Brain Mapping, 36, 923934.CrossRefGoogle ScholarPubMed
Guilford, J. P. (1967). The nature of human intelligence. New York, NY: McGraw Hill.Google Scholar
Jing, H.G., Madore, K.P., & Schacter, D.L. (2016). Worrying about the future: An episodic specificity induction impacts problem solving, reappraisal, and well-being. Journal of Experimental Psychology: General, 145, 402418.CrossRefGoogle ScholarPubMed
Jung, R. E., Flores, R. A., & Hunter, D. (2016). A new measure of imagination ability: Anatomical brain imaging correlates. Frontiers in Psychology, 7, 496.CrossRefGoogle ScholarPubMed
Jung, R. E., Mead, B. S., Carrasco, J., & Flores, R. A. (2013). The structure of creative cognition in the human brain. Frontiers in Human Neuroscience, 330, 103389.Google Scholar
Kane, M. J., Hambrick, D. Z., Tuholski, S. W., Wilhelm, O., Payne, T. W., & Engle, R. W.(2004). The generality of working memory capacity: A latent-variable approach to verbal and visuospatial memory span and reasoning. Journal of Experimental Psychology: General, 133, 189.CrossRefGoogle ScholarPubMed
Kleibeuker, S. W., Koolschijn, P. C., Jolles, D. D., De Dreu, C. K., & Crone, E. A. (2013). The neural coding of creative idea generation across adolescence and early adulthood. Frontiers in Human Neuroscience, 7, 103389.CrossRefGoogle ScholarPubMed
Klein, S. (2013). Making the case that episodic recollection is attributable to operations occurring at retrieval rather than to content stored in a dedicated subsystem of long-term memory. Frontiers in Behavioral Neuroscience, 7, 3.CrossRefGoogle Scholar
Kowatari, Y., Lee, S. H., Yamamura, H., Nagamori, Y., Levy, P., Yamane, S., & Yamamoto, M. (2009). Neural networks involved in artistic creativity. Human Brain Mapping, 30, 16781690.CrossRefGoogle ScholarPubMed
Lee, C. S., & Therriault, D. J. (2013). The cognitive underpinnings of creative thought: A latent variable analysis exploring the roles of intelligence and working memory in three creative thinking processes. Intelligence, 41, 306320.CrossRefGoogle Scholar
Liu, S., Erkkinen, M. G., Healey, M. L., Xu, Y., Swett, K. E., Chow, H. M., & Braun, A. R. (2015). Brain activity and connectivity during poetry composition: Toward a multidimensional model of the creative process. Human Brain Mapping, 36, 35513372.CrossRefGoogle Scholar
Madore, K. P., Addis, D. R., & Schacter, D. L. (2015). Creativity and memory: Effects of an episodic specificity induction on divergent thinking. Psychological Science, 26, 14611468.CrossRefGoogle ScholarPubMed
Madore, K. P., Gaesser, B., & Schacter, D. L. (2014). Constructive episodic simulation: Dissociable effects of a specificity induction on remembering, imagining, and describing in young and older adults. Journal of Experimental Psychology: Learning, Memory, and Cognition, 40, 609622.Google ScholarPubMed
Madore, K. P., Jing, H. G., & Schacter, D. L. (2016). Divergent creative thinking in young and older adults: Extending the effects of an episodic specificity induction. Memory & Cognition.CrossRefGoogle Scholar
Madore, K. P., & Schacter, D. L. (2014). An episodic specificity induction enhances means-end problem solving in young and older adults. Psychology and Aging, 29, 913924.CrossRefGoogle ScholarPubMed
Madore, K. P., & Schacter, D. L. (2016). Remembering the past and imagining the future: Selective effects of an episodic specificity induction on detail generation. The Quarterly Journal of Experimental Psychology, 69, 285298.CrossRefGoogle ScholarPubMed
Mayseless, N., Eran, A., & Shamay-Tsoory, S. G. (2015). Generating original ideas: The neural underpinning of originality. NeuroImage, 116, 232239.CrossRefGoogle ScholarPubMed
McGrew, K. S. (2009). CHC theory and the human cognitive abilities project: Standing on the shoulders of the giants of psychometric intelligence research. Intelligence, 37, 110.CrossRefGoogle Scholar
Mednick, S. A. (1962). The associative basis of the creative process. Psychological Review, 69, 220232.CrossRefGoogle ScholarPubMed
Pinho, A., de Manzano, Ö., Fransson, P., Eriksson, H., & Ullén, F. (2014). Connecting to create: Expertise in musical improvisation is associated with increased functional connectivity between premotor and prefrontal areas. Journal of Neuroscience, 34, 61566163.CrossRefGoogle ScholarPubMed
Pinho, A. L., Ullén, F., Castelo-Branco, , Fransson, M., , P., & de Manzano, Ö. (2016). Addressing a paradox: Dual strategies for creative performance in introspective and extrospective networks. Cerebral Cortex, 26, 30523063.CrossRefGoogle ScholarPubMed
Raichle, M. E. (2015). The brain’s default mode network. Annual Review of Neuroscience, 38, 433447.CrossRefGoogle ScholarPubMed
Schacter, D. L., & Addis, D. R. (2007). The cognitive neuroscience of constructive memory: Remembering the past and imagining the future. Philosophical Transaction of the Royal Society of London B, 362, 773786.CrossRefGoogle ScholarPubMed
Schacter, D. L., Addis, D. R., & Buckner, R. L. (2007). Remembering the past to imagine the future: The prospective brain. Nature Reviews Neuroscience, 8, 657661.CrossRefGoogle ScholarPubMed
Schacter, D. L., Addis, D. R., Hassabis, D., Martin, V. C., Spreng, R. N., & Szpunar, K. K. (2012). The future of memory: Remembering, imagining, and the brain. Neuron, 76, 677694.CrossRefGoogle ScholarPubMed
Schacter, D. L., Benoit, R. G., De Brigard, F., & Szpunar, K. K. (2015). Episodic future thinking and episodic counterfactual thinking: Intersections between memory and decisions. Neurobiology of Learning and Memory, 17, 114121.Google Scholar
Schacter, D. L., & Madore, K. P. (2016). Remembering the past and imagining the future: Identifying and enhancing the contribution of episodic memory. Memory Studies, 9, 245255.CrossRefGoogle ScholarPubMed
Sheldon, S., McAndrews, M. P., & Moscovitch, M. (2011). Episodic memory processes mediated by the medial temporal lobes contribute to open-ended problem solving. Neuropsychologia, 49, 24392447.CrossRefGoogle ScholarPubMed
Silvia, P. J., & Beaty, R. E. (2012). Making creative metaphors: The importance of fluid intelligence for creative thought. Intelligence, 40, 343351.CrossRefGoogle Scholar
Silvia, P. J., Beaty, R. E., & Nusbaum, E. C. (2013). Verbal fluency and creativity: General and specific contributions of broad retrieval ability (Gr) factors to divergent thinking. Intelligence, 41, 328340.CrossRefGoogle Scholar
Spreng, R. N., Stevens, W. D., Chamberlain, J. P., Gilmore, A. W., & Schacter, D. L. (2010). Default network activity, coupled with the frontoparietal control network, supports goal-directed cognition. NeuroImage, 53, 303317.CrossRefGoogle ScholarPubMed
Spreng, R. N., Sepulcre, J., Turner, G. R., Stevens, W. D., & Schacter, D. L. (2013). Intrinsic architecture underlying the relations among the default, dorsal attention, and frontoparietal control networks of the human brain. Journal of Cognitive Neuroscience, 25, 7486.CrossRefGoogle ScholarPubMed
Szpunar, K. K. (2010). Episodic future thought: An emerging concept. Perspectives on Psychological Science, 5, 142162.CrossRefGoogle ScholarPubMed
Thompson-Schill, S. L. (2003). Neuroimaging studies of semantic memory: Inferring “how” from “where”. Neuropsychologia, 41, 280292.CrossRefGoogle Scholar
Torrance, E. P. (1974). The Torrance tests of creative thinking norms – technical manual research edition – figural tests, forms A and B. Princeton, NJ: Personnel Press.Google Scholar
Troyer, A. K., Moscovitch, M., & Winocur, G. (1997). Clustering and switching as two components of verbal fluency: Evidence from younger and older healthy adults. Neuropsychology, 11, 138.CrossRefGoogle ScholarPubMed
Tulving, E. (1983). Elements of episodic memory. Oxford: Clarendon Press.Google Scholar
Tulving, E. (2002). Episodic memory: From mind to brain. Annual Review of Psychology, 53, 125.CrossRefGoogle Scholar
Unsworth, N., Spillers, G. J., & Brewer, G. A. (2010). Variation in verbal fluency: A latent variable analysis of clustering, switching, and overall performance. The Quarterly Journal of Experimental Psychology, 64, 447466.CrossRefGoogle ScholarPubMed
Vartanian, O., Bouak, F., Caldwell, J. L., Cheung, B., Cupchik, G., Jobidon, M. E., … Silvia, P. J. (2013). The effects of a single night of sleep deprivation on fluency and prefrontal cortex function during divergent thinking. Frontiers in Human Neuroscience, 8, 214214.Google Scholar
Vartanian, O., Martindale, C., & Kwiatkowski, J. (2003). Creativity and inductive reasoning: The relationship between divergent thinking and performance on Wason’s 2–4–6 task. The Quarterly Journal of Experimental Psychology: Section A, 56, 641655.CrossRefGoogle Scholar
Vincent, J. L., Kahn, I., Snyder, A. Z., Raichle, M. E., & Buckner, R. L. (2008). Evidence for a frontoparietal control system revealed by intrinsic functional connectivity. Journal of Neurophysiology, 100, 33283342.CrossRefGoogle ScholarPubMed
Warren, D. E., Kurczek, J., & Duff, M. C. (2016). What relates newspaper, definite, and clothing? An article describing deficits in convergent problem solving and creativity following hippocampal damage. Hippocampus, 26, 835840.CrossRefGoogle ScholarPubMed
Wu, X., Yang, W., Tong, D., Sun, J., Chen, Q., Wei, D., … Qiu, J. (2015). A meta-analysis of neuroimaging studies on divergent thinking using activation likelihood estimation. Human Brain Mapping, 36, 27032718.CrossRefGoogle ScholarPubMed

References

Abdullaev, Y. G., & Posner, M. I. (1998). Event-related brain potential imaging of semantic encoding during processing single words. NeuroImage, 7, 113.CrossRefGoogle ScholarPubMed
Adams, J. L. (2001). Conceptual blockbusting: A guide to better ideas. New York, NY: Basic Books.Google Scholar
Anderson, M. C., Ochsner, K. N., Kuhl, B., Cooper, J., Robertson, E., Gabrieli, S. W., … Gabrieli, J. D. E. (2004). Neural systems underlying the suppression of unwanted memories. Science, 203, 232235.CrossRefGoogle Scholar
Arzouan, Y., Goldstein, A., & Faust, M. (2007). Brainwaves are stethoscopes: ERP correlates of novel metaphor comprehension. Brain Research, 1160, 6981.CrossRefGoogle ScholarPubMed
Baas, M., De Dreu, C. K., & Nijstad, B. A. (2008). A meta-analysis of 25 years of mood-creativity research: Hedonic tone, activation, or regulatory focus?. Psychological Bulletin, 134(6), 779–806.CrossRefGoogle ScholarPubMed
Baird, B., Smallwood, J., Mrazek, M. D., Kam, J. W., Franklin, M. S., & Schooler, J. W. (2012). Inspired by distraction: Mind wandering facilitates creative incubation. Psychological Science, 23(10), 11171122.CrossRefGoogle ScholarPubMed
Beaty, R. E., Benedek, M., Kaufman, S. B., & Silvia, P. J. (2015). Default and executive network coupling supports creative idea production. Scientific Reports, 5.CrossRefGoogle Scholar
Beaty, R. E., Benedek, M., Wilkins, R. W., Jauk, E., Fink, A., Silvia, P. J., … Neubauer, A. C. (2014). Creativity and the default network: A functional connectivity analysis of the creative brain at rest. Neuropsychologia, 64, 9298.CrossRefGoogle ScholarPubMed
Beaty, R. E., Silvia, P. J., Nusbaum, E. C., Jauk, E., & Benedek, M. (2014). The roles of associative and executive processes in creative cognition. Memory & Cognition, 42, 11861197.CrossRefGoogle ScholarPubMed
Bechtereva, N. P., Korotkov, A. D., Pakhomov, S., Roudas, M. S., Starchenko, M. G., & Medvedev, S. V. (2004). PET study of brain maintenance of verbal creative activity. International Journal of Psychophysiology, 53, 1120.CrossRefGoogle ScholarPubMed
Beeman, M. (1998). Coarse semantic coding and discourse comprehension. In Beeman, M., & Chiarello, C. (Eds.), Right hemisphere language comprehension (pp. 255284). Mahwah, NJ: Erlbaum.Google Scholar
Benedek, M., Fink, A., & Neubauer, A. C. (2006). Enhancement of ideational fluency by means of computer-based training. Creativity Research Journal, 18, 317328.CrossRefGoogle Scholar
Benedek, M., Jauk, E., Fink, A., Koschutnig, K., Reishofer, G., Ebner, F., & Neubauer, A. C. (2014). To create or to recall? Neural mechanisms underlying the generation of creative new ideas. NeuroImage, 88, 125133.CrossRefGoogle ScholarPubMed
Benedek, M., Könen, T., & Neubauer, A. C. (2012). Associative abilities underlying creativity. Psychology of Aesthetics, Creativity, and the Arts, 6, 273281.CrossRefGoogle Scholar
Benedek, M., Mühlmann, C., Jauk, , , E., & Neubauer, A. C. (2013). Assessment of divergent thinking by means of the subjective top-scoring method: Effects of the number of top-ideas and time-on-task on reliability and validity. Psychology of Aesthetics, Creativity, and the Arts, 7, 341349.CrossRefGoogle ScholarPubMed
Benedek, M., & Neubauer, A. C. (2013). Revisiting Mednick’s model on creativity-related differences in associative hierarchies. Evidence for a common path to uncommon thought. The Journal of Creative Behavior, 47, 273289.CrossRefGoogle Scholar
Berant, E. (2009). Attachment styles, the Rorschach and the Thematic Apperception Test: Using the traditional projective measures to assess aspects of attachment. In Obegi, J. H., & Berant, E. (Eds.), Attachment theory and research in clinical work with adults (pp. 181208). New York, NY: Guilford Press.Google Scholar
Binder, J. R., Desai, R. H., Graves, W. W., & Conant, L. L. (2009). Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cerebral Cortex, 19, 27672796.CrossRefGoogle ScholarPubMed
Bollas, C. (2013). The infinite question. London: Routledge.Google Scholar
Bordin, E. S. (1966). Free association: An experimental analogue of the psychoanalytic situation. In Gottschalk, L. A., & Auerbach, A. H. (Eds.), Methods of research in psychotherapy (pp. 189208). New York, NY: Springer.CrossRefGoogle Scholar
Brunyé, T. T., Moran, , Cantelon, J. M., Holmes, J., Eddy, A., Mahoney, M. D., , C. R., & Taylor, H. A. (2015). Increasing breadth of semantic associations with left frontopolar direct current brain stimulation: A role for individual differences. NeuroReport, 26, 296301.CrossRefGoogle ScholarPubMed
Buckner, R. L., Andrews-Hanna, J. R., & Schacter, D. L. (2008). The brain’s default network: Anatomy, function, and relevance to disease. Annals of the New York Academy of Sciences, 1124, 138.CrossRefGoogle ScholarPubMed
Busch, F. (1998). Rethinking clinical technique. Lanham, MD: Jason Aronson.Google Scholar
Caron, A. J., Unger, S. M., & Parloff, M. B. (1963). A test of Maltzman’s theory of originality training. Journal of Verbal Learning and Verbal Behavior, 1, 436442.CrossRefGoogle Scholar
Carson, S. H., Peterson, J. B., & Higgins, D. M. (2003). Decreased latent inhibition is associated with increased creative achievement in high-functioning individuals. Journal of Personality and Social Psychology, 85, 499506.CrossRefGoogle ScholarPubMed
Cattell, J. M., Bryant, S., Stout, G. F., Edgeworth, F. Y., Hughes, E. P., & Collet, C. E. (1889). Mental association investigated by experiment. Mind, 14, 230250.CrossRefGoogle Scholar
Chand, I., & Runco, M. A. (1993). Problem finding skills as components in the creative process. Personality and Individual Differences, 14, 155162.CrossRefGoogle Scholar
Chávez-Eakle, R. A., Graff-Guerrero, A., García-Reyna, J. C., Vaugier, , , V., & Cruz-Fuentes, C. (2007). Cerebral blood flow associated with creative performance: A comparative study. NeuroImage, 38, 519528.CrossRefGoogle ScholarPubMed
Christoff, K., Gordon, A. M., Smallwood, J., Smith, R., & Schooler, J. W. (2009). Experience sampling during fMRI reveals default network and executive system contributions to mind wandering. Proceedings of the National Academy of Sciences, 106, 87198724.CrossRefGoogle ScholarPubMed
Christoff, K., Gordon, A. M., & Smith, R. (2011). The role of spontaneous thought in human cognition. In Vartanian, O., & Mandel, D. R. (Eds.), Neuroscience of decision making (pp. 259284). New York, NY: Psychology Press.Google Scholar
Collins, A. M., & Loftus, E. F. (1975). A spreading-activation theory of semantic processing. Psychological Review, 82, 407428.CrossRefGoogle Scholar
De Deyne, S., Navarro, D. J., & Storms, G. (2013). Better explanations of lexical and semantic cognition using networks derived from continued rather than single-word associations. Behavior Research Methods, 45, 480498.CrossRefGoogle ScholarPubMed
De Deyne, S., & Storms, G. (2008). Word associations: Network and semantic properties. Behavior Research Methods, 40, 213231.CrossRefGoogle ScholarPubMed
Depue, B. E., Curran, T., & Banich, M. T. (2007). Prefrontal regions orchestrate suppression of emotional memories via a two-phase process. Science, 317, 215219.CrossRefGoogle Scholar
Dijksterhuis, A., & Meurs, T. (2006). Where creativity resides: The generative power of unconscious thought. Consciousness and Cognition, 15, 135146.CrossRefGoogle ScholarPubMed
Dorfman, L., Martindale, C., Gassimova, V., & Vartanian, O. (2008). Creativity and speed of information processing: A double dissociation involving elementary versus inhibitory cognitive tasks. Personality and Individual Differences, 44, 13821390.CrossRefGoogle Scholar
Ellamil, M., Dobson, C., Beeman, M., & Christoff, K. (2012). Evaluative and generative modes of thought during the creative process. NeuroImage, 59, 17831794.CrossRefGoogle ScholarPubMed
Eysenck, H. J. (1993). Creativity and personality: Suggestions for a theory. Psychological Inquiry, 4, 147178.CrossRefGoogle Scholar
Eysenck, H. J. (1995). Genius: The natural history of creativity (Vol. 12). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Faust, M. (2012). Thinking outside the left box: The role of the right hemispheres in novel metaphor comprehension. In Faust, M. (Ed.), The handbook of the neuropsychology of language (pp. 425448). Malden, MA: Wiley-Blackwell.CrossRefGoogle Scholar
Faust, M., & Mashal, N. (2007). The role of the right cerebral hemisphere in processing novel metaphoric expressions taken from poetry: A divided visual field study. Neuropsychologia, 45, 860870.CrossRefGoogle ScholarPubMed
Fink, A., Grabner, R. H., Benedek, M., Reishofer, G., Hauswirth, V., Fally, M., … Neubauer, A. C. (2009). The creative brain: Investigation of brain activity during creative problem solving by means of EEG and fMRI. Human Brain Mapping, 30, 734748.CrossRefGoogle ScholarPubMed
Fink, A., Grabner, R. H., Gebauer, D., Reishofer, G., Koschutnig, K., & Ebner, F. (2010). Enhancing creativity by means of cognitive stimulation: Evidence from an fMRI study. NeuroImage, 52, 16871695.CrossRefGoogle ScholarPubMed
Fink, A., & Neubauer, A. C. (2006). EEG alpha oscillations during the performance of verbal creativity tasks: Differential effects of sex and verbal intelligence. International Journal of Psychophysiology, 62, 4653.CrossRefGoogle ScholarPubMed
Fink, A., Weber, B., Koschutnig, K., Benedek, M., Reishofer, G., Ebner, F., … Weiss, E. M. (2014). Creativity and schizotypy from the neuroscience perspective. Cognitive, Affective, & Behavioral Neuroscience, 14, 378387.CrossRefGoogle ScholarPubMed
Freedman, J. L. (1965). Increasing creativity by free-association training. Journal of Experimental Psychology, 69, 8991.CrossRefGoogle ScholarPubMed
Freud, S. (1958). Recommendations to physicians practicing psycho-analysis. In Strachey, J. (Ed. & Trans.), The standard edition of the complete psychological works of Sigmund Freud (Vol. 7, pp. 109120). London: Hogarth Press. (Original work published in 1912.)Google Scholar
Frick, J. W., Guilford, J. P., Christensen, P. R., & Merrifield, P. R. (1959). A factor-analytic study of flexibility in thinking. Educational and Psychological Measurement, 19, 469496.CrossRefGoogle Scholar
Galton, F. (1879). Psychometric experiments. Brain, 2, 149162.CrossRefGoogle Scholar
Gedo, J. E. (1990). More on creativity and its vicissitudes. In Runco, M., & Albert, R. S. (Eds.), Theories of creativity (pp. 3545). London: SAGE Publications.Google Scholar
Georgsdottir, A. S., Lubart, T. I., & Getz, I. (2003). The role of flexibility in innovation. In Shavinina, L. V. (Ed.), The international handbook on innovation (pp. 180190). Oxford: Elsevier.CrossRefGoogle Scholar
Gilhooly, K. J., Fioratou, E., Anthony, S. H., & Wynn, V. (2007). Divergent thinking: Strategies and executive involvement in generating novel uses for familiar objects. British Journal of Psychology, 98, 611625.CrossRefGoogle ScholarPubMed
Goel, V., & Vartanian, O. (2005). Dissociating the roles of right ventral lateral and dorsal lateral prefrontal cortex in generation and maintenance of hypotheses in set-shift problems. Cerebral Cortex, 15, 11701177.CrossRefGoogle ScholarPubMed
Gough, H. G. (1976). Studying creativity by means of word association tests. Journal of Applied Psychology, 61, 348353.CrossRefGoogle Scholar
Gruberger, M., Simon, E. B., Levkovitz, Y., Zangen, A., & Hendler, T. (2011). Towards a neuroscience of mind-wandering. Frontiers in Human Neuroscience, 5, 111.CrossRefGoogle ScholarPubMed
Guilford, J. P. (1950). Creativity. American Psychologist, 5, 444454.CrossRefGoogle ScholarPubMed
Guilford, J. P. (1951). Guilford test for creativity. Beverly Hills, CA: Sheridan Supply Company.Google Scholar
Guilford, J. P. (1968). Intelligence, creativity, and their educational implications. San Diego, CA: RR Knapp.Google Scholar
Isen, A. M., & Daubman, K. A. (1984). The influence of affect on categorization. Journal of Personality and Social Psychology, 47, 12061217.CrossRefGoogle Scholar
Jung, C. G. (1910). The association method. American Journal of Psychology, 21, 219269.CrossRefGoogle Scholar
Jung, R. E., Mead, B. S., Carrasco, J., & Flores, R. A. (2013). The structure of creative cognition in the human brain. Frontiers in Human Neuroscience, 7, Article 330.CrossRefGoogle ScholarPubMed
Jung, R. E., Segall, J. M., Jeremy Bockholt, H., Flores, R. A., Smith, S. M., Chavez, R. S., & Haier, R. J. (2010). Neuroanatomy of creativity. Human Brain Mapping, 31, 398409.CrossRefGoogle ScholarPubMed
Jung-Beeman, M. (2005). Bilateral brain processes for comprehending natural language. Trends in Cognitive Neuroscience, 9, 512518.CrossRefGoogle ScholarPubMed
Jung-Beeman, M., Bowden, E. M., Haberman, J., Frymiare, J. L., Arambel-Liu, S., Greenblatt, R., … Kounios, J. (2004). Neural activity when people solve verbal problems with insight. PLoS Biology, 2, 500510.CrossRefGoogle ScholarPubMed
Kaufman, J. C., Plucker, J. A., & Baer, J. (2008). Essentials of creativity assessment (Vol. 53). New York, NY: John Wiley & Sons.Google Scholar
Kehyayan, A., Best, K., Schmeing, J. B., Axmacher, N., & Kessler, H. (2013). Neural activity during free association to conflict–related sentences. Frontiers in Human Neuroscience, 7, Article 705.CrossRefGoogle ScholarPubMed
Kenett, Y. N. (2016). Going the extra creative mile: The role of semantic distance in creativity – Theory, research, and measurement. In Vartanian, O., & Jung, R. E. (Eds.), The Cambridge handbook of the neuroscience of creativity. Cambridge: Cambridge University Press.Google Scholar
Kenett, Y. N., Anaki, D., & Faust, M. (2014). Investigating the structure of semantic networks in low and high creative persons. Frontiers in Human Neuroscience, 8, Article 407.CrossRefGoogle ScholarPubMed
Kent, G. H., & Rosanoff, A. J. (1910). A study of association in insanity. American Journal of Psychiatry, 67, 3796.CrossRefGoogle Scholar
Kris, A. O. (1996). Free association: Method and process (revised edition). London: Karnac.Google Scholar
Kühn, S., Ritter, S. M., Müller, B. C., Baaren, , Brass, R. B., , M., & Dijksterhuis, A. (2014). The importance of the default mode network in creativity – A structural MRI study. The Journal of Creative Behavior, 48, 152163.CrossRefGoogle Scholar
Kwiatkowski, J., Vartanian, O., & Martindale, C. (1999). Creativity and speed of mental processing. Empirical Studies of the Arts, 17, 187196.CrossRefGoogle Scholar
Laird, A. R., Eickhoff, S. B., Li, K., Robin, D. A., Glahn, D. C., & Fox, P. T. (2009). Investigating the functional heterogeneity of the default mode network using coordinate-based meta-analytic modeling. The Journal of Neuroscience, 29, 1449614505.CrossRefGoogle ScholarPubMed
Lee, C. S., & Therriault, D. J. (2013). The cognitive underpinnings of creative thought: A latent variable analysis exploring the roles of intelligence and working memory in three creative thinking processes. Intelligence, 41, 306320.CrossRefGoogle Scholar
Levin, I. (1978). Creativity and two modes of associative fluency: Chains and stars. Journal of Personality, 46, 426437.CrossRefGoogle Scholar
Maltzman, I. (1960). On the training of originality. Psychological Review, 67(4), 229242.CrossRefGoogle ScholarPubMed
Maltzman, I., Bogartz, W., & Breger, L. (1958). A procedure for increasing word association originality and its transfer effects. Journal of Experimental Psychology, 56, 392398.CrossRefGoogle ScholarPubMed
Maltzman, I., Simon, S., Raskin, D., & Licht, L. (1960). Experimental studies in the training of originality. Psychological Monographs: General and Applied, 74, 123.Google Scholar
Marron, T. R., Lerner, Y., Berant, E., Kinreich, S., Shapira-Lichter, I., Hendler, T., & Faust, M. (in preparation). Chain free association, creativity, and the default mode network.Google Scholar
Marupaka, N., Iyer, L. R., & Minai, A. A. (2012). Connectivity and thought: The influence of semantic network structure in a neurodynamical model of thinking. Neural Networks, 32, 147158.CrossRefGoogle Scholar
Mashal, N., Faust, M., & Hendler, T. (2005). The role of the right hemisphere in processing nonsalient metaphorical meanings: Application of principal components analysis to fMRI data. Neuropsychologia, 43, 20842100.CrossRefGoogle ScholarPubMed
Mashal, N., Faust, M., Hendler, T., & Jung-Beeman, M. (2007). An fMRI investigation of the neural correlates underlying the processing of novel metaphoric expressions. Brain and Language, 100, 111122.CrossRefGoogle ScholarPubMed
Mason, M. F., & Bar, M. (2012). The effect of mental progression on mood. Journal of Experimental Psychology: General, 141, 217221.CrossRefGoogle ScholarPubMed
May, F., & Metcalf, A. (1965). A factor-analytic study of spontaneous flexibility measures. Educational and Psychological Measurement, 25, 10391050.CrossRefGoogle Scholar
McEvoy, C. L., & Nelson, D. L. (1982). Category name and instance norms for 106 categories of various sizes. The American Journal of Psychology, 95, 581634.CrossRefGoogle Scholar
Mednick, M. T., Mednick, S. A., & Jung, C. C. (1964). Continual association as a function of level of creativity and type of verbal stimulus. The Journal of Abnormal and Social Psychology, 69, 511.CrossRefGoogle ScholarPubMed
Mednick, S. A. (1962). The associative basis of the creative process. Psychological Review, 69, 220232.CrossRefGoogle ScholarPubMed
Mednick, S. A. (1968). The Remote Associates Test. The Journal of Creative Behavior, 2, 213214.CrossRefGoogle Scholar
Mendelsohn, G. A. (1976). Associative and attentional processes in creative performance. Journal of Personality, 44, 341369.CrossRefGoogle Scholar
Merten, T., & Fischer, I. (1999). Creativity, personality and word association responses: Associative behaviour in forty supposedly creative persons. Personality and Individual Differences, 27, 933942.CrossRefGoogle Scholar
Miller, B. J., Russ, D., Gibson, C., & Hall, A. E. (1970). Effects of free association training, retraining, and information on creativity. Journal of Experimental Psychology, 84, 226229.CrossRefGoogle ScholarPubMed
Morais, A. S., Olsson, H., & Schooler, L. J. (2013). Mapping the structure of semantic memory. Cognitive Science, 37, 125145.CrossRefGoogle ScholarPubMed
Nelson, D. L., McEvoy, C. L., & Dennis, S. (2000). What is free association and what does it measure? Memory & Cognition, 28, 887899CrossRefGoogle ScholarPubMed
Nelson, D. L., McEvoy, C. L., & Schreiber, T. A. (2004). The University of South Florida free association, rhyme, and word fragment norms. Behavior Research Methods, Instruments, & Computers, 36, 402407.CrossRefGoogle ScholarPubMed
Nelson, E. E., Vinton, D. T., Berghorst, L., Towbin, K. E., Hommer, R. E., Dickstein, D. P., … Leibenluft, E. (2007). Brain systems underlying response flexibility in healthy and bipolar adolescents: An event-related fMRI study. Bipolar Disorders, 9, 810819.CrossRefGoogle ScholarPubMed
Nijstad, B. A., & Stroebe, W. (2006). How the group affects the mind: A cognitive model of idea generation in groups. Personality and Social Psychology Review, 10, 186213.CrossRefGoogle Scholar
Nusbaum, E. C., & Silvia, P. J. (2011). Are intelligence and creativity really so different? Fluid intelligence, executive processes, and strategy use in divergent thinking. Intelligence, 39, 3645.CrossRefGoogle Scholar
Osborn, A. F. (1963). Applied imagination: Principles and procedures of creative problem-solving. New York, NY: Scribner.Google Scholar
Palermo, D. S., & Jenkins, J. J. (1964). Word association norms: Grade school through college. Minneapolis, MN: University of Minnesota Press.Google Scholar
Piers, E. V., & Kirchner, E. P. (1971). Productivity and uniqueness in continued word association as a function of subject creativity and stimulus properties. Journal of Personality, 39, 264276.CrossRefGoogle ScholarPubMed
Plucker, J. A., & Renzulli, J. S. (1999). Psychometric approaches to the study of human creativity. In Sternberg, R. J. (Ed.), Handbook of creativity (pp. 3561). Cambridge: Cambridge University Press.Google Scholar
Pobric, G., Mashal, N., Faust, M., & Lavidor, M. (2008). The role of the right cerebral hemisphere in processing novel metaphoric expressions: A TMS study. Journal of Cognitive Neuroscience, 20, 170181.CrossRefGoogle Scholar
Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., & Shulman, G. L. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences, 98, 676682.CrossRefGoogle ScholarPubMed
Riegel, K. F., Riegel, R. M., & Levine, R. S. (1966). An analysis of associative behavior and creativity. Journal of Personality and Social Psychology, 4, 5056.CrossRefGoogle ScholarPubMed
Ritter, S. M., & Dijksterhuis, A. (2014). Creativity – The unconscious foundations of the incubation period. Frontiers in Human Neuroscience, 8, 110.CrossRefGoogle ScholarPubMed
Ritter, S. M., Damian, R. I., Simonton, D. K., van Baaren, R. B., Strick, M., Derks, J., & Dijksterhuis, A. (2012). Diversifying experiences enhance cognitive flexibility. Journal of Experimental Social Psychology, 48, 961964.CrossRefGoogle Scholar
Rossmann, E., & Fink, A. (2010). Do creative people use shorter associative pathways? Personality and Individual Differences, 49, 891895.CrossRefGoogle Scholar
Rothenberg, A. (1973). Word association and creativity. Psychological Reports, 33, 312.CrossRefGoogle ScholarPubMed
Runco, M. A. (1986). Flexibility and originality in children’s divergent thinking. The Journal of Psychology, 120, 345352.CrossRefGoogle Scholar
Runco, M. A., & Acar, S. (2012). Divergent thinking as an indicator of creative potential. Creativity Research Journal, 24, 6675.CrossRefGoogle Scholar
Runco, M. A., & Charles, R. E. (1993). Judgments of originality and appropriateness as predictors of creativity. Personality and Individual Differences, 15, 537546.CrossRefGoogle Scholar
Runco, M. A., & Okuda, S. M. (1991). The instructional enhancement of the flexibility and originality scores of divergent thinking tests. Applied Cognitive Psychology, 5, 435441.CrossRefGoogle Scholar
Russ, S. W. (1993). Affect and creativity: The role of affect and play in the creative process. Hillsdale, NJ: Lawrence Erlbaum and Associates.Google Scholar
Russ, S. W. (2001). Primary-process thinking and creativity: Affect and cognition. Creativity Research Journal, 13, 2735.CrossRefGoogle Scholar
Schilling, M. A. (2005). A “small-world” network model of cognitive insight. Creativity Research Journal, 17, 131154.CrossRefGoogle Scholar
Seger, C. A., Desmond, J. E., Glover, G. H., & Gabrieli, J. D. E. (2000). FMRI evidence for right hemisphere involvement in processing unusual semantic relationships. Neuropsychology, 14, 361369.CrossRefGoogle ScholarPubMed
Shamay-Tsoory, S. G., Adler, N., Aharon-Peretz, J., Perry, D., & Mayseless, N. (2011). The origins of originality: The neural bases of creative thinking and originality. Neuropsychologia, 49, 178185.CrossRefGoogle ScholarPubMed
Shapira-Lichter, I., Oren, N., Jacob, Y., Gruberger, M., & Hendler, T. (2013). Portraying the unique contribution of the default mode network to internally driven mnemonic processes. Proceedings of the National Academy of Sciences, 110, 49504955.CrossRefGoogle ScholarPubMed
Silvia, P. J., Beaty, R. E., & Nusbaum, E. C. (2013). Verbal fluency and creativity: General and specific contributions of broad retrieval ability (Gr) factors to divergent thinking. Intelligence, 41, 328340.CrossRefGoogle Scholar
Simonton, D. K. (2010). Creative thought as blind-variation and selective-retention: Combinatorial models of exceptional creativity. Physics of Life Reviews, 7, 156179.CrossRefGoogle ScholarPubMed
Skelton, R. (Ed.). (2006). Edinburgh international encyclopaedia of psychoanalysis. Edinburgh: Edinburgh University Press.CrossRefGoogle Scholar
Smallwood, J., & Schooler, J. W. (2006).The restless mind. Psychological Bulletin, 132, 946958.CrossRefGoogle ScholarPubMed
Smith, S. M. (2003). The constraining effects of initial ideas. In Paulus, P., & Nijstad, B.(Eds.), Group creativity: Innovation through collaboration (pp. 3146). New York, NY: Oxford University Press.Google Scholar
Solms, M., & Turnbull, O. H. (2011). What is neuropsychoanalysis? Neuropsychoanalysis: An Interdisciplinary Journal for Psychoanalysis and the Neurosciences, 13, 133146.CrossRefGoogle Scholar
Spence, S. A., Kaylor-Hughes, C. J., Cooley, L., Green, R. D., Wilkinson, I. D., Parks, R. W., & Hunter, M. D. (2009). Toward a cognitive neurobiological account of free association. Neuropsychoanalysis, 11, 151163.CrossRefGoogle Scholar
Svoboda, E., McKinnon, M. C., & Levine, B. (2006). The functional neuroanatomy of autobiographical memory: A meta-analysis. Neuropsychologia, 44, 21892208.CrossRefGoogle ScholarPubMed
Takeuchi, H., Taki, Y., Hashizume, H., Sassa, Y., Nagase, T., Nouchi, R., & Kawashima, R. (2012). The association between resting functional connectivity and creativity. Cerebral Cortex, 22, 29212929.CrossRefGoogle ScholarPubMed
Thurston, B. J., & Runco, M. A. (1999). Flexibility. In Runco, M. A. & Pritzker, S. R. (Eds.), Encyclopedia of creativity (Vol. 1, pp. 729732). San Diego, CA: Academic Press.Google Scholar
Torrance, E. P. (1974). The Torrance tests of creative thinking – TTCT Manual and Scoring Guide: Verbal test A, figural test. Lexington, KY: Ginn.Google Scholar
Torrance, E. P., & Safter, H. T. (1999). Making the creative leap beyond. Scituate, MA: Creative Education Foundation Press.Google Scholar
Vartanian, O., Jobidon, M. E., Bouak, F., Nakashima, A., Smith, I., Lam, Q., & Cheung, B. (2013). Working memory training is associated with lower prefrontal cortex activation in a divergent thinking task. Neuroscience, 236, 186194.CrossRefGoogle Scholar
Vartanian, O., Martindale, C., & Matthews, J. (2009). Divergent thinking ability is related to faster relatedness judgments. Psychology of Aesthetics, Creativity, and the Arts, 3, 99103.CrossRefGoogle Scholar
Wei, D., Yang, J., Li, W., Wang, K., Zhang, Q., & Qiu, J. (2014). Increased resting functional connectivity of the medial prefrontal cortex in creativity by means of cognitive stimulation. Cortex, 51, 92102.CrossRefGoogle ScholarPubMed
Wende, K. C., Straube, B., Stratmann, M., Sommer, J., Kircher, T., & Nagels, A. (2012). Neural correlates of continuous causal word generation. NeuroImage, 62, 13991407.CrossRefGoogle ScholarPubMed
Winnicott, D. (1971). Playing and reality. London: Tavistock.Google Scholar
Wirth, M., Jann, K., Dierks, T., Federspiel, A., Wiest, R., & Horn, H. (2011). Semantic memory involvement in the default mode network: A functional neuroimaging study using independent component analysis. NeuroImage, 54, 30573066.CrossRefGoogle ScholarPubMed
Zabelina, D. L., & Robinson, M. D. (2010). Creativity as flexible cognitive control. Psychology of Aesthetics, Creativity, and the Arts, 4, 136143.CrossRefGoogle Scholar
Zeev-Wolf, M., Goldstein, A., & Faust, M. (2010). Novel metaphor comprehension: Evidence from MEG recordings. Poster presented at the Annual Psychology Scientific Conference, Bar-Ilan University, Israel.Google Scholar
Zemla, J., Kenett, Y. N., Jun, K.-S., & Austerweil, J. L. (2016). U-INVITE: Estimating individual semantic networks from fluency data. In Proceedings of the 38th Annual Meeting of the Cognitive Science Society.Google Scholar
Zhou, Z., Xu, H., Zhao, Q., Zhao, L., & Liao, M. (2011). The processing of novel semantic association in Chinese: Converging evidence from behavior and fMRI studies. 4th International Congress on Image and Signal Processing (CISP), 2011 (Vol. 3, pp. 15881592). Shanghai: IEEE.CrossRefGoogle Scholar

References

American Psychiatric Association. (2000). Diagnostic and statistical manual of mental disorders: Text revision (4th ed., rev.) Washington, DC: American Psychiatric Association.Google Scholar
American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (DSM V) (5th ed.). Washington, DC: American Psychiatric Association.Google Scholar
Au Yeung, S. K., Kaakinen, J. K., Liversedge, S. P., & Benson, V. (2015). Processing of written irony in autism spectrum disorder: An eye movement study. Autism Research, 8, 749760.CrossRefGoogle ScholarPubMed
Baron-Cohen, S., Leslie, A. M., & Frith, U. (1985). Does the autistic child have a ‘theory of mind’? Cognition, 21, 3746.CrossRefGoogle ScholarPubMed
Beeman, M. (1998). Coarse semantic coding and discourse comprehension. In Beeman, M., & Chiarello, C. (Eds.), Right hemisphere language comprehension: Perspectives from cognitive neuroscience (pp. 255284). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
Bowdle, B. F., & Gentner, D. (2005). The career of metaphor. Psychological Review, 112, 193216.CrossRefGoogle ScholarPubMed
Brown, L., Sherbenou, R. J., & Johnsen, S. K. (1997). Test of nonverbal intelligence: TONI-3 (3rd ed.). Austin, TX: PRO-ED.Google Scholar
Cardinale, R. C., Shih, P., Fishman, I., Ford, L. M., & Muller, R.-A. (2013). Pervasive rightward asymmetry shifts of functional networks in autism spectrum disorder. JAMA Psychiatry, 70, 975982.CrossRefGoogle ScholarPubMed
Clark, H. H., & Gerrig, R. J. (1984). On the pretense theory of irony. Journal of Experimental Psychology: General, 113, 121126.CrossRefGoogle ScholarPubMed
Colich, N. L., Wang, A. T., Rudie, J. D., Hermandez, L. M., Bookheimer, S. Y., & Dapretto, M. (2012). Atypical neural processing of ironic and sincere remarks in children and adolescents with autism spectrum disorders. Metaphor and Symbol, 27(1), 7092.CrossRefGoogle ScholarPubMed
Craig, J., & Baron-Cohen, S. (1999). Creativity and imagination in autism and Asperger syndrome. Journal of Autism and Developmental Disorders, 29, 319326.CrossRefGoogle ScholarPubMed
Crespi, B., & Badcock, C. (2008). Psychosis and autism as diametrical disorders of the social brain. Behavioral and Brain Sciences, 31, 241261.CrossRefGoogle ScholarPubMed
Crespi, B. J. (2016). Autism as a disorder of high intelligence. Frontiers in Neuroscience, 10, 117.CrossRefGoogle ScholarPubMed
Dawson, G., Finley, C., Phillips, S., & Galpert, L. (1986). Hemispheric specialization and the language abilities of autistic children. Child Development, 57(6), 14401453.CrossRefGoogle ScholarPubMed
Dews, S., & Winner, E. (1995). Muting the meaning: A social function of irony. Metaphor and Symbolic Activity, 10, 319.CrossRefGoogle Scholar
Dichter, G. S., Lam, K. S. L., Turner-Brown, L. M., Holtzclaw, T. N., & Bodfish, J. W. (2009). Generativity abilities predict communication deficits but not repetitive behaviors in autism spectrum disorders. Journal of Autism and Developmental Disorders, 39, 12981304.CrossRefGoogle Scholar
Eviatar, Z., & Just, M.A. (2006). Brain correlates of discourse processing: An fMRI investigation of irony and conventional metaphor comprehension. Neuropsychologia, 44, 23482359.CrossRefGoogle ScholarPubMed
Eyler, L. T., Pierce, K., & Courchesne, E. (2012). A failure of left temporal cortex to specialize for language is an early emerging and fundamental property of autism. Brain, 135, 949960.CrossRefGoogle ScholarPubMed
Filippova, E., & Astington, J. W. (2008). Further development in social reasoning in discourse irony understanding. Child Development, 79, 126138.CrossRefGoogle ScholarPubMed
Filippova, E., & Astington, J. W. (2010). Children’s understanding of social-cognitive and social-communicative aspects of discourse irony. Child Development, 81(3), 913928.CrossRefGoogle ScholarPubMed
Gage, N. M., Juranek, J., Filipek, P. A., Osann, K., Flodman, P., Isenberg, A. L., & Spence, M. A. (2009). Rightward hemispheric asymmetries in auditory language cortex in children with autistic disorder: An MRI Investigation. Journal of Neurodevelopmental Disorders, 1, 205214.CrossRefGoogle ScholarPubMed
Gernsbacher, M. A., & Pripas-Kapit, S. R. (2012). Who’s missing the point? A commentary on claims that autistic persons have a specific deficit in figurative language comprehension. Metaphor and Symbol, 27, 93105.CrossRefGoogle Scholar
Gibbs, R. W. (2000). Irony in talk among friends. Metaphor and Symbol, 15, 527.CrossRefGoogle Scholar
Gibbs, R. W., Bryant, G. A., & Colston, H. L. (2014). Where is the humor in verbal irony? Humor: International Journal of Humor Research, 27, 575595.CrossRefGoogle Scholar
Giora, R. (1997). Understanding figurative and literal language: The graded salience hypothesis. Cognitive Linguistics, 7, 183206.CrossRefGoogle Scholar
Giora, R. (1999). On the priority of salient meaning: Studies of literal and figurative language. Journal of Pragmatics, 31, 919929.CrossRefGoogle Scholar
Giora, R. (2003). On our mind: Salience, context, and figurative language. New York, NY: Oxford University Press.CrossRefGoogle Scholar
Giora, R., Gazal, O., Goldstein, I., Fein, O., & Stringarisi, A. (2012). Salience and context: Interpretation of metaphorical and literal language by young adults diagnosed with Asperger’s syndrome. Metaphor and Symbol, 27, 2254.Google Scholar
Gold, R., & Faust, M. (2010). Right hemisphere dysfunction and metaphor comprehension in Asperger syndrome. Journal of Autism and Developmental Disorders, 40(7), 800811.CrossRefGoogle ScholarPubMed
Gold, R., & Faust, M. (2012) Metaphor comprehension in persons with Asperger syndrome: Systemized versus non-systemized semantic processing. Metaphor and Symbol, 27, 5569.CrossRefGoogle Scholar
Gold, R., Faust, M., & Ben-Artzi, E. (2012). Metaphors and verbal creativity: The role of the right hemisphere. Laterality: Asymmetries of Body, Brain and Cognition, 17, 602614.CrossRefGoogle ScholarPubMed
Happé, F. (1993).Communicative competence and theory of mind in autism: A test of relevance theory. Cognition, 48, 101119.CrossRefGoogle ScholarPubMed
Happé, F., & Vital, P. (2009). What aspects of autism predispose to talent? Philosophical Transactions of the Royal Society B: Biological Sciences, 364, 13691375.CrossRefGoogle ScholarPubMed
Hermann, I., Haser, V., Van, E., Ludger, T., Ebert, D., Müller-Feldmeth, D., … Konieczny, L. (2013). Automatic metaphor processing in adults with Asperger syndrome: A metaphor interference effect task. European Archives of Psychiatry and Clinical Neuroscience, 263, S177S187.CrossRefGoogle ScholarPubMed
Iakimova, G., Passerieux, C., Denhiere, G., Laurent, J. P., Vistoli, D., Vilain, J., & Hardy-Bayle, M. C. (2010). The influence of idiomatic salience during the comprehension of ambiguous idioms by patients with schizophrenia. Psychiatry Research, 177, 4654.CrossRefGoogle ScholarPubMed
Jung, R. E. (2014). Evolution, creativity, intelligence, and madness: “Here Be Dragons”. Frontiers in Psychology, 15, 13.Google Scholar
Jung, R. E., Segall, J. M., Jeremy Bockholt, H., Flores, R. A., Smith, S. M., Chavez, R. S., & Haier, R. J. (2010). Neuroanatomy of creativity. Human Brain Mapping, 31, 398409.CrossRefGoogle ScholarPubMed
Kasirer, A., & Mashal, N. (2014). Verbal creativity in autism: Comprehension and generation of metaphoric language in high functioning autism spectrum disorder and typical development. Frontiers in Human Neuroscience, 8, 818.CrossRefGoogle ScholarPubMed
Kavé, G. (2005). Phonemic fluency, semantic fluency, and difference scores: Normative data for adult Hebrew speakers. Journal of Clinical and Experimental. Neuropsychology, 27, 690699.CrossRefGoogle ScholarPubMed
Kavé, G., Avraham, , Kukulansky-Segal, A., , D., & Herzberg, O. (2007). How does the homophone meaning generation test associate with the phonemic and semantic fluency tests? A quantitative and qualitative analysis. Journal of the International Neuropsychological Society, 13, 424432.Google ScholarPubMed
Kleinhans, N. M., Muller, R.-A., Cohen, D. N., & Courchesne, E. (2008). Atypical functional lateralization of language in autism spectrum disorders. Brain Research, 1221, 115125.CrossRefGoogle ScholarPubMed
Levorato, M. C., & Cacciari, C. (1999). Idiom comprehension in children: Are the effects of semantic analysability and context separable? European Journal of Cognitive Psychology, 11(1), 5166.CrossRefGoogle Scholar
Lindell, A.K. (2006). In your right mind: Right hemisphere contributions to language processing and production. Neuropsychology Review, 16, 131148.CrossRefGoogle ScholarPubMed
MacKay, G., & Shaw, A. (2004). A comparative study of figurative language in children with autistic spectrum disorders. Child Language Teaching and Therapy, 20, 1332.CrossRefGoogle Scholar
Martin, I., & McDonald, S. (2004). An exploration of causes of non-literal language problems in individuals with Asperger syndrome. Journal of Autism Developmental Disorders, 34, 311328.CrossRefGoogle ScholarPubMed
Mashal, N. (2013). The role of working memory in the comprehension of unfamiliar and familiar metaphors. Language and Cognition, 5(4), 409436.CrossRefGoogle Scholar
Mashal, N., Faust, M., & Hendler, T. (2005). The role of the right hemisphere in processing nonsalient metaphorical meaning: Application of principal components analysis to fMRI data. Neuropsychologia, 43(14), 20842100.CrossRefGoogle ScholarPubMed
Mashal, N., Faust, M., Hendler, T., & Jung-Beeman, M. (2007). An fMRI investigation of the neural correlates underlying the processing of novel metaphorical expressions. Brain and Language, 100, 115126.CrossRefGoogle Scholar
Mashal, N., & Kasirer, A. (2011). Thinking maps enhance metaphoric competence in children with autism and learning disabilities. Research in Developmental Disabilities, 32, 20452054.CrossRefGoogle ScholarPubMed
Melogno, S.. D’Ardia, C., Pinto, M. A., & Levi, G. (2012). Explaining metaphors in high-functioning Autism Spectrum Disorder children: A brief report. Research in Autism Spectrum Disorders, 6(2), 683689.CrossRefGoogle Scholar
Mitchell, R. L. C., & Crow, T. J. (2005). Right hemisphere language functions and schizophrenia: The forgotten hemisphere? Brain, 128, 963978.CrossRefGoogle ScholarPubMed
Muller, R. A., Behen, M. E., Rothermel, R. D., Chugani, D. C., Muzik, O., Mangner, T. J., & Chugani, H. T. (1999). Brain mapping of language and auditory perception in high-functioning autistic adults: A PET study. Journal of Autism and Developmental Disorders, 29, 1931.CrossRefGoogle ScholarPubMed
Nippold, M. A., & Taylor, C. L. (2002). Judgments of idiom familiarity and transparency: A comparison of children and adolescents. Journal of Speech, Language, and Hearing Research, 45(2), 384391.CrossRefGoogle ScholarPubMed
Norbury, C. F. (2004) Factors supporting idiom comprehension in children with communication disorders. Journal of Speech, Language, and Hearing Research, 47(5), 11791193.CrossRefGoogle ScholarPubMed
Olofson, E. L., Casey, D., Oluyedun, O. A., Van Herwegen, J., Becerra, A., & Rundblad, G. (2014). Youth with autism spectrum disorder comprehend lexicalized and novel primary conceptual metaphors. Journal of Autism and Developmental Disorders, 44, 25682583.Google ScholarPubMed
Ozonoff, S., & Miller, J. N. (1996). An exploration of right hemisphere contributions to the pragmatic impairments of autism. Brain and Language, 52, 411434.CrossRefGoogle Scholar
Pexman, P. M., & Glenwright, M.(2007). How do typically developing children grasp the meaning of verbal irony? Journal of Neurolinguistics, 20(2), 178196.CrossRefGoogle Scholar
Pexman, P. M., Rostad, K. R., McMorris, C. A., Climie, E. A., Stowkowy, J., & Glenwright, M. R. (2011). Processing of ironic language in children with high-functioning autism spectrum disorder. Journal of Autism Developmental Disordered, 41, 10971112.CrossRefGoogle ScholarPubMed
Rapp, A. (2009). The role of the right hemisphere for language in schizophrenia. In Sommer, I. E. C., & Khan, R. S. (Eds.), Language lateralization in psychosis (pp. 147156). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Reitan, R. M., & Davison, L. A. (Eds.). (1974). Clinical neuropsychology: Current status and applications. Washington, DC: Winston.Google Scholar
Rinehart, N. J., Bradshaw, J. L., Brereto, A. V., & Tonge, B. J. (2002). Lateralization in individuals with high-functioning autism and Asperger disorder: A frontostriatal model. Journal of Autism and Developmental Disorders, 32, 321331.Google ScholarPubMed
Roberts, R. M., & Kreuz, R. J. (1994).Why do people use figurative language? Psychological Science, 5, 159163.Google Scholar
Rundblad, G., & Annaz, D. (2010). The atypical development of metaphor and metonymy comprehension in children with autism. Autism, 14, 2946.Google ScholarPubMed
Saban-Bezalel, R., & Mashal, N. (2015a). Hemispheric processing of idioms and irony in adults with and without pervasive developmental disorder. Journal of Autism and Developmental Disorders, 45, 34963508.CrossRefGoogle ScholarPubMed
Saban-Bezalel, R., & Mashal, N. (2015b).The effects of intervention on the comprehension of irony and on hemispheric processing of irony in adults with ASD. Neuropsychologia, 77, 233241.CrossRefGoogle ScholarPubMed
Silvia, P. J., & Beaty, R. E. (2012). Making creative metaphors: The importance of fluid intelligence for creative thought. Intelligence, 40(4), 343351.CrossRefGoogle Scholar
Swinney, D. A., & Cutler, A. (1979). The access and processing of idiomatic expressions. Journal of Verbal and Learning Behavior, 18, 523534.CrossRefGoogle Scholar
Thoma, P., & Daum, I. (2006). Neurocognitive of figurative language processing – Evidence from clinical dysfunction. Neuroscience Biobehavioral Review, 30(8), 11821205.CrossRefGoogle Scholar
Vulchanova, M., Saldaña, D., Chahboun, , , S., & Vulchanov, V. (2015). Figurative language processing in atypical populations: The ASD perspective. Frontiers in Human Neuroscience, 9.CrossRefGoogle ScholarPubMed
Wang, A. T., Lee, S. S., Sigman, M., & Dapretto, M. (2006). Neural basis of irony comprehension in children with autism: The role of prosody and context. Brain, 129, 932943.CrossRefGoogle ScholarPubMed
Wechsler, D. (2001). Wechsler Adult Intelligence Scale (3rd ed.). San Antonio, TX: Psychological Corporation.Google Scholar
Whyte, E. M., Nelson, K. E., & Scherf, K. S. (2014). Idiom, syntax, and advanced theory of mind abilities in children with autism spectrum disorders. Journal of Speech, Language, and Hearing Research, 57(1), 120130.CrossRefGoogle ScholarPubMed
Williams, D. L., Cherkassky, V. L., Mason, R. A., Keller, T. A., Minshew, N. J., & Just, A. M. (2013). Brain function differences in language processing in children and adult with autism. Autism Research, 6, 288302.Google ScholarPubMed
Winner, E., Levy, J., Kaplan, J., & Rosenblatt, E. (1988). Children’s understanding of nonliteral language. Journal of Aesthetic Education, 22, 5163.CrossRefGoogle Scholar